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Conjugacy for certain automorphisms of the one-sided

shift via transducers

Collin Bleak and Feyishayo Olukoya

Abstract

We address the following open problem, implicit in the 1990 article Automorphisms

of one-sided subshifts of finite type of Boyle, Franks and Kitchens (BFK):

Does there exists an element ψ in the group of automorphisms of the one-
sided shift Aut({0, 1, . . . , n− 1}N, σn) so that all points of {0, 1, . . . , n− 1}N

have orbits of length n under ψ and ψ is not conjugate to a permutation?

Here, by a permutation we mean an automorphism of one-sided shift dynamical system
induced by a permutation of the symbol set {0, 1, . . . , n− 1}.

We resolve this question by showing that any ψ with properties as above must be
conjugate to a permutation.

Our techniques naturally extend those of BFK using the strongly synchronizing
automata technology developed here and in several articles of the authors and collab-
orators (although, this article has been written to be largely self-contained).
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1 Introduction

Let n be a positive integer and set Xn := {0, 1, . . . , n− 1}. We will use Xn to represent our
standard alphabet of size n and we will denote by σn the usual shift map on XN

n . The group
Aut(XN

n , σn) of homeomorphisms ofXN
n which commute with the shift map is called the group

of automorphisms of the shift dynamical system. This is a well-studied group in symbolic
dynamics, with the special property (first given by Hedlund in [10]) that if φ ∈ Aut(XN

n , σn)
has (x0x1x2 . . .)φ = y0y1y2 . . . then there is an integer k so that for all indices i, the value yi
is determined by the finite word xixi+1 . . . xi+k.

The paper [6] characterises all of the finite subgroups of the group Aut(XN
n , σn), shows

that this group contains non-abelian free groups whenever n ≥ 3, and investigates other
algebraic structures of the group. The papers [7, 5] develop a conjugacy invariant for the
group Aut(XN

n , σn), arising from the action of the group on periodic words, which for an
automorphism φ we will denote as Sp(φ) (this invariant consists of a tuple: the well-known
gyration and sign functions, together with first return data: bundled data associated to the
permutation representation on prime words of length k).

This article resolves the following open problem, implicit in [6], which Mike Boyle sug-
gested to us for its own sake, and, as a test of our approach.

Let Σn represent the group of permutations of the set Xn. By a mild abuse of language,
we say φ ∈ Aut(XN

n , σn) is a permutation if there is a fixed permutation α ∈ Σn so that
if (x0x1x2 . . .)φ = y0y1y2 . . . then we have yi = (xi)α for all i. We say a permutation is a
rotation if the permutation from Σn is an n-cycle. We can now state the problem:

Does there exist an automorphism ψ ∈ Aut(XN
n , σn) of order n so that all points

of XN
n travel on orbits of size n, where ψ is not conjugate to a rotation?

In [6] Boyle, Franks and Kitchens show that if n is prime then any such ψ is in fact conjugate
to a rotation. We show that the Boyle, Franks, and Kitchens result holds for general n.
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We have written this article so that it is essentially self-contained for general researchers
working with automorphisms of the shift. In particular, we gather definitions and key con-
structions from [15] and [4] here to simplify the presentation without insisting the reader
peruse those articles to follow our discussion. We use the highlighted technology to enhance
the key method in the article [6]. The paper [4] shows how to represent any automorphism
φ of the one-sided shift by a particularly nice family of transducers (finite state machines
that transform inputs sequentially) while [15] investigates the order problem for that same
family of transducers. A key idea of [4] is that any such transducer T representing φ can
be thought of as a triple (D,R, φ∗), where D and R are strongly synchronizing automata
(edge-labelled directed graphs with the particularly nice property of having a synchronizing
sequence) with D representing the domain and R representing the range, and where φ∗ is
an isomorphism of the underlying digraphs Γ(D) and Γ(R) of D and R determined by the
action of φ on periodic words. In the case of a finite order element, the domain and range
automata can also be chosen to be identical.

In the article [6] the central method for studying finite subgroups of Aut(XN
n , σn) is firstly

to find an action of the group on the underlying digraph of an automaton (now understood
to be a strongly synchronizing automaton). Once the first step is accomplished, the group
is decomposed as a composition series where each composition factor is isomorphic to a
subgroup of the symmetric group Σn on n-points. This is accomplished by pushing the
action down along what is called an “amalgamation sequence” (see Section 4.1.2 here) of
the digraph until one has an action by automorphisms on a particularly nice digraph. The
construction typically requires passing through the automorphism groups of various one-sided
shifts of finite type via topological conjugations induced by the amalgamations.

Our first step simplifies this process. In particular we show that we can always find an
action of a finite subgroup of Aut(XN

n , σn) on the underlying digraph of a strongly synchro-
nizing automaton whose amalgamation and synchronizing sequences cohere (Section 4.1.2),
thus we can push down along the synchronizing sequence of that automaton without needing
to possibly change alphabet. This is already enough, when n is prime, to show that every
element of order p in Aut(XN

n , σn) is conjugate in Aut(XN
n , σn) to a rotation.

However, to answer the open problem above, we need to go beyond this. Suppose φ ∈
Aut(XN

n , σn) has order n and with the condition (⋆) that all points of XN
n travel on orbits of

size n. It turns out that (⋆) is equivalent to the condition that for any transducer (A,A, φ∗)
representing φ, the action of φ∗ on Γ(A) has the property that for every (based) circuit C of
Γ(A) the orbit length of C under this action is n. (We are using based circuits here to avoid a
circuit returning to itself with some non-trivial rotation as counting as completing the orbit.)
When n is a prime p, it is not hard to see that the action of φ∗ on the underlying digraph is
limited in orbit lengths for edges and vertices to 1 and p. When n is not prime, orbit lengths
of edges and vertices can be any divisor of n even though all circuits have orbit length n.
This last issue creates problems when trying to implement the approach successfully carried
out by Boyle et al for n prime.

We overcome this issue for such a φ with representative transducer (A,A, φ∗) with several
technical lemmas. These aim to show that the automaton A can be “fluffed up” by adding
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shadow states (Section 4.3) to create a new strongly synchronizing automaton B with an
induced and more informative action ψ∗ on Γ(B) so that (B,B, ψ∗) still represents φ. By
‘more informative’ we mean that the correct addition of shadow states results in states and
edges originally on orbits of length < n having resulting orbits of length n. This new action
makes it possible to find a conjugate action of φ on a strongly synchronizing automaton of
strictly smaller size than A (where the conjugacy occurs entirely with Aut(XN

n , σn)).
Our approach can now be summarised as follows. First we conjugate to get a (conjugate)

action of φ on a strongly synchronizing automaton whose synchronizing sequence coheres
with the amalgamation sequence of its underlying digraph. Then we have a series of “fluffing
up” moves followed by reductions via conjugation. Eventually, these processes result in a
conjugate action given by a transducer over a single state automaton with n labelled loops,
where each edge is on an orbit of length n; our original element φ must then be conjugate
to a rotation.

The example in Section 5.1 might prove helpful to the reader as an illustration of our
approach and of the difficulties discussed above.

The property of being a strongly synchronizing automaton is equivalent to that of being
a folded de Bruijn graph. Crucial to the approach we have sketched out is the process: given
a finite order element φ ∈ Aut(XN

n , σn), find the minimal folded de Bruijn graph Γ so that φ
acts faithfully on Γ by automorphisms. The following is essentially a result from [4] stated
in our context (see Lemma 3.4 and Theorem 3.5, below).

Theorem 1.1. Let n ≥ 2 be an integer and suppose φ ∈ Aut(XN
n , σn) is a finite order element.

There is an effective process for determining Γφ, the minimal folded de Bruijn graph on an
n letter alphabet, so that φ induces a natural automorphism of Γφ.

Finally, we can state the theorem which answers the question of Boyle.

Theorem 1.2. Let φ ∈ Aut(XN
n , σn) be an element of finite order. The following are equiv-

alent:

• φ is conjugate to a rotation;

• every element of XN
n is on an orbit of length n under the action of A; and

• for any folded de Bruijn graph Γφ admitting a faithful action by φ via an automorphism
φ∗, every (based) circuit of Γφ is on an orbit of length n under φ∗.

It is unclear at the moment how much our approach depends on the condition that “all
circuits are on orbits of length n”. In work in progress we aim to extend our current ideas
towards resolving the conjugacy problem for finite order elements of Aut(XN

n , σn).
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2 Preliminaries

2.1 The natural numbers and some of its subsets

We use the notation N for the set {0, 1, 2, . . .}; for j ∈ Nwe write Nj for the set {i ∈ N : 1 ≥ j}
of all natural numbers which are bigger than or equal to j.

2.2 Words and infinite sequences

In this subsection we set up necessary notation for words and sequences.
Firstly, we employ all of the usual notation around finitary words over the alphabet X .

Namely, for a base set X , and natural n, Xn is the set of ordered n-tuples with coordinates
from X . We call these the words of length n (over alphabet X). By convention, we set
X0 := {ε} and we refer to ε as the empty word or empty string, proclaiming this to be
the same object, independent of the (non-empty) set X used as our alphabet. We set
X∗ := ∪n∈NX

n, the words of finite length over X (this is the Kleene-star operator). We also
set X+ := X∗\{ε}, the non-trivial/non-empty finite length words over X . If w ∈ X∗ we set
|w| = n where w ∈ Xn, and we call |w| the length of w. If X has a linear order <, then we
give X∗ the induced dictionary order. If u ∈ Xn then we implicitly set values ui ∈ X for
0 ≤ i < n so that u = (u0, ui, . . . , un−1). In this context, from here forward we will simply
write u = u0u1 . . . un−1. For u ∈ Xn and i ≤ |u|, we write u[1,i] for the prefix u1 . . . ui of u.
Finally, if u, v ∈ X∗, so that u = u0u1 . . . ur−1 and v = v0v1 . . . vs−1 then uv will represent
the concatenation of these words: uv := u0u1 . . . ur−1v0v1 . . . vs−1, which is a word of length
r + s over X .

As in the paper [4], we take X−N
n := {. . . x−2x−1x0 | xi ∈ Xn} as our shift space, with

the shift operator σn defined by (xi)i∈−Nσn = (yi)i∈−N where we have yi = xi−1. We use the
characterisation of elements of Hn as strongly synchronizing transducers corresponding to
shift commuting automorphisms of X−N

n . For a finite-length word over Xn we may index this
word with negative or positive indices as seems natural at the time. When we are explicitly
thinking of a finite subword w ∈ Xk

n of a point x ∈ X−N
n we will ordinarily index w as

w = wi−k+1wi−k+2 . . . wi for some i ∈ −N.
Suppose k is a positive integer and u = u−(k−1)u−(k−2) . . . u−1u0 ∈ Xk

n. Define uω ∈ X−N
n ,

by which notation we mean the point . . . xmxm−1 . . . x−1x0 =: x where xi = ui (mod k). The
word x ∈ X−N

n is called a periodic word. The period of x is the smallest j ∈ N such that
(x)σjn = x. If the length |u| is the period of the word x, then u is called prime. Alternatively
u is prime if there is no smaller word γ ∈ X+

n such that u = γi for some i ≥ 2.
Write Xkn for the full set of prime words of length k over the alphabet Xn.
Given two words u, v ∈ X+

n such that |u| = |v| = r, we call v a rotation of u if there is
an i ∈ N with (uω)σin = vω. In this case, we may refer to v as the ith-rotation of u (even if
i > |u|).

It is a well-known fact that an element φ ∈ Aut(X−N
n , σn) preserves the period of a

periodic element of X−N
n . In this way, the action of Aut(X−N

n , σn) on periodic words gives a
representation from Aut(X−N

n , σn) to the group Πk∈N Sym(Xkn). For φ ∈ Aut(X−N
n , σn), write
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φk for the action of φ on prime words of length k and write φ for the element (φk)k∈N ∈
Πk∈N Sym(Xkn). The map φ is the periodic point representation of Aut(X−N

n , σn), introduced
in [7].

2.3 Automata and transducers

An automaton, in our context, is a triple A = (XA, QA, πA), where

(a) XA is a finite set called the alphabet of A (we assume that this has cardinality n, and
identify it with Xn, for some n);

(b) QA is a finite set called the set of states of A;

(c) πA is a function XA ×QA → QA, called the transition function.

The size of an automaton A is the cardinality of its state set. We use the notation |A|
for the size of the A.

We regard an automaton A as operating as follows. If it is in state q and reads symbol
a (which we suppose to be written on an input tape), it moves into state πA(a, q) before
reading the next symbol. As this suggests, we can imagine that the automaton A is in the
middle of an input word, reads the next letter and moves to the right, possibly changing
state in the process.

We can extend the notation as follows. For w ∈ Xm
n , let πA(w, q) be the final state of the

automaton which reads the word w from initial state q. Thus, if w = x0x1 . . . xm−1, then

πA(w, q) = πA(xm−1, πA(xm−2, . . . , πA(x0, q) . . .)).

By convention, we take πA(ε, q) = q.
For a given state q ∈ QA, we call the automaton A which starts in state q an initial

automaton, denoted by Aq, and say that it is initialised at q.
An automaton A can be represented by a labeled directed graph GA, whose vertex set

VA is QA. For this directed graph there is a directed edge labeled by a ∈ XA from p to q
if πA(a, p) = q. Representing this, we determine the set EA of edges of GA to be the set of
triples

EA := {(p, a, q) | ∃p, q ∈ QA, a ∈ XA, so that πA(a, p) = q}.

In what follows, the labelled directed graph GA will be referred to as the underlying digraph
for the automaton A.

A transducer is a quadruple T = (XT , QT , πT , λT ), where

(a) (XT , QT , πT ) is an automaton;

(b) λT : XT ×QT → X∗
T is the output function.

6



Formally such a transducer is an automaton which can write as well as read; after reading
symbol a in state q, it writes the string λT (a, q) on an output tape, and makes a transition
into state πT (a, q). Thus, the size of a transducer is the size of its underlying automaton.
An initial transducer Tq is simply a transducer which starts processing input from state q.
Transducers which are synchronous (i.e., which always write one letter whenever they read
one letter) are also known asMealy machines (see [9]), although we generally will not use that
language here. Transducers which are not synchronous are described as asynchronous when
this aspect of the transducer is being highlighted. In this paper, we will only work with
synchronous transducers without an initial state, and, henceforth we simply call these

transducers.
In the same manner as for automata, we can extend the notation to allow transducers

to act on finite strings: we let πT (w, q) and λT (w, q) be, respectively, the final state and the
concatenation of all the outputs obtained when a transducer T reads a string w from a state
q.

A transducer T can also be represented as an edge-labeled directed graph. Again the
vertex set is QT ; now, if πT (a, q) = r, we put an edge with label a|λT (a, q) from q to r. In
other words, the edge label describes both the input and the output associated with that
edge. We call a the input label of the edge and λT (a, q) the output label of the edge.

For example, Figure 1 describes a synchronous transducer over the alphabet X2.

a1 a20|0

1|0

1|1

0|1

Figure 1: A transducer over X2

In what follows, we only use the language automaton for those automata which are not
transducers. This allows us characterise a synchronous transducer T as a pair of automata
together with a directed graph isomorphism “gluing” the two automata together as a domain
automaton and a range automaton (we split any edge label ‘x|y’ of T as specifying the domain
automaton edge with label x and the range automaton edge with label y).

We can regard any state q of a transducer as acting on an infinite string from XN
n where

Xn is the alphabet. This action is given by iterating the action on a single symbol; so the
output string is given by

λT (xw, q) = λT (x, q)λT (w, πT (x, q)).

Thus Tq induces a map w 7→ λT (w, q) from XN
n to itself; it is easy to see that this map is

continuous. If it is a homeomorphism, then we call the state q a homeomorphism state. We
write Im(q) for the image of the map induced by Tq.
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Two states q1 and q2 are said to be ω-equivalent if the transducers Tq1 and Tq2 induce the
same continuous map. (This can be checked in finite time, see [9].) More generally, we say
that two initial transducers Tq and T

′
q′ are ω-equivalent if they induce the same continuous

map on XN
n .

A transducer is said to be minimal if no two states are ω-equivalent. For a transducer
T , two states q1 and q2 are ω-equivalent if λT (a, q1) = λT (a, q2) for any finite word a ∈ X∗

n.
Moreover, if q1 and q2 are ω-equivalent states of a synchronous transducer, then for any finite
word a ∈ Xp

n, πT (a, q1) and πT (a, q2) are also ω-equivalent states.
Two minimal non-initial transducers T and U are said to be ω-equal if there is a bijection

f : QT → QU , such that for any q ∈ QT , Tq is ω-equivalent to U(q)f . Two minimal initial
transducers Tp and Uq are said to be ω-equal if they are ω-equal as non-initial transducers and
there is a bijection f : QT → QU witnessing this which satisfies the equality (p)f = q. We use
the symbol ‘=’ to represent ω-equality of initial and non-initial transducers. Two non-initial
transducers T and U are said to be ω-equivalent if they have ω-equal minimal representatives,
and in this case we might instead say T and U represent the same transformation.

