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ABSTRACT
Three-dimensional filaments of quasi-geostrophic potential vortic-
ity are generic features of atmospheric and oceanic flows. They
are often generated during the strong interactions between three-
dimensional quasi-geostrophic vortices. They contribute to a direct
cascade of enstrophy in spectral space. These filaments correspond
to shear zones. Therefore they may be sensitive to shear instabil-
ities akin to the Kelvin–Helmholtz instability of the classical two-
dimensional vorticity strip. They are, however, often subjected to
a straining flow induced by the surrounding vortices. This strain-
ing flow affects their robustness. This paper focuses on a simplified
model of this situation. We consider the effect of a pure strain on a
three-dimensional filament of uniform quasi-geostrophic potential
vorticity. We first consider a quasi-static situation where the strain,
assumed small, only affects the cross-sectional shape of the filament,
but not the velocity field. We address the linear stability of the fil-
ament in that context and also show examples of the filament’s
nonlinear evolution.We then consider the linearised dynamics of the
filament in pure strain. In particular we focus on the maximum per-
turbation amplification observed in the filament. We conclude that
small to moderate strain rates are efficient at preventing a large per-
turbation growth. Nonlinear effects can nevertheless leads to the
roll-up of weakly strained filaments.
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1. Introduction

Three-dimensional filaments abound in eddy-driven atmospheric and oceanic flows. They
often are the results of strong interactions between coherent masses of potential vorticity.
For example, in geostrophic turbulence, the energy predominantly cascades towards large
scales via the formation of large vortices by merger. These mergers generate a plethora
of small-scale debris and filaments (Reinaud et al. 2003). These small-scale structures
feed a direct cascade of enstrophy. In general, any strong vortex interaction is accom-
panied by the formation of filaments, see, e.g. Bambrey et al. (2007) and Reinaud and
Dritschel (2009). These filaments are shear zone, hence are sensitive to shear instabilities
akin to the Kelvin–Helmholtz instability. Yet, filaments are typically relatively long lived.
Their longevity has been linked to the fact they are subjected to a straining flow induced
by the surrounding vortices (Dritschel et al. 1991, Kevlahan and Farge 1997).
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The stability of a two-dimensional vorticity filament in an incompressible straining flow
was investigated by Dritschel et al. (1991). The authors concluded that a pure strain has a
stabilising effect of the filament. The stabilisingmechanism is twofold.On the one hand, the
strain increases the longitudinal perturbation wavelength as the filament is stretched and
the growth rate of instabilities goes to zero as the perturbation wavelength goes to infinity.
On the other hand, the longitudinal stretching of the filament is associated with a decrease
in the spanwise direction of the amplitude of the perturbation, from incompressibility. A
similar study was conducted by Harvey and Ambaum (2010) for a filament of potential
temperature anomaly in a surface quasi-geostrophic model. Here the situation is different
as the decrease of the width of the filament of potential temperature increases the shear
inside the filament. This, in turn, increases the growth rate of the instability. The authors
conclude that overall the strain has a destabilising effect.

In this paper, we consider three-dimensional filaments of uniform quasi-geostrophic
potential vorticity in pure strain. This paper is organised as follows. The quasi-geostrophic
model is presented in section 2. We first address the linear stability of the filament in
section 3 in a quasi-static strain. Examples of the nonlinear evolution of the filament are
also provided. We then consider the linearised dynamics of the filament in pure strain
in section 4. We find that the strain eventually tends to stabilise the filament. Irreversible
nonlinear effects can nonetheless lead to the rollup of the filament if the strain is weak.
Finally conclusions are given in section 5. An appendix contains further information on
the numerical convergence of the linear stability analysis.

2. Quasi-geostrophic model

The quasi-geostrophic (QG) model is the simplest dynamical model which captures the
leading order features of rapidly-rotating, stably-stratified flows. In the form used in this
study, it stems from a first-order Rossby number expansion of the three-dimensional
Euler’s equations in a rotating reference frame, for a stratified fluid under the Boussinesq
approximation. The Rossby number is Ro = U/(fL), whereU is a typical horizontal veloc-
ity scale, f is the Coriolis frequency and L is a typical horizontal length scale. Specifically,
the QG model is valid when Fr2 � Ro � 1, where Fr = U/(NH) is the Froude number,
N is the buoyancy (or Brunt–Väisälä) frequency and H is a typical vertical length scale. A
detailed derivation of the model may be found in chapter 5, section 5.5 of Vallis (2006).
The flow fields can be recovered from a single scalar field, q, the QG potential vorticity
anomaly (PV), together with the possible addition of a potential flow. The PV, q, may be
defined from a scalar stream function ϕ as

q = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
, (1)

where x and y are the horizontal coordinates and z = zpN/f is a stretched vertical
coordinate. Here zp is the physical vertical coordinate and both N and f are assumed
constant.

