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1 Introduction

Cayley graphs are excellent models for interconnection networks. Hence, there
are many investigations in connection with parallel processing and distributed
computing. The definition of the Cayley graph was introduced by Arthur Cay-
ley in 1878 to explain the concept of abstract groups which are described by
a set of generators. Cayley graphs of finite cyclic groups are studied in the
name of circulant graphs [2,15,16,34,33] and Cayley graphs of finite groups
are considered in [1,11,20,21,30–32,37]. Other graphs from finite groups are
also studied in [6,8,18,36]. Several authors studied Cayley graphs of finite
abelian groups in [10,17,35,38]. The generalized Cayley graphs of finite rings
with respect to subsets are studied in [28,29]. A variant of Cayley graphs are
the Cayley sum graphs which have been studied by a number of authors [3,9,
14,19].

The square element graph of rings was studied by Biswas, Sen Gupta and
Sen [4,25,26], while the power graph of semigroups was studied in [5]. The
power graph of groups are studied through the orders of elements in a group
in [6,8,18,36]. Raveendra Prathap and Tamizh Chelvam [23,24] defined and
studied the square graph and cubic power graph of finite abelian groups. Let
G be a finite abelian group with identity element 0. The square graph of
G denoted Γsq(G) is an undirected simple graph with vertex set G and two
distinct vertices a and b are adjacent in Γsq(G) if a + b = 2t for some t ∈ G
and 2t 6= 0. Having defined the square graph Γsq(G) of G, authors studied
various properties of the complement of square graph in [23]. Subsequently
another graph called the cubic power graph Γcpg(G) is introduced and studied
in [24]. These graphs can be generalized, in the context of Cayley graphs of
finite abelian groups, in parallel with the generalizations made in the case of
finite rings [28,29]. For a fixed positive integer n, the generalized sum graph
Γgsg(G) is the simple undirected graph with vertex set G and two distinct
vertices x and y are adjacent if x + y ∈ S = {nt | nt 6= 0, t ∈ G}. One can
see that when n = 2, Γgsg(G) = Γsq(G) and when n = 3, Γgsg(G) = Γcpg(G).
Further note that when n = 1 and S is a generating set for G, Γgsg(G) is
the Cayley graph Cay(G,S) [20]. When n is a prime number p, we call the
generalized sum graph as the prime sum graph Γpsg(G).

In this paper, we extend the process of generalization, by defining the
subgroup sum graph ΓG,H , where G is a finite abelian group and H a subgroup
ofG: the vertices are the elements ofG, and x and y are joined if x+y ∈ H\{0}.
A closely related graph, which we call the extended subgroup sum graph Γ+

G,H

is defined similarly, but without the restriction x + y 6= 0 for adjacency; it
turns out to be easier to work with.

2 Preliminaries

In this section, we recollect certain basic definitions and properties of graphs
which are essential for further reference. Throughout this paper, Γ = (V,E)
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is a finite simple graph with vertex set V and edge set E. A graph Γ is said
to be connected if there exists a path between every pair of distinct vertices
in Γ. A graph Γ is said to be complete if every pair of distinct vertices are
adjacent through an edge and the complete graph on n vertices is denoted
by Kn. The degree of a vertex v is the number of the edges in Γ which are
incident with v. Note that degree of each vertex v in Kn is n−1. The distance
d(u, v) between the vertices u and v in Γ is the length of the shortest path
between u and v. If no path exists between u and v in Γ, then d(u, v) = ∞.
For a vertex v ∈ V (Γ ), the eccentricity e(v) of v is the maximum distance
from v to any other vertex in V (Γ ). That is, e(v) = max{d(v, w) : w ∈ V (Γ )}.
The radius of Γ is the minimum eccentricity among the vertices of Γ and is
denoted by rad(Γ ). i.e., rad(Γ ) = min{e(v) : v ∈ V (G)}. The diameter of
Γ is the maximum eccentricity among the vertices of Γ and is denoted by
diam(Γ ). i.e., diam(Γ ) = max{e(v) : v ∈ V (G)}. The girth of Γ is the length
of a shortest cycle in Γ and is denoted by girth(Γ ). A graph is said to be
self-centered graph if radius and diameter of the graph are equal. A clique of
Γ is a maximal complete subgraph of Γ and the number of vertices in the
largest clique of Γ is called the clique number of Γ and is denoted by ω(Γ ).

