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ABSTRACT

This thesis contributes to different literatures in macroeconomics with frictions. In
the first two Chapters I consider imperfections in the credit market and how these
can amplify monetary policy shocks. I start from a purely empirical model, which
identifies monetary policy shocks and then I develop a structural model with an
explicit market for mortgage loans intermediated by a banking sector. Households
and banks are each facing a different optimisation program. I show that this
model better captures the volatility of macroeconomic aggregates than alternative
frictionless cases. This richer modelling setting assigns a more complicated role to
the monetary authority, as the policy rate influences asset prices, nominal debt and
bank profitability in addition to intertemporal consumption. The Third Chapter
is concerned with wage rigidity and how to measure it. We define it as relative to
the wage one would expect under Nash bargaining. Then we develop a statistic
for wage rigidity, the Nash Wage Elasticity (NWE) by regressing actual wages
on the Nash bargained wage. Most of our calibrations yield a NWE between
0 and 0.1, signifying that actual wages are very rigid and that the Nash wage
is a poor description of the business cycle. We calibrate a search and matching
model to match our estimated NWE, showing how this modification translates into
greater cyclical fluctuations. In the fourth Chapter I analyse the causal relation
linking index investment to commodity future prices. I show that standard Granger
causality results cannot be taken at face value given the extraordinary movement in
prices during the Great Financial Crisis. I apply instead a Time-Varying Granger
test apt to gauge the evolution of the causal relation, showing how future prices
are endogenous to index investment flows at particular points in time, generally
supporting the hypothesis of financialization in the commodity market.
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Dayadhvam: I have heard the key
Turn in the door once and turn once only

We think of the key, each in his prison
Thinking of the key, each confirms a prison

Only at nightfall, aethereal rumours
Revive for a moment a broken Coriolanus

(T.S. Eliot - The Waste Land)
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INTRODUCTION

Almost the entirety of current macro-modelling literature develops on micro
foundations1 and it is confronted with the tasks of explaining business cycles
fluctuations and provide a framework of analysis for the practical design of policy
(Goodfriend and King, 1997).

However, oftentimes stylised models fail to capture the observed empirical mo-
ments on key macro-variables, falling short of their first task above and thus being
of limited help with policy-making. Sometimes these shortcomings are well known,
other times they are more elusive and become manifest around crises and turning
points, bringing about a revitalised interest in the underlying dynamics behind
critical macroeconomic phenomena.

The thorny point here is how the dealings of optimising agents can lead to the kind
of volatility observed in data. This is often achieved by ‘throwing a spanner’ in the
smooth works of representative agents with the introduction of frictions.

The overarching topic of this dissertation pertains to frictions perturbating the
macro-economic environment. Those misalignments impede an efficient market
allocation creating consequential dynamics visible in data and motivate policy trade-
offs. The fundamental reason for including frictions is to add model mechanics that
create internal propagation of imbalances besides the external shocks.

All four chapters focus on the observable features of markets that are grounded
in data but are not satisfactorily reflected in workhorse models. This dissertation
brings together frictions that exist in three key macro markets that all interact closely
to determine how economies react to external shocks and disturbances. These three
markets are the credit market, labour markets and commodity markets.

Credit market variables move at a lower frequency than the overlapping business
cycle, hence strengthening the negative effects of a recession at the time of its

1Based on rationally optimising representative agents and profit-maximising firms.
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reversal (e.g., when an economic crisis coincides with a credit crunch). This makes
it even more important to understand the mechanisms at work in determining how
credit market variables change and respond to external disturbances. It is an open
question whether it is optimal to intervene on credit aggregates.

Similarly, contemporary macro-models fall short in explaining the cyclicality of
labour market stocks. Searching and matching models describe wages as way more
rigid than they appear from published statistics. This is the essence of the Shimer’s
critique, which we aim to address estimating a measure for wage elasticity.

Lastly, bubble trajectories in commodity index investments appear at particular
points in time, signifying a conspicuous departure from pricing fundamentals
casting doubts on the efficient market hypothesis. Bubbles originate in practically
all asset classes and are a stable feat of the real estate and stock markets.

In this dissertation, we retain an empirical approach and concentrate on commodity
prices to gain insights on change in causality. In particular, we apply statistic tests
to detect them in real time. The dramatic increase in long-only index positions
followed by the GFC and a generalised collapse was so glaring that prompted US
regulators to establish trading limitations to prevent excessive speculation. Yet, the
academic consensus still supports the allocative efficiency of markets. We will show
that commodity markets have not been efficient during the GFC and at particular
points in time.

The first two chapters show how monetary policy drives demand/supply dynamics
for household loans and how interest rates decisions are transmitted to the wider
economy via the banking sector. The main contribution of these two thesis chapters
is to describe and model more precisely the mechanism of transmission associated
with the credit channel of monetary policy in the presence of key frictions such
as information asymmetry, capital requirements and sticky prices. In contrast to
most of the relevant literature, these chapters explicitly account for the intensive
and extensive margins of lending. Debt deleverage decisions happen on the
intensive margin, capturing how intensely households make use of banking loans.
Conversely, insolvency decisions are usually made along the extensive margin, i.e.,
whether households forcefully withdraw from borrowing – hence defaulting.

Chapter II, “Deleverage and Defaults in UK” is an empirical paper using the IV-VAR
methodology. Applying a high-frequency instrument based on market data, I am
able to identify monetary policy shocks in UK and trace their effects on the credit
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sector variables, as house prices, the household debt stock and insolvencies. By
calculating impulse response functions to the said monetary policy shock, I am able
to assess the reaction of the credit sector showing that individual insolvencies rise
very fast - peaking at 3% - as opposed to the sluggishness of real debt adjustment.

This result, which holds under a wide array of different identifications, points to
the existence of accelerating dynamics as house prices and debt are permanently
reduced upon an interest rate shock. I therefore conjecture about ‘accelerator-like’
dynamics in the mortgage market, as the opportunity cost of lending rises excluding
some risky projects from access to debt finance. This reduces house prices and
housing investments at the time of the money-tightening and in subsequent periods
as future housing holdings depend on current ones. Besides that, and on the
extensive margin, the increased default frequency feeds into banks’ balance-sheets
further tightening credit and dampening asset prices.

Figure 0.1: Credit View of Monetary Transmission

Author’s elaboration that expands on ’Credit view’ channels
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Channel Credit Channel Asset Prices
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Debt Service
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The empirical results are at odds with the large literature on ‘leaning against the
wind’ – i.e., tightening of monetary policy to cool off an overheated housing market
reducing house prices and household debt. Therefore, in the second chapter of
this dissertation “Leaning against the Wind and the Default Channel of Monetary
Policy” I explore asset prices targeting in a medium-scale tractable DSGE model.
The modelling framework allows for monetary policy to overtly follow a Taylor
rule that can be augmented to encompass credit aggregates.

The objective of this essay is twofold: I analyse a relevant policy question using a rich
model that is faithful to the ‘credit view’ of the monetary transmission mechanism
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(see Fig. 1) and therefore is apt to trace structurally the channels described above at
an aggregate level from the VAR presented in “Deleverage and Defaults in UK”.

There, I present a standard New-Keynesian setting to model house prices dynamics
where households debt is constrained by a time-varying loan-to-value ratio
motivated by an informational asymmetry. I can disentangle between demand
and supply of mortgages, as the external finance premium constrains the supply
of loans and the net-worth channel boost the demand enriching the business cycle
dynamics of an otherwise standard model.

While financial frictions are understood to provide a credible propagation mecha-
nism internal to the model and produce meaningful fluctuations on shocks, standard
labour market frictions are criticised for their inability to do so. Searching and
matching models (SAM) fail to generate plausible fluctuations in unemployment
on productivity shocks (a fact known as the ‘Shimer Puzzle’).

In “The Nash Wage Elasticity and its Business Cycle Implications” we address this
critique by proposing a new measure of wage rigidity, the Nash Wage Elasticity
(NWE). The NWE represents the percentage change in the actual wage rate when
the wage that would occur under Nash bargaining changes by 1%. This result
qualifies wage cyclicality relative to the Nash wage, as many models are concerned
with wage procyclicality but without a benchmark is unclear what is the model-
implied degree of stickiness. Providing an OLS and IV estimation of the NWE is
the first contribution of this third Chapter. The second contribution is showing how
calibrating the NWE in a standard SAM model can approximate the volatility of
the actual wage.

We do so by building a broad modelling framework that nests discrete time versions
of many different models from the search and matching literature. Combining
equations and publicly available stocks and flows data, we can compute a model-
implied Nash wage in a way similar to the ‘business cycle accounting’ literature.
We find that the Nash wage is more procyclical than all commonly used actual wage
measures (all employees, new hires wage and user cost of labour) and thus NWE
is significantly less than one. These estimates indicate that, for both continuing
workers and new hires there is a high degree of wage rigidity and Nash bargaining
provides a poor description of wage setting.

We find that when we calibrate the NWE in a parsimonious model, it makes an huge
difference to fluctuations in unemployment as we are able to match US business
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cycle moments. This means that aggregate wage rigidity is quantitatively important
for macro-modelling and it can be reflected into general equilibrium models by a
savvy calibration of the NWE.

The dissertation then turns to commodity markets, where the Great Financial crisis
(GFC) put a stop to runaway commodity prices, which collapsed in 2008. The
build-up of futures contracts was accompanies by an increase of index-investment,
suggesting that the interest in commodity futures had expanded from professional
hedgers to a broader class of long-only investors.

This anecdotal fact begs the question on whether financialization of commodities
markets translates into artificially higher prices.

The fourth chapter delves on whether money in-flows associated with index invest-
ments help predicting commodity future prices. Applying a time-varying Granger
causality test we are able to identify changing points in the index investment-future
prices relation and gauge its strength. This result represents an addition on the
literature on index investment and commodity prices. Whilst the causal relation
has been previously found in selected commodities, as crude oil prices or certain
agricultural commodities, there is no settled academic position on causality.

A second order of considerations for Granger-testing stems from the extreme
movements in prices associated with the GFC, as existing statistical tests are not
robust to structural breaks and non-stationarity and may produce spurious results.
To this purpose we use a recently introduced time-varying Granger test based on a
recursive-evolving algorithm.

We find whole-sample causality for non-ferrous metals whilst for some agricultural
commodities and crude oil causality is just around the GFC. For non-ferrous metals
this may be due to their inelastic supply and elastic demand, whereas for the other
commodities this may suggest a certain degree of financialisaton associated with
long-only investment positions.

We will now look at the first Chapter on ‘Deleverage and Defaults in UK’.
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1CHAPTER ONE

DELEVERAGE AND
DEFAULTS IN UK

Introduction

In the United Kingdom the number of household insolvencies has continuously
risen from their post-Crisis trough in 2015, and, in 2018 the number stood as high
as at 2010, close to 130,000 year-end new defaults. By the end of the same year,
the real household debt stock exceeded its all time historical level previously set
in 2008.1 The Bank Rate, on the other hand, was unprecedentedly low at 0.1%. It
is therefore topical to understand how a recessive monetary shock might impact
financial stability in such a context.

The effect of monetary policy on financial variables has received great attention
in recent works, with a number of authors arguing for a tightening of monetary
policy in situations of rising house prices or rising debt (Borio and Lowe, 2011;
Gambacorta and Signoretti, 2014), to ‘lean against the wind’. The advantage of such a
stance appears to be particularly relevant for highly levered economies, where local
policymakers might want to cool down debt accumulation and asset prices. Several
empirical papers have indeed found an effect of monetary policy on debt showing
a marked deleverage effect coupled with a decline in house prices (Hofmann and
Peersman, 2017; Robstad, 2018; Laseen and Strid, 2018) (henceforth ‘papers by
HPRLS’).

1Data sources are in Appendix A.1.

7



1. DELEVERAGE AND DEFAULTS IN UK

The aim of this paper is to extend this empirical framework to understand if the
responses of personal insolvencies to a monetary policy shock warrant particular
policy attention. To do so, I set up a Vector Autoregression (VAR) model akin to
the ones present in the papers by HPRLS. The Hofmann and Peersman paper has
investigated a panel of economies, whereas the latter two focused on Norway and
Sweden respectively. Here I will concentrate on the United Kingdom. The elements
of novelty of my work consist in including the number of individual insolvencies
among the regressors and using an external instrument to identify the dynamic
system. I highlight the role of defaults, which are only tangentially treated in the
papers by HPRLS. In particular, my VAR analysis delivers a response on impulse of
household insolvencies to a monetary shock, among to other variables common to
the literature.

The first contribution of this paper is to show that households’ credit quality makes
up a separate channel of monetary transmission. A policy contraction produces
some sudden and disorderly deleverage, thereby increasing the aggregated insol-
vency level. In the VAR, Insolvencies react much quicker than deleveraging and I
find that a monetary tightening leads to an uptick in individual insolvencies, they
peak at 2.2% after 8 quarters versus 0.36% debt reduction at the same horizon. I then
conjecture that household insolvencies might be part of a financial accelerator-like
mechanism feeding back to financial variables.

Moreover, the instrumental VAR model results also deliver policy relevant answers
in regards of a flexible inflation targeting. Debt-to-GDP ratio in UK is not
significantly different from zero upon a tightening and it is therefore an ineffective
measure when targeting financial stability. UK Debt-to-Income ratio declines but
the Granger causality test confirms that real debts are endogenous to house prices,
and house prices as a policy target are the object of a vast literature.

The importance of households’ credit risk in the monetary policy transmission
has implications for macro-prudential policy. The HPRLS papers have generally
assumed that debt deleverage would be orderly and neutral to households’ credit
quality. However theory (Bernanke et al., 1999) and empirical evidence suggest that
more defaults happen in distressed environments. The papers by HPRLS do not
reconcile this twofold aspect of debt deleverage, implicitly assuming that families
either pay back their debts, stop rolling them over or renounce to take additional
leverage after an interest rate tightening. Following this line of thought, a policy
induced deleverage might even be desirable from a macro-prudential angle. But
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what if this produces more defaults?

‘Leaning against the wind’ stance postulates the use of interest rate to target financial
variables, this translates into monetary policy what is a common macro-prudential
principle: creating risk buffers at the cycle height to counter down swings (e.g.
the Countercyclical Capital Buffer measure).2 That raises the question of whether
traditional macro-prudential policy would be better in achieving financial stability
rather than interest rate policy. Given that disorderly insolvencies are an important
part of the transmission of monetary policy then there is a potential welfare case for
using the interest rate in lieu of other more apt instruments.

Since VAR models are sensitive to identification assumptions, I also explore various
alternative sign-restriction identification schemes under a Bayesian approach in
Section 1.4 as a robustness check. The result is that the baseline model inference
continues to hold also when the shock is sign-identified.

I present the results of time-varying Granger causality tests to uncover the causal
direction between two variables at the time (Section 1.5). Such tests identify
the changing points of causal relations among variables, thereby addressing the
discontinuity represented by the 2008 crisis. This Granger causality testing is
performed on a reduced form version of the model, is not dependent on the
modelling choices established in the first part of this paper. The policy rate Granger-
causes insolvencies when it is high, ceasing to be relevant to bankruptcies from
when it plummeted to 2%. House prices drive debt dynamics whilst the opposite
only holds during recessions.

The paper is structured as follows: in the first section I present the literature behind
household credit decisions and the transmission of monetary policy. I shall devote
the second section to comparing different UK papers and how they have dealt with
the identification challenge in retrieving structural innovations. My model is then
presented in Section 1.3 with impulse response analysis. The remaining sections
present the sign-restriction approach and the time-varying Granger test.

2‘the countercyclical capital buffer regime may also help to lean against the build-up phase of the credit cycle
in the first place. In downturns, the regime should help to reduce the risk that the supply of credit will be
constrained by regulatory capital requirements that could undermine the performance of the real economy and
result in additional credit losses in the banking system.’ BIS description of Countercyclical Capital Buffer
(CCyB) (underline mine).
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1. DELEVERAGE AND DEFAULTS IN UK

1.1 Related Literature

The concept of credit risk features prominently in the seminal theoretical literature
on ‘financial market frictions’. The fact that borrowers may fail in honouring their
debts provides a micro-foundation for costly-state verification Bernanke et al. (1999)
and collateral constraints Kiyotaki and Moore (1997) models. These efforts have
established how lenders and borrowers optimising decisions can produce stronger
fluctuations in production and investments through oscillation in firms’ net worth
in a New-Keynesian general equilibrium context.

In real life, economy-specific structural factors such as the proportion of adjustable
rates over fixed and the average loan maturity dictate whether household would
either take up more debt or deleverage on the back of shorter-term attrition in
lending rates and house prices. This makes the theoretical impulse response
functions bounded to their own model hypotheses and represents the reason why
the problem at hand has been often approached from an empirical angle.

This paper retains an applied approach and is similar in spirit and methodology to
three papers developed by authors affiliated to Central Banks (HPRLS papers). The
aim is to shed light on how household finance responds to tight monetary policy
shock and the methodology is a Vector Autoregression analysis. In this section
I will mainly focus on these three papers with an eye on a few selected general
equilibrium models that have discussed a ‘leaning against the wind’ stance.

As the Swedish Riksbank ‘leant against the wind’ to curb house prices through
targeting the private debt stock, a discussion arose regarding the trade-offs of
setting monetary policy in response to asset prices and debt variables. Gambacorta
and Signoretti (2014) present such framework in a DSGE environment, finding that
a mixed policy rule produces greater gains in a highly leveraged economy.

An opposite conclusion appears in the theoretical framework laid by Svensson
(2014) , who argued that a rule responding to household debts has little effect on the
overall stock since income reacts to policy adjustment faster than debts producing
recessive consequences. Hence the cost of deviating from inflation targeting is
higher than the benefit as it bears a disproportionate effect on output and inflation.
3 Laseen and Strid (2018)’s paper is a direct response to Svensson (2014) and finds a
strong decline in real household debts and Debt-to-GDP ratio following a tightening.

3Using a calibration for the Swedish economy.
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1.1. Related Literature

The IV-VAR presented below in this paper supports this household debt dynamics
with UK data, although capturing no significant movement of Debt-to-GDP ratio.

Hofmann and Peersman (2017) takes a slight different angle, hinting at a ‘debt service
channel’ for monetary policy transmission by which interest and principal payments
relative to the existing household debt stock become more onerous as lending rates
increase with a monetary tightening. This makes the economies with a higher stock
of household debts more prone to a deterioration on a interest rate contraction. My
position is conceptually similar to theirs in arguing for a credit quality channel of
monetary transmission. Not only a rate tightening impacts households’ debt burden
but pushes some into default. This aspect is lacking in Hofmann and Peersman
(2017), who assume a benign debt deleverage, i.e. driven by principal repayments,
a view generally common across HPRLS.

To summarise the literature up to this point: whilst the effect of tight monetary
policy is well understood in regards of debts and house prices, there is no consensus
on the gains in terms of financial stability. I therefore contribute to this debate
by adopting the HPRLS VAR framework and supplement it with individual
insolvencies. I also discard the Cholesky identification to avoid defending a
particular recursive ordering, relying instead on an external series of shocks.
Hopefully, this effort will help nuancing more the effects of a mixed policy aimed
to stabilise credit aggregates.

The paper most similar to mine is Piffer (2018), who tries to reconcile the ‘financial
accelerator’ model (Bernanke et al., 1999) with an Instrumental VAR akin to the
one proposed below. He specifically includes delinquencies in his analysis on US
and investigates whether a policy easing shock causes more or less defaults. This
research question stems from partial equilibrium models of the risk-taking channel
of monetary transmission. In a lower interest environment, lenders may have the
incentive of targeting riskier clients to increase their interest income. This may lead
to a deterioration of lending portfolios and therefore the increase of non-performing
loans. Piffer (2018) empirically finds that an increase in wealth dampens default.
This finding is consistent with Bernanke, Gertler, and Gilchrist’s DSGE model,
which shows that positive net-worth effects prevail over risky lending pitfalls.

Nevertheless, debt might build up in periods of relative financial quietness. A
prolonged period of low inflation may be conducive to a crisis (Borio and Lowe,
2011) as supply side developments may feed into an overly positive sentiment
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causing lending and asset price booms. Credible monetary policy reinforces the
low risk perception and adds to the general exuberant feeling (Borio and Lowe,
2011). The loosening of credit standards coupled with yield compression often
precedes the downturn and have the potential of exacerbating the ensuing crisis.
This connects back to New-Keynesian DSGE models as many credit variables are
pro-cyclical as net-worth is.

DSGE models do not account directly for defaults (Goodhart and Tsomocos, 2011;
Gambacorta and Signoretti, 2014) but they are a normal feature of the economic
cycle 4 and they increase in crises. Household insolvencies endogenously arise
from net-worth down-movements, which are reinforced by falling house prices in
downturn periods. Feedback effects from banks’ balance-sheet may also result in
a reduced credit supply and amplify the cyclical swing. The recessive potential
of a monetary policy rule that purposely reacts to credit variables deteriorating
household finances is therefore still to be fully investigated.

1.2 The Identification Challenge

1.2.1 Monetary Policy in UK

In this section I briefly outline the history of monetary policy in the UK, since this
is relevant for the identification of monetary policy shocks. In recent history the
Bank of England (BoE) has not been bound by a single monetary rule. It targeted
the money supply from 1976 to transition to the exchange rate, at first informally
tracking the Deutsche Mark (1987-88) and from ‘89 by maintaining a floating band
around a fixed basket of ECU participating currencies within the of Exchange Rate
Mechanism (ERM) (King, 1997). Following Black Wednesday and its withdrawal
from the ERM, UK moved towards pure inflation targeting in October 1992. A
change of monetary regime happened when the new Labour executive granted
to BoE operational independence in 1997, although it did not change in the focus
on inflation targeting. With the Bank of England Act of 1998, the Monetary Policy
Committee (MPC) was given the responsibility of formulating monetary policy in
lieu of acting on a target rate set by the Treasury. The main policy instrument is
the Bank Rate but asset purchases were made as the Bank rate reached zero lower
bound in March 2009.

4As Goodhart and Tsomocos (2011) note, very seldom the repayment rate is 100%.
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Concomitantly to this policy shifting in the early ’90s, the Bank of England
underwent a series of structural reforms to improve the transparency of the decision
making process (King, 1997). It published its first Inflation Report in August 1993
and set a fixed calendar for MPC meetings and the publication of the relevant
minutes thereafter to counter-balance Treasury’s discretionality and, to the extent
possible, separate the rate-setting process from the Government political agenda.
The management of expectations has become a separate channel of transmission
and unconventional policy gaining prominence since. From March 2009, the MPC
also voted on the size of assets purchase programmes. The Central Bank adopted
an additional communication lever, a ‘forward guidance’ policy aimed to clearly
communicate under which conditions monetary policy is to be tightened and
quantitative easing modified (Dale and Talbot, 2013).

1.2.2 Identification of Exogenous UK Policy Shocks

The policy regime is not irrelevant to VAR identification and bears powerful
consequences on the model-implied conclusions. Interest rate is endogenous to
the state of the economy therefore to assess the impact of shocks, one would need
to find interest rate developments that are plausibly exogenous. The Cholesky
identification is the most used strategy in structural VARs literature but presents
a number of issues that I will discuss below. Because of its properties, it has been
considered unreliable to retrieve UK policy shocks. I shall outline what I mean by
identification and survey alternative approaches used in the British VAR literature.

Generally, identification boils down to performing a discretionary orthogonalisation
of the time-regression residuals. Such transformation is needed to interpret errors
as exogenous shocks originating outside of the system (Sims, 1980). This means
that the researcher has to formulate and make clear some valid hypotheses to
back the identification decision before estimating the VAR equations. Finding an
economically suitable identification is per se a daunting task, 5 which requires
careful pondering as it reflects assumptions on behaviour of the analysed economy
and on causal chains linking the regressors.

A straightforward method to achieve full identification is to impose restrictions
on contemporaneous reactions of macro-variables to monetary policy shock such

5‘The number of structural VARs is limited only by the inventiveness of the researcher’ (Stock and
Watson, 2001). Indeed, many different identifications have been proposed so far, such as sign or long
run restrictions". For a survey see Ramey (2016b)
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that each variable respond to impulse with a time lag from the one ordered right
before. This recursive identification is computationally inexpensive and is achieved
by operating a Cholesky decomposition on the reduced for residual covariance
matrix.

Such triangular system has a number of drawbacks: (1) progressive delayed
reactions are difficult to defend with lower frequency data or including financial
variables, which are likely to adjust simultaneously with the macro ones. (2)
Cholesky-identified VARs tend to produce at times puzzling impulse response
functions with results at odds with textbook theory. This may be due to the omission
of forward looking variables that the Central Bank uses to inform its decision. An
incorrect identification may pick up the endogenous component of interest rates, i.e.
when the Monetary Authority moves the rate with a predictable rule, responding
to developments in the other endogenous variables (Arias et al., 2019). (3) when
different monetary regimes coexist within the same sample, instrumenting the
interest rate in a Cholesky ordering may be incorrectly identifying policy shocks
(Rusnak et al., 2013).

A key difference between the papers by HPRLS and the literature regarding the
UK is that the former all use a Cholesky decomposition, 6 which has been openly
impugned and discarded in many of the UK papers. A reason behind that choice
might be that in the British cases researchers have endeavoured to achieve, either
directly or indirectly, a double goal: trace the effects of a monetary policy shock
and assess the transmission mechanism over a very long sample. The need for
a different identification is dictated by the length of the period analysed and the
breadth of the research questions tackled, almost assuming a historical perspective.
7

We have seen in the previous paragraph that the shift to inflation targeting is a
source of discontinuity in the data. Cloyne and Hürtgen (2016) address that by
including in a VAR a novel narrative series as endogenous regressor, which means
supplementing an otherwise standard system with new information. They find that
the response of inflation to monetary innovations is similar if taken pre and post
1992. What changes is the volatility of exogenous shock series, which is significantly

6Although Robstad (2018) also proposes an alternative sign restriction identification and different
Cholesky ordering.

7A tabular summary of key cited studies is presented in Appendix A.2 with a comparison of
their research questions and sample periods.
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reduced arguably thanks to a more attentive steering of monetary policy by the
BoE.

Ellis et al. (2014) make explicit the historical dimension of their study as they set
out to deal with different policy regimes analysing a sample from 1975 to 2005. A
Factor Augmented VAR model is meant to mitigate the omitted variable problem
by including factors from some 350 variables the Central Banker might react to.
Structural changes in UK policy making show in time-varying impulse responses,
as prior to 1992 monetary policy was neutral to inflation. After that date, monetary
policy gained in efficiency producing clear responses in CPI and asset prices to a
monetary tightening.

Analysing an overlapping time span (1974 - 2005), Mountford (2005) finds that
monetary policy accounts for a limited variation of output. Monetary policy reaction
to the other variables in the VAR are thus quantitatively more important than
exogenous monetary shock, hence the title of the paper is ‘Leaning into the wind’.

So we have established some econometric issues when applying VAR analysis to UK:
(1) There is a clear policy change in 1992, (2) monetary policy might endogenously
react to variables that are either inside or outside the VAR, (3) previous UK studies
have all been concerned in disentangling actual shock from the ‘systematic component’
of monetary policy (as defined in Gerko and Rey (2017)).

My approach differ from the historical one, as I am estimating a VAR on a
circumscribed time period, broadly coinciding with BoE reforms on adopting an
inflation targeting. Nevertheless, the IV-VAR is apt to produce more reliable results
with low-frequency data as opposed to a Cholesky decomposition, as it allows to
disregard a battery of rather mechanical assumptions about the system ordering.

Gerko and Rey (2017) and Cesa-Bianchi et al. (2020) articles are more recent and
they translate to the UK the Instrumental VAR methodology that I shall describe
in the next paragraph and use for my analysis. Gerko and Rey (2017) finds a
significant price and production puzzles when applying the Cholesky identification
to 1982-2015 data which an instrumental identification mitigates. In that instance,
a monetary tightening is neutral to RPIX and Industrial Production and drives
up lending spreads. That weak response might again be due to the length of
sample and policy heterogeneity. The significant pass-trough of the interest rate
shock on corporate and mortgage spreads is shared with Cesa-Bianchi et al. (2020),
who in turn find a significant decrease in economic activity measured by a rise in
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unemployment.

1.3 The Instrumental Vector Autoregression Approach

1.3.1 The Model

The model is an Instrumental Vector Autoregression (VAR-IV). Since monetary
policy might be endogenous to the other variables, I use an external instrument to
identify the interest rate equation. Following this stream of empirical research, I
identify the shock using an index of daily surprises on the Sterling Deposit Future
adopting the approach pioneered by Gertler and Karadi (2015) and Mertens and
Ravn (2013), although with lower frequency data and applied to UK variables.

High frequency identification aims to isolate exogenous shocks which are not
connected to the other time series in the VAR (Ramey, 2016b). To do so we need
firstly a reduced form VAR that takes the following shape:

yt =C+
p

∑
j=1

Ap︸︷︷︸
B−1

0 B j

yt− j + ut︸︷︷︸
B−1

0 wt

(1.1)

And then we need identifying restriction on the matrix B−1
0 to retrieve the monetary

policy shocks. Here an instrument Z respecting the following conditions comes
handy:

E[Ztw
p′
t ] = φ (1.2)

E[Ztw
q′
t ] = 0 (1.3)

Z must be correlated to monetary policy shocks wp′
t and uncorrelated to the other

structural shocks wq′
t .

So, as in Mertens and Ravn (2013) and Gertler and Karadi (2015), I proceeded
estimating a two stage regression (TSLS) following these steps:

1. Retrieve the error ut from the reduced form representation.

2. Compute the following regression up
t = a+ xZt + e, of which fitted values are ûp

t .

3. Estimate uq
t =

sq

sp ûp
t +ξ .
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Where the first stage isolates the exogenous part dependant on the instrument Zt

and the second stage yields an estimate of the ratio uq
t =

sq

sp . The separated sq and
sq can be obtained from partitioning of the structural coefficients matrix B and
covariance matrix Σ given the restrictions Σ = B−1

0 B−1′
0 and uq

t =
sq

sp .

B−1
0 =

[
β11 β12

β21 β22

]
Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(1.4)

Were β11 and Σ11 are k× k instruments used (here a scalar) and β21 and Σ21 are then
k× (n− k). The identification is thus provided by the closed form solution firstly
derived by Mertens and Ravn (2013).

β21β
′
11 =

sq

sp (1.5)

β12β
′
12 = (Σ21 −

β21

β11
)′Q−1(Σ21 −

β21

β11
Σ11) (1.6)

Q =
β21

β11
Σ11

β ′
21

β11
− (Σ21

β ′
21

β11
+β21β11Σ

′
21)+Σ22 (1.7)

β11β
′
11 = Σ11 −β12β

′
12 (1.8)

The first column of Σ can then be used to compute the impulse response functions
for the monetary policy shock.

1.3.2 Stationarity and Data

In my baseline VAR specification I use UK Bank Rate, GDP, GDP Deflator, House
Prices, Real Household Debt, Individual Insolvencies in this order. Data are taken
in log-levels and are quarterly, spanning from Q1 1987 to Q4 2018 for a total of
128 data points.8 An element that differences the present work from previous UK
studies and the papers by HPRLS is the inclusion of Individual Insolvencies, which
are compiled by the UK Insolvency Service and composed of Individual Voluntary
Arrangements, Debt Relief Orders and Bankruptcies. Real debt series comes from
ONS’ Households Loans series, which includes secured debt (mortgages and equity

8Sources and Charts are reported in Appendix A.1.
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releases) and unsecured debt (as credit cards and student loans). House Prices
series is the UK average house price. This series follows exactly the same dynamics
of the house price index, which is calculated normalising the average house price,
and has the advantage of being measured in GBP.

I include 2 lags in accordance with the Bayesian Information Criterion (BIC), which
is both consistent and parsimonious in the lag selection. The VAR system is
stationary being the eigenvalues of the companion-form matrix outside the unit
circle.

Cheng et al. (2019) deal with potential non-stationarity of series in a IV-VAR
estimation finding that for the estimated coefficient the error is ‘asymptotically
negligible’. In presence of non-stationarity, IRFs are asymptotically normal with
the covariance matrix depending on the persistence of each series. Cheng et al.
(2019) hence derive a GMM estimator for IRFs with an optimal weighting matrix
based on a consistent covariance estimator which enables the computation of IRFs
that are robust to non-stationarity of regressors. I have used that method to derive
non-stationarity robust IRFs as part of my robustness checks (reported in Appendix
A.4.3).

The external instrument Zt I use to pin down the exogenous component of reduced
form residuals spans from 1997 to the end of the sample. It is calculated around
specific monetary policy events from a handpicked dataset. In accordance with
the literature, my dataset of policy events includes three macro-categories of BoE
appointments: announcements, MPC Minutes disclosures and Inflation Report
publication.

Monetary policy is announced roughly every six weeks by BoE and the MPC
meeting minutes are disclosed on the following day. In terms of communication,
BoE has been publishing the Inflation Report since August 1993 and the minutes of
monthly MPC meetings since August 1996 no later than six weeks after the meeting
(two weeks from 1998). From 2015 MPC minutes and the Inflation Report have
been disclosed on the meeting day. In November 2019, the Infation Report changed
name into Monetary Policy Report and now carries more background information
on the overall economic conditions underpinning the monetary policy decision.
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1.3.3 The Instrument

Following the existing high-frequency IV-VAR literature on UK Cesa-Bianchi et al.
(2020); Gerko and Rey (2017), I use the ICE LIFFE Three Month Sterling (Short)
Future.9 This future contract captures the three-month ahead interest rate and
thus is a forward looking measure of interest rate surprises. According to papers
mentioned, the instrument can capture the surprises associated with unconventional
monetary as the publication of Inflation Reports and MPC Minutes update the
expectations of the public with fresh information on the state of the economy and
on what motivated the policy decision (Gerko and Rey, 2017).

The instrument is then calculated as follows:

Zdaily
t =−(Pdaily

t,τ+1 −Pdaily
t,τ ) (1.9)

Since the Sterling Future is quoted at discount (Pt = 100− InterestRate), the minus
sign before the parentheses in Equation 1.9 denotes that positive monetary surprises
corresponds to an increase in the interest rate. The subscript τ is the day of the
relevant policy event and τ +1 is the day after.

In their paper Cesa-Bianchi et al. calls their surprise index ‘daily’ or ‘high frequency’,
whereas here I reserved the label ‘daily’ to my indicator. (Cesa-Bianchi et al., 2020) it
is more of a ‘trading time’ indicator, being constructed on a database of tick-by-tick
data around monetary policy events (exactly 10 minutes before and 20 after). My
indicator uses the daily difference in settlement prices for that derivative contract,
thus it constitutes a lower frequency instrument than what is normally used in the
literature. The contract settles at 11.00 a.m. therefore daily differences capture the
money surprises as the announcement is disclosed at 12.00 a.m.

My first-stage regression (See 2) displays a F-Statistic (1,85) of 41.56 and R-squared
is 0.32, meaning that the instrument is a strong one. These results exceed the 10
F-Statistic threshold Stock and Yogo (2005) a rule of thumb under which the power
of the instrument is deemed weak.10

Similarly to Gertler and Karadi (2015), I derived a monthly and quarterly series by
cumulating and differencing the rough surprises series in the following fashion:

9Intercontinental Exchange Website.
10I have used Gerko and Rey (2017) and Cesa-Bianchi et al. (2020) instrument in my baseline

specification finding that the former is not a useful measure in my context [F-stat(1,69) = 0.63, R2 =
0.01], whereas the latter makes a strong instrument [F-stat(1,70) = 21.74, R2 = 0.24].
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1. I have calculated the daily surprise in Eq. 1.9 as at the days in which took
place a relevant policy making decision (meaning monetary policy committee
announcements, minutes or inflation report disclosures),

2. I cumulated them and

3. took a 31 days rolling average.