In the absence of adiabatic or dissipative effects, q is materially conserved,

∂q
∂t

+ u · ∇q = 0. (2)
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u is the advecting velocity field

u = (u, v, 0) = (ug , vg , 0) + (up, vp, 0), (3)

where

(ug , vg , 0) =
(

−∂ϕ

∂y
,
∂ϕ

∂x
, 0

)
(4)

is the horizontal, non-divergent, advective geostrophic velocity, and up = ∇Φp =
(up, vp, 0) is an additional potential flow. In the QG model, the vertical velocity is not,
strictly speaking, zero, but is too small in the Rossby number expansion to contribute to
the advection of PV. Equation (1) can be formally inverted using the appropriate Green’s
function, which in an unbounded domain (and without taking the potential part into
account)

ϕ(x) = − 1
4π

∫∫∫
q(x′)

|x − x′|d
3x′. (5)

In this paper, we consider filaments of PV subject to a horizontal potential strain,

Φp = γ

2
(x2 − y2), (up, vp, 0) = γ (x,−y, 0), (6)

where γ is the constant strain rate.

3. Filament in strain: the quasi-static approach

We first analyse the linear stability of a PV filament quasi-statically deformed by the strain.
In this context, we will refer to a quasi-static filament for simplicity. This is an extension of
the work by Reinaud (2020) where the linear stability of a cylindrical filament of PV, with
a circular cross-section, in the absence of strain (γ = 0) is addressed. Here, the basic state
consists of a cylindrical filament of uniform potential vorticity q. The axis of the filament
is the x-axis, and the vertical cross-section of the filament is an ellipse of semi-axis length
a in the y-direction and b in the z-direction as shown in figure 1. The filament is infinite in
the x-direction. For the unperturbed basic state the PV is independent of x and therefore
the filament does not induce a transversal velocity v̄g on itself. As the filament is placed in
the pure strain, the elliptical cross-section of the filament deforms such that

a(t) = a0 exp(−γ t), (7)

where a0 = a(t = 0) and while b remains constant due to the lack of vertical advection.

Figure 1. General geometry of the elliptical filament cross-section.
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Wefirst consider the quasi-static situationwhere γ � q. In this case, the potential veloc-
ities up and vp are kinematically negligible. We investigate the stability of the filament for
b fixed and various values of a, neglecting the time-dependence of a during the analysis.
This allows to take into account the slow deformation of the filament, while neglecting the
kinematic effects of up on its stability. This means taking up = 0 during the analysis.

The inner stream function for the elliptical filament can readily be adapted from the
classical two-dimensional Kirchhoff vortex (Kirchhoff 1876, Lamb 1916):1

ϕ(x) = q
2(a + b)

(
by2 + az2

)
(8)

ug(x) = − qb
(a + b)

y (9)

It should be noted that the magnitude of shear rate inside the filament s = |q|b/(a + b) =
|q|/(1 + λ) depends on the aspect ratio λ = a/b of the filament’s elliptical vertical cross-
section. It increases as λ decreases, yet remains bounded, 0 < s < |q|.

3.1. Linear stability

The linear stability analysis relies on the analysis of normal modes of deformation of the
surface bounding the filament. Recall that we use up = 0 in the analysis in the quasi-static
approach. The procedure is detailed in Reinaud (2020). The boundary of the unperturbed
filament is first parametrised

y = a cos(θ), z = b sin(θ) (10)

where −π/2 ≤ θ < 3π/2. Then the contours are perturbed in the y-direction by a
monochromatic wave

y = y + εη(x, θ , t) = y + ε Re
{
η̂(θ) exp(i(kx − σ t))

}
(11)

where k ∈ R is the perturbation wavenumber, η̂ ∈ C is the complex amplitude of the per-
turbation and σ = σr + iσi ∈ C is the complex frequency. The imaginary part σi of the
complex frequency is consequently the mode’s growth rate.

The linearised kinematic boundary condition, at order ε, is

∂η(θ)

∂t
+ ug

∂η(θ)

∂x
= vg(x, y(θ), z(θ), t) (12)

where the transversal velocity perturbation is obtained by contour integration

vg(x, y(θ), z(θ), t) = −qik
4π

∫ 3π/2

−π/2
2η(θ ′)K0(k�)b cos(θ ′)dθ ′ (13)

and � = √
(y(θ) − y(θ ′))2 + (z(θ) − z(θ ′))2, and K0 is the modified Bessel function of

the second kind and zeroth order. The full derivation of equation (13) is given in Rein-
aud (2020) for a = b = 1. The surface of the filament is then discretised by n points

yi = a cos θi, zi = b sin θi (14)

