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Abstract
1.	 Citizen and community science datasets are typically collected using flexible 

protocols. These protocols enable large volumes of data to be collected globally 
every year; however, the consequence is that these protocols typically lack the 
structure necessary to maintain consistent sampling across years. This can re-
sult in complex and pronounced interannual changes in the observation process, 
which can complicate the estimation of population trends because population 
changes over time are confounded with changes in the observation process.

2.	 Here we describe a novel modelling approach designed to estimate spatially ex-
plicit species population trends while controlling for the interannual confounding 
common in citizen science data. The approach is based on Double machine learn-
ing, a statistical framework that uses machine learning (ML) methods to estimate 
population change and the propensity scores used to adjust for confounding dis-
covered in the data. ML makes it possible to use large sets of features to con-
trol for confounding and to model spatial heterogeneity in trends. Additionally, 
we present a simulation method to identify and adjust for residual confounding 
missed by the propensity scores.

3.	 To illustrate the approach, we estimated species trends using data from the citi-
zen science project eBird. We used a simulation study to assess the ability of the 
method to estimate spatially varying trends when faced with realistic confound-
ing and temporal correlation. Results demonstrated the ability to distinguish be-
tween spatially constant and spatially varying trends. There were low error rates 
on the estimated direction of population change (increasing/decreasing) at each 
location and high correlations on the estimated magnitude of population change.

4.	 The ability to estimate spatially explicit trends while accounting for confound-
ing inherent in citizen science data has the potential to fill important information 
gaps, helping to estimate population trends for species and/or regions lacking 
rigorous monitoring data.
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1  |  INTRODUC TION

Information on population trends is essential for conservation moni-
toring and management (Rosenberg et al., 2019). To date, the estima-
tion of interannual trends has largely been restricted to the analysis 
of data from structured surveys where, ideally, the same observers 
follow the same survey protocols at the same locations, dates and 
times each year. This controlled survey structure is used to minimize 
the interannual variation in the observation process that can lead 
to confounding. However, these survey requirements also make it 
difficult to collect species-observation data at the scales necessary 
to monitor large groups of species across broad spatial extents, and 
at arbitrary times of year.

Citizen science projects are collecting increasingly large volumes 
of data on a variety of taxa (Pocock et al., 2017), however, due to 
the opportunistic nature of data collection in such projects, these 
datasets are vulnerable to interannual changes in the observation 
process. For example, several studies have documented interan-
nual variation in spatial site selection (August et al., 2020; Shirey 
et al., 2021; Zhang et al., 2021) and its interaction with search ef-
fort (Tang et al., 2021). Participant populations change as new par-
ticipants join projects and continuing participants improve the way 
they conduct surveys (Johnston et al., 2022). Data collection proto-
cols change, either through deliberate choice or for uncontrollable 
reasons. Examples of deliberate changes are those caused by the 
use of short-term incentives or games (Xue et al., 2016), and in the 
long-term promotion of ‘best practice’ protocols (e.g. submission of 
complete checklists; Sullivan et al.,  2009). Uncontrollable changes 
include improvements to equipment, such as binoculars, the devel-
opment of species identification apps, and external forces shaping 
observers' behaviour, such as the COVID pandemic (e.g. Hochachka 
et al., 2021). Studies of citizen science data have also shown how 
interannual changes in the observation process bias trend esti-
mates. Bowler et al. (2022) showed how changes in the spatial site 
selection produce species-specific biases in trend estimates. Zhang 
et al.  (2021) showed how bias can even arise despite interannual 
survey structure, documenting how unexpected changes in survey 
censoring due to urbanization biased trends in species richness. 
Controlling for the wide array of potentially confounding factors 
that give rise to interannual variation constitutes a major challenge 
when employing citizen science data for trend estimation.

While linear and generalized linear models can account for con-
founding by incorporating observed confounding features, achiev-
ing reliable control of confounding can be challenging (Gelman 
et al., 2020). This is particularly true when confounding is complex 
or there are large sets of potentially confounding features (Hernán 
& Robins, 2020), as is common with many citizen science datasets. 
Specifying accurate parametric models in these settings requires 

the selection of relevant features while identifying nonlinear effects 
and interactions. Machine learning (ML) algorithms are an attrac-
tive alternative for this task; however, naïve application of these 
methods introduce regularization bias when estimating effects 
(Belloni et al., 2014). Double machine learning (DML) (Chernozhukov 
et al.,  2018) was developed to address this challenge, providing a 
statistical framework in which generic ML methods (such as penal-
ized regression, lasso, random forests, boosted models and deep 
neural networks) can be used to control for confounding without 
the risk of regularization bias. By harnessing large sets of features 
and ML models, DML enables control for more intricate confound-
ing patterns thereby reducing confounding bias and strengthening 
inference.

In this paper we consider DML for estimating spatially explicit 
species population trends from citizen science data. Conceptually, 
DML divides trend estimation into three separate modelling tasks. 
The goal of the first task is to predict local population sizes averaged 
across the study period. To do this, a species distribution model is 
trained to learn how observations of species vary with a set of fea-
tures (e.g. climate, landcover, search effort). The goal of the second 
task is to identify confounding sources of variation in the data. To 
do this, a propensity score model is trained, which describes how 
the features vary systematically over time (Ramsey et al., 2019). In 
the third task, the expected population size and observation year 
are used as benchmark values to help isolate the trend so it can be 
estimated without the influence of confounding features.