The monthly indicator is then the end of month first difference of the series obtained
with step (3). Similarly, the quarterly surprises series that I have used as an external
instrument in my baseline specification took a 3-period sum of monthly surprises.

Figure 1.1 represents the three instrumental variables side by side both in their
monthly formulation (top pane) and quarterly aggregated (bottom pane). In Cesa-
Bianchi et al. (2020), the largest surprise is the one associated with the interest rate
cut from 5% to 0.5% from September 2008 to March 2009. Gerko and Rey (2017)
choose to omit policy rate announcements from their dataset. This is because they
think that announcement press releases do not provide any new information due to
their brevity.

In this paper I include base rate announcements and, due to these differences, my
monthly surprise series is closer to the Cesa-Bianchi et al. one, though being more
volatile. Monetary ‘surprises’ that are only present in my dataset are in March
and May 2018, when the market started to price July 2018 tightening, updating
its expectation thanks to policy’s forward guidance. In general, I detect a slight
increase in volatility from 2017 probably due to general markets’ expectations of an
upcoming policy normalisation after an extended period of low interest rate and
the Brexit vote induced rate cut of 2016.
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Figure 1.1: UK Money Surprises

I derived a daily frequency indicator of monetary surprise as in Cesa-Bianchi et al.
(2020) (solid blue line). In my case money surprise is the change in price for a 3-
month sterling derivative future during the day of a monetary policy announcement.
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1.3.3.1 Instrument Robustness

Cesa-Bianchi et al. (2020) propose a Sargan-Hansen over-identification test to control
for non-monetary information potentially ‘contaminating’ the instrument. Under
the null hypothesis there is no correlation between instruments and reduced form
residuals (i.e. the instruments are both valid). Since this statistical testing strategy
requires more instruments than endogenous variables, I then leverage on the Cesa-
Bianchi et al. (2020) dataset using their high frequency indicator alongside with
Cloyne and Hürtgen (2016) narrative series as joint excluded instruments (quarterly
re-sampled).

I perform this test twice, coupling my baseline instrument separately with both
the externally available series. In both cases I cannot reject the null hypothesis
with 0.01 significance level, concluding that the daily instrument derived in the
above section is apt to identify the exogenous monetary shocks. This result is
particularly important when using the Cloyne and Hürtgen series, which is based
on a narrative approach and explicitly excludes other factors influencing monetary
policy (Cesa-Bianchi et al., 2020).

To further gauge the robustness of my baseline model, I have tried a variety of
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instruments as alternatives to the bank rate either in the VAR or as excluded
instruments for monetary policy surprises. These instruments include: the 5, 10
and 20 years UK ZCB rates, 3 month, 2, 5 and 10 years nominal par yields, the
3 months Libor swap rate and 3 months GBP/USD forward rate. Shorter rates
produce similar results, with lower first stage statistics than the combination of
policy rate and instrument I end up using in the baseline model.

1.3.4 Impulse Response Functions

Figure 1.2: Structural Impulse Responses of the Baseline IV-VAR(2) model on UK
Data.

Solid line represents point estimates. 90% confidence bands (dotted lines) are
obtained simulating artificial data and re-sampling the residuals 5,000 times
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The purpose of this section is to trace the effects of a monetary tightening - a one
standard deviation monetary surprise - to the six variables in the dynamic system,
providing intuition for the different channels at play (Figure 1.2). Confidence bands
are derived using a wild bootstrap method as originally proposed in Gonçalves and
Kilian (2004) and later widely adopted in the IV-VAR literature (e.g. Mertens and
Ravn (2013); Gertler and Karadi (2015)).

The responses on a monetary impulse of GDP and inflation are consistent with
textbook macro-models, with a rate hike reducing investments and price level on
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the back off demand-side developments. If seen through DSGE lenses 11, house
prices and real debt responses are conditioned by frictions in the provision of credit,
supporting the institutional views (as in HPRLS) that a money tightening impacts
house prices and real debts.

The decrease in house prices and real debt may be due to ‘accelerator-like’ dynamics
that involves on one hand an increase in the cost of borrowing, and the opportunity
cost of lending vis-à-vis the higher base rate, and on the other hand the households’
net worth. This mechanism is captured in theoretical models (Bernanke et al., 1999)
and it is self-reinforcing as a contraction depresses current period investments
having lasting effects on the future price of capital, further dampening investments
and net worth. This puts strains on the availability of external finance besides debt-
servicing costs, as households are likely to pledge housing properties as collateral
when entering into recourse debt contracts. Hence the fall in house prices leads to a
fall in real debt. This amplification mechanism feeds into consumption and output,
exacerbating the downturn.

Insolvencies are anti-cyclical, increasing in downturns and tapering in benign
periods across the business cycle. Qualitatively, the hump-shaped response I obtain
of insolvencies to a recessive shock is consistent with Bernanke et al. (1999). As per
their model, defaults are rising following a decrease in capital, here represented by
housing. Capital acquisition is proportional to net worth, so a shock that reduces the
return to capital transmits to wealth and raises the default probability. Insolvencies
are highly correlated with the unemployment rate (excluded from the baseline VAR)
as they are connected to the level of economic activity.

My VAR specification features a decrease in GDP, house prices and debts. Both
in the Cholesky specification (Appendix A.4.1) and in the instrumental variable
approach, insolvencies are rising following a monetary policy shock (within a 90%
confidence interval). The Cholesky decomposition does not yield any counter-
intuitive puzzling response in that case, just a stronger and more persistent positive
response in the GDP Deflator, otherwise being qualitatively consistent with the
IV-VAR.

Shock’s contractionary effects on real GDP and house prices persist after as many as
more than 30 quarters. The decline in house prices is somehow comparable to what

11Piffer (2018) retained a similar approach comparing his VAR findings with general equilibrium
models featuring financial market imperfections.
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has been found by Robstad (2018) whereas debt deleverage dynamic is stronger in
terms of magnitude and more persistent. It shows the through after 20 quarters
with signs of recovery thereafter, but after 40 quarters it is still significantly below
zero. The GDP deflator response is somewhat weak in the aftermath of the policy
decision and becomes significantly negative after 17 quarters.

House prices’ response starts very close to zero, highlighting that even without a
strict zero restriction, there is no contemporaneous reaction to a monetary policy
shock. Individual Insolvencies show a significant uptick before the tenth quarter,
with a peak at 2.2% 8 quarters after the fundamental shock. They fully revert to
zero prior to the twentieth quarter after the shock and then are significantly below
null at a 90% significance level.

In Figure 1.3 I plot the effect of a monetary policy shock to key consumption
aggregate series, individually substituting them for GDP in the baseline model.
Household Total Final Expenditure (consumption) quickly decreases from a near
zero response at the time of the shock. Durable consumption (house goods, vehicles)
instantaneously falls by -0.5%, when non-durable consumption (food, drinks) spikes
at time 0 to decay to nil within the first quarter. This illustration may offer a view on
an accelerator-like effect on the transmission mechanism involving household debt
and insolvencies appearing in the data. There is a quick and persistent demand side
reduction of investment and consumption upon a tightening. Hence insolvency
may happen on the back of a reduction in collateral value and tighter borrowing
constraints. This finding is consistent the Monacelli’s DSGE model, which attributes
the slump in durable consumption to collateral constrains becoming tighter after a
rate hike.

The policy takeaway is therefore that insolvencies play a role in the monetary
transmission mechanism as an exogenous tightening has sizable short run effects
on the level of defaults, causing their surge in the immediate wake of the relevant
decision. Real debts show a sluggish response, arriving at their lowest level much
slower than delinquencies. By the time defaults arrive at their peak in 8 quarters,
debt has reduced only by 0.36%. The response on impulse of insolvencies is hump-
shaped and becomes significantly negative after its spike, signalling that tight
monetary policy can achieve a modicum of financial stabilisation in the longer-run.
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Figure 1.3: Structural Impulse Responses of Consumption Aggregates in an IV-
VAR(2) model on UK Data.

The figure represents the response of impulse of consumption aggregates when
individually substituted to GDP in the baseline VAR. Solid line represents point
estimates. 90% confidence bands (dotted lines) are obtained simulating artificial
data and re-sampling the residuals 5,000 times
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1.3.4.1 Policy Relevance and Comparison with papers by HPRLS

My results regarding house prices and debt are broadly comparable with the papers
by HPRLS (Table 4.3), which have made use of the same regressor in spite of
the different countries in analysis. It shows however a stronger response of both
variables on inpulse. This may be due to the different identification strategy, which
here pins down exogenous shocks with the help of an external instrument.

One of the reasons behind the empirical modelling in researching the matter at hand,
is the lack of agreement on what the theoretical response of debts is on a shock.
Svensson argued through a DSGE example that in Sweden the Debt-to-Income
response to a policy tightening can be positive because of the short tenor of loans
and the low prepayment rate (Svensson, 2014) and the same applies to Debt-to-GDP.
In some cases, DSGE models that are assessing the benefits of a ‘leaning against the
wind’ policy stance are also ambiguous on stating the costs (Svensson, 2017).

I have controlled other potential policy targets in the VAR by substitution Real Debt
(Appendix A.4.4) with alternative regressors. Tight monetary policy does not result
in a meaningful change of the Debt-to-GDP ratio, which appears to raise following a
tightening shock but is never significantly different from zero. This result is shared
with Robstad (2018) and contradicts Laseen and Strid (2018).

When used in my specification, Debt-to-Income ratio follows an undetermined path
up to the sixteenth quarter and then is briefly significantly negative (Appendix
A.4.5). A Granger-causality test highlights that the causality relation goes from
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house prices to debt and therefore Debt-to-Income as monetary policy target might
work indirectly through the steering of real-estate prices.12

A specification more similar to Cesa-Bianchi et al. (2020) is presented in Appendix
A.4.6. It includes unemployment as a measure of economic activity and mortgage
and corporate rates beside the other variables from the baseline model. This
specification is insightful in highlighting the policy rate close to 1-to-1 pass-through
on the quoted household mortgage after two quarters since the shock, whereas the
corporate rate response is weaker and noisier. In all cases insolvencies respond
similarly than the baseline model.

Table 1.1: Comparison with Previous Studies

Peak Response to a standard deviation (or 1%, when marked with an asterisk)
monetary policy shock on House Prices and Real Debt. From papers’ text body and
visual inspection of impulse response charts.

Authors Country Method Identification Peak House Prices Response Peak Debt Response

Laseen and Strid (2018) Sweden Bayesian (Litterman Prior) Recursive -0.20% -0.20%
Robstad (2018) Norway Bayesian (Inverse Wishart Prior) Recursive -3.00%* -1.00%*
Hofmann and Peersman (2017) Across Panel OLS Recursive -1.70%* -1.20%*
Mario Lupoli UK OLS Daily Frequency -2.00% -0.77%

1.3.4.2 Monetary Policy and Information Shocks

A key consideration for the success of the instrumental identification is that the
instrument is uncorrelated with shocks in variables other than the one directly
instrumented (Eq. 1.2 and 1.3). In this paper the risk of a spurious identification is
greater than in the rest of the literature due to the reliance on daily surprises, an
indicator sampled at a lower frequency than trading time.

I address this concern through two separate interventions: I sign-identify a pure
monetary shock using the Jarociński and Karadi (2020) method and I test the
instrument relevance with a Sargan-Hansen over-identification test (see above, in
Section 1.3.3.1).

Jarociński and Karadi (2020) devised an empirical strategy to identify the infor-
mation shocks and separate them from the pure monetary one. The methodology
exploits two high frequency series: monetary surprises and stock price surprises,
but instead of using them as excluded instruments, they are included as endogenous

12Whereas it can be directly impacted by macroprudential policy as in the form of LTV ratios or
capital adequacy requirements.
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variables in a Bayesian VAR. The system is then sign-identified by imposing ex-post
restrictions on impulse response functions.

Here, the inclusion of stock market surprises is fundamental to separate two
different shocks. Stock market surprises are deemed to move in the same direction
of money surprises following an information shock, i.e. when the Central Bank
discloses additional positive information about the state of the economy together
with a monetary policy decision. In the case of a pure monetary shock, the stock
market surprises will move oppositely to money surprise.

In practice, I enforce a sign restriction scheme which allows only the two high-
frequency indicators to move simultaneously and I impose zero restrictions to
the contemporaneous response of other variables (exactly as in Jarociński and
Karadi (2020)). This identification is based on the block recursive scheme presented
below in Section 1.4. I calculated the surprises in the daily FTSE 350 Index around
monetary policy decisions in the same way I computed money surprises (Section
1.3.3).

In Figure 1.4 I compare the monetary policy shock to the positive information shock.
This alternative identification strategy is instrumental to provide a qualitative
benchmark to my baseline IV-VAR. A pure monetary shock continues to produce
insolvencies even under these stricter identification assumptions. Defaults are
more front-loaded than in the baseline instrumental identification, peaking after
5 quarters. This continues to suggest that pure monetary surprises are relevant to
households’ credit quality.

The caveat here is that this exactly identified scheme is based on stronger identifica-
tion assumptions than the baseline IV-VAR as it is a mix of sign and zero restrictions.
Also, in order to use the derivative high frequency instruments as endogenous
variables in the VAR, I throw away their missing values, effectively running this
VAR on a subset of 87 observations, making the inference less stable.
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1. DELEVERAGE AND DEFAULTS IN UK

Figure 1.4: Structural Impulse Responses of a sign-restricted block recursively-
identified VAR(2) model on UK Data identified as in Jarociński and Karadi (2020).
The solid line represents the median response and dotted lines are the 68% percentile
bands associated with the Monetary Policy Shock. Dashed line is the median
response to the Information Shock.
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1.4 Robustness Check: Sign Restrictions

As a robustness check for the instrument identified VAR presented in Section 1.3, I
considered a sign identification, as pioneered by Uhlig (2005) and applied to UK
data by Mountford (2005).

This specification can achieve an identification of the monetary policy shock by
restricting impulse responses to be either a positive or negative for a number of
periods after the shock. This eliminates puzzles by construction producing impulse
responses that match the textbook knowledge on what the qualitative consequence
of a shock is.

1.4.1 The Bayesian VAR Model

Consider a VAR model as in Eq. 1.1:

yt =C+A1yt1 +A2yt2 + ...+Apytp +ut (1.10)
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In which ut ∼ N(0,Σu). It can be re-written in a compact form of:

y = Xβ +U (1.11)

Were X = (In⊗X) and β = vec(A1,A2, ...,Ap,C). The VAR model is estimated through
a Bayesian approach. The Bayes theorem enables us to approximate the posterior
density given a sampling distribution and prior beliefs. In particular, the chosen
prior is the Inverse-Wishart, the conjugate of the multivariate normal covariance
matrix:

β |Σu ∼ i.i.d. N(β ,Σu ⊗β ) (1.12)

and

Σu ∼ IW (Ψ,υ) (1.13)

The Inverse-Wishart is an informative prior parametrised by a semi-definite Ψ

matrix and υ degrees of freedom. The conjugacy implies a posterior distribution of
the same family of the prior allowing simpler estimation of the parameters.

1.4.2 The Structural Form

The VAR model in Equation (1.10) is a reduced form of a model where Ai = B−1
0 Bi

and the model errors are a weighted average of structural shocks ut = B−1
0 wt , as in

the underbrace of Eq. 1.1.

Differently from the case illustrated above, the Bayesian setting entails embracing a
priori beliefs on the parameters of B0 (Miranda-Agrippino and Ricco, 2018) as the
selected prior is informative.

I have tried different forms of identification in order to recover the structural
monetary shock, belonging to the following categories:

1. Partial Identification;

2. Exact Identification.

The first identification procedure doesn’t attempt to identify all structural shocks but
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1. DELEVERAGE AND DEFAULTS IN UK

only a monetary policy one. Conversely, other identification schemes do by means
of exact identification of the system. In both cases a mix of sign and exclusion
restrictions is imposed over the parameters of B−1

0 to overcome any potential
counter-intuitive response to monetary shocks, the ‘price puzzle’.

1.4.3 Partial Identification

According to Uhlig (2017) a useful heuristic is to verify the reasonableness of re-
strictions by only imposing restrictions justifiable by textbook economic theory and
remain ‘agnostic’ on the variables which response to a shock is to be investigated.

So the first sign-restiction specification that I have tried is the most parsimonious
one, in the spirit of Uhlig (2005). I only try to retrieve the first vector of the
covariance matrix imposing three restrictions to the structural policy shock, which I
am interested in identifying. As a benchmark for using sign restrictions to control a
VAR, I have used the recent paper by Cantore et al. (2020), which has the advantage
of establishing straightforward sign-identification rules for a monetary policy shock
with the aim of imposing as few restrictions as possible and to do so in accordance
with known macro-models. I deem a monetary policy shock to:

• interest rate increases upon a monetary shock;

• decrease of GDP upon a monetary shock;

• decrease of the GDP deflator upon a monetary shock;

In this case restrictions on the covariance matrix Σ have the form:



uIR

uGDP

uDe f l

uHP

uDebts

uIns


=

wm wy w3 w4 w5 w6



+ ∗ ∗ ∗ ∗ ∗
− ∗ ∗ ∗ ∗ ∗
− ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

(1.14)
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1.4. Robustness Check: Sign Restrictions

where the asterisk denotes unrestricted coefficients and the +/− signs indicate
the restricted direction on a shock impact. As a difference with Cantore et al.
(2020), I do not impose sign restrictions up to the second time-period, only limiting
the contemporaneous responses, hence being more sparing with the number of
assumptions. Throughout this section and the next I have used Arias et al. (2014)
algorithms rather than the Uhlig (2005)’s ones. The former are based on finding an
orthogonal rotation matrix through the QR decomposition of a randomly generated
matrix of normal numbers, which have the uniform Haar distribution. The impulse
responses are shown in Figure 1.5.

Figure 1.5: Structural Impulse Responses of a sign-restricted identified VAR(2)
model on UK Data.

The solid line represents the median response and dotted lines are the 68% percentile
bands.
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The impulse response functions are not very informative. Whilst maintaining a
similar shape to the IV-VAR they are weaker, displaying very wide posterior density
percentile bands. To correct that specification and to improve the shock retrieval,
I have used the approach of Arias et al. (2019) in imposing restrictions on the
‘systematic component’ of monetary policy.

This identification has the benefit of only restricting the interest rate equation of the
VAR system and boils down to two sets of restrictions:

1. The interest rate only contemporaneously responds to GDP and price level;
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1. DELEVERAGE AND DEFAULTS IN UK

2. The contemporaneous response of interest rate to GDP and price level is positive.

The Restriction (1) allows the interest rate setting process to be consistent with a
standard Taylor Rule and Restriction (2) captures the endogenous component of
a given policy decision, i.e. the Central Bank hikes the rate simultaneously to an
increase of output and prices. An important feature of this approaches is that it
does not force GDP and Deflator to be negative at a given horizon, but pins down
their response in assuming to what aggregates the Central Bank reacts to.

This identification scheme yields clearer IRFs that are again similar to the baseline IV-
VAR model (in Figure 1.6). GDP, House Prices are immediately declining, whereas
the Deflator is significantly negative in the longer term. Insolvencies show a short-
term hump, increasing to the 2% on impulse, falling in the same ballpark as in
the unrestricted baseline IV-VAR. The covariance matrix presents in this case three
zero restrictions (0 in the scheme below - as per restriction 1), as the interest rate is
deemed not to react to house prices, debts and insolvencies within the same period.



uIR

uGDP

uDe f l

uHP

uDebts

uIns


=

wm wy w3 w4 w5 w6



+ + + 0 0 0
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

(1.15)
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1.4. Robustness Check: Sign Restrictions

Figure 1.6: Structural Impulse Responses of a restricted identified VAR(2) model on
UK Data identifying the systematic component of policy.

The solid line represents the median response and dotted lines are the 68% percentile
bands.
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1.4.4 Exact Identification

The second battery of sign restrictions hinges on exactly identifying the whole
model imposing n× (n−1)/2 restrictions on the structural impact matrix in order
to recover the structural shocks that are not a linear combination of others.

In the discussion on the Cholesky decomposition above, we have seen that the
recursive restriction pattern holds justifiable under an economic standpoint as it is
seen as a way to establish a causal chain among variables. In this section I have used
the same ordering as in Section 1.3 to implement sign-restrictions in two different
recursive systems.

The first one is a standard Cholesky system, with Σ upper triangular. It revolves
around the standard assumption that the variables are affected by a monetary policy
shock according to their ordering, in this case: GDP, inflation rate, house prices
followed by real debts and insolvencies. Sign restrictions are imposed up to the
second period of the impulse response function.13

The second identification scheme provides a block-recursive identification, the
13I have omitted the scheme of this identification and its IRFs as they are very similar to the

block-recursive ones below.
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variables are grouped in two separate blocks. The first 3×3 block represents the
main macroeconomic variables ordered as stated at the beginning of this section.
Last three variables constitutes the household debt market. The second block
variables’ shocks do not feed into the first block macroeconomic aggregates meaning
that they do not have a contemporaneous effect on the first block. The relevant
impulse responses are shown in Figure 1.7.

This intuition behind that scheme is that the credit variables react with some lag on
monetary impulse and contemporaneously among themselves, being house prices,
real debts and insolvencies interrelated. This evidence is also supported by the
baseline model, where house prices and Insolvencies responses started very close
to 0 without imposing exclusion restrictions on their respective coefficients.

The system is exactly identified as the coefficients associated with the macro
variables (represented as dots in the below scheme) are dictated by starting
covariance matrix and are not affected by further QR rotations.



uIR

uProd

uDe f l

uHP

uDebts

uIns


=

wm wy w3 w4 w5 w6



• • • ∗ ∗ ∗
0 • • ∗ ∗ ∗
0 0 • ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗

(1.16)
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1.5. Causal Inference

Figure 1.7: Structural Impulse Responses of a sign-restricted block recursively-
identified VAR(2) model on UK Data. The solid line represents the median response
and dotted lines are the 68% percentile bands.
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1.5 Causal Inference

I test for causality using a Time-Varying Granger-causality test. Granger tests are
widely used in the analysis of VAR as they enable the researcher to understand
which variable makes a useful predictor of others within the same system. They
test p zero constraints to the coefficients matrix. When we fail to reject the null
hypothesis of no Granger-causality from a regressor to another, we infer that the
former is a good predictor for the latter.

A standard Granger test based on Wald statistics is reported in Lütkepohl (2005)
and Shi et al. (2018)14:

W = [R vec(Â)]′[R((X′X)−1 ⊗ Σ̂)R′)]−1[R vec(Â)] (1.17)

and
W ∼ χ

2 (p) (1.18)

Where Â represent the matrix of reduced form VAR coefficients and Σ̂ the estimated
14In Shi et al. (2018) the matrix of coefficient is row-vectorised, in Eq. 1.17 I report a version with

column-vectorisation.
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covariance matrix. X is the matrix of lags and R is a [n× (k2 p+ k)] constraints
selection matrix where p are the lags, k the VAR dimension and n the number of
restrictions to be tested.

Shi et al. (2018) have recently proposed an alternative way to carry out the static test
in Eq. 1.17. Computing the Wald statistic over the span of the entire VAR averages
the information and potentially produces misleading inference. In particular, such a
test would not reveal shifts in Granger-causality relations with the relevant changing
points.

They hence base their time-varying testing strategies on a series of nested computa-
tion of the Wald statistics on data sub-samples. Starting from the first data point,
the Wald statistic is computed on an arbitrary long sub-sample, which is then rolled
one period ahead. At each iteration forward, a number of ancillary regressions is
calculated expanding the sample backwards until it includes the first observation.
The relevant statistic is then a Supremum Norm of the set of Wald statistics (SW)
calculated for each iteration forward. When the SW exceeds a certain critical value
for the first time a changing point in causality relation is identified.

I use this test to address the 2008 Crisis discontinuity in the dataset, during which
variables showed extreme behaviour. I also use the Shi et al. (2018) version of the
test that is robust to conditional heteroscedasticity (in Eq. 4.4) given that it is applied
to reduced form residuals of Eq. 1.1, which I have identified as endogenous in
the first part of this paper. An implication of the Shi et al. (2018) paper is that the
asymptotic distribution of the Wald test should hold when there is not cointegration,
given that the VAR is stationary.

W = Tw[R vec(Â)]′[R((V−1
Ω̂V−1)R′)]−1[R vec(Â)] (1.19)

Where V = Q̂⊗ In and Q̂ = 1
Tw

∑
T f2
t=T f1

xtx′t ,and Ω̂ = ∑
T f2
t=T f1

ξ̂t ξ̂
′
t with ξ̂ = xt ⊗ ε̂t .
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1.5. Causal Inference

Figure 1.8: Time-Varying Heteroscedastic Granger Causality Test

Critical Values are derived from the 95% percentile of the SW statistic on a
bootstrapped sample of the VAR
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1.5.1 Results the Time-Varying Granger-Causality Test

In Figure 1.8 I present the results from an evolving recursive heteroscedastic Wald
test as in Eq. 4.4 where coefficients Â are calculated from a reduced form of the
IV-VAR presented above. I use 2 lags in accordance with the Bayesian criterion.

The objective of this exercise is to uncover potential structural changes involving
the baseline variables. I find the predictability test in object useful as it enables
further inference on the dynamic relations among variables. Some regressors are
good predictor of others only for a limited period of the sample and this is not
immediately evident from a whole-sample Granger test. This permits to extend
the scope of this when it comes to identifying the channels of monetary policy
transmission.

There is a data evidence of a debt deflation channel impacting on borrowers. House
prices and real household debts are well predicted by the GDP deflator in 2007-2008
and more recently. This is consistent with the view that stable and low inflation with
positive GDP developments may be conducive to leverage (Borio and Lowe, 2011).
The GDP deflator Granger-causes the abnormal build up of individual insolvencies
from 2016, emphasising the role of the price level on household decisions.
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Bank rate Granger-causes house prices almost across the entire sample period and
it is a useful predictor of the debt stock from September 1999 to December 2010.
Practically, the Bank rate ceases to be relevant to debt once that has reached its peak
in late 2010. There is a clear change in the volatility of the SW of interest rate to
insolvencies when the rate approaches zero lower bound. The bank rate bears no
impact on insolvencies throughout the last decade but it predicts them during the
first part of the sample. The Bank rate Granger-causes insolvencies intermittently
for two years in 2004-2006, when there are numerous tightening episodes. This
seems to suggest that a monetary policy tightening has on defaults a different
effect than an easing. An interesting expansion of the present work could be using
non-linear VAR models to account for potential differences in how insolvencies
respond to either tight or easy monetary policy.

Household debt is endogenous to house prices, supporting the notion of co-
movement of these two variables (Borio, 2014). It is interesting that the causal
relation goes from house prices to real debt and not vice versa, this reinforces the
understanding of Broadbent (2019) of house prices driving the credit expansion.
Inversion of that relation follows on periods of house market decline, maybe due to
debt overhang dynamics, e.g. around the financial crisis.

1.6 Conclusions

I present an IV-VAR model with household insolvencies showing that a policy-
induced debt deleverage also corresponds to an increase in default levels. This
finding is new as insolvencies have not been taken into account by previous papers
investigating debt reduction and monetary policy in other countries. I find that
households’ credit quality acts as a transmission mechanism for monetary policy
by deteriorating fast in response to a contractionary monetary shock. This view is
consistent with financial frictions DSGE models such as those featuring the ‘financial
accelerator’.

This paper has policy implications for both monetary policy and financial stability.
Monetary authorities may wish to steer rates attentively in presence of highly lev-
ered households. Asset prices rallies and increase in debt in a benign environment
can be quickly reversed by a rate hike. Thus there appears to be trade-offs between
inflation and household conditions.
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1.6. Conclusions

Optimal monetary policy and welfare implications of different policy rules in
presence of insolvencies and high household debt are outside of the scope of this
empirical paper, but their investigation in a canonical DSGE setting represents an
interesting and relevant research program for financial stabilisation. Such research
could build on the stylised facts regarding deleveraging and default here presented.

Central Banks that deviate from pure inflation targeting to factor in financial stability
will wish to be careful that the policy rule is effective. Trying to trigger a debt
reduction with monetary policy instruments might be detrimental to households
and therefore not achieve its intended objective, adding to imbalances instead of
steering the economy clear of a recession.
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AAPPENDIX A

APPENDIX TO CHAPTER
1

A.1 Data Sources

Table A.1: Data Sources

Time Series that weren’t originally adjusted have been seasonally transformed and
deflated

Variable Datastream Ticker Source Deflated Deseasoned

In the VAR
a Bank Rate UKPRATE BoE NA NA
b GDP Chained Volume UKGDP...D ONS NA Y
c GDP Deflator NA g/b NA NA
d Average House Price UKNWALLP Nationwide N N
e Household Debt UKNIWKQ.A ONS N N
f Individual Insolvencies UKAIHK..P Insolvency Service N N
GDP
g GDP at Market Prices UKGDP...B ONS NA Y
Additional Variables
h Gross Disposable Income UKPERDISD ONS N Y
i Annualised Income NA Four Quarters Rolling Sum of i NA NA
j Unemployment UKUN%O16Q ONS NA Y
k Debt to Income NA e/i NA NA
l Debt to GDP NA e/Four Quarters Rolling Sum of b NA NA
m Mortgage Rate NA BoE 1 NA NA
n Corporate Rate NA BoE 16 NA NA
o Household Final Consumption Expenditure NA ONS Y Y
p Total Durable Goods NA ONS Y Y
q Total Non Durable Goods NA ONS Y Y
r FTSE 350 Index FTSE350 Refinitiv NA NA
Z Instrument NA Own Calculations NA NA

1Mortgage Rate up to Q4 2016 from ‘A millennium of macroeconomic data’ dataset, then
extrapolated from ‘UK Secured Loans,New Advances, Floating Rate’ (DS Ticker UKZ6JT..R.).
Corporate Rate up to Q4 2016 from ‘A millennium of macroeconomic data’ dataset, then extrapolated
from UK corporate benchmark yields across all maturities and ratings (DS Series TRBC).
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Figure A.1: Baseline Model Time Series and Debt Ratios
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A.2 Summary of Cited Studies

Table A.2: Cited Studies

Authors Country Time
Sample

Research Question/Goal Identification Regressors

Hofmann and
Peersman
(2017)

Across
Panel

1985 -
2008

Is there a debt service
channel of monetary trans-
mission?

Recursive Real GDP, GDP Deflator, Real House
Prices, Policy Rate, Real Private Credit
and a Debt-Servicing Ratio.

Laseen and
Strid (2018)

Sweden 1995 -
2013

[to investigate] the rela-
tion between the shorter-
term dynamics of debt
and the effects of mone-
tary policy on debt

Recursive Trade-weighted Foreign GDP, Foreign
CPIF, Foreign Short Term Rate, Repo
Rate, Domestic Real GDP, Domestic
CPIF, House Prices and Real Debts.

Robstad
(2018)

Norway 1994 -
2013

to quantify the effect of
a monetary policy shock
on household credit and
house prices in Norway

Recursive GDP, CPI-ATE, Policy Rate, FX Rate,
House Prices and Real Household
Credit.

Mountford
(2005)

UK 1974 -
2005

to investigate the effects
of UK monetary policy
[shocks]

Sign
Restriction

GDP, Bank Rate, M0, FX rate, GDP
Deflator, Oil Price.

Ellis et al.
(2014)

UK 1975 -
2005

to investigate changes in
the transmission mecha-
nism of economic shocks
in the UK

Sign
Restriction

Bank Rate and 2 Factors from 350 UK
data series.

Cloyne and
Hürtgen
(2016)

UK 1975 -
2007

estimat[ing] the effects of
monetary policy

Narrative Industrial Production, RPIX, Commod-
ity Prices, Narrative Surprises.

Gerko and
Rey (2017)

US and
UK

1982 -
2015

How does [the impor-
tance of financial markets]
affect the effectiveness of
monetary policy?

Instrumental 5yr GILT Rate, RPIX, Industrial Pro-
duction, Corporate Spread, Mortgage
Spread, VIX, FX Rate.

Cesa-Bianchi
et al. (2020)

UK 1992 -
2015

how monetary policy
transmits to the broader
economy

Instrumental 1yr GILT rate, CPI, unemployment rate,
FX rate, mortgage spread, corporate
bond spread
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A.3. Exogenous Instruments

A.3 Exogenous Instruments

A.3.1 Instrumental Variable Sources

• Bank of England Directory of MPC Minutes: https://www.bankofengland.
co.uk/sitemap/minutes;

• Bank of England Directory of Inflation Report publications: https://www.
bankofengland.co.uk/sitemap/inflation-report;

• Bank of England ‘A millennium of macroeconomic data’ dataset: https:

//www.bankofengland.co.uk/statistics/research-datasets;

• Monetary Policy Committee Voting History Spreadsheet: https://www.

bankofengland.co.uk/monetary-policy2.

Figure A.2: UK Money Surprises Instruments

Monthly and Quarterly Surprises proxies from Gerko and Rey (2017) and Cesa-
Bianchi et al. (2020). Pearson correlation coefficient with my surprises is overlay-ed.
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A. APPENDIX TO CHAPTER 1

Table A.3: This Paper First Stage Regression Results

R-Squared = 0.32; F-statistic vs. Constant Model = 41.56

Coefficient Standard Error t-Stat p-Value

Intercept 0.05 0.03 1.42 0.16
Money Surprises (Instrument) 1.65 0.26 4.45 0.00

Figure A.3: Baseline Model Interest Rate Equation Residuals and Instrumental
Surprises
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A.4. Alternative Specifications

A.4 Alternative Specifications

A.4.1 Cholesky SVAR

Figure A.4: Structural Impulse Responses of a Cholesky SVAR

Solid line represents point-estimates. 90% confidence bands (dotted lines) are
obtained simulating artificial data and re-sampling the residuals 5,000 times. The
dashed line shows the baseline model IRFs
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A. APPENDIX TO CHAPTER 1

Figure A.5: Forecast Error Variance Decomposition of a Cholesky SVAR

If analysed with a forecast error variance decomposition, in the Cholesky setting,
my findings are different from Mountford’s as interest rate explains at the least 30%
of variation of a GDP shock after 40 quarters and 70% of its own variation, thereby
not ‘leaning into the wind’.
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A.4. Alternative Specifications

A.4.2 Non-Stationarity Robust

Figure A.6: Structural Impulse Responses of a IV-VAR(2) model computed with
Cheng et al. (2019) GMM estimator and consistent covariance in case of non-
stationarity.