In the class of synchronous transducers, the ω-equivalence class of any transducer has a
unique minimal representative.

Throughout this article, as a matter of convenience, we shall not distinguish between ω-
equivalent transducers. Thus, for example, we introduce various groups as if the elements of
those groups are transducers, whereas the elements of these groups are in fact ω-equivalence
classes of transducers.

Given two transducers T = (Xn, QT , πT , λT ) and U = (Xn, QU , πU , λU) with the same
alphabet Xn, we define their product T ∗ U . The intuition is that the output for T will
become the input for U . Thus we take the alphabet of T ∗ U to be Xn, the set of states to
be QT∗U = QT ×QU , and define the transition and rewrite functions by the rules

πT∗U (x, (p, q)) = (πT (x, p), πU(λT (x, p), q)),

λT∗U(x, (p, q)) = λU(λT (x, p), q),

for x ∈ Xn, p ∈ QT and q ∈ QU . Here we use the earlier convention about extending λ and
π to the case when the transducer reads a finite string. If T and U are initial with initial
states q and p respectively then the state (q, p) is considered the initial state of the product
transducer T ∗ U .

In automata theory a synchronous (not necessarily initial) transducer T = (Xn, QT , πT , λT )
is invertible if for any state q of T , the map ρq := λT (�, q) : Xn → Xn is a bijection. In this
case the inverse of T is the transducer T−1 with state set QT−1 := {q−1 | q ∈ QT }, transition
function πT−1 : Xn×QT−1 → QT−1 defined by (x, p−1) 7→ q−1 if and only if πT ((x)ρ

−1
p , p) = q,

and output function λT−1 : Xn×QT−1 → Xn defined by (x, p) 7→ (x)ρ−1
p . Thus, in the graph

of the transducer T we simply switch the input labels with the output labels and append
‘−1’ to the state names.

We are concerned only with invertible, synchronous transducers in this article.
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2.4 Increasing alphabet size and the dual automaton

We require a couple of standard constructions in the theory of synchronous automata in this
work.

First we consider the ‘paths to letters’ construction. Let T be a transducer over the
alphabet Xn. Let m ∈ N1. Write T (m) for the transducer over the alphabet Xm

n with state
set QT and transition and output functions πT (m), λT (m) satisfying the following conditions.
For x ∈ Xm

n and q ∈ QT we set πT (m)(x, q) = p if and only if πT (x, q) = p in T ; we set
λT (m)(x, q) := λT (x, q). It is clear that if T is minimal and invertible, the T (m) is also
minimal and invertible.

The other construction we require is the dual automaton (see [1, 14]).
Again let T be a transducer over the alphabet Xn. Set T

∨ = 〈QT , Xn, π
∨
T , λ

∨
T 〉, that is the

state set of T∨ is the set Xn, the alphabet of T
∨ is the state set QT of T , and the transition

π∨
T and output functions λ∨T are defined as follows. For q ∈ QT and x ∈ Xn, π

∨
T (q, x) = y

and λ∨T (q, x) = p if and only if πT (x, q) = p and λT (x, q) = y.
There is a connection between the two constructions. The following is standard in the

theory of synchronous automata and provides a key insight in the analysis of [1].

Lemma 2.1. Let T be a synchronous transducer over alphabet Xn. For positive natural m,
we have (T∨)m = T (m)∨.

Note that to lighten our notation below, we may use the notation T∨
m for the transducer

T (m)∨.
Also observe that T−1∨ is obtained from T∨ by ‘reversing the arrows’. That is if, x, y ∈

Xn, q, p ∈ QT are such that π∨
T (q, x) = y and λ∨(q, x) = p, then π∨

T−1(q−1, y) = x and
λ∨(q−1, y) = p−1.

2.5 Synchronizing automata and bisynchronizing transducers

Given a natural number k, we say that an automaton A with alphabet Xn is synchronizing
at level k if there is a map sk : X

k
n 7→ QA such that, for all q and any word w ∈ Xk

n, we have
πA(w, q) = sk(w). In other words, A is synchronizing at level k if, after reading a word w of
length k from a state q, the final state depends only on w and not on q. (Again we use the
extension of πA to allow the reading of an input string rather than a single symbol.) We call
sk(w) the state of A forced by w; the map sk is called the synchronizing map at level k. An
automaton A is called strongly synchronizing if it is synchronizing at level k for some k.

We remark here that the notion of synchronization occurs in automata theory in consid-
erations around the Černý conjecture, in a weaker sense. A word w is said to be a reset word
for A if πA(w, q) is independent of q; an automaton is called synchronizing if it has a reset
word [16, 2]. Our definition of “synchonizing at level k”/“strongly synchronizing” requires
every word of length k to be a reset word for the automaton.

If the automaton A is synchronizing at level k, we define the core of A to be the maximal
sub-automaton with set of states those states in the image of the map s. It is an easy
observation that, if A is synchronizing at level k, then its core is an automaton in its own
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right using the same alphabet, and is also synchronizing at level k. We denote this automaton
by core(A). We say that an automaton or transducer is core if it is equal to its core.

Clearly, if A is synchronizing at level k, then it is synchronizing at level l for all l ≥ k.
Let Tq be an initial transducer which is invertible with inverse T−1

q . If Tq is synchronizing
at level k, and T−1

q is synchronizing at level l, we say that Tq is bisynchronizing at level (k, l).
If Tq is invertible and is synchronizing at level k but not bisynchronizing, we say that it is
one-way synchronizing at level k.

For a non-initial invertible transducer T we also say T is bi-synchronizing (at level (k, l))
if both T and its inverse T−1 are synchronizing at levels k and l respectively.

Note that if T is a strongly synchronizing transducer, then for any m ∈ N, T (m) is also
strongly synchronizing. Moreover, if k the minimal synchronizing level of T , then T (m) is
synchronizing at level 1 for any m ≥ k and, more generally, is synchronizing at level ⌈k/m⌉.

Notation 2.2. Let T be a transducer which is synchronizing at level k and let l ≥ k be
any natural number. Then for any word w ∈ X l

n, we write qw for the state sl(w), where
sl : X

l
n → QT is the synchronizing map at level l.

The following result was proved in Bleak et al. [3].

Proposition 2.3. Let T , U be transducers which (as automata) are synchronizing at levels
j, k respectively, Then T ∗ U is synchronizing at level j + k.

Note that in the statement of Proposition 2.3, the lowest synchronizing level of T ∗ U
might actually be less than j + k.

Let T be a transducer which (regarded as an automaton) is synchronizing at level k, then
the core of T (similarly denoted core(T )) induces a continuous map

fT : X−N
n → X−N

n

as follows. Let x ∈ X−N
n and set y ∈ X−N

n to be the sequence defined by

yi = λT (xi, qxi−kxi−(k−1)...xi−1
).

Note that
πT (xi, qxi−kxi−(k−1)...xi−1

) = qxi−kxi−(k−1)...xi−1
.

Set
(x)fT = y.

Thus, from the point of view of the transition function of T we in fact begin processing x at
−∞ and move towards x0. (This is in keeping with our interpretation of transducer as repre-
senting machines applying sliding block codes, where here, we are thinking of Aut(X−N

n , σn)
as consisting of the sliding block code transformations that require past information only to
determine what to do with a digit.) Note, moreover, that the map fT is independent of the
(valid) synchronizing level chosen to define it. We have the following result:
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Proposition 2.4. [4] Let T be a minimal transducer which is synchronizing at level k and
which is core. Then fT ∈ End(X−N

n , σn).

The transducer in Figure 1 induces the shift map on X−N
n .

In [3], the authors show that the set H̃n of minimal finite synchronizing invertible syn-
chronous core transducers is a monoid; the monoid operation consists of taking the product of
transducers and reducing it by removing non-core states and identifying ω-equivalent states
to obtain a minimal and synchronous representative.

Let Hn be the subset of H̃n consisting of transducers which are bi-synchronizing. A chief
result of [4] is that Aut(X−N

n , σn) ∼= Hn.

2.6 De Bruijn graphs and folded automata

The de Bruijn graph G(n,m) can be defined as follows, for integers m ≥ 1 and n ≥ 2. The
vertex set is Xm

n , where Xn is the alphabet {0, . . . , n−1} of cardinality n. There is a directed
arc from a0 . . . am−1 to a1a2 . . . am, with label am.

Note that, in the literature, the directed edge is also from a0a1 . . . am−1 to a1 . . . am−1am
and the label on this edge is often given as the (m+ 1)-tuple a0a1 . . . am−1am. However, the
labelling given above produces an isomorphic graph and is better suited for our purposes.

Figure 2 shows the de Bruijn graph G(3, 2).
Observe that the de Bruijn graph G(n,m) describes an automaton over the alphabet Xn.

Moreover, this automaton is synchronizing at level m: when it reads the string b0b1 . . . bm−1

from any initial state, it moves into the state labeled b0b1 . . . bm−1.
The de Bruijn graph is, in a sense we now describe, the universal automaton over Xn

which is synchronizing at level m.
We define a folding of an automaton A over the alphabet Xn to be an equivalence relation

≡ on the state set of A with the property that, if a ≡ a′ and πA(x, a) = b, πA(x, a
′) = b′,

then b ≡ b′. That is, reading the same letter from equivalent states takes the automaton to
equivalent states. If ≡ is a folding of A, then we can uniquely define the folded automaton
A/≡: the state set is the set of ≡-classes of states of A; and, denoting the ≡-class of a by
[a], we have πA/≡(x, [a]) = [πA(x, a)] (note that this is well-defined).

Proposition 2.5. [4] The following are equivalent for an automaton A on the alphabet Xn:

• A is synchronizing at level m, and is core;

• A is the folded automaton from a folding of the de Bruijn graph G(n,m).

We may think of a de Bruijn graph G(n,m) as determining a finite category, with ob-
jects the foldings of G(n,m) and with arrows digraph morphisms which commute with the
transition maps of the given automata. It is immediate in that point of view that all such
arrows are surjective digraph morphisms (and indeed, these are folding maps).
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Figure 2: The de Bruijn graph G(3, 2).

2.7 Automorphisms of digraphs underlying de Bruijn graphs and

Hn

In this section we describe finite order elements of Hn as automorphisms of folded de Bruijn
graphs.

Let A be a finite automaton on edge-alphabetXn. Recall (Section 2.3) that an automaton
A may be regarded as labeled directed graph with vertex set QA, and edge set EA ⊂ QA ×
Xn ×QA. We let GA denote the unlabeled directed graph corresponding to an automaton
A, but we retain the triple (p, x, q) to denote the edge of GA underlying the edge (p, x, q) of
A.

Let φ be an automorphism of the directed graph GA. Let H(A, φ) be a transducer with

• state set QH(A,φ) := QA,

12



• alphabet set Xn,

• transition function πH(A,φ) := πA, and

• output function λH(A,φ) : Xn ×QH(A,φ) → Xn,

where λH(A,φ)(x, p) = y if and only if there are edges (p, x, q) and (r, y, s) of GA so that
(p, x, q) is taken to (r, y, s) by φ.

The transducer H(A, φ) can be thought of as the result of gluing the automaton A to a
copy of itself along the map φ. That is, if p, q ∈ QA and (p, x, q) is an edge from p to q with
label x in A, and if y is the label of the edge ((p, x, q))φ in A, then the vertex p is identified
with the vertex (p)φ, the vertex q with the vertex (q)φ, the edge (p, x, q) is identified with
the edge ((p, x, q))φ and has input label x and the output label y.

Remark 2.6. We make a few observations:

(a) For each state q ∈ QH(A,φ), the map λH(A,φ)(�, q) : Xn → Xn is a bijection. This
follows from the definition of GA: for each x ∈ Xn there is precisely one edge of the
form ((q)φ, x, p) based at the vertex (q)φ. It follows that the transducer H(A, φ) is
invertible.

(b) If A is synchronizing at level k (and so a folding of G(n, k) by Proposition 2.5) then both
H(A, φ) and H(A, φ)−1 are synchronizing at level k hence the minimal representative
H(A, φ) of H(A, φ) is an element of Hn.

(c) In fact, for a state q ∈ QA, if Wk,q is the set of words of length k, that force the state
q, i.e.,

Wk,q := {a ∈ Xk
n : πH(A,φ)(a, q) = q},

then {λH(A,φ)(a, p) | a ∈ Qk,q, p ∈ QH(A,φ)} is equal to Wk,(q)φ.

(d) An element of Hn which can be represented by a transducer H(A, φ) for some folded
de Bruijn graph A and digraph automorphism φ of GA must have finite order.

If A ∈ Hn and B is an automaton so that there is a digraph automorphism φ : GB → GB

so that A and H(B, φ) represent the same transformation then we say A is induced from
(B, φ).

2.8 Synchronizing sequences and collapse chains

We require an algorithm given in [3] for detecting when an automaton is strongly synchro-
nizing. We state a version below.

Let A = (Xn, QA, πA) be an automaton. Define an equivalence relation ∼A on the states
of A by p ∼A q if and only if the maps πA(·, p) : QA → QA and πA(·, q) : QA → QA are
equal. For a state q ∈ QA let q represent the equivalence class of q under ∼A. Further set
QA := {q | q ∈ QA} and let πA : QA → QA be defined by πA(x, q) = p where p = πA(x, q).
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Observe that πA is a well defined map. Define a new automaton A = (Xn,QA, πA) noting
that |QA| ≤ |QA| and |QA| = |QA| implies that A is isomorphic to A.

Given an automaton A, let A0 := A,A1, A2, . . . be the sequence of automata such that
Ai = Ai−1 for all i ≥ 1. We call the sequence (Ai)i∈N the synchronizing sequence of A. We
make a few observations.

By definition each term in the synchronizing sequence is a folding of the automaton
which precedes it, therefore there is a j ∈ N such that all the Ai for i ≥ j are isomorphic to
one another. By a simple induction argument, for each i, the states of Ai corresponds to a
partition of QA. We identify the states of Ai with this partition. For two states q, p ∈ QA

that belong to a state P of Ai, πA(x, q) and πA(x, p) belong to the same state of QAi
for all

x ∈ Xn. We will use the language ‘two states of A are identified at level i’ if the two named
states belong to the same element of QAi

.
If the automaton A is strongly synchronizing and core, then an easy induction argument

shows that all the terms in its synchronizing sequence are core and strongly synchronizing
as well (since they are all foldings of A). For example if A = G(n,m), then the first m terms
of the synchronizing sequence of A are (G(n,m), G(n,m− 1), G(n,m− 2), . . . , G(n, 1), after
this all the terms in the sequence are the single state automaton on Xn.

The result below is from [3].

Theorem 2.7. Let A be an automaton and A0 := A,A1, A2, . . . be the sequence of automata
such that Ai = Ai−1 for all i > 1. Then

(a) a pair of states p, q ∈ QA, belong to the same element t ∈ QAi
if and only if for all

words a ∈ X i
n, πA(a, p) = πA(a, q), and

(b) A is strongly synchronizing if and only if there is a j ∈ N such that |QAj
| = 1. The

minimal j for which |Aj| = 1 is the minimal synchronizing level of A.

We also require the notion of a collapse chain from [4]. Let A and B be strongly syn-
chronizing automata. Let A = A0, A1, . . . , Ak = B be a sequence such that Ai+1 is obtained
from Ai by identifying pairs of states p ∼Ai

q. We note that as distinct from the synchro-
nizing sequence, we do not necessarily make all possible identifications. Such a sequence is
called a collapse chain if at each step, we make the maximal number of collapses possible
relative to the final automaton B. That is, for u, v ∈ QA belonging to the same state of
B, in the minimal Ai such that [u] ∼Ai

[v], we have [u] = [v] in Ai+1. We note that this
condition means that a collapse chain is unique. Therefore, for B a strongly synchroniz-
ing automaton, we say that B belongs to a collapse chain of A if there is a collapse chain
A = A0, A1, . . . , Ak = B. In this case, we call the collapse chain A = A0, A1, . . . , Ak = B,
the the collapse chain from A to B. If B is a single state automaton, the collapse chain from
A to B is precisely the strongly synchronizing sequence of A. Thus a collapse chain can be
thought of as a synchronizing sequence relative to its end point.

The following facts are straightforward. Let A be a strongly synchronizing automaton,
and B be an automaton which is a folding of A, then there is a collapse chain from A to B.
Therefore B belongs to a collapse chain of A if and only if B is a folding of A. In particular
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if B belongs to a collapse chain of A, then B is synchronizing at the minimal synchronizing
level of A.

The following result about collapse chains is proved similarly to Theorem 2.7.

Theorem 2.8. Let A be an automaton and B be a folding of A. Let A0 := A,A1, A2, . . . , Am =
B be the collapse chain from A to B. Then a pair of states p, q ∈ QA belong to the same
element t ∈ QAi

if and only if p, q belong to the same state of QB and for all words a ∈ X i
n,

πA(a, p) = πA(a, q).