There are three challenges for adapting the DML framework to 
the problem of estimating trends with citizen science data. The first 
challenge is to assess propensity score performance at controlling 
confounding. Given the critical role played by the propensity score 
model, it is important to understand how well a given model does 
controlling confounding. Even with highly automated ML methods, 
analyst choices about model selection, hyperparameter tuning, 
feature set selection and engineering can significantly affect per-
formance. However, we are not aware of any standard diagnostics 
for assessing the effectiveness of the propensity score model at 
controlling confounding. To meet this need, we propose a novel 
simulation-based diagnostic measure to identify residual confound-
ing, that is, confounding sources of variation in the available feature 
data missed by the propensity score model. Information gained from 
these diagnostics can be used to develop models and adjust the 
trend estimates.

The second challenge adapting the DML framework to estimate 
spatially explicit trends is that the original DML framework assumes 
global linear trend effects, whereas the ability to estimate trends 
with high spatial resolution (e.g. landscape scale) is valuable for 
studying the processes affecting populations at these scales (e.g. ag-
riculture, energy development, urbanization) (Rose et al., 2017). For 
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this reason we chose to use Causal Forests (Athey et al., 2019), an 
implementation of the DML framework that uses Random Forests 
(Breiman, 2001) to estimate heterogenous local-linear effects as a 
function of user-specified features. Thus, spatially explicit trends 
can be estimated by including spatially varying environmental fea-
tures that are associated with variation in population trends in the 
Causal Forests.

The third analytical challenge is created by temporal correla-
tion, which is an important and pervasive characteristic of species 
abundance data collected over time. The DML framework does not 
include any structural components to account for correlated obser-
vations. Here we assess impact of temporal correlation on model 
performance through a suite of simulation studies based on tempo-
rally correlated data.

We use the DML trend model for a real-world application: esti-
mating population trends with data from eBird, a well-studied citizen 
science project with a complex observation process and a relatively 
large set of known potentially confounding features (e.g. Johnston 
et al., 2019). eBird is a popular citizen science project that has been 
collecting bird observation data since 2002 (Sullivan et al.,  2014). 
The project engages large numbers of participants who each de-
cide where, when and how to participate. As with many other cit-
izen science projects, the limited structure in eBird has given rise 
to an evolving, heterogenous observation process where interan-
nual confounding is a central concern when estimating population 
trends. The goal is to estimate the average annual rate of change in 
breeding season abundance 2007–2021 at a 27 km resolution across 
North America for three species of birds with different distributions 
and habitat preferences: wood thrush Hylocichla mustelina, Canada 
warbler Cardellina canadensis and long-billed curlew Numenius amer-
icanus. Species-specific simulation studies were used to assess con-
founding control, overall performance and the ability to estimate 
spatially varying trends when faced with temporally correlated 
observations.

2  |  THE DML TREND MODEL

In this section, we introduce the DML trend model and the 
simulation-based residual confounding analysis.

2.1  |  Double machine learning

To estimate population trends, we begin with the model that de-
scribes variation in species abundance Y, the response variable (also 
called the outcome or label variable), as

The objective is to estimate parameter �, the rate of change in 
abundance per unit time T. For convenience we assume Y is a real-
valued measure or index of species abundance, but integer counts, 
or binary indicators of a species' occurrence can be accommodated 

without loss of generality. We also assume that T measures time in 
units of years and that � is the interannual trend, but other units 
can be accommodated to estimate trends over different time scales 
without loss of generality. The function � is a nonparametric func-
tion of the vector X =

(
X1, … ,Xk

)
 consisting of the features (also 

called covariates or predictor variables) that capture effects that are 
constant across years. Features in X can include both ecological pro-
cess variables (e.g. habitat or climatic conditions) and observation 
process variables (e.g. search effort or survey time of day). The num-
ber of features, k, can be large. The variable � is a stochastic error 
term.

To understand how confounding can affect trend estimation in 
(1) it is useful to consider an idealized dataset where the features X 
include all important sources of variation in abundance and the ob-
servations are collected as a random sample across X, independently 
drawn each year of the study period. Under these conditions, 
E
[
� ∣ X , T

]
= 0 and the trend � can be estimated without bias. In prac-

tice, confounding can arise when there are systematic year-to-year 
changes in the observation process that affect the distribution of 
X  . For example, surveys could be conducted in sites with increasing 
habitat quality over time.

A common strategy to account for confounding when analysing 
nonexperimental data uses propensity scores to adjust estimates 
(Rosenbaum & Rubin,  1983). In this approach a propensity score 
model is introduced to keep track of confounding, which can be 
framed here as the dependence of T on features X. The propensity 
score model is written as,

where s is a nonparametric function of the features X and � is a sto-
chastic error term where E

[
�|X

]
= 0.

DML solves Equations (1) and (2) using the plug-in estimator of 
(Robinson, 1988). The plug-in estimator is constructed by substitut-
ing the conditional mean response averaged across T,

into Equation (1) to yield the residual-on-residual regression,

The residual on the left side of Equation (4) isolates the change in 
abundance by regressing out year-invariant effects of features X on 
Y and the residual on the right side removes the effects of confound-
ing by regressing out the effects of features X on T. This formulation 
motivates the plug-in estimator where m(X) and s(X) are separately 
predicted and then plugged into Equation (4) to estimate the trend, �.

The decomposition in Equation  (4) was originally designed to 
use plug-in values from unbiased linear estimators. In practice, 
linear models can be restrictive because they can be hard to spec-
ify accurately and are difficult to scale to large numbers of fea-
tures, making it difficult to generate accurate plug-in predictions. 
Chernozhukov et al. (2018) showed how the plug-in estimator can 
used to accurately estimate � even when the predictions of m(X) 
and s(X) are noisy and suffer from regularization bias. This makes 

(1)Y = � T + �(X) + �.