Solid line represents point-estimates. 90% confidence bands (dotted lines) are
obtained simulating artificial data and re-sampling the residuals 5,000 times. The
dashed line shows the baseline model IRFs
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A. APPENDIX TO CHAPTER 1

A.4.3 With Consumption Aggregates

Figure A.7: Structural Impulse Responses of a IV-VAR(2) with Household Total
Final Expenditure

Solid line represents point-estimates. 90% confidence bands (dotted lines) are
obtained simulating artificial data and re-sampling the residuals 5,000 times. The
dashed line shows the baseline model IRFs
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Figure A.8: Structural Impulse Responses of a IV-VAR(2) with Household Durable
Consumption

Solid line represents point-estimates. 90% confidence bands (dotted lines) are
obtained simulating artificial data and re-sampling the residuals 5,000 times. The
dashed line shows the baseline model IRFs
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A.4. Alternative Specifications

Figure A.9: Structural Impulse Responses of a IV-VAR(2) with Household Non-
Durable Consumption

Solid line represents point-estimates. 90% confidence bands (dotted lines) are
obtained simulating artificial data and re-sampling the residuals 5,000 times. The
dashed line shows the baseline model IRFs
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A.4.4 Debt-to-GDP

Figure A.10: Structural Impulse Responses of a IV-VAR(2) model with Debt-to-GDP

Solid line represents point-estimates. 90% confidence bands (dotted lines) are
obtained simulating artificial data and re-sampling the residuals 5,000 times. The
dashed line shows the baseline model IRFs
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A. APPENDIX TO CHAPTER 1

A.4.5 Debt-to-Income

Figure A.11: Structural Impulse Responses of a IV-VAR(2) model with Debt-to-
Income

Solid line represents point-estimates. 90% confidence bands (dotted lines) are
obtained simulating artificial data and re-sampling the residuals 5,000 times. The
dashed line shows the baseline model IRFs
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A.4. Alternative Specifications

A.4.6 With Lending Rates

Figure A.12: Structural Impulse Responses of a IV-VAR(2) model with Credit
Spreads

Solid line represents point-estimates. 90% confidence bands (dotted lines) are
obtained simulating artificial data and re-sampling the residuals 5,000 times. The
dashed line shows the baseline model IRFs
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2CHAPTER TWO

LEANING AGAINST THE
WIND AND THE

DEFAULT CHANNEL OF
MONETARY POLICY

Credit-market conditions - sharp increases in insolvencies and
bankruptcies, rising real debt burdens, collapsing asset prices, and bank
failures – are [. . . ] themselves a major factor depressing economic activity

Bernanke, Gertler, and Gilchrist

2.1 Introduction

An open question in macroeconomics is whether the Central Bank should deviate
from inflation targeting to devote particular attention to credit variables. The case
for mixed monetary policy rules becomes periodically more salient, when swings
in the credit cycle produce large deviations of lending from its baseline. As this
happens, debt-to-income ratio tends to be elevated and assets overvalued. This
situation manifests until the reversal of the credit cycle brings about a wave of
defaults and an economy-wide lending contraction.

The key empirical stylised facts of the credit cycle are that a) it moves at a lower
frequency than the business cycle (Aikman et al., 2015) and b) correlates with
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2. LEANING AGAINST THE WIND

lending conditions, credit spreads and loan approvals are strongly pro-cyclical and
c) a reversal of the credit cycle brings about defaults.1 Moreover, the credit cycle
interactions with the business cycle add to its persistence. Low price growth and
low interest rates may facilitate debt accumulation and in turn reinforce booming
asset prices in the build-up phase, making the default phase more pronounced. This
circularity between interest rates, asset prices and credit quality is associated with
weaker financial stability (Borio and Lowe, 2011).2 Almost always the build-up of
the credit cycle correlates with heightened systemic risk and its burst coincides with
a recession.

Facts (a) and (b) mentioned above pertain to the intensive margin of lending -
debt/deleverage decisions of households and banks - while fact (c) is on the exten-
sive margin - if the lending relationship survives the economic strain. The model I
present below is connected to the first chapter of my thesis, which complements the
empirical literature on the intensive margin (borrowers deleverage), with evidence
on the extensive margin (defaults).

In this paper I propose a simple New-Keynesian model geared to capture the
stylised facts of a realistic credit market. Its primary purpose is to offer a modelling
environment to tackle monetary and macroprudential policy experiments with a set
of micro-founded frictions. Secondly, it constitutes a methodological contribution
as I consolidate the key features of different models in the literature into a single
one.

The circular nature of the relationship between monetary policy, asset price
movements and the dynamics of household debt constitutes the key reinforcing
mechanism of the lower frequency credit cycle. These interactions have been long
overlooked in many papers on conventional monetary policy. However, the recent
emphasis of policymakers on counter-cyclical monetary policy, namely leaning
against the wind (LATW), has made it more important than ever to incorporate a
more realistic credit dimension in models of monetary policy.

The motivation behind this work is that the benefits of LATW are not clear. An
important critique levelled to New-Keynesian models advocating for mixed policy
rules is that they rely on counterfactual modelling assumptions (Svensson, 2014,
2017; Laseen and Strid, 2018). In other words, real life debt-deleverage dynamics

1See Appendix B.1.
2In my paper ’Deleverage and Defaults’ I offered a causal analysis finding that in the UK GDP

deflator Granger-caused house prices and debt in the years after the Great Recession.
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2.1. Introduction

depend on a range of core assumptions that are often subjective. Is debt fixed or
floating? Has it a short maturity or a longer term? Is it anchored to inflation or
payable in real terms? This lies at the core of the Svensson’s critique: the degrees of
freedom are so many that is always possible to build a Dynamic Stochastic General
Equilibrium Model (henceforth ‘DSGE’) model where LATW is optimal.

A second and more fundamental critique is that DSGE papers in the LATW research
program have almost all abstracted from default, ignoring that financial distress
accompanies debt/deleverage phenomena (i.e. the extensive margin of a credit
relation).3

Since capturing debt/deleverage dynamics in a theoretical model requires taking
a stand on a number of variables, there are many empirical papers (Hofmann
and Peersman (2017); Robstad (2018); Laseen and Strid (2018)) that keep their
assumptions to a minimal level and try to stay agnostic on the exact nature of
incentives in the credit market. Two key observations stand out from reviewing
them. The bulk of empirical literature uses VAR models to express the view that a
(conventional) monetary policy surprise could be used to dampen the credit cycle
by i) cooling off house prices and ii) reduce the overall household leverage. In
this paper, I aim to show that there’s a third unsought result to such a stance: iii)
increase in the individual insolvency level (shown in Fig. 2.1).

The model I present below comprises credit constrained mortgagors (households),
depositors, and banks intermediating credit between the two agents and facing a
regulatory capital constraint. Accounting for two levels of frictions (on both the
demand and supply of loans), allows for a richer calibration of credit aggregates
and a more realistic set-up for policy experiments. The key areas of focus for our
analysis arising from the empirical literature are the following: (1) credit quality
represents an important channel of monetary policy transmission; (2) using rate
setting to target credit variables might not be as innocuous as hinted elsewhere in
the literature.

As central banks are facing a path of monetary policy tightening, it is very important
to understand what that would imply for households that are coming from a decade
of record low interest rates and having endured the Covid pandemic by taking up
further leverage.

3An exception is: Christiano et al. (2014) model allows for an estimation of a time-varying steady
state default rate, recognising that borrower’s credit quality moves with the business cycle.
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2. LEANING AGAINST THE WIND

In Section 2.2 I will outline a simple model with the housing market and a
constrained household sector. In Section 3.1 the model will be calibrated to match
UK credit ratios and I will show impulse responses to a technology shock and a
monetary policy shock. Then, I offer a discussion on Section 2.5.

Figure 2.1: Impulse Responses of an IV-VAR for UK
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2.1.1 Leaning into the Credit Cycle and New Keynesian

Modelling

LATW is shorthand for counter-cyclical conventional monetary policy and refers
to the deployment of interest rate rules inversely responding to house prices or
credit aggregates. The metaphor was coined by FED Chairman (1951-1970) William
McChesney Martin to refer to the necessity of leaning against inflation (Romer and
Romer, 2004a), but the concept has evolved to refer more generally to an activist
management of money aggregates by the Central Bank (Friedman and Schwartz,
1963; Sargent, 1979). In the current sense, LATW is almost exclusively used to
indicate a policy stance that factors the credit cycle in a standard Taylor rule.

The case for central banks to target asset prices is therefore neither a recent nor a
settled debate. It periodically rose to prominence around cycle reversals, as for
instance in the case of the Greenspan put, a backstop policy to arrest equity markets
(late ’80s). The FED failure to react to the dot-com bubble re-ignited the discussion
around asset price targeting (Blinder and Reis, 2005). The LATW debate gained
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2.1. Introduction

momentum again after the Great Financial Crisis in 2008-9 (GFC), this time with a
focus on housing prices, in the wake of the real-estate and financial bubble collapse.

And indeed the reversal of the credit cycle has been characterised as the burst of an
asset bubble: a negative shock causes a supply-sided reduction in lending, which
causes in turn an economy-wide spending contraction (Carney, 2020).4

The focal point of the LATW lies in the premise that reacting to asset price can
depress economic activity immediately but inaction risks to cause a worse recession
later when a tightening is warranted by inflation. Therefore policy action involves
making an informed decision about the timing of the effects of the policy (even more
relevant in regards of the potential role to be played by expectations formation). It
is important to note that this literature challenges the pre-crisis consensus as early
papers with financial frictions do not find a case to deviate from inflation targeting
Bernanke and Gertler (1995); Iacoviello (2005)

LATW proponents see value in trying to preempt a systemic crisis by reacting to
asset prices. For instance, the Swedish Riksbank targeted the debt-to-income ratio
with the interest rate to deflate a then ongoing housing bubble (2011-2014) Riksbank
(2014), a move that was harshly contested at the time. During the past decade, the
Bundesbank has also been critical of the ECB low interest rate policy as it claims the
policy created asset bubbles in Germany.5

Among others, the Bank for International Settlements (BIS) has been an early
proponent of using interest rates to curb the credit cycle (Borio and Lowe, 2011).
BIS papers are empirical (Borio and Lowe, 2011; Borio, 2014), whereas the DSGE
modelling effort around LATW stems from the GFC.

Modelling a credit channel in a New-Keynesian setting involves allowing for some
degree of heterogeneity among representative agents. There has to be a class of
lenders and a class of borrowers, secondly, there needs to be a type of micro-founded
friction that affects market completeness. Without frictions, lenders and borrowers
would be able to achieve on the credit market their preferred optimal allocation and
the mere existence of a credit market will not affect the model dynamics.

Financial frictions are introduced in DSGE models in two ways: by introducing an
4The former governor of Bank of England said: "Borrowers reduce spending, or in extremis, default.

These responses make the economic downturn much deeper and more prolonged”, in a sentence similar to
the quote at the beginning of this paper.

5FT Article

59

https://www.ft.com/content/e554582c-dedc-4368-af9f-05a628f4dd8d


2. LEANING AGAINST THE WIND

informational asymmetry (Bernanke et al., 1999) or by incorporating a collateral
constraint Kiyotaki and Moore (1997). The former modelling approach stems from
the Townsend (1979) costly state verification (‘CSV’) partial equilibrium model,
later factored in an array of general equilibrium models, as Bernanke and Gertler
(1989) and Carlstrom and Fuerst (1997). CSV postulates that the borrowers’ (firms)
default probability increases in their leverage ratio. Upon default, the lender has
to pay a proportional cost to audit the firm and know the ex-post value of firm’s
assets, which he repossess. Hence, the rate of return on risky lending is a function
of the firm’s degree of leverage and will deviate from the economy riskless rate. In
this paper I implement a CSV friction (Section 2.2.2). I choose this friction to link up
borrowers’ housing wealth to the business cycle, so obtaining a pro-cyclical default
rate.

An alternative form of introducing frictions, the collateral constraint methodology
emphasises the limited enforceability of credit contracts. If a debtor decides not
to honor his loan, the creditor cannot force him to pay, instead, he has to rely on
collateral and hence ‘hard‘ assets as land or real estate can serve the dual role of
good and collateral to loans.6 Here credit frictions limit the purchase of capital,
reducing overall investment and output in later periods following a negative shock.
Iacoviello (2005) extends this framework to a new-Keynesian DSGE model with
entrepreneurs pledging real estate to back their loans up to an exogenous loan-to-
value (LTV) ratio.

Iacoviello (2005), in the simplest declination of his model, presents financially
constrained firms borrowing from patient households. Firms use real estate in their
production function and households consume housing value and a consumption
good, while demanding real money balances. Iacoviello and Neri (2010) extend that
framework to a Bayesian estimation aimed to match US housing market data. This
enriched model features a separate production function for housing, with land and
labour as inputs together with entrepreneurial capital.

Guerrieri and Iacoviello (2017) introduce the modification that a collateral constraint
might be slack, thus allowing households to self-insure in benign economic periods.
Similarly, Bluwstein et al. (2018) analyse credit frictions with an occasionally binding
constraint.

6Liu et al. (2013) provide a good example of a DSGE model in which land price drives investment
fluctuations, as real estate is a common collateral to business loans.
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Building on the collateral constraint literature, Monacelli (2009) shows in a DSGE
setting that credit constrained households can shed light on the transmission
mechanism as a tightening prompts borrowers to substitute durable goods with
non-durable ones. This explains the conventional VAR impulse responses to a
monetary policy shock: household debt persistently declines and there follows a
collapse in non-durable consumption larger than that in durables, making a case
for models with financial frictions.

A more complex model allowing for credit intermediation is the Gerali et al. (2010),
which is built on Iacoviello (2005). Here, banks collect deposits from households,
accumulate profits into their equity and lend to firms at a rate higher than the policy
one due to the cost they face to deviate from an exogenous capital adequacy ratio
and to manage their capital position. Firms are collaterally constrained when they
borrow to purchase capital.

Gambacorta and Signoretti (2014) use this set-up to test different monetary policy
rules testing the gains of ‘leaning against the wind’ stance. They find it useful
especially in the high leverage calibrations of their model, where it is apposite to
reduce the level of firm debt and the price of capital. On the other hand, Gelain et al.
(2018) show that when mortgages are longer in maturity, debt-to-GDP targeting is
less effective.

Financial frictions have come to be seen as a main channel of shock propagation
in Christiano et al. (2014), it is shown that shocks to the cross-sectional variance of
ex-post capital realisation have the potential to explain US recent history business
cycle fluctuations.

Matters get thornier when banking intermediaries are introduced in the model.
Clerc et al. (2015) propose a model with banks allocating loans to mortgages and
business loans, these three agents raise finance in an imperfect market and they
are subject to default risk. This model re-affirms the centrality of constraints on
banking intermediaries’ capital as excessive leverage translates into an excessive
volatility of aggregates whereas too tight capital requirements constrain credit too
much.

As far as the empirical performance is concerned, Brzoza-Brzezina et al. (2013) have
directly compared the CVS framework with the collateral constraint one, making
the necessary tweaks to work with two identical models but for the way financial
frictions are introduced. They conclude that the CVS methodology produces
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2. LEANING AGAINST THE WIND

impulse response functions that are closer to a VAR model, whereas under the
collateral constraint approach, the responses are more front-loaded and short-lived
than in the case of the empirical model.

I draw from the CSV literature by modelling an idiosyncratic shock that affects
the ex-post realisation of housing projects. This is the framework introduced in
Bernanke et al. (1999) but applied to housing as in Forlati and Lambertini (2011)
and Lambertini et al. (2017b). The structure of the economy follows Iacoviello
(2005), but in my model households are the borrowing party and discount future
utility more. The aggregate supply is fairly standard, with final and intermediate
goods producers. The difference here is that intermediate entrepreneurs smooth
their consumption by investing in 1-period sight deposits at banks. Banks have to
comply with an exogenous capital adequacy ratio or else they have to pay a cost to
deviate from it.

The new insight that the model below offers is that by modelling a richer set of
transmission that inform debt and deleverage decisions. Collateralised borrowing
will have effects on consumption smoothing as asset prices enter the borrowing
constraint. In the absence of these micro-foundations, the whole ‘credit view’ of the
monetary transmission mechanism would be absent.

2.2 The Model

2.2.1 Model Agents

To capture the key features of the credit market, I resort to a model with hetero-
geneous agents, whom are divided in hand-to-mouth borrowers, entrepreneurial
savers and banking intermediaries. To summarise the key relations among the
agents presented above, it is useful to picture the credit market in a static fashion in
the following sectoral T-accounts:

Households

Wages Loans

Housing Net-
Worth

Profits

Banks

Loans Capital

Deposits

Entrepreneurs

Deposits Wages

Housing Net-
Worth
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2.2. The Model

The agents populating the model are households, banks and entrepreneurs. House-
holds and entrepreneurs trade housing in a perfectly competitive market. The
bank is forced to hold a certain fraction of loans as regulatory capital. Net-worth is
defined as the difference between assets and liabilities (for banks it is defined as
banking capital). The above scheme also tracks the different type of assets available
to agents, noting the fact that the economy is cashless, the entrepreneurs save with
return-yielding deposits and households only hold dwellings.

The presence of a capital constrained bank introduces a wedge in the residential
market. Deposits and loans are lower than in a steady state without capital
requirements exactly because D ̸= L. Thus in steady state, both households and
entrepreneurs consume less than what they would without banking regulation.

The second wedge stems from the risky mortgage friction. The presence of a dead-
weight monitoring cost implies a foreclosure cost that is proportional to housing
value, thus an increase in defaults causes a destruction of existing residential real
estate.

Dynamically, shocks affect households’ and entrepreneurs’ net worth, causing a
re-allocation of housing value between them. For example, a monetary policy shock
affects inter alia the cost of borrowing and the demand for housing, causing a de-
accumulation of residential housing and an accumulation of commercial housing.
A technological shock has the opposite effect, with different persistence due to the
auto-regressive parameter.

The construction sector is anti-cyclical. New real estate is built by the entrepreneur,
so this agent is able to modulate construction when his demand is high.7 Further-
more, since monitoring costs are modelled as a dead-weight loss of housing value,
new constructions increase on impact of an adverse shock as agents try to replenish
the housing lost on the back of foreclosures.

2.2.2 Risky Mortgages and Collateral Constraint

In this section I will illustrate the derivation of the collateral constraint that will
feature prominently in the Household Problem (Section 2.2.3) presented below.
The key feature of Lambertini et al. (2017b) risky mortgages friction set-up is
the addition of a constraint that impedes consumption smoothing and makes

7This is similar to Iacoviello (2005), who does not feature a construction sector but has a similar
re-allocation dynamics due to fixed supply of housing.
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2. LEANING AGAINST THE WIND

loan supply dependent on an endogenous loan-to-value ratio that reflects lending
conditions.

All housing projects are equal ex-ante, but then they are individually scaled by
an idiosyncratic shock ωt+1. The Collateral Constraint postulates that the payoff
of 1-period adjustable rate mortgage equals the expected value of the collateral
Et [Hh

t+1Ph
t+1] upon the realisation of an idiosyncratic shock ω̂t+1. After the realisation

of the individual shock, if the shock decreases the housing value below a certain
endogenous threshold ω̂ , then the borrower defaults. The lender has to pay a
monitoring cost µ to observe the realisation of the idiosyncratic shock. After the
shock, the lender seizes the residual value of the housing stock.

Lt+1(1+Rz
t+1) = ω̂t+1(1−δ

h)Hh
t+1Ph

t+1 (Default Threshold)

The Default Threshold identifies the equilibrium ω̂ as the threshold that equates the
risky loan returns (the left-hand side) with the housing value scaled by the external
shock (right-hand side). This equality can intuitively represent a negative equity
condition, so that if the value of the house falls below the value of the mortgage
payment, then the borrower will default. δ h is the calibrated depreciation rate of
the housing stock.

The zero profit condition below equates the gross riskless rate on the loan portfolio
to the expected risky returns in case of regular mortgage payment plus the expected
collateral realisation upon default net of monitoring costs. Hence, the above Default
Threshold is state contingent as 1+Rz

t+1 adjust to make the below Riskless Rate true.
The average rate of return (1+RL,t) is pre-determined and payable on loans taken
at time t that become due at time t+1.

(1+RL,t)Lt+1 =
∫

∞

ω̂t+1

(1+Rz
t+1)Lt+1 ft+1(ω)dω+(1−µ)(1−δ

h)Hh
t+1Ph

t+1

∫
ω̂t+1

0
ω ft+1(ω)dω

(Riskless Rate)

Where f t +1(ω) is the probability density function of the random variable ω .

Substituting (1+RL,t)Lt in the Riskless Rate using the definition in Default Threshold
yields the collateral constraint, which forces loans to be equal to a certain fraction
Φ[ω̂] of expected housing value. Hence Φ[ω̂] is the expected share of housing value

64



2.2. The Model

net of monitoring costs going to the lender and thus the fraction of housing value
that the lender is willing to finance. It follows that in this set-up the Lender’s share
can be intuitively interpreted as the loan-to-value ratio applied by lenders.

Lt+1 (1+RL,t) = (1−δ
h)Et [Φ [ω̂t+1]Ht+1Ph

t+1] (Collateral Constraint)

Adding the Borrowing Constraint to the household problem is similar in spirit to the
optimal contracting problem set out in Carlstrom and Fuerst (1997) and Bernanke
et al. (1999), where the borrower maximises his share subject to the lender’s share.
Here the household problem is formulated to allow households to maximise their
utility subject to lender’s zero profit condition besides the usual budget constraint.
In this setting it is natural to interpret the lender’s share as the dynamic LTV ratio
(Φ[ω̂] in the equation below).

Φ[ω̂t+1] = ω̂

∫
∞

ω̂t+1

f (ωt+1)dω︸ ︷︷ ︸
(1−F [ω̂t+1])

+(1−µ)
∫

ω̂t+1

0
ω f (ωt+1)dω︸ ︷︷ ︸
G[ω̂t+1]

(Loan-to-Value)

The presence of monitoring costs proportional to the housing value introduces a
dead-weight cost associated with defaulting.

The other useful definitions for the following section are: the probability of default
F [ω̂] and the borrower’s share of housing value conditional on default G[ω̂], i.e. the
value of housing conditional on the shock being less than the cutoff ω̂ .

2.2.3 Household Problem

The model economy is populated by infinite living households. Households belongs
to a risk-sharing family. Households are identical before facing an idiosyncratic
shock to their housing value. After the realisation of such shock, some households
decide to default and some not, according to the Default Threshold defined above.

In this configuration, the family head maximises an utilitarian welfare function that
can be conceived as the aggregation across all households and thus is representative
of the average household. Housing delivers utility prior to the idiosyncratic shocks
and all households have the same ex-ante utility.

For the formal maximisation problem I assume that the family head maximises

65



2. LEANING AGAINST THE WIND

average utility of all households as:

E0

∞

∑
t=0

β
tU
(

Ch
t ,Nt ,Hh

t+1

)
(2.1)

The period utility takes the functional form:

U
(

Ch
t ,Nt ,Hh

t+1

)
=

(Ch
t )

1−σ

1−σ
+

ςHh,1−χ

t+1

1−χ
− [Nc

t
(1+z)+Nh

t
(1+z)

]
1+φ

1+z
u

φ +1
(2.2)

The utility function means that households draw utility from a consumption good
(denoted by Ch) and real housing (Hh). Working yields them a dis-utility and they
can choose how many hours to work in the goods sector or in the construction
sector (Nc and Nh respectively). E0 is the expectation operator and β a discount
factor. σ and χ are the coefficients of constant relative risk aversion. ς represents a
measure of housing preferences.

The housing stock Hh is predetermined and household chooses it at the beginning
of period t and uses it in t +1.

Labour demand in the two sectors is homothetic and the sectors are not-perfect
substitutes. The parameter z represents the elasticity of substitution among labour
types and u is the dis-utility from working.

A final caveat on the functional form of the utility function is that it does not include
money, nor money are present in the rest of the model. Hence the model economy
is cashless as there is no particular reason to hold money balances, this is consistent
with an economy with seamless electronic payments (Woodford, 2003b).

Utility in Eq. 2.12 is maximised subject to a flow of budget constraints and collateral
constraints. The flow budget constraint is expressed in real terms (already deflated
by the price level) and it is:
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Ch
t +Ph

t Hh
t+1 +(1−F [ω̂t ]) (1+Rz

t )Lt = Lt+1 +Nc
t W c

t +Nh
t W h

t +(1−G[ω̂t ])Ph
t Hh

t +Ft

(2.3)

Households accumulate real estate (Hh scaled by its price Ph) which is used as
dwellings and is subject to a depreciation rate δ h. At each time period it pays the
risky rate with probability (1−F [ω]). F are the profits from owning firms. This can
be intended as the sum of budget constraints of all households. It is consistent with
the definitions of F [ω̂t ] and G[ω̂t ], which are integrals over the distribution of shock
ω .

It is important to note at this point that both households and entrepreneurs (see
next section) are accumulating real estate. To facilitate the comprehension of
the model, we deem that the total stock of housing comprises of dwellings and
offices. Households accumulate dwellings, of which services yields them utility
and entrepreneurs accumulate offices, which are used to produce new real estate.

Timing Assumptions

At end of period t, the household takes a loan from the bank of value Lt+1 in order
to buy Hh

t+1 housing at price Ph
t . At start of period t +1, the household gets the ωt+1

shock, it can then observe the value of other aggregate shocks and therefore infer
the impact of the price Ph

t+1 on housing value scaled by the idiosyncratic shock and
decides accordingly whether to default on loans Lt taken in period t − 1. Hence,
there are defaults in equilibrium. Loans are payable at an adjustable rate (1+Rz

t ),
which is determined after the realisation of the idiosyncratic shock.

Reduced Budget and Collateral Constraints

Using the definition laid out above in Default Threshold and Loan-to-Value,
Equations 2.3 simplifies to:
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Hh
t+1Ph

t +Ch
t −Lt+1 =−

(
Hh

t Ph
t µG(ω̂t)+Lt (RL,t +1)

)
+(1−δ

h)Hh
t Ph

t +Nc
t W c

t +Nh
t W h

t +Ft

(2.4)

Households maximise utility also subject to the following flow Collateral Constraint
shown in section 2.2.2 above:

Lt+1(1+RL,t) = (1−δ
h)Et [Φ[ω̂t+1]Hh

t+1Ph
t+1] (2.5)

This additional constraint embeds the financial friction within the model as it
postulates that households are limited in their borrowing capacity by their existing
housing holdings.

2.2.3.1 First Order Conditions

The household decides hours worked, housing investment and loans. Maximising
lifetime utility subject to the two constraints yields the following first order
conditions (FOCs):

The labour supply schedule for construction worker is the following:

W h
t

Cc
t
= Nt

h(z)[Nh
t
(1+z)

+Nc
t
(1+z)]

φ−z
1+z (2.6)

It is homothetic to the labour supply in the goods sector. The ratio of hours worked
in the two sectors is:

W c
t

W h
t
=

(
Nc

t

Nh
t

)z

(2.7)

Housing Demand is the FOC with respect of Ht :

ςβ
Ch

t
σ

Hh
t

χPh
t
=

Ph
t−1

Ph
t

(
Ch

t

Ch
t−1

)σ

−β (1−δ
h)+β µG[ωt ]− (1−δ

h)Ch
t

σ
λ

c
t−1Φ[ωt ] (2.8)

And the Lagrange multipliers for the budget and borrowing constraint are:
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λt =Ch
t
−σ

(2.9)

λ
c
t−1 =

λt−1

(1+RL,t−1)
−βλt

(1+RL,t)

(1+RL,t−1)
(2.10)

From the above two FOCs stems the fact that if the households’ discount rate differ
from the entrepreneurs’ one, then the collateral constraint is positive in steady state
and it is binding. This means that households are net borrowers in steady state.

Finally, the binding collateral constraint implies that households’ future consump-
tion is linked to the period-to-period expansion of loans.

Et

{(
Ch

t+1

Ch
t

)σ}
= Et

{
Lt+1 −Lt

Lt+1

(1+RL,t+1)

(1+RL,t)

}
(2.11)

There’s no consumption smoothing because by construction the collateral constraint
is binding in the steady state and in the neighbourhood of it. So future consumption
is linked to the expansion of loans. The household could in theory smooth
consumption by under-borrowing but this would require setting the model such
that the constraint could only occasionally be binding.

2.2.3.2 Entrepreneur’s Problem

The entrepreneur only maximises lifetime utility drawn from the consumption of
the consumption good subject to a flow of budget constraints. The lifetime utility is:

E0

∞

∑
t=0

γ
tU (Ce

t ) (2.12)

And the functional form for utility is:

U (Ce
t ) =

(Ce
t )

1−σ

1−σ
(2.13)

The entrepreneurial sector accumulates properties, which when owned by en-
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trepreneurs is used commercially as offices (He). Offices are also used to produce
new real estate (Hn) in a Cobb-Douglas production function. Entrepreneur’s
discount rate is γ .

The entrepreneur produces also a consumption good, using a production function
linear in hours worked. The entrepreneur saves in banking deposits D.

He
t+1Ph

t +Ce
t +Nc

t W c
t +Nh

t W h
t +Dt+1 = (1−δ

h)He
t Ph

t +
Yt

Xt
+(1+Rd

t−1)Dt +Hn
t Ph

t (2.14)

The new housing production function is:

Hn
t = Ah

t He
t−1

(ν)N(1−ν)
h,t (2.15)

The consumption good production function is:

Yt = Ah
t Nc

t (2.16)

From which we can infer the labour demand curves:

Nh
t W h

t = (1−ν)Hn
t Ph

t (2.17)

Nc
t W c

t = Yt/Xt (2.18)

From the inter-temporal utility maximisation problem stems the following Euler
Equation, which determines the path of entrepreneurial consumption.

(1+Rd
t ) = Et

[
Ce

t+1

γCe
t

]
(2.19)

The housing supply is:

Ph
t

Ce
t
= Et

[
γ

(
1−δ

h +ν
Hn

t+1

He
t

)
Ph

t+1

Ce
t+1

]
(2.20)
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The overall real estate stock comprises both dwellings and offices:

Ht = He
t +Hh

t (2.21)

It is a state variable which evolves in the following fashion:

Ht = Hn
t +(1−δ

h)Ht−1 (2.22)

2.2.4 The Banking Sector and Risk Weighted Assets

A Bank matches deposits with loans and is bounded to comply with an exogenous
inverse leverage ratio ξ (the capital adequacy ratio or CAR). It pays a quadratic
adjustment cost when it deviates from it. The banking sector is modelled following
Gambacorta and Signoretti (2014), who simplify the framework laid out in Gerali
et al. (2010).

The starting point is the following identity, the loan portfolio is equal to deposits
plus banking equity.

Dt +Kb
t = Lt (2.23)

The banking sector holds fully diversified 1-period adjustable rate mortgage loans
(ARM) on behalf of deposit-holders. The banking profit Jb

t is determined by the net
interest margin plus the quadratic cost of deviating from target capital adequacy ξ .
Capital accumulates with the retention of last period’s earnings:

Jb
t = Lt (1+RL,t)−Dt (1+RD,t)−

1
2

θKb
t

(
Kb

t
RWtLt

−ξ

)2

(2.24)

Maximising Banking profits subject to the bank budget identity yields the loan
spread.8

8Both papers assume there is a continuum of commercial banks solving the same static
optimisation problem. Imposing symmetry the first order condition is the same as postulating
that there is a single bank extending loans, as I do in this paper.
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(1+RL,t) =
(
1+RD,t)

)
− θ

RWt

(
Kb

t
Lt

)2( Kb
t

RWtLt
−ξ

)
(2.25)

Without risk-based weighting (RWt = 1) the capital adequacy ratio is computed on
the basis of actual assets (L). Factoring in risk-weights, the effective capital adequacy
ratio is function of the mortgage default risk.

This is consistent with the Basel Framework Agreement, banks are bound to
maintain high quality capital (shared and retained earnings) at the least above
the 8% of threshold of assets on a risk-weighted basis.9 The rationale is to provide
banks with loss-absorption capacity in the event of a crisis.

Banking equity represents a state variable in the model and evolves at rate:

Kb
t = (1−δ

k)Kb
t−1 −δ

kJb
t (2.26)

We can now postulate a simple risk-weighting rule, inspired by the Basel framework.
The risk weight is equal to the expected credit loss, defined as the default rate
reduced by 1 minus the recovery rate (i.e. the loss given default):

ELt = PDt(1−RRt) (2.27)

PDt = F [ω̂t ] (2.28)

RRt =
∫

ω̂t

0

(1−µ)(1−δ h)Hh
t Ph

t
F [ω̂]Lt(1+Rz

t )
ω f (ω)dω (2.29)

The default rate is, as defined above, F [ω̂t ], whilst also the recovery rate can be
derived as the value of recovered collateral over defaulted assets (as in Candian and
Dmitriev (2020)). Specifically, the last ’Recovery Rate’ equation crystallises the fact
that lenders recover a fraction (1−µ) of housing value upon default. Hence, the
recovery rate is the expected asset value conditional on the probability of default
being lower than the default threshold. Simplifying the equation using the Default
Threshold expression yields the following expression, where the integral is G[ω̂t ]:

9Or, to use regulatory definitions, the total capital ratio has to be greater than 8% . See https:
//www.bis.org/fsi/fsisummaries/defcap_b3.htm
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RRt =
(1−µ)

F [ω̂t ]ω̂t

∫
ω̂t

0
ω f (ω)dω (2.30)

The risk weight is normalised to be 1 in steady state, it is therefore divided by steady
state expected loss (EL) The parameter ρrw is a smoothing constant that captures the
speed of adjustment of the risk-weight to ensure that there is not excessive volatility
in the risk-weight itself.

RWt =
[
PDt (1−RR)EL−1

]ρrw
(2.31)

RWt =

[
F [ω̂t ]

(
1− (1−µ)

G[ω̂t ]

F [ω̂t ]ω̂t

)
EL−1

]ρrw

(2.32)

It is to be noted that the Basel Framework’s rationale behind risk-weighting of assets
is to ensure comparability among credit institutions and have the capital adequacy
indicators reflect the inherent riskiness of the loan book. This latter motive is the
dominant one: in case of losses, banking capital has to be enough as to absorb losses
preventing catastrophic bank failures.

This marks a significant point of departure between the modelling device adopted
above and the reality of the Basel Framework. Here the banks’ credit risk is fully
mitigated by the incentive compatibility constraint (stated in Riskless Rate), which
allows the banks to charge a loan rate equal in expectations to the loan portfolio
returns.10

Losses do not follow credit decisions, but stem from capital management decisions
and the deviation from the regulatory CAR. Hence, the RW is an automatic
macroprudential tool that limits credit expansion to dampen the risky lending
financial friction. If defaults are increasing, the risk weight would also increase.
This artificially raises the effective CAR and generates an extra cost for banks to lend,
thus reducing the loan expansion.

A second point for consideration is the subtle difference between capital require-
ments and more active macroprudential policy. Capital ratios have to comply
with the minimum regulatory standard at all times, as to mitigate systemic risk.

10Benes and Kumhof (2015) relax this assumption, allowing for credit losses in a Bernanke et al.
accelerator framework.
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However, the regulatory minimum of 8% can be at times raised stepwise by an
add-on called the ‘countercyclical capital buffer’ (CCyB). This regulatory tool is
the main policy lever in the hands of macroprudential authorities. CCyB can be
increased to cool off periods of abnormal credit growth.11

Naturally, CCyB makes a standalone policy tool and can be modelled to obey
a different rule than the above ‘endogenous’ risk weight. Benes and Kumhof
(2015) model the countercyclical capital buffer in a model with financial frictions.
Acosta-Smith et al. (2021) model two risk-weighting rules postulated in Basel III:
the internal rating based (IRB) and the output floor.