1 Chap. XX, section 4, p.261 of Kirchhoff (1876), section 159, p.226 of Lamb (1916)
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Figure 2. (a) Largest normalised growth rate σ/q versus the non-dimensional wavenumber ka, for λ =
0.1 (solid black), 0.2 (solid red), 0.3 (solid blue), 0.4 (solid green), 0.5 (solid cyan), 0.6 (solid magenta),
0.7 (solid orange), 0.8 (solid olive), 0.9 (solid grey), 1 (solid yellow), 0.9−1 (dashed grey), 0.8−1 (dashed
olive), 0.7−1 (dashedorange), 0.6−1 (dashedmagenta), 0.5−1 (dashed cyan), 0.4−1 (dashedgreen), 0.3−1

(dashedblue), 0.2−1 (dashed red), 0.1−1 (dashedblack). The circle indicates the location of themaximum
growth rate. (b): same but showing an extended range of ka for λ = 0.1, 0.2, 0.3 and 1. (Colour online.)

Table 1. Values of kma, kca,σi,max/q for all λ considered.

λ kca kma σi,max/q λ kca kma σi,max/q

0.1 3.244 0.476 0.171 0.9−1 1.068 0.682 0.0642
0.2 1.850 0.534 0.146 0.8−1 1.069 0.688 0.0589
0.3 1.403 0.577 0.128 0.7−1 1.071 0.694 0.0531
0.4 1.207 0.605 0.115 0.6−1 1.074 0.700 0.0470
0.5 1.125 0.625 0.104 0.5−1 1.078 0.707 0.0403
0.6 1.091 0.641 0.0946 0.4−1 1.081 0.713 0.0332
0.7 1.077 0.652 0.0868 0.3−1 1.086 0.719 0.0255
0.8 1.071 0.662 0.0801 0.2−1 1.091 0.724 0.0174
0.9 1.068 0.669 0.0742 0.1−1 1.094 0.727 0.00883
1.0 1.067 0.676 0.0692

where θi = −π/2 + (i − 0.5)θ , withθ = 2π/n and 1 ≤ i ≤ n. The integration in (13)
between the nodes θ ′

i and θ ′
i+1 is done by two-point Gaussian quadrature. The discre-

tised version of equation (12) leads to a n-dimensional eigenvalue problem where σ is
the complex eigenvalue and η̂ = (η̂i)1≤i≤n is the complex eigenvector. In practice, we set
ab = 1 without loss of generality and vary λ = a/b. In practice, we use n = 2000. A note
on accuracy is presented in appendix.

We investigate 19 values for λ, first λ = 0.1i, 1 ≤ i ≤ 10, then λ = (0.1i)−1, 1 ≤ i ≤ 9.
Figure 2 shows the largest normalised growth rate σi/q versus the normalised wavenum-
ber ka. For all λ there is a range ka ∈ (0, kca) where σi > 0 hence where the filament is
unstable. The normalised cutoff wavenumber kca depends on λ. The filament is marginally
stable (σi = 0) outside this range. The values of kca are reported in table 1 for clarity. For
λ > 0.5, 1.067 ≤ kca ≤ 1.094 varies little (i.e. a variation of about 2.5%). It, however,
increases significantly as λ ≤ 0.5 decreases. A further calculation shows that kca = 6.071
for λ = 0.05 (result not reported in table 1 nor in figure 2).

The normalised wavenumber of the most amplified mode kma slightly increases with λ.
The growth rates and in particular the growth rate, σi,max = σi(km) of the most amplified
mode increases as λ decreases. Recall the intensity of the shear inside the filament increases
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Figure 3. Normalised growth ratesσ/q versus the non-dimensional wavenumber ka, for (a)λ = 0.1, (b)
0.2, (c) 0.3, (d) 0.4, (e) 0.5, (f ) 0.7, (g) 0.9, (h) 1.0. (a) 7 largest growth rates shown. (b)–(h) 4 largest growth
rates shown. (Colour online.)

as λ decreases. It should be noted that σi,max does not exactly scale as the inner shear rate
s = q0/(1 + λ), since km also depends on λ.

For λ < 1, there is typically more than one unstable mode. Figure 3 shows the largest
growth rates versus ka. For λ = 0.1, there are in fact up to seven unstable modes, shown
in panel (a) of figure 3. As λ increases the maximum number of unstable modes decreases.
There are only up to four unstable modes for λ = 0.2 and three for λ = 0.3. The third
unstable mode for λ = 0.4 has a maximum growth rate of only σi/q = 1.05 × 10−3 for
ka = 0.13. Then there are up to two unstable for 0.5 ≤ λ ≤ 0.9, and only one for λ ≥ 1.

