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Abstract
Inversions, also sometimes called reversals, are a major contributor to variation among
bacterial genomes, with studies suggesting that those involving small numbers of
regions aremore likely than larger inversions.Deletionsmay arise in bacterial genomes
through the same biological mechanism as inversions, and hence a model that incor-
porates both is desirable. However, while inversion distances between genomes have
been well studied, there has yet to be a model which accounts for the combination
of both deletions and inversions. To account for both of these operations, we intro-
duce an algebraic model that utilises partial permutations. This leads to an algorithm
for calculating the minimum distance to the most recent common ancestor of two
bacterial genomes evolving by inversions (of adjacent regions) and deletions. The
algebraic model makes the existing short inversion models more complete and realis-
tic by including deletions, and also introduces new algebraic tools into evolutionary
distance problems.
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1 Introduction

Methods for computing the evolutionary distance between bacterial genomes are
important for phylogenetic reconstruction, especially by way of contrast with organ-
isms that have morphological characteristics and better defined species boundaries.
Approaches to distances based on large-scale rearrangements have been widely stud-
ied in bacteria because they are often relatively quick to compute and can be used
to complement, or even improve, trees based on other methods such as sequence
comparisons (Bochkareva et al. 2018).

The bacterial genomes that we will consider have a single circular chromosome.
During the evolution of bacterial genomes a frequent rearrangement event is the inver-
sion, where the clockwise order of a contiguous block of conserved regions is reversed
(Eisen et al. 2000). If the orientation of regions is taken into account, these events also
reverse the orientations of regions in this block. While most early mathematical mod-
els assumed the probability of all inversions to be equal, evidence to the contrary has
emergedwhich suggests shorter inversions aremore likely (Seoighe et al. 2000; Dalevi
et al. 2002; Lefebvre et al. 2003; Darling et al. 2008). With this in mind, throughout
this paper we will be concerned with inversions of length two.

Many other large scale changes to bacterial DNA have been observed and investi-
gated, notably insertion of novel DNA (horizontal gene transfer), deletion of segments,
translocation of segments to different locations on the genome, and duplication of seg-
ments (Saier 2008). Deletions are special in the context of inversions however, because
they can occur by the same mechanism, namely site-specific recombination (Plasterk
et al. 1983). This means that inversions and deletion are related biologically in a way
that other combinations of rearrangement operations are not.

Site-specific recombination acts on the circular genome by forming a synaptic
complex around two copies of a specific sequence on the genome, that might be far
apart on the sequence but close together in a three-dimensional sense in the cell. The
recombinase then cuts the DNA at both sites and rejoins across the two, in effect
locally replacing a trivial 2-braid with a braid generator (as an algebraic topologist
might describe it). This event can result in the inversion of a segment of the genome
relative to the rest of the genome, but can also result in the deletion of a segment, as
shown in Fig. 1.

Most rearrangement models, with few exceptions (see Alexandrino et al. (2021a)
for instance), assume that the genomes in question have the same sets of regions.
While inversion models need both genomes to have the same gene content (or ignore
gene content that is not shared), a model incorporating both inversions and deletions
can model an evolutionary history of two genomes with differing gene content under
the assumption that they both evolved from a common ancestor with the union of
their sets of genes. Incorporating deletions thus enables a wider class of genomes to
be compared more completely, especially since in some instances (see Raeside et al.
(2014)) deletions are the most frequently observed recombination event.

By thinking of bacterial genomes as sequences of region labels or integers (see Bha-
tia et al. (2018) for a review of these conventions), a pair of genomes σ1 and σ2 can
be represented by signed or unsigned permutations, assuming all regions are distinct.
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Fig. 1 Site-specific recombination giving rise to deletion, with the area of recombinase action shown shaded
on the left. The result is in fact a pair of linked components (topologically, a “Hopf link”), but over time any
component without the essential genes from the original genome (such as origin and terminus of replication)
would degrade and the result would be a genome without the genetic material from that component (that
is, a deletion). If the figure on the left had an even number of twists the result would be an inversion (see
for example Francis (2014))

The minimum length sequence of operations t1, · · · , tk such that σ1t1 · · · tk = σ2 con-
sequently provides an estimate of the evolutionary distance between these genomes.
These distances may then be used to reconstruct phylogenetic trees using methods
such as neighbor-joining (Saitou and Nei 1987).

Although finding the unsigned inversion distance between two genomes is NP-
hard (Caprara 1997), the signed inversion distance can be found in polynomial time
when all inversions (of any length) are assumed to be equally likely (Hannenhalli and
Pevzner 1999). For unsigned inversions, an upper bound on the inversion distance
between genomes was first provided in (Watterson et al. 1982), with polynomial time
algorithms later established from a combinatorial perspective by Jerrum (1985) and
an algebraic perspective by (Egri-Nagy et al. 2014). Polynomial time algorithms also
exist for signed inversion distances (Galvao et al. 2017; Oliveira et al. 2018) (using
terms such as “super short reversal”).

When a polynomial time algorithm for a rearrangement distance exists, it is often
possible to incorporate both deletions and insertions into the model. Polynomial
time algorithms exist for calculating the minimal genomic distance under exclusively
insertions and deletions (Marron et al. 2004), with insertions, deletions and signed
inversions (El-Mabrouk 2000), andwith inversions, transpositions, insertions and dele-
tions (Alexandrino et al. 2021b). Insertions and deletions have also been incorporated
into other models such as double cut and join (Braga et al. 2010; Shao and Lin 2012).

When insertions and deletions are both allowed, the minimum distance between
any pair of genomes G1 and G2 with region labels R1 and R2 respectively always
exists. Furthermore, this distance is symmetric in the sense that the distance from G1
to G2 is the same as the distance from G2 to G1, because the deletion of a region
can be “undone” by inserting the deleted region back into the genome and vice versa.
There is, however, little work that considers the addition of deletions without also
considering insertions.When considering deletionswithout insertions, unlesswemake
the assumption that R1 ⊆ R2 or R2 ⊆ R1 or both (as in El-Mabrouk (2000)), there
will not necessarily be an inversion/deletion sequence that transforms one genome
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into the other. To deal with this, we will provide a model for directly reconstructing
the most recent common ancestor of G1 and G2.