An independent set is a set of vertices in a graph Γ , in which no two
vertices are adjacent. The cardinality of a maximal independent set is called
the independence number and is denoted by β(Γ ). A (vertex) proper colouring
of Γ is an assignment of colours from a set C such that no two adjacent vertices
receive same colour. If |C| = k, we say that the corresponding colouring is a
proper k-colouring. A graph is k-colourable if it has a proper k-colouring. The
chromatic number of a graph Γ is the least k such that Γ is k-colourable and
is denoted by χ(Γ ). The clique cover number θ(Γ ) is the smallest number
of complete subgraphs required to cover all the vertices of Γ . Note that the
independence number and clique cover number of Γ are just the clique number
and chromatic number of the complementary graph Γ . A graph Γ is perfect if
every induced subgraph of Γ has clique number equal to chromatic number.
The Weak Perfect Graph Theorem of Lovász [22] asserts that the complement
of a perfect graph is also perfect; so every induced subgraph of a perfect graph
has independence number equal to clique cover number. We also make use
of the theorem of Dilworth [12] asserting that the comparability graph (or
incomparability graph) of a partial order is perfect. The open neighbourhood
NΓ (v) of the vertex v in Γ is the set of vertices adjacent to v, while the
closed neighbourhood of v is {v} ∪NΓ (v). The domination number of a graph
is the least cardinality of a set of vertices for which the union of their closed
neighbourhoods is the whole vertex set.

3 Definition and Basic Properties

In this section, we give formal definitions of our graphs, describe their structure
in terms of the structure of G and H, examine connectedness, diameter, girth,
and self-centredness, and show that these graphs are perfect. Let G be a finite
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abelian group, and H a subgroup of G. We define the extended subgroup sum
graph Γ+

G,H to have vertex set G and edges {x, y} whenever x + y ∈ H; and
the subgroup sum graph ΓG,H to have the same vertex set and edges {x, y}
whenever x + y ∈ H \ {0}. We see that the generalized sum graph Γgsg(G)
previously mentioned is the subgroup sum graph ΓG,nG, while for any prime
p, the prime sum graph Γpsg(G) is the subgroup sum graph ΓG,pG.

The next result deals with the case where the subgroup H is trivial (either
{0} or G).

Theorem 1 Let G be a finite abelian group.

(a) If H = {0}, then the subgroup sum graph ΓG,H is a null graph on the vertex
set G, while the extended subgroup sum graph Γ+

G,H is a partial matching
where elements other than the identity and involutions are joined to their
inverses.

(b) If H = G, then the extended subgroup sum graph Γ+
G,H is complete, and

the subgroup sum graph ΓG,H is obtained by deleting a matching covering
all vertices except the identity and involutions.

Proof If H = {0}, then the only edges in Γ+
G,H are those of the form {a,−a}

where 2a 6= 0; there are no edges in ΓG,H .
If H = G, then every pair {a, b} with a 6= b is an edge of Γ+

G,G, and all
those with b 6= −a are edges of ΓG,H . ⊓⊔

The graphs considered in Theorem 1 are not very interesting, so where
necessary below we assume that 1 < |H| < |G|. For a prime p and an abelian
group G, we have the following for the prime sum graph Γpsg(G).

(a) pG = {0} if and only if G is elementary abelian (a direct sum of cyclic
groups Cp of order p).

(b) pG = G if and only if p does not divide |G|.

Let S(G) denote the set of solutions of 2x = 0 in a group G, and s(G) =
|S(G)|. If G = C2k1 ×· · ·×C2kr ×A, where |A| is odd and k1, . . . , kr > 0, then
s(G) = 2r.

The basic structure of these graphs Γ+
G,H and ΓG,H are given in the next

result.

Theorem 2 Let H be a subgroup of the abelian group G, with |H| = k and
|G/H| = m.

(a) The extended subgroup sum graph Γ+
G,H has (m + s(G/H))/2 connected

components, of which s(G/H) are complete graphs Kk (whose vertex sets
are the cosets of H having order 1 or 2 in G/H), and (m − s(G/H))/2
are complete bipartite graphs Kk,k (whose vertex sets are the union of two
cosets H + a and H − a for some a ∈ G with 2a /∈ H).