Figure 4 shows the shape of the perturbation eigenmodes on a vertical cross-section
of the filament for kx = 2mπ , m ∈ Z for ka = 0.6 and λ = 0.1. Recall that the wave is
perpendicular to (y, z)-plane shown in the figure. The most amplified unstable mode, cor-
responding to the largest growth rate mostly corresponds to a transversal displacement of
the cross-section, hence indicative of a simple sinusoidal wave in the x-direction. Interest-
ingly, the second most amplified mode corresponds to the tilting of the filament. This is
connected to the tall column instability discovered by Dritschel (1996) and the tilt insta-
bility also observed in the interaction of prolate vortices by Reinaud and Dritschel (2005).
The third and fourth most amplified modes are primarily associated with the deforma-
tion of the top and bottom tips of the filament. The fifth and sixth most amplified modes
affect an even narrower region near the top and bottom tips of the filament. This shows
the sensitivity of the filament tips to vertical shear as λ → 0. For such a small λ, the curve
of the largest instability growth rates has a long tail, with two modes having almost the
same growth rate. This tail is absent for larger values of λ. An example of the perturbation
eigenmodes is shown in figure 5 for the same value of λ = 0.1 but ka = 2.23. The modes
mostly, if not exclusively, affect the top tip or the bottom tip of the filament. This is con-
firmed in section 3.2 by a fully nonlinear simulation. For λ = 0.5, the largest instability
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Figure 4. Normalmodeperturbation Re{η} superimposed on the vertical cross-section of the filament’s
boundary (red contour) at kx = 2mπ ,m ∈ Z for ka = 0.6, and undisturbedboundary (dashedblack) for
λ = 0.1 and (a) largest growth rate, (b) second largest growth rate, (c) third largest growth rate, (d) fourth
largest growth rate, (e) fifth largest growth rate, (f ) sixth largest growth rate. (Colour online.)

Figure 5. Normalmodeperturbation Re{η} superimposed on the vertical cross-section of the filament’s
boundary (red contour) at kx = 2mπ ,m ∈ Z for ka = 2.23, and undisturbed boundary (dashed black)
for λ = 0.1 and (a) largest growth rate, (b) second largest growth rate. (Colour online.)

growth rate corresponds again to a transversal displacement of the vertical cross-section
of filament, as shown in figure 6(a) for ka = 0.6, corresponding to a simple wave in the x-
direction. The second largest instability growth rate corresponds to an instability affecting
preferentially the top and bottom tips of the vortex, with a small tilting of the filament, as
shown in figure 6(b). For the unique unstablemode for λ = 1, the perturbation eigenmode



8 J. N. REINAUD

Figure 6. Normalmodeperturbation Re{η} superimposed on the vertical cross-section of the filament’s
boundary (red contour) at kx = 2mπ ,m ∈ Z for ka = 0.6, and undisturbedboundary (dashedblack) for
λ = 0.5: (a) largest growth rate and (b) second largest growth rate. (Colour online.)

Figure 7. Normalmodeperturbation Re{η} superimposed on the vertical cross-section of the filament’s
boundary (red contour) at kx = 2mπ ,m ∈ Z for ka = 0.6, and undisturbedboundary (dashedblack) for
λ = 1. (Colour online.)

corresponds to a lateral displacement of the vertical cross-section of filament, as shown in
figure 7 for ka = 0.6.

3.2. Nonlinear evolution

We next consider the nonlinear evolution of an elliptical filament of vorticity. Again, no
external strain is applied to the filament, up = 0. The numerical simulations are performed
using the Contour Advective Semi-Lagrangian algorithm (CASL) developed by Dritschel
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Figure 8. Filament’s bounding contours from λ = 0.1, perturbed by a monochromatic wave k = 5
(ka = 0.553), at t = 0, 4, 6 and 8, viewed orthographically at an angle of 45◦ from the x-axis and the
z-axis. Colour shading indicates depth (dark contours near thebottomof thefilament and light contours).
(Colour online.)

Figure 9. Filament’s bounding contours from λ = 0.1, perturbed by a monochromatic wave k = 10
(ka = 1.106), at t = 0, 4, 6 and 14.5, viewed orthographically at an angle of 45◦ from the x-axis and
z-axis. Colour shading indicates depth (dark contours near thebottomof thefilament and light contours).
(Colour online.)

and Ambaum (1997) and using the standard setup of the method. The domain is triply-
periodic with dimensions [0, 2π]3. The PV of the filament is set to q = 2π , implicitly
defining a time scale for the flow. For comparison, a sphere of uniform PV as a turn
over period of T = 6π/q. The axis of the filament is the y-axis in the simulations. We
first consider a filament with a = 0.11 and b = 1.1 corresponding to λ = 0.1. Since there
are multiple competing unstable modes for small ka, the contours bounding the filament
are perturbed by a simple monochromatic sine wave of uniform amplitude rather than
a specific eigenmode. The amplitude of the perturbation is ε = 0.01. We first consider
a perturbation with a normalised wavenumber ka = 0.332, corresponding to k = 3 in
the computational box. Results are presented in figure 12. As expected, the unstable fil-
ament rolls up to form Kelvin–Helmholtz-like three-dimensional billows. For ka = 0.553,
corresponding to k = 5 in the periodic computational box. This wave number is closer
to the most amplified wavenumber (kma = 0.476), compared to the previous case with
ka = 0.332. Thus the roll-up occurs faster, as expected (figure 8).