This model will make use of partial analogues of the symmetric group, namely
the symmetric inverse monoid and the symmetric inverse category, which will be
discussed in Sect. 3. To the best of the authors’ knowledge they have not yet been
explicitly used in any distance-based methods. When working with these structures, it
is advantageous to adopt the convention of writing maps on the right and composing
from left to right. That is, we write (x) f instead of f (x), and f g is written instead of
g ◦ f .

Hereafter we will use the term “inversion” to mean an inversion of precisely two
adjacent regions. The paper proceeds as follows. In Sect. 2 we provide an algebraic
framework for describing bacterial genomes. After introducing a number of key alge-
braic structures in Sect. 3, these structures are then used to establish an algebraicmodel
of the inversion/deletion process in Sect. 4. This allows us to define a problem called
the region alignment problem, where it will be shown that solving this problem over
all pairs of orientations of G1 and G2 allows for the reconstruction of a parsimo-
nious most recent common ancestor with respect to inversion and deletions. An exact
algorithm for calculating this distance is provided in Sect. 5. The paper ends with a
Discussion in Sect. 6 that describes some of the important limitations of the models
here, and also some of the opportunities for further development. In particular, it is to
be hoped that the introduction of the semigroup models here will lead to further work
by algebraists to improve applicability and utility of genome rearrangement models.

2 An algebraic model of bacterial genomes

For a circular genome G with a set R of n distinct regions, different rotations and
reflections of G represent different ways of viewing the genome in three dimensional
space. These symmetries are accounted for by an action of the dihedral group Dn ,
which consists of permutations in the symmetric group Sn (the group of permutations
of n = {1, . . . , n}) representing the rotations and reflections of an n-gon. Beginning
with a set XR containing the n! words of length n whose distinct letters are from R,
consider the action · of Dn on XR where for σ ∈ Dn we have

σ · x1 · · · xn = x(1)σ · · · x(n)σ .

The equivalence relation ∼ on XR induced by this action (where words u, v ∈ XR are
related if and only if there exists σ ∈ Dn such that u = σ · v) allows for the following
algebraic definition of a circular genome.

Definition 2.1 A genome G with region set R is an equivalence class in the quotient
set XR/ ∼.

For u ∈ XR the equivalence class of u is denoted by [u], elements of each equivalence
class (words in XR) are called the reference frames of G, and for two genomes G1
and G2 a reference pair is an element of the Cartesian product G1 × G2.
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Fig. 2 Given a set of regions R = {a, b, c, d, e, f , g, h}, the reference frames g1 = abcde f gh, g2 =
cde f ghab and g3 = hg f edcba of the genome [abcde f gh] represent different ways of viewing the same
circular genome in three dimensional space. The reference frame g2 is obtained by rotating g1 two positions
anticlockwise and g3 is obtained by reflecting g1 in the vertical axis

To visualise the reference frames of a genome, begin with the unit circle centered
at (0, 0) in R

2 and specify a distinguished point at (0, 1). Subdivide the circle into n
arcs of equivalent length proceeding clockwise from (0, 1) where the arc immediately
clockwise from (0, 1) is considered to be position 1, the next arc clockwise is consid-
ered to be position 2 and so on until we reach position n (which will be the arc directly
anti-clockwise from (0, 1)). If x1 · · · xn is a reference frame of G then its diagram is
obtained by labelling position i by xi ∈ R via bijection λ : R → n from regions to
positions (see Fig. 2). With this is mind, these bijections may also be used to represent
reference frames rather than elements of XR .

We will proceed under the assumption that each genome has arisen via the min-
imum possible number of inversions and deletions, which is commonly known as
the parsimony criterion. This approach allows genome rearrangement problems to be
viewed as combinatorial optimisation problems whose minimised solutions represent
evolutionary distances in accordance with this criterion (Fertin et al. 2009). With this
assumption in mind the most recent common ancestor of genomes G1 and G2 with
region sets R1 and R2 respectively will have region set R1 ∪ R2, noting that it must
certainly contain the union of the two sets of regions, but could possibly contain more
(in which case a greater number of deletions would be required to yield G1 and G2,
contradicting the parsimony criterion).

Figure 3 illustrates an example of how reference frames g1 and g2 of genomes G1
and G2 respectively may arise via inversions and deletions from a (not necessarily
most recent) common ancestor A.

3 The symmetric group, the symmetric inverse monoid and their
generalisations

Tomodel the inversion/deletion process and formalise the notion of a distance between
genomes we use themachinery of the symmetric group, the symmetric inverse monoid
and their generalisations. Throughout we let n = {1, . . . , n} for all positive integers n
(where 0 = ∅), let N = {0, 1, . . . } and N

+ = N\{0}, and let the restriction of a map
f to a subset X of its domain be denoted by f |X .
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Fig. 3 An example of frames of reference g1 and g2 of G1 and G2 arising from an ancestor A with
the deletions occurring first, followed by inversions. After the deletions but prior to inversions there are
intermediate reference frames g′

1 and g′
2 of genomes G′

1 and G′
2

Definition 3.1 Let X , Y and X ′ be sets where X ′ ⊆ X . A partial permutation with
domain X ′ from X to Y is an injection f |X ′ : X ′ → Y where (x) f = (x) f |X ′ for all
x ∈ X ′ and where (x) f is undefined for all x ∈ X \ X ′. The domain of f is denoted
dom( f ), while im( f ) is the image of X ′ under f |X ′ .

For a monoid M the inverse ofm ∈ M is the uniquem−1 ∈ M such thatmm−1m =
m andm−1mm−1 = m−1. If all elements of M have an inverse in this sense, then M is
an inversemonoid. The set of partial permutations fromn to itself, which is denoted In ,
is an inversemonoid called the symmetric inversemonoid whose identity is the identity
map. We will also consider the set Im,n of partial permutations from the set m to the
set n for allm, n ∈ N, where ifm = n we write In = In,n . These partial permutations
will be used to represent the relative positions of conserved regions that appear in two
circular bacterial genomes, and to represent inversion/deletion operations.