(b) The subgroup sum graph ΓG,H is obtained from the extended subgroup sum
graph Γ+

G,H by deleting a perfect matching from every component which is
complete bipartite, and deleting a matching from a complete component on
a coset H + a covering all elements other than elements of S(G) lying in
this coset (if any).
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Proof (a) The neighbours of a in Γ+
G,H are the elements of the coset H − a

(possibly excluding a). If H − a 6= H + a, then we have a complete bipartite
graph on these two cosets. If H − a = H + a, so that this coset has order 2 in
G/H, then we have a complete graph on this coset.

(b) To obtain the subgroup sum graph, we must delete edges of the form
{a,−a} for which a 6= −a (that is, a is not the identity or an involution). ⊓⊔

For an abelian group G, Theorem 2 gives a complete description of graphs
Γ+
G,H and ΓG,H , and enables us to determine their properties and parameters,

as we do in the rest of the paper. First, though, we describe the components
in a little more detail, and introduce three parameters we will use throughout
the paper, counting three different types of cosets of H in G:

– Type 1, cosets H + a for which 2a /∈ H (that is, cosets distinct from
their inverses in G/H). For such cosets, (H + a) ∪ (H − a) is a connected
component of Γ+

G,H , and is complete bipartite Kk,k; in ΓG,H , it is Kk,k

minus a matching, which is connected if k > 2 and two disjoint edges if
k = 2.

– Type 2, cosets H + a for which 2a ∈ H but H + a does not contain a
solution of 2x = 0. For these, H + a is a connected component of both
graphs, and is complete in the first and complete minus a perfect matching
in the second. (This type can only occur if |H| is even. Again we have to
exclude k = 2 here since in that case K2 minus a matching consists of two
isolated vertices.)

– Type 3, cosets H + a containing a solution of 2x = 0. For these, H + a is
a connected component, and is complete in the first graph and complete
minus a matching of size (k − s(H))/2 in the second. (This case always
occurs, since the coset H has this form. See below for the proof that every
such coset contains s(H) solutions of 2x = 0.)

For i = 1, 2, 3, we let mi be the number of cosets of Type i, so that
m1 +m2 +m3 = m = |G/H|, and m2 +m3 = s(G/H).

We claim that the number of solutions of 2x = 0 in a coset is equal to s(H)
if the coset has Type 3 and 0 otherwise. This is clear for the coset H, so let
H + a be another coset. Clearly there are no solutions of 2x = 0 in the coset
unless it has Type 3, so suppose this is the case. Then K = H ∪ (H + a) is a
subgroup of G, and S(K) is a subgroup of G containing S(H) as a subgroup
of index 2. Thus s(K) = 2s(H), so there are s(H) elements in H+a satisfying
2x = 0. In particular, we see that m3s(H) = s(G).

Thus, in Γ+
G,H with k > 2, there are m1/2 components which are complete

bipartite Kk,k, and m2 + m3 components which are complete graphs Kk. In
ΓG,H , there are m1/2 components which are a complete bipartite graph minus
a perfect matching, m2 components which are complete graphs Kk minus a
perfect matching, and m3 components which are Kk minus a matching of size
(k − s(H))/2.

In particular, we see that the numbers m, s(G), s(H) and s(G/H) deter-
mine the number of cosets of each type. This is also true if k = 2.
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4 Connectedness, diameter, girth and perfectness

We consider first a list of graph properties and parameters. Recall that here-
after H is a non-trivial subgroup of a finite abelian group G, k = |H| and
m = |G : H|.

Proposition 1 Let G be an abelian group and H be a subgroup of G. Suppose
that |G| > 2. Then the following are equivalent:

(a) Γ+
G,H is connected;

(b) ΓG,H is connected;
(c) H = G.

Proof The number of components of Γ+
G,H is (m + s(G/H))/2. Since each of

m and s(G/H) is at least 1, the graph is connected if and only if both are 1,
which implies that H = G. The converse is clear from Theorem 1.

Since ΓG,H has at least as many components as Γ+
G,H , we see that if it is

connected then H = G. Conversely, if H = G, then we could only disconnect
the graph by deleting a matching if |G| = 2. ⊓⊔

Corollary 1 Suppose that |G| > 2 and H 6= G. Then the complements of
Γ+
G,H and ΓG,H are connected and have diameter at most 2, with equality

except for ΓG,{0} (which is complete). If k > 2, then these complements have
radius equal to diameter, and so are self-centred.