(2)T = s(X) + �,

(3)m(X) = E
[
Y|X

]
= � s(X) + �(X),

(4)(Y − m(X)) = � (T − s(X)) + �.
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it possible to take advantage of large feature sets X using generic 
statistical and ML methods (e.g. penalized regressions, lasso, 
random forests, boosted models, deep neural networks and en-
sembles of these methods). The ability to accurately predict pro-
pensity scores from large, complex sets of features is important 
because it can improve inference by strengthening the control of 
confounding.

The goal in this paper is to use DML to strengthen inference 
about population trends by controlling for interannual confounding, 
but with additional assumptions DML can also be used for causal 
inference. The model in Equation (1) is closely connected to the po-
tential outcomes framework (Rubin, 1974) that describe the condi-
tions necessary for casual inference. Within this framework, DML 
estimators are unbiased and normally distributed (Chernozhukov 
et al., 2018). Thus, unlike many ML methods, DML can be used for 
statistical and causal inference. (See SI Section S2 for more informa-
tion about the potential outcomes framework.)

2.2  |  Residual confounding

Propensity scores provide a theoretically sound strategy to fully 
control for confounding in X provided that the propensity score 
model estimated from the data ŝ(X) can fully and accurately capture 
the confounding. If ŝ(X) fails to fully capture the confounding, then 
trend estimates will be biased. We refer to this situation as residual 
confounding with respect to X.

Here we propose a fully data-driven simulation-based diagnos-
tic for residual confounding that can be computed for any DML 
model. Recognizing that the conditional mean model estimated in 
Equation  (3) m̂ is a zero or null-trend model, we use m̂ to simulate 
datasets {X∗,W∗, T∗,Y∗} with a known population trend �sim = 0 
while maintaining the interannual confounding in the original fea-
tures. Then to diagnose residual confounding, we look for systematic 
differences between �sim and �∗, the DML trend estimate based on 
the simulated data. The differences 

(
�sim − �∗

)
 can be used to com-

pare models and adjust �∗. The algorithm is,

1.	 Generate a synthetic feature set {X∗,W∗, T∗} by resampling 
with replacement from {X ,W , T} stratified by T, and, then,

2.	 Compute synthetic responses Y∗ = m̂(X∗) + �∗, where �∗ is gener-
ated by bootstrapping the residuals.

The first step generates realistic feature sets that maintain 
the joint distribution of the features including the interannual 
variation in X, while avoiding extrapolation in the feature space. 
Using the conditional mean model estimated in Equation  (3) in 
the second step ensures that the synthetic data have zero trend 
while maintaining year-invariant patterns of variation in abun-
dance associated with X. Moreover, because these synthetic data 
are based on a zero or null-trend model, additional assumptions 
(beyond those of the DML) about unknown trends are avoided. 
(See SI Section S3 for an illustration of the residual confounding 

diagnostic and adjustment using a toy example based on synthetic 
data.)

2.3  |  Spatial heterogeneity and Causal Forests

Causal Forests (Athey et al., 2019) is an implementation of the DML 
framework that uses Random Forests (Breiman, 2001) for the con-
ditional mean and propensity score models. It also uses a modified 
random forest (Wager & Athey, 2018) to estimate the trend � as a 
nonparametric function of the feature vector W =

(
W1, … ,Wm

)
, 

where the number of features m can be large. This extends the global 
linear trend in Equation (1) to

The ability to estimate trends conditional on a set of features 
W can be used to identify and study heterogeneity in population 
change. For example, by including spatial features in W, spatially 
explicit trends can be estimated. In the causal inference literature, 
Equation  (5) is known as a heterogenous treatment effect or condi-
tional average treatment effect estimator. In statistics it is equivalent 
to a varying coefficient model for � (Hastie & Tibshirani, 1993). (See 
SI Section S1 for a brief review of DML literature.)

3  |  TREND ANALYSIS OF NORTH 
AMERIC AN BREEDING BIRDS

We estimate trends based on data from eBird, a popular citizen sci-
ence project that has been collecting bird observation data since 
2002 (Sullivan et al., 2014). This application presents the challenges 
of estimating spatially explicit trends in abundance across large geo-
graphic extents in the face of confounding and temporally correlated 
observations. The eBird dataset also includes a relatively large num-
ber of potentially confounding features.

In this section we describe the eBird data, the species abundance 
model underlying trend estimation, the Causal Forest implementa-
tion, the residual confounding analysis and the species-specific 
simulation study used to assess the performance of the method. All 
computing was done in the R statistical computing language (R Core 
Team, 2019).

3.1  |  Data

eBird is a semistructured survey (Kelling et al., 2019) because its flex-
ibility allows participants to collect data in the ways they choose, but 
with ancillary data collected to describe the variation in the observa-
tion process. To help control for variation in observation process, we 
analysed the subset of the data for which participants report all bird 
species detected and identified during the survey period, resulting in 
complete checklists of bird species. This limits variation in preferential 
reporting rates across species and provides a basis to infer species 

(5)Y = �(W)T + �(X) + �.
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nondetections. We also required all checklists to include key ancil-
lary variables describing characteristics of each birdwatching event, 
for example the time of day and distance travelled. These variables 
and others can be used to adjust for variation in detection rates 
(Johnston et al., 2019).

We calculated trends for three species that represent a range 
of different breeding niches, observation processes and processes 
driving population change. Wood thrush is a commonly reported 
bird of the deciduous forest in eastern North America. Canada war-
bler is a less commonly reported forest bird that breeds in the boreal 
forests of North America. Long-billed curlew is an infrequently re-
ported shorebird that breeds in the grasslands of the arid interior of 
North America.