2.2.5 Retailers and Sticky Prices

Sticky prices are modelled according to the popular Calvo setting.12 I introduce
them as in Bernanke et al. (1999) as a modelling device to have achieved a staggered
adjustment of retail prices. At each time period, a fraction 1−Θ of firms adjust their
prices.

The aggregate price index P evolves according to:

Pt = [ΘP1−ε

t−1 +(1−Θ)(P∗
t )

(1−ε)]1/(1−ε) (2.33)

Whilst individual firm z optimises its expected profit when re-adjusting the sale
price P∗

t (z).

∞

∑
k=0

[
Θ

k
(

β
Ct

Ck+t

)(
P∗

t (z)Y ∗
t+k(z)

Pk+t
−

X Y ∗
t+k(z)

Xk+t

)]
= 0 (2.34)

The optimality condition for P∗
t postulates that the equilibrium price equates

expected marginal revenue to the expected marginal cost applying the stochastic
discount rate.

Hence firms resetting their prices will do so as to charge a desired markup Xt on
final goods’ marginal cost and since the firms cannot reset prices at every period,
they have to set the price to be consistent with future expected marginal cost. This

11In note 2 of the previous chapter I already commented on how CCyB encapsulates the Basel
consensus as LATW is explicitly mentioned in its definition.

12For a textbook example see Galí (2009)
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implies a steady state mark-up X = ε/(1− ε) and profits rebated to households
F = (1−1/X)Y .

The log-linearised combination of Eq. 2.33 and 2.34 is yields the textbook forward-
looking New-Keynesian Phillips curve linking mark-up to inflation. The mark-up is
the inverse of the marginal cost, thus firms revise their price to track the cyclicality
of marginal costs (or −Xt - the mark-up).

2.2.6 Monetary Policy

The monetary authority sets the interest rate according to the log-linear Taylor Rule
of the type set out in Clarida et al. (1998).

rn
t = (1−ρr)

(
ρllt−1 + ph

t−1 ρph +(1+ρπ) πt−1 +ρy yt−1

)
+ρr rn

t−1 (2.35)

Where the nominal interest rate rn responds proportionally to the deviations from
inflation rate, output, loans and house prices. This rule implies a gradual adjustment
(smoothing) of the interest rate at persistence given by the parameter ρn.

This rule encapsulates a shorter run dynamics of the nominal interest rate towards
is desired level.13

Longer-run response coefficients are ρπ , ρy and ρph. The fact that the inflation weight
(1+ρπ) is greater than 1 accommodates the Taylor principle, i.e. that the Central
Bank needs to react to inflation sufficiently strongly to assure model determinacy.

This rule can easily nest various exceptions. For example, when setting ρl = ρph = 0,
it reduces to a standard inflation-targeting Taylor rule, which I adopt as the baseline
rule. If ρl > 0 and ρph > 0, then I can incorporate a degree of LATW in the model,
whereby the Central Bank reacts to either the loan deviations from steady state, or
to house prices. These alternative specifications with asset price targeting will be
tested in Section 2.6.

There are a couple of comments to be made on the above Taylor rule and its
13The full-blown Taylor rule is, where the desired interest rate is r∗ :

r∗t = ρl lt−1 + ph
t−1 ρph +(1+ρπ) πt−1 +ρy yt−1

rn
t = (1−ρr)r∗t +ρrrn

t

75



2. LEANING AGAINST THE WIND

econometric estimation. The first is that it is more usually presented in a forward-
looking form: the Central Bank reacts to future inflation expectations rather than
realised inflation. Same thing applies to output gap, since it is understood that
the Central Bank has to factor in as certain policy lag as monetary policy does not
quickly transmits to the economy at large, hence both price level and output targets
have to be forward-looking (Goodhart, 2005). This poses an empirical problem, as it
is not possible to estimate Eq. 2.35 with OLS. The estimation of the monetary policy
parameters in the reaction function can be performed by IV-OLS or GMM, hinging
on an exogenous instrument or on the retrieval of the exact information set available
to monetary policymakers at specific points in time (Goodhart, 2005; Cobham and
Kang, 2013). This is a thorny issue, as in reality Central Banks cannot perfectly
react to contemporaneous inflation as it becomes known with a measurement lag.
On the other hand, Central Banks have forecasting departments specifically tasked
with the job of informing the decision making process. This latter consideration
justifies forward-looking Taylor rules in rational expectations setting, signifying a
perfect ability of the Central Bank to forecast future inflation. A purely backward
looking Taylor rule is easier to estimate empirically as it provides a neat set of zero
restrictions that are translatable 1-to-1 to time series methods, but these restrictions
come at a price. The pitfall is, of course, the risk of ending up with a mis-specified
model since this approach fails to disentangle the interest rate from its endogenous
component.

A high interest smoothing coefficient can be the by-product of mis-specification as,
for the UK, it does not tally with the official communication of the Bank of England.
BoE has maintained that it do each time the full interest adjustment, without
allowing any graduality, whereas step-wise patterns are visible in macro-data
(Goodhart, 2005). A high coefficient of interest rate smoothing ( 0.9) indeed appears
in recent empirical estimations for the UK (Kapetanios et al., 2019; Finocchiaro and
Von Heideken, 2013), meaning that either the Central Bank reaction function factors
in interest rate smoothing or the parameter stems from endogeneity or from the
interest rate being locked at zer-lower bound in the most recent years.

In this paper I stick to the conventional wisdom that has informed much of the
DSGE literature, sticking to a conventional Taylor rule of the type stated above.
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2.3 Log-Linearised Base Model

The model is of 25 equations in 25 variables. I consider 3 exogenous shocks: a
monetary policy shock to the Taylor rule, a technology shock affecting the goods
production function and a cost-push shock in the Phillips curve. Elasticities are
set to σ = φ = χ = 1. Capitalised variables without time subscript represent steady
state values. Lowercase variables are log-deviations from steady state.

2.3.1 Aggregate Demand

Where Equations 2.36, 2.37 and 2.39 are the household flow of funds, the borrowing
constraint and housing demand. The final two 2.40 and 2.41 are the labour supply
schedules of the 2 sectors. Equation 2.36 is obtained combining the household
resource constraint with the labour supply FOCs. 2.39 is derived from the household
problem FOC with respect of housing and the Lagrange multiplier for the collateral
constraint. I report the derivations of key equations in Appendix B.3.1.

ζ1Chch
t =

Yt

HhPh yt +hh
t+1 + ph

t −µG(ω)(hh
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t + η̃ωt)+(1−δ
h)(hh
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t )+

(1−ν)
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Hh (h
n
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t )+(1−δ
h)
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[
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]

(2.36)

lt+1 = Et [hh
t+1 + ph

t+1]+Et [ωt+1]ωι − rl
t (2.37)
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t−1 =

γ
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(−ch

t−1 − rl
t−1)−

β

γ −β
(rl

t − rl
t−1) (2.38)

ςβζ1(ch
t −hh
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t )= (ph

t−1− ph
t +ch

t −ch
t−1)+β µG[ω](ηωt)−(1−δ

h)Ch
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Φ[ω](ch

t + λ̃
c
t +ιωt)

(2.39)

nc
t = wc

t − ch
t (2.40)

nc
t (1− z)+ znh

t = wh
t − ch

t (2.41)
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Where the logarithmic derivatives of Φ[ω] an da G[ω] are:

ι =
Φ′[ω]]

Φ[ω]
η =

G′[ω]]

G[ω]

and they are arising from the log-linearisation around the steady state:

ln f (xt)− ln f (X)≈ f ′(X)

f (X)
(x−X) (2.42)

2.3.2 Aggregate Supply

The aggregate supply block includes the Entrepreneur’s flow of funds 2.43, Euler
equation for savers 2.44, an housing prices equation 2.45 and a Phillips curve 2.46.
There are two production functions for housing units 2.47 and goods 2.48. Wages in
the two sectors are 2.49 and 2.50.

ζ2ce
t = ν

Hn

He (h
n
t + ph

t )−he
t+1 − ph

t +(1−δ
h)(he

t + ph
t )+

(1−ξ )(1−δ
h)

Hh

He
Φ(ω)

1+RR
[dt −dt+1 +RR(rd

t−1 +dt)] (2.43)

rd
t = Et [ce

t+1]− ce
t (2.44)

ph
t −Et [ph

t+1]− ce
t + ce

t+1 = (Et [hn
t+1]−he

t )
δ hν

δ hν +
(
1−δ h

)
He

(2.45)

πt = γEt [πt+1]−
(1−Θ)(1− γΘ)

Θ
(xt − st) (2.46)

hn
t = νhe

t−1 +nh
t (1−ν) (2.47)

yt = nc
t +at (2.48)
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nh
t +wh

t = hn
t + ph

t (2.49)

nc
t +wc

t = yt − xt (2.50)

2.3.3 Banking Sector

The banking sector accumulates equity at the rate 2.51. The lending spread is
determined by 2.52. RWA are 2.53 and profits are given by 2.54.

kt =
(

1−δ
k
)

kt−1 +δ
k jt (2.51)

rl
t = rd

t +
θ ξ 3

RR
(lt − kt + rwt) (2.52)

rwt = ρrw ℵωωt (2.53)

jt =
lt +dt (ξ −1)− (γ −1)

[
rl
t + rd

t (ξ −1)
]

ξ
(2.54)

2.3.4 Monetary Policy

The nominal rate of interest is set according to the Taylor Rule in 2.55. The real rate
of interest is rn net of inflation in 2.56.

rn
t = (1−ρr)

(
ph

t−1 ρph +(1+ρπ) πt−1 +ρy yt−1

)
+ρr rn

t−1 + ε
m
t (2.55)

rd
t = rn

t −Et [πt+1] (2.56)

2.3.5 Market Clearing

Market clearing conditions encompass the national income identity 2.57 and the
banking capital identity 2.58. The housing stock is given by 2.59 and it evolves
according 2.60.
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yt Y = ch
t Ch + ce

t Ce +δ
k Kkt (2.57)

lt = dt (1−ξ )+ kt ξ (2.58)

Hh hh
t +he

t He = ht (2.59)

ht = Hn hn
t +
(

1−δ
h
)

ht−1 (2.60)

2.3.6 External Shocks

at = ρz at−1 + ε
a
t (2.61)

st = ρxst−1 + ε
x
t (2.62)
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2.4 Calibration and Impulse Responses

2.4.1 Calibration

Table 2.1: Calibrated Parameters

Parameter Value Description

σ 1 Consumption Elasticity
χ 1 Housing Consumption Elasticity
φ 1 Inverse of Frisch Elasticity
β 0.97 Borrower’s Discount Rate
γ 0.99 Lender’s Discount Rate
µ 0.12 Loan Monitoring Costs
δ b 0.059 Bank Capital Depreciation
δ h 0.005 Housing Stock Depreciation
ξ 0.09 Capital Adequacy Ratio
ν 0.3 Share of Housing in the Prod. Function
θ 11 Banking Capital Costs
Θ 0.75 Calvo Parameter
ς 0.20 Housing Preference
z 0.87 Labour Substitutability

Mortgage Parameters
F [ω] 0.03 Annual Default Probability
ω 0.63 Shock Cut-Off
σω 0.18 Shock Standard Deviation
µω 0.016 Shock Mean
Φ[ω] 0.63 Steady State LTV
ℵ 14.5 Risk-weight elasticity

The calibration is standard. Elasticities are set to 1 for computational ease in solving
analitically for the steady state and get log-linearised conditions. Banking sector
parameters are taken from Gambacorta and Signoretti (2014). The Calvo parameter
Θ is calibrated at 0.75 to signify a year average period of price adjustments.

The risky mortgage parameters are calibrated to be close to UK mortgage credit
parameters and so I set a default rate of 3%, to which it corresponds a loan to value
of 60% for log(ω) ∼ N(−0.182

2 ,0.18). These mortgage parameters are reasonably
similar to the British credit market reported in Table 2.2.

Under this standard calibration, the derivative credit ratios are reasonably similar
to UK series. The only parameter which is counterfactually different from national
statistics is the consumption to housing value held by households. Even with a

81



2. LEANING AGAINST THE WIND

higher consumption elasticity σ , household consumption to housing is less than
observed 20%.

Table 2.2: Steady State Ratios

Steady State Ratios Calibrated Matching Source Database

Default Rate 3% 1.5-2.5% Fitch Ratings, Bank of England
Loan-to-value 63% 60%-70% Bank of England ABS Portal
Debt-to-Income 581% 550% ONS National Statistics
New Housing to GDP 2.84% 2.15% ONS New Orders in the Construction Industry
Household Consump-
tion to Housing Value

9% 20% ONS

2.4.1.1 Autoregressive Parameters and Shocks

Table 2.3: Autoregressive and Policy Parameters

Parameter Value Description

ρr 0.73 Monetary Policy Inertia
ρπ 0.27 Inflation Weight
ρy 0 Output Weight
ρrw 0.1 Risk-Weight Inertia
ρa 0.9 Technology Shock Persistence

The Taylor rule parameters are calibrated as in Iacoviello (2005) as, for the baseline
model, the weight on output is 0.

2.5 The Credit View of Monetary Transmission

In this section I show how the model presented above features a richer credit
channel of transmission while displaying a tractable log-linearised structure in a
simple two-agents setting. In particular, banking assets allow ‘credit view’ to be
reflected into the model along the two main channels of transmission: sticky prices
and inter-temporal consumption.

Financial imperfections, as costly state verification, pertains to the ‘(broad) credit
channel’, as the wedge between internal and external finance premiums, and ‘(bank)
lending channel’ captures what happens on the supply side of loans, using the
channels defined in Repullo and Suarez (2000). This friction intervenes on the
dynamic profile of consumption, as households are collateral constrained, there is
no consumption smoothing and future consumption depends on current housing
investments.
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A third, and quantitatively important channel, is the relative deflation of debts
when prices rise (Fisher-effect). In the baseline model mortgages are indexed to
inflation and therefore there is no inflation risk borne by borrowers and I abstract
from the debt deflation channel. In the equations below, for illustrative purposes,
I include in red the inflation rate π , to show that with a simple modification the
nominal debt channel can feature in this model too.

Perhaps the most familiar item in the financial friction literature is the Borrowing
Constraint, which dynamically links loans to asset prices. The key accelerating
mechanism stems from the circularity between loans and house prices: if households
post their proprietary housing value as collateral to get a mortgage loan, then falling
real-estate prices tighten the borrowing constraint resulting in a lower housing
investment in the following periods.

lt+1 = Et [hh
t+1 + ph

t+1]+Et [ωt+1]ωι − rl
t t +Et [πt+1] (Borrowing Constraint)

Here the key modification carried from Lambertini et al. (2017b) is the fact that
LTV is endogenous and varies with the underlying credit conditions. This provides
another source of transmission, which materialises in the ωωtι term of Borrowing
Constraint (absent in Kiyotaki and Moore’s style of models14)

Since the LTV increases in ω̂ , loans expand also in response of log-deviations from
steady state of ω̂ . Whilst LTVs aren’t fixed and vary with credit conditions, this
model delivers a counterfactual outcome, in the sense that the model-implied LTV
increases in crises. LTV ratios usually increase in benign periods to reflect the more
ready availability of credit. In this model LTV is synonymous with the lender’s
share, so that financiers require a higher share of the realised risky housing project
to be persuaded to lend to such projects.

If loans are to be re-paid in nominal terms, then positive inflation is beneficial in
the sense that it deflates the outstanding debt, easing the collateral constraint and
allowing households to expand their real-estate ownership.

Another uncommon feature of this model is that households are net borrowers and
entrepreneurs net lenders (through their deposit holdings). Usually the financial
frictions literature emphasises the opposite case, with entrepreneurs projecting

14Among which the following ones are cited in this paper: Iacoviello (2005); Gerali et al. (2010);
Gambacorta and Signoretti (2014)
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their equity into risky projects and households smoothing their consumption with
savings. Usually in the literature the presence of indebted households is modelled
by introducing impatient households as a third and distinct agent.

In this model I wish to emphasise a household insolvency channel, therefore in the
interest of simplicity and tractability I reduce the heterogeneity in agents retaining
only credit constrained mortgagors. This modelling choice reflects an important
and realistic feature of credit markets: a big proportion of households is of a wealthy
hand-to-mouth type. i.e. holding no liquid assets but only illiquid ones (Kaplan
et al., 2014) .15 This is the case for this model: households’ only (illiquid) asset is
their housing, which yields them utility in terms of dwelling.

The collateral constraint prevents household consumption smoothing. Households
are only able to lever their housing holdings to finance their current consumption
and the fact that in the steady they are exactly hitting their collateral constraint
makes them unable to smooth it throughout their infinite lifetime. Since the
collateral constraint is binding, households’ Euler equation is Eq. 2.11 links future
consumption only to the period-to-period expansion of loans.

Financial frictions enter the housing problem by changing their consumption profile
as households can substitute consumption of goods with housing value. The
core net-worth channel stemming from risky mortgages lies in the following log-
linearised condition:
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(2.36, Aggregate Demand)

This equation captures the log-linear relationship between output and the other
items in the households’ budget constraint, approximately:

∆yt = ∆consumption−∆housing worth−∆construction wage+∆loans (2.63)
15As opposed to poor hand-to-mouth, which hold neither liquid nor illiquid assets.
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Output deviations are equal to consumption ones less deviations in housing value
holdings.16 Output is therefore increasing in consumption. The ratio of the steady
state share of new housing captures the quantitatively small log-linear effect of
labour income (and thus the state of production in the new housing sector). This
equation can be conceived as the aggregate demand for the economy and shows
the general equilibrium effects of the collateral channel and the insolvency channel,
as in a credit expansion households can borrow more to finance their consumption,
optimising at the same time their real-estate holdings which they can post as
collateral. Again, the nominal debt channel can be built in this equation and it works
exactly as above: it deflates loans, thereby increasing household leverage capacity.
The insolvency channel has relatively minor effects on output in comparison to
deviations from steady state loans (encapsulated in the last term).

Finally, µG[ω] captures the monitoring costs associated with default, i.e. a dead-
weight loss eating into existing housing value. So a higher default threshold
translates into a permanent destruction of housing value, impairing the capacity of
households to borrow against it.

The Eq. 2.36 has the flavour of a dynamic aggregate demand function, where
fluctuations stem from the portion of housing that borrowers can lever into loans
(credit market) and the increase in value of accumulated housing (net-worth).
Hence, such investment-savings equation (‘IS’) can be called a ‘levered’ IS, as
opposed to the standard IS arising from textbook 3-equation models.17 The elasticity
of aggregate demand to house prices features prominently in the transmission
mechanism. Since loans are the biggest driver for demand, a case where the
policymakers commit to curb credit aggregates to control the demand might be
compelling.

A built-in rule to control the expansion of credit is modelled by means of mechanistic
risk-weighting presented above, which ensures a quick reversion to steady state
lending whenever banking leverage and portfolio risk are too great with respect to
their steady state values.

In this paper the aggregate demand is augmented with housing value and debt,
16Multiplying both sides by PhHh makes evident that log-deviations are re-scaled by housing

value owned by households.
17For comparison, in Appendix B.6 I derive a similar aggregate demand (IS) equation for a much

simplified New-Keynesian model, finding that such IS is more sensitive to the interest rate that a IS
curve form Walsh (2010) textbook 3-equations model.
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hence it is a ‘levered’ IS schedule. Amplification does not only stem from
fluctuations in output gap, but also from general equilibrium effect in the demand
itself. Modifications to the interest rate do not only enter the demand by triggering
a change in the inter-temporal evolution of consumption, but they are apt to restrict
present consumption by constraining household leverage. Since wealthy hand-to-
mouth agents do not have the option of consumption smoothing, the impact on
output is greater, as a consequence of the high elasticity of such a levered IS to the
interest rate18

On the supply side of credit, banks are constrained by capital adequacy ratio,
forming a banking supply channel (as in (Gambacorta and Signoretti, 2014)). The
key result is the lending spread equation, which endogenously arises from the
banks’ optimisation programme.

rl
t − rd

t =
θξ 3

RR
(lt − kt + rwt) (Lending Spread)

Banks can deviate from the risk-weighted CAR ratio (lt − kt + rwt) compensating
the adjustment costs charging a higher spread.

As said above and consistently with the literature, I assume that the bank does not
incur credit losses,19 but banking losses stem only from balance-sheet management
costs. Relaxing this modelling choice would provide a more realistic transmission
of credit-negative shocks through the banking sector.

Envisioning a micro-founded risk-weight scaling the asset portfolio on the grounds
of probability of default and recovery can circumvent that and represent an indirect
way to factor credit risk into the banking choices. If assets are risk-weighted, loans
and banking leverage will be more pro-cyclical.

The risk weight is the log-linear version of 2.32:

rwt = ρrw ℵωωt (Risk Weight)
18We can further substitute the 2.37 into 2.36, Aggregate Demand to better visualise how the

interest rate enters the aggregate demand.
19Or, in other words the riskless rate is deemed to be equal to the ex-post realisation of the shock.

See Benes and Kumhof (2015) for a relaxation of this condition holding in in expectations but not ex
post.
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2.5. The Credit View of Monetary Transmission

As a preliminary result, we can see in Table 2.4 how the inclusion of defaults result
in a heightened volatility of inflation as compared to a benchmark model without
insolvencies.20 There appears to be an output/inflation trade off associated with
the standard Taylor rule. When insolvencies are modelled the variance of inflation
is greater than in the case without defaults but the variance of output is lower. The
volatility of inflation is larger with LATW rules, implicating that a deviation from
inflation targeting works to keep output under control but at the cost of allowing
more volatility in the price level.

Table 2.4: Variance of Output and Inflation with and without Insolvencies

The figure is obtained by simulating the base model for 1000 periods and calculating
the variance of relevant variable under different monetary policy rules. The base
model is considered against a benchmark model without default (presented in
Appendix B.4). The base parametrization for the Taylor Rule in Eq. 2.35 is then
augmented with positive weights to house prices and loans.

Var(y) Var(π)

Taylor Rule - Standard Calibration
Base Model 2.42 0.84
w/out Defaults 2.25 0.51
LATW House Prices - ρph = 0.15

Base Model 2.00 0.85
w/out Defaults 1.91 0.79

LATW Loans - ρl = 0.15
Base Model 2.28 0.83
w/out Default 1.91 0.78

2.5.1 Impulse Responses

The objective of this section is to analyse the effects of external shocks and the
response of the dynamic system on impulse. My aim is therefore to show how the
features described above characterise a model economy. In particular, the presence
of a fleshed out credit channel implies a further conduit of shock transmission that
reverberates on aggregate demand.

I test here three relevant shocks: a productivity shock, a negative interest rate shock
and a cost-push shock. These shocks are recognised as the driving forces of business

20The simplified analytical model without defaults and a constant LTV ratio is presented in
Appendix B.4. It is a version of Iacoviello (2005) with households borrowing and banks as financial
intermediaries.
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2. LEANING AGAINST THE WIND

cycle moving variables away from their steady state. Since I am here concerned
with the conduct of monetary policy, I am interested in plotting the nominal interest
rate reaction to exogenous disturbances to gauge the time-path of variables post
shock under a standard Taylor rule and different model configurations.

Although this Chapter strongly focuses on monetary policy, I include additional
shocks in order to gain further insight into the workings of the model presented
above with respect to a wider array of economic disturbances that affect the credit
variables. This helps me to obtain a more informed analysis of the effects of
aggregate shocks with regards to the different features of the model at hand.

I trace the monetary transmission mechanism given by the key equations show-
ing the importance of the credit channel when the system is hit by exogenous
disturbances. I then experiment a dynamic risk-weighting rule to investigate
the interaction between monetary and macroprudential feedback stemming from
default risk. Since the model is log-linearised, the charted impulse response
functions are percentage deviations from steady state values.

Figure 2.2: Technology Shock

Percentage deviations from Steady State.
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2.5.1.1 A Technology Shock

Wealth and Housing Demand Channel
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2.5. The Credit View of Monetary Transmission

In the baseline calibration, a 1% technology shock (shown in Fig. 2.2) affecting
the goods production increases output and wages. Here the shock affects the
aggregate supply first but it gets transmitted through the aggregate demand,
as households end up consuming more goods and housing units. Over time,
household consumption is persistently higher than its steady state. Households can
scale up their real estate holdings leveraging real assets into loans. The increased
demand for real estate impacts on prices, which display a hump shape tapering
after 10 quarters - as seen in Fig. 2.2.

Imperfect substitution of labour inputs matter, as hours worked in the goods’ sector
depend positively on output and negatively on consumption and markup (shown
in Eq. 2.69). With imperfect substitution wages in two sectors fail to equalise, hence
the wage in the construction sector falls below steady state and the employment in
the goods sector rises. This feeds into housing demand and supply consideration,
contributing to higher housing prices.

Collateral Channel and Housing Market Acceleration

The technology shock causes a swift re-allocation of real-estate, from offices to
dwellings. This makes households more able to project their housing ownership
into new mortgage loans. The shift is facilitated by the fact that I do not model
adjustment costs for the agents when they manage their housing stock.21

Concurrently, entrepreneurs produce and sell less housing units to households.
Therefore the supply of real estate shrinks, driving up housing prices. The housing
stock is non-stationary and therefore a shock produces a permanent re-allocation of
housing units between entrepreneurs and borrowers.

Increasing housing prices ease the household collateral constraint (Eq. 2.37) driving
up the lending expansion. Housing purchases from households sets in motion an
economic accelerator as household can buy and accumulate more dwellings with
which they can collateralise new loans. Households cannot smooth consumption
so their only way to preserve wealth is by the accumulation of housing when the
borrowing constraint releases.

On the back of the boom, the default threshold is lower, meaning that a greater
idiosyncratic shock is needed to tip households into default. The technology shock

21Also Iacoviello (2005) sets adjustment costs to 0 after having verified that positive adjustment
costs produce quantitatively small effects.
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2. LEANING AGAINST THE WIND

causes an output boom leading to an increase in house prices. This enables a higher
valuation of existing housing, i.e. collateral and therefore makes the case of a default
less likely.

Credit Supply and Lending Channel

In this model an economic boom corresponds to a credit boom. Since borrowers
cannot smooth their consumption, the only way for them to access to more
consumption in the future is to commit to more housing investment in the present.
Thus, a technology shock increases the demand for mortgage loans. The profit-
maximising banks accommodate the excess demand by scaling up their loan
portfolio up to the point in which profits offset capital management costs for
deviating from the target capital adequacy ratio.

As a result, mortgage loans depart significantly from their steady state as also do
deposits. Entrepreneurs sell their housing stock converting their asset holdings
from real-estate to deposits (Eq. 2.43) and they consume more. But aggregate loans
grow faster than deposits, meaning that banks increase their leverage on the back
of accumulating positive profits.

Aggregate Supply and Sticky Prices

The sluggish adjustment of inflation on impulse is due to the Calvo sticky price
model. Monopolistic competition ensures that firms re-set prices following the
evolution of their time-varying markup, i.e. the inverse marginal costs. A
technology shock decreases the marginal costs, as it makes cheaper to produce
goods, hence inflation reduces on impulse.

Nominal Rate Reaction

Since the Central Bank responds only to inflation deviation, it counters the shock
easing monetary policy to bring back the price level to its steady state.
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2.5. The Credit View of Monetary Transmission

2.5.1.2 Monetary Policy Shock

Figure 2.3: Monetary Policy Shock

Percentage deviations from Steady State.
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A negative monetary policy shock is identified by a 1% one-off increase in the
nominal rate of interest. This transmits to entrepreneurs via their inter-temporal
consumption and to households through the cost of lending. It alters the demand
and supply in the housing market and entrepreneurs-households consumption
patterns.

The key part of the transmission mechanism stems from wealth effects in the
household and for firms. Since the interest rate is higher, households consume
fewer goods and housing services.

On the aggregate supply side, the fall in house prices and housing demand from
households prompts entrepreneurs to accumulate commercial real-estate and use
it in the production process. This impacts firms’ marginal costs and their markup
falls below their steady state level. This feeds into their price setting protocol and
inflation rises.

The Central Bank’s modifies entrepreneurs’ preferences via the Euler equation 2.44,
as entrepreneurs increase their future consumption relative to the current, but this
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2. LEANING AGAINST THE WIND

effect is negligible compared to the increase in its income due to the increased
availability of real-estate. Simultaneously, housing consumption falls on the back
of subdued housing investment since it is now more expensive to borrow. Total
output is driven by a sharp fall in household consumption, lowering employment
and wage in the goods sector.

Therefore, the exogenous tightening is accompanied by falling output and inflation.

Collateral Channel and Housing Market De-acceleration

The consumption channel translates into a credit crunch, as loans are falling quicker
than deposits and house prices are also tightening household collateral constraint.
Residential housing de-accumulation increases the default threshold, reducing
borrowers’ housing investments also in future periods.

Entrepreneurs, on the other hand, manage to increase their consumption as they
accumulate real estate. At the same time, commercial real estate is an input to
the production of new housing, there is thus an increase in the production of new
housing also because since monitoring costs are proportional to housing value, an
uptick in defaults causes a destruction of property in the model. Hence, hours
worked and wages rise in the housing production sector. The increased production
in the housing sector partially mitigates the downturn, sustaining house prices and
increasing the housing supply.

Credit Supply and Lending Channel

The banking loan portfolio shrinks as well as deposits. Since loans are falling
faster than deposits, the banking sector faces a collapse of the net interest margin,
accruing losses. As the capital is impaired, banks need to slowly re-grow the loan
portfolio to steady state while complying with the capital adequacy ratio. So the
monetary policy shock is consistent with a credit crunch scenario that drags for
some 5 periods, given the exogenous constraint on bank leverage.

Housing Production Increase

The low demand for goods depresses the wage in the goods sector, triggering a
migration of labour to the housing production sector, where the wage has increased
on the back of a production boom bolstered by greater entrepreneurial demand.
The stock of real-estate grows but it remains more concentrated in the firms’ hands,
which can use it to produce more commercial units and hence continue investing.
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2.5. The Credit View of Monetary Transmission

Aggregate Supply and Sticky Prices

The striking feature of a monetary policy shock in this model is the level of
persistence of inflation, and given the Taylor rule, of the interest rate.

This is attributable to the general equilibrium effects stemming from the heterogene-
ity of having two agents populating the model. In a single agent new-Keynesian
model, the adjustment of a monetary policy tightening passes almost exclusively
through the dynamic IS (which contains the Euler equation), making consumption
now less appealing when compared to savings. Here this effect is present through
the entrepreneurs Euler equation 2.44, but the effect that dominates is the income
effect. More demand of housing from entrepreneurs fuels entrepreneurial activity
and the higher investment at time 0 translates into higher real estate investments at
later times. A monetary policy shocks reduces the price of housing and hence the
marginal costs for entrepreneurs to produce new real estate using old real estate as
input. The markup rises above steady state and inflation falls.

2.5.1.3 Risk-Weighting of Banking Assets

The risk-weight appended to banking assets provides another mechanism of
shock propagation: assets are now made more procyclical as they are allowed to
expand when the credit risk is moderated and contract when the default threshold
endogenously rises.

This model amendment goes in the direction of making the lending channel more
realistic: banks risk taking is normally reflected in the regulatory leverage ratio they
are required to maintain.22

This modelling choice means that banking assets are more volatile than in the
baseline model. In the case of a technology shock, the risk weight decrease allowing
banks to gear up more, this reflects in an increase of house prices, household
consumption and output through the mechanism described in the above paragraph.

The difference in aggregate demand from the base model makes changes markup
and inflation dynamics. The Central Bank can keep the nominal interest rate higher
for longer in the case of a technology shock coinciding with an economic boom.

In case of a monetary policy shock, these effects are much smaller due to the credit
22Risk weights were first established in the Basel Framework and embedded in financial

regulation, as for instance the Capital Requirements Regulation in Europe.
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crunch I described above. Risk weighted assets modulate the effective leverage
the bank is allowed to take, therefore the supply of more or less loans impact the
household borrowing constraint changing the default threshold.

2.5.1.4 Nominal Debt Channel

In Iacoviello (2005) the transmission channels belonging to the credit view are the
collateral channel and the Fisherian channel of debt deflation. He shows how when
both are ‘activated’ in the model, output falls more strongly upon a monetary policy
shock. The emphasis on nominal debt is lacking in Gambacorta and Signoretti
(2014), as they elect to focus more on the collateral channel, although they analyse a
cost-push shock with indexed debt.

In Section 2.5, I show how to factor in nominal debt repayments in the base
model.23 In this alternative specification mortgages are no longer indexed to
inflation and therefore there is an additional shock transmission channel at play.
This modification carries implications for the credit equations block because in the
base model, with indexed debt, inflation only affects the aggregate supply through
the price setting friction. In the model with nominal debt, inflation enters the
household credit decisions and modulates consumption/investment patterns for
both households and entrepreneurs through time.

Higher inflation reduces the real value of pre-determined mortgage loans. So, a bit
of inflation is credit positive as it improves the mortgagor’s borrowing constraint. It
also reduces the value of deposits, appearing in the entrepreneur’s Euler equation
and affecting inter-temporal consumption.

In this section I show the impulse response functions to the shocks described above,
describing how the nominal debt channel changes the baseline model. Furthermore,
I consider an additional inflation shock, i.e. an exogenous disturbance to the
Phillips curve that reflects external inflationary pressure not originating from the
endogenous staggered prices setting. In all cases, the debt deflation channel is
quantitatively strong and changes the response of the default threshold on shocks.

Technology Shock
23The detailed derivations are in Appendix B.5.

94



2.5. The Credit View of Monetary Transmission

Figure 2.4: Technology Shock

Percentage deviations from Steady State.
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Following a technology shock (Fig. 2.4 the mechanism detailed in the previous
section still holds, but now the default threshold falls more strongly on impact and
peaks at a lower level on the back of inflation easing the collateral constraint during
the economic boom. The marginal product of labour rises with wages, pushing up
consumption and output. The economic boom is also a credit boom as households
are able to invest more in real estate to secure more consumption in the future.
Consequently households can take on more leverage, contributing to a house price
increase in the first periods upon shocks.

On the credit supply side banks are also leveraging up to accommodate the fresh
credit demand. When risk-weighted assets are modelled they enable banks to take
up much more leverage on the back of the improved credit quality of borrowers. So
the case of risk-weighted assets is the one with the strongest credit growth, as the
banking portfolio is now less risky.

In turn, monetary policy is adjusted following the baseline backward looking Taylor
rule. To nominal debt corresponds a better state of the aggregate demand and
therefore the inflation falls by less than in the baseline model. Accordingly, the
Central Bank can cut the nominal rate by less than it would in the base model.
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Figure 2.5: Monetary Policy Shock

Percentage deviations from Steady State.
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Monetary Policy Shock

In Fig. 2.5 I plot the response of key variables to a surprise 1% monetary policy
shock. As stated in the Section 2.5 above, this is tantamount to model the Fisherian
channel of debt deflation.

Here the time path of variables factoring in nominal debt is not drastically different
from the baseline model. What changes is the credit block. Whilst high inflation
transfers wealth from lenders to borrowers, a negative monetary policy shock
does the opposite. As an higher interest rate keeps inflation below its steady state,
borrowers reduce their holdings as it is more expensive to service debt in terms of
higher interest rate but also in paying back it back in moneys that are worth more
in real terms (due to debt deflation).

On the other side of the credit friction, entrepreneurs (lenders) get more real deposits
and therefore are able to purchase more housing value to produce more goods and
new real estate.