3 Minimal actions of finite order elements of Hn

For this section, we will work using facts related to dual transducers for strongly synchroniz-
ing transducers.

It has been shown in [12, 1, 14] that the dual T∨ transducer for a synchronous transducer
T contains much information about the order of T , but implicit in those works also, much
information about the conjugacy class of T . In [15] the dual is considered for strongly
synchronizing transducers, where it is shown that for infinite order strongly synchronizing
transducers the powers of the dual grow in size asymptotically exponentially while for finite
order transducers the dual generates a finite semigroup with a zero. In this section we bring
in some of the methods and results of those works. See [4, 15] for more details than we give
below.

3.1 Duals and Splits

Recall our definition of the dual of a transducer from Subsection 2.4. We will mostly be
working in a power of the dual of a transducer T , below.

We introduce the following notation. Let T be a strongly synchronizing transducer, and
q ∈ QT be a state. Then we write Wq for the set of words γ ∈ X+

n such that the map
πT (γ, ·) : QT → QT has image {q}.

Let A be an element of Hn, with synchronizing level k. Then for r ≥ k, A∨
r has a

split ((p1, . . . , pl), (q1 . . . , ql),Γ) if and only if the following depiction (see Figure 3) of the
transitions in A∨

r at the state Γ is valid:
More formally, we have the following.

Definition 3.1 (Splits). Let A be an element of Hn, with synchronizing level k and let
r ≥ k. Suppose there are

• l ∈ N1,

• elements (p1, p2, . . . , pl), (q1, q2, . . . , ql), (s1, s2, . . . , sl) ∈ Ql
A,

• a word Γ ∈ Xr
n ∩Ws1, and

• distinct states t1, t2 ∈ QA
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Γl
p1|s1

q1|s1

p2|s2

q2|s2 ql|sl

pl|sl ∗|t1

♯|t2

Figure 3: A split; the symbols ∗ and ♯ represent arbitrary elements of QA.

such that when we define sequences Γ1,Γ2, . . . ,Γl and Λ1,Λ2, . . . ,Λl by

• Γ1 = λA(Γ, p1) and Λ1 = λA(Γ, q1), and

• for 1 < i ≤ l, Γi = λA(Γi−1, pi) and Λi = λA(Λi−1, qi),

then Γi,Λi ∈ Wsi+1
for all 1 ≤ i ≤ l− 1, Γl ∈ Wt1 and Λl ∈ Wt2 . In this case we say that A∨

r

splits.
We also say that the l-tuples (p1, . . . , pl) and (q1, . . . , ql) split A

∨
r (at Γ). We call {p1, q1}

the top of the split, {t1, t2} the bottom of the split, and the triple ((p1, . . . , pl), (q1 . . . , ql),Γ)
a split of A∨

r (of length l).
N.B.: if we took r < k in the definition of a split above, then there is no guarantee that

some word Γ of length r would not even be synchronizing, and also no guarantee of the
existence of any synchronizing word of length r, so the definition above breaks down.

The following concept appears implicitly in the proof of Lemma 3.8.

Definition 3.2. Let A be an element of Hn, with synchronizing level k. Let r ≥ k and
((p1, . . . , pl), (q1 . . . , ql),Γ) be a split of A∨

r . Let {t1, t2} be the bottom of this split. Then
we say that the bottom of the split ((p1, . . . , pl), (q1 . . . , ql),Γ) depends only on the top if the
following conditions hold for any other tuples U1, U2 ∈ Ql−1

A :

• the triple ((p1, U1), (q1, U2),Γ) is also a split with bottom {t1, t2} and,

• if λAl(Γ, (p1, . . . , pl)) ∈ Wt1 and λAl(Γ, (q1, . . . , ql)) ∈ Wt2 then λAl(Γ, (p1, U1)) ∈ Wt1

and λAl(Γ, (q1, U2)) ∈ Wt2 , and vice-versa.

Observe that if, for r ≥ k, A∨
r has a split ((p1, . . . , pl), (q1 . . . , ql),Γ) whose bottom de-

pends only on the top, then p1 6= q1.
Splitting length as defined below is used explicitly in Lemma 3.8.

Definition 3.3. For a transducer A, we define the r-splitting length of A (for r greater than
or equal to the minimal synchronizing length) to be minimal l such that there is a split of
A∨
r of length l. If there is no such split then we set the r-splitting length of A to be ∞.
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Note that if, for r ≥ k, A∨
r has r-splitting length l < ∞, then any split of length l has

the property that the bottom depends only on the top as otherwise one can find a shorter
split (see [15]).

3.2 Notational inconvenience.

We are soon to run into some collisions of notation.
Firstly, if φ ∈ Aut(X−N

n , σn), then we can represent φ by a (minimal) transducer Aφ ∈ Hn.
Secondly, if A ∈ Hn, then A represents an element φA ∈ Aut(X−N

n , σn).
Finally, if φ ∈ Aut(X−N

n , σn) has finite order, then as we will see from Theorem 3.5 there
is an automaton A (A∨

k ) and an automorphism ψ of the underlying digraph GA (A∨

k
) so that

Aφ and H(A (A∨
k ), ψ) represent the same element. It happens that there is a way to define

ψ from φ, and also, from Aφ. Similarly, we could have begun this paragraph with an element
A ∈ Hn, in which case ψ would be defined from both φA and from A.

In order to unify our notation here, we will simply denote ψ in the above situation as φA.
This of course means that φA will represent two different things (an automorphism of the
one-sided shift, or alternatively, an automorphism of a digraph underlying a folded de Bruijn
graph). We hope that confounding the notation in this way will not cause confusion as it
should be clear what is meant from context, noting as well that the digraph homomorphism
φA is the induced digraph homomorphism that arises on GA (A∨

k
) by considering how φ maps

infinite paths on A (A∨
k ) to other infinite paths on A (A∨

k ).

3.3 Finite order elements of Hn

In this subsection we build, for a finite order element A ∈ Hn and corresponding φA ∈
Aut(X−N

n , σn), the minimal strongly synchronizing automaton A (A∨
k ) which φA can act on as

an automorphism of the underlying directed graph with A being the minimal representative
of H(A (A∨

k ), φA).
Note that we will retain the notation φA for both the element of Aut(X−N

n , σn) correspond-
ing to A as well as the digraph automorphism φA that is induced by this automorphism of
the shift.

Note that the process of determining Aφ ∈ Hn from a given element φ ∈ Aut(X−N
n , σn) is

not difficult: one simply relates states to different maps as determined by the fixed viewing
window (it is common for differing viewing-window strings to correspond to the same map,
the set of all such strings corresponding to “same” map can be used effectively as the name
of that state) and then one records the local letter transformations as the edge labels. For
details, see [4].

3.3.1 Building A (A∨
k ) from A

Let A ∈ Hn be of finite order.
In this subsubsection, we learn a process for building a strongly synchronizing automaton

A (A∨
k ) so that φA acts on the underlying digraph of A (A∨

k ) by automorphisms in such a way
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that H(A (A∨
k ), φA) has A as its minimal representative transducer. This process is essential

in the proof that follows for finding simplified elements in the conjugacy class representing
our given finite order element A. We will also given an example of the process for a specific
element.

In [15, Proposition 4.15] it is shown that there is k ∈ N such that A∨
k is the zero of

the semigroup generated by A∨. Fix the minimal such k ∈ N so that A∨
k is the zero of the

semigroup generated by A∨, and let A∨
k be the minimal representative of A∨

k .
The following is a very useful fact from [15]: for every state [γ] of the zero A∨

k , there is
a word W ([γ]) ∈ Q+

A such that for any input word s ∈ Q+
A, the output when s is processed

from the state [γ] of A∨
k is the word (W ([γ]))lW ([γ])[1,m], where, |s| = l|W ([γ])| + m and

W ([γ])[1,m] is the length m prefix of (W ([γ])). It follows from this that A∨
k has the following

structure: for each state [γ] (for γ ∈ Xk
n) there is q[γ] ∈ QA so that for all p ∈ QA we have

• πA∨

k
(p, [γ]) = [γ] · A, and

• λA∨

k
(p, [γ]) = q[γ].

We will call this the |QA|-parallel cycle structure of A∨
k , or less formally, the cyclical structure

of A∨
k .
Form the automaton A (A∨

k ) as follows. The states of A (A∨
k ) are the states [γ] of A∨

k

and the transitions are given by the rule that for x ∈ Xn, and [γ] a state of A∨
k , we set

πA (A∨

k
)(x, [γ]) = [γ[2,|γ|]x]. (For this construction it does not matter which γ ∈ Xk

n one picks
from the class [γ], even though we use γ explicitly in the formula of the transition function:
this follows since states of A∨

k are ω-equivalent classes of A∨
k .)

The following lemma is immediate from the definitions:

Lemma 3.4. If A ∈ Hn be of finite order and let k ∈ N so that A∨
k is the zero of the

semigroup generated by A∨ then the automaton A (A∨
k ) is strongly synchronizing at level k.

We also have the following translation (into our context) of the statement of Theorem
4.5 of [4], where A(G) in that theorem corresponds to A (A∨

k ) here, and where the group G
there is the group 〈A〉 here.

Theorem 3.5. Let A ∈ Hn be of finite order and let k ∈ N so that A∨
k is the zero of the

semigroup generated by A∨.

(a) A acts as an automorphism φA of the digraph underlying A (A∨
k ) by mapping an edge

([γ], x, [γ[2,|γ|]x]) to the edge (([γ])A, λA(x, qγ), ([γ[2,|γ|]x])A) where ([γ])A = [λA(γ, q)]
for some q ∈ QA,

(b) The minimal representative of the transducer H(A (A∨
k ), φ

i
A) is the transducer Ai.

Example 3.6. Consider the transducer A below. The transducer A of Figure 4 is bi-synchronizing
at the second level. The level 2 dual has 36 nodes and so we shall not give this below. How-
ever utilising the AutomGrp package [13] in GAP [8], together with (in AutomGrp) the
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Figure 4: An element A ∈ H6 of order 6.

function “MinimizationOfAutomaton( )” which returns an ω-equivalent automaton, applied
to the second power of the dual automaton, we get the result A∨

2 , depicted in Figure 5 (which
is the zero of the semigroup generated by the dual):

q0

q1 q2

∗|a1

∗|a3

∗|a2
p0

p1 p2

∗|a0

∗|a3

∗|a2

Figure 5: The level 2 dual of A.

Considering the states {q0, q1, q2, p0, p1, p2} of A∨
2 as a partition of the words of length 2

over the alphabet {0, 1, 2, 3, 4, 5}, it is easy to see that

q0 = {00, 01, 10, 11, 40, 41, 50, 51} p0 = {20, 21, 30, 31}

q1 = {24, 25, 34, 35, 44, 45, 54, 55} p1 = {04, 05, 15, 15}

q2 = {02, 03, 12, 13, 22, 23, 32, 33} p2 = {42, 43, 52, 53}

by verifying the 36 transitions from q0 in A using these input words, and cross-checking
state-change results against the transitions of A∨

2 . From this we can calculate the transitions
of A (A∨

2 ), with the resulting automaton depicted in 6.
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Figure 6: The automaton A (A∨
2 )

Notice that both the domain and range automaton of A are foldings of A (A∨
2 ). This

phenomenon generalises, that is, for a strongly synchronizing transducer A representing an
element of Hn of finite order, both the domain and range automata of A are foldings of
A (A∨

k ) (where k is appropriately chosen).
We revisit this example in Section 5.1 where we show that A is conjugate to a 6-cycle.

©

3.3.2 Duals, automata, and automorphisms

In this subsubsection, we will prove that for finite order A ∈ Hn and minimal k so that A∨
k

is the zero of the semigroup generated by A∨, that A (A∨
k ) as defined above is the minimal

(strongly synchronizing) automaton so that A can act on A (A∨
k ) as an automorphism φA,

with (A (A∨
k ), φA) inducing A.

We first require lemmata exploring the relationship between properties of A (A∨
k ) and of
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A∨
k .
Our first step is the following useful lemma about the automaton A (A∨

k ) constructed as
above from a finite order element A ∈ Hn. In essence, it says that if two states [δ] and [γ]
are distinct in A (A∨

k ) but their two transition functions are the same, then by following the
cycles of the level k dual (by iteratively acting by A), we will eventually get to a pair of
states which have different output letters in the level k dual, and at that pair of locations, the
states of A (A∨

k ) will still transition the same way, but the output functions of H(A (A∨
k ), φA)

at these states will disagree at the first letter.

Lemma 3.7. Let A ∈ Hn be finite order. Let γ, δ ∈ Xk
n be such that the states [γ], [δ]

of A (A∨
k ) are distinct. Suppose moreover that the maps πA (A∨

k
)(·, [γ]) and πA (A∨

k
)(·, [δ]) co-

incide. Then there is a natural i with 0 ≤ i < o(A) and x, y, y′ ∈ Xn such that y 6= y′,
πA (A∨

k
)(·, [γ]A

i) = πA (A∨

k
)(·, [δ]A

i) but A maps the edges

([γ]Ai, x, πA (A∨

k
)(x, [γ]A

i)) and ([δ]Ai, x, πA (A∨

k
)(x, [δ]A

i))

respectively to the edges

([γ]Ai+1, y, πA (A∨

k
)(y, [γ]A

i+1)) and ([δ]Ai+1, y′, πA (A∨

k
)(y

′, [δ]Ai+1)).

Proof. Let w = W ([γ]) and v = W ([δ]). Since [γ] 6= [δ], we may find words u, w2, v2 ∈
Q∗
A and letters t 6= t′ ∈ QA such that w = utw2 and v = ut′v2. Set i − 1 := |u|. We

note that for any j ∈ N with j ≤ i − 1, a straightforward induction argument shows, the
edges ([γ], a, πA (A∨

k
)(a, [γ])A) and ([δ], a, πA (A∨

k
)(q, [δ])) map respectively under Aj to edges

([γ]Aj, b, πA (A∨

k
)(a, [γ])A

j) and ([δ]Aj , b, πA (A∨

k
)(q, [δ])A

j), where b = λAj(a, u[1,j]) (if j = 0,
take b = a). In particular it follows that πA(·, t) = πA(·, t

′) and so, since t 6= t′, there is an
a ∈ Xn be such that y := λA(a, t) 6= λA(a, t

′) = y′. Let x ∈ Xn be such that λAi−1(x, u) = a.
Then it follows that the edges

([γ]Ai, x, πA (A∨

k
)(x, [γ]A

i)) and ([δ]Ai, x, πA (A∨

k
)(x, [δ]A

i))

are mapped respectively under A, to the edges

([γ]Ai+1, y, πA (A∨

k
)(y, [γ]A

i+1)) and ([δ]Ai+1, y′, πA (A∨

k
)(y

′, [δ]Ai+1)).

�

Recall from Subsection 2.7 that if A ∈ Hn and B is an automaton so that there is a di-
graph automorphism φ : GB → GB so that A and H(B, φ) represent the same transformation
then we say A is induced from (B, φ).

Let A ∈ Hn. We say a strongly synchronizing automaton B is an automaton supporting
A if there is a digraph automorphism φ of the digraph GB, with A induced from (B, φ). In
this situation, if there is no proper folding B′ of B and digraph automorphism φ′ : GB′ → GB′

so that A is induced from (B′, φ′), then we say B is a minimal automaton supporting A (or
simply, that B is minimal).

In the next lemma, we show that there is precisely one minimal automaton (up to iso-
morphism of automata) supporting a finite order element A of Hn.
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Lemma 3.8. Let A ∈ Hn be an element of finite order and let k ∈ N be minimal such that
A∨
k is the zero of the semigroup generated by the dual. Then (up to isomorphism of automata)

A (A∨
k ) is the minimal strongly synchronizing automaton admitting an automorphism φ of

GA (A∨

k
) so that A is induced by (A (A∨

k ), φ). Furthermore, φ is the automorphism φA of
Theorem 3.5.

Proof. Let A ∈ Hn be finite order of order o(A). We note that by results in [15, 4] k is
minimal such that all of the elements A,A2, . . . , Ao(A)−1 are strongly synchronizing at level
k (Ai being the product in Hn of A with itself i times).

It follows from Theorem 3.5 that A (A∨
k ) is an automaton supporting A and indeed that

(A (A∨
k ), φA) induces A. We argue below that A (A∨

k ) is a minimal such automaton, and
further, that any minimal automaton supporting A is isomorphic to a folding of A (A∨

k ), and
hence, must actually be A (A∨

k ) up to isomorphism.
Now suppose that there was another automaton B, such that A acts as an automorphism

ψA of the underlying digraph of B so that H(B,ψA) has minimal representative A. Addi-
tionally suppose that B is a minimal strongly synchronizing transducer on which A acts as
an automorphism. We note that the minimal synchronizing level l of B is greater than or
equal to k for, H(B,ψiA) is strongly synchronizing at level l and has minimal representative
Ai.

Suppose for a contradiction that B 6= A (A∨
k ). There are two cases.