We analysed eBird data from 2007 to 2021 within each 
species' previously identified breeding range and season (Fink, 
Auer, Johnston, Strimas-Mackey, et al.,  2020). To prepare the 
data for the trend analysis we aggregated data within cells of a 
(27 km × 27 km × 1 week) grid based on checklist latitudes, longi-
tudes and dates. We computed grid cell averages for four classes 
of information: (1) The number of individuals of the given species 
reported in each grid cell was used as the response variable (Y); 
(2) Five observation-effort features describing how participants 
conducted surveys were used as features to account for variation 
in detection rates (Johnston et al., 2019); (3) 14 features describ-
ing short-term temporal variation—date, time of day and hourly 
weather—were used as features to account for variation in avail-
ability for detection; and (4) A suite of 57 spatially varying fea-
tures describing the composition and configuration of landscapes 
in each grid cell were used to capture associations between spe-
cies and elevation, topography, land and water cover, land use, hy-
drology and road density. Please see the SI Section S4 for details 
about data and data processing.

3.2  |  Species abundance model

A species' expected abundance can be defined as the product of the 
species' occurrence rate and the expected count of the species given 
occurrence, within a given area and time window (Zuur et al., 2009). 
Based on this definition and the chain rule, the rate of change in 
species abundance is the sum of two terms: (1) the rate of change in 
the species occurrence, and (2) the rate of change in species count 
given occurrence. Intuitively, trends in species abundance can arise 
from trends in the occurrence rate (e.g. as a function of whether 
the habitat is even suitable for a species) and/or trends in expected 
counts given occurrence.

We estimated each trend component with its own DML model. To 
estimate the interannual rate of change in occurrence rate a Causal 
Forest was trained based on the binary response variable indicating 
the detection/nondetection of the species and the features. Then 
to estimate the interannual rate of change in the log-transformed 
species count, a separate Causal Forest was trained based on the 
continuous response variable (log-transformed count) and features, 

using the subset of surveys where the species was detected (i.e. all 
counts were positive).

To quantify the sampling variation in abundance trend estimates 
arising jointly from the estimated trend in species occurrence rates 
and the estimated trend in species counts, given occurrence, we ad-
opted a data resampling approach and computed an ensemble of 100 
estimates. We calculated 80% confidence intervals using the lower 
10th and upper 90th percentiles across the ensemble. Additionally, 
averaging estimates across the ensemble provides a simple way to 
control for overfitting (Efron, 2014). Please see the SI Section S5 for 
additional information about the resampling approach used to con-
struct the ensemble.

3.3  |  Causal Forest implementation

Causal Forests were fit using the grf package (Tibshirani et al., 2020) 
and were grown with 2000 trees using automatic parameter tuning 
for all parameters. The feature sets for the conditional mean and 
propensity score models included (1) observation effort, (2) short-
term temporal and (3) spatial features. We also included latitude and 
longitude as features in the conditional mean model to account for 
residual spatial patterns of abundance. To account for spatial varia-
tion in trends we included all spatial features in W along with latitude 
and longitude to account for residual patterns.

3.4  |  Residual confounding

For the eBird analysis we extended the residual confounding simu-
lations that were introduced in Section 2.2 to assess confounding 
bias under a range of nonzero trend scenarios. (See Section 3.5 for 
a description of the scenarios.) It was important to evaluate the 
method across a broader set of plausible trends to provide a basis 
for generalizing results when applied to real data where the trend 
is unknown. We implemented the residual confounding diagnostics 
and adjustments at the species level because interannual variation 
in how participants conduct surveys can generate distinct biases for 
each species. The goal was to find a set of parameters to describe 
and correct for residual confounding that would generalize well for 
all locations in the species range, regardless of the direction, magni-
tude or spatial pattern of the unknown trend. To do this we fit a lin-
ear regression model for each species, estimated using all locations 
within the species' range for all simulation scenarios. Predictions 
from this regression model were used to make residual confounding 
adjustments (see Figure 1).

3.5  |  Simulation study

The species-specific simulations were constructed to create data 
meeting four conditions for each species: (1) realistic patterns of 
year-invariant patterns of occurrence and counts on eBird checklists; 

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14186 by N
H

S E
ducation for Scotland N

E
S, E

dinburgh C
entral O

ffice, W
iley O

nline L
ibrary on [24/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6  |   Methods in Ecology and Evolu
on FINK et al.

(2) with specified trends in abundance; (3) including temporal cor-
relation generated from environmental stochasticity in population 
growth rates; while (4) maintaining the interannual confounding in 
the original eBird data. (See the SI Section S6 for additional details 
about the simulations.)

To assess the overall performance in detecting and describing 
spatial trend patterns, trends were simulated at a 27 km × 27 km spa-
tial scale across each species range and across 10 scenarios with zero 
and nonzero trends varying in direction, magnitude and spatial pat-
tern. Magnitudes were set to <1% (weak), 3.3% (moderate) and 6.7% 

per year (strong) based on IUCN Red List criteria (IUCN, 2019). The 
spatially varying trends were constructed to vary in direction and 
magnitude along a gradient from the core to the edge of the species' 
population (Figure 3; Figures SI-3 and SI-4). (See the SI Section S6.3 
for details about the simulation scenarios.) The population dynamics 
at each location were generated using a discrete-time stochastic expo-
nential growth rate model. The deterministic growth rate component 
varied by scenario and location. The stochastic growth rate realizations 
were independent among years and locations with a standard devia-
tion of approximately 6.7% per year. The compounded effects of this 