The symmetric inverse category, denoted I, is the (small) category whose objects
are the natural numbers and where the set of arrows from m to n is Im,n . For partial
permutations f ∈ Im,n and g ∈ In,p, their composition f g ∈ Im,p is such that, for
all i ∈ dom( f ), if (i) f ∈ im( f ) ∩ dom(g) then (i) f g = (

(i) f
)
g and if (i) f /∈

im( f ) ∩ dom(g) then i /∈ dom( f g).
The diagram of f ∈ Im,n is formed by arranging m vertices labelled by elements

of {1, . . . ,m} above n vertices labelled by elements of {1, . . . , n} forming two parallel
rows of vertices. If (i) f = j then there is an edge connecting i in the upper row with
j in the lower row of the diagram (as in Fig. 4).
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Fig. 4 A partial permutation f
in I5,4 with dom( f ) = {2, 4, 5}
and im( f ) = {2, 3, 4}

Fig. 5 Calculating the product
of partial permutations f ∈ I5,5
and g ∈ I5,4

Using the diagrams of f and g it is often helpful to view their composition dia-
grammatically by first associating the vertices in the lower row of the diagram of f
with those in the upper row of the diagram of g, forming a graph called the product
graph (see Fig. 5). If there is a path from i in the upper row of the product graph to j
in the lower row then (i) f g = j .

A partial permutation f ∈ Im,n is said to be order preserving if, for all i, j ∈
dom( f ), we have i < j if and only if (i) f < ( j) f . Instances where i < j but
(i) f > ( j) f are called crossings. The set of order preserving elements of Im,n is
denoted by POIm,n . A partial permutation f ∈ Im,n with dom( f ) = {x1, . . . , xk} is
said to be orientation preserving (cf. (McAlister 1998; Catarino and Higgins 1999))
if the sequence ((x1) f , . . . , (xk) f ) is cyclic, in the sense that there exists at most
one index i ∈ k such that (xi ) f > (xi+1 mod k) f . The set of orientation preserving
elements of Im,n is denoted POPIm,n . Order preserving partial permutations will
arise when regions common to two genomes appear in the same order reading from
position 1 to position n, while orientation preserving partial permutations will arise
when these regions appear in the same (clockwise) cyclic order in both genomes.

4 An algebraic model of inversions and deletions

Given a reference frame of a genome G specified by a bijection λ : R → n, inversions
and deletions acting on G are modelled by composing on the right of λ by certain
elements of the symmetric inverse category I. For all n ∈ N

+ let si;n be the adjacent
transposition (i, i +1) in the symmetric group Sn for all 1 ≤ i ≤ n−1 and, to account
for the circular nature of G, we also consider the 2-cycle sn;n = (1, n) since positions
1 and n are adjacent in G. Letting

Tn = {si;n : i ∈ n},
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Fig. 6 The partial permutation
diagram of d2;5 ∈ I5,4. Note
that this is still an injective map
between the regions that are
preserved, with the vertex
corresponding to the position of
the deleted region having degree
0 1 2 3 4

1 2 3 4 5

a b c d e f g h i j k l

1 2 3 4 5 6 7 8

=

1 2 3 4 5 6 7 8

a b c d e f g h i j k l

Fig. 7 Given the reference frame of A from Fig. 3, which is represented by the bijection where a �→ 1,
b �→ 2 and so on, the deletions of the regions at positions 3,4,7 and 12 is given by composing on the right
by the (non-unique) term d12;12d7;11d4;10d3;9. The subsequent inversion of positions 2 and 3 yielding g2
is represented by composing on the right by s2;8. After these operations a is in position 1, e is in position
2 and so on

composing on the right ofλ by elements ofTn will represent an inversion interchanging
two adjacent regions in G. Note that the term “inversion” is used to refer to elements
of Tn as well as the evolutionary operations they represent.

To model deletions, suppose n ≥ 2 and let di;n be the unique order preserving map
in POIn,n−1 with dom(di;n) = n\{i} and im(di;n) = {1, . . . , n − 1} (see Fig. 6 for
an example).

Letting

Dn = {di;n : i ∈ n},

composing on the right of λ by di;n ∈ Dn will represent deleting the region appearing
in position i . Composing by a deletion yields a partial permutation from R to n, where
a region x is not in the domain if it has been deleted. Note that after we compose on
the right by di;n , for all j > i the region that appeared in position j now appears in
position j−1. For all j < i the region appearing in position j remains in that position.
Figure7illustrates the corresponding compositions of deletions and inversions yielding
the reference frame g2 from the genome A in Fig. 3.

Let G1 and G2 be arbitrary genomes and suppose that G2 can be obtained from G1
by inversions and deletions (note that we are not considering the most recent common
ancestor of G1 and G2 here). For a fixed reference pair (λG1 , λG2) ∈ G1 × G2 a
parsimonious inversion/deletion sequence transforming λG1 into λG2 , when it exists,
corresponds to a minimum length well-defined product u of elements in
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Fig. 8 A local view of the digraph �

X =
⋃

i∈N+
(Di+1 ∪ Ti )

such that the bijection
(
λG1u

) |dom(
λG1u

) is equal to λG2 . Given a reference frame λG

of any genome G and a well-defined product u of elements in X we let

(λGu) |dom(λGu) = λGu

and let the length of u be denoted by �(u). For a fixed reference frame λG1 of G1 the
quantity

d(λG1 ,G2) = min
{
�(u) : λG1u ∈ G2

}

represents the length of a parsimonious inversion/deletion sequence transforming G1
into G2 beginning with the reference frame λG1 , while the quantity

d(G1,G2) = min
{
d(λG1 ,G2) : λG1 ∈ G1

}

represents the minimal inversion/deletion distance from G1 to G2.
We now work towards establishing Lemma 4.1 from which it follows, for a fixed

reference frame λG1 of G1, that there exists a reference frame λG2 of G2 and a
minimum length inversion/deletion sequence transforming λG1 into λG2 where the
deletions occur first.