Firstly for any state q ∈ QB, there is a state p ∈ QA such that the set W (q, j) of words
of length j which force q is contained in the set W (p, j) of words of length j which force the
state p of A (A∨

k ). In this case, one observes that A (A∨
k ) is a folding of B contradicting the

minimality of B.
Thus we must be in the negation of the first case. That is, we assume that there

is a pair of words γ, δ ∈ Xk
n such that the state of B forced by γ is the same as the

state of B forced by δ but γ and δ force different states of A (A∨
k ). We may further

assume that the states [γ], [δ] of A (A∨
k ) also satisfy πA (A∨

k
)(·, [γ]) = πA (A∨

k
)(·, [δ]). This

is because if πA (A∨

k
)(·, [γ]) 6= πA (A∨

k
)(·, [δ]), then we may find a word ν ∈ X+

n such that
[γ′] := πA (A∨

k
)(ν, [γ]) 6= πA (A∨

k
)(ν, [δ]) = [δ′], satisfy πA (A∨

k
)(·, [γ

′]) = πA (A∨

k
)(·, [δ]

′). Thus γν
and δν force the same state of B but force, respectively, the states [γ′] and [δ′] of A (A∨

k ).
We may then replace γ, δ with γ′, δ′.

Let z1 be the state of B forced by γ and δ and let z1, z2, . . . , zo(A) be the orbit of z1
under the action of A. As H(B,ψA) = H(A (A∨

k ), φA), it must be the case that if a, b ∈ Xn

are such that the edge ([γ], a, [Γ]) maps to (([γ])A, b, ([Γ])A), then the edge ([δ], a, [Γ]) also
maps to (([δ])A, b, ([Γ])A). Thus we conclude that πA (A∨

k
)(·, ([γ])A) = πA (A∨

k
)(·, ([δ])A). Now

observe that since γ and δ are representatives of [γ] and [δ], respectively, and since for any
q ∈ QA, the state of B forced by λA(γ, q) is equal to the state of B forced by λA(δ, q) is equal
to z2, it follows that there are representatives of ([γ])A and ([δ])A respectively such that the
states of B forced by these representative is z2. We may thus repeat the argument in the
z1 case. By induction we therefore see that for any 1 ≤ i ≤ o(A), the points ([γ])Ai and
([δ])Ai satisfy that πA (A∨

k
)(·, ([γ])A

i) = πA (A∨

k
)(·, ([δ])A

i) and whenever there are a, b ∈ Xn,
such that (([γ])Ai, a, ν) is an edge mapping under A to the edge (([γ])Ai+1, b(ν)A, then the
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edge (([δ])Ai), a, ν) also maps under A to (([δ])Ai+1), b, (ν)A). This contradicts Lemma 3.7.
�

4 Water for the witch – shrinking conjugacy class rep-

resentatives

Suppose we have a finite order element A ∈ Hn, induced by (B, φA) for some strongly
synchronizing B with a minimal number of states. Under certain conditions we may employ
a two-step process to find a new element C ∈ Hn, where C is conjugate to A, and C is
induced by (D,ψ) for some strongly synchronizing D with D having fewer states than B. In
what follows we describe this process of finding “smaller” conjugacy class representatives of
A.

The first (and main) step in this process is to employ “relabelling.” This is a conjugacy
which, for a pair of states that would be identified in the collapse sequence of the domain
automaton, relabels inputs and outputs on edges from this pair of states, with the goal of
making this pair of states represent the same local map. If this is possible, then we can
collapse the carrying transducer to a smaller one than we started with.

The conditions for a successful relabelling include that the orbits of these states have the
same lengths, and that for any two corresponding outgoing edges, these orbit lengths of these
edges are also the same. In the case where some of these orbit lengths differ, then in certain
circumstances we can employ the second step of the overall process. This step“fluffs up” the
carrying automaton by executing some splittings, creating what we call shadow states, and
where we can then employ relabelling to the result. In either case, after a relabelling, the
whole resultant transducer can be minimised so as to be carried by a transducer with strictly
fewer states than TA.

In the case that A is conjugate to an n-cycle this process will eventually result in single
state transducer representing an n-cycle.

4.1 Relabellings and automata sequences

Definition 4.1. Let A be a strongly synchronizing automaton and A = A0, A1, . . . , Am be
a collapse chain of A. Let 0 ≤ k ≤ m and φk be a vertex fixing automorphism of GAk

.
Define A′ to be the automaton with QA′ = QA and transition function defined as follows:
for p ∈ QA, set πA′(x′, p) = q if and only if there is an x ∈ Xn such that πA(x, p) = q with
λH(Ak,φk)(x, [p]) = x′. We call A′ the relabelling of A by (Ak, φk) or the relabelling of A by
(the transducer) H(Ak, φk).

Note that if we relabel A by (Ak, φk), then the resulting automaton A′ is strongly iso-
morphic to A in the sense that there is a natural digraph isomorphism from the underlying
digraph of A′ to the underlying digraph of A that fixes states and which maps the rela-
belled edges of A′ to the original edges in A. More precisely, if (p, x, q) is an edge of GA

and λH(Ak ,φk)(x, [p]) = x′, then the natural digraph isomorphism maps the edge (p, x′, q) of
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A′ to the edge (p, x, q) of A. The point of view one should have in mind is that we have
renamed/relabelled the edges of A by switching edge labels on edges which are parallel edges
in Ak. Notice that if we relabel by (A0, φ0), then all we do is switch labels on parallel edges
in A, thus the resulting underlying digraph would not change, but a “fixed” drawing of it
would be relabelled.

Lemma 4.2. Let A be a strongly synchronizing automaton and A = A0, A1, . . . , Am be a
collapse chain for A. Let 0 ≤ k ≤ m and φ be a vertex fixing automorphism of GAk

. Let
A′ be the relabelling of A by (Ak, φ). Then A′ has underlying digraph strongly isomorphic
to the underlying digraph of A and Am remains a folding of A′. More specifically, writing
A′ = A′

0, A
′
1, . . . , A

′
l for the collapse chain from A′ to Am, then l ≤ m and two states of u, v

of A belong to the same state of Ai if and only if for some i′ ≤ i we have u and v belong to
the same state of A′

i′.

Proof. We may consider A as a non-minimal synchronizing transducer where each state
induces the identity transformation of the set Xn. Consider the core of the product A ∗
H(Ak, φ). Let p ∈ QA, and γ ∈ X+

n be such that the state of A forced by γ is p. Then, by
definition of Ak, the state of Ak forced by γ is the state [p] containing p. Thus the set of states
of core(A ∗ H(Ak, φ)) is the set {(p, [p]) | p ∈ QA}. Let x ∈ Xn and p, q ∈ QA such that
πA(x, p) = q. Then we have, πA(x, (p, [p])) = (q, [q]) and λA(x, (p, [p])) = λH(Ak ,φ)(x, [p]).
Thus setting A′ to be the output automaton of core(A ∗ H(Ak, φ)) we see that A′ is the
relabelling of A by (Ak, φ). From this it follows that the underlying digraph of A′ is strongly
isomorphic to the underlying digraph of A.

Let u, v be two states of A which belong to the same state of Am and which transition
identically on all words of length j and suppose j is minimal for which this happens. Let
p ∈ QA be an arbitrary state and let W (p) ⊆ Xj

n consist of those words γ such that
πA(γ, u) = πA(γ, v) = p. We break into cases based on whether or not k ≥ j or k < j.

First suppose that k ≥ j. This means that in Ak, the states [u] and [v] are equal. Thus,
λH(Ak,φ)(γ, [u]) = λH(Ak,φ)(γ, [v]) for any γ ∈ X∗

n. Therefore in A
′ we see that the set of words

ν ∈ Xj
n for which πA′(ν, u) = πA′(ν, v) = p is precisely the set {λH(Ak,φ)(γ, [u]) | γ ∈ W (p)}.

Now suppose that k < j. This means that the states [u] and [v] are distinct states of Ak
such that πAk

(·, [u]) and πAk
(·, [v]) coincide on Xj−k

n . Let γ ∈ W (p) be arbitrary. Set γ1 to
be the length j − k prefix of γ and set γ2 ∈ Xk

n such that γ1γ2 = γ. Set [r] = πAk
(γ1, [u]) =

πAk
(γ1, [v]) and set κ ∈ Xk

n such that λH(Ak ,φ(κ, [r]) = γ2. For t ∈ {u, v}, set δt ∈ Xj−k
n be

such that λH(Ak ,φ)(δt, [t]) = γ1. Then since φ is a vertex fixing automorphism of Ak we notice
that πA(δu, u), πA(δv, v), {πA(γ1, t) | t ∈ {u, v}} all belong to the same state of Ak. This
means that πA(κ, πA(δu, u)) = πA(κ, πA(δv, v)) = s.(Note that [s] = [p] in Ak by the vertex
fixing property of φ.) Therefore πA∗H(Ak ,φ)(δuκ, (u, [u])) = (s, [p]) = πA∗H(Ak ,φ)(δvκ, (v, [v])).
Since λA∗H(Ak ,φ)(δuκ, (u, [u])) = γ = λA∗H(Ak,φ)(δvκ, (v, [v])), we see that in A′, πA′(γ, u) =
πA′(γ, v).

Therefore, in A′, πA′(·, u) and πA′(·, v) coincide on the set W (p). Since p was chosen
arbitrarily and ⊔p∈QA

W (p) = Xj
n we conclude that πA′(·, u) and πA′(·, v) coincide on the set

Xj
n.
The result now follows by Theorem 2.8.
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Now suppose that there are states u, v of A which belong to the same state A′
i′ for some

0 ≤ i′ ≤ l. Then since u, v belong to the same state of Am, there is an i between 0 and m
such that u and v belong to the same state of Ai. The preceding paragraph and Theorem 2.8
show that i′ must be less than or equal to i. �

Let A be a strongly synchronizing automaton and A′ be the relabelling of A by (Ak, φk).
Set ι : GA → GA′ to be the natural digraph isomorphism. If ϕ is an automorphism of the
underlying digraph GA of A, then we will mean by the induced automorphism ϕ′ of GA′

precisely the map ι−1ϕι.

Lemma 4.3. Let A ∈ Hn be an element of finite order and let B be a strongly synchronizing
automaton such that there is an automorphism φA of the underlying digraph of B with A the
minimal representative of H(B, φA). Let Bk be an element of the synchronizing sequence of
B and ψ a vertex fixing automorphism of Bk. Let B′ be the relabelling of B according to
(Bk, ψ) and ϕ be the induced isomorphism from the underlying digraph of B to the underlying
digraph of B′. Set P to be the minimal representative of the transducer H(B,B′, ϕ). Then
P−1AP is the minimal representative of H(B′, φϕA).

Proof. This is a straight-forward application of the definitions. �

In the situation of Lemma 4.3 we refer to the resulting transducer P−1AP as the trans-
ducer induced from A by the relabelling B 7→ B′.

Lemma 4.4. Let A be a strongly synchronizing automaton, and let s, t be distinct states of
A. Let (Ai)1≤i≤m be a collapse chain of A such that s, t belong to the same state of Am. Let
1 ≤ k < m be minimal such that t belongs to the state [s] of the automaton Ak+1. Then
for all x, x′ ∈ Xn such that πA(x, s) = πA(x

′, t) and [v] ∈ {[s], [t]}, states of Ak, we have
πAk

(x, [v]) = πAk
(x′, [v]).

Proof. By minimality of k, it must be the case that the states [s] and [t] of Ak are distinct
and the equality πAk

(·, [s]) = πAk
(·, [t]) holds.

Let x, x′ ∈ Xn and u ∈ QA be such that πA(x, s) = πA(x
′, t) = u. Then by definition of

Ak, πAk
(x, [s]) = [u] = πAk

(x′, [t]). However, the equality πAk
(·, [s]) = πAk

(·, [t]), now implies
that πAk

(x′, [s]) = [u] = πAk
(x, [t]) also. �

4.1.1 Constructing discriminant permutations disc(s, t, Q)

Let A be an automaton and let s, t ∈ QA. Set the notation:

EA(s, t) := {(s, x, t) ∈ EA}; and

LettersA(s, t) := {x ∈ Xn | (s, x, t) ∈ EA(s, t)}.

We may leave out the explicit mention of the automaton A when it is clear from context,
writing simply E(s, t) and Letters(s, t) for these sets in this case.
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Let Q ⊆ QA and s ∈ QA. Set the notation

Xs,Q :=
⊔

p∈Q

Letters(s, p).

Now, suppose s, t ∈ QA and suppose further there is a subset Q ⊆ QA so that

(a) Xs,Q = Xt,Q, and

(b) for all p ∈ Q we have |Letters(s, p)| = |Letters(t, p)| .

Then to describe this situation we say s and t distribute similarly over Q. (Note in passing
that for some choices of s and t the only possible such set Q may be empty.) For any states
s and t and set Q ⊂ QA so that s and t distribute similarly over Q, we denote by XQ the
set Xs,Q = Xt,Q. We call XQ ⊆ Xn the agreement alphabet (of s and t on Q) noting that if
Q = QA, then XQ = Xn.

Define a bijection disc(s, t, Q) : XQ → XQ as follows.
First, let p1, . . . , pr ∈ Q be a maximal sequence of distinct states such that for 1 ≤ i ≤ r

there is an x ∈ XQ with πA(x, s) = pi. Observe that the sets

{Letters(s, pi) | 1 ≤ i ≤ r}

and
{Letters(t, pi) | 1 ≤ i ≤ r}

form partitions of XQ, with equal-size corresponding parts in index i.
Now, for 1 ≤ i ≤ r, set disc(s, t, Q) to act as the identity on Letters(s, pi)∩ Letters(t, pi).

Set
Letters(s, pi)

′ := Letters(s, pi)\(Letters(s, pi) ∩ Letters(t, pi))

and
Letters(t, pi)

′ := Letters(t, pi)\(Letters(s, pi) ∩ Letters(t, pi)).

We note that |Letters(s, pi)
′| = |Letters(t, pi)

′| and indeed that

Ys,t :=
⋃

1≤i≤r

Letters(s, pi)
′ =

⋃

1≤i≤r

Letters(t, pi)
′.

Order the elements of Letters(s, pi)
′ and Letters(t, pi)

′ with the order induced from Xn. For
1 ≤ i ≤ r and x ∈ Letters(s, pi)

′ we write x′ for the corresponding element of Letters(t, pi)
′,

that is, in the ordering of Letters(s, pi)
′ and Letters(t, pi)

′ induced from Xn, x and x′ have
the same index.

Using the definitions and facts above we extend the definition of disc(s, t, Q) over the set
Ys,t by the rule x 7→ x′. One easily checks that the resulting function

disc(s, t, Q) : XQ → XQ
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is a well-defined bijection. Further, observe that for x0 ∈ Ys,t the function disc(s, t, Q)
contains a cycle (x0 x1 x2 . . . xk−1) in its disjoint cycle decomposition, where for all i we
have xi+1 = x′i (indices taken mod k). Recall as well that disc(s, t, Q) acts as the identity
over the set XQ\Ys,t.

For s and t satisfying points (b) and (b) for some set Q we call disc(s, t, Q) the discrim-
inant of s and t; it is a permutation that encodes the difference in transitions between s
and t amongst the set of states Q. In the case that Q = QA, we will write disc(s, t) for
the bijection disc(s, t, QA). As with the notation Letters(p, q), we often run in to situations
where we compute discriminant permutations in distinct automata sharing the same state
set, in such cases we use the notation discA(s, t, Q) and disc(s, t) to emphasise the automaton
in which the permutation is computed.

Lemma 4.5. Let A be a strongly synchronizing automaton, and let s, t be distinct states of
A. Let Q ⊆ QA be such that s and t distribute similarly over Q with agreement alphabet
XQ. Let (Ai)1≤i≤m be a collapse chain of A such that s, t belong to the same state of Am.
Let 1 ≤ k < m be minimal such that πAk

(·, [t]) and πAk
(·, [s]) are equal on XQ. Then for

x, y ∈ XQ which belong to the same disjoint cycle of disc(s, t, Q),

πAk
(x, [s]) = πAk

(y, [s]) = πAk
(y, [t]) = πAk

(x, [t]).

Proof. By assumption πAk
(·, [s]) = πAk

(·, [t]).
An easy induction argument using the definition of disc(s, t, Q) now shows that for any

x, y ∈ Xn such that y belongs to the orbit of x under the action of disc(s, t, Q),

πAk
(x, [s]) = πAk

(y, [s]) = πAk
(x, [t]) = πAk

(y, [t]).