For ka = 1.106, shown in figure 9, corresponding to k = 10 in the computational box,
the filament first developed 10 billows. However, modes with lower wavenumbers are
more unstable than the perturbation introduced. The nonlinear evolution of the filament
is enough to allow these modes to grow. In the late nonlinear evolution, these modes dom-
inate the flow evolution. Some billows merge to form larger structures. This situation is
more pronounced when initially forcing the filament with a perturbation with an even
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Figure 10. Filament’s bounding contours from λ = 0.1, perturbed by a monochromatic wave k = 22
(ka = 2.23), at t = 0, 2.5, 12.5 and 20.5, viewed orthographically at an angle of 45◦ from the x-axis and
z-axis. Colour shading indicates depth (dark contours near thebottomof thefilament and light contours).
In the second panel, the black lines highlight the central and top/bottom contours at t = 2.5. (Colour
online.)

Figure 11. Top view on the filament’s bounding contours for λ = 0.1 and a polychromatic disturbance
d(x) at t = 0, 4, 6 and 8. Colour shading indicates depth (dark contours near the bottom of the filament
and light contours). (Colour online.)

Figure 12. Filament’s bounding contours from λ = 0.1, perturbed by a monochromatic wave k = 3
(ka = 0.332), at t = 0, 5, 8 and 10, viewed orthographically at an angle of 45◦ from the x-axis and
z-axis. Colour shading indicates depth (dark contours near thebottomof thefilament and light contours).
(Colour online.)

larger wavenumber, corresponding to an even smaller growth rate. Figures 10 and 11 show
the evolution of the filament for ka = 2.23, corresponding to k = 22 in the computational
box. As shown in figure 5, the mode affect mostly the top and bottom tips of the filament.
This is stressed in the second panel of figure 10 where the top, bottom and centre bounding
contours are highlighted. Kelvin–Helmholtz billows have formed on the top and bottom
tips of the filament while the perturbation has little grown in the central region of the
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Figure 13. Filament’s bounding contours from λ = 10, perturbed by a monochromatic wave k = 1
(ka = 0.632), at t = 0, 90, 100 and 110, viewedorthographically at an angle of 45◦ from the x-axis and z-
axis. Colour shading indicates depth (dark contours near the bottom of the filament and light contours).
(Colour online.)

filament. Again, as the flow evolves, lower wavenumber modes grow from the perturba-
tions generated by the nonlinear evolution of the filament. The late evolution of the flow is
dominated by a mode k = 5, the most amplified mode available in the periodic box.

The last numerical experiment for λ = 0.1 shows the evolution of the same filament for
a polychromatic forcing given by

d(x) = ε

10∑
k=1

sin(ky + φk), (15)

where φk is a random phase, 0 ≤ φk ≤ 1 and ε = 0.002. The purpose of the polychromatic
perturbation is to confirm that the linearly most amplified mode dominates the early non-
linear evolution of the flow and the later stage evolution. It should be noted that all the
modes in the sum are unstable. At early stage, five asymmetric billows develop, consistent
with the prevalence of the mode k = 5.

We finally consider the evolution of the filament with λ = 10. Here a = 0.632 and
b = 0.0632. Results are shown in figure 13. The flow is initially perturbed by a uniform
amplitude sine wave with ka = 0.632, corresponding to k = 1 in the computational box.
Again, the filament rolls-up to form billows. Recall that the shear inside the filament,
s = 2π/(1 + λ), and the instability growth rates decrease as λ increases. Hence the roll-
up occurs on a much larger time scale compared to the cases with λ = 0.1. It should be
noted that, as the periodic billows roll-up, a strained filament, often referred to as a braid
in the literature, forms between the billows. We will illustrate the late fate of the filament
in section 4.