We proceed by first defining a digraph � whose paths represent the possible
sequences of inversions, deletions, rotations and reflections of a genome that can
occur. The digraph � (see Fig. 8) has

• vertex set N;
• a directed edge from n to n for each element of Tn representing inversions for all
n ∈ N

+;
• a directed edge from n + 1 to n for each element of Dn representing deletions for
all n ∈ N

+.

The digraph � also has a directed edge from n to n for all n ∈ N
+ labelled by cn

representing the n-cycle rotation (1, . . . , n) in Sn , along with an edge labelled by αn

representing a reflection where
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1 2 3 4

1 2 3 4 5

=

1 2 3 4

1 2 3 4 5

=

1 2 3 4

1 2 3 4 5

1 2 3 4

1 2 3 4 5

=

1 2 3 4

1 2 3 4 5

=

1 2 3 4

1 2 3 4 5

Fig. 9 Diagrammatic illustration of the relation R2 (top row) with s5;5d5;5 = d1;5c4 and R4 (bottom row)
with s3;5d2;5 = d2;5s2;4

αn =
{

(1, n)(2, n − 1) · · · (k, k + 1) i f n = 2k,

(1, n)(2, n − 1) · · · (k, k + 2) i f n= 2k+1.

Note that the dihedral group Dn is generated by {cn, αn}.
The free category �∗ on � contains all words over the alphabet

⋃

i∈N+
(Di+1 ∪ Ti ∪ {ci , αi })

corresponding to paths in � (note that edges may be traversed more than once if
possible) that represent sequences of inversions, deletions, rotations and reflections.
It can be verified (with the aid of diagrams as in Fig. 9 or using the presentation of the
symmetric inverse category by East (2020)) that the following relations are satisfied
by the corresponding partial permutations in I for all meaningful values of n, subject
to stated constraints:

d j;nsn−1;n−1 if i = n and 1 < j < n (R1)

d1;ncn−1 if i = j = n (R2)

dn;ncn−1
n−1 if i = n and j = 1 (R3)

si;nd j;n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d j;nsi−1;n−1 if i > j and i ≤ n − 1 (R4)

d j;nsi;n−1 if i + 1 < j (R5)

d j+1;n if i = j and i ≤ n − 1 (R6)

di;n if i + 1 = j and i ≤ n − 1 (R7)
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cnsi;n =

⎧
⎪⎨

⎪⎩

si−1;ncn if 2 ≤ i ≤ n (R8)

sn;ncn if i = 1 (R9)

cndi;n =

⎧
⎪⎨

⎪⎩
di−1;ncn−1 if 2 ≤ i ≤ n (R10)

dn;n if i = 1, (R11)

αndi;n = dn−i+1;nαn−1 if i ∈ n (R12)

αnsi,n =

⎧
⎪⎨

⎪⎩

sn−i;nαn if 1 ≤ i ≤ n − 1 (R13)

sn;nαn if i = n. (R14)

Lemma 4.1 Let G1 be a circular genome with region set R1 of size m and let G2 be a
circular genome with region set R2 of size n where R2 ⊂ R1. Given a fixed reference
frame λ1 : R1 → m of G1 suppose that p is a minimum length product corresponding
to a path in�∗ such that λ1 p ∈ G2. There exists a reference frame λ2 : R2 → n of G2,
a product x consisting solely of deletions and a product y consisting solely of inversions
(both corresponding to paths in �∗) such that �(xy) = �(p) and λ1xy = λ2.

Proof Let p be a minimum length product in I corresponding to a word in�∗ (which,
by abuse of notation, we also denote by p) consisting of inversions and deletions such
that λ1 p ∈ G2. Suppose also that p contains at least one deletion. Using the relations
in (R1)– (R14) it is clear that p is related to a word of the form xyr where x consists
solely of deletions, y consists solely of inversions and r consists solely of dihedral
symmetries. Since each application of these relations does not increase word length,
it follows that �(xy) ≤ �(xyr) ≤ �(p).

Now, if λ1 p is in G2 then so too is λ1xyr since p and xyr evaluate to the same
partial permutation in I. As r consists only of rotations and reflections, it then follows
that λ1xyrr−1 = λ1xy is also in G2 as the partial permutation corresponding to
r−1 is a dihedral group element. The minimality of �(p) together with the fact that
�(xy) ≤ �(p) implies that �(xy) = �(p) which completes the proof. ��
Theorem 4.2 For a fixed reference frame λG1 of G1 there exists a product u of elements
in X minimising d(λG1 ,G2) where the deletions occur first.

Proof This follows immediately from Lemma 4.1. ��

4.1 Reconstructing themost recent common ancestor

Given genomes G1 and G2, candidates for their most recent common ancestor (under
the parsimony criterion) are genomes A with region set R1 ∪ R2 minimising the sum
d(A,G1)+d(A,G2).While it could be the case that there are distinct reference frames
λA1 and λA2 of A such that d(A,G1) = d(λA1 ,G1) and d(A,G2) = d(λA2 ,G2)
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where d(A,G1) + d(A,G2) is minimal, the following theorem establishes the fact
that minimum length inversion/deletion sequences yielding G1 and G2 can always be
thought of as beginning with a fixed reference frame of A.

Theorem 4.3 Let G1 and G2 be genomes with region sets R1 and R2 respectively and
suppose, among genomes with region set R1 ∪ R2, that the genome A has the property
that d(A,G1) + d(A,G2) is minimal. There exists a reference frame λA of A such
that d(A,G1) = d(λA,G1) and d(A,G2) = d(λA,G2).