F I G U R E  1  A schematic workflow for the DML abundance trend model with residual confounding adjustment. This schematic is based 
on the eBird analysis with numbers corresponding to the steps in Section 3.5. The residual confounding adjustment (LEFT) is based on 
the systematic differences between simulated trends (Step 2; expanded in Figure SI-1) and the DML estimates of these trends (Step 3, red 
boxes). Step 4 estimates the residual confounding coefficients by formally linking Step 2 and Step 3. The real data analysis (RIGHT) begins by 
calculating the DML trend estimate (Step 1) and then adjusts for residual confounding (Step 5). An ensemble of trend estimates is generated 
at each location, from which the point estimates and confidence intervals are calculated.
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stochasticity across years generated temporal correlation as would be 
expected from the landscape-scale effects of processes like extreme 
weather or reproductive success. (See the SI Section S6.4 for details 
about the discrete-time stochastic exponential growth rate model.)

The simulations were used for two tasks: (1) The training task to 
compute the residual confounding estimates, and (2) the testing task 
to evaluate the trend estimates after accounting for residual confound-
ing. To maintain independence among these tasks, we independently 
generated two sets of simulated data for training and testing. Each 
simulated training dataset contained data from one of five different 
simulation scenarios (one null and four with varying magnitude, spa-
tially constant and variable trends). Ten datasets were independently 
generated for each of the five scenarios. Thus, the simulated training 
data included 50 datasets generated under five different trend scenar-
ios. Fifty simulated test datasets were generated independently of the 
training datasets, from five comparable but different scenarios.

Analysis workflow: To compute each species' DML trend estimate 
with the residual confounding adjustment we followed the steps in 
the schematic workflow shown in Figure 1:

1.	 Estimate �DML using Causal Forests with propensity score ad-
justments based on the original data {X ,W , T ,Y} (Sections  3.2 
and 3.3),

2.	 Simulate data {X∗,W∗, T∗,Y∗} with specified trends �sim 
(Section 3.5),

3.	 Estimate �∗ using Causal Forests with propensity score adjust-
ment based on the simulated training data {X∗,W∗, T∗,Y∗},

4.	 Fit �sim = �0 + �1�
∗, the residual confounding regression 

(Section 3.4),
5.	 Apply the residual confounding adjustment to the original DML 

estimate: �RC = �0 + �1�
DML using simulation-based parameters 

(
�0, �1

)
 to adjust �DML based on the original data.

3.5.1  |  Confounding bias in eBird

To measure the strength of the confounding bias and the perfor-
mance of the propensity score and residual confounding adjustments 
we performed a simulation analysis and ablation test comparing the 

trend estimates, �1, the Causal Forest estimates without adjusting for 
the propensity scores to �DML and �RC, with both trends computed 
using the workflow above.

To measure the performance of the trend estimates we used 
the simulated test data with the specified trends �sim

test
 as the original 

data. This allowed us to assess the species-level confounding bias by 
fitting the regression �sim

test
= �0 + �1� separately for each of the es-

timates � = (�1, �DML and �RC). The intercept parameter �0 measured 
the distance between a zero trend estimate and the corresponding 
expected value of the simulated trend. Thus, the intercept described 
the bias when estimating the trend direction (increasing or decreas-
ing), with a value of zero indicating no directional bias. The slope pa-
rameter �1 measured how simulated trends scaled with the direction 
and magnitude of the estimated trends, with a value of 1 indicating 
no scaling bias.

The impact of the propensity score on directional bias is as-
sessed by comparing bias coefficients between �1 and �DML, where 
an improvement is �0 moving towards 0 and �1 moving towards 1. 
Estimates show that the propensity score adjustments reduced di-
rectional bias for all three species (Table  1). The propensity score 
adjustment also reduced the scaling bias for Wood thrush, with a 
smaller reduction for Canada warbler and a small increase for long-
billed curlew (Table 1).

The impact of the residual confounding adjustment on direc-
tional bias is assessed by comparing bias coefficients between �DML 
and �RC. The residual confounding adjustment strongly reduced both 
directional and scaling bias for long-billed curlew but had smaller 
effects on the other two species (Table 1). For Canada warbler the 
residual confounding adjustment increased the magnitude of the di-
rectional bias and slightly decreased the magnitude of the scaling 
bias. For wood thrush the residual confounding adjustment led to 
a slight increase in the magnitude of the directional bias and it de-
creased the magnitude of the scaling bias.

3.5.2  |  Trend performance

Next we assessed the performance of �RC, the DML trend esti-
mates computed with both the propensity score and the residual 

Species Estimator PS RC
Intercept 
�0

Intercept 
SE

Slope 
�1

Slope 
SE

Wood thrush �RC Yes Yes 0.295 0.005 1.045 0.001

�DML Yes No 0.254 0.005 1.342 0.001

�1 No No −0.610 0.005 1.480 0.001

Canada warbler �RC Yes Yes 0.641 0.011 0.931 0.002

�DML Yes No −0.212 0.010 1.159 0.002

�1 No No −1.589 0.011 1.171 0.002

Long-billed 
curlew

�RC Yes Yes 0.119 0.011 0.998 0.002

�DML Yes No −3.663 0.010 1.153 0.002

�1 No No −4.767 0.012 1.143 0.002

TA B L E  1  Species-level estimates of 
confounding bias. Slope and intercept 
estimates and standard errors (SEs) are 
presented for each species for trend 
estimates �1 without any correction for 
confounding, trend estimates �DML with 
the propensity score (PS) adjustment, and 
trend estimates �RC with the PS and the 
residual confounding (RC) adjustment.
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confounding adjustments, using the simulated test data as the orig-
inal data in the workflow and then comparing estimates with the 
specified trends �sim