4. Linear evolution of a filament in pure strain

We next consider the evolution of the perturbation on the boundary of the filament when
the strain is applied. Now both the width of the filament and the perturbation wavenumber
are time dependent and evolve according to

a(t) = a0 exp(−γ t), k(t) = k0 exp(−γ t), (16)

where a0 = a(t = 0) and k0 = k(t = 0) are the initial half-width of the filament and initial
perturbation wavenumber respectively. Following Dritschel et al. (1991) and Harvey and
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Ambaum (2010), it is natural to write the y-position of the boundary of the filament as

y(θ , t) = exp(−γ t)
(
y(θ) + εη(x, θ , t)

)
, (17)

where y = a cos θ is the initial position of the unperturbed filament, and εη exp(−γ t) is
the perturbation’s amplitude. The kinematic boundary condition

D
Dt

(
exp(−γ t)

(
y(θ) + εη̂

)) = vg(x, y(θ), t) − γ y(θ) (18)

is then expanded and linearised with respect to ε. We therefore obtain, at O(ε), for a
monochromatic wave form η(x, θ , t) = η̂(θ , t) exp(ikx), the following linearised equation
for the complex amplitude η̂.

∂η̂(θ)

∂t
= −ik

(
ug(t)η̂(θ , t) + q

4π

∫ 3π/2

−π/2
2η̂(θ ′, t)K0(k(t)�)b cos(θ ′)dθ ′

)
, (19)

where

ug(t) = − qb
(a(t) + b)

y(θ) exp(−γ t). (20)

Although the equation is very similar to equations (12) and (13), it has no simple ana-
lytical solution since the coefficients are now time dependent. Recall that the actual
complex amplitude of the perturbation is ε exp(−γ t)η̂. We denote η̂re and η̂im the real
and imaginary parts of η̂ = η̂re + iη̂im. The complex equation is marched in time using
a fourth-order Runge–Kutta scheme with t = 0.01 and q = 1, for various values of
γ . Again, the surface of the filament is discretised using n contours, and we define the
perturbation amplitude

A(t) = exp(−γ t)

√√√√ n∑
i=1

η̂2i,re(t) + η̂2i,im(t) = exp(−γ t)|η̂|, (21)

where η̂ = (η̂i)1≤i≤n = (η̂i,re + iη̂i,im)1≤i≤n. We denoteA0 = A(t = 0). It should be noted
that A(t) depends on (i) the value of γ , also on (ii) the choice of the initial aspect ratio of
the filament, λ0 = a0/b, (iii) the starting wavenumber k0 and (iv) the initial deformation
η̂(θ , t = 0).

In Dritschel et al. (1991), the two-dimensional filament is fully determined by two con-
tours and there is no such parameter as λ0. Therefore in this context, the task is to find, for
a given k0 and γ the initial perturbation (η̂1, η̂2) for the two contours which maximises,
over time, the amplification of the perturbation. In practice, this means finding the phase
between the two contour perturbations which maximise the amplification of the pertur-
bation. Due to the size of the three-dimensional problem with n = 2000 contours, finding
the n−1 initial phases which maximise over time the amplitude is impractical. An alterna-
tive solution is to start, for a given λ0, with a perturbation with a wavenumber 0 < k0 < kc,
where kc is the cutoff wavenumber. Then it is natural to use the deformation eigenmode
associated with the largest growth rate for k0, as found in the linear stability analysis for
the ausi-static filament of aspect ratio λ0 detailed in section 3.1.
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Figure 14. NormalisedmagnitudeA/A0 of the complex perturbation amplitude exp(−γ t)η̂ versus t for
λ0 = 1. Panel (a) shows log(A/A0) versus t for λ0 = 1 and γ = 0/ Panels (b)–(i) show A/A0 versus t for
λ0 = 1, (b) γ = 0.01, (c) γ = 0.02, (d) 0.03, (e) 0.04, (f ) 0.05, (g) 0.06, (h) 0.07, (i) 0.08 and k0a0 = 0.676
(black), 0.8 (red), 0.9 (blue), 1.0 (green), 1.06 (yellow). (Colour online.)

Note that when the strain is applied, the normalised wavenumber k(t)a(t) ∝
exp(−2γ t), hence it is impossible for ka to remain close to kma ∀ t, where km = km(a)
is the wavenumber of the most amplified mode in the quasi-static situation discussed in
section 3.1. Selecting k0a0 > kma0 means that k(t)a(t) matches km(a)a(t) of the equiva-
lent quasi-static filament of section 3.1, for only one value of t∗ > 0, hence a specific value
of a(t∗). The time t∗ and filament’s half-width a(t∗) depend on k0. Finally, it should be
noted that using k0 = km = 0.676 for λ0 = 1, corresponds to starting the simulation with
the most amplified mode for the filament at t = 0.

We first present the evolution of A(t) for λ0 = 1 and various values of k0 and γ in
figure 14. For γ = 0 we naturally simply recover the exponential growth of the eigenmode
for k0. For γ �= 0, in all cases considered, the amplitude of the perturbation eventually van-
ishes to zero as t → ∞ in the linear dynamics. However, for small value of γ , the amplitude
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of perturbation can reach very large values. In the fully nonlinear dynamics, this is likely
to allow nonlinear, irreversible deformations of the filament to occur.