The debt deflation channel depresses the collateral constraint as the inflation rate
enters with a negative sign in the Borrowing Constraint, but the general equilibrium
effect on the default threshold makes it less responsive the shock than in the base
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2.5. The Credit View of Monetary Transmission

model.

This effect is due to the presence of the banking sector, as a monetary policy shock
improves the leverage ratio of intermediaries and it translates into a lower gross
lending rate.

Figure 2.6: Cost Push Shock

Percentage deviations from Steady State.
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Cost Push Shock

The rationale behind the monetary policy reaction to a cost-push shock is to test the
monetary policy rule response to a disturbance that affects aggregate supply.

A cost push shock is identified as an exogenous disturbance to the markup in the
Phillips curve (Eq. 2.46),24 with variance 1. It can be thought as an inflationary
impulse originating outside the dynamic system, as e.g. a supply-side commodity
shock.

st = ρxst−1 + εt (2.64)

A cost-push shock therefore entails a time-varying markup and, consequently,
inflation and a persistence dictated by the parameter ρx in the equation above. I set

24As in Negro et al. (2020), the shock is scaled by the Phillips curve slope coefficient.
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ρx = 0.5 as in Gambacorta and Signoretti (2014), meaning that a cost push shock is
somewhat persistent but not as a technology shock.

The immediate result of a supply-sided shock is the spike in inflation, coupled with
an instantaneous decline in output and household consumption. The variables hit
on impulse converge back to steady state in less than 10 quarters due to the high
coefficient given to inflation targeting in the Taylor rule.

This is because the main transmission happens on the back of the Central Bank
response and formulation of monetary policy. Since the Central Bank reacts to
inflation, it has to hike the nominal rate in the periods after the input (since the
policy reaction is entirely backward looking).

The element of novelty year is the response of the default threshold under different
model designs. Whether debt is indexed or not influences the magnitude of the fall
in lending at time 0, which in turns tighten the borrowing constraint producing
defaults.

If loans are risk-weighted, then portfolio credit risk is translated into a different
banking leverage. The modulation of the credit supply due to the endogenous
variation of the leverage ratio cools off the credit cycle, dampening defaults.

2.6 Policy experiments and Leaning Against the Wind

In this section I construct a policy exercises analogous to the one performed
by Gambacorta and Signoretti (2014) to retrieve the efficient frontier for the
output/inflation trade off. Consistently with the literature, I postulate a Central
Bank’s quadratic loss function of the type:

Loss = Var(π)+α Var(y) (2.65)

This ad hoc formulation of Central Bank’s preference replaces a micro-founded
social welfare function maximisation and assumes that central banking losses are a
valid proxy for social losses. In this example the Central Bank cares about volatility
of output and inflation, this assumption excludes housing and other macroeconomic
variables in keeping with actual central banks official mandates, which concentrate
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2.6. Policy experiments and Leaning Against the Wind

on GDP and inflation stability.25 As shown above, in the model hereby considered
housing is an important role in the transmission mechanism, lying at the centre
of the aggregate demand. I show in this Section that exactly for this reason
targeting output is similar to targeting housing prices and in assessing the empirical
performance of the model at hand, I find a Pearson’s correlation coefficient of 0.8
between simulated series of house prices and output. This correlation, albeit milder,
is also present in actual data (See 2.6.3).

The Central Bank is assumed to optimise the following backward-looking Taylor
rule:26

rn
t = (1−ρr)

(
ρllt + ph

t ρph +(1+ρπ) πt +ρy yt

)
+ρr rn

t−1 (2.66)

This rule is the same as the one presented above in Eq. 2.35 but with all
contemporaneous variables. I consider it with and without interest rate smoothing,
since Gambacorta and Signoretti (2014) have not factored any degree of interest rate
inertia. I then construct a grid of parameters for ρph, ρy and ρπ and compute the
loss for each combination in the grid. Finally, I retrieve the parameters under which
the loss was minimised for the different weights on output α .

In the case of a standard Taylor rule, the grid spans across the following parameter
space: ρπ ∈ [0 5], ρy ∈ [0 2.5] and ρph = ρl = 0. In the case of LATW, ρph and ρl can
vary in the interval [0 2.5]. The policy weight on output α is between 0 and 2. The
points in the grid are 41 (including zero) along each dimension and equally spaced.

The results in Table 2.6 are very similar to those obtained by Gambacorta and
Signoretti (2014), as I find that in cases of a standard Taylor Rule and LATW,
the minimum loss is achieved with strict inflation targeting, which results in the
maximum coefficient (5) assigned to inflation. In the case of a standard Taylor rule,
the optimised output parameter is positive and gradually stronger when the central
bank assigns a higher weight to output.

In the second case, with explicit housing prices targeting, the optimised output
weight is always 0 or, in a few instances, close to nil. For stricter inflation targeting
is not optimal to target house prices but augmenting the Taylor rule in that direction

25for a review of this approach see Benchimol and Fourçans (2019).
26I try also another rule with house price inflation πh

t = ph
t − ph

t−1, obtaining similar results in the
simulations below.
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results in reduced losses for greater values of the output weight α . Incidentally,
as the central bank deviates from the Taylor rule targeting asset prices, the output
coefficient becomes irrelevant and according to the optimised rule, never greater
than 0.06.

I share this result with Gambacorta and Signoretti (2014) even though their friction
is a Iacoviello’s exogenous LTV constraining entrepreneurs. Gambacorta and
Signoretti (2014) speculate that in a New-Keynesian setting with credit, financial
frictions lie at the heart of the transmission mechanism and therefore asset prices
constitute a more direct target than output.

This might mean that targeting asset prices is substitute to output targeting rather
than its complement. Targeting loan portfolio deviations from the steady state is
similar to targeting housing prices because of the borrowing constraint relationship
directly linking asset prices to loans:

lt+1 = Et [hh
t+1 + ph

t+1]+Et [ωt+1]ωι − rl
t t (Borrowing Constraint)
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Table 2.5: Technology Shock

Optimised Taylor Rule Coefficients and Central Bank Losses

Taylor Rule House-prices Augmented
α Loss ρπ ρy Loss ρπ ρy ρph

0 0.02 5.00 0.00 0.05 2.88 0.00 0.06
0.1 0.27 4.75 0.06 0.22 2.88 0.00 0.06
0.2 0.48 4.63 0.56 0.45 2.50 0.19 0.13
0.3 0.67 4.63 0.56 0.57 4.88 0.06 1.25
0.4 0.85 4.63 0.56 0.69 4.88 0.06 1.25
0.5 1.03 4.63 0.56 0.82 4.88 0.06 1.25
0.6 1.20 3.25 0.88 0.94 4.88 0.06 1.25
0.7 1.34 3.25 0.88 1.07 4.88 0.06 1.25
0.8 1.47 3.25 0.88 1.18 2.38 0.00 1.69
0.9 1.60 3.25 0.88 1.26 2.38 0.00 1.69
1 1.74 3.25 0.88 1.34 2.38 0.00 1.69

1.1 1.87 3.25 0.88 1.42 2.38 0.00 1.69
1.2 2.00 3.25 0.88 1.50 2.38 0.00 1.69
1.3 2.14 3.25 0.88 1.58 2.38 0.00 1.69
1.4 2.26 2.50 0.88 1.66 2.38 0.00 1.69
1.5 2.37 2.50 0.88 1.74 2.38 0.00 1.69
1.6 2.48 2.50 0.88 1.82 2.38 0.00 1.69
1.7 2.60 2.50 0.88 1.89 2.38 0.00 1.69
1.8 2.71 2.50 0.88 1.97 2.38 0.00 1.69
1.9 2.82 2.50 0.88 2.05 2.38 0.00 1.69
2 2.93 2.50 0.88 2.13 2.38 0.00 1.69
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Table 2.6: Cost-push Shock

Optimised Taylor Rule Coefficients and Central Bank Losses

Taylor Rule House-prices Augmented
α Loss ρπ ρy Loss ρπ ρy ρph

0 0.00 5.00 0.00 0.00 5.00 0.19 0.00
0.1 0.01 4.75 0.50 0.01 3.13 0.00 0.06
0.2 0.02 2.63 0.69 0.02 5.00 1.38 0.06
0.3 0.02 2.88 1.31 0.02 2.75 0.31 0.25
0.4 0.02 1.25 0.56 0.02 2.75 0.31 0.25
0.5 0.02 1.25 0.56 0.03 2.75 0.31 0.25
0.6 0.02 1.25 0.56 0.02 2.63 2.44 0.25
0.7 0.02 1.50 1.13 0.03 3.88 1.69 0.44
0.8 0.03 1.50 1.13 0.03 3.88 1.69 0.44
1 0.03 1.50 1.13 0.03 3.88 1.69 0.44

1.1 0.03 1.00 1.50 0.03 1.50 1.94 0.44
1.2 0.03 1.00 1.50 0.03 1.50 1.94 0.44
1.3 0.03 1.00 1.50 0.03 1.50 1.94 0.44
1.4 0.03 1.00 1.50 0.03 1.50 1.94 0.44
1.5 0.03 1.00 1.50 0.03 1.50 1.94 0.44
1 0.03 1.00 1.50 0.03 1.50 1.94 0.44

1.6 0.03 1.00 1.50 0.03 1.50 1.94 0.44
1.7 0.03 1.00 1.50 0.03 1.50 1.94 0.44
1.8 0.03 1.00 1.50 0.03 2.50 2.25 0.63
1.9 0.03 1.00 1.50 0.03 1.88 1.81 0.69
2 0.03 1.00 1.50 0.03 2.75 1.56 0.75

I also use Eq. 2.35 with a smoothing parameter of 0.9 to assess the effects of a
gradual adjustment of the nominal interest rate. I find that interest rate smoothing
shifts the efficient frontier mitigating the output-inflation trade-off. With inertia in
the nominal interest rate, differences between the LATW and the standard Taylor
rule are less significant than in the case without interest rate smoothing. This finding
is not surprising and interest rate inertia often features as a desired characteristic
for Taylor rules (Woodford, 2003a; Adolfson et al., 2011). Laureys et al. (2021) note
that in the presence of financial frictions, interest rate smoothing contributes to
attenuate the volatility of credit spreads. This might be the channel at play in the
model above, as a gradual adjustment of the nominal rate of interest means that
the adjustment of Bank’s funding costs is more gentle and so is the squeeze in the
supply of credit. In Figure 2.7 it is shown graphically how LATW compares to a
standard Taylor rule. LATW gains are less clear-cut in the case of cost-push shocks.
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2.6. Policy experiments and Leaning Against the Wind

Figure 2.7: Efficient Frontier

Inflation-Output Trade-off with and without interest rate smoothing.
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2.6.1 Why is asset price targeting similar to targeting output?

In this section I investigate why targeting house prices in the model outlined above
is similar to targeting output. When I ‘activate’ the LATW rule in the grid search,
the asset prices coefficient ρph cannibalises output targeting, to which corresponds
a constant 0 feedback coefficient in the optimised Taylor rule and a generally high
inflation weight ρph.27

In the Section 2.5 above, I showed how the aggregate demand compounds the net
worth channel and the collateral channel of transmission, essentially feeding into
the dynamic IS with house prices. This makes output very sensitive to the interest
rate as far as it cools off the demand of housing when loans become more expensive
and the default rate surges.

In this model, house prices are appearing in the borrowing constraint, as real-estate
works as banking collateral, but real-estate prices are also informing and driving
the production process. I conjecture that this vicinity of house prices to aggregate
supply makes them all the more relevant to the monetary transmission mechanism.

On the demand side, when debt contract are not indexed to the price level, output
27As it happens in the Gambacorta and Signoretti’s model.
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2. LEANING AGAINST THE WIND

depend positively on the present inflation rate. Inflation is credit positive as it
expands the borrowing constraint and allows for more household leverage their
household holding into loans thereby increasing output. As households lever up
and the demand for housing units picks up, the price of real-estate increases.

On the side of aggregate supply, increasing real estate price means higher marginal
product of producing new housing units, as real-estate is also necessary to carry
out the production process. Entrepreneurs would ideally increase labour in the real
estate sector but they cannot do so promptly since the labour inputs are imperfect
substitutes.28 The wage rate increases in the construction sector more than in the
goods sector. Output increases thereby reducing the firms demanded markup
with the price increase. There is a circularity of inflation, which first improves the
balance-sheet of borrowers and then expands those of firms together with output.

If we eliminate nc
t , wc

t , nh
t , wh

t from the production functions for housing (Cobb-
Douglas) and goods (linear), we can derive the following linearised conditions for
output and new housing:29

yt = 2at − ch
t − xt (2.67)

xt = at +hn
t

ν + z
(1− v)(1− z)

−he
t−1ν

1+ z
(1−ν)(1− z)

− ph
t

1−ν

(1−ν)(1− z)
(2.68)

Consolidating the two conditions into a single output equation yields the following
general production function for goods:

yt = at +(ph
t − ch

t )
1

1− z
−hn

t
ν + z

(1−ν)(1− z)
+he

t−1
ν(1+ z)

(1−ν)(1− z)
(2.69)

So that aggregate output depends positively on house prices with elasticity 1
(1−z) ,

where z is labour substitution parameter between the two sectors. New real-estate
units hn

t are produced in a different sector, so in a construction boom the goods
output is lower. Whereas if there is a positive deviation of commercial real-estate

28When labour inputs are perfect substitutes, the goods sector labour supply and wage will
also increase in the goods sector, dampening the wage differential with the construction sector and
reducing the impact of increased house prices on output.

29Resulting from a few algebraic manipulations of equations 2.40, 2.41, 2.47,2.48, 2.49 and 2.50 in
Appendix 2.3.
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2.6. Policy experiments and Leaning Against the Wind

he
t−1, then the output is increased, reflecting a better balance-sheet of entrepreneurs

and higher wages in the housing construction sector. This shows in the table above,
where the real estate augmented rule is associated to a 0 weight on output but a
greater inflation parameter than it was the case under the Taylor rule.

In this setting, targeting house prices does affect the borrowing constraint, as
detailed in the previous section, but it also does impact the production sectors.
Targeting house prices is thus very similar to output targeting because of the way
real-estate is used as a factor of production.

The two-agents structure of this model makes them compete for housing. When
housing prices are down, firms have an edge in the market as it is cheaper for them
to buy existing real estate, convert it into new real estate and harvest the profits
thus boosting their future investments. This net transfer of housing wealth from
households (borrowers) to entrepreneurs (firms) translates into a higher markup
and keeps output sub-optimally low.

Vice versa, in an asset prices boom, household demand thrives and as enterprises
are producing more to accommodate the financial acceleration. This interaction
connecting demand sided development to supply lowers the markup and causes
inflation. Hence there is a link between house prices and goods inflation through
the production functions for the economy.

2.6.2 LATW and Nominal Debt

In the policy experiments above, I find that targeting house prices in the model
with nominal debt yields dynamic indeterminacy for almost all values of ρph in the
grid (with the exception of lower ones, i.e. ρph ≤ 0.125). This constitutes a main
difference from the Gambacorta and Signoretti (2014) paper, as they are able to
tabulate the monetary policy frontier when the debt is nominal beside to when it is
indexed to inflation.

Determinacy is an important property of linear rational expectations models and
it is investigated analytically in tractable three equations models (for the textbook
theory see Woodford (2001); Galí (2009); Walsh (2010)). Dynamic determinacy is
associated with the economic intuition of the Taylor principle: the monetary policy
rule has to respond more than one-to-one to inflation deviations from steady state
for the system to have a stable solution. Lack of determinacy on the other hand
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2. LEANING AGAINST THE WIND

means that there are multiple equilibria. 30

Since my model is medium scale (is in 23 equations), it is not possible to study
its roots analytically, so I resort to a numerical analysis of the policy parameters
space as in Ascari and Sbordone (2014). I use the same grid of parameters as
in the optimised monetary policy exercise laid out above and I check for which
combination of ρπ and ρy in the benchmark monetary policy rule Eq. 2.66 the system
is determined. This procedure can be summarised graphically in a X-Y plot.

Figure 2.8: Determinacy regions of a standard Taylor rule

Base model and with the nominal debt channel. Eq. 2.66 with ρph = 0

Fig. 2.8 shows how the backward looking benchmark Taylor rule in Eq. 2.66
produces similar results as in the textbook three equations model (Galí, 2009,
Chapter 4). That is because it captures the Taylor principle, the Central Bank
has to react aggressively to inflation and the weight on output does not matter that
much as long as the weight on inflation is above one. This finding is in keeping
with the literature on Taylor rules and the inflation/output.31

Nominal debt greatly reduces the region in which the model is stable. The Central
30In mainstream DSGE modelling determinacy is typically enforced by selecting a parametrisation

which yields a stable equilibrium - e.g. one that satisfies the Blanchard and Kahn’s conditions
(Farmer, 2020).

31For a textbook analysis see: Woodford (2003b)
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2.6. Policy experiments and Leaning Against the Wind

bank can deviate from strict inflation targeting and react to output as long as the
coefficient assigned to inflation is very high, otherwise the system is indeterminate.

With nominal debt, the Central Bank faces a different inflation/output trade-off.
Because of the inflation rate showing up in the 2.37, more inflation eases the
collateral constraint contributing to more consumption fuelled by the ever higher
leverage capacity.

In my model is not possible to find an optimised LATW policy rule in the nominal
debt case due to a large region of indeterminacy (charted in Fig. 2.10). If debt is
due in nominal terms, the space of policy parameters is significantly restricted.
Importantly, this limits also the possibilities to ‘lean against the wind’, as targeting
housing prices makes the model unstable.

I note that the determinacy region is greatly reduced with nominal debt under the
two compared policy rules: with LATW and without. The key to understand the
transmission mechanism in the case with nominal debt may lie within the aggregate
demand: inflation deflates the debt stock allowing households to take up more
leverage. On the other end, households with more debt are much more sensitive to
interest rates developments and asset prices. The deleverage of borrowers causes
a GDP destruction as they pay monitoring costs, hence in this instance may be
difficult for the Central Bank to stabilise inflation and output at the same time.

Ultimately, it seems hard for monetary policy to stabilise house prices, output and
inflation at the same time. House prices and output co-move as they both appear
at the core of aggregate supply. The set-up of the production sector makes house
prices and inflation inversely correlated. The degree of correlation depends also on
monetary policy and the degree of interest rate smoothing.
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2. LEANING AGAINST THE WIND

Figure 2.9: Determinacy regions of an asset prices augmented rule

Base model and with the nominal debt channel. Eq. 2.66 with ρph = 0.05

2.6.3 Model Performance: Interest Rate, House Prices and

Defaults

Table 2.7: Standard Deviations of Key Variables

Data are HP-Filtered UK series for 1988-2018: πt is CPI Inflation (ONS), ph
t are

average house prices (UK Gov) deflated with the implicit GDP deflator, and
insolvencies (UK Insolvency Service) proxy the default threshold ω̂t

Variable Data Base
Model

Nominal
Debt

Base
Model
and RW

Nominal
Debt
and RW

Without
Insol-
vencies

rn
t 1.16 1.19 1.21 1.16 1.16 1.15

yt 1.23 4.07 4.64 4.53 4.68 2.37
πt 0.83 0.86 0.90 0.91 0.85 0.12
ph

t 4.76 3.94 4.14 4.39 4.32 1.61
ω̃t 13.20 1.70 2.35 1.61 1.88 -

In this section I conduct a ‘moment matching’ exercise, with the aim of testing the
empirical performance of the model presented above against the cyclicality of the
UK credit market. For the sake of this empirical exercises, I postulate a Taylor rule
in line with Eq. 2.35, with pure inflation targeting (ρπ = 0.27 and ρrn = 0).
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2.6. Policy experiments and Leaning Against the Wind

The model is successful in capturing the key statistics of the credit cycle. Table 2.7
tabulates the standard deviation of data against the model-implied ones, showing
how a model with insolvencies can produce the persistence observed in actual
data for the nominal interest rate, inflation and house prices. This provides an
useful benchmark with respect to other similar models: Gelain et al. (2013) can
match the volatility of US House Prices, Debt and Output by postulating a moving
average forecast rule for expectation formation. The actual volatility of insolvencies
is between 6 and 8 times greater than what the model simulates. Whilst alternatives
to rational expectation can increase the volatility of defaults by adding uncertainty
over the future realisation of house prices, it is doubtful that this modification
would improve dramatically the currently low figure. The model shortcoming in
this respect is more imputable to structural features.

Among the key variables, model-implied output is counter-factually more volatile
than actual GDP, whereas insolvencies, represented by the default threshold ω̃ .
This is to be expected given the simplistic nature of the goods market: the sum of
entrepreneurial and household consumption stacks up to the model economy
total output as in Eq. 2.57. In turn, consumption depends on the period-by-
period configuration of the housing market, as households and entrepreneurs split
their asset allocation between consumption and real estate. Hence, the volatility
stems from the fact that mortgages and deposits are 1-period contracts with fully
adjustable interest rate.

Insolvencies are much stickier in the model than they are in data, this also is a
by-product of the selected friction. Insolvencies only materialise when households
are in negative equity, meaning that they do not repay the mortgage loan if it is
grater than the ex-post housing value that they receive. This is clearly not the case
in reality, when defaults are not purely strategical but happen organically because
of the impossibility to service a loan, this can happen on the back of a wider range
of shocks, such as income or unemployment ones, which are not modelled in this
paper.

In terms of cross-correlations, reported in Table 2.8, the model here presented
continues to be consistent with data. Insolvencies are positively correlated with
inflation and the house price index is negatively correlated with CPI inflation. My
actual (hp-filtered) correlations are similar to those reported in Demary (2010), who
also finds strong negative correlation between inflation and house prices in UK and
in a panel with other countries. This stylised fact is captured, albeit in a weaker
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fashion, in the model implied cross-correlations.

Additional simulations show how the sign of the correlation between the inflation
rate and output is determined by the interest smoothing parameter ρrn. If the
Central Bank smooths interest rates, output and goods prices co-move, if the weight
to interest rate smoothing is lower, then the model-implied cross-correlations for
inflation rate, GDP and house prices are much closer to actual ones. If the Central
Bank reacts to inflation more aggressively, it front-loads the output decline, whereas
stickiness in the credit market provides for a more sluggish adjustment of house
prices.

This may signify that a backward looking auto-correlated Taylor rule (as in
Kapetanios et al. (2019)) is not a good representation of the Central Bank’s response
function in UK, for the reasons recalled in Section 2.2.6. Hence, the empirical
correlations would support the Goodhart (2005) point of view that the high auto-
correlation of the interest rate is in fact due to statistical mis-specification and the
Bank of England is less concerned with interest rate smoothing than it appears from
ex-post naive regressions.

Table 2.8: Credit Variables Model and Empirical Correlations

Model base calibration. UK data are for 1988-2018: πt is CPI Inflation (ONS), ph
t

are average house prices (UK Gov) deflated with the implicit GDP deflator, and
insolvencies (UK Insolvency Service) proxy the default threshold ω̂t

Base Model Nominal Debt

M
od

el

yt πt ph
t ω̃t


yt 1 −0.523 0.80 −0.53
πt − 1 −0.21 −0.43
ph

t − − 1 −0.54
ω̃t − − 0 1

yt πt ph
t ω̃t


yt 1 −0.44 0.80 −0.67
πt − 1 −0.10 0.47
ph

t − − 1 −0.60
ω̃t − − 0 1

1-Sided HP-Filter 2-Sided HP-Filter

D
at

a

yt πt ph
t ω̃t


yt 1 −0.52 0.69 −0.35
πt − 1 −0.55 0.50
ph

t − − 1 −0.19
ω̃t − − 0 1

yt πt ph
t ω̃t


yt 1 −0.29 0.66 −0.37
πt − 1 −0.36 0.47
ph

t − − 1 −0.38
ω̃t − − 0 1
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2.7. Directions for future research

The points above hold when considering the response on impulse. In Fig. 2.10 I
compare the IV-VAR impulse responses showed at the beginning of this paper with
the theoretical ones produces by the baseline model. I find that the response on
impulse of GDP, house prices and real debt are similar in magnitude and overlap
to the VAR confidence bands. The actual response in insolvencies is much greater
than the model implied one, this again is due to the fact that the DSGE models
only strategic defaults and not unexpected ones. Moreover, in this paper mortgages
figure as 1-period adjustable rate bonds (issued by the households), this is also
very far from the reality of actual mortgages, which are fully-amortising contracts.
Hence, in case of defaults, borrowers fail to re-pay the outstanding amount.

Figure 2.10: DSGE versus IV-VAR

Backward looking Taylor rule with ρrn = 0.9, ρπ = 1.5 and ρy = 0.1 as in Kapetanios
et al. (2019)
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2.7 Directions for future research

This paper contributes to the literature on house prices targeting in New Keynesian
models. It does so adopting a tractable New Keynesian framework. The focus on
the extensive margin allows the model to capture the main stylised facts of the
credit cycle, while falling short on others.

The workhorse model proposed above could fit reasonably well the empirical
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moments of the variables of interest but it failed to produce a sizeable response on
impulse of the insolvency rate. I speculate that this might be due to the length of
mortgage contracts, so one interesting expansions could be factoring in longer and
risky mortgage contracts (for reference Bluwstein et al. (2018) has long household
loans but no defaults). Whilst this modification might help better matching the
data moment, does not change the fact that in the model presented above the
transmission mechanism stems from a ‘levered’ aggregate demand, which makes
mortgagors sensitive to interest rate movements.

Adam et al. (2011) show that house price dynamics and sentiment are difficult
to reconcile with the rational expectation setting and indeed there is a developed
literature of papers use the expectations channel to explain housing booms (few
among many Lambertini et al. (2017a); Granziera and Kozicki (2015); Gelain et al.
(2013)). Different formalisation of expectation-formation might provide a valuable
environment to glean insights on the extent in which house price targeting helps
the economy. In different modelling contexts, anchoring expectations around house
prices using monetary policy instruments (besides say pure macroprudential policy)
could represent a compelling hypothesis specifically because agents would have to
infer the workings of the economy from its observed realisation.

Following this line of reasoning, one might also model Central Banks as not fully
rational. For instance, the necessity for interest rate smoothing may naturally arise
in a model in which the Central Bank learns about the economy and wants to
avoid abrupt interest rate movements. Or, alternatively, reputational costs may
be associated with a high volatility of the policy rate, hence providing a more
compelling case for smoothing (Murray, 2012). Models with different form of
expectations may offer a richer environment to test Taylor and LATW rules in a
more meaningful way.

Even tough I calibrate my model on UK data, I find difficult to use an off-the-
shelf Taylor rule for a baseline ‘realistic’ specification. In my first Chapter I dealt
with the problem of endogeneity of monetary policy using an external instrument
series, or trying to isolate the ‘systematic component’ of monetary policy with
sign restrictions. In this Chapter I deal with monetary policy rules using them
in a formulaic way, in accordance with a wider literature (recalled above) and
operational DSGE example (the Swedish Riskbank Adolfson et al. (2011) use a rule
similar to 2.35).
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2.8. Conclusions

To overcome this problem I end up estimating an array of different rules and I cycle
through different parameter combinations in my efficient frontier exercise. Finding
the ‘optimal’ monetary policy rule is outside the scope of this chapter but, as a
general point, I agree with Curdia et al. (2011) in saying that DSGE modelling often
features too formulaic monetary policy rules.

This paper touches very slightly on welfare due to the computational complications
associated with this exercise. I only compute a very simple monetary policy
optimised rule without engaging in a complete analysis on optimal monetary
policy with borrowing households and saving entrepreneurs. A proper optimal
analysis is a useful extension but beyond the scope of this Chapter, as it entail
setting up a quite complex simulation exercise. It could be interesting to see what
the optimal level of default is. This would be particularly relevant if coupled with
the extension above: how strongly the central bank can react to inflation by raising
the interest rate if defaults are more volatile and sticky than they are in the present
model?

Another point of attention is the nominal debt channel. Fisherian deflation of real
debts appears to be quantitatively important as far as the response on impulse
is concerned, improving borrower’s credit quality represented by the default
threshold. Nominal debt has also important implications for the stability of the
system: with loans and deposits paid in nominal terms the policy space is greatly
reduced and LATW is infeasible (it generates instability).

2.8 Conclusions

In this paper I model the credit view of monetary policy transmission in a New-
Keynesian setting. There are two key agents: wealthy hand-to-mouth households
(mortgagors) and firms (depositors), with a bank extending loans out of deposits
wile setting aside regulatory capital. A costly state verification friction creates a
modelling environment where credit is available up to an endogenous LTV ratio.
This generates an acceleration mechanism, as aggregate demand and housing
investments are sensitive to external disturbances that propagate them on impulse.
This model captures also the lending channel, as L ̸= D and banks calibrate their
leverage ratio as to offset their capital management costs with the net interest
margin. So in periods of subdued loan demand, banks have to scale back their
lending to mitigate losses.
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A big advantage of the model here presented is its tractability: it is in 23 log-
linearised equations and thus simple enough to allow for a tracing of the trans-
mission mechanism. Form the frictions just described stem a collateral channel, a
debt-deflation channel and a bank lending channel that enrich the dynamics of inter-
temporal substitution and sticky prices common to workhorse New-Keynesian
models. Through simple modelling devices, I am able to pin down the key
stylised facts of the credit channel of monetary policy: the credit aggregates are
very persistent and household finances provide a channel of amplification for the
economy. Specifically, my model shifts the centre of the transmission mechanism
from inter-temporal substitution to household leverage.

This model has policy implications: LATW monetary policy is consistent with
lower volatility of a broadly defined central bank loss function when output has a
positive weight, but is quantitatively similar to output targeting. This result may
stem from the inner workings of the model: as house prices inform both aggregate
demand and supply, they sit at the core of the transmission mechanism. Interest
rate smoothing improves the efficient frontier, consistently with the wider DSGE
literature.

Moreover, a credit friction that only envisions strategic default would tend to
underestimate sudden insolvencies, which are linked to asset prices and output.
Insolvencies are between 5.5 and 7 times more volatile of different declinations
of the model tested above, and inversely correlated with house prices, so policies
directed to house prices will impact the aggregate demand affecting the leverage of
representative agents.

When household leverage depends also on inflation as agents repay the mortgage
contract in nominal terms, debt deflation reduces the money value of the loans. This
model configuration results in a reduced policy-parameters space, such as that the
central bank has to react more vigorously to inflation in order to ensure dynamic
determinacy. If mortgagors and depositors compete for the same real-estate, it
becomes challenging for monetary policy to stabilise output, house prices and
inflation at the same time.

Together, these results go in the direction of favouring a simpler monetary policy
approach based on a regular Taylor rule.
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APPENDIX TO CHAPTER
2

B.1 Stylised Facts on the Credit Cycle

• Lower Frequency than the Business Cycle (Aikman et al., 2015);
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Figure B.1: 1-sided HP-Filter UK GDP and Household Debt

• Tightening of credit conditions accompanies recessions(Christiano et al., 2014);
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B.1. Stylised Facts on the Credit Cycle

Figure B.2: Mean above the Median LTV (BoE)

Figure B.3: UK Mortgage Approvals (LHS), High-Low LTV IR Spread (RHS)

• Defaults are cyclical and associated with credit market conditions (Bernanke
et al., 1999);
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Figure B.4: Total Credit and Default Rates in US and UK

Total Credit comprises financing from all sources and is calculated by the Bank of
International Settlements ‘BIS’ following the framework of the System of National
Accounts 2008. Delinquent loans from US are 30-days past due disclosed by the
Federal Reserve, and for UK the rate of insolvency per 100,000 inhabitants calculated
by the Insolvency Service

.
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B.2 Steady State

To simplify the steady state I posit that the σ = φ = χ = 1, which is equivalent to
assume a logarithmic utility function for both households and entrepreneurs.