Proof Suppose that λA1 y = λG1 and λA2 z = λG2 where λA1 and λA2 are reference
frames of A and where y and z are minimum length sequences of inversions and
deletions. Suppose also that w ∈ {αn, cn}∗ (that is, the set of all words whose letters
are in {αn, cn}) is such that λA1w = λA2 . Since both αn and cn are dihedral group
elements there exists α−1

n and c−1
n such that αnα

−1
n and cnc−1

n are the identity map at
n ∈ N. As such, there exists a word u ∈ {αn, cn}∗ such that wu corresponds to the
identity map at n and so

λG1 = λA1 y = λA1wuy = λA2uy. (1)

Using the relations (R8)– (R14) there exists a word v ∈ {αa, ca}∗ for some a ∈ N
+

and a word y′ of inversions and deletions such that uy ∼ y′v where �(y′) ≤ �(y), in
which case

λA2 y
′v = λG1 (2)

by Equation (1). Consider the fact that λA2 y
′vv−1 = λA2 y

′ by Equation (2). Since
multiplying on the right by v−1 ∈ {αa, ca}∗ is equivalent to changing the reference
frame of λA2 y

′v = λG1 , there is thus a sequence of inversions and deletions of length
�(y′) such that λA2 y

′ ∈ G1 which completes the proof since �(y′) ≤ �(y) and y is
minimal. ��

To find the minimal distance d(A,G1) + d(A,G2) given G1 and G2 we define a
problem which we will refer to as the region alignment problem, and show that if the
solution to the region alignment problem is k ∈ N over all reference pairs in G1 ×G2
then these genomes have arisen minimally in d(A,G1) + d(A,G2) = k + |R1 � R2|
inversions and deletions (where � denotes the symmetric difference of sets).

To define this problem, begin with G1 and G2 where |R1| = m and |R2| = n. For a
reference pair (g1, g2) ∈ G1 ×G2 where g1 = x1 · · · xm and g2 = y1 · · · yn construct
a partial permutation σg1,g2 ∈ Im,n where (i)σg1,g2 = j if and only if xi = y j .
Figure10 illustrates an example of how σg1,g2 is formed.

The elements in m \ dom(σg1,g2) and n \ im(σg1,g2) represent the regions in the
symmetric difference R1 � R2 that do not appear in both genomes. The crossings of
σg1,g2 represent the disorder of the labels in R1 ∩ R2, in the sense that if (i, j) is a
crossing in σg1,g2 then the label x j ∈ R1∩ R2 appears before xi ∈ R1∩ R2 in the word
g2 while x j appears after xi in g1. If σg1,g2 is order preserving then regions in R1 ∩ R2
appear in the same order reading from position 1 to position n around the genome.
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Fig. 10 Forming the partial permutation σg1,g2 ∈ I8,6 given two reference frames g1 = abcde f gh and
g2 = eibach of G1 and G2 with R1 = {a, b, c, d, e, f , g, h} and R2 = {a, b, c, e, h, i}. The fact that a
appears at position 1 in g1 and at position 4 in g2 means (1)σg1,g2 = 4

Once σg1,g2 has been constructed multiplying on the left of σg1,g2 by an element of
Tm represents an inversion acting on the reference frame g1 while multiplying on the
right by an element of Tn represents an inversion acting on g2. In the region alignment
problem we are given a reference pair (g1, g2) ∈ G1 × G2 and ask for the minimum
number of inversions acting on either g1 or g2 (or both) to place the regions in R1∩ R2
in the same (clockwise) cyclic order in both genomes. The region alignment problem
is stated mathematically as follows.

Problem 4.4 LetG1 andG2 be genomeswith region sets R1 and R2 respectivelywhere
|R1| = m and |R2| = n. For a reference pair (g1, g2) ∈ G1 × G2, find a sequence tm
of elements in Tm and a sequence tn of elements in Tn minimising �(tm) + �(tn) such
that tmσg1,g2 tn ∈ POPIm,n .

This problem is a generalisation of the problem considered by Egri-Nagy et al.
(2014) regarding theminimum inversion distance between two genomeswith the same
region set, which for a permutation σ ∈ Sn , asks for the minimum length sequence tn
of elements in Tn such that σ tn is the identity.

Theorem 4.5 If G1 and G2 are genomes with region sets R1 and R2 respectively and
μ(g1, g2) is the minimum length solution to Problem 4.4 for a fixed reference pair
(g1, g2) then, under the parsimony criterion, G1 and G2 have descended from their
most recent common ancestor in

�(g1, g2) = |R1 � R2| + min{μ(g1, g2) : (g1, g2) ∈ G1 × G2}

inversions and deletions.

Proof Let k = min{μ(g1, g2) : (g1, g2) ∈ G1 × G2}. We begin by showing that
d(A,G1) + d(A,G2) is bounded below by k + |R1 � R2| over all genomes A with
region set R1 ∪ R2. To do this, suppose with the aim of obtaining a contradiction that
there exists a reference pair (g1, g2) ∈ G1 × G2 and products tm and tn of elements
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in Tm and Tn respectively with tmσg1,g2 tn ∈ POPIm,n (i.e. �(tm) + �(tn) = k), but
where G1 and G2 have descended from their most recent common ancestor in strictly
less than k + |R1 � R2| inversions and deletions.

By Theorem 4.2 there exists a genome A with region set R1 ∪ R2 minimising
d(A,G1) + d(A,G2) where |R1 � R2| deletions occur first. Further, by Theorem
4.3 there exists a fixed reference frame λA of A where d(A,G1) = d(λA,G1) and
d(A,G2) = d(λA,G2) in a minimal sum d(A,G1) + d(A,G2). With these facts
in mind and using Fig. 3 as a guide, there exists a parsimonious inversion/deletion
sequence yielding G1 that proceeds by first deleting the regions in R2\R1 from a ref-
erence frame of A. This gives rise to a reference frame of an intermediate genome G ′

1.
Likewise for G2, the regions in R1 \ R2 are deleted first from A to yield a reference
frame of an intermediate genome G ′

2. Since G
′
1 and G ′

2 have been obtained via dele-
tions from the same reference frame of A, for all reference pairs (g′

1, g
′
2) ∈ G ′

1×G ′
2 the

regions in R1 ∩ R2 appear in the same clockwise cyclic order in both genomes. Thus,
the partial permutation σg′