For γ = 0.01, and k0a = 0.676, 0.8, 0.9 and 1.0, A(t) always reached a maximum about
2 orders of magnitude larger thanA0. Using an initial perturbation with k0a � 1 optimises
the amplification. This is explained by the fact that the largest growth rate of perturbation
for the equivalent quasi-static filament, initially increases as ka decreases from 1 for λ ≤ 1.
For k0a = 0.676, the amplification is initially large as the growth rate of the equivalent
quasi-static filament is maximum, but the latter decreases as ka decreases. For k0a = 1.06,
close the normalised cuttoff wavenumber, the growth rate of the most unstable mode
is small, strongly limiting the growth of the perturbation in the strained filament. The
initial perturbation, i.e. the eigenmode for k0a = 1.06 may also be far from the optimal
perturbation for ka � k0a.

As we increase γ the overall maximum amplification decreases, as expected, and the
amplitude of the perturbation may in fact initially decrease. For example, for γ ≥ 0.03
and k0a = 1.06, the amplitude of the perturbation is always less than the initial pertur-
bation. It is monotonously decreasing for γ ≥ 0.04 and k0a = 1.06. Perturbations for all
k0a shown follow the same trends as γ increases. No significant amplification is seen for
γ = 0.08. Even for γ ≥ 0.03, an initial small perturbation would likely remain small as the
perturbation is never amplified by an order of magnitude.

Figure 15 gives themaximum amplification, over time, for λ0 = 1 as a function of k0 for
various values of γ . For all γ , the maximum is achieved for k0 � 1. These cases appear to
optimise the time period when the filament is narrow enough (small λ) to exhibit a large
inner shear, while ka remains close to kma. The results also confirm that any strain rate
larger than 0.03 is enough to significantly impede the growth perturbations.

We then explore a couple of different values of λ0. We start with λ0 = 10. Results are
presented in figure 16 for γ ∈ {0.01, 0.03, 0.06} and k0a ∈ {0.6, 0.8, 1}. First, recall that the
growth rate of the equivalent quasi-static filament decreases as λ increases. Hence, it is
expected that initially the evolution of a flat (λ � 1) filament is mostly dominated by the

Figure 15. Natural logarithm of the normalised maximum amplitude log(Amax/A0) versus the initial
wavenumber k0 forλ0 = 1 and forγ = 0.01 (solid black), 0.2 (solid red), 0.3 (solid blue), 0.4 (solid green),
0.5 (solid yellow), 0.6 (solid cyan), 0.7 (solid magenta), 0.8 (dashed black). (Colour online.)
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Figure 16. Normalisedmagnitude A/A0 of the complex perturbation amplitude A = exp(−γ t)|η̂| ver-
sus t forλ0 = 10: (a)γ = 0.01, (b)γ = 0.03, (c)γ = 0.06, and k0a0 = 0.6 (black), 0.8 (red) and1 (green).
(Colour online.)

Figure 17. Evolution of the perturbation amplitude A(t) for λ0 = 10, k0a0 = 5 (black), 7 (red) 9 (blue),
11 (green) and 13 (yellow). (Colour online.)

stabilising effect as shown in figure 16 for γ ≥ 0.01. The filament’s aspect ratio,λ, decreases
with time as the filament is stretched more slowly than the normalised wavenumber ka.
And although the shear rate increases in the filament it remains bounded. Hence over-
all, the perturbation with vanishing ka can no longer be significantly amplified. To obtain
any significant amplification over time, one would need to introduce a perturbation with
a much larger wavenumber k � kc(a0) of the equivalent quasi-static filament. That way
we could have ka � kma for small λ, hence potentially a strong amplification of the per-
turbation. Numerical experiments indicate that we can observe a moderate growth of the
amplitude of the perturbation at intermediate times, after an initial phase of decrease of the
amplitude in such cases. However, by starting from k � kc(a0), we have no information on
an approximate optimal initial perturbation. The number of contours discretising the fila-
ment makes a systematic investigation for the optimal perturbation impractical. By simply
uniformly shifting the filament by taking (η̂i)1≤i≤n a constant real vector, the amplification
is not enough to recover the initial amplitude as shown in figure 17.
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Figure 18. (a) Natural logarithm of the normalised magnitude log(A/A0) of the complex perturbation
amplitude A(t) = exp(−γ t)η̂ versus t for λ0 = 0.2. γ = 0.01 (black), 0.02 (red), 0.03 (blue) and 0.06
(cyan) and k0a0 = 1.79, (b) natural logarithm of the normalised maximum amplitude log(Amax/A0)
versus the initial wavenumber k0 for λ0 = 0.2 and for γ = 0.01 (solid black), 0.2 (solid red), 0.3 (solid
blue), 0.4 (solid green), 0.5 (solid yellow), 0.6 (solid cyan), 0.7 (solidmagenta), 0.8 (dashed black). (Colour
online.)