P = 1 (B.1)

1+RR = 1/γ (B.2)

H = He +Hh = 1 (B.3)

Λ
c =

γ −β

Ch (B.4)

Ch

PhHh =
[
1−β (1−δ

h)+β µG[ω]−Φ[ω](γ −β )
]
/(ςβ ) = ζ1 (B.5)

Ce

PhHe =
Hn

He ν +
Hh

He
Φ[ω]

1+RR
(1−δ

h)(1−ξ )−δ
h = ζ2 (B.6)

He

Hn =
γν

1− γ + γδ h = ζ3 (B.7)

L = (1−δ
h)

Φ(ω)

(1+RR)
PhHh (B.8)

D
L
= 1−ξ ,

K
L
= ξ (B.9)

Y =Ch +Ce +δK (B.10)

Y
PhHh =

Ch

PhHh +
Ce

PhHh +δξ
L

PhHh = Ξ (B.11)
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Y
PhHh = ζ1 +ζ2 +δξ Φ(ω̂)

γ

(γ +1)
= Ξ (B.12)

Figure B.5: Steady State Clearing

Clearing in the housing market (left pane) and in the loans market (right pane).
Solid red lines show the steady state with banking capital requirements and dashed
black lines without them
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B.3. Log-Linearisation

B.3 Log-Linearisation

B.3.1 Households Budget Constraint

The Household Budget Constraint is:

Hh
t+1Ph

t +Ch
t −Lt+1 =−

(
Hh

t Ph
t µG(ω̂t)+Lt (RL,t +1)

)
+(1−δ

h)Hh
t Ph

t +Nc
t W c

t +Nh
t W h

t +Ft

(B.13)

We can substitute in it the following definitions before log-linearising:

Labour demand curves:

Nh
t W h

t = (1−ν)Hn
t Ph

t (B.14)

Nc
t W c

t = Yt/Xt (B.15)

Households profit from retail goods producers:

Ft = Yt −
Yt

Xt
(B.16)

Hh
t+1Ph

t +Ch
t −Lt+1 =−

(
Hh

t Ph
t µG(ω̂t)+Lt (RL,t +1)

)
+(1−δ

h)Hh
t Ph

t +
Yt

Xt
+(1−ν)Hn

t Ph
t +Yt −

Yt

Xt
(B.17)

Hh
t+1Ph

t +Ch
t −Lt+1 =−

(
Hh

t Ph
t µG(ω̂t)+Lt (RL,t +1)

)
+(1−δ

h)Hh
t Ph

t +(1−ν)Hn
t Ph

t +Yt

(B.18)

To log-linearise the household flow of funds above we use the Uhlig’s method.
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HhPh(1+hh
t+1+ ph

t )+Ch(1+ch
t )−L(1+lt+1)=−

[
HhPh

µG(ω)(1+hh
t + ph

t +ηωt)+LRR(1+ lt + rl
t )

+L(1+ lt)]+(1−δ
h)HhPh(1+hh

t + ph
t )+(1−ν)HnPh(1+hn

t + ph
t )+Yt(1+ yt)

(B.19)

Subtracting the steady state values:

HhPh(hh
t+1 + ph

t )+Ch(ch
t )−L(lt+1) =−

[
HhPh

µG(ω)(hh
t + ph

t + η̃ωt)+LRR(lt + rl
t )

+L(lt)]+(1−δ
h)HhPh(hh

t + ph
t )+(1−ν)HnPh(hn

t + ph
t )+Yt(yt) (B.20)

Then collecting L, the resource constraint becomes:

Ch(ch
t )=HhPh(hh

t+1+ ph
t )+L

[
lt+1 − lt −RR(lt + rl

t )
]
−
[
HhPh

µG(ω)(hh
t + ph

t + η̃ωt)
]

+(1−δ
h)HhPh(hh

t + ph
t )+(1−ν)HnPh(hn

t + ph
t )+Yt(yt) (B.21)

Dividing both sides by HhPh yields and using the definitions from L and ζ1 in
Section B.2:

ζ1Chch
t =(hh

t+1+ ph
t )+(1−δ

h)
Φ(ω)

1+RR

[
lt+1 − lt −RR(lt + rl

t )
]
−
[
µG(ω)(hh

t + ph
t + η̃ωt)

]
+(1−δ

h)(hh
t + ph

t )+(1−ν)
Hn

Hh (h
n
t + ph

t )+
Yt

HhPh yt (B.22)

Re-arranging:

ζ1Chch
t =

Yt

HhPh yt +hh
t+1 + ph

t −µG(ω)(hh
t + ph

t + η̃ωt)+(1−δ
h)(hh

t + ph
t )+

(1−ν)
Hn

Hh (h
n
t + ph

t )+(1−δ
h)

Φ(ω)

1+RR

[
lt+1 − lt −RR(lt + rl

t )
]

(B.23)
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B.3.2 Housing Demand

The Housing demand FOC is the following:

ςβ
Ch

t
σ

Hhχ

t Ph
t
=

Ph
t−1

Ph
t

(
Ch

t

Ch
t−1

)σ

−β (1−δ
h)+β µG[ωt ]− (1−δ

h)Ch
t

σ
λ

c
t−1Φ[ωt ] (B.24)

Using the Uhlig’s method of approximation around the steady state:

ςβ
Chσ

HhχPh
(1+ ch

t −χhh
t − ph

t ) = [1+ ph
t−1 − ph

t +σ(ch
t − ch

t−1)]+β µG[ω](1+ηωt)

− (1−δ
h)Chσ

Λ
c
Φ[ω](1+σch

t +λ
c
t + ιωt) (B.25)

Subtracting the steady state from both sides and setting σ = χ = 1 as per baseline
calibration yields the following linearised equation:

ςβζ1(ch
t −hh

t − ph
t )= (ph

t−1− ph
t +ch

t −ch
t−1)+β µG[ω](ηωt)−(1−δ

h)Ch
Λ

c
Φ[ω](ch

t +λ
c
t−1+ιωt)

(B.26)

Using the same method, I derive the log-linear version of the budget constraint
Lagrange multiplier is:

λ
c
t−1 =− γ

γ −β
(ch

t−1 + rl
t−1)−

β

γ −β
(rl

t − rl
t−1 − ch

t ) (B.27)

B.3.3 Entrepreneurs Flow of Funds

The Entrepreneurs resource constraint is:

He
t+1Ph

t +Ce
t +Nc

t W c
t +Nh

t W h
t +Dt+1 = (1−δ

h)He
t Ph

t +
Yt

Xt
+(1+Rd

t−1)Dt +Hn
t Ph

t (B.28)

Substituting the labour demand FOCs inside it:
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He
t+1Ph

t +Ce
t +

Yt

Xt
+(1−ν)Hn

t Ph
t +Dt+1 = (1−δ

h)He
t Ph

t +
Yt

Xt
+(1+Rd

t−1)Dt +Hn
t Ph

t

(B.29)

Simplifying:

He
t+1Ph

t +Ce
t −νHn

t Ph
t +Dt+1 = (1−δ

h)He
t Ph

t +(1+Rd
t−1)Dt (B.30)

Linearising around the steady state yields:

HePh(1+he
t+1 + ph

t )+Ce(1+ ce
t )−νHnPh(1+hn

t + ph
t )+D(1+dt+1) =

(1−δ
h)HePh(1+he

t + ph
t )+D(1+dt)+RRD(1+ rd

t−1 +dt) (B.31)

Subtracting the steady state:

HePh(he
t+1 + ph

t )+Ce(ce
t )−νHnPh(hn

t + ph
t )+D(dt+1) =

(1−δ
h)HePh(he

t + ph
t )+D(dt)+RRD(rd

t−1 +dt) (B.32)

Dividing by HePh, using the steady state definition of ζ2 and re-organising the
equation:

he
t+1 + ph

t +ζ2ce
t −ν

Hn

He (h
n
t + ph

t ) =

(1−δ
h)(he

t + ph
t )+

D
HePh [dt −dt+1 +RR(rd

t−1 +dt)] (B.33)

Substituting (1−ξ )L for D and the steady state for L:
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ζ2ce
t = ν

Hn

He (h
n
t + ph

t )−he
t+1− ph

t +(1−δ
h)(he

t + ph
t )+(1−ξ )(1−δ

h)
Hh

He
Φ(ω)

1+RR
[dt −dt+1+RR(rd

t−1+dt)]

(B.34)

B.4 A Model without Defaults

The following specification is along the lines of Iacoviello (2005), featuring an
exogenous collateral constraint (hence the LTV Φ does not depend on ω̂).

B.4.1 Household Problem

The collateral constrain now embeds a fixed LTV ratio Φ:

Lt+1

Et [Πt+1]
= (1−δ

h)ΦEt

[
HtPH,t

(1+Rl
t)

]
(B.35)

The demand for housing is:

ςβH−χ

t = Ph
t−1λt−1 − (1−δ

h])Ph
t (Φλ

c
t +βλt) (B.36)

B.4.2 Log-Linear

The borrowing constraint is:

lt+1 = Et [hh
t+1 + ph

t+1]− rl
t (B.37)

The log-linear housing demand is:

ςβζ1(ch
t −hh

t − ph
t )= ph

t−1− ph
t +ch

t −ch
t−1+(1−δ

h)(γ−β )(− γ

γ −β
(ch

t +rl
t )−

β

γ −β
(rl

t+1−rl
t −ch

t+1)−ch
t )

(B.38)

where ζ1 is:
ζ1 = β

[
δ

h(1−Φ)+Φ−1
]
+ γ(δ h −1)Φ+1 (B.39)
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B.5 Nominal Debt

In the case in which mortgage loans are not indexed to inflation, mortgagors pay
back their 1-period ARM in money terms as well as depositors, who receive the
nominal proceeds of their bank savings.

I show how the derivations of first order conditions change in this section, alongside
with providing new log-linearised equations. This happens by introducing the
budget constraints the gross inflation rate Πt =

Pt
Pt−1

.

B.5.1 Households

The flow budget constraint is:

Hh
t+1Ph

t +Ch
t −Lt+1 =−

(
Hh

t Ph
t µG(ω̂t)+

Lt

Πt
(RL,t +1)

)
+(1−δ

h)Hh
t Ph

t +Nc
t W c

t +Nh
t W h

t +Ft

(B.40)

The Collateral Constraint is:

Lt+1

Et [Πt+1]
= (1−δ

h)Et

[
Φ[ω̂t+1]

HtPH,t

(1+Rl
t)

]
(B.41)

Housing Demand is the FOC with respect of Ht :

ςβ
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σ

Hhχ

t Ph
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=

Ph
t−1
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(
Ch

t

Ct−1

)σ

−β (1−δ
h)+β µG[ω]− (1−δ

h)Chσ

t λ
c
t−1Φ[ω] (B.42)

B.5.2 Entrepreneurs

He
t+1Ph

t +Ce
t +Nc

t W c
t +Nh

t W h
t +Dt+1 =(1−δ

h)HePh
t +

Yt

Xt
+(1+Rd

t−1)
Dt

Πt
+Hn

t Ph
t (B.43)

B.5.3 Log-Linear

The household’s flow of funds becomes:
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ch
t ζ1 = yt

Y
HhPh +

[
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(B.44)

The borrowing constraint is:

lt+1 = Et [hh
t+1 + ph

t+1]+Et [ωt+1]ωι − rl
t t +Et [πt+1] (Borrowing Constraint)

Housing demand:
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(
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(B.45)

Entrepreneur Flow of Funds:

ζ2 ce
t =

(
hn

t + ph
t

) Hn

He ν +
[
−he

t − ph
t +
(

1−δ
h
) (

ph
t +he
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+
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(1−δ
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[
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(
dt−1 −πt+1 + rd
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(B.46)

And its Euler Equation:

rn
t = ce

t+1 − ce
t (B.47)

B.6 A Partial Equilibrium Model

In this section I state a partial equilibrium model. It is partial equilibrium because I
only derive an IS equations, but the model can be expanded to three equations (IS,
Phillips Curve and House Prices Phillips Curve), plus a monetary policy rule.
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The utility function is:

U (Ct ,Nt ,Ht) =
C(1−σ)

t

1−σ
+ ς ln(Hh

t )−
Nη

t

η
(B.48)

The budget constraint is analogous to the one presented above, albeit simplified:

Ct +Ph
t Hh

t +Rl
t−1

Lt−1

πt
= Lt +WtNt +Ph

t Hh
t−1 (B.49)

The representative household can borrow up to a certain fraction Φ (loan-to-value-
ratio) of its housing value. The borrowing constraint is:

Lt = Φ
Ph

t+1Hh
t πt+1

Rl
t

(B.50)

Substituting the borrowing constraint into the budget constraint yields:

Ct +Ph
t (H

h
t −Hh

t−1)+ΦHt−1Ph
t = Φ

Ph
t+1Hh

t πt+1

Rl
t

+WtNt (B.51)

B.6.0.1 First Order Conditions

Maximising the utility function under the budget constraint yields this FOC for
house prices demand.

ς
Cσ

t

Ph
t Hh

t
= 1−Φπ

h
t+1

πt+1

Rl
t
+β

(
Ct

Ct+1

)σ

π
h
t+1(Φ−1) (B.52)

which log-linearises in:

c̃t = c̃t+1 −
1
σ

Φ

1−Φ
(r̃t − π̃t+1)−

1
σ

1
1−Φ

π̃
h
t+1 (B.53)

We can reduce it even further by assuming a log-linear Cobb-Douglas production
function with labour and real-estate held by entrepreneurs as its arguments.
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ỹt = ãt +(1−α)ñt +α h̃e
t−1 (B.54)

Given that we postulate that consumption equals output yt = ct and technology
follows an AR1 process at = ρat1 + εt , we can subtract from both sides the output
implied under fixed prices and define output gap as xt = yt − y f

t . The ‘levered IS’ is
thus the following:

x̃t = x̃t+1 −
1
σ

Φ

1−Φ
(r̃t − π̃t+1)−

1
σ

1
1−Φ

π̃
h
t+1 +(ρ −1)ãt (B.55)

This dynamic IS is the analogue of the standard 3-equations model presented in
Walsh (2010):

x̃t = x̃t+1 −
1
σ
(r̃t − π̃t+1)+(ρ −1)ãt (B.56)

The difference is that in the levered IS there is more amplification owning to the fact
that households accumulate housing value, hence it is more elastic to the interest
rate.
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3CHAPTER THREE

THE NASH WAGE
ELASTICITY AND ITS

BUSINESS CYCLE
IMPLICATIONS

3.1 Introduction

The existing literature that seeks to estimate the degree of wage rigidity and to
assess its importance in business cycles has so far failed to reach consensus, in part
due to a fundamental obstacle to inference. The obstacle is that it has been difficult
to argue that particular measures and estimation approaches correctly evaluate
the rigidity of the marginal cost of labor except under strong and controversial
assumptions about which theoretical model describes the labor market. As we
discuss below, this obstacle has been a significant barrier not only for structurally
estimated models featuring wage rigidity, but also for the reduced form literature
on wage cyclicality. As such, without agreement on the preferred model of the labor
market overall, it has been not been possible to agree on the level of wage rigidity
supported by the data.

In an effort to surmount this obstacle, this paper develops and applies a new
semi-structural method to estimate real wage rigidity and assess its business cycle
implications. In doing so, we provide new evidence that wage rigidity is highly
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quantitatively important in US data, and plays a dominant role in explaining the
volatility of unemployment over the business cycle. Our approach relies on an
equation we derive relating the wage to other aggregate variables, which we show
commonly holds across a very large class of different search and matching (SAM)
models with Nash bargaining. By estimating specifications that regress actual wages
on the Nash bargained wage implied by this equation, we are able to directly and
straightforwardly compare US wage data to what would be implied by this large
class of SAM models. The large class of models we study includes, for instance,
models with many different shocks, rich firm and match heterogeneity, job-to-job
transitions, nominal rigidity in goods markets and various other frictions in goods
and financial markets. Our results indicate that models within this large class can
only be made consistent with wage data (under conventional calibrations of other
parameters) if the wages of both newly hired workers and job stayers are far more
rigid than implied by Nash bargaining.

Our approach also allows us to infer the likely contribution of wage rigidity to
the business cycle volatility of unemployment and to assess how far the data
supports different models of rigid wages. For instance, in a simple SAM model
with productivity shocks, we find that our estimated level of wage rigidity increases
the volatility of unemployment more than sevenfold compared to what would
occur under Nash bargaining, and can account for around half the unemployment
volatility in the data. We show that our empirical estimates suggest that wages in
the data are at least as rigid as in an alternating offer bargaining model based on
Christiano et al. (2016).

Throughout this paper, we use the term ‘wage rigidity’ to represent the notion
that wages do not vary with macroeconomic conditions to the extent that would
be expected if they were set by Nash bargaining. We propose a new measure of
wage rigidity, the Nash wage elasticity (NWE). The NWE represents the percentage
increase in the cost of labor when the wage rate implied by the Nash bargaining
solution increases by 1%.1 By construction, if wages are indeed set by Nash
bargaining, the NWE is equal to 1. On the other hand, if wages are very rigid
compared to Nash bargaining, the NWE will be closer to zero.

Measuring wage rigidity against the benchmark of Nash bargaining is desirable, we
1Pissarides (2009) uses the phrase Nash wage elasticity on occasion to mean the elasticity of

Nash wages with respect to productivity. To avoid confusion, we stress that we use this term to
mean something completely different.
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argue, because some flexible wage benchmark is required to meaningfully assess
whether or not wages are rigid. That is, wages can only meaningfully be called
rigid if their behavior deviates from what would be considered a flexible wage.
We provide four reasons why Nash bargaining represents a logical flexible wage
benchmark. First, Nash bargaining is perhaps the most common assumption used in
the recent literature on unemployment over the business cycle, and so it is useful to
know how far this is consistent with actual wage setting. Second, Nash bargaining
is constrained efficient in the labor market in important cases, and so the NWE
provides a useful yardstick of how flexible or rigid wages are likely to be compared
to what would be constrained efficient. Third, as we discuss below, we show that
the NWE is a strong predictor of the effects of wage rigidity on the cyclical volatility
of unemployment, regardless of whether or not wages are actually set by Nash
bargaining. Fourth, we show that different models without Nash bargaining, such
as various rigid wage models, imply significantly different values for the NWE,
and the implied NWE is less sensitive to other model assumptions aside from those
about wage setting. Therefore, the NWE allows us to adjudicate which of these
models are more consistent with wage data.

Our paper begins by developing and applying a semi-structural approach to
estimate the NWE in US data. We derive a common wage equation that holds
across a large class of models with Nash bargaining. We use this equation to impute
a time series for the Nash wage from US data, without needing to adjudicate over
which model in this large class corresponds to the true data generating process. We
obtain estimates of the NWE by regressing measures of the actual cost of labor on
the Nash wage. Across 180 regressions using various series for the cost of labor,
various (or no) instruments for the Nash wage and various assumptions about the
opportunity cost of employment and hiring costs, we mainly obtain NWE estimates
between 0 and 0.1, indicating that wages of both job stayers and new hires are
highly rigid in comparison to Nash bargaining. The data consistently favors an
NWE below 0.65, except in the most extreme specifications, which use both the most
procyclical wage series we consider (the ‘user cost of labor’ from the NLSY) and
also assume high values of the opportunity cost of employment and/or very large
fixed hiring costs. Intuitively, our consistently small estimates of the NWE are a
consequence of the fact that the Nash wage is much more procyclical than measures
of actual wages, across these many different specifications.

Next, we provide novel analytical and simulation results to show that the NWE

133



3. THE NASH WAGE ELASTICITY AND ITS BUSINESS CYCLE IMPLICATIONS

is a strong predictor of the cyclical volatility of unemployment, across a large
class of models with shocks affecting the marginal revenue product of labor (e.g.
productivity or markup shocks). We derive a tight mathematical relationship
between the NWE and the Fundamental Surplus, which Ljungqvist and Sargent
(2017) have shown is a valuable predictor of the cyclical volatility of unemployment
in many search models. When the NWE is as low as most of our empirical estimates,
we show that wage rigidity amplifies unemployment fluctuations in a simple SAM
model with productivity shocks more than sevenfold compared to the case of Nash
bargaining, and that such a model can easily account for around half of the empirical
volatility of unemployment over the business cycle.

Lastly, we investigate how far our results are consistent with various other models
of wage setting in the literature. We first examine models in which the wage is
consistent with constrained efficiency in the labor market, such as many models of
directed search. We find that these models would imply values of the NWE equal
to or greater than 1, which is inconsistent with our empirical findings. We then
examine a model of staggered wage bargaining similar to Gertler and Trigari (2009)
and a model of alternating offer bargaining similar to Christiano et al. (2016). We
find that wages in the data are perhaps less rigid than implied by the calibrated
staggered wage bargaining model but are more rigid than implied by the alternating
offer bargaining model.

Overall, this paper makes five main contributions relative to the literature. These
contributions are, first, to show that a large class of search and matching models
imply a common equation for the Nash bargained wage. Second, to develop the
concept of the Nash wage elasticity, which can be estimated for this large class of
models without having to specify which model in this class corresponds to the
true data generating process. Third, to provide a range of empirical estimates
of the Nash wage elasticity, which overwhelmingly imply extremely rigid wages.
Fourth, to show that, across a class of models with or without wage rigidity (or
Nash bargaining), the Nash wage elasticity is a strong predictor of the contribution
of wage rigidity to the volatility of unemployment over the business cycle. Fifth, to
use our Nash wage elasticity estimates to make inferences about how far different
models of non-Nash wage setting are consistent with wage data, such as models
with constrained efficient wages or rigid wages.

Finally, while our approach is motivated by a desire to estimate wage rigidity and
its business cycle implications, we anticipate that the general methodology that
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we develop could be useful in other contexts. For instance, it may be possible to
use similar approaches to estimate price rigidity in goods markets; to estimate the
elasticity of asset prices to fundamentals, or to estimate the elasticity of nominal
exchange rates to differences in relative goods prices across countries.

The remainder of the paper is structured as follows. Section 3.1.1 discusses the
related literature and compares our method and findings to this literature. Section
3.2 discusses the intuition for our approach, develops the modeling framework,
derives equations to calculate the Nash wage and formally defines the Nash wage
elasticity. Section 3.3 outlines the data sources and calibration used to calculate the
Nash wage. Section 3.4 presents our empirical results and discusses the intuition
behind our findings. Section 3.5 discusses the implications of our NWE estimates for
business cycles and for models with non-Nash wage setting. Section 3.6 concludes.

3.1.1 Related Literature

In this section, we compare our approach to the large existing literature that seeks
to estimate the level of wage rigidity and to infer its importance for business cycles.
We also outline why our findings differ substantially from some of the work in
this literature. While the literature has contributed greatly to our understanding
of wage dynamics and business cycle propagation mechanisms, it is, as of yet, still
far from consensus on the key questions of how far wages are rigid, and how far
wage rigidity matters for business cycles.2 The literature has been dominated by
two broad approaches which differ quite significantly from ours: fully structural
models and reduced form estimation.

The first of these two approaches taken by the literature has been to build structural
SAM or other DSGE models and either calibrate them and compare to data or
structurally estimate them against the data.3 Since the wage setting process

2For instance, see Christiano et al. (2021), Dupraz et al. (2019), Gertler et al. (2020), Pissarides
(2009), Basu and House (2016), and Bellou and Kaymak (2021) for recent contrasting views.

3Examples from this literature using SAM models include Christiano et al. (2016), Gertler and
Trigari (2009), Hagedorn and Manovskii (2008), Hagedorn and Manovskii (2013), Hall and Milgrom
(2008) and Pissarides (2009). A number of studies in this literature, such as Merkl and Stüber (2017),
Hagedorn and Manovskii (2013), and Gertler et al. (2020) provide new reduced-form estimates of
wage cyclicality using an approach along the lines of the reduced form literature discussed below,
and use the results of these regressions to calibrate or empirically evaluate a structural model.
Studies that assess the implications of wage rigidity in New Keynesian DSGE models with search
and matching frictions include Krause and Lubik (2007), Blanchard and Galí (2007) and Christoffel
and Linzert (2010). Prominent recent examples from the large literature on the importance of wage
rigidity in New Keynesian models include Auclert et al. (2021) and Broer et al. (2020).
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is modelled explicitly, the resulting parameters that are found to best fit the
data are directly informative about the presence and/or nature of wage rigidity.
Nevertheless, the conclusions drawn about the degree and importance of wage
rigidity differ substantially across the different studies in this literature. A major
reason is that the level of wage rigidity implied by any such calibrated or structurally
estimated model may be very model specific, in that a different model may fit the
same data equally well with a very different level of wage rigidity. As such, it is
unsurprising that the findings of this literature regarding wage rigidity differ across
models, and it is not usually clear how far the findings from any particular model
are robust to model misspecification.

The principal difference between our approach and this literature is that we rely
on a wage equation for the Nash bargained wage that we show holds commonly
across a very large class of SAM models. Therefore, our conclusions about wage
rigidity do not depend on which model in this class is the correct one, and so are
arguably less sensitive to model misspecification.

Our findings also differ substantially from many (although certainly not all) of
the SAM models in this literature in that we find a high level of wage rigidity.
A key reason for this difference is that our approach is based on a Nash wage
equation that applies under models with many different shocks. Therefore, our
NWE estimates may be valid even if multiple shocks are important influences on
labor demand. In contrast, many models in this literature assume that the only
shocks driving fluctuations in labor demand are productivity shocks.4 Under this
assumption, Nash bargaining implies a tight link between wages and productivity,
and so much of this literature considers the elasticity of wages with respect to
productivity in the data to be very informative about wage rigidity, and empirically
evaluates models accordingly.5 However, given the lack of a strong correlation
between unemployment and productivity in the data, it seems implausible that
productivity shocks are the only driver of unemployment fluctuations. It is not clear
then whether the elasticity of wages with respect to productivity is very informative
about rigidity once we allow for other shocks. On the contrary, in our framework,
which is consistent with multiple shocks, we find that the Nash wage is practically

4Examples of this include Hagedorn and Manovskii (2008), Hall and Milgrom (2008), Pissarides
(2009) and Malcomson and Mavroeidis (2017).

5Thus, Hagedorn and Manovskii (2008), for instance, calibrate their model to match this elasticity,
while Pissarides (2009) suggests that Nash bargaining is supported in the data if the elasticity of
new hire wages with respect to productivity is close to 1.
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uncorrelated with productivity in the data, and so the elasticity of wages with
respect to productivity is not informative about the NWE.

The second approach taken by the prior literature to estimate wage rigidity has been
to estimate the cyclicality of real wages via reduced-form regressions.6 Following
Bils (1985), this literature has typically regressed a measure of wages (at the
individual or aggregate level) on a cyclical indicator, such as the unemployment
rate or productivity.7 An advantage of this approach, relative to the structural
approach above, is that, to estimate the cyclicality of a particular wage measure, it
is not necessary to write down a structural model of the labor market. This might
seem to avoid the concerns of model misspecification inherent in the structural
approach.

However, in practice, the reduced form literature has faced the same barrier to
inference as the structural approach – the interpretability of its conclusions often
rely on strong assumptions about the underlying theoretical model of the labor
market. This is because estimates of wage cyclicality found by the reduced form
literature are often highly sensitive to the choices of wage measure (e.g. the wage of
all workers, new hires, or new hires out of unemployment) and of cyclical indicator
(e.g. unemployment or productivity). Which of these choices seems most justified
depends on the theoretical model that the researcher has in mind. For instance,
as discussed above, models in which productivity is the only shock suggest that
productivity is the natural cyclical indicator on which to regress wages, but this
conclusion does not necessarily follow if there are other shocks. Equally, whether
the wage measure that best captures the marginal cost of labor is the average wage
of all workers, the wage of newly hired workers, the ‘user cost of labor’ developed
by Kudlyak (2014), or none of these varies across theoretical models depending on
whether a worker’s current wages in the model are influenced by conditions when
they were hired, and depending on whether average match quality may vary over
time (Kudlyak, 2014; Gertler et al., 2020). Moreover, for a given wage series and
cyclical indicator it is regressed on, it is impossible to infer whether an estimated
wage cyclicality of e.g. 2% signifies a sticky or flexible wage without knowing how
a flexible wage should behave. This is hard to ascertain without a theoretical model.

6This approach originates with Dunlop (1938) and Tarshis (1939).
7Recent examples of work in this vein includes Haefke et al. (2013), Martins et al. (2012), Carneiro

et al. (2012), Kudlyak (2014), Basu and House (2016), Gertler et al. (2020) Grigsby et al. (2021), Hazell
and Taska (2020) and Schaefer and Singleton (2021). Much of the earlier literature that studies the
wage cyclicality of job stayers and new hires in this way is surveyed by Pissarides (2009)
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Consequently, the literature has overwhelmingly interpreted the results of reduced
form regressions using specific calibrated models; conclusions from this literature
regarding whether the data supports a flexible or rigid wage then depend on the
particular theoretical model and calibration strategy chosen.

Our approach differs from this literature in that it delivers an estimate of the Nash
wage elasticity that can immediately be interpreted theoretically, as evidence in
favor or against Nash bargaining for example, without the need to commit to a
particular theoretical model. Furthermore, our theoretical derivation of the Nash
wage equation makes clear that the ideal measure of actual wages to estimate the
NWE is the user cost of labor based on workers newly hired out of unemployment
(without any additional adjustments for match quality), and the cyclical indicator it
should be regressed on is the Nash wage. This is true across a large class of models,
since the same Nash wage equation holds across a large class of models. Therefore,
we are able to answer questions of which wage measure and which cyclical regressor
should be used, without needing to commit to a particular theoretical model. Finally,
we find that estimates of the Nash wage elasticity are ultimately far below one in
many specifications for all the measures of actual wages we consider, because all
these wage measures are much less cyclical than the Nash wage. Therefore it turns
out that the question of how to measure actual wages is relatively less important
for estimating the NWE.

In addition to the literature reviewed above, our approach relates closely to recent
work by Malcomson and Mavroeidis (2017), Bils et al. (2018), Koenig et al. (2021)
and Ljungqvist and Sargent (2017). Malcomson and Mavroeidis (2017), like us,
seek to estimate a wage-setting equation while imposing weak assumptions on
the data generating process. Unlike us, they find that the data is consistent with
new hire wages being set by Nash bargaining. We conjecture that the difference
in results arises because they do not allow for markups and implicitly assume
that fluctuations in labor demand are driven entirely by productivity shocks. This
could lead to a bias against finding wage rigidity for the reasons discussed above
on page 136. Koenig et al. (2021) show that a canonical Diamond-Mortensen-
Pissarides model implies a wage elasticity to unemployment far higher than the
data, consistent with our finding of a low NWE. They also suggest that the elasticity
of wages with respect to unemployment is informative across a class of models,
and develop a model of reference-dependent wages to account for rigidity. Bils
et al. (2018) study the cyclicality of the labor market wedge under search models,
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finding that much of this cyclicality can be accounted for by the product market
wedge. Their findings provide additional evidence that labor market dynamics
are affected by time-varying markups, as allowed for in our approach. Ljungqvist
and Sargent (2017) show that in many different search and matching models, the
determinants of unemployment fluctuations is driven by a common factor they call
the ‘Fundamental Surplus’.

More broadly, our work relates to the literature that studies the implications of
search and matching models with wage rigidity for business cycle fluctuations. Hall
(2005), Hall and Milgrom (2008), Christiano et al. (2016) and Gertler and Trigari
(2009), among others, develop models of rigid wages and show that these can help
explain the volatility of unemployment over the business cycle. Dupraz et al. (2019)
find that downward wage rigidity can help account for business cycle asymmetries.

Finally, our approach of developing a measure of wage rigidity, the NWE, that
is useful across different models has significant similarities to the literature on
estimable sufficient statistics originating with Chetty (2009). Analogous to this
literature, the Nash wage elasticity is a rough sufficient statistic that is highly
informative about, for instance, the contribution of wage rigidity to business cycle
fluctuations, across many different models.

3.2 Modeling Framework

In this section, we formally derive an equation for the Nash bargained wage that
holds across a large class of search and matching models, incorporating rich firm and
match heterogeneity, a wide variety of different shocks, possible frictions in goods
and financial markets, job-to-job transitions and varying labor force participation.

We proceed in stages. First, to provide intuition for how it can be possible to derive
a wage equation that holds under such broad conditions, we briefly discuss the
case of perfectly competitive labor markets in Section 3.2.1. In Section 3.2.2 we
derive the equation for the Nash wage in a framework featuring no firm or match
heterogeneity. In Section 3.2.3 we expand our approach to show that virtually the
same equation for the average Nash wage arises in a model which is much more
general on a number of dimensions, including (but not limited to) firm and match
heterogeneity, job-to-job transitions and time-varying labor force participation. Our
aim is to derive an equation for the Nash wage which holds in as broad a class of
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SAM models as possible. We discuss the cases nested by our modeling framework
in Section 3.2.4. Finally, in Section 3.2.5, we discuss how our Nash wage equation
can be used to estimate the Nash Wage Elasticity using data on wages and labor
market flows. Since our Nash wage equation holds across a very large class of
models, it is possible to estimate the NWE without needing to make assumptions
about which model in this class accurately describes the data generating process.

3.2.1 Intuition From Perfectly Competitive Labor Markets

Assume that identical households supply labor in a single perfectly competitive
spot labor market. As is well known, the resultant equilibrium wage rate must
be on the household’s labor supply curve, which means that it must equal the
household’s marginal rate of substitution (MRS) between consumption and leisure.

The essence of our approach is to note that the wage rate will equal the household’s
MRS under a competitive spot labor market regardless of the determinants of labor
demand. For instance, if firms have sticky prices in goods markets, or their ability
to hire is affected by working capital constraints, or their capital investment is
constrained by financial frictions, all of these things will affect their labor demand
and affect equilibrium labor hours and wages but the wage will continue to equal
the MRS in all these cases. Likewise, if firms have heterogeneous productivity
levels or markups, this will affect the aggregate demand for labor but the wage will
continue to equal the MRS.

Then, in a spot labor market, a natural metric of wage rigidity is the elasticity of
the observed wage rate with respect to the MRS. Since the perfectly competitive
wage will equal the MRS under a wide variety of different assumptions about
labor demand, the elasticity of observed wages with respect to the MRS provides
a measure of how far observed wages are rigid, compared to competitive wages,
and this measure remains equally valid and useful under a wide variety of different
assumptions about labor demand. Of course, to measure wage rigidity in this way,
it is necessary to have a time series for the MRS. The literature on the cyclicality
of the labor wedge Chari et al. (2007) has shown that it is straightforward to
calculate a value of the MRS from aggregate data under standard assumptions
about preferences.

Our approach differs from simply measuring wage rigidity in terms of the elasticity
of wages with respect to the MRS because we allow for search frictions in labor
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markets. With search frictions, there is no longer any reason to expect that a flexible
wage would equal the MRS. Instead, we derive a similarly general expression for
the Nash wage which holds under a wide variety of different assumptions about
firm and match heterogeneity and about the determinants of labor demand. Just as
different assumptions about labor demand affect equilibrium labor hours and wages
but do not affect the basic equality between wages and the MRS in the competitive
case, so different assumptions about labor demand also affect employment and
wages but do not affect the Nash wage equation in the search theoretic case. In
effect, the Nash wage equation we will derive is a search theoretic analogue to
the labor supply curve in a competitive market. That is, the Nash wage equation
defines a locus of points that the wage rate should satisfy, conditional on labor
market stocks and flows, and this locus is unaffected by the determinants of labor
demand, just as the labor supply curve is unaffected by the determinants of labor
demand in the competitive case.

Therefore, we define the Nash wage elasticity as the elasticity of observed wages
with respect to the Nash wage derived from our Nash wage equation. We now
derive the Nash wage equation formally.

3.2.2 The Nash wage without heterogeneity

In this section, we derive an equation for the Nash wage in a broad framework
which nests a substantial number of different SAM models but does not allow for
firm or match heterogeneity. We extend the results to a substantially more general
setting in the next section.

We first outline the assumptions of our framework with no firm or match hetero-
geneity. Time is discrete. The economy consists of measure 1 of households and
some measure of firms. Households live in large families, made up of employed
and unemployed agents. Each large family shares consumption among its members.
Unemployed agents match at the start of each period with vacancies vt posted
by firms in period t, according to the constant returns to scale continuously
differentiable matching function Mt = mt ·M(ut−1,vt), where mt is a possible shock
to the efficiency of the matching function, ut−1 is the number of unemployed at the
end of the period t−1 and start of period t, and vt is the number of vacancies posted
in period t. The unemployed therefore find jobs at the job finding rate ft = Mt

ut−1
.

There is no on-the-job search.
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At the start of period t, fraction st of employed agents separate from jobs. We allow
that st may evolve stochastically over time in response to shocks. The measure of
households who are unemployed, ut , evolves over time according to the following
law of motion:

ut = (1− ft)ut−1 + st(1−ut−1) (3.1)

3.2.2.1 Preferences

The members of each large family act to maximize the expected value of :

U =
∞

∑
t=0

(1−ρ)tu(ct),

where ct is the consumption of the family and u(·) is strictly increasing and concave.
Employed agents earn wage rate wt in period t. Unemployed agents engage in
home production. Each unemployed agent produces zt units of consumption each
period, where zt changes over time according to some stochastic process.

It is not realistic to interpret zt as literally representing home production alone. We
instead view zt as a black box for the opportunity cost of employment, which, in a
more general model, would include the utility value of the time that an unemployed
person does not need to spend working, adjustments to reflect that the unemployed
face different tax rates to wage earners, the various cash and in-kind benefits an
unemployed person is entitled to, the possibility that these benefits may expire
after a certain period of unemployment, and the utility cost of applying for these
benefits. In a richer model that incorporates all these features, Chodorow-Reich
and Karabarbounis (2016) show that it is possible to derive time series for zt from
aggregate and survey data under various assumptions about preferences. They
point out that, as far as SAM models are concerned, what matters for aggregate
wage and employment dynamics is the behavior of zt , rather than the various
components of zt . As such, for simplicity, we do not model the components of
zt , and instead simply treat zt as home production. In our empirical analysis we
calculate the Nash wage using estimated series of zt from Chodorow-Reich and
Karabarbounis (2016), so that our conclusions depend on behavior of zt that they
argue fits the data.

Let Wt and Ut denote, respectively, the marginal present value to the household of
having an extra employed and unemployed agent. These evolve according to the
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following Bellman equations:

Wt = wt +Et

[
(1−ρ)

u′ct+1

u′ct

[(1− st+1)Wt+1 + st+1Ut+1]

]
,

Ut = zt +Et

[
(1−ρ)

u′ct+1

u′ct

[(1− ft+1)Ut+1 + ft+1Wt+1]

]
,

where
u′ct+1
u′ct

is the household’s stochastic discount factor.

3.2.2.2 Firms

Firms post vacancies, which each cost κ1 per period. Fraction qt of vacancies are
assumed to match with workers each period. If a vacancy matches with a worker,
the firm hires the worker at additional hiring cost κ0.

The total number of new matches Mt each period must satisfy:

Mt = qtvt = ftut−1.