This follows since for any x ∈ Xn, πA(x, s) = πA((x) disc(s, t, Q), t).
�

4.1.2 Discriminant permutations and amalgamation sequences

Let B be an automaton and G := GB be the underlying digraph of B. Define a sequence
G := G0, G1, . . . as follows. Assuming Gi is defined, Gi+1 is obtained from G in the following
manner. Let ∼ be the equivalence relation on the vertices QGi

of Gi that relates two vertices
p, q precisely when for every vertex t ∈ QGi

the number of edges from q to t is precisely
the number of edges from p to t. If p ∈ QGi

write [p]i+1 for the equivalence class of p
under the relation ∼. Set QGi+1

= {[p]i+1 | p ∈ QGi
}. Now suppose p, q ∈ QGi

and
enumerate those elements of [q]i+1 which have an incoming edge from a vertex in [p]i+1 in
some order as q1, q2, . . . , qr. For 1 ≤ j ≤ r, let kj be the number of edges from p to qj and
set ec(i + 1, p, q) :=

∑
1≤j≤r kj . Set Gi+1 to be the directed graph with vertices QGi+1

and
with ec(i+ 1, p, q) many edges from [p]i+1 to [q]i+1 for each [p]i+1, [q]i+1 ∈ QGi+1

.
We refer to the resulting sequence G0, G1, . . . , as defined above as the amalgamation

sequence of G (see [17]). Note that for each natural i the construction above induces an
identification of the states of Gi with a partition of B. It follows that after finitely many
steps, the amalgamation sequence stabilises to a fixed digraph.
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The lemma below says that for a given automaton B, there is a relabelling of B such
that the synchronizing sequence coincides with the amalgamation sequence.

Lemma 4.6. Let B be an automaton with underlying digraph G and synchronizing sequence
B = B0, B1, . . .. Let G = G0, G1, . . . be the amalgamation sequence of G. Then there is
a relabelling D of B such that if D = D0, D1, . . . is the synchronizing sequence of D, the
underlying digraph of Di is Gi; in particular, the partition of the state set of B induced by
Di is the same partition induced by Gi.

Proof. Since B is strongly synchronizing there is a minimal l ∈ N for which Gl = Gl+1 and
both have a single vertex with n loops. We proceed by induction on the amalgamation
sequence.

We begin with the base case. Let s, t ∈ QB be distinct such that s and t belong to
the same state of G1. This means that s and t distribute similarly over QB. Suppose that
disc(s, t) is not trivial.

Let k ∈ N be minimal such that s and t belong to the same state of Bk+1. Note that
since disc(s, t) is not trivial, then k ≥ 1. By Lemma 4.5, for any x, y which belong to the
same orbit under disc(s, t),

πBk
(x, [s]) = πBk

(y, [s]) = πBk
(x, [t]) = πBk

(x, [t]).

Let λBk
be defined such that λBk

(·, [q]) : Xn → Xn is trivial whenever [q] is not equal to
[t]. We set λBk

(·, [t]) = disc(s, t)−1. We note that the transducer Bk is induced by a vertex
fixing automorphism of Bk. Furthermore, for any pair (u, v) 6= (s, t) such that u, v belong
to the same state of G1 and disc(u, v) is trivial, [u] = [v] in Bk.

Let E be the relabelling of B by the transducer Bk. Note that QE = QB and G remains
the underlying digraph of E. It therefore follows that for any pair u, v in B which distribute
similarly over QB, u, v still distribute similarly over QB in E. If moreover, discB(u, v) is
trivial, then construction of λBk

, means discE(u, v) remains trivial. Lastly we note that s, t
distribute similarly over QB in E, and discE(s, t) is trivial.

Applying an induction argument, there is an automaton E1 a relabelling of B such that
for any pair s, t ∈ QB which belong to the same state of G1, discE1(s, t) is trivial. In
particular, such s, t satisfy, πE1(·, s) = πE1(·, t).

Now assume by induction that there is a relabelling E of B with synchronizing sequence
E = E0, E1, . . . possessing the following property: for 0 ≤ i ≤ k < l two states s, t ∈ QB

belonging to the same state of Gi belong to the same state of Ei.
Let s, t ∈ QB and suppose s and t belong to the same state of Gk+1 but do not belong

to the same state of Ek+1. We note that since the underlying digraph of Ek is the same as
Gk and they induce the same partition of the state set QB, then s and t belong to distinct
states of Ek and so to distinct states of Gk. The fact that s and t belong to the same state
of Gk+1 means that [s] and [t] distribute similarly over QEk

but discEk
([s], [t]) is not trivial.

Let k < j ≤ l be minimal such that s and t belong to the same state of Ej+1. By
Lemma 4.5 once more, we have the equalities: for any x, y which belong to the same orbit
under discEk

([s], [t]),

πEj
(x, [s]) = πEj

(y, [s]) = πEj
(x, [t]) = πEj

(x, [t]).
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Let λEj
be defined such that λEj

(·, [q]) : Xn → Xn is trivial whenever [q] is not equal
to [t]. We set λEj

(·, [t]) = discEk
([s], [t])−1. We note that the transducer Ej is induced by

a vertex fixing automorphism of Ej . Furthermore, for any pair (u, v) 6= (s, t) such that u, v
belong to the same state of Gk+1 and discEk

([u], [v]) is trivial, [u] = [v] in Ej .
Let F be the relabelling of E by the transducer Ej . Let F1, F2 . . . be the synchronizing

sequence of F .
Let u, v ∈ QB belong to the same state of Gi for some 0 ≤ i ≤ k < l. Then by the

inductive assumption and Lemma 4.2, u, v belong to the same state of Fi.
Let u, v ∈ QB belong to the same state of Gk+1 and suppose that discEk

(u, v) is trivial.
Note that since discEk

(u, v) and [u], [v] distribute similarly over QEk
, [u] = [v] in Ek+1.

Therefore, Lemma 4.2 implies that [u] = [v] in Fk+1 as well.
Lastly observe that [s] = [t] in Fk+1 by construction of λEk

and the fact that states which
are identified in Ek remain identified in Fk+1.

The result now follows by induction. �

4.2 Relabellings along orbits

For lemma below, we give stronger hypotheses than appear to be required as per the following
observation. Let B be a strongly synchronizing automaton, φ an automorphism of the
underlying digraph GB of B, and, s and p states of B. Every edge from s to a state in the
orbit of p (under the action of φ) is on an orbit of length N (when such an edge exists) if and
only if every edge from any state in the orbit of s to a state in the orbit of p is on an orbit
of length N (when such an edge exists). We state the lemma with the stronger hypotheses
below to ease understanding.

Lemma 4.7. Let B be a strongly synchronizing automaton and φ an automorphism of the
underlying digraph GB of B. Let s, p be vertices of GB so that LettersB(s, p) is non-empty.
Suppose

• there is N ∈ N1 so that for every edge e from a vertex in the orbit of s to a vertex in
the orbit of p, the orbit length of e is N , and secondly

• there is r ∈ N1 so that if (sφi, y, pφj) is any edge from the orbit of s to the orbit of p,
then we have Letters(sφi, pφj) = Letters(sφi+r, pφj).

Then there is a relabelling of B′ of B such that the induced automorphism φ′ of GB′ satisfies
the following: for any i, j ∈ N,

• LettersB′(sφi, pφj) = LettersB′(sφi+r, pφj), and,

• if x ∈ LettersB′(sφi, pφj), then the labels of the edges (sφ′i, x, pφ′j)φ′ and (sφ′i+r, x, pφ′j)φ′

are equal.

Proof. We first set up some notational convenience. Given an edge (u, x, v) of B, with
respect to this edge, we shall write xφi for the label of its image (u, x, v)φi so that we have
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the equality (u, x, v)φi = (uφi, xφi, vφi). Note that in general we do not have an induced
action of φ on Xn, but the notation will be well-defined in the context of a base edge (u, x, v)
being understood.

Let B, φ, s, p, N and r be as in the hypotheses, and assume r is minimal. It follows that
r divides the orbit length of s (by minimality). Write mr for the orbit length of s. Write
s1, s2, . . . , smr for the orbit of s = s1 (we note that mr|N and we make this explicit below).

Let P̃ be those states p′ in the orbit of p which have Letters(s, p′) non-empty. The set

P̃ can be partitioned according to the orbits under the action of φmr, that is, two elements
of P̃ belong to the same part if they belong to the same orbit. Choose T ⊂ P̃ so that T
has exactly one representative from each block of this partition. Note, by definition, for any
edge (s(φr)i, x′, pφj), i, j ∈ N, there is a unique p′′ ∈ T and an element x ∈ Letters(s, p′′) so
that the orbit of (s, x, p′′) under φr contains (s(φr)i, x′, pφj).

We inductively define a map λB (i.e., induced by a vertex fixing automorphism of B) along
the orbit of an edge (s, x, q) for some q ∈ T . The map λB will then determine a transducer
(Xn, QB, πB, λB) which can be used (as in Definition 4.1) to carry out the required relabelling.
To this end fix q ∈ T and set k = |{qφimr|i ∈ N}|.

For 0 ≤ a ≤ m − 1, partition Letters(sar+1, q) via the equivalence relation relating two
edge labels whose corresponding edges are in the same orbit under φkmr. Recall there is
an order on the elements of each equivalence class induced from the standard ≤ ordering
on Xn. Use this ordering to determine a transversal for the equivalence classes, choosing as
representative of each class the least element in that class. Write β(sar+1) for this transversal.
For b ∈ β(sar+1) we use the phrase the equivalence class of b at sar+1 to mean the edge labels
in Letters(sar+1, q) which are orbit equivalent to b.

Let 0 ≤ a, a′ ≤ m− 1. We note that since N is the orbit length of any edge from a state
in the orbit of s to a state in the orbit of q we have |β(sar+1)| = |β(sa′r+1)|. Let α ∈ N

such that for b ∈ β(sar+1) and b
′ ∈ β(sa′r+1), the size of the equivalence class of b at sar+1

is equal to the size of the equivalence class of b′ at sa′r+1 is equal to α. We fix a bijection
between the sets β(sar+1) and β(sa′r+1) induced by the ordering of the elements. We note
that αkmr = N .

For 1 ≤ j ≤ r, and 0 ≤ a ≤ m− 1 we write β(sar+j) for the set {bφ
j−1|b ∈ β(sar+1)}. We

note that the orbit equivalence class of bφj−1 at sar+j , b ∈ β(sar+1), is precisely the image
of the equivalence class of b at sar+1 under the image of φj−1. We transport using φj−1 the
orderings of β(sar+1), and the equivalence classes of elements b ∈ β(sar+1) to the set β(sar+j)
and the equivalence classes of its elements. That is, for instance, if b < b′ ∈ β(sar+1), then
bφj−1 < b′φj−1 in β(sar+j).

Let 1 ≤ l ≤ m be minimal such that {qφimr|i ∈ N}φrl = {qφimr|i ∈ N}. We note that by
minimality l|m since: {qφimr|i ∈ N}φmr = {qφimr|i ∈ N}. Moreover φlr : {qφimr|i ∈ N} →
{qφimr|i ∈ N} is a k-cycle since φmr : {qφimr|i ∈ N} → {qφimr|i ∈ N} is a k-cycle and φmr is
a power of φlr. Let M ∈ N be such that Ml = m so that αkMlr = N .

Further observe that if {qφimr|i ∈ N}φrd ∩ {qφimr|i ∈ N} 6= ∅ for some d ∈ N, then
{qφimr|i ∈ N}φrd = {qφimr|i ∈ N}. For suppose qφfmr ∈ {qφimr|i ∈ N}φrd for some
1 ≤ f ≤ k. Then there is some 1 ≤ j ≤ k such that qφjmrφdr = qφfmr, this now means that
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qφdrφjmr ∈ {qφimr|i ∈ N}. However since φmr is a k-cycle on the set {qφimr|i ∈ N}, then
qφdr ∈ {qφimr|i ∈ N}.

Thus we conclude that the sets {qφimr|i ∈ N}φar for 0 ≤ a ≤ l − 1 are pairwise disjoint.
We define a relabelling map λB inductively as follows.
Let b = b0 ∈ β(s1) be the smallest element such that λB(b, s) is undefined and for all

1 ≤ i ≤ l − 1 λB(bi, sir+1) is undefined for the element bi of β(sir+1) corresponding to b.
(Note that bi is the least element of β(sir+1) such that λB(bi, sir+1) that is undefined.) In
the inductive process which follows, we will define λB(bi, sir+1) for all 0 ≤ i ≤ l− 1 in order.

Define a kl-by-r matrix r with entries tuples of size α as follows. Set

r0,0 = (b = b1,1, b1,2, . . . , b1,α)

where (b1,1, . . . , b1,α) is the ordered tuple of element β(s1). For 0 ≤ i < kl and 0 ≤ j < r set
ri,j = (b1,1, b1,2, . . . , b1,α)φ

ir+j = (b1,1φ
ir+j, b1,2φ

ir+j, . . . , b1,αφ
ir+j).

Define a matrix R of dimension Mkl-by-r such that Ri,j for 0 ≤ i < Mkl and 0 ≤ j < r
has entry

((b1,1, s), . . . , (b1,α, s))φ
ir+j := ((b1,1φ

ir+j, sφir+j), . . . , (b1,αφ
ir+j, sφir+j)).

For 0 ≤ d < M , set R(d) to be the kl-by-r matrix corresponding to rows dkl to row
(d + 1)kl − 1. For 0 ≤ d < M , 0 ≤ i < kl and 0 ≤ j < r we set λBR(d)i,j = ri,j, where we
extend λB naturally to act on tuples (Xn ×QB)

α to produce tuples in Xα
n .

Let 1 ≤ i < l. We note that for the element b′ ∈ βsir+1
, the function λB(b

′, sir+1) remains
undefined. Let the matrix r be exactly as above and define the matrix R as above but with
b′ playing the role of b and sir+1 playing the role of s1 = s. For 0 ≤ d < M define the
component R(d) as above. Then once more for 0 ≤ d < αM , 0 ≤ i < kl and 0 ≤ j < r we
set λBR(d)i,j = ri,j.

Continuing on in this way across the set T , we define λB on all pairs (x, sφi) where i ∈ N

and there is a j ∈ N such that (sφi, x, pφj) is an edge. We set λB to be projection onto the
first coordinate on all other pairs in Xn ×QB.

By construction λB is induced by a vertex fixing automorphism and induces the required
relabelling of B.

�

Remark 4.8. Note that the relabelling B′ of B given by Lemma 4.7 is in fact isomorphic
as an automaton to B, since the relabelling is by a vertex fixing automorphism of B. This
means we may instead write (B, φ) for the pair (B′, φ′).

Lemma 4.9. Let B be a strongly synchronizing automaton and φ an automorphism of the
underlying digrpah GB of B. Let s, t, p be states of B such that there is an x ∈ Xn with
πB(x, s) = p. Suppose

• for i, j ∈ N, πB(x, sφ
i) = pφj if and only if πB(x, tφ

i) = pφj;

• the orbits of s and t are distinct and have equal length l;
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• there is an N ∈ N such that for any j ∈ N, all edges (s, x, pφj) and (t, x, pφj) are on
orbits of length N .

Then there is a relabelling of B′ of B such that the induced automorphism φ′ of GB′ satisfies:
for any i, j ∈ N Letters(sφi, pφj) = Letters(tφi, pφj), and for any x ∈ Letters(sφi, pφj), the
labels of the edges (sφi, x, pφj)φ′ and (tφi, x, pφj)φ′ coincide.

Proof. This is a more straight-forward relabelling operation than the previous case. We
simply match the orbits of t along p with those of s along p. We define the relabelling map
λB inductively. As before, throughout we observe the following notation. Let u, v ∈ QB and
x ∈ Xn such that (u, x, v) is an edge. For i ∈ N we write xφi, whenever there is no ambiguity,
for the label of the edge (u, x, v)φi.

First, for any pair (c, d) ∈ Xn × QB such that (d, c, π(c, d)) is not an edge from a state
in the orbit of t to a state in the orbit of p, set λB(c, d) = c.

Let x ∈ Xn be smallest such that (t, x, pφi) is an edge for some i and λB(x, t) is not
defined. Let y ∈ Xn be minimal such that (s, y, pφi) is an edge and y is not equal to λB(z, t)
for (t, z, pφi) an edge. For 0 ≤ j < N set λB(xφ

j, tφj) = yφj where yφj is the label of the
edge (s, y, pφi)φj .

This inductively defined relabelling map λB is given by a vertex fixing automorphism
and induces the required relabelling of B.

�

Remark 4.10. We note that, once more, B′ and B are isomorphic as automata and so we
may write (B, φ′) for (B′, φ′).

4.3 Shadow states

In this second part of our process, we find new states to add to the transducer via splitting
operations, to provide more room for relabelling.

Let A ∈ Hn have finite order and let B be a minimal strongly synchronizing automaton
such that there is an automorphism φA of the underlying digraph GB of B with A the
minimal representative of H(B, φA).

The following definition is motivated by considering paths into a vertex t that might
provide an obstruction to a collapse through relabelling of B, as described in the next
paragraph.