test
. We evaluated the quality of the estimated 

trend magnitude (the average per cent-per-year [PPY] rate of change 
in abundance 2007–21) and the trend direction (increasing/decreas-
ing), two important inferential objectives for population monitoring. 
Directional errors were defined to occur when trends were esti-
mated to be significantly different from zero but were in the oppo-
site direction to the simulated trend. We considered estimates to be 
nonzero if the 80% confidence interval did not contain zero. Because 
directional errors varied strongly with trend magnitude (Figure SI-2), 
we reported the mean directional error rate, binned into categories 
of trend magnitude (see SI Section  S7 for more details about the 
directional error). We also computed Pearson's correlation between 
simulated and estimated trends for nonzero trend estimates. Finally, 
we assessed the coverage of the resampling-based uncertainty esti-
mates as the percentage of all 27 km locations where the estimated 
intervals contained the simulated trend value. All assessments were 
based on independent test set data.

The mean directional error rate among nonzero trends was low 
for all species (Table 2). The correlations among nonzero estimates 
and simulated true values �sim

test
 were high. As expected, the direc-

tional error rates increased and the correlations decreased with the 
volume of species' data that were nonzero counts; from wood thrush 
(a commonly reported species in a region with high data density), 
to Canada warbler (less commonly reported in regions with lower 
data density), to long-billed curlew (infrequently reported compared 
to wood thrush and Canada warbler within a relatively low data-
density region of the continent). Interval coverage increased with 
decreasing amounts of species data (note, both sample sizes and de-
tection rates decrease among species), though it was markedly less 
than the nominal confidence 80% level for all species.

3.5.3  |  Identifying spatial trends

Finally, we assessed model performance for describing spatial het-
erogeneity in trends. We compared model performance between 
spatially constant and spatially varying scenarios for each species 

(Table 2). The similarity in performance between constant and vary-
ing trends highlights the ability of the model to adapt to heteroge-
nous trends. Figure 2 shows trend maps for wood thrush for a single 
realization of each simulation scenario (see SI Figures SI-4 & SI-5 for 
Canada warbler and long-billed curlew). These maps show how the 
model adapted to simulations with different directions, magnitudes 
and spatial patterns.

3.6  |  Species trend estimates

Figure 3 shows maps of the estimated average annual per cent-per-
year change in abundance from 2007 to 2021 for all three species 
based on the real data. The wood thrush population shows steep de-
clines in the northeast and increases in the southwest of its breed-
ing season population, a pattern similar to other published studies 
(e.g. Fink, Auer, Johnston, Ruiz-Gutierrez, et al., 2020) The estimated 
population change for Canada warbler also shows spatial patterning, 
though the uncertainty is relatively high. Long-billed curlew shows 
strong, significant range-wide declines consistent with previous 
analysis (Rosenberg et al., 2019).

4  |  DISCUSSION

Our work shows that the DML trend model is a promising method 
for estimating spatially explicit interannual trends based on citizen 
science data. Simulation results demonstrated the ability to con-
trol confounding in realistic settings based on temporally corre-
lated eBird observations with relatively large sets of confounding 
features. Model estimates accurately estimated trend direction and 
magnitude and were sufficiently accurate to distinguish between 
spatially constant and spatially varying patterns at a 27 km × 27 km 
resolution.

This study highlights the importance of considering interannual 
confounding when estimating interannual trends with citizen science 
data. It also highlights several challenges implementing the DLM trend 
model including the tasks of modelling propensity scores, estimating 
uncertainty, and accounting for spatial and temporal correlation. In this 

Species
Trend 
scenarios

Directional 
error Correlation

CI 
coverage

Wood thrush All 2.4% 96% 47%

Constant 1.9% 97% 44%

Varying 1.9% 92% 48%

Canada warbler All 6.8% 88% 49%

Constant 5.1% 92% 45%

Varying 5.5% 79% 51%

Long-billed curlew All 3.4% 88% 61%

Constant 2.5% 91% 56%

Varying 2.6% 86% 62%

TA B L E  2  Trend estimate performance. 
The directional error, correlation and 
interval coverage are presented for each 
species, averaged across all evaluation 
scenarios (All) the spatially constant 
evaluation scenarios (Constant), across 
the spatially varying scenarios (Varying).
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section we discuss these challenges and how DML trend models may 
be used for other applications and citizen science datasets.

4.1  |  Confounding in citizen science data

Without any correction for confounding, the simulation results 
showed that confounding bias can be strong (−4.77% per year di-
rectional bias for long-billed curlew), though it varied among spe-
cies (−0.61% per year directional bias for wood thrush). These 
results align with other studies highlighting the risk of interannual 
confounding bias when analysing opportunistically collected data 
(Bowler et al., 2022; Zhang et al., 2021). However, to date, most trend 
analyses based on opportunistically collected citizen science data 
have largely ignored the issue of interannual confounding, implicitly 
assuming its absence (e.g. Bianchini & Tozer, 2023; Boersch-Supan 
et al., 2019; Horns et al., 2018; Walker & Taylor, 2017). Comparing 
control for confounding with other, common trend models (e.g. gen-
eralized linear models or occupancy model) are an important direc-
tion for future research.

Confounding bias could help explain the species-level varia-
tion and relatively low degree of overall alignment between trend 

estimates based on structured survey and citizen science datasets 
(e.g. Boersch-Supan et al., 2019; Walker & Taylor, 2017). Accounting 
for confounding bias will also be important when integrating citizen 
science data with data from other surveys. Failure to do so would 
likely result in variable performance among species and decreased 
precision.

