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Abstract: The product formed by base-induced dimerisation of (2S,5S)-2-tert-butyl-5-methyl-1,3-
dioxolan-4-one is shown by X-ray diffraction to be the title compound and not the isomeric fused-
ring 1,3-dioxolane/1,3-dioxane-4-one structure proposed by previous researchers. The analogous
compound derived from (2S,5S)-5-benzyl-2-tert-butyl-1,3-dioxolan-4-one has also been obtained and
characterised.
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1. Introduction

Starting with the pioneering work of Seebach almost 40 years ago [1,2], chiral 1,3-
dioxolan-4-ones such as 1 derived from (S)-lactic acid have proved to be very useful in
asymmetric synthesis. As shown in Scheme 1, deprotonation gives an enolate which has
lost the stereochemistry at the lactic acid-derived C-5 centre but since overall chirality is
preserved by the presence of the bulky tert-butyl group at C-2, such enolates react with
electrophiles with very high selectivity from the less hindered face to give products 2 with
a quaternary centre. Where the reaction also creates a new stereogenic centre within the
electrophile, as is the case with aldehydes and ketones [1,2], imines [3], enones [4,5] and
nitroalkenes [5,6], this may also be formed with high selectivity and chiral products can be
formed even after degradation of the dioxolanone with loss of one or both of the original
sterecentres.
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Scheme 1. Alkylation and competitive dimerisation of dioxolanone 1 upon treatment with a base.

Even in the earliest papers, it was noted that formation of more concentrated enolate
solutions from 1 led, as a side reaction, to interaction of the enolate with a molecule of the
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precursor 1 to form a dimer which was assigned the structure 4 [1,2] and this byproduct
was also reported by later researchers [3]. In our own research [4,5], we have also obtained
this dimeric product and were curious as to the mechanism of its formation. In this paper,
we re-examine the structure of this product and show that the originally assigned structure
is not correct.

2. Results and Discussion

When a solution of dioxolanone 1 was added to a solution of LDA or LiHMDS at
−78 ◦C in the presence of a range of electrophiles, the dimer was obtained as a byproduct.
Particularly when the dioxolanone was added too rapidly to the base, this became the
major product and was obtained in up to 68% isolated yield. The compound exhibited
physical and spectroscopic properties in excellent agreement with those reported for 4 with
the 1H and 13C NMR data (see Supplementary Materials) clearly showing the presence
of two distinct OCH(t-Bu)O units, a lactone C=O, two distinct methyl groups, one joined
to a quaternary centre and the other forming a C–CH(Me)–O unit, two quaternary sp3

carbons, one joined to a single oxygen and the other to two oxygens, and a free hydroxyl
group. On the face of it, these data are in full agreement with the reported structure 4.
However, we could not come up with a reasonable mechanism for the formation of this
structure and noted that the more obvious dimer 3, simply formed by a nucleophilic attack
of the enolate at the lactone carbonyl of 1 followed by protonation on workup, also fits the
spectroscopic data.

Crystals suitable for X-ray diffraction were obtained and the resulting molecular
structure (Figure 1) confirmed that the compound was indeed 3. No attempt was made to
determine the absolute configuration crystallographically since the configuration of the
two newly formed centres linking the five-membered rings could be observed relative to
the two invariant CHt-Bu centres. As expected, it is the stereoisomer derived from attack
of the least hindered face of the enolate at the least hindered face of the carbonyl group in 1
(Scheme 1).
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Figure 1. The molecular structure of 3 (50% probability ellipsoids) showing the numbering system
used and conventional representation.

The crystal structure was found to consist of hydrogen-bonded chains along the a-axis
with O–H . . . O=C bonding (Figure 2, Table 1): in terms of the Etter–Bernstein [7] graph set
description, a C(6) interaction.
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Figure 2. Hydrogen-bonding pattern for compound 3.

Table 1. Hydrogen-bonding parameters for 3 (Å, ◦).

D—H . . . A D—H H . . . A D . . . A D—H . . . A

O(12)–H(12) . . . O(3) 0.98 1.88 2.853(10) 174.5

As also noted earlier [2], this is a general reaction of these dioxolanones and we also
obtained the dimeric product from reactions of 5 in higher purity than before as judged
from the increased value of the optical rotation. This again showed 1H NMR spectroscopic
data in good agreement with the reported values [2], but we were able to analyse this in
more detail and also record the 13C NMR spectrum for the first time (see Supplementary
Materials). Based on the similarity with 3, we suggest that this also has the structure 6
rather than the isomeric structure 7 previously reported (Scheme 2) [2].
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Scheme 2. Dimerisation of dioxolanone 5 upon treatment with the base giving 6.

3. Experimental

Melting points were recorded on a Reichert hot-stage microscope (Reichert, Vienna,
Austria) and are uncorrected. Optical rotation measurements were made using an Optical
Activity 1000 polarimeter and are given in units of 10−1 deg cm2 g−1. Elemental analysis
was conducted using a Carlo Erba CHNS analyser. Mass spectra were obtained using a
Micromass instrument using electrospray ionisation. IR spectra were recorded on a Perkin-
Elmer 1420 instrument (Perkin-Elmer, Waltham, MA, USA). NMR spectra were obtained for
1H at 300 MHz and for 13C at 75 MHz using a Bruker AV300 instrument (Bruker, Billerica,
MA, USA). Spectra were run at 25 ◦C on solutions in CDCl3 with internal Me4Si as the
reference. Chemical shifts are reported in ppm to high frequency of the reference and
coupling constants J are in Hz. The dioxolanones 1 and 5 were prepared using the literature
method described in [2].