Suppose there is a state q of B so that there is a minimal length r so that all paths of
length r that end on q have orbits of length n under the action of φA, and for this choice
of q we have r > 1. Let P = e1e2 . . . er be a path of length r terminating at q, where the
orbit of P has length n but the orbit of e2e3 . . . er is of size c for some c < n. For indices
1 ≤ i ≤ j ≤ r set Pi,j := eiei+1 . . . ej . By construction, the least common multiple of the
orbit size of the edge e1 and of c is n, and further, the orbit length of P2,r−1 must divide
c < n. As will become clear later, if this situation arises, it may be an obstruction to collapse
of a transducer through a relabelling process.
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In the definition that follows, the state t corresponds to the target of e1 from the path
mentioned above, while b is some integer multiple of the orbit length of t, but which still
properly divides n.

Definition 4.11. Let A ∈ Hn, B be a minimal strongly synchronizing automaton such
that there is an automorphism φA of the underlying digraph GB of B with A the minimal
representative of H(B, φA), and t ∈ QB. We say t is heavy (for the pair (B, φA)) if the
following conditions hold:

• there is a proper divisor b of n, where b is divisible by the length of the orbit of t;

• there is at least one pair (x, s) ∈ Xn ×QB such that (s, x, t) is an edge;

• for any x ∈ Xn and any s ∈ QB such that (s, x, t) is an edge of B, the lowest common
multiple of b and the length of the orbit of (s, x, t) under φA is n.

In this case, we call the value b above a divisibility constant for t and observe that the set of
valid divisibility constants for t might have more than one element.

In our overall process, we will apply the Lemma 4.13 (directly below) in a situation where
we cannot simplify a transducer H(B, φA) directly by a relabelling operation. Specifically,
this lemma is useful in situations where we can carry out an in-split of the domain automaton
B along the orbit of a heavy state t to create a new automaton B′ with automorphism ψA so
that A is a minimal representative of both H(B, φA) and of H(B′, ψA), and where the new
pair (B′, ψA) has a reduced obstruction to the existence of a helpful relabelling. Note that
here, we mean “in-split” in the normal sense of that operation for edge-shift equivalences,
see, e.g. [11].

The following lemma characterises how to perform an in-split along the orbit of a heavy
state t. The new automaton that is created has all of the old states, together with new states
which we call shadow states (from the orbit of t).

The following two lemmas address the same set of hypotheses, but we split the results
into two statements as the lemma of primary interest is the second one.

Any such number n′ which arises as in Lemma 4.12 below will be referred to as a valid
splitting length for (the heavy state) t with respect to divisibility constant b.

Lemma 4.12. Let A ∈ Hn and let B be a minimal strongly synchronizing automaton such
that there is an automorphism φA of the underlying digraph GB of B with A the minimal
representative of H(B, φA). Suppose there are b ∈ N and t ∈ QB so that t is heavy for the
pair (B, φA) with b a divisibility constant for t, and where

∣∣{tφpA|p ∈ Z}
∣∣ = r.

In these circumstances, there is n′ ∈ N a number which divides the lengths of orbits of
all edges (s, x, t) and satisfies the following conditions:

i) the lowest common multiple of n′ and b is n,

ii) there is m > 1 so that n′ = mr.
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Proof. Let N be the greatest common divisor of the orbit lengths of all edges (s, x, t) in
B. Let (s, x, t) be an edge of B with orbit length k under the action of 〈φA〉. Now, by the
third bullet point of the definition of the state t being heavy we see that lcm(k, b) = n. It
follows, as (s, x, t) is an arbitrary incoming edge for t, that lcm(N, b) = n as well. Since r
is the orbit length of t we see that r|k and since (s, x, t) is an arbitrary incoming edge for t
we therefore have r|N . By assumption, r|b, so if r = N we would have lcm(N, b) = b < n
which is a contradiction. It then follows that N = kr for some integer k > 1. Thus the set
of numbers N which divide the orbit lengths of all edges (s, x, t) and satisfy points i) and ii)
is non-empty. Now let n′ be an element of this set and determine m ∈ N so that mr = n′

(noting that 1 < m by construction). �

Lemma 4.13. Let A ∈ Hn and let B be a minimal strongly synchronizing automaton such
that there is an automorphism φA of the underlying digraph GB of B with A the minimal
representative of H(B, φA). Suppose there is b ∈ N and t ∈ QB so that t is heavy for the pair
(B, φA) with b a divisibility constant for t. Set t0,0 = t and let t0,0, t0,1 . . . , t0,r−1 be the orbit
of t under iteration by φA. Let n

′ be a valid splitting length of t and let m > 1 be determined
by n′ = mr.

In these circumstances we may form a new strongly synchronizing automaton B′ with

QB′ = QB ⊔ {ta,0, . . . , ta,r−1 | 1 ≤ a < m}

such that we have

i) πB′(x, s) := πB(x, s) for those pairs (x, s) ∈ Xn×QB where πB(x, s) is not in the orbit
of t;

ii) πB′(·, ta,i) := πB′(·, t0,i) for all 0 ≤ a < m, 0 ≤ i < r;

iii) The incoming transitions of B′ to the set of vertices {ta,i | 0 ≤ a < m, 0 ≤ i < r} are
determined by the above rules, and by an automorphism ψA of the underlying digraph
GB′ of B′ satisfying: (t0,0)ψ

ar+i
A = ta,i for 0 ≤ a < m, 0 ≤ i < r, (t0,0)ψ

n′

A = t0,0, and
H(B′, ψA) = A.

Proof. Let n′ be a valid splitting length for the heavy state t0,0 with divisibility constant b,
and let m > 1 be an integer so that n′ = mr.

Set
T := {t0,0, t0,1, . . . , t0,r−1}

and build a set of new objects (the extra “shadow states” arising from the splitting along
the orbit of t0,0)

T ′ = {ta,1, ta,2, . . . , ta,r | 1 ≤ a < m}.

Note that |T ∪ T ′| = n′.
We will define an action ψA on

QB′ := QB ∪ T ′
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as follows.
For s ∈ QB′ , set

sψA =





sφA if s ∈ QB\T
ta,i+1 if s = ta,i and i < r − 1
ta+1,0 if s = ta,r−1 and a < m− 1
t0,0 if s = tm−1,r−1.

It is immediate by construction that this is an action, and also that the orbit of t0,0 has size
n′. We will specify transitions for B′ by steadily expanding the definition of the underlying
digraph GB′ of B′ through adding edges of the form (p, x, q) for p, q ∈ QB′ and x ∈ Xn (thus
adding the transition (x, p)πB′ = q to B′), while simultaneously extending the function ψA on
the corresponding edges of GB′ . Ultimately, B′ will be a strongly synchronizing automaton
and ψA will be an automorphism of the digraph GB′ with H(B′, ψA) being equivalent to A.

Important in what follows will be a graph homomorphism ι : GB′ → GB, which we will
automatically extend to the (new) edges of GB′ whenever they are added. On the set QB′ , ι
is defined as follows: for s ∈ QB′\(T ∪T ′) set sι := s, and for any ta,i ∈ T ∪T ′ set ta,iι := t0,i.

Below, whenever we extend GB′ by adding new edges, we also extend the graph homomor-
phisms ι : GB′ → GB and ψA : GB′ → GB′ so as to maintain rsc, the rule of semi-conjugacy,
which we define here.

rsc:

(a) for all q ∈ QB′ we have qψAι = qιφA, and

(b) for all edges e of GB′ we further require eψAι = eιφA.

Of course we have part (a) of the rule because we have already defined ι and ψA over QB′

to satisfy this rule.
In the above construction of ι if eι = (r, x, s) then we will identify e as (p, x, q) where p

is the source of e and q is the target of e, so after any extension we can always think of the
new GB′ as an edge-labelled directed graph with edge labels “lifted” from GB by the map ι.

Note that below we will sometimes add a large collection of edges at one go, but in this
case, there is always a well defined triple (p, x, q) for each new edge, as we add in edges along
an orbit under ψA which always contains a well-defined edge (r, y, s), from which we can
detect the correct letter labelling of all edges along the orbit by using rsc.

It follows that if B′ is a strongly synchronizing automaton then H(B, φA) will represent
the same element of Hn as H(B′, ψA), since the map ι never changes edge labels, and the
map ψA will have to change edge labels in the corresponding fashion as φA in order to uphold
rsc.

We now begin to specify the edges of GB′ , and hence the transition function πB′ . Recall
below that QB\T = QB′\(T ∪ T ′).
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Partition the edges of GB into the following four sets.

NT :={(p, x, q) | p, q 6∈ T},

BT :={(p, x, q) | p, q ∈ T},

DT :={(p, x, q) | p ∈ T, q 6∈ T}, and

RT :={(p, x, q) | p 6∈ T, q ∈ T}.

We observe in passing that φA acts on each of the sets NT , BT , DT , and RT .
For (p, x, q) an edge in NT , let (p, x, q) also be an edge of GB′ (and so (x, p)πB′ = q as

well) and set (p, x, q)ψA := (p, x, q)φA.
Recall that for a group H acting on a set X , a traversal for the orbits is a subset Y ⊂ X

so that each orbit under the group action has a unique representative in the set Y .
Let YB be a traversal for the orbits of the edges in BT such that each edge in YB is of

the form (t0,0, x, t0,i). Similarly set YD to be a traversal for the orbits of the edges in DT so
that each edge of YD is of the form (t0,0, x, s) for some s ∈ QB\T . Finally set YR to be a
traversal for the orbits of the edges in RT so that each edge of YR is of the form (s, x, t0,0)
for some s ∈ Q\T .

Extend GB′ to include YD ∪ YR ∪ YB as edges incident on t0,0 (we will add more edges
incident on t0,0 later). Furthermore, use the action of ψA on the set QB′ together with the
map ι to uniquely determine new edges (of the form (p, x, q) for x ∈ Xn) that must be added
to GB′ so that the resulting digraph is closed under the action of ψA, contains the transversal
edges YD ∪YR ∪YB and satisfies rsc. Note that this process extends the definition of ι and
ψA to these new edges as well, but these extensions are inductively well defined. Now we may
use the new edges of GB′ in the obvious way to also extend the definition of the transition
function πB′ so as to create a correspondingly larger automaton B′.

Observe that for any state s ∈ QB′\(T ∪T ′) = QB\T , the process above now has created
a unique edge of the form (s, x, q) for each x ∈ Xn (which are the “lifts” of NT and RT

to GB′ by ι). For edges in NT this is simply by definition. For an edge (s, x, t0,i) ∈ RT ,
there is an edge (s′, x′, t0,0) ∈ YR so that there is a minimal non-negative integer k with
(s′, x′, t0,0)φ

k
A = (s, x, t0,i). It follows that (s′, x′, t0,0)ψ

k
A = (s, x, ta,i) for the unique non-

negative a so that k = ar + i. Now suppose there is an edge (s, x, tb,j) of GB′ . By rsc, we
see that (s, x, tb,j)ι = (s, x, t0,j) but as there is a unique outgoing edge in GB from s with
letter x we see that t0,j = t0,i and in particular, i = j. We assume without meaningful loss
of generality that b ≥ a and that |b−a| is minimal amongst all such differences. Thus by rsc
the orbit length of the edge (s, x, t0,i) under φA is precisely (b− a)r or else b = a. However,
(b − a)r < n′ and n′ divides the length of the orbit of (s, x, t0,i) by the definition of n′. It
follows that (s, x, ta,i) is the unique pre-image of (s, x, t0,i) under ι.

There remains a special concern that we must address. Specifically, there are now pairs
(x, ta,i) ∈ Xn×(T ∪T ′) so that there are no edges of the form (ta,i, x, q) in GB′ . This happens
as the orbit of t0,0 has length r under φA but length n′ = mr > r under ψA. Also, to verify
the coherence of the rsc condition for edges in YB, recall that n

′ divides the orbit length of
these edges as they are in the orbit of an edge incident to t.
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Let us now deal with the “missing edges” issue. Observe that for an edge (t0,0, x, s) ∈
YD ∪ YB, its orbit under φA may contain multiple edges of the form (t0,0, y, q) (for various
y ∈ Xn and q ∈ QB). Let us organise these as the sequence of pairwise distinct edges
(e0, e1, . . . , ek) where ei = (t0,0, x, s)φ

ri
A , and with ekφ

r
A = e0 = (t0,0, x, s). In this context,

the orbit of (t0,0, x, s) under φA has length (k + 1)r. Let us set notation ei =: (t0,0, xi, qi) so
we can understand the letter xi associated to ei for each valid index i. The concern is that
in our current graph GB′ we see for any index 0 < i ≤ k that there is no edge of the form
(t0,0, xi, q) ∈ GB′ . For the letter xi observe that there is an edge of the form (ta,0, xi, qi) of GB′

for a = ir mod n′ and some state qi. The rule of modification is, add the edge (t0,0, xi, qi)
to GB′ , for all indices 0 < i ≤ k. Repeat this same procedure across all of the transversal
elements (t0,0, x

′, s′) ∈ YD∪YB and as a consequence, for each letter y ∈ Xn, we see that the
vertex t0,0 now has a unique outgoing edge of the form (t0,0, y, q). Finally, we again use the
action of ψA on vertices and the action of φA on GB along with the rsc condition to extend
the definitions of ψA and ι to the necessary edges we have to add to GB′ in order to complete
the orbits of our newly-added edges based at t0,0, and to discern what letters needed to be
associated to these new edges. Now induce from GB′ the enlarged automaton B′.

One observes that for any valid indices a and b and fixed index i, the states ta,i and tb,i
of B′ have all the same outgoing transitions, and indeed, that the automaton B′ collapses
back down to B by identifying these states for each fixed i. In particular GB′ is strongly
synchronizing as it admits a collapse sequence to the n-leafed rose. Further, the rsc condi-
tion implies that ψA acts as an automorphism of the directed graph GB′ in fashion locally
emulating how φA acts on GB so that H(GB′, ψA) represents A.

�

Let A,B, t = t0,0 be as in the statement of Lemma 4.13. Assume we applied Lemma 4.13
to lengthen the orbit of t as in the lemma statement to create automaton B′ with automor-
phism ψA so that H(B′, ψA) has minimal representative A and where the orbit of t in GB′

under the action of ψA is the set {ta,i | 0 ≤ a < m, 0 ≤ i < r}. Now for each state t0,i for
0 ≤ i < r (these states are in the original orbit of t in GB under the action of φA), we call
the set of states

{ta,i | 0 < a ≤ m− 1} ( QB′

the shadow states for t0,i (in QB′). Note that these are precisely the states of H(B′, ψA)
with local maps equivalent to the local map at t0,i for the transducer H(B, φA). If we apply
Lemma 4.13 inductively and perhaps repeatedly on states on the now extended orbit of t,
we extend the definition of the shadow states of t0,i to be the union of the sets of states
added in each round of applying Lemma 4.13 which have local maps equivalent to the local
map at t0,i for the transducer H(B, φA). Note that this process cannot go on forever as each
application of Lemma 4.13 lengthens the orbit of t0,0 with n an upper bound on the length
of this orbit. Also note that each added state will be a shadow state of one of the original
states t0,j after any number of iterated applications of Lemma 4.13.

Lemma 4.14. Let A ∈ Hn and let B be the minimal strongly synchronizing automaton
such that there is an automorphism φA of the underlying digraph of B with A the minimal
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representative of H(B, φA). Suppose that all circuits in B are on orbits of length n under

the action of A. Then there is a strongly synchronizing transducer B̂ such that A acts as an
automorphism ψ̂A of B̂ and all edges of B̂ are on orbits of length n under the action of A.

Proof. We first observe that all states of B must be on orbits of length dividing n as the
underlying digraph of B is strongly synchronizing and therefore each state is visited by some
circuit which is on an orbit of length n. Also, we may assume that |B| > 1 otherwise all
loops at the state of B will be on orbits of length n and we would be done.

Let s ∈ QB be such that s is on an orbit of length strictly less than n under φA. (If all
states of QB were on orbits of length n then all edges of B would be on orbits of length n as
well and we would be done.)

Inductively define states as follows.
Set QB(0, s) := {s}. Assume QB(i, s) is defined for some i ∈ N. We now define QB(i +

1, s) ⊆ QB. An element q ∈ QB belongs to QB(i+ 1, s) if the following conditions hold:

(a) there are elements x1, x2, . . . , xi+1 ∈ Xn, such that, for all 1 ≤ j ≤ i + 1, we have
πB(xi+1 . . . xj , q) ∈ QB(j − 1, s); and

(b) the path (q, xi+1xi . . . x1, s) is on an orbit of length strictly less than n under φA.

We observe that for any state q in a set QB(i+1, s), the orbit of q under φA has size properly
dividing n. If q ∈ QB(i+ 1, s) and xi+1, xi, . . . , x1 ∈ Xn satisfies points (a) and (b) then we
call the path (q, xi+1xi . . . x1, s) conformant for QB(i+ 1, s).

Let k ∈ N be minimal so that QB(k + 1, s) = ∅. If such k did not exist then there would
a long path (as in point (b) of the definition of the sets QB(i, s)) which is long enough that
it must contain a circuit in B. Any such circuit would be on an orbit of length strictly less
than n under the action of φA, which is a contradiction.