We presented a two-stage approach to control confounding. The 
first stage uses propensity score adjustments made as part of the 
DML model. The ablation study in Section  3.5.1 showed that the 
propensity scores largely reduced the confounding bias for wood 
thrush and Canada warbler; reducing the directional bias to approxi-
mately |0.25|% per year. For long-billed curlew, the propensity score 
reduced but did not eliminate the confounding bias (directional bias 
was reduced from −4.77% to −3.67% per year), despite using fully 
tuned Casual Forest models with relatively large sample sizes and 
a relatively well-studied citizen science dataset with known con-
founding features (e.g. Johnston et al., 2019). This result highlights 
the challenging, species-specific nature of the confounding problem 
and it motivated our development of the residual confounding diag-
nostic and adjustment.

In Section  3.5.1 the second stage residual confounding ad-
justment largely eliminated the residual bias for long-billed curlew 

F I G U R E  2  Wood thrush trend 
simulations. All trend maps show the 
average annual per cent-per-year change 
in abundance from 2007 to 2021 within 
27 km pixels (red = decline, blue = increase, 
white = 80% confidence interval contained 
zero), intensity (darker colours indicate 
stronger trends). Simulated trends show 
scenarios varying by direction and 
magnitude along rows: weak (includes 
trends ~∣ 1% ∕year ∣ ), moderate (includes 
regions with trends ~∣ 3.5% ∕year ∣ ) and 
strong trends (includes regions with 
trends ~∣ 6.7% ∕year ∣ ). The columns 
show simulated and estimated trends for 
spatially constant and varying simulation 
scenarios.
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reducing the directional bias from −3.67 to 0.12% per year and re-
ducing the scaling bias from 1.15 to 1.00. The results of the residual 
confounding adjustment were mixed for wood thrush and Canada 
warbler, producing increases directional bias (from 0.25% to 0.30% 
per year and from −0.21% to 0.64% per year respectively) while 
decreases in scaling bias (from 1.34 to 1.05 and from 1.16 to 0.93 
respectively). These results suggest a strategy where the resid-
ual confounding adjustment is applied selectively when it is most 
needed. This could be achieved by implementing a test or shrinkage 
estimator based on residual confounding diagnostics to determine 
when and how the adjustment is applied. This is an area for future 
research.

One of the most important steps in specifying ML propensity 
score models is feature selection. The goal of the propensity score 
model is to capture sources of interannual variation in the obser-
vation process that also impact the reported abundance of the 
species. This suggests a feature selection strategy that includes all 
features from the conditional mean model in the propensity score 
model. This strategy ensures that all important sources of varia-
tion in year-invariant abundance are included as the set of poten-
tial confounders. This is the strategy implicit in our presentation of 
the DML trend model. Nonetheless, the propensity score model is 
not limited to this set of features, and we expect there are situa-
tions where it may be advantageous to consider additional features. 
However, we caution against indiscriminately including features in 
the propensity score models to avoid introducing bias (Hünermund 

et al., 2023). For example, bias can be introduced in the DML trend 
model by including propensity score features that are themselves 
affected by changes in species abundance and are also changing 
from year to year. Intuitively, including such features would make it 
difficult to isolate population change from other sources of interan-
nual variation. The challenge of feature selection in causal inference 
has received considerable attention and several good references are 
available (e.g. Cinelli et al., 2020; Hernán & Robins, 2020). This chal-
lenge highlights the importance of future work to improve our un-
derstanding of citizen science observation processes and how they 
evolve over time. Incorporating instrumental variables within DML 
analyses (Chernozhukov et al., 2018) could also help strengthen con-
founding control and is another area for future research.

The estimation of residual confounding provides a practical way 
to assess confounding control. This can be used to guide model de-
velopment (e.g. feature selection and engineering) when implement-
ing DML. Residual confounding can also be used to adjust estimates 
to reduce bias when propensity score deficiencies are found. In gen-
eral, we expect residual confounding will be most valuable when the 
data generating processes responsible for confounding are complex 
and not well understood, the set of available features is not well 
suited to model interannual variation in the observation process, or 
signal to noise ratios are low.

Critical to the success of any residual confounding analysis is the 
construction of the underlying simulated data. In general, the simu-
lated data need to have a known population trend while maintaining 

F I G U R E  3  Trend estimates wood 
thrush, canada warbler and long-
billed curlew. All trend maps show 
the average annual per cent-per-year 
change in abundance from 2007 to 
2021 within 27 km pixels (red = decline, 
blue = increase), intensity (darker colours 
indicate stronger trends). The top row 
shows the estimated trends, middle row 
shows confidence interval length and the 
bottom panel shows the nonzero trends in 
red and blue with white in locations where 
80% confidence interval contained zero.
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all the interannual confounding in the original features. The zero or 
null-trend simulation in Section 2.2 is a convenient, general purpose 
and completely data-driven analysis based on the estimated condi-
tional mean model. Thus, the applicability and performance of this 
approach will also depend on the quality of the conditional mean 
model.

For the eBird data analysis, it was important to assess perfor-
mance estimating zero, nonzero and spatially structured trends 
based on temporally correlated observations. To do this we ex-
tended the residual confounding simulations to include trends that 
varied in direction, magnitude and spatial patterns. Our strategy was 
to inform the simulation data generating process by using real data 
as much as possible while reducing the synthetic components (and 
assumptions therein) to a minimum (see Knaus et al. (2021) for other 
examples of empirically driven simulations). The synthetic compo-
nents in our simulation were based on two key assumptions, (1) that 
populations change at the same rate across the study period, and (2) 
that spatial patterning aligned with edge-core population structure. 
Expanding the simulations to include nonconstant temporal dynam-
ics and additional spatial patterns is an area for further research.