3.1. Formation of
(2S,2’S,4R,5S,5’R)-2,2’-Di-tert-butyl-4-hydroxy-5,5’-dimethyl-4,5’-bi(1,3-dioxolanyl)-4’-one 3

To a solution of lithium hexamethyldisilazide (13.2 mmol) in THF (50 mL) stirred at
−78 ◦C under nitrogen was added dropwise a solution of (2S,5S)-2-t-butyl-5-methyl-1,3-
dioxolan-4-one 1 (2.00 g, 12.7 mmol) in dry THF (10 mL), followed after 45 min by a solution
of 4-methoxy-β-nitrostyrene (2.56 g, 13.2 mmol) in THF (5 mL). The mixture was stirred at
−20 ◦C for 2 h. Addition to sat. aq. ammonium chloride (50 mL) was followed by extraction
with diethyl ether (3 × 20 mL), drying and evaporation. Chromatography of the residue
(SiO2, hexane/Et2O, 2:1) gave the product 3 as colourless crystals (1.36 g, 68%), mp 156 ◦C
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(Lit. [1] 147 ◦C); [α]D +22.66 (c = 0.75, CH2Cl2) (Lit. [1] +21.5); Elemental analysis: found C
61.2, H 8.7. C16H28O6 requires C 60.7, H 8.9%; HRMS (ES): found 339.1780. C16H28O6Na
(M + Na) requires 339.1784; νmax/cm−1 3479, 1776, 1374, 1351, 1285, 1264 and 1182; δH 0.91
(9 H, s, t-Bu), 0.98 (9 H, s, t-Bu), 1.35 (3 H, d, J 6.2, Me), 1.41 (3 H, s, Me), 3.12 (1 H, br s, OH),
4.36 (1 H, dq, J 6.2, 0.78, CH-Me), 4.53 (1 H, s, CH-t-Bu) and 5.35 (1 H, s, CH-t-Bu); δC 13.9
(Me), 18.8 (Me), 23.3 (t-Bu), 24.0 (t-Bu), 33.5 (C-t-Bu), 34.5 (C-t-Bu), 75.7 (C-5), 83.0 (C-5’),
102.0 (C-OH), 109.7 (CH), 110.0 (CH) and 172.4 (C=O).

3.2. X-ray Structure Determination of 3

Crystal data for C16H28O6, M = 316.38, colourless platelet, crystal dimensions
0.10 × 0.10 × 0.03 mm, monoclinic, space group C2 (No. 5), a = 20.893(9), b = 6.144(3),
c = 13.864(7) Å, β = 102.06(3)◦, V = 1740.5(14) Å3, Z = 4, Dcalc = 1.207 g cm−3, T = 93(2)
K, R1 = 0.1370, Rw2 = 0.3278 for 2021 reflections with I > 2 σ (I) and 200 variables. Data
were collected on a Bruker SMART diffractometer with graphite-monochromated Mo-Kα

radiation (λ = 0.71073 Å) and have been deposited at the Cambridge Crystallographic Data
Centre as CCDC 2240551 The data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/getstructures. The structure
was solved by direct methods and refined by full-matrix least-squares against F2 (SHELXL,
Version 2018/3 [8]).

3.3. Formation of (2S,2’S,4’R,5S,5’R)-5,5’-Dibenzyl-2,2’-di-tert-butyl-4-hydroxy-4,5’-bi
[1,3-dioxolanyl]-4’-one 6

To a solution of lithium hexamethyldisilazide (2.1 mmol) in dry THF (10 mL) stirred at
−78 ◦C under nitrogen was added dropwise a solution of dioxolanone 5 (0.50 g, 2.0 mmol)
in THF (3 mL), followed after 15 min by a solution of ethyl crotonate (0.23 g, 2.1 mmol) in
THF (3 mL). The mixture was stirred at −78 ◦C for 30 min then allowed to warm slowly up
to RT. Addition to sat. aq. ammonium chloride (20 mL) was followed by extraction with
diethyl ether (3 × 10 mL), drying and evaporation. Chromatography of the residue (SiO2,
hexane/Et2O, 7:3) gave the product 6 (0.35 g, 70%) as colourless crystals, mp 174–175 ◦C
(Lit. [2] 209–211 ◦C subl.); [α]D −45 (c = 1, CH2Cl2) (Lit. [2] −38.9); Elemental analysis:
found C, 71.6; H, 7.7. C28H36O6 requires C, 71.8; H, 7.7%; νmax/cm−1 3447, 2960, 1770, 1150;
δH 0.51 (9 H, s, t-Bu), 0.93 (9 H, s, t-Bu), 2.96 (1 H, dd, J 14, 4, CH2), 3.07 (1 H, d, J 14, CH2),
3.13 (1 H, dd, J 14, 10, CH2), 3.23 (1 H, d, J 14, CH2), 3.37 (1 H, br s, OH), 4.56 (1H, dd, J 10,
4, CH-Bn), 4.58 (1 H, s, CH-t-Bu), 5.33 (1 H, s, CH-t-Bu) and 7.18–7.36 (10 H, m, Ph); δC 23.0
(t-Bu), 24.1 (t-Bu), 33.7 (C-Me3), 33.9 (C-Me3), 36.0 (CH2), 37.3 (CH2), 80.7 (CH-Bn), 87.0
(C-Bn), 102.7 (C-OH), 110.0 (CH-t-Bu), 110.5 (CH-t-Bu), 126.5 (CH), 127.3 (CH), 128.4 (2CH),
128.5 (2CH), 129.3 (2CH), 130.9 (2CH), 133.7 (Ph-C1), 138.4 (Ph-C1) and 171.5 (C=O); m/z
(ES) 491.14 (M + Na+, 100%).

Supplementary Materials: The following is available online: 1H and 13C NMR data for 3 and 6, cif
and check-cif files for 3.
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