1,g
′
2
is orientation preserving (that is, σg′

1,g
′
2

∈ POPIm,n).
Equivalently, there exists (g′

1, g
′
2) ∈ G ′

1 × G ′
2 (possibly after rotating one of the

genomes) such that σg′
1,g

′
2
is order preserving (that is, σg′

1,g
′
2

∈ POIm,n).
If G1 and G2 subsequently arise by sequences of inversions p and q in Tm and

Tn acting on g′
1 and g′

2 respectively, then there exists (g1, g2) ∈ G1 × G2 such that
pσg′

1,g
′
2
q = σg1,g2 . However, it would then follow that p−1σg1,g2q

−1 is orientation pre-

servingwhere �(p−1)+�(q−1) = �(p)+�(q). Sincewe have σg′
1,g

′
2

= p−1σg1,g2q
−1,

the assumption that k = min{μ(g1, g2) : (g1, g2) ∈ G1 × G2} is contradicted if
�(p) + �(q) < �(tm) + �(tn). As such, d(A,G1) + d(A,G2) is bounded below by
k + |R1 � R2| over all genomes A with region set R1 ∪ R2.

To complete the proof, we show that if k = min{μ(g1, g2) : (g1, g2) ∈ G1 × G2}
then there exists a genome Awith region set R1∪R2 such that d(A,G1)+d(A,G2) =
k+|R1�R2|. Beginningwith a reference pair (g1, g2) ∈ G1×G2 withμ(g1, g2) = k,
suppose there exists sequences tm and tn of inversions from Tm and Tn respectively
such that tmσg1,g2 tn ∈ POPIm,n (where �(tm) + �(tn) = k). Further, suppose that
reference frames g′

1 and g
′
2 ofG

′
1 andG

′
2 are the result of these sequences of inversions

acting on g1 and g2 respectively. By the circularity of the genomes (performing a
rotation if necessary), it may be assumed without loss of generality that the regions in
R1∩ R2 = {r1, . . . , rh} appear in the same order reading from 1 to n in both g′

1 and g
′
2.

Let Ui be the set of regions appearing between ri and ri+1 in g′
2 reading from 1

to n for all 1 ≤ i ≤ h − 1, let Uh be the set of regions appearing after rh (up to
and including position n) in g′

2 and let U0 be the set of regions appearing before r1
(from position 1 onward) in g′

2. Beginning with g′
1, form a genome A with region

set R1 ∪ R2 by first inserting the regions in U0 before r1 in g′
1 where the minimum

element of Ui is at position 1 in A. If U0 is empty, then r1 is in position 1 in A. Next,
for all 1 ≤ i ≤ h − 1 insert regions from Ui into g′

1 between ri and ri+1 in any way
that ensures the regions in Ui appear in the same order that they do in g′

2 reading
from position 1 to n. Finally, insert regions Uh after rh in any way that ensures their
appropriate order reading from 1 to n where the maximal element of Uh is position n
in the resulting genome A. IfUh is empty, then rh appears in position n in A. Figure11
illustrates an example of these insertions.
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Fig. 11 Given g′
1 and g′

2, we form the genome A by inserting regions from R2 \ R1 into g′
1 in their

appropriate positions (with respect to elements of R1 ∩ R2) and appropriate order from 1 to n

Given the construction of A, it is easily verified that deleting the regions in R2 \ R1
from A yields g′

1 and that deleting the regions in R1 \ R2 from A yields g′
2. The

inverses of the sequences tm and tn of inversions then act on g′
1 and g′

2 respectively to
yield g1 and g2 in a total of k + |R1 � R2| inversions and deletions, as required. ��

5 Exact algorithm and complexity

We continue to assume that G1 and G2 are genomes with region sets R1 and R2,
respectivelywith |R1| = m and |R2| = n. In this sectionwe provide an exact algorithm
for computing sequences tm in Tm and tn in Tn fromProblem 4.4 such that �(tm)+�(tn)
is minimised and tmσg1,g2 tn ∈ POPIm,n . As previously, given σg1,g2 this minimised
value is denoted byμ(σg1,g2). Additionally, we describe the asymptotic time and space
complexity of the algorithm, and the limits of its practical applicability on currently
available computer hardware.

We denote the identity partial permutation on the set X by idX . For the purposes
of this section, a graph � is a triple (V , E, X) where V is a set whose elements are
called the vertices of �; X is the set of edge labels of �; and E ⊆ V × X × V is the
set of edges of �.

If S is a semigroup and X is a subset of S, then we define the left Cayley graph of
S with respect to X to be the graph with nodes S and edges (s, x, xs) ∈ S × X × S
for all s ∈ S and for all x ∈ X ; we denote this by �L(S, X). The right Cayley graph
is defined dually, and is denoted �R(S, X). If �L(S1, X1) and �R(S2, X2) are the
left and right Cayley graphs (respectively) of semigroups S1 and S2 with respect to
subsets X1 and X2 then, given S1 ⊆ S2, we define the union of these graphs to be the
graph with nodes S2 and all of the edges belonging to �L(S1, X1) and �R(S2, X2). If
� = (V , E, X) is any graph and A is a subset of the vertices V of�, then the subgraph
induced by A is the graph (A, E ∩ (A × X × A), X).
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Let σg1,g2 ∈ Im,n and suppose without loss of generality that m ≤ n. We consider
Im,m and POPIm,n to be embedded in In,n via an embedding f where (i)σ = j for
σ in Im,m or POPIm,n if and only if (σ ) f in In,n maps i to j . The algorithm for
determining μ(σg1,g2) has the following steps:

(i) suppose that σg1,g2 ∈ Im,n where | dom(σg1,g2)| = r and m ≤ n;
(ii) let X j denote the generating set for I j, j consisting of T j and id{1,..., j−1};
(iii) compute the left �L(Im,m, Xm) and right �R(In,n, Xn) Cayley graphs of Im,m

and In,n with respect to the sets Xm and Xn respectively;
(iv) compute the union �m,n of �L(Im,m, Xm) and �R(In,n, Xn);
(v) compute the set Dr = {α ∈ In,n : | dom(α)| = r} in �m,n .