Proof It is clear that the diameter of complements of Γ+
G,H and ΓG,H is 2. If a

vertex g has eccentricity 1, then it is joined to all other vertices, that is, it is
isolated in Γ+

G,H or ΓG,H as appropriate. This can only occur if k = |H| = 2.
⊓⊔

Corollary 2 (a) The extended subgroup sum graph Γ+
G,H has girth 3 if |H| >

2, 4 if |H| = 2 and G/H is not an elementary abelian 2-group and ∞
otherwise.

(b) The subgroup sum graph Γ (G,H) has girth 3 if |H| > 3, 6 if |H| = 3 and
∞ if |H| = 2.

Proof (a) There is always at least one component Kk, since s(G/H) ≥ 1; if
k > 2, this component contains a triangle. Otherwise, there is a component
Kk,k unless s(G/H) = m.

(b) If we delete a non-perfect matching from a complete graph on at least
four vertices, what is left contains a triangle. If k = 3, then s(G) = s(G/H)
and so there are no cycles of length 3, but removing a perfect matching from
K3,3 produces a 6-cycle. If k = 2, then the graph consists of isolated vertices
and edges. ⊓⊔

Corollary 3 The subgroup sum graph and extended subgroup sum graph are
perfect graphs.
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Proof It suffices to show that each connected component is perfect. For the
extended graph, these components are complete or complete bipartite, which
are well known to be perfect. In the other case, we have to deal with the
complement or bipartite complement of a matching. In the first case, the result
holds since a matching is clearly perfect. The graph obtained by removing a
perfect matching from Kk,k is the comparability graph of the partial order on
{a1, . . . , ak, b1, . . . , bk} in which {a1, . . . , ak} and {b1, . . . , bk} are antichains
and ai < bj if and only if i 6= j; and the comparability graph of a poset is
perfect, by Dilworth’s Theorem. ⊓⊔

From the above theorem, we have the following corollary for the cubic
power graph of a finite abelian group.

Corollary 4 [24, Theorem 4.11] Let G be a finite abelian group. Then the
cubic power graph Γcpg(G) is perfect.

Also, we have the following corollary which is applicable for the complement
of the square graph of a finite abelian group.

Corollary 5 [23, Theorem 3.2] Let G be a finite abelian group. Then the
complement Γ sq(G) is perfect.

5 Cliques and cocliques

We now compute the clique number and independence number of subgroup
sum graphs ΓG,H where H is a proper subgroup of G.

5.1 General results

We compute the clique number and independence number of the graphs ΓG,H

where H is a proper subgroup of G. By corollary 3, the chromatic number
is equal to the clique number, and the clique cover number is equal to the
independence number, so we get these two further parameters for free.

Theorem 3 Let G be a finite abelian group, and H a non-trivial subgroup of
G. Suppose that |H| = k, |G/H| = m, and let m1,m2,m3 be as above.

(a) The clique number of the extended subgroup sum graph Γ+
G,H is equal to k,

and the independence number is equal to km1/2 +m2 +m3.
(b) The clique number of the subgroup sum graph ΓG,H is (k + s(H))/2.
(c) The independence number of the subgroup sum graph ΓG,H is equal to

km1/2+2(m2+m3) if s(H) < |H|, and km1/2+2m2+m3 if s(H) = |H|.

Proof (a) Clearly H is a maximal clique, while a maximal independent set
takes one bipartite block from each complete bipartite component and one
vertex from each complete component. (By assumption, k ≥ 2, so the cliques
of size 2 in the complete bipartite graphs are not larger than k.)
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(b) When deleting edges from the extended subgroup sum graph, the bi-
partite components remain bipartite, and so have clique number 2.

In a complete component, corresponding to a coset of Type 2, we delete a
perfect matching, giving a graph with clique number k/2. If there is a coset
of Type 3, it contains a clique of size (k + s(H))/2. The second quantity is
larger, and there is always a Type 3 coset, namely H itself. Now since k ≥ 2,
we have (k + s(H))/2 ≥ 2.

(c) It is easy to see that if we delete a perfect matching from Kk,k with
k ≥ 2, the resulting graph still has independence number k.