Figure 19. Filament’s bounding contours from a/b = 10, perturbed by a monochromatic wave k = 1
(ka = 0.63), at t = 120, 128, 133 and 138, viewed orthographically and at angle of 45◦ from the x-axis
and the z-axis. (Colour online.)

For λ0 = 0.2, the maximum amplification is enhanced as the inner shear is intense. The
range of kawhere unstable modes are found is also larger. We therefore can start the simu-
lation from a k0a0, within the unstable range, larger to the one used in the previous cases.
The normalised wavenumber ka also remains in the range where modes can be strongly
amplified for longer. As t → ∞, ka → 0 and that the filament is no longer able to strongly
amplify the perturbation. Recall that for the equivalent quasi-static filament, σi → 0 as
k → 0. Hence the evolution of the amplitude of the perturbation is simply dominated
by the exponential decrease of the amplitude ∝ exp(−γ t) as confirmed in panel (a) of
figure 18. Panel (b) of figure 18 shows themaximum amplification over time vs k0 ∈ (0, kc)
where kc is the cutoff wavenumber for the equivalent quasi-static filament for λ0 = 0.2.
The amplification achieved is overall higher than for λ0 = 1 as expected. The maximum
normalised amplification Amax/A0 � 29 for γ = 0.03, but only 2.3 for γ = 0.08.

An example of the nonlinear roll-up of a weakly strained filament is presented in
figure 19. The figure shows the late evolution of the filament first shown in figure 13. As
the primary billows roll-up and saturate, the braid connecting two neighbouring billows
in the periodic flow destabilises. The braid is nothing but a filament itself, subjected to the
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weak strained induced by the rotation of the primary billows. In this case, the strain is too
weak to stabilise the braid and it rolls up as a series of secondary billows.

5. Conclusion

We have studied the behaviour of a three-dimensional filament of uniform quasi-
geostrophic potential vorticity in strain. We have first shown that the stability of the
filament depends on this cross-sectional aspect ratio. First, small width-to-height aspect
ratio (λ) filaments experience a larger inner shear compared to filaments with large λ.
Therefore the growth rate of unstable modes is typically larger for small λ than for large
λ. Filaments with small λ are also unstable to perturbation within a larger range of nor-
malised wavenumbers, compared to the ones with larger λ. They are also sensitive to more
unstable modes, including a tilting mode. Their increased sensitivity to vertical shear also
allows modes of instability to primarily affect their top and bottom tips.

As in the two-dimensional filament, the strain has a two-fold stabilising effect of the
filament by (i) making the perturbation’s wavenumber go to zero and (ii) actively reducing
the amplitude of the perturbation. It can, however, increase the responsiveness of the fila-
ment by increasing the self-induced inner shear. This increase, contrarily to the case of the
surface quasi-geostrophic potential temperature filament, remains bounded. Eventually, in
the linear dynamics, the strain is stabilising.

A filament can still amplify a perturbation significantly when subjected to a weak strain,
as, in the linear dynamics the amplitude of the perturbation can increase by several orders
of magnitude. However, even a relatively weak strain with a strain rate of as little as 3%
of the filament’s PV, q, can significantly impede the growth of perturbation. Arguably no
initially small perturbation could trigger irreversible nonlinear deformations in a strain
whose strain rate exceeds 8% of q.

A possible extension of this study is the inclusion of ageostrophic effects and of inertia-
gravity waves on sub-mesoscale filaments. For example, whether the filament loses signif-
icant energy by spontaneously generating waves, or whether the filament remains largely
balanced is an important question.
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Appendix. Linear stability: convergence and accuracy

Figure A1 compares the largest growth rates obtained for λ = 0.1 using n = 360, 500, 1000, 2000
and 4000. Overall all results agree well, including in reproducing the long tail of unstable modes for
ka> 1.1, absent for small λ. Using n = 2000 in the study is a good compromise between computa-
tional cost and accuracy. Choosing a lower value for nmainly affects the results for k � 0 and k � kc
regions where σi is small, leading to moderate relative errors.

Figure A1. (A) Largest normalised growth rate σ/q versus ka for λ = 0.1 and n = 360 (red), 500 (blue),
1000 (green), 2000 (black), and 4000 (yellow). (b) Difference between the growth rate calculate using
n = 360 (red) or n = 500 (blue) orn = 1000 (green) or n = 2000 (black) and the growth rate calculated
for the highest resolution n = 4000. (Colour online.)
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