It follows that qt =
ut−1 ft

vt
.

We assume, for notational convenience, that vacancies match with unemployed
agents before production takes place, and so newly hired workers are productive in
the period that they are hired.

Employed agents provide a gross flow value to the firm of rt in period t, which we
allow to evolve over time according to some stochastic process. We are completely
agnostic about the determinants of rt . The term rt can be interpreted as the marginal
revenue product of a worker – so it might depend on the markup as well as on
the labor productivity and on the number of hours that a worker works.8 More
generally, if workers provide other useful services to a firm apart from producing
output, such as research and development or training of other workers, then these
may also enter rt . Since we are agnostic about the determinants of rt or about how it
varies over time, our framework can nest any friction in goods or financial markets
that maps into aggregate quantities via its effect on productivity or markups (and,

8It might seem that allowing for time-varying hours should require the disutility of working a
particular number of hours to enter the value function of an employed worker. However, we may
instead follow Chodorow-Reich and Karabarbounis (2016) and normalize so that the disutility of
working the current mandated number of hours features as part of the value of being unemployed,
and so this is incorporated into zt .
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therefore, on rt). This might include, for instance, the effect of sticky prices in
goods markets as in Ravenna and Walsh (2008), or working capital constraints, as
in Christiano et al. (2015).

Let Jt and Vt denote, respectively, the marginal present value of an extra worker
and an extra vacancy to a firm. These satisfy the following Bellman equations:

Jt = rt −wt +Et

[u′ct+1

u′ct

[(1− st+1)Jt+1 + st+1Vt+1]

]
, (3.2)

Vt =−κ1 +(1−qt)Et

[u′ct+1

u′ct

Vt+1

]
+qt(Jt −Vt −κ0). (3.3)

Here, Jt appears on the right-hand side of the Bellman equation for the vacancy in
period t, because vacancies that are filled in period t already become productive
that period.

Firms are able to create vacancies for free, so, in equilibrium, vacancy posting
satisfies the free entry condition Vt = 0. Substituting this into (3.3) and rearranging,
we obtain:

J̃t = κ0 +
κ1

qt
= κ0 +

κ1vt

ut−1 ft
= ht , (3.4)

where ht denotes the expected hiring cost.

3.2.2.3 Worker Share of Match Surplus

We now derive an equation that defines the share of match surplus that accrues to
workers in our framework. Below, we use this to derive a formula for the Nash
wage. We define the worker share of match surplus, βt , as the worker match surplus,
divided by the total surplus. That is:

βt =
Wt −Ut

Jt −Vt +Wt −Ut
.

Using that Vt = 0 and Jt = ht = κ0 +
κ1vt

ut−1 ft
, this can be written as:

Wt −Ut = βt

[
Wt −Ut +κ0 +

κ1vt

ut−1 ft

]
,

which rearranges to,

Wt −Ut =
βt

1−βt

[
κ0 +

κ1vt

ut−1 ft

]
. (3.5)
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Subtracting the Bellman equation for an unemployed agent from the Bellman
equation for an employed agent, and substituting in (3.5) to eliminate Wt and Ut

terms, we obtain the following dynamic equation for βt :

βt

1−βt

(
κ0 +

κ1vt

ut−1 ft

)
= wt − zt

+Et

[
(1−ρ)

u′ct+1

u′ct

(1− st+1 − ft+1)
βt+1

1−βt+1

(
κ0 +

κ1vt+1

ut ft+1

)]
.

(3.6)

Evidently, the share of match surplus that goes to workers depends on the wage
wt , as is intuitive. Note that we have made no assumptions about how wages are
actually set – the dynamic equation (3.6) characterizes the implied share of match
surplus that is going to workers, for any well-behaved stochastic process governing
wt .

We assume that the economy fluctuates around a steady state. In the steady state,
equation (3.6) implies that:

β

1−β
=

(w− z)
[1− (1− f − s)(1−ρ)]h

, (3.7)

where, abusing notation, we simply omit the time t subscript to denote the steady
state value of a variable. Here we used that h = κ0 +

κ1v
u f .

3.2.2.4 The Nash Wage

We define the Nash wage, wN
t , as the value that the wage wt would have to take

each period in order for the worker surplus share βt to remain constant over time at
its steady state value β , where βt is calculated according to equation (3.6). Then, it
follows that wN

t satisfies:

β

1−β

(
κ0 +

κ1vt

ut−1 ft

)
=wN

t − zt

+Et

[
(1−ρ)

u′ct+1

u′ct

(1− st+1 − ft+1)
β

1−β

(
κ0 +

κ1vt+1

ut ft+1

)]
,

(3.8)

where β

1−β
is given by equation (3.7). In our empirical analysis, we assume that

the steady state values of variables are equal to their average in the sample period.
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Thus, wN
t is the value that wt would need to take each period in order for βt

1−βt
to

remain forever equal to its average value over the sample period.

We refer to wN
t defined in this way as the Nash wage, since, under the Nash sharing

rule, the worker share of match surplus βt is given by the bargaining strength of
workers. The standard assumption in the SAM literature is that this is constant over
time so that βt = β , in which case equations (3.6) and (3.8) imply that wt = wN

t .

Two further remarks are in order regarding the relationship between wN
t and the

concept of Nash bargaining in SAM models. First, it is more precise to say that
wN

t is defined according to the Nash sharing rule rather than the Nash bargaining
solution. In the basic Diamond-Mortensen-Pissarides model, the two coincide:
Nash bargaining implies that the worker gets a constant fraction β of the match
surplus. However, in some models with frictions, such as Schoefer (2021), the Nash
bargaining solution does not imply that the worker’s share of match surplus remains
constant over time, even though the bargaining weight of workers remains constant.
The wage-setting arrangements in such models are therefore not consistent with our
notion of the Nash wage, although we conjecture that the Nash bargaining solution
will nevertheless deliver something close to a constant share of the match surplus
going to workers in many such models in practice, in which case our Nash wage
will continue to provide a good approximation to the outcome of Nash bargaining.

Second, since our Nash wage implies a constant share of surplus going to workers,
it rules out the possibility of shocks to worker bargaining power, as considered
by, for instance, Shimer (2005). If, in reality, there are shocks to worker bargaining
power, this could lead to systematic errors in the time series we derive for the Nash
wage and bias our estimates of the Nash wage elasticity. We discuss in Section
3.3 how we use other structural shocks as instruments for the Nash wage in our
estimation strategy to avoid these biases.

3.2.3 Nash Wage Equation in a More General Environment

The framework used in the previous section to derive the Nash wage equation (3.8)
was relatively general on some dimensions. We made almost no assumptions about
the stochastic process underlying the opportunity cost of labor zt , wages wt , the
marginal revenue product of labor rt , the separation rate st or possible shocks to
the matching function. Thus, the framework in the previous nests many different
models with different assumptions about how these variables are determined.
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Nevertheless, the framework in the previous section was special in that, for instance,
it did not allow for firm or match heterogeneity. We now generalize our framework
to allow for rich heterogeneity in firms and matches, including heterogeneity in
firms’ discount factors (for instance, due to financial frictions), as well as allowing
for endogenous separations, job-to-job transitions and time-varying labor force
participation. Our approach is to derive an equation for the Nash wage while
making as few assumptions as possible, in order to create a framework which
nests as many different SAM models as possible. We show that, even in this much
more general case, the equation describing the Nash wage looks very similar to the
equation derived in the previous section.

We now outline the assumptions of our more general framework. We maintain the
same assumptions as in Section 3.2.2 except where noted.

3.2.3.1 Labor Market Flows

As before, there are measure 1 of households who live in large families. We allow
for the possibility that some members of a family are economically inactive, i.e. not
in the labor force. Let it denote the measure of agents who are economically inactive
in period t.

All unemployed agents are identical. We let ft denote the fraction of unemployed
agents who find a job in period t by successfully matching with vacancies. We
do not require that all matches are accepted – since we allow for the possibility
that poor quality matches are rejected. Thus ft denotes the probability that an
unemployed agent finds a match in period t that she accepts.

It is assumed that agents may shift between being unemployed or economically
inactive, but economically inactive agents cannot go straight into employment
without first becoming an unemployed agent who looks for a job in some period t,
and potentially finding a job in period t +1.9

Then, the law of motion of the measure of unemployed agents at the end of period
t, ut , is:

ut = (1− ft)ut−1 + st(1− it−1 −ut−1)− (it − it−1),

where st denotes the average separation rate of all employed agents. For simplicity,
9It is well known that, in the data, economically inactive individuals do find jobs without

previously being registered as unemployed. We interpret such individuals as people who were, in
truth, looking for work and therefore unemployed, but were mismeasured as economically inactive.
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we do not model agents’ choices of whether to be unemployed or economically
inactive, we merely assume that it evolves over time according to some endogenous
stochastic process. Explicitly modeling this motivation would not affect our
conclusions provided the flow value of unemployment, zt , is taken as given.

3.2.3.2 Household Bellman Equations

We allow that workers in different matches and/or at different firms may earn
different wages, and that the wages of a worker in a match may evolve idiosyncrati-
cally and endogenously over time due to, for instance, match-specific human capital
accumulation, or long-term wage contracting as in Rudanko (2009). We also allow
the separation rate into unemployment to vary over time and across matches and
firms. This could be due to e.g. endogenous separations, where low productivity
matches have a higher probability of separating. Let wi,k

t and si,k
t denote the wage

and separation rate in match k at firm i at time t.

We also allow for possible job-to-job transitions, which occur at the start of each
period, simultaneously with separations into unemployment. Let λ

i,k
t denote the

probability of a worker in match k at firm i transferring to a new job at the start of
period t. This may vary over time and across matches, since workers may be more
likely to look for other jobs if their match quality is low.10

The Bellman equations for an unemployed agent, and for an employed agent in the
match k, are as follows:

Ut = zt +Et

[
(1−ρ)

u′ct+1

u′ct

[(1− ft+1)Ut+1 + ft+1W̃t+1,t+1]

]
, (3.9)

W i,k
t = wi,k

t +Et

[
(1−ρ)

u′ct+1

u′ct

[(1− si,k
t+1 −λ

i,k
t+1)W

i,k
t+1 +λ

i,k
t+1W̃

i,k,T
t+1 + si,k

t+1Ut+1]

]
,

(3.10)

where W i,k
t denotes the value of a worker in match k at firm i at time t and W̃ i,k,T

t+1

denotes the expected value that the worker in match k at firm i at the start of t +1
expects to have, if she transitions directly to a new job in period t +1. W̃t,τ denotes
the average value among workers at time t, who were most recently unemployed at
the start of period τ , and found a job during period τ . By the usual abuse of the law

10Of course, our setting also nests models with no job-to-job transitions, which amounts to fixing
λ

i,k
t = 0 for all i,k,t.
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of large numbers, we assume therefore that an unemployed agent who finds a job
in period t +1 has expected value W̃t+1,t+1 in that period.

3.2.3.3 Firms

Firms, i, and matches, k, are heterogeneous in terms of the marginal flow value to
the firm of the match, which we denote by ri,k

t . This may be due to heterogeneous
productivity or markups across firms. If firms have concave production functions
or downward-sloping demand curves then ri,k

t will also depend on the number of
workers employed by a firm.

Firms may hire out of unemployment, or may hire already employed agents, which
precipitates a job-to-job transition. For mathematical tractability, we assume that the
unemployed and the already employed match with firms in different submarkets,
with potentially more than one submarket for matching with the already employed,
as occurs in models of directed search with job-to-job transitions. Then, when a
firm posts a vacancy, it decides whether to target the unemployed or the already
employed.

As before, we assume a vacancy posting cost of κ1 and a fixed hiring cost of κ0

if the vacancy successfully yields a new hire. Let qi,u
t denote the probability that

a vacancy posted by firm i that targets the unemployed successfully turns into a
match (and an employment relationship) in period t. We allow that qi,u

t varies across
firms because, in a setting with firm and match heterogeneity, it is possible that the
matches at lower productivity firms are less likely to be accepted, and so less likely
to turn into employment relationships.11

Then, the Bellman equations for a firm with a match J i,k
t and a vacancy at firm i

that targets the unemployed V i,u
t are as follows:

J i,k
t = ri,k

t −wi,k
t +Et

[
mi

t+1(1− si,k
t+1 −λ

i,k
t+1)J

i,k
t+1

]
, (3.11)

V i,u
t = −κ1 +qi,u

t (J̃ i
t,t −V i,u

t −κ0). (3.12)

Here J̃ i
t,τ denotes the expected value of a match at firm i at the start of t if the

worker was hired out of unemployment in period τ . mi
t+1 is the firm i’s stochastic

11For instance, if a worker and firm observe the idiosyncratic match productivity of a match before
deciding whether to go ahead with the match, then it may be that matches at a low productivity firm
will only be accepted if the idiosyncratic match-specific component of productivity is particularly
good, which may be a low probability event.
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discount factor, which we allow to potentially depend on the firm i – this might
occur if, for instance, some firms value their cashflow today more relative to the
future due to short-term financing constraints.

The Bellman equations above already incorporate that a firm can freely create and
dispose of new vacancies. This means that it must be the case that V i,u

t ≤ 0, with
equality if the firm is maintaining at least one vacancy in period t.

Then, equation (3.12) implies that, if firm i hires in period t, then,12

J̃ i
t,t = κ0 +

κ1

qi,u
t
. (3.13)

3.2.3.4 Worker Share of Match Surplus

We now derive an expression for the worker’s share of match surplus in this more
general framework. We define βt as the average share of match surplus at time t

that is earned by workers who are newly hired out of unemployment in that period
(where the average is across new matches of such workers in period t). As will
be seen below, it is this measure of worker surplus share for which there exists a
mathematical formulation in terms of labor market flows that is almost identical to
equation (3.6) above. Thus, we define βt as:

βt =
W̃t,t −Ut

W̃t,t −Ut +
∫

i qi,u
t vi,u

t J̃ i
t,tdi∫

i qi,u
t vi,u

t di

.

Here, the term W̃t,t −Ut represents the average match surplus of workers newly
hired out of unemployment at time t, as defined above. The term J̃t,t represents
the expected surplus each firm i gets from hiring such workers, and the integral
reflects that this should be averaged across firms i in proportion to their share of
total hiring out of unemployment, with the hiring of firm i out of unemployment
given, in expectation, by qi,u

t vi,u
t .13

12Note that, in many models, it is possible for equation (3.13) to hold in equilibrium for multiple
firms with different values of qi,u

t and J̃ i
t,t . In particular, in a model with large firms facing

downward-sloping demand curves or concave production functions, firms with a higher qi,u
t will, all

else equal, hire more and will see the marginal value of J̃ i
t,t fall for these firms until (3.13) holds

with equality.
13Here we are making the usual abuse of the law of large numbers by taking the expectations of

the values of firms and hiring costs when integrating across firms.
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Rearranging this, and using that (3.13) holds for all firms that set vi,u
t > 0, we obtain:

W̃t,t −Ut =

(
βt

1−βt

) ∫
i qi,u

t vi,u
t J̃ i

t,tdi∫
i qi,u

t vi,u
t di

=

(
βt

1−βt

)(
κ0 +

κ1vu
t∫

i qi,u
t vi,u

t

)
,

where vu
t =

∫
i vi,u

t di denotes the total number of vacancies targeted at the unem-
ployed.

The total number of unemployed agents that find jobs must equal the total number
of such vacancies that match, so that

∫
i qi,u

t vi,u
t di = ut−1 ft . Then, we can rewrite the

equation above as:

W̃t,t −Ut =

(
βt

1−βt

)(
κ0 +

κ1vu
t

ut−1 ft

)
. (3.14)

In order to use this to derive a dynamic equation for βt similar to (3.6), it is
necessary to characterize W̃t,t . We do this by gradually integrating the Bellman
equation for W i,k

t across workers and employment histories. This requires some
additional notation. Let P( j,m, t|i,k,τ) denote a probability measure representing
the probability that a worker who left unemployment at time τ , obtaining the
match k in firm i will subsequently find themselves in period t in match m in firm j,
without having spent a spell of unemployment in between (where these probability
measures are based on the information available at the start of period τ). Let f i,k

τ

denote a probability measure representing the probability that an unemployed
agent at the start of period τ successfully forms the match k with firm i in period
τ (where these probability measures are based on the information available at the
start of period τ). Let

W
i,k
t,τ =

∫
j,m W j,m

t dP( j,m, t|i,k,τ)∫
j,m dP( j,m, t|i,k,τ)

, wi,k
t,τ =

∫
j,m w j,m

t dP( j,m, t|i,k,τ)∫
j,m dP( j,m, t|i,k,τ)

,

si,k
t,τ =

∫
j,m s j,m

t dP( j,m, t|i,k,τ)∫
j,m dP( j,m, t|i,k,τ)

, s̃t,τ =

∫
i,k si,k

t,τ(W
i,k
t,τ −Ut)d f i,k

τ∫
i,k(W

i,k
t,τ −Ut)d f i,k

τ

.

That is, W
i,k
t,τ , wi,k

t,τ and si,k
t,τ denote the average values of W , w and s that a worker

expects to obtain at time t, if the worker is hired in match k by firm i at time τ , and
remains continuously employed (without a spell of unemployment) between time
τ and time t. s̃t+1,τ is the average separation rate at time t +1 of workers who were
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hired out of unemployment in period τ (and have not since become unemployed)
where the average is weighted across matches in proportion to the surplus of those
matches.

Then, it follows from equation (3.10) that W
i,k

t,τ evolves according to:14

W
i,k
t,τ = wi,k

t,τ +Et

[
(1−ρ)

u′ct+1

u′ct

[(1− si,k
t+1,τ)W

i,k
t+1,τ + si,k

t+1,τUt+1]

]
(3.15)

Integrating across all new workers hired out of unemployment at time τ , we obtain,
after some rearrangement:

W̃t,τ = w̃t,τ +Et

[
(1−ρ)

u′ct+1

u′ct

[(1− s̃t+1,τ)W̃t+1,τ + s̃t+1,τUt+1]

]
.

Repeatedly recursively substituting (3.14) and (3.9) into this equation to eliminate
W and U terms, we obtain the dynamic equation that describes βt :

βt

1−βt

(
κ0 +

κ1vu
t

ut−1 ft

)
= wUC

t −Φt − zt

+Et

[
(1−ρ)

u′ct+1

u′ct

(1− s̃t+1,t − ft+1)
βt+1

1−βt+1

(
κ0 +

κ1vu
t+1

ut ft+1

)]
,

(3.16)

14To prove formally that (3.10) implies (3.15), first note that (3.10) implies (3.15) when t = τ .
This follows from integrating (3.10) across all matches that a worker could move to as part of an
on-the-job transition. Then, by a symmetrical argument, note that if (3.10) implies (3.15) for some
t = n and τ , then (3.10) implies (3.15) for t = n+1 and τ . The result then follows by induction.
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where,

wUC
t = w̃t,t +Et

∞

∑
j=1

(1−ρ) j
u′ct+ j

u′ct

[
w̃t+ j,t

(
j

∏
k=1

(1− s̃t+k,t)

)

−
(

1− s̃t+1,t

1− s̃t+1+ j,t+1

)
w̃t+ j,t+1

(
j

∏
k=1

(1− s̃t+1+k,t+1)

)]
, (3.17)

Φt = Et

∞

∑
j=2

(1−ρ) j

(
u′ct+ j

u′ct

)
Ut+ j

[
−
(

s̃t+ j,t

1− s̃t+ j,t

)( j

∏
k=1

(1− s̃t+k,t)

)

+

(
s̃t+ j,t+1

1− s̃t+ j,t+1

)(
1− s̃t+1,t

1− s̃t+1+ j,t+1

)( j

∏
k=1

(1− s̃t+1+k,t+1)

)]
, (3.18)

Ut = zt +Et

∞

∑
j=1

(1−ρ) j
u′ct+ j

u′ct

[
zt+ j + ft+ j

(
βt+ j

1−βt+ j

)
ht+ j

]
. (3.19)

Equation (3.16) is identical to equation (3.6), which described βt in the model with
no firm or match heterogeneity, except for the following differences:

1. The vacancy rate vt in equation (3.6) is replaced by vU
t : the number of vacancies

targeted at the unemployed.

2. The separation rate st in equation (3.6) is replaced by s̃t+1,t : the average next
period separation rate of workers newly hired out of unemployment, where the
average is weighted by the match surplus.

3. The wage rate wt is replaced in equation (3.16) with the wage component of the
user cost of labor, wUC

t , based on workers hired directly out of unemployment. The
user cost of labor is a concept first developed by Kudlyak (2014), who observed
that in models where wages in a match continue depend on conditions under
which the worker was first hired, the macroeconomically relevant measure of
the cost of labor is not the current wage rate, but instead depends on the wage
of newly hired workers and also the future wage changes that these newly hired
workers expect in future.
Our expression for wUC

t is the same as the expression for the wage component
of the user cost of labor in Kudlyak (2014) except for two key differences. First,
we allow for a time varying stochastic discount factor and a separation rate that
varies across matches and over time, which complicates the user cost equation.
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Second, our derivation of wUC
t makes clear that the correct measure of the user

cost of labor for our purposes depends on the expected present and future wages
of workers hired directly out of unemployment. For instance, the key first term in
our user cost equation, w̃t,t , is the average wage of workers newly hired out of
unemployment. In contrast, Kudlyak measures the user cost using the wages of
all newly hired workers – many of whom are workers transitioning from one
job to another. As argued by Gertler et al. (2020), the behavior of the wages
of workers transitioning from one job to another can give a very misleading
impression of the cost of labor for firms, in cases where workers are more likely
to move to higher quality matches in booms. At the same time, contrary to
what Gertler et al. (2020) and Bellou and Kaymak (2021) have suggested, it is
possible to accurately estimate the relevant notion of user cost in the models
encompassed by our framework without needing to measure, control or make
assumptions about match quality, since there are no measures of match quality
in the equation (3.17).

4. There is an additional term Φt , which is non-zero if (and only if) the probability
of a worker losing their job and entering unemployment depends on the number
of periods that the worker has been employed.15 The term Φt enters equation
(3.16) because if, for instance, holding a job for longer reduces the likely future
separation rate, then a worker who is hired at t and retains their job into t +1
is less likely to be unemployed at, e.g. time t +10 than a worker who is hired
at t +1. The consequence is that the value of being unemployed at time t +10
therefore affects the value of accepting a job today, and so future unemployment
values Ut+ j enter into the expression for Φt .

3.2.3.5 The Nash Wage

In the more general case, we define the Nash wage wN
t as the time series that the

user cost of labor wUC
t would take each period according to equation (3.16), if it

were the case that the share of match surplus going to each worker newly hired
from unemployment βt , remained forever constant at some steady state value β

(which we take, in our empirical analysis, to be the average observed value of βt in
15This will be typically true in, for instance, models with endogenous separations – where a

longer period in which a worker has been employed may e.g. indicate a likely higher match quality
and therefore a lower chance of future separation.
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the sample period). Fixing βt = β in (3.16), this implies the Nash wage equation:

wN
t = Φ

N
t + zt +

β

1−β

(
κ0 +

κ1vu
t

ut−1 ft

)
−Et

[
(1−ρ)

u′ct+1

u′ct

(1− s̃t+1,t − ft+1)
β

1−β

(
κ0 +

κ1vu
t+1

ut ft+1

)]
, (3.20)

where β is given by the steady state value

β

1−β
=

(w− z−ΦN)

[1− (1− f − s)(1−ρ)]h
, , (3.21)

and where ΦN
t and ΦN are calculated by substituting βt = β into equation (3.18) and

(3.19).

3.2.4 Cases Nested by Our Modeling Framework

Our modeling framework in Section 3.2.3 deliberately imposed minimal structure
in order to encapsulate a wide variety of models and mechanisms discussed in the
literature. Since we can derive the equation for the Nash wage without imposing
more structure, it follows that our equation for the Nash wage holds across a very
large range of different models. The consequence of this is that the estimates for the
Nash wage elasticity in Section 3.3 below are valid across a large class of models.

Here we briefly outline some of the many cases nested by the modeling framework
of Section 3.2.3. Of course, an important special case of our framework is a discrete
time version of the canonical Diamond-Mortensen-Pissarides model in Shimer
(2005). Our framework captures this special case if all matches are assumed to be
homogeneous, rk

t is the same across matches and equal to aggregate productivity,
separation rates are constant over time, and stochastic discount factors are the same
across agents and over time.

Equally, our model also covers significant departures from the framework of Shimer
(2005). First, the model allows for a wide variety of frictions outside the labor market.
Any friction that affects the labor market via the flow value of labor rk

t is covered.
This may occur, for instance, if there are distortions to product markets, such as
product market price rigidities. Working capital constraints as in Christiano et al.
(2015) are also covered. Likewise, we allow for firms’ discount rates to vary over
time and differ from household discount rates, which covers cases where financial
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frictions make firms behave as if they are relatively impatient, as in Schoefer (2021).

Second, the model allows for rich heterogeneity across firms and matches and
over time. Since rk

t can vary across matches over time, our framework allows
for the possibilities that workers improve at their jobs over time, that matches
persistently vary in quality, or that there are match-specific productivity shocks.
Equally, allowing rk

t and firms’ discount rates to vary across firms and over time
allows the model to capture cases where the effects of goods and financial market
frictions differ across firms and over time. Since we allow that there can be variation
across firms and time in the probability that vacancies match with workers and
match specific time varying separation rates, our model also covers cases where
the probability of matching and separating depend endogenously on e.g. match
specific productivity.

Third, our framework allows for time varying labor force participation and job-to-
job transitions.

Fourth, our framework allows for essentially any wage-setting protocol. By
allowing the wage to depend upon both the current period t and the period at
which the match began, we allow for history dependence in wages, as in e.g.
Rudanko (2009). While our Nash wage equation by definition captures the wage
set according to the Nash sharing rule, we nowhere assume that actual wages are
set in this way, since there is no assumption that they equal Nash wages.

Fifth, our framework allows for the possibility of a wide range of macroeconomic
shocks. Any shock that operates via rk

t is covered, such as productivity shocks,
markup shocks or shocks that increase the costs of working capital. Since we did
not specify a matching function, we also allow for the possibility of variation in
matching efficiency over time. We also allow for the possibility of shocks to the
separation rate or to firms’ discount rates, where the latter could be a consequence
of financial shocks.

It is worth emphasizing that we are not making the absurd assumption that none of
these many features matter for labor markets. Our framework is fully consistent
with these various types of friction and heterogeneity mattering for both equilibrium
unemployment and wage determination. However, our common Nash wage
equation reveals that, under the Nash sharing rule, the wage has to be set according
to the same equation across these many cases, just as workers have to be on their
supply curve equation in a competitive labor market, regardless of what is assumed
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about labor demand.

3.2.5 The Nash Wage Elasticity

In Section 3.3, we use the equations (3.16) and (3.20) for the Nash wage wN
t and the

worker bargaining share βt from the more general model described in Section 3.2.3
to compute time series for these two variables using data on wages, labor market
flows, and series for the opportunity cost of employment zt from Chodorow-Reich
and Karabarbounis (2016). We use the resulting time series for the Nash wage to
estimate the Nash wage elasticity, as we now discuss.

3.2.5.1 Computing Series for wN
t and βt

To compute series for wN
t and βt , we make several assumptions that simplify

equations (3.16) and (3.20), due to data limitations.

First, we impose Φt = ΦN
t = 0 for all t. It is not possible to evaluate Φt or ΦN

t without
either data or assumptions about how the separation rate varies across jobs and
over time due to job tenure effects and varying match surplus across matches.
Neither the sign nor the cyclicality of Φt are straightforward to determine, since a
separation rate that decreases with job tenure implies both

(
s̃t+ j,t

1−s̃t+ j,t

)
<
(

s̃t+ j,t+1
1−s̃t+ j,t+1

)
and

(
1−s̃t+1,t

1−s̃t+1+ j,t+1

)
< 1. In most models in the literature, the probability of a worker

separating from a job and entering unemployment is either exactly or approximately
unrelated to the length of time the unemployed individual has been in a job. In
such cases, Φt is exactly or approximately equal to zero. For this reason, we judge
that Φt = 0 may be a plausible approximation. Future work could investigate how
far allowing for time variation in Φt affects estimates of the Nash wage elasticity.

Second, we set s̃t+1,t = st+1. Recall that the former is a weighted average separation
rate, while the latter is simply the economy-wide average separation rate. s̃t+1,t will
tend to be greater than st+1 insofar as workers who have been in a job less time are
more likely to separate, but will tend to be less than st insofar as matches with a
higher surplus are less likely to separate. In practice, the s̃t+1,t terms are of very
small quantitative significance in equations (3.16) and (3.20), and, consequently,
we find that our empirical NWE estimates are essentially unaffected by different
assumptions about s̃t+1,t , provided s̃t+1,t is of the same order of magnitude as st+1.

Third, we assume that vu
t is proportional to vt . Specifically, we fix vu

t = vt , where
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setting the constant of proportionality to equal 1 is a normalization, since doubling
κ1 and halving vu

t leaves equations (3.16) and (3.20) unchanged. We make this
assumption because we do not know of data available for our long time period
regarding what fraction of vacancies is targeted primarily at the unemployed.
Setting vu

t = vt makes our Nash wage equation consistent with the case of no job-
to-job transitions, which is a common, if counterfactual, assumption in models in
the literature. Furthermore, making vu

t proportional to vt may roughly approximate
reality because the job finding rate of the unemployed and frequency of job-to-job
transitions appear to have a roughly similar cyclicality in US data (Mukoyama,
2014).

For the empirical analysis, it is convenient to work with log-linearized forms of
the equations (3.16) and (3.20). Log-linearizing (3.20) around the steady state using
(3.21), setting Φt = 0, s̃t,t+1 = st+1 and vu

t = vt and using hat variables to denote log
deviations from the steady state, we obtain

wUCŵN
t − zẑt

wUC − z
=

(
κ1v
hu f

)
(v̂t − ût − f̂t)

+
(

f f̂t + sŝt
) (1−ρ)

1− (1− f − s)(1−ρ)
+Et [Ât+1 − Ât ], (3.22)

where

Ât =
(1−ρ)(1− f − s)

1− (1− f − s)(1−ρ)

[
f f̂t + sŝt

1− f − s
−
(

κ1v
hu f

)
(v̂t − ût − f̂t)+σ ĉt

]
. (3.23)

Log-linearizing equation (3.16) for βt , imposing Φt = 0 and recursively substituting
in (3.22), we obtain:

β̂t

1−β
=

(
wUC

wUC − z

)
Et

∞

∑
j=0

[1− (1− f − s)(1−ρ)] (1−ρ) j(1− f − s) j(ŵUC
t+ j − ŵN

t+ j).

(3.24)

This equation confirms that the deviation of the worker’s share of the match surplus
from its steady state value is proportional to a discounted sum of expected future
deviations of the user cost of labor from Nash wages.

We use equations (3.22) and (3.24) to infer the level of the deviation of the worker
surplus share, β̂t , and the Nash wage, ŵN

t , from empirical data. Given values of
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these, we propose a measure of aggregate wage rigidity which we term the Nash
Wage Elasticity (NWE). The NWE represents the percentage change in the actual
wage rate, wt , when the Nash wage, wN

t , changes by 1%. An NWE of 1 would imply
that Nash bargaining provides an accurate model of wage fluctuations. On the
other hand, if the NWE is positive but close to 0, this would imply a wage rate
which is relatively insensitive to the macroeconomic factors that influence the Nash
wage.

Specifically, we assume a relationship of the form

ŵUC
t = γŵN

t + εt (3.25)

where γ is the NWE and εt is a disturbance term. We estimate this equation by OLS
and using various instruments for the Nash wage to address concerns of possible
measurement error.

The next section discusses the data series and details of the specifications used
to estimate the Nash wage. The Nash wage elasticity is closely related to the
procyclicality of wages. As we discuss in the next section, our derived value of the
Nash wage turns out to be highly procyclical. Consequently, higher values of γ

suggest more procyclical wages. Generally, we find γ far below 1, and, accordingly,
our measures of the user cost of labor are less procyclical than the Nash wage. As
such, we find that the Nash wage tends to be lower than the user cost of labor in
recessions. Furthermore, since we showed above that β̂t depends on the difference
between the Nash wage and the actual user cost of labor, we find that β̂t is strongly
countercyclical.

3.3 Data and Calibration

We compute time series for the model-implied Nash Wage ŵN
t and worker surplus

share (β̂t) in US data using the equations (3.22) and (3.24) using various measures of
the user cost of labor (wUC

t ) various measures of the opportunity cost of employment
(zt), calibrated parameters time series for the job finding rate, separation rate,
unemployment and consumption derived from US data. The national statistical
sources used for these series are reported in Appendix C.1). We use the headline
series of the level of unemployed workers (ul), number employed workers (e) and
number of unemployed workers for less than 5 weeks (us) monthly released by the
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U.S. Bureau of Labor Statistics (BLS) to derive f and s as in Shimer (2005):

ft = 1−
ul

t −us
t−1

ul
t

(3.26)

st =
us

t+1

et(1− 1
2 ft)

(3.27)

The job vacancy rate (v) is taken from Petrosky-Nadeau and Zhang (2020), which
they construct by combining the BLS’s Job Openings and Labor Turnover Survey
(JOLTS) with a range of earlier sources, in order to cover periods where JOLTS data
is unavailable.

For the cost of labor, we consider multiple empirical measures. In the previous
section, it was shown that the relevant measure of the cost of labor that should
ideally be used to calculate the Nash wage elasticity is the user cost of labor based
on newly hired workers out of unemployment. The user cost of labor incorporates
not only the wage earned by a newly hired worker today, but also the possibility
that being hired today rather than tomorrow affects a worker’s likely wages in
future periods, thereby making it more or less expensive for a firm to hire a worker
today versus tomorrow. Unfortunately, no empirical measure of this user cost
has been constructed and it is not straightforward to construct a reliable such
measure given the available data. In particular, to calculate the user cost accurately,
a relatively long individual panel is needed to incorporate the possibility that being
employed today affects a worker’s wages some distance into the future, as implied
by models of implicit contracts such as Rudanko (2009). One such panel is the
National Longitudinal Survey of Youth (NLSY), however the NLSY does not ask
whether an individual has been hired out of unemployment, and so the wages of
new hires out of unemployment cannot be distinguished from those of job switchers.
Kudlyak (2014) and Basu and House (2016) have constructed measures of the user
cost of labor from the NLSY, based on lumping together all new hires, whether they
are job switchers or new hires out of unemployment. This is problematic because
Gertler et al. (2020) have found that the wages of job switchers and wages of new
hires out of unemployment have quite different cyclical properties, with the latter
being substantially more cyclical. If this is the case, the user cost series of Kudlyak
(2014) and Basu and House (2016) may have quite a substantial procyclical bias,
which would substantially bias upwards estimates of the NWE based on this series
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(since the Nash wage is very procyclical, as we discuss below).

For this reason, we consider five different empirical proxies for the user cost of
labor: the BLS average weekly earnings wage series, two series from Basu and
House (2016) and two series from Haefke et al. (2013). We consider all these series
because of the substantial debate in the literature regarding the true cyclicality of
the cost of labor (Gertler et al., 2020; Bellou and Kaymak, 2021). As we discuss,
we believe that some of the series are likely to lead to downward biased estimates
of the NWE and other series are likely to lead to upward biased estimates of the
NWE. Therefore, by considering the range of measures, we hope to provide a range
of estimates of the NWE, with the true value likely to fall somewhere within this
estimated range.