A Type 2 coset corresponds to a complete graph with a perfect matching
removed, so contains an independent set of size 2. Similarly, a Type 3 coset
contains an independent set of size 2 unless all its elements satisfy 2x = 0, in
which case it is complete and has independence number 1 (this occurs if and
only if s(H) = |H|).

Summing over all cosets gives the result. ⊓⊔

Using the above Theorem 3, one can obtain the clique number of the cubic
power graph obtained in [24, Theorem 3.8]. In fact, in the language of the

cubic power graph Γcpg(G) of an abelian group G, H = 3G and |H| = k = |G|
3r .

Hence, we have the following corollary.

Corollary 6 [24, Theorem 3.8] Let G be a finite abelian group. Then the

chromatic number ω(Γcpg(G)) = s(H) +
⌈

|G|/3r−s(H)
2

⌉

= (k + s(H))/2.

5.2 Prime sum graphs

Now we calculate these numbers for the prime sum graph of a finite abelian
group. It is clear from our analysis that the prime 2 behaves very differently
from odd primes. We will deal with odd primes first. Note that, by our earlier
assumptions, we can assume that |G| is divisible by the prime p in question,
otherwise pG = G.

5.2.1 Odd prime p

Let G be a finite abelian group. Then H = pG is a subgroup of G whose index
is pr, where r is the number of cyclic summands of p-power order when G is
expressed as a direct sum of cyclic groups; the quotient G/pG is an elementary
abelian p-group. So s(G/H) = 1. Also, all 2-elements of G are contained in pG,
so (in the notation used above) we have m2 = 0, m3 = 1, and m1 = pr − 1.
Also, if G has q cyclic summands of 2-power order, then s(H) = 2q, and
s(H) = |H| if and only if G ∼= Cq

2 × Cr
p .

From our earlier results, we find that Γ+
G,pG has clique number k = |G|/pr

and independence number k(pr − 1)/2 + 1, while ΓG,pG has clique number
k/2 + 2q−1 and independence number k(pr − 1)/2 + 2 unless G ∼= Cq

2 ×Cr
p , in

which case the independence number is k(pr − 1)/2 + 1. (If q = 0, then |G| is
odd, so k is odd and the clique number is (k + 1)/2.)
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5.2.2 The prime 2

We can write G = A×B, where A has odd order and B has order a power of
2. Suppose that B is the product of r cyclic groups, of which q have order 2.
Then 2G = A × 2B, where B is the product of r − q cyclic groups, We have
G/2G elementary abelian of order 2r; so every coset 2G+ x satisfies 2x ∈ 2G,
and there are 2q cosets containing involutions. Thus m1 = 0, m2 = 2r − 2q,
and m3 = 2q. Moreover, S(2G) is an elementary abelian of order 2r−q, so
S(2G) = 2G if and only if G is the product of cyclic groups of orders 2 and 4
only.

So Γ+(G, 2G) has clique number k = |2G| = |G|/2r, and independence
number 2r; and Γ (G, 2G) has clique number (k + 2r−q)/2, and independence
number 2r+1 unless G is a product of cyclic groups of orders 2 and 4, in which
case the independence number is 2r+1 − 2q.

6 Spectrum

Since the graphs Γ+
G,H and ΓG,H are disconnected if H < G, we can compute

the spectrum by considering the components separately. Theorem 2 gives the
number of components of each type. As before we let |H| = k and |G : H| = m.

For Γ+
G,H , the situation is simple: the components are either complete bi-

partite Kk,k (with eigenvalues k and −k each with multiplicity 1, and 0 with
multiplicity 2k−2) or complete Kk (with eigenvalues k−1 with multiplicity 1
and −1 with multiplicity k − 1).

For ΓG,H things are a little more complicated. There are three types of
components:

(a) Kk,k minus a perfect matching. This is a distance-regular graph; its eigen-
values are k−1 and −(k−1), each with multiplicity 1, and 1 and −1, each
with multiplicity k − 1.

(b) Kk minus a perfect matching.
(c) Kk minus a partial matching covering k − s(H) vertices.