From the argument directly above it also follows that whenever j > 0, s /∈ QB(j, s).
We now apply an induction argument using Lemma 4.13 to reduce k to 0.
Let t ∈ QB(k, s) and fix xk, xk−1, . . . , x1 ∈ Xn, such that the path (t, xkxk−1 · · ·x1, s) is

conformant for QB(k, s) and where the orbit of this path under the action of φA is of length
b < n (note that b|n and also that the length of the orbit of t divides b). Moreover, by choice
of k, for any pair (x, p) ∈ Xn × QB with πB(x, p) = t, the lowest common multiple of the
length of the orbit of the edge (p, x, t) and b is n.

Therefore t is heavy for the pair (B, φA) and b is a divisibility constant for t, so we may
apply Lemma 4.13 with the state t and constant b to add states in the orbit of t and necessary
edges to form a new strongly synchronizing automaton B′ with ψA an automorphism of GB′ ,
and so that H(B′, ψA) still represents A (and so in particular, all circuits of GB′ are still on
orbits of length n under the action of ψA).

Recall that by the construction of B′, the orbit of t, which includes all of its shadow
states, is now of larger size n′

t under the action of the resulting digraph automorphism ψA.
Thus, for any t′ in the orbit of t (including the shadow states we have just added), if there
is a path from t′ to s which is conformant for QB′(k, s), then t′ (and therefore t) is heavy
for (QB′ , ψA), so we may again inductively increase the length of the orbit of t by adding
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more shadow states until there are no paths from a point in the orbit of t to s which are
conformant for QB′(k, s) (note this happens to be a consequence of t no longer being heavy
for (B′, ψA) which must happen eventually as the orbit of t is getting longer and is bounded
above by n). Note that if p ∈ QB′(k, s) but p is not in the orbit of t, then p ∈ QB(k, s). In
particular, we have |QB′(k, s)| < |QB(k, s)| as this count of states for B

′ no longer includes
the state t nor any state in its orbit.

We can now inductively repeat this process for s until |QB′(k, s)| = 0.
Note that we can repeat this process for any state p with |QB′(k, p)| 6= 0. Thus we may

now proceed inductively in this fashion until finally we have constructed an automaton B′

and an automorphism ψA of GB′ so that B′ folds onto B and H(B′, ψA) represents A, and
where if q is any state and j is minimal so that QB′(j, q) = ∅, then j = 0.

We set B̂ = B′ and ψ̂A = ψA in this final case, noting that the orbit of every edge of B̂
under the action of ψ̂A is of length n.

�

Remark 4.15. Let A ∈ Hn be an element of finite order and suppose that every point in
X−N
n is on an orbit of length n under the action of A. By lemma 4.14, there is a minimal (in

size) strongly synchronizing automaton B such that A acts as an automorphism φA of the
underlying digraph of B and all edges of B are on orbits of length n under the action of A.

4.4 Relabelling through shadows

In this section we make use of Lemma 4.13 to deal with situations in which we are unable
to directly apply Lemma 4.7 or Lemma 4.9.

The lemma below says that applying Lemma 4.13 and then suitably relabelling does not
move us out of the conjugacy class of the considered finite order element A ∈ Hn.

Definition 4.16. Let A ∈ Hn and let B be the minimal strongly synchronizing automaton
such that there is an automorphism φA of the underlying digraph of B with A the minimal
representative of H(B, φA). Let D be a strongly synchronizing automaton which is obtained
by repeated applications of Lemma 4.13 to the automaton B. Let ψA be the automorphism
of the underlying digraph of D with A the minimal representative of H(D,ψA). A relabelling
D′ of D is called a relabelling through shadows if, for the induced automorphism ψ′

A of the
underlying digraph of D′, for any state q ∈ QB the set Sq,D of shadow states of q are all
ω-equivalent in H(D′, ψ′

A) to the state q.

Lemma 4.17. Let A ∈ Hn and let B be the minimal strongly synchronizing automaton
such that there is an automorphism φA of the underlying digraph of B with A the minimal
representative of H(B, φA). Let D be a strongly synchronizing automaton which is obtained
by repeated applications of Lemma 4.13 to the automaton B. Let ψA be the automorphism
of underlying digraph of D with A the minimal representative of H(D,ψA). Let D′ be a
relabelling through shadows of D, ψA′ be the induced automorphism of the underlying digraph
of D′, and A′ be the minimal representative of H(D′, ψA′). Then A′ is conjugate to A and
there is a strongly synchronizing automaton B′ and an automorphism φA′ of the underlying
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digraph GB′ so that A′ is the minimal representative of H(B′, φA′), with GB′ equal to the
underlying digraph of B.

Thus, the minimal strongly synchronizing automaton C on which A′ acts is carried by a
digraph GC that is a graph quotient of GB and we have |GC | ≤ |GB|.

Proof. As the relabelling process employed is a relabelling through shadows, it preserves the
equivalence of the local maps induced by the graph automorphism across all shadow states
shadowing any particular original state of B. In particular the collapse of each state with all
of its shadow states results in an automaton B′ which still admits an automorphism ψA′ of its
underlying graph (which graph is isomorphic to GB) so that A′ is the minimal representative
of H(B′, ψA′). The result now follows. �

Lemma 4.18. Let A ∈ Hn and let B be the minimal strongly synchronizing automaton
such that there is an automorphism φA of the underlying digraph of B with A the minimal
representative of H(B, φA). Suppose that all circuits in B are on orbits of length n under
the action of A. Let p ∈ QB, i ∈ N be less than or equal to the orbit length of p, and γ ∈ X∗

n

be such that (p, γ, pφi) is a path in B from p to pφi, then (p, γ, pφi) is on an orbit of length
n under φ.

Proof. Let k be the orbit length of p and let r be the order of i in the additive group Zk.
For 1 ≤ a < r write γa for the label of the path (p, γ, pφi)φia and set γ0 = γ. Write
Γ = γ0γ1 . . . γr−1, then the circuit (p,Γ, p) is on an orbit of length n by assumption. From
this it follows that the path (p, γ, pφi) is also on an orbit of length n. �

Lemma 4.19. Let A ∈ Hn and suppose there is a minimal strongly synchronizing automa-
ton B such that there is an automorphism φA of the underlying digraph of B with A the
minimal representative of H(B, φA) and so that all circuits in B are on orbits of length n
under φA. Let s, t, p ∈ QB be such that Letters(s, p) = Letters(t, p) 6= ∅. Then by repeated
application of Lemma 4.13 one may obtain from B a strongly synchronizing automaton D
with automorphism ψA so that A is the minimal representative of H(D,ψA) and where the
pair (D,ψA) satisfies the following conditions:

(a) there are no shadow states of any element in the orbit of p inD (that is, each application
of Lemma 4.13 creates no shadow states for elements in the orbit of p),

(b)
LettersD(s, p) = LettersD(t, p) = LettersB(s, p),

(c) for u ∈ {s, t}, for any shadow state u′ of u we have,

LettersD(u, p) = LettersD(s, p) = LettersB(s, p),

(d) for any x ∈ LettersB(s, p), the length of the orbits of the edges (s, x, p), (t, x, p) under
the action of ψA on D is n.
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Proof. We proceed in a similar way to Lemma 4.14. If |B| = 1, then we are done. Therefore
we assume that |B| > 1.

Inductively define subsets of QB as follows.
Set QB(0, p) = {p}. Assume that QB(i, p) is defined for some i ∈ N. Define QB(i+ 1, p)

as follows. A state q ∈ QB belongs to QB(i+ 1, p), if there are elements x0, x1, . . . , xi ∈ Xn,
such that πB(xixi−1 . . . xj , q) ∈ QB(j, p) for 0 ≤ j ≤ i, and the path (q, xixi−1 . . . x0, p) is on
an orbit of length strictly less than n under φA.

As in the proof of Lemma 4.14, there is a k ∈ N such that QB(k + 1, p) = ∅. Set k ∈ N

to be minimal such that QB(k + 1, p) = ∅. If QB(1, p) ∩ {s, t} = ∅, then we are done. Thus
we may assume that at least one of s, t belongs to QB(1, p) (and so k ≥ 1).

Observe that by Lemma 4.18 for any j ∈ N, pφj is not an element of QB(i, p) for any
1 ≤ i ≤ k.

We now repeatedly apply Lemma 4.13, as in the proof of Lemma 4.14, until we have an
automatonD such thatQD(1, p)∩{s, t} = ∅. We note that since p is always the single element
of QD(0, p), then, as for any j ∈ N, pφj is not an element of QB(i, p) for any 1 ≤ i ≤ k, we do
not create a shadow state of p or elements in the orbit of p in an application of Lemma 4.13.

We prove the base case to illustrate how the proof goes. Let q ∈ QB(k, p). We may
find x0, x1, . . . , xk such that for any 0 ≤ j ≤ k, πB(q, xkxk−1 . . . xj) ∈ QB(j, p). Let b be the
length of the orbit of the path (q, xkxk−1 . . . x0, p). Then for any state u ∈ QB for which there
is an edge (u, x, q), the lowest common multiple of the length of the orbit of (u, x, q) and b
is n. We may now apply Lemma 4.13 to form a new transducer B′ by adding shadow states
of q. We may define the sets QB′(i, p) as before, noting that QB′(k + 1, p) = ∅. This follows
as for any edge (u, x, q) in B, the orbit of the edge (u′, x, q′) in B′ (for u′ and q′ either equal
to u and q or shadow states of u and q respectively) is equal to the orbit of the edge (u, x, q).
Moreover, as in the proof of Lemma 4.14, the number of paths (q′, x0x1 . . . xk, p), where q

′

is either q or one of its shadow states, witnessing that q′ ∈ QB′(k) is strictly fewer than the
witness paths for q in B. Thus inductively applying Lemma 4.13, we find an automaton,
which we again denote B′, in which |QB′(k, p)| < |QB(k, p)| since neither q nor any of its
shadow states belong to QB′(k, p). Thus, replacing B′ with B we may repeat the process.

Eventually we reach an automaton D′ such that QD(1, p) ∩ {s, t} = ∅. Moreover, since,
by Lemma 4.13, shadow states transition identically to their original counterparts on edges
into states which have no shadow states added (and this transition mirrors the transition in
B), the automaton D′ satisfies the requirements of the lemma. �

In what follows, set notation olτ (⋆) to represent the orbit length of ⋆ under the action of
τ a digraph automorphism of some digraph G, where ⋆ is a vertex, edge, or path in G.

For an automaton C over alphabet Y with a, b ∈ QC , recall that EC(a, b) represents the
set of edges of GC from a to b, while

LettersC(a, b) := {y ∈ Y | ∃(a, y, b) ∈ EC(a, b)}

represents the set of letters from Y which are the labels of these edges.
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Lemma 4.20. Let A ∈ Hn and let B be the minimal strongly synchronizing automaton
such that there is an automorphism φA of the underlying digraph of B with A the minimal
representative of H(B, φA). Suppose that all circuits in B are on orbits of length n under
φA. Let s, t, p ∈ QB be such that s and t belong to distinct orbits but have the same orbit
length under φA, and so that Letters(s, p) = Letters(t, p). Then there is A′ ∈ Hn and an
automorphism φA′ of the underlying digraph of B so that the following hold:

(a) the element A is conjugate to A′ in Hn, where A′ is the minimal representative of
H(B, φA′); and,

(b) there is an N ∈ N such that for all x ∈ Letters(s, p) the edges (s, x, p) and (t, x, p) have
orbit length N under φA′.

Proof. The strategy is to apply Lemma 4.19 to add shadow states to B to obtain an automa-
ton D and an automorphism ψA of D, such that H(D,ψA) has minimal representative A,
ψA preserves the orbit length of the state p, and, the orbit length of the edges from s and t
into p is n. We then apply a relabelling through shadows of D by Lemma 4.17 to obtain a
conjugate element A′ to A represented by a transducer H(B, φA′) for φA′ an automorphism
of the underlying digraph GB. The key ingredient is that the relabelling of D is chosen such
that the orbits of the edges of s and t into p now all have the same length under φA′. In order
to find a relabelling achieving this goal, we will need to track numerous integer constants.

Set r = olφA(p) and determinem so thatmr = lcm(olφA(s), olφA(p)) = lcm(olφA(t), olφA(p)).
For any edge (s, x, p) ∈ EB(s, p) we have (s, x, p)φkA ∈ EB(s, p) if and only if k is an integer
multiple ofmr. For each x ∈ LettersB(s, p) = LettersB(t, p), determine integers ux, vx so that
uxmr = olφA((s, x, p)) and vxmr = olφA((t, x, p)). In particular, for any x ∈ LettersB(s, p),
the number of edges in EB(s, p) which belong to the orbit of (s, x, p) under φA is precisely
ux, while vx defines the analogous number for (t, x, p). It follows that there are permutations
θs : LettersB(s, p) → LettersB(s, p) and θt : LettersB(t, p) → LettersB(t, p) induced from the
permutations of edges from s to p (and from t to p respectively) achieved by applying φmrA .
In particular, for x ∈ LettersB(s, p)(= LettersB(t, p)), we have the cycle of θs containing x
has length ux and the cycle of θt containing x has length vx.

Adding shadows:
Apply Lemma 4.19 to the quadruple (s, t, p, B) to obtain a strongly synchronizing au-

tomaton D and a corresponding automorphism ψA of the digraph GD underlying D so that
A is the minimal representative ofH(D,ψA), and the conclusions of Lemma 4.19 are satisfied.
In particular, for any x ∈ LettersB(s, p) we have olψA

((s, x, p)) = olψA
((t, x, p)) = n.

We now determine various constants arising from the construction so far.
By construction, r remains the length of the orbit of p in D; however, the orbit lengths

of s and t have possibly been padded out with shadow states. Determine e, f so that
emr = lcm(olψA

(s), olψA
(p)) and fmr = lcm(olψA

(t), olψA
(p)).

As LettersB(s, p) = LettersB(t, p) = LettersD(t, p) = LettersD(s, p) we will often use the
notation Letters (s||t, p) for this set, although, we might use one of the other names if we
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specifically wish to emphasise that we are considering the action of φA or of ψA in that case.
Set as well ζ := |Letters (s||t, p)|.

Determining constants and orbit blocks from LettersD(s, p) and LettersD(t, p):
As above, consider the permutation of LettersD(s, p) induced by applying ψemrA to GD.

Note that this permutation is θes. Similarly ψfmrA induces θft on LettersD(t, p). Set qe to be the
order of θes, so that θqees is the identity permutation. Analogously define qf to be the order of

θft . Note in passing that qe = n/(emr) is the number of times the orbit of an edge of the form
(s, x, p) intersects ED(s, p) under the action of 〈ψA〉 (and that this number is independent
from the choice of such edge), and similarly, qf = n/(fmr) counts the cardinality of the
intersection of the orbit of an edge of the form (t, x, p) with ED(t, p) under the action of 〈ψA〉
(again, independent of the choice of such an edge). It follows that all cycles of θes have length
qe and that all the cycles of θft have length qf .

We note that for all x ∈ LettersD(s, p) we have qee = lcm(ux, e) and qff = lcm(vx, f).
Therefore, for any x ∈ Letters (s||t, p), we have qe|ux and qf |vx. Further, as qeemr = qffmr =
n we have qee = qff .

Let u = gcd{ux : x ∈ Letters (s||t, p)} and v = gcd{vx : x ∈ Letters (s||t, p)}. As qe|ux
and qf |vx for all x ∈ Letters (s||t, p), we see that qe|u and qf |v. Let u and v be such that
uqe = u and vqf = v. It also follows that lcm(u, e) = qee = qff = lcm(v, f).

Let τ ∈ {s, t} and set ∼τ,p to be the equivalence relation on the set of edges from τ to
p, where two edges are equivalent under ∼τ,p if they are in the same orbit under ψB. Let
X(τ, p) be a transversal for this equivalence relation. It follows that

∑

(s,x,p)∈X(s,p)

ux =
∑

(t,x,p)∈X(t,p)

vx = |Letters (s||t, p)| = ζ

so in particular we see that both u and v divide ζ .
Set w := lcm(u, v). Since u and v divide ζ we have that w|ζ . Let α be such that αw = ζ .

Further, as u|w and v|w there are µ, ν ∈ N such that w = µu = µuqe and w = νv = νvqf .
Further, qee = lcm(u, e)| lcm(w, e) and qff = lcm(v, f)| lcm(w, f). Since both u and v divide
qee = qff , it follows that w|qee and so lcm(w, e) = qee = qff = lcm(w, f). In particular,
wmr|qeemr = n and wmr|qffmr = n and we have lcm(wmr, emr) = n = lcm(wmr, fmr).

Building the relabelling:
Our relabelling will be a relabelling through shadows which will create a pattern of

labels along an edge orbit that repeats after every wmr steps under iteration of the new
automorphism ψA′ of GD.

To be a relabelling through shadows we will need that for any 0 ≤ i < mr and integer k
that the local map at sψi+kmrA′ agrees with the local map at sψiA′ (and similarly for the orbit
of t).