4.2  |  Inferential scope

An important goal of this paper was to investigate the use of DML to 
control for interannual confounding when estimating trends based 
on citizen science data. The results show that DML can be used to 
reduce confounding bias leading to more accurate estimates and 
stronger associative inferences. These results are in line with other 
research that has sought to improve associative inferences by har-
nessing approaches and ideas originally developed for causal infer-
ence (Bühlmann, 2020; Cui & Athey, 2022).

With additional assumptions DML can also be used for causal 
inference. The key assumption to make causal inference is to assert 
the absence of confounders that are missing from the analysis and 
independent of the original features (sometimes called missing, hid-
den or unmeasured confounders). Practically, asserting the absence 
of missing confounders requires assumptions that go beyond the 
data in hand (Hernán & Robins, 2020). Neither the propensity score 
model nor the simulation-based residual confounding analysis can 
detect or control for missing confounders. Thus, end-users need to 
carefully consider the strength of their domain knowledge and the 
limits of inference.

4.3  |  Uncertainty, temporal correlation and 
spatially structure

The simulation results showed that confidence interval coverage for 
the eBird analysis was below the nominal 80% level. We believe this 
is caused, at least partially, by the outcome model not accounting for 
the temporal correlation. Nevertheless, these same simulation re-
sults demonstrated that there was strong control of directional error 

when we used the interval estimates to identify nonzero trends, that 
is, trend estimates whose intervals did not contain zero. We interpret 
these two results to indicate that the uncertainty may not be scaling 
appropriately with the magnitude of the trend. Accounting for tem-
poral correlation in the outcome model is an interesting direction 
for further research into use of the DML framework. Incorporating 
more powerful rules to identify nonzero trends that control for mul-
tiple comparisons (e.g. false detection rate thresholding) and spatial 
correlation could also serve to improve the power of the approach 
and the scope of inference for species with weaker trend signals like 
Canada warbler.

In this study we showed how spatial features can be used to esti-
mate spatial patterns of variation in the trends (Figure 3; Figures SI-3 
and SI-4). Residual spatial structure is another common feature of 
large-scale geographic studies that is absent from the DML. Given 
that the processes driving population change are more likely to 
vary locally when data come from large geographic extents (Rose 
et al., 2017), an important avenue of additional research is into ac-
counting for spatial nonstationarity of the drivers and confounders 
of trends.

4.4  |  DML trend applications

The DML trend model and the simulation-based adjustment pre-
sented here can be used with other applications and data types. The 
Causal Forest implementation (Tibshirani et al.,  2020) can accom-
modate binary and real-valued outcome variables, making it possi-
ble to estimate trends in species occurrence rates, expected trends 
and other indices of abundance. For example, using the DML trend 
model to estimate trends with higher temporal resolution by gener-
ating estimates over shorter time study periods could be useful for 
studying short-term population fluctuations like those generated by 
weather, demographics or population cycles. Investigating the bias-
variance trade-off associated with trend estimation across temporal 
resolutions is another area for further research.

The ability to associate features and trends can also be used to 
study a variety of questions. For example, including indicators in the 
trend feature set can be used to estimate the effects of different 
survey protocols, management actions or policies on population 
change. This could be useful for conservation planning, assessment, 
to inform integrated analysis or for future survey design. Moreover, 
by including other features in the trend model that capture other po-
tential trend effects (e.g. changes in landcover) it is possible to study 
systematic management differences after accounting for changes 
in landcover. This may be useful for Before-After-Control-Impact 
studies with citizen science data where accounting for the simulta-
neous impacts of other management and environmental changes is 
a challenge (Kerr et al., 2019). Finally, learned associations between 
trends and features can also be used to forecast expected popula-
tion changes, conditional on a given set of features values and the 
assumption that the underlying processes driving population change 
during the study period will persist into the future.
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For the eBird analysis presented here we used the fact that 
each species' counts were collected as parts of complete check-
lists of birds, which allowed us to infer the zero counts associated 
with nondetection. The same approach can be used with other 
checklist-based citizen science projects to analyse counts as well 
as binary response presence–absence data (e.g. birds (Johnston 
et al., 2020) and butterflies (van Swaay et al., 2008)). Even when 
observations are not collected in the form of complete lists, obser-
vations from some taxa can be assembled into pseudo-checklists 
(Henckel et al., 2020; van Strien et al., 2013) making them amena-
ble to DML trend analysis. It may also be possible to analyse 
presence-only data (e.g. iNatu​ralist.org) by carefully selecting 
(Valavi et al.,  2021) or weighting (Fithian & Hastie,  2013) back-
ground data. However, more research will be needed to carefully 
consider biases and confounding associated with presence-only 
data (e.g. Stoudt et al., 2022). The DML trend model may even be 
useful for the analysis of data collected from structured surveys 
where confounding can arise despite survey structure (e.g. Zhang 
et al., 2021).

5  |  CONCLUSIONS

The volume of citizen science data is rapidly growing, but the lack 
of structured protocols has rendered most of these data unsuitable 
for estimating population trends without requiring strong assump-
tions about the absence of confounding. Bias can be introduced by 
changes over time in how people participate. The DLM trend model 
can account for these confounding changes over time. When used 
appropriately, including assessments of the propensity score model 
used to account for sources of confounding variation, this approach 
has the potential to increase the biodiversity monitoring value that 
we can obtain from citizen data. This could enable us to better track 
population changes in areas of the world with fewer structured mon-
itoring programmes.
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