Consider the graph Ka+b, with a even, minus a matching covering a ver-
tices. (We assume that a > 0 and a + b ≥ 4 to avoid trivial cases.) This
graph occurs in various contexts. For example, it is a Turán graph, maximiz-
ing the number of edges in a graph containing no complete subgraph of order
(a/2) + b + 1. More relevant here, it is a generalized line graph in the sense
of Hoffman; if a > 2, its smallest eigenvalue is −2, with multiplicity (a/2)− 1
(see [7]). For a, b > 0, its eigenvalues are as follows:

(a) the roots of the quadratic x2 − (a + b − 3)x − (a + 2b − 2), each with
multiplicity 1;

(b) 0, with multiplicity a/2;
(c) −2, with multiplicity (a/2)− 1;
(d) −1, with multiplicity b− 1.
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These (and the corresponding eigenvectors) can be calculated, using the
fact that the partition into the vertices covered and uncovered by the matching
is equitable, in the sense of Godsil and Royle [13]. In detail: let the adjacency

matrix of a graph Γ have the form A(Γ ) =

(

A J
J B

)

, where A is the adjacency

matrix of Ka minus a matching, B the adjacency matrix of Kb, and J an all
-1 matrix of appropriate size. Then the subspace of Ra+b spanned by (1a, 0b)
and (0a, 1b) is A(Γ )-invariant, and the restriction of (Γ ) to this subspace is
(

a− 2 b
a b− 1

)

, with eigenvalues as in (a). The orthogonal subspace is spanned

by three types of vectors: those with zero entries in the last b coordinates, and
in which entries in positions corresponding to the ends of (deleted) matching
edges are negatives of each other; those with zero entries in the last b coor-
dinates, and with entries in positions corresponding to the ends of matching
edges are equal and all entries sum to 0; and those with zero entries in the first
a coordinates, and with the remaining entries summing to zero. These are seen
to be eigenvectors with the eigenvalues and multiplicities given in (b)–(d).

7 Domination

The domination number of a graph is the least cardinality of a set of vertices
for which the union of their closed neighbourhoods is the whole vertex set.
The domination number of Kk is clearly 1, and that of Kk,k is 2. So the
domination number of Γ+

G,H is m = |G : H|. Similarly the domination number
of Kk,k minus a perfect matching is 2 (two vertices on one of the deleted edges
form a dominating set), while the domination number of Kk minus a matching
is 1 if the matching is not a perfect matching and 2 if it is. So the domination
number of ΓG,H is m1 + 2m2 +m3 = |G : H|+m2.

The complement of a disconnected graph Γ with no isolated vertices has
domination number 2: two vertices in different components of Γ form a dom-
inating set in Γ . By Proposition 1, provided that H < G, the domination

numbers of Γ
+

G,H and ΓG,H are both 2.

8 Reconstructing the group

In studies of graphs defined on groups, one topic which has been considered is
the extent to which the graph determines the group. For example, Solomon and
Woldar [27] showed that the commuting graph (with x joined to y if xy = yx)
of a finite simple group determines the group.

In our situation, things are a bit different: the graphs only determine certain
parameters of the pair (G,H). We note that, in either case, the number of
vertices of the graph is equal to |G|. The connected components have sizes k
and 2k, and the number k occurs at least once (for the subgroup H); so we
can also determine |H|.
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Suppose that we are given Γ+
G,H . Then the number of components of size k

is equal to s(G/H). So this is all the information we get: two pairs (G1, H1) and
(G2, H2) with s(G1/H1) = s(G2/H2) have isomorphic subgroup sum graphs.

For the graph ΓG,H , we obtain the above information, and also the numbers
s(H) and s(G). For the components of size k are either complete minus a
perfect matching of size k/2 (m2 of these) or complete minus a matching of
size (k − s(H))/2 (m3 of these). Since s(H) 6= 0, we can distinguish the two
types, and hence find m2 and m3; and from a Type 3 coset we can recover
s(H), and hence s(G) = m3s(H).

9 A generalization

LetH andK be subgroups of the abelian group G withH 6= K.We can extend
our previous definition by defining the generalized subgroup sum graph ΓG;H,K

to be the graph with vertex set G in which x and y are joined if x + y ∈ H
but x+ y /∈ K.

We lose no generality by assuming that K ≤ H, since with the defini-
tion just given, ΓG;H,K = ΓG;H,H∩K . We shall always make this assumption.
Now our previous subgroup sum graph ΓG,H is ΓG;H,{0}. Moreover, ΓG;G,H

is the complement of the extended subgroup sum graph Γ+
G,H . We have not

investigated these graphs further.
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