We call the first series the CES wage as it is based on the monthly Current
Employment Survey (CES) and captures the U.S. employed population average
hourly earnings. It is the most widely used measure of an actual wage as it gauges
the effective salary across the whole pool of continuously employed workers
at a given time. There are two reasons why this headline series may have a
countercyclical bias, thus failing to be a representative ‘user cost’ series: a) since the
CES wage is aggregate, this measure suffers from likely countercyclical composition
bias if the workers hired in booms have on average lower quality characteristics than
the workers hired in recessions and b) an aggregate wage will have a countercyclical
bias if the wages of newly hired workers are more influenced by the current state
of the labor market than are those of job stayers (Basu and House, 2016; Kudlyak,
2014). Given this likely countercyclical bias, we anticipate that the CES series will
tend to understate the Nash wage elasticity.

As a second proxy for the user cost of labor, we use a measure of the new hire wage
computed from NLSY data by Basu and House (2016), which specifically corrects
for composition bias by controlling for individual fixed effects. As discussed above,
this new hire wage includes both job changers and those of newly hired workers
out of unemployment, whose wages might have quite different cyclical properties.
Another concern with the NLSY series is that the NLSY consists of only a single
cohort, which might not be representative of the wider population.

The third series we use is the ‘user cost of labor’ calculated by Basu and House
(2016) from NLSY data (this is similar to the series calculated by Kudlyak (2014)).
We refer to this series as the NLSY user cost, to distinguish it from the true user
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cost of labor in our theoretical framework. This series also adjusts for individual
fixed effects to address composition bias. As discussed above, this series gets close
conceptually to the relevant concept of the user cost of labor, but may overstate the
Nash wage elasticity, possibly by a significant amount, since it lumps together job
switchers with newly hired workers out of unemployment.

The remaining two wage series are calculated by Haefke et al. (2013) on the basis of
Current Population Survey (CPS) hourly earnings. The first such wage series, which
we call Haefke New Hire, is the wage of newly hired workers out of unemployment,
since the CPS has information on recent past unemployment status and so can
distinguish this group from job switchers. The second series, which we call Haefke
All, is a wage of all workers. Both series adjust for composition bias using controls
for education, demographic characteristics and experience. The composition bias
adjustment means that the ‘Haefke All’ series is less at risk of countercyclical bias
than the CES series discussed above. Nevertheless, since neither of these series is
based on panel data, neither of them can fully capture the possible dynamic effects
of being hired today on future wages, which should be taken into account as part of
the user cost of labor. Thus, neither of these measures fully capture the user cost.
Since these two indices have some missing values due to the unavailability of more
granular information in the third and forth quarters of 1985 and 1995, we resort to
linear interpolation to produce a continuous series.

Next, we multiply our wage indices, which are hourly, by average weekly hours
worked (according to the CES) in order to enumerate our series for the cost of
labor in terms of the per-worker cost. This transformation is necessary to make the
derivative wage indicators consistent with the SAM model stated above, where the
wage corresponds to the pay for being employed rather than a hourly rate.

We obtain measures of the opportunity cost of employment, zt , from Chodorow-
Reich and Karabarbounis (2016). As discussed above on page 142, these measures
represent the combined advantages of being unemployed relative to the mean
marginal product of labor in terms of benefits in cash and in kind, taxes, and
more free time. The reader is referred to Chodorow-Reich and Karabarbounis
(2016) for details of how these series for zt are constructed. Using different
assumptions on preferences, Chodorow-Reich and Karabarbounis derive four
different time series for zt , computed on the basis of a) separable utility in hours
and consumption (SEP); b) Constant Frisch Elasticity (CFE) and two different Cobb-
Douglas parametrizations (CD1 and CD2). For completeness, we derive our results
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using all four series for zt . As we show in Table 3.1 below, these different series imply
very different levels for the average value of zt over time, but Chodorow-Reich and
Karabarbounis robustly find zt to be highly procyclical, contra the assumption of a
constant z commonly considered in the SAM literature. The intuition for this is that
the marginal rate of substitution between consumption and leisure is highly cyclical
(i.e. workers value consumption relatively more in recessions), which dominates
the countercyclicality of unemployment benefits.

Chodorow-Reich and Karabarbounis’s different assumptions about preferences
imply different assumptions about σ . To maximize consistency with their approach,
we use the value of σ associated with each zt series in Chodorow-Reich and
Karabarbounis (2016)

3.3.1 Steady State Variable Values and Calibrated Parameters

Having obtained time series for st , ft ,ut ,zt and so on, our log-linearization approach
requires that we calculate the steady state values of these variables as well as their
deviations from the steady state. For each variable, we assume that the HP-filtered
log value from the data isolates the log deviation of the variable from its steady
state value. For almost all variables, we consider the longer term (whole sample)
average as the steady state, value. These values are shown in Table 3.1.

Inferring the steady state value of the user cost of labor is less straightforward, since
many of our series for this control for individual fixed effects or characteristics, so
it is not clear what these series imply for the average user cost of labor over time.
Instead, we calibrate the steady state value of the user cost of labor based on the
hiring first order condition for firms, in order to maximize consistency with the
literature.

This approach requires first that we calibrate the hiring costs κ0 and κ1, representing
the fixed hiring cost and vacancy posting cost. As a baseline, we set the fixed
hiring cost to zero (the traditional assumption in the literature) and set the vacancy
posting cost to 0.44. This second parameter deserves more discussion, since there
is no consensus in the literature on the total value of hiring costs (relative to the
steady state marginal product of labor). Both Hagedorn and Manovskii (2008) and
Michaillat and Saez (2021) calibrate the costs based on microdata, both assuming
fully variable costs (κ0 = 0). We consider different combinations of fixed/variable
hiring costs consistent with a steady state hiring cost of roughly 0.58, halfway
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between the value used by Hagedorn and Manovskii (2008) and Michaillat and
Saez (2021). Our steady state costs are stated in the following equation:

h = κ0 +κ1

(
v

u f

)
≃ 0.58 (3.28)

At the same time, since there is also no consensus on the likely split between fixed
and variable hiring costs, we explore multiple calibrations of κ0 and κ1 below,
keeping the steady state hiring cost at 0.58, but varying the fraction of fixed hiring
costs in the total from 0 to 90%. This implies values of κ0 ranging from 0 to 0.52,
and values of κ1 ranging from 0.044 to 0.44.

For the user cost of labor, we assume that steady state wUC is the equilibrium
steady state wage that would result if all workers are homogeneous and paid the
same wage and there are no goods market frictions in the steady state. Hence, we
calculate it according to (3.12):

J = r−w+(1−ρ)(1− s)J (3.29)

The first order condition is J = h. Normalizing r = 1, we obtain that in the steady
state:

w = 1− (1− (1−ρ)(1− s))h ≃ 0.98 (3.30)

We note that 0.98 is consistent with the SAM literature (e.g. Pissarides (2009)
assumes a steady state wage of 0.98).

We summarize the calibration in the Table 3.1 below, which shows the range for κ0

and κ1 consistent with the steady state h of 0.58 and the σ parameter values used
by Chodorow-Reich and Karabarbounis (2016) for each of the four z series. In the
analyses below, we do not show results for other values of σ , ρ or h (i.e. we only
vary the ratio κ0

κ1
). This is because we have found that plausible alternatives to these

parameter assumptions make truly negligible difference to our empirical results –
affecting NWE estimates by less than 1%.
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Table 3.1: Steady States and Calibration

Variables in Steady State Description

u 0.064 Unemployment Rate
f 0.37 Finding Rate
w 0.98 Wage
z 0.47, 0.76, 0.96 Opportunity cost of employment
s 0.03 Separation Rate
v 0.03 Vacancy rate
β 0.68 Bargaining Share
h 0.58 Hiring Costs

Calibrated Parameters

k0 0, 0.29, 0.52 Fixed Hiring Costs
k1 0.44, 0.22, 0.044 Proportional Hiring Costs
σ 1, 1.52, 1.25, 1.19 Risk Aversion Coefficient
ρ 0.012 Discount Rate

3.4 Results

Figure 3.1: Worker Surplus Share (βt) based on the NLSY user cost of labor

Before estimating the NWE, we graph values of the worker surplus share and Nash
wage computed according to the log-linearized expressions for these in Section
3.2.5. In Figure 3.1 we graph the worker surplus share. The baseline series is
computed using the input series described in the previous section. The left-hand
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side only requires arithmetic operations whereas on the right-hand side the terms
in the expectations operator have been forecast with a reduced-form VAR with yt

= [1 year interest rate; Real GDP; GDP Deflator; ft ; st ; wt ; zt ; vt ; ut ; ct] up to horizon
j = 50, although the geometrical decay of the summation term makes it effectively
nil after the 20th period.

In these equations, the expected forward value ŵN
t+ j appears in expectations and

since we stated in Eq. (3.22) the Nash wage as a combination of known parameters
j periods ahead, given the VAR forecasts, we recursively iterate the VAR to calculate
the expectations EtŵN

t+ j which we use in equation (3.24) to calculate the bargaining
share and Nash wage.

In Figure 3.2 we chart the empirical Nash Wage, calculated as in (3.22). Comparing
Figures 3.1 and 3.2, it is evident that the measured worker share of match
surplus is strongly countercyclical and the Nash wage is strongly procyclical. The
countercyclical worker surplus share suggests that, in recessions, workers are
earning more than they would if their share of the surplus was constant (as in
the Nash sharing rule). This is consistent with the evidence for wage rigidity we
document below.

Figure 3.2: Nash Wage ŵN
t

3.4.1 Estimating the Nash Wage Elasticity

In this section, we estimate the NWE. To do so, we estimate 60 linear regressions
for which the NWE is the slope coefficient of a regression where the Nash wage is
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the independent variable and the dependent variable is a measure of the cost of
labor. The Nash Wage Elasticity is represented by the coefficient γ in the following
ordinary least squares (OLS) regression:

ŵUC
t = γŵN

t + εt (3.31)

We estimate 60 different such regressions by varying the cost of labor measure ŵUC
t

by alternating between the five proxies for the user cost of labor discussed above,
and by using 12 different combinations of the four series for the opportunity cost
of labor z with three different combinations of fixed and variable hiring costs. In
our equation for the Nash wage, what matters is the size of variable hiring costs
relative to fixed hiring costs. To capture the likely range of such variation, we
consider specifications with only variable costs (κ0 = 0,κ1 = 0.43), as is standard
in the literature, specifications where the fixed hiring cost is roughly half of total
hiring costs (κ0 = 0.29, κ1 = 0.22 ) and specifications where the fixed hiring cost is
90% of total hiring costs (κ0 = 0.52,κ1 = 0.04).

In Table 3.2 we find estimates of the NWE ranging from 0.01 to 1.56. However, the
vast majority of estimates are below 0.1 (and usually statistically indistinguishable
from zero), and only a few estimates are above 0.6. This small number of estimates
above 0.6 all use the NLSY user cost of labor (our most procyclical labor cost series)
and use either almost entirely fixed hiring costs, or use the CD2 series of z. This
series of z has an average value of 0.96 – close to the calibration of Hagedorn
and Manovskii (2008), which is viewed by most of the subsequent literature as
implausibly high (Chodorow-Reich and Karabarbounis, 2016; Christiano et al.,
2021). Given the extreme assumptions needed to find an NWE above 0.6, we
interpret our estimates as clearly supporting an NWE below 0.6, and favoring an
NWE of 0.1 or below.
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Table 3.2: Results of Regression (3.31). We calculate the NWE for 5 wage indexes
and 12 distinct calibrations of z and hiring costs. Newey–West Standard Errors in
brackets.

Z Series Steady state z κ0 κ1 CES NLSY New Hire NLSY User Cost Haefke All Haefke New Hire

SEP 0.47 0.00 0.44 0.01 0.02 0.24 0.01 0.02
(0.01) (0.04) (0.04) (0.01) (0.02)

SEP 0.47 0.29 0.22 0.01 0.02 0.39 0.03 0.03
(0.01) (0.07) (0.07) (0.01) (0.03)

SEP 0.47 0.52 0.04 0.02 0.02 0.65 0.06 0.04
(0.02) (0.12) (0.15) (0.02) (0.07)

CFE 0.47 0.00 0.44 0.01 0.01 0.24 0.01 0.02
(0.01) (0.04) (0.04) (0.01) (0.02)

CFE 0.47 0.29 0.22 0.01 0.02 0.39 0.03 0.03
(0.01) (0.07) (0.07) (0.01) (0.03)

CFE 0.47 0.52 0.04 0.02 0.02 0.67 0.06 0.05
(0.02) (0.13) (0.15) (0.02) (0.07)

CD1 0.76 0.00 0.44 0.02 0.04 0.53 0.03 0.04
(0.01) (0.09) (0.10) (0.01) (0.05)

CD1 0.76 0.29 0.22 0.03 0.06 0.81 0.06 0.06
(0.02) (0.15) (0.16) (0.02) (0.08)

CD1 0.76 0.52 0.04 0.06 0.07 1.16 0.13 0.09
(0.04) (0.24) (0.26) (0.04) (0.15)

CD2 0.96 0.00 0.44 0.19 0.38 1.56 0.26 0.13
(0.06) (0.40) (0.54) (0.06) (0.30)

CD2 0.96 0.29 0.22 0.21 0.40 1.39 0.28 0.12
(0.06) (0.40) (0.57) (0.07) (0.32)

CD2 0.96 0.52 0.04 0.22 0.40 1.18 0.28 0.10
(0.06) (0.39) (0.59) (0.07) (0.33)

Next, we estimate the NWE using the (hp-filtered) unemployment rate as an
instrument for the Nash wage. To do so, we estimate an IV regression with the
same second stage equation as Eq. (3.31), but where the hp-filtered unemployment
rate instruments for the Nash wage in the first stage.

wt = θwn +ξt (3.32)

This approach has two advantages. First, it reduces concerns of measurement error
in the Nash Wage. Second, it corresponds to dividing the elasticity of actual wages
with respect to the unemployment rate by the elasticity of Nash wages with respect
to the unemployment rate.16 Since the reduced-form literature on wage cyclicality

16That is, we choose this specification as analog of the ratio θ1/θ2 in the following OLS regressions:

wt = θ1yt +ξt,1

wn
t = θ2yt +ξt,2
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commonly computes the elasticity of wages with respect to the unemployment rate,
this approach has the virtue of easy comparison to that literature.

We report the results in Table 3.3. Throughout, IV estimates are relatively similar
to OLS estimates. This is because the Nash Wage is strongly correlated with the
unemployment rate (correlation ≃ 0.8) in most specifications. Again, in most of
cases NWE is close or indistinguishable from zero. Intuitively, as we discuss in
Section 3.4.3, this is because the elasticity of the Nash wage with respect to the
unemployment rate is much higher than the elasticity of the actual cost of labor
with respect to the unemployment rate, for most measures of the cost of labor. The
NWE based on NLSY User Cost is markedly positive and in some few instances
also greater than 1, but with the caveat of being high under a relative non-standard
calibration – using the CD1 and CD2 specification entailing a high value of z, and/or
a high value of fixed hiring costs κ0.

Table 3.3: Results of Regression (3.32). We calculate the NWE for 5 wage indexes
and 12 distinct calibrations of z and hiring costs. Newey–West Standard Errors in
parentheses.

Z Series Steady state z κ0 κ1 CES NLSY New Hire NLSY User Cost Haefke All Haefke New Hire

SEP 0.47 0.00 0.44 0.01 - 0.01 0.27 0.02 0.01
(0.01) (0.05) (0.07) (0.01) (0.02)

SEP 0.47 0.29 0.22 0.01 - 0.01 0.41 0.03 0.02
(0.01) (0.08) (0.10) (0.01) (0.04)

SEP 0.47 0.52 0.04 0.01 - 0.02 0.68 0.05 0.03
(0.02) (0.13) (0.16) (0.02) (0.07)

CFE 0.47 0.00 0.44 0.01 - 0.01 0.28 0.02 0.01
(0.01) (0.05) (0.07) (0.01) (0.02)

CFE 0.47 0.29 0.22 0.01 - 0.01 0.42 0.03 0.02
(0.01) (0.08) (0.10) (0.01) (0.04)

CFE 0.47 0.52 0.04 0.02 - 0.02 0.70 0.06 0.03
(0.02) (0.14) (0.17) (0.02) (0.07)

CD1 0.76 0.00 0.44 0.01 - 0.02 0.62 0.04 0.02
(0.02) (0.12) (0.15) (0.02) (0.05)

CD1 0.76 0.29 0.22 0.02 - 0.03 0.91 0.07 0.03
(0.03) (0.18) (0.22) (0.03) (0.08)

CD1 0.76 0.52 0.04 0.03 - 0.04 1.46 0.12 0.06
(0.05) (0.28) (0.35) (0.04) (0.14)

CD2 0.96 0.00 0.44 0.09 - 0.12 4.11 0.29 0.15
(0.13) (0.79) (0.98) (0.11) (0.35)

CD2 0.96 0.29 0.22 0.11 - 0.14 4.85 0.35 0.18
(0.15) (0.94) (1.15) (0.13) (0.42)

CD2 0.96 0.52 0.04 0.12 - 0.16 5.66 0.42 0.22
(0.18) (1.09) (1.35) (0.16) (0.50)

This definition of an IV estimate is also useful for our approach to estimating the NWE conditional
on monetary shocks below.
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3.4.2 NWE Conditional on Monetary Shocks

To estimate the NWE conditional on monetary shocks we borrow from the dynamic
fiscal multiplier literature. The multiplier is defined as the cumulative change
in GDP relative to government spending on an exogenous impulse. It is often
approximated as the ratio of the integral of GDP and government spending impulse
response functions (IRFs) at an arbitrary horizon h. Ramey (2016a). Nekarda and
Ramey (2021) have extended this framework to analyze the conditional response of
markup to monetary policy, government spending, productivity and investment
specific technology shocks.

A handy way to retrieve IRFs and their ratio is by setting up a vector auto-regression
(VAR), a methodology that is simple to implement and provides an intuitive
identification when structural restrictions are made explicit. Ramey (2016a, 2018);
Barnichon et al. (2021) use a more direct and assumptions-free way to calculate the
dynamic fiscal multiplier by comparing the impulse response functions of a h-step
ahead local projection (LP). This methodology is appealing because no identifying
assumptions are needed and LPs can be computed in a single equation rather
than stating a full system. Control variables are usually included to avoid serial
correlation and improve the regression fit instead of the cross lags of variables.

In this regard, the literature offers two alternative testing routes. They yield identical
results, but it is useful to recall them in order to compare such methodologies with
the Regressions stated for the unconditional NWE and provide further intuition.
The first method is based on the calculation of LP impulse response functions (IRFs)
h periods ahead as:

wt+ j = ah + γ jCt +ψhxt +ut+h (3.33)

Where the dependent variable is the variable subject to an identified shock xt+ j and
Ct is a matrix of control variables. ψh is the response of yt on impulse. In this setting
the multiplier can be calculated as the ratio of cumulative IRFs without having to
specify a full-blown structural model.

The second method consolidates the IRF ratio in a single equation, providing a direct
point-estimate of the multiplier by means of a direct instrumental local projection
(IV-LP). As in footnote 16, this IV-LP consolidates the LP in equation (3.33) in a
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single equation by using the identified shock as an excluded instrument for the
Nash wage.

h

∑
j=0

wt+ j = mh

h

∑
j=0

wn
t+ j + γ jCt +ut+ j (3.34)

Adapting this equation to our case, ∑
h
j=0 wt+ j is the cumulative measure of wage,

∑
h
j=0 wn

t+ j is the Nash Wage and Ct is a matrix of control variables. The identified
shock the is used as an external instrument for wn. The coefficient mh is then the
estimate NWE multiplier at time horizon h. The IV-LP approach has the advantage
to be conducive to the calculation of standard error 17 and weak instrument first
stage statistics.

We use the IV-LP to retrieve the NWE measures conditioning on externally identified
shocks akin to Nekarda and Ramey (2021). We consider an exogenous monetary
shock. Hence we instrument the Nash Wage using the Romer and Romer narrative
series for monetary policy Romer and Romer (2004b) as updated in Wieland and
Yang (2020).

Our specification is exactly Eq. (3.34) where the matrix of controls contains 1 lag of
the shock, log GDP, Nash Wage and wage proxy. The multiplier is calculated at 4
quarters after the monetary policy shock. We summarize the results in Table 3.4.

17which have to be heteroscedasticity and autocorrelation robust (HAC), since the IV-LP error
term is MA
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Table 3.4: Results of Regression (3.34). We calculate the NWE for 5 wage indexes
and 12 distinct calibrations of z and hiring costs. Newey–West Standard Errors in
parentheses.

Z Series Steady state z κ0 κ1 CES NLSY New Hire NLSY User Cost Haefke All Haefke New Hire

SEP 0.47 0.00 0.44 0.01 0.04 0.37 0.02 - 0.01
(0.01) (0.06) (0.18) (0.01) (0.04)

SEP 0.47 0.29 0.22 0.02 0.07 0.60 0.04 - 0.02
(0.02) (0.09) (0.30) (0.02) (0.07)

SEP 0.47 0.52 0.04 0.03 0.18 1.25 0.09 - 0.05
(0.04) (0.21) (0.63) (0.06) (0.16)

CFE 0.47 0.00 0.44 0.01 0.04 0.37 0.02 - 0.01
(0.13) (0.14) (0.13) (0.01) (0.04)

CFE 0.47 0.29 0.22 0.02 0.07 0.61 0.04 - 0.02
(0.13) (0.15) (0.13) (0.02) (0.07)

CFE 0.47 0.52 0.04 0.03 0.19 1.30 0.09 - 0.05
(0.13) (0.17) (0.15) (0.06) (0.16)

CD1 0.76 0.00 0.44 0.02 0.09 0.88 0.02 - 0.01
(0.13) (0.15) (0.14) (0.01) (0.04)

CD1 0.76 0.29 0.22 0.03 0.17 1.44 0.04 - 0.02
(0.13) (0.17) (0.15) (0.02) (0.07)

CD1 0.76 0.52 0.04 0.01 0.20 2.85 0.09 - 0.05
(0.11) (0.19) (0.17) (0.06) (0.16)

CD2 0.96 0.00 0.44 0.02 0.09 8.27 0.02 - 0.01
(0.11) (0.19) (0.23) (0.01) (0.04)

CD2 0.96 0.29 0.22 0.04 0.06 11.06 0.04 - 0.02
(0.11) (0.20) (0.24) (0.02) (0.07)

CD2 0.96 0.52 0.04 0.08 0.05 15.26 0.09 - 0.05
(0.11) (0.20) (0.25) (0.06) (0.16)

The NWE conditioning on the monetary policy shock is similar to the OLS and the
IV specifications. The NWE is generally very small or nil one year after a monetary
policy shock. This suggests that the actual wage is not sensitive to moves in the
NWE also contingent on shocks.

In Figure 3.3 we summarize all the 180 estimates for the NWE derived so far in
a box plot. The 12 boxes represent the 12 alternative calibrations, using the four
different series for z and three different calibrations of hiring costs. The outliers are
all estimates involving the NLSY user cost series. Estimates with a higher steady
state z and CD2 are more dispersed and present more outliers. The rest of estimates
is very concentrated around 0. Taken together, this evidence is strongly suggestive
that the NWE is positive but much closer to 0 than to 1.
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Figure 3.3: Box Plot of NWE across all regressions.

Z SEP, k0/h=0 Z SEP, k0/h=0.5 Z SEP, k0/h=0.9 Z CFE, k0/h=0 Z CFE, k0/h=0.5 Z CFE, k0/h=0.9 Z CD1, k0/h=0 Z CD1, k0/h=0.5 Z CD1, k0/h=0.9 Z CD2, k0/h=0 Z CD2, k0/h=0.5 Z CD2, k0/h=0.9
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3.4.3 What is driving our results?

Across many different measures of wages and different empirical specifications,
we have estimated values of the NWE that are positive, but substantially below
1. Perhaps surprisingly, this is true in many specifications even when we use the
highly procyclical NLSY user cost of labor from Basu and House (2016). Key to
understanding our results is that our measured series for the Nash wage are highly
procyclical, more procyclical even than the NLSY user cost of labor.18 Since the
actual cost of labor is significantly less procyclical than the Nash wage, it follows
that the NWE is substantially below 1.

In this section, we discuss why we find that the Nash wage is so procyclical. We
first provide some informal intuition, before making the discussion more precise.

Informally, the key to our results is that firm match surpluses appear to be
procyclical, whereas worker match surpluses appear highly countercyclical, across
different measures of the cost of labor. The reason that the firm match surplus
appears to be procyclical is that the firm’s hiring decision implies that the firm
match surplus must equal the hiring cost, and hiring costs are procyclical since
vacancies take longer to be filled when unemployment is low. On the other hand,
the worker match surplus is strongly countercyclical, as the value of unemployment
is much lower in recessions due to the longer time required to find a job. With a

18The procyclicality of the Nash wage and actual wage were shown in Table 3.3 above.
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procyclical firm surplus and a strongly countercyclical worker surplus, it follows
that the worker’s share of the total surplus is strongly countercyclical, and so the
Nash wage must be substantially more procyclical than the actual wage. Then, the
NWE must be substantially below 1. In principle, if wages were procyclical enough
then this would be consistent with a procyclical worker match surplus and an NWE
of 1, but it turns out that this would require wages to be a lot more procyclical than
any of our empirical measures of labor cost.

To develop this argument formally, assume, for simplicity, that all variables follow
approximate random walks, so that for each variable Et [xt+1]≃ xt . Assume also that
the separation rate is roughly constant, so that ŝt = 0. Then, equation (3.22) gives
the following approximate formula for the Nash wage.

wUCŵN
t − zẑt

wUC − z
− f f̂t

(
(1−ρ)

1− (1− f − s)(1−ρ)

)
=

(
κ1v
hu f

)
(v̂t − ût − f̂t)

Furthermore, log linearizing equation (3.1), setting ut+1 = ut and ŝt = 0 yields:

( f + s)ût =− f f̂t .

Substituting this into the equation above, we obtain:

wUCŵN
t − zẑt

wUC − z
+( f + s)ût

(
(1−ρ)

1− (1− f − s)(1−ρ)

)
︸ ︷︷ ︸

Deviation of Worker Match Surplus

=

(
κ1v
hu f

)(
v̂t −

s
f + s

ût

)
︸ ︷︷ ︸

Deviation of Firm Surplus

.

The right-hand side of this equation is the deviation from steady state of the hiring
cost, which equals the deviation from steady state of the firm’s match surplus. Since
vacancies are procyclical and unemployment is countercyclical, the firm’s surplus
is procyclical.

The equation states that this has to equal the deviation from steady state of the
worker surplus. The reason that the left-hand side of the equation has to equal
the right-hand side is that the Nash wage ŵN

t is defined as the wage that keeps the
worker share of surplus constant, requiring that the log deviation of the firm and
worker surplus are equal.

The worker surplus term on the left-hand side has two components. The first
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term is the deviation of the worker surplus is the change in the wage minus
opportunity cost of working. The second term, proportional to ût , represents
that the worker’s match surplus relative to unemployment depends on how long
a worker would expect to be unemployed if they were to quit the job. Since the
duration of unemployment increases as the unemployment rate increases, this term
relates positively to ût .

If the wage were too acyclical, so that ŵN
t = 0, then the left-hand side of this equation

would be countercyclical, since our data series for ẑt is procyclical (Chodorow-Reich
and Karabarbounis, 2016), and the unemployment rate is countercyclical. Since the
right-hand side is procyclical, ŵN

t has to be procyclical for the left-hand side to equal
the right-hand side. That is, the firm’s match surplus is procyclical, and everything
apart from wages makes the worker surplus countercyclical. As such, the wage
rate would have to be quite procyclical in order for the worker’s surplus to be as
procyclical as the firm’s, which is required by Nash bargaining.

How procyclical then does ŵN
t have to be? To answer this question, rewrite the

left-hand side of the equation above as:wUC
(

ŵN
t

ût

)
− z
(

ẑt
ût

)
wUC − z

+

(
(1−ρ)( f + s)

1− (1− f − s)(1−ρ)

) ût .

For this to be procyclical, it must be negatively related to ût . That is, we need that:

wUC ŵN
t

ût
− z ẑt

ût

wUC − z
+

(
(1−ρ)( f + s)

1− (1− f − s)(1−ρ)

)
< 0

Using that ẑt
ût
< 0, this can be rearranged to:∣∣∣∣ŵN

t
ût

∣∣∣∣> (1− z
wUC

)( ( f + s)(1−ρ)

ρ +( f + s)(1−ρ)

)
+

z
wUC

∣∣∣∣ ẑt

ût

∣∣∣∣
The right-hand side term in round brackets will be very close to 1 in an empirically
plausible calibration. Since the last term is also positive, this requires in practice
that: ∣∣∣∣ŵN

t
ût

∣∣∣∣> 1− z
wUC .

This condition implies that the Nash wage must be extremely procyclical. In
particular, for our baseline series of z, the right-hand side is equal to 0.53. The left-
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hand side is the percentage change in Nash wages when the number unemployed
increases by 1%. If this exceeds 0.53, and the average unemployment rate is 6.3%,
then a 1 percentage point increase in the unemployment rate (i.e. from 6.3% to 7.3%)
must reduce the Nash wage by more than 0.53/0.063 = 8.4 percent. Note that this is
merely the minimum level of cyclicality of the Nash wage required for the worker
match surplus to be at all procyclical. If the firm surplus is highly procyclical (which
will be the case if κ0 is substantially below 1) then Nash bargaining requires for the
worker match surplus also to be highly procyclical, implying that a 1% decrease in
the unemployment rate must increase the Nash wage by substantially more than
8.4 percent. As such, the Nash wage is highly procyclical. The implication, then, is
that the measured wage would have to be roughly this procyclical for us to find an
NWE close to 1. Since none of our series for the cost of labor are anything like this
procyclical (see Table 3.3), we find an NWE considerably below 1.

3.5 Business Cycle Implications of Wage Rigidity

In this section, we assess the business cycle implications of our estimated level of
aggregate wage rigidity. For simplicity, we restrict attention to the environment
with homogeneous firms and matches and no on-the-job search outline in Section
3.2.2. Furthermore, as in much of the theoretical literature, we restrict attention to
an economy which experiences only one shock, to the marginal revenue product
of labor rt , which follows an exogenous stochastic process. Shocks to rt could be
interpreted as, for instance, productivity shocks or markup shocks, or aggregate
demand shocks in a model with sticky prices in goods markets. In addition, we
assume for simplicity that the matching function and separation rate are time
invariant so that Mt = M(ut−1,vt) and st = s. We investigate the consequences of
different assumptions about wage setting in this environment.

First, we show analytically that, if all variables follow approximate random walks,
then the NWE is approximately a sufficient statistic for the contribution of wage
rigidity to the cyclical volatility of unemployment in such a model. This is because
we show that there is a tight mathematical relationship between the NWE and the
Fundamental Surplus, which Ljungqvist and Sargent (2017) have shown is a useful
predictor of the cyclical volatility of unemployment in many search models.

Next, we show via simulations that the NWE does indeed closely predict the
volatility of unemployment in a simple SAM model with shocks to rt , just as the link
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with the Fundamental Surplus would lead to us to expect. To do this, we calibrate a
very simple log-linearized business cycle model based on our search and matching
framework. When the NWE is as low as most of our empirical estimates, we show
that wage rigidity amplifies unemployment fluctuations in the model more than
sevenfold compared to the case of Nash bargaining, and that such a model can
easily account for around half of the empirical volatility of unemployment over the
business cycle if the only shocks to rt are productivity shocks.

Lastly, we investigate how far our results are consistent with various other models
of wage setting in the literature, including models with constrained efficient wages,
such as many directed search models, and rigid wage models based on Hall (2005),
Gertler and Trigari (2009) and Christiano et al. (2016).

3.5.1 The NWE and the Fundamental Surplus

We now revisit, in our framework, recent results of Ljungqvist and Sargent (2017),
who show in the context of a number of SAM models, including some with sticky
wages, that the elasticity of the unemployment rate with respect to productivity
shocks depends closely on a term that they call the ‘Fundamental Surplus’. We
extend their results to the class of models studied in this section.19 Furthermore, we
show that the fundamental surplus depends closely on the Nash wage elasticity,
and that the Nash wage elasticity is therefore a strong predictor of the effect of
wage rigidity on the volatility of unemployment. The relationship between the
Fundamental Surplus and the Nash wage elasticity is so close that it is very difficult
for a model in the class we study to deliver a high volatility of unemployment
unless it either has a low Nash wage elasticity or has a high value of z

w .

We assume, as in Section 3.4.3 that all variables follow approximate random walks
and set, for each variable x, that x̂t ≃ x̂t−1 ≃ Et [x̂t+1] – i.e. we consider the long run
effects of an almost permanent shock. This is essentially the same as Ljundqvist and
Sargent’s approach of studying the comparative statics of model steady states with
respect to parameters, and is a valid approximation insofar as shocks are highly
persistent.

To derive the fundamental surplus formula, log-linearize the matching function, to
19This class was specified immediately above.
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infer that (under the random walk assumption):

f̂t ≃ (1−φ)(v̂t − ût) (3.35)

where φ is the elasticity of the matching function with respect to unemployment, in
the neighborhood of the steady state. Substitute (3.4) into (3.2) to eliminate J terms
and log-linearize. Then, combine with (3.22) and (3.35) and use that ŵt = εNŵN

t ,
and ẑt = εzŵt , where εN is the Nash wage elasticity and εz is the procyclicality of zt

relative to wages. After rearrangement, we obtain:

− ût

r̂t
≃ φ(1−u)ϒ̃

 w+δFh

α0δFh+(w− z)ε̃
[
1− δF

δ
(1−α0)

]


︸ ︷︷ ︸
Inverse Fundamental Surplus Ratio

r̂, (3.36)

where

ε̃ =
εN

1− εzεN
z
w
,

δ = 1− (1− f − s)(1−ρ),

δF = 1− (1− s)(1−ρ),

α0 = 1− κ1

h
.

and

ϒ̃
−1 =

 δ ε̃ −δF ε̃(
1−β

β

)
α0δF +δ ε̃ − (1−α0)δF ε̃

φ +


(

1−β

β

)
α0δF +α0δ ε̃(

1−β

β

)
α0δF +δ ε̃ − (1−α0)δF ε̃

(1−φ).

The left-hand side of (3.36) is the size of response of unemployment to a shock to r̂t .
Thus, squaring this equation gives the cyclical volatility of unemployment relative
to r̂t . Ljungqvist and Sargent (2017) assume εz = 0, and consider cases where εN = 1
(Nash bargaining) and εN = 0 (the completely sticky wage of Hall (2005) discussed
below). After some rearrangement, it can be shown that the values of ϒ̃ and of
the Inverse Fundamental Surplus Ratio are exactly the same in these special cases
as found by Ljundqvist and Sargent (using different notation). The ‘Fundamental
Surplus’ refers to the reciprocal of the Inverse Fundamental Surplus Ratio.

It is immediate that wage behavior only enters the right-hand side of equation (3.36)
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via the Nash wage elasticity. As such, insofar as the random walk approximation is
accurate, the Nash wage elasticity is an accurate summary statistic for the effect of
wage rigidity on