Given that the relation D on In,n where α D β if and only if | dom(α)| = | dom(β)|
is an equivalence relation (called Green’s D-relation), the subgraph �n,r induced by
Dr is strongly connected (in the sense that there is a path in both directions between
all pairs of vertices). Paths in this strongly connected component will traverse edges
from �L(Im,m, Xm) representing inversions from Tm acting on the genome G1 with
m regions, and edges from �R(In,n, Xn) representing inversions from Tn acting on
the genome G2 with n regions.

(vi) compute the subgraph �n,r of �m,n induced by Dr ;
(vii) μ(σg1,g2) is then the minimum distance in �n,r between σg1,g2 and any element

of POPIm,n in Dr .

Note that steps (i) to (vi) need only be computed once for each m,n and r , and the
resulting value of �n,r can be memoised.

Steps (i) and (ii) have combined time complexityO(n); step (iii) has time and space
complexity

O(|Xn||In,n|) = O
(

n
n∑

r=0

(
n

r

)2

r !
)

(using the Froidure-Pin Algorithm described by Froidure and Pin (1997) for example).
Hence the time and space complexity for this step is at best O(n!). Steps (iv) and (v)
also have time complexity O(|Xn||In,n|) since the number of vertices and edges in
�L(Im,m, XM ) and �R(In,n, Xn) isO(|Xn||In,n|). Hence steps (i) to (vi) overall have
time and space complexity at best O(n!).

For step (vii), the distance between any twovertices in a graph canbe found in a num-
ber ofways.One approachwould be to apply theFloyd-WarshallAlgorithm to compute
the shortest path between every pair of vertices in�n,r ; the time complexity of Floyd-
Warshall is O(n3) where n is the number of vertices in the graph. Another approach
is to perform a depth or breadth first search. The version implemented by Beule et al.
(2022) uses a breadth first search that also utilises the automorphism group of the
graph to avoid visiting multiple identical branches. The automorphism groups of the
graphs �n,r are non-trivial when r �= 0 and this approach seems to offer the best
performance; see Table 1. Due to its high complexity the exact algorithm given above
is only applicable for relatively small values of n; see Table 2.
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Table 1 Sizes of the
automorphism groups of the
graph �n,r

n
r 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1

1 8 72 384 200 288 392 512

2 2 144 1024 400 576 784 1024

3 – 72 128 200 288 392 512

4 – – 128 200 288 392 512

5 – – – 200 288 392 512

6 – – – – 288 392 512

7 – – – – – 392 512

8 – – – – – – 512

To the best of the authors’ knowledge, it is not clear whether there exists a poly-
nomial time algorithm for Problem 4.4. This problem is potentially a computationally
difficult problem, and so from a practical perspective it appears that approximation
based approaches, or variations, offer the most promise moving forward.

To highlight this, we finish this section by showing that a variation of Problem 4.4—
whether two genomes of equal size are an equivalent inversion/deletion distance from
their most recent common ancestor—is NP-complete. Since genomes of equal size
arise from their common ancestor via the same number of deletions, by Theorem 4.5
this problem is equivalent to a problem called balancedsort. Balancedsort takes
a partial permutation σ ∈ Im,n and k ∈ N, and asks whether there exist sequences tm
and tn of inversions in Tm and Tn respectively with �(tm)+�(tn) ≤ k such that tmσ tn ∈
POIm,n and �(tm) = �(tn). Note that wemay considerPOIm,n instead ofPOPIm,n

here as, if there exists (g1, g2) ∈ G1 × G2 such that tmσg1,g2 tn ∈ POPIm,n , then
there exists a reference pair (h1, h2) ∈ G1 × G2 obtained by rotating at least one of
the genomes such that tmσh1,h2 tn ∈ POIm,n .

Theorem 5.1 Determining whether two bacterial genomes of equal size are an
equivalent inversion/deletion distance from their most recent common ancestor is
NP-complete.

Proof We proceed by showing that balancedsort, which is clearly in NP, is NP-
complete. Consider an instance of the well known NP-complete problem partition,
which consists of a multiset A = {a1, . . . , an} of positive integers and asks if there
exists a partition of A into disjoint multisets X and Y such that

∑
x∈X x = ∑

y∈Y y.
Construct an instance of balancedsort from an instance of partition by letting
m = n + ∑n

i=1 ai and by defining a partial permutation σ ∈ Im to be such that

• (1)σ = a1 + 1 and (a1 + 1)σ = 1,

•
⎛

⎝ j +
j−1∑

i=1

ai

⎞

⎠ σ = j +
j∑

i=1

ai for all 2 ≤ j ≤ n − 1 and
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Fig. 12 For an instance A = {1, 1, 2, 3, 4} of partition, an instance of balancedsort is constructed
with σ ∈ I16 and k = 11

•
⎛

⎝ j +
j∑

i=1

ai

⎞

⎠ σ =
⎛

⎝ j +
j−1∑

i=1

ai

⎞

⎠ for all 2 ≤ j ≤ n − 1.

The value of k is the sum of all elements in A. Figure12 illustrates an example of this
reduction, which is easily seen to run in polynomial time.

We first show that if there exists a partition of A into X and Y such that
∑

x∈X x =∑
y∈Y y then there exists sequences p and q of inversions in Tm with �(p)+ �(q) ≤ k

such that pσq ∈ POIm where �(p) = �(q). Define, without loss of generality,
sequences Caj of inversions (represented by 2-cycles) for all a j ∈ A where

Caj =
⎛

⎝ j +
j−1∑

i=1

ai , 1 + j +
j−1∑

i=1

ai

⎞

⎠ · · ·
⎛

⎝ j − 1 +
j∑

i=1

ai , j +
j∑

i=1

ai

⎞

⎠

and note that the sequence Caj removes the crossing consisting of domain elements

j + ∑ j−1
i=1 ai and j + ∑ j

i=1 ai in a minimal way by left or right multiplication (but

not both) without creating additional crossings. Given a partition of A into X =
{ax1, . . . , axb } and Y = {ay1, . . . , ayc } there is thus sequences p = Cax1

· · ·Caxb
and

q = Cay1
· · ·Cayc of inversions in Tm (where �(p) + �(q) = k by construction) such

that pσq ∈ POIm and where �(p) = �(q) since
∑

x∈X x = ∑
y∈Y y.