We will now define a new labelling λD : Xn × QD → Xn. Recall that a relabelling
function is always induced from a vertex fixing automorphism of the underlying digraph of
an automaton in the collapse sequence of the original. In our particular construction of λD,
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the reader will see that the automorphism employed in its creation is simply a vertex fixing
automorphism of the underlying digraph GD of D.

Suppose (l, x′, p′) is an edge of D which does not belong to the orbit of an edge (τ, x, p)
for any pair (τ, x) ∈ {s, t} × LettersD(τ, p). In this case we set (x′, l)λB = x′.

For the moment we focus on edges in the orbit of some edge (s, x, p). The edges in the
orbit of (t, x, p) are dealt with analogously.

As |Letters (s||t, p)| = ζ = wα we may partition Letters (s||t, p) into α blocks of size w,
which partition we organise through some labelling of the set’s elements as follows:

Letters (s||t, p) = {xci | 0 ≤ i < w, 0 ≤ c < α},

where here, the cth part, denoted xc, has w elements arranged as the ordered sequence
(xci)0≤i<w.

For 0 ≤ i < mr and q = sψiA we define (x, q)λD = x. Let 0 ≤ i < w, 0 ≤ c < α
and determine ui ∈ Xn so that (s, xci , p)ψ

mr
A = (sψmrA , ui, pψ

mr
A ). Now set (ui, sψ

mr
A )λD :=

xc(i+1) mod w.
Now, the fact that we are relabelling through shadows determines the rest of the rela-

belling function λD, as the local functions of H(GD, ψA′) have to agree for each shadow state
with that occurring at the state being shadowed, that is, we need the local function of the
transducer H(GD, ψA′) at any state sψa+mrA′ to agree with the local function at sψaA′ (where
mr suffices as that is the orbit length of the pair (s, p) in GB under φA, and our relabelling
only impacts the labels of edges in the orbit of edges from s to p in GD).

The following inductive definition of λD enforces this agreement.
In particular, suppose mr < a < emr and for all x ∈ Xn and 0 ≤ i < a we have

(x, sψiA)λD defined. Suppose further that (sψa−1
A , u, pψa−1

A ) is an edge of GD, v ∈ Xn with
(sψa−1

A , u, pψa−1
A )ψA = (sψaA, v, pψ

a
A), and that u′, v′, x, y ∈ Xn so that:

(sψa−1
A , u)λD = u′

(sψa−mr−1
A , x)λD = u′

(sψa−mr−1
A , x, pψa−mr−1

A )ψA = (sψa−mrA , y, pψa−mrA )

(sψa−mrA , y)λD = v′

then set (sψaA, v)λD := v′.
We define λD analogously on all edges in the orbit of an edge from t to p.
We now determine ψA′ acting on GD by the rules that ψA′ agrees with ψA on the vertices

of GD, and if (u, x, v), (uψA, y, vψA) are edges of GD so that (u, x, v)ψA = (uψA, y, vψA) then
(u, (x, u)λD, v)ψA′ = (uψA′, (y, uψA′)λD, vψA′).

Note in passing that while the orbit of any edge of GD from s to p (or, from t to p,
respectively) has length n under ψA′, the pattern of labels taken by such an edge repeats
every wmr steps, and so, as the vertex pair (s, p) (resp. (t, p)) is on an orbit of length
emr (respectively fmr) and lcm(wmr, emr) = n (resp. lcm(wmr, fmr) = n) we see that
in the induced automorphism φA′ of GB (so that A′ is represented by both H(GB, φA′) and
H(GD, ψA′)) the orbit of any edge from s or t to p is now on an orbit of length wmr.

�
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5 Conjugate to an n-cycle

A circuit of length k in an automaton B is carried by k directed edges in GB in some order
(e0, e1, . . . , ek−1) where the target of ei is the source of ei+1 (indices modulo k) for each index
i. In the next lemma, an automorphism φ of GB carries a circuit C to itself if and only if
the image of each edge of C is itself under the automorphism. Specifically, a “rotation” of a
circuit is not the circuit itself.

Lemma 5.1. Let A ∈ Hn be an element of finite order. Let B be a strongly synchronizing
automaton for which there is an automorphism φA of the underlying digraph GB of B with A
the minimal representative of H(GB, φA). Then every point of X−N

n is on an orbit of length
n under the action of A if and only if all circuits in B are on orbits of length n under the
action of φA.

Proof. This proof follows straight-forwardly from the observation that the orbits of circuits
in B under the action of φA correspond to the action of A on periodic points of X−N

n . Now
as periodic points are dense in X−N

n , the following chain of equivalences is true: all points of
X−N
n are on orbits of length n under the action of A if and only if all periodic points of X−N

n

are on orbits of length n under the action of A if and only if all circuits of B are on orbits
of length n under the action of A. �

Lemma 5.2. Let A ∈ Hn be an element of finite order and let B be the minimal strongly
synchronizing automaton such that A acts as an automorphism φA of GB the underlying
digraph of B. Suppose that all circuits in B are on orbits of length n, then A is conjugate to
an n-cycle.

Proof. We proceed by induction. In each iteration, we successively replace A with a conjugate
C that acts as an automorphism of the underlying digraph of a smaller strongly synchronizing
automaton.

By Lemma 4.6 we may assume, replacing A with a conjugate if necessary, that the
amalgamation and collapse sequence of B cohere. Thus, a pair of states s, t which distribute
similarly over QB satisfy, Letters(s, p) = Letters(t, p) for all p ∈ QB.

Suppose that |B| > 1 (as otherwise we are done). Since B is strongly synchronising, we
may find a pair of distinct states s, t which distribute similarly over QB.

We consider two cases.
First suppose that s and t belong to the same orbit. Fix a state p for which there is an

edge from s (and so from t) into p.
We apply Lemma 4.19 to the triple (s, t, p) to obtain a transducer D′′ and automorphism

ψ′
A such that there are no shadow states for elements in the orbit of p, edges from s and t

into p are on orbits of length n.
Now since there are no shadow states for elements in the orbit of p in D′′, we may

repeatedly apply Lemma 4.19 to s, t and states in the orbits of p in turn, until we obtain an
automaton D′ and automorphism ψA which has no shadow states for elements in the orbit
of p, such that LettersD′(s, pψiA) = LettersD′(t, pψiA) = LettersB(s, pφ

i
A) for all i ∈ N, and

such that any edge from s or t into a state in the orbit of p has orbit length n.
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Now we apply Lemma 4.7 to the automaton D′. This results in an automaton D and
conjugate automorphism ψA′ with the following properties. For r minimal such that, for
any i, j ∈ N, LettersD(sψ

i
A′ , pψ

j
A′) = LettersD(sψ

i+r
A′ , pψ

j+r
A′ ), then, the labels of the edges

(sψiA′, x, pψ
j
A′)ψA′ and (sψi+rA′ , x, pψ

j
A′)ψA′ coincide. Notice that, by minimality of r, Shadow

states remain ω-equivalent to the state they shadow and t is an element of the orbit of s
under the action of ψrA′ .

We now apply Lemma 4.17 to collapse down to the automaton B with a conjugate
automorphism φA′. The conjugate automorphism φA′ has the following properties. For
edges not belonging to the orbit of an edge from s or t into a state not in the orbit of p, the
action of φA′ coincides with the action of A. By construction of D, the label of the edges
(sφiA′, x, pφ

j
A′)φA′ and (tφiA′, x, tφ

j
A′)φA′ coincide for any i, j ∈ N.

We now repeat this process across all states of B which have an edge from s. Thus we
end up up with a conjugate automorphism ψC such that the label of the edges (sψiC , x, q)ψC
and (tφiC , x, q)ψC coincide, for any state q and any incoming edge from s and t into q labelled
x.

Let B′ be the automaton obtained from B by identifying the pair of states (sψiC , tψ
i
C) for

all i ∈ N. Since ψC induces the same action on labels for corresponding edges from elements
sψiC and tψiC , then there is an induced action φC of ψC on the underlying digraph of B′.
That is there is an element C ∈ Hn which is a conjugate of A such that C is the minimal
representative of H(B′, φC) an H(B,ψC).

Now consider the case that s, t belong to distinct orbits. We may assume that the orbit
lengths of s and t coincide otherwise we may find a τ ′ distinct from s and t which has the
same orbit length and agrees with one of s or t on QB. Whereby we apply the previous case
to the pair (s, τ) or (t, τ).

Fix a state p ∈ QB with an edge from s (and so from t). We apply Lemma 4.20 to obtain
a conjugate automorphism φA′′ of the underlying digraph of B such that all edges from s
and t into p have the same orbit length.

We repeat the process along all states of B with an incoming edge from s. This yields a
conjugate automorphism φA′ of B, whereby, for a given state q ∈ QB all edges from s and t
into q have the same orbit length under φA′ .

We now repeatedly apply Lemma 4.9 to the triple (s, t, B, φA′) to obtain a conjugate
automorphism ψC of B which satisfies the following. For any pair of edges (s, x, q) and
(t, x, q), (s, x, q)ψC an (t, x, q)ψC have the same labels. This means, we may once more
identify the pair of states (sψiC , tψ

i
C) to obtain an action φC of C, the minimal representative

of H(B,ψC), on a smaller automaton B′.
If |C| > 1, then as C is conjugate to A we may now repeat the process with C instead of

A.
Eventually we end up with the single state transducer.

�

We recall that by Theorem 3.5, for an element A ∈ Hn of finite order, there is a strongly
synchronizing automaton B on which A acts as an automorphism φA of the underlying
digraph of B so that H(B, φA) has minimal representative A.
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Theorem 5.3. Let A ∈ Hn be an element of finite order. Then A is conjugate to an n-cycle
if and only if every element of X−N

n is on an orbit of length n under the action of A if and
only if for any strongly synchronizing automaton B on which A acts as an automorphism φA
of the underlying digraph of B, every circuit of B is on an orbit of length n under the action
of A.

Proof. The equivalences follow from lemmas 5.1 and 5.2. �

5.1 An Example

In this section we work through an example that illustrates the key ideas of the proof.
Consider the automatonA of Figure 7 which we encountered already in Example 3.6. This

a0 a1

a2 a3

1|4 0|5

2|0
3|1

4|2
5|3

4|2
5|3

0|4
1|5

2|1

3|01|4
0|5

4|2 5|3

2|1 3|0

1|5
0|4

2|0 3|1
4|2 5|3

Figure 7: The element A

is an element of H6 of order 6, where every point in the Cantor space X−N
6 is on an orbit of

length 6 under the action of A. Following the construction in Subsection 3.3.1 (see Example
3.6), the minimal strongly synchronising automaton B which admits an automorphism φA
of GB such that H(B, φA) has minimal representative A, is as depicted in Figure 8, where
each drawn edge represents two edges with labels as listed; the map φA on the vertices on
GB is the permutation which in cycle notation is

(p0 p1 p2)(q0 q1 q2);

the action of φA on the vertices and edges of GB is uniquely determined from the fact that A
is the minimal representative of H(GB, φA). We refer to the vertices q0, q1, q2 as the vertices
of the “inner triangle” and the vertices p0, p1, p2 as the vertices of the “outer triangle”.
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p0 q0

q2 q1

p1

p2

1 0

2
3

4 5

4 5
0 1

2

31
0

4 5

2 3

1
0

2

3

4

5 2

3

5

4

1 0

0
1

3
2 4

5

Figure 8: Minimal automaton witnessing finite order of A.

We notice that the automaton B has the property that its synchronizing and amalgama-
tion sequences cohere. In particular both reduce to the single vertex with 6 looped edges
after 2 steps.

The fact that every circuit of GB is on orbit of length 6 can be seen as follows. A circuit of
GB which is not formed by repeating the circuit (or a cyclic rotation of it) p0 → p1 → p2 → p0
a finite number of times, must have an edge leaving a vertex in the inner triangle — any
such edge has orbit length 6.

Therefore A satisfies the hypothesis of Theorem 5.3. We work through Lemma 5.2 to
find an element of H6 which conjugates A to a 6-cycle.

In the first step we find two states of GB which can be collapsed i.e. which distribute
similarly over QB. We may take the pair (p0, q0) (any other valid pair belongs to the orbit
of this one). The orbits of p0 and q0 are distinct so we are in the second case of Lemma 5.2.
Now all edges leaving any vertex in the orbit of q0 have orbit length 6, whereas the edges
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edges from p0 to q0 and p0 to q2 have orbit length 3 while the edges from p0 to p1 have orbit
length 6. Thus we apply Lemma 4.20. We add shadow states using Lemma4.19. Focusing
on the vertex q0 as our vertex p (in the notation of Lemma4.19), we see that

Q(0, q0) = {q0}

Q(1, q0) = {p0, p1}

Q(2, q0) = ∅.

The last follows since any incoming edge to a vertex on the outer triangle is on an orbit of
length 6.

We may take either p0 or p1 as the heavy state (since they belong to the same orbit). Our
divisibility constant is 3 (the orbit lengths of the two orbits of edges from the outer triangle
into the inner triangle, i.e. the edge from p0 into q0 represents one such orbit, and the edge
from p1 into q0 represents the other); the number n′ is precisely 6 – since every incoming
edge into either p0 or p1 has orbit length 6. (We note as an aside that since the edge from
p1 to q0 is in the orbit of the edge from p0 to q2, we only need one round of adding shadow
states in order to fix the orbit lengths of both of these edges, using more words, we need not
consider p = q2 as a separate case).

Our new automaton B′ will have shadow states p′0, p
′
1 and p

′
2 as is as depicted in Figure 9.

There is a lift ψA of φA to GB′ . The action of ψA′ is uniquely determined by the facts that
the orbit of p0 under ψA′ is (p0 p1 p2 p

′
0 p

′
1 p

′
2) and H(B′, ψA) has minimal representative A.
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p′0

p0 q0

q2 q1

p1

p′1

p2

p′2

1 0

2
3

4

5

1
0

2
3

4

5

4

5

0 1

2

31
0

4 5

2 3

1
0

2
3

4

5
2

3

5

4

1 0

2
3

5

4

1 0

1

0

3

2 4

5

1

0

3

2

4

5

Figure 9: Adding shadows to form B′.

We can now apply Lemma 4.20 to the orbit of the edge from p2 to q0 and from p1 to q0.
Notice that since the orbit lengths of edges leaving the inner triangle is 6, the relabelling
map of Lemma 4.20 will simply wrap around the orbits of the relevant edges from p2 and p1
to increase their orbit lengths after re-identifying shadow states to 6. This can be achieved
by relabelling such that the actions on letters of orbits in the edge (p0, {1, 0}, q0) mirrors
the action on the corresponding edge in the orbit of (q0, {0, 1}, q0) (similarly for the pair
(p1, {1, 0}, q0} and (q1, {1, 0}, q0). One such relabelling is that induced by the vertex fixing
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automorphism of GB′ that swaps the edges from p1 to q1, the edges from p2 to q2, the edges
from p′0 to q0; the edges from p1 to q0, from p2 to q1 and from p′0 to q2. This gives rise to the
element C in figure 10.

c0

c1

c3

c5

c4

c2

1|0
0|1

2|3
3|2

4|4

5|5

4|4
0|0 1|1

2|2

3|3

5|5

0|0 4|4

5|5

2|2 3|3

1|1

1|1

0|0 2|2

4|45|5

3|3

2|2

3|3
5|4

4|5

1|0
0|1

0|0

1|1

3|2
2|3

4|5
5|4

Figure 10: Conjugator C.

The reader can verify that the conjugate of A by C is the automaton D to the left of
Figure 11.

The automaton E to the right of Figure 11 admits an automorphism φD of its under-
lying digraph such that H(E, φD) has minimal representative D. The map φD is uniquely
determined by the fact that H(E, φD) has minimal representative D. Notice that all edges
of GD are on orbits of length 6 and the collapse and amalgamation sequences of GD coincide.
Following Lemma 5.2, we find a pair of vertices which distribute similarly over QD, any pair
of distinct vertices works — we choose (a1, a3). Now we are in the first case of Lemma 5.2
and the relabelling protocol we apply is that given by Lemma 4.7. Essentially we want to
relabel such that the action of a1 and a3 on X6 coincide along their orbits. A relabelling
that achieves this is obtained by swapping the edged between a1 and a5 and between a5 and
a3. This relabelling gives rise to the conjugator F in figure 12

The reader can verify that conjugating D by F results in the single state transducer
corresponding to the 6-cycle (0 4 2 1 5 3).
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a1

a3 a5

4|2
5|3

0|4 1|5

2|1

3|0

1|4

0|5

4|2 5|3

2|1 3|0

1|5
0|4

2|03|1

4|2

5|3

a1

a3 a5

4

5

0 1

2

3

1

0

4 5

2 3

1
0

23

4

5

Figure 11: Conjugate of A by relabelling map C.

a1

a3 a5

4|5
5|4

0|0 1|1

2|3

3|3

1|1

0|0

4|4 5|5

2|2 3|3

1|1
0|0

2|33|2

4|4

5|5

Figure 12: Conjugator F .

Therefore, the element CF of H6 conjugates A to the 6-cycle (0 4 2 1 5 3).
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