Conversely, suppose that for the constructed instance ofbalancedsort there exists
sequences p and q of inversions in Tm with �(p) + �(q) ≤ k such that pσq ∈ POIm

where �(p) = �(q). By construction �(p) + �(q) = k where k = ∑
a∈A a. The

sequence p can bewritten in the formCax1
· · ·Caxb

and the sequenceq can bewritten in
the formCay1

· · ·Cayc where the sets {x1, . . . , xb} and {y1, . . . , yc} are disjoint. This is
because each crossing is removed minimally by exclusively left or right multiplication
of inversions without creating additional crossings. In other words, these sequences
determine a partition of A into X = {ax1 , . . . , axb } and Y = {ay1, . . . , ayc } where∑

x∈X x = ∑
y∈Y y follows from the fact that p and q are such that �(p) = �(q). ��

6 Discussion

This paper has introduced an algebraic framework for modelling two genome rear-
rangements, inversion and deletion, that are known to occur through the same
biological process, namely site-specific recombination. This framework involves the
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use of the symmetric inverse monoid, and appears to be the first usage of this type of
semigroup model in the study of genome rearrangements. As such a first step, there
are on the one hand clear limitations of the model presented, and on the other, clear
opportunities for further development.

The most significant limitation involves the scope of the allowable rearrangements.
While the model treats a genome as a circular sequence of preserved regions of DNA
(a standard way to view genomes in the rearrangement literature), it only permits
inversions of adjacent regions, and only permits deletions of a single region at a time.
These two simplifying restrictions make the algebra more manageable by restricting
the generating sets of the monoids involved. But they are also broadly consistent with
each other, since the underlying biological argument behind restricting the length of
DNA sequence inverted or deleted is the same, because both arise from the same
mechanism. As noted in the Introduction, traditional rearrangement models do not
restrict the length of the inverted region, and those that incorporate deletion (such
as El-Mabrouk (2000)) allow any length to be deleted, and with equal probability.
They also generally allow the opposite operation, insertion, which typically occurs
via different biological mechanism and so the savings in the computational simplicity
come at an arguable cost to biological faithfulness—as indeed they do in the present
paper.

A natural extension to the model presented here would be to allow longer regions
to be inverted and/or deleted, perhaps along the lines attempted in Bhatia et al.
(2020), which allows longer inversions in a group-theoretic model, but imposes a
cost by length. Indeed, some results here, such as Theorem 4.2, apply regardless of
the generating set for Sn , or the number of regions being deleted.

Other generalisationsmay become available as a direct result of the algebraic frame-
work. For instance, the algebraic formalisation using the symmetric inverse monoid
can be generalised further by using monoids and categories of binary relations or
partial functions. The use of certain binary relations λ : R → n (or partial func-
tions n → R using the convention of positions to regions) allows one to account
for repeated region labels, where an ordered pair (r , n) is in λ if and only if the
region r appears in position n in a sequences of genome regions. For instance, the
sequence r1r2r1r3 of regions where {r1, r2, r3} ⊆ R would correspond to the relation
{(r1, 1), (r2, 2), (r1, 3), (r3, 4)}.

Given sets m and n where m, n ∈ N, the set of relations {(x1, y1), . . . , (x j , y j )}
such that {x1, . . . , x j } ⊆ m, yi ∈ n for all 1 ≤ i ≤ j and yi �= y j when i �= j

is denoted by P̂T m,n , while the set of (analogously defined) partial functions from

m → n is denoted PT m,n . One can define a (small) category P̂T whose objects are

the natural numbers, and where the set of arrows from m to n is the set P̂T m,n under
the composition of binary relations. Given a relation λ from R to n described above,
we can compose on the right by elements of P̂T to represent not only inversions
and deletions (since P̂T contains I), but also to represent duplications of regions. To
model a duplication we multiply on the right by relations of the form

V
i;n ∈ P̂T n,n+1

where, without loss of generality (as in Fig. 13), we have

V
i;n = {(1, 1), . . . , (i, i), (i, i + 1), (i + 1, i + 2), . . . , (n, n + 1)}.
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1 2 3 4 5 6

1 2 3 4 5

Fig. 13 The relation diagram of
V
2;5 ∈ P̂T 5,6. Note that unlike the deletion in Fig. 6 where the degree of

the vertex labelled by 2 in the upper rowwas 0 (to represent the fact the region in position 2 was deleted), the
upper row vertex labelled by 2 in this instance has degree 2 to represent the fact that the region in position
2 has been duplicated

With this algebraic framework in mind, it is possible to consider the new problem
of constructing the most recent common ancestor of two bacterial genomes (which
may have repeated regions) under the three operations of inversions, deletions and
duplications. Since the problem of reconstructing the most recent common ancestor
of two genomes under exclusively inversions and deletions is a special case of this new
problem, the same asymmetry present in the inversion/deletionmodel is also present in
the inversion/deletion/duplication model given that only pre-existing genome regions
may be duplicated. It is then natural to investigate whether similar combinatorial
optimization problems regarding elements of P̂T have analogous interpretations to
those presented here, such as Problem 4.4.

Finally, it would be interesting to explore whether the framework developed here
could be cast in the representation-theoretic framework designed for maximum likeli-
hood estimates for genome rearrangementmodels (Serdoz et al. 2017), that is presented
in Sumner et al. (2017); Terauds and Sumner (2022). Indeed, on one hand, Terauds
and Sumner (2022) remark that it may be generalised to models using semigroups,
while on the other hand, the representation theory of finite monoids including that
of the symmetric inverse monoid has been well studied (Steinberg et al. 2016; Munn
1964; Solomon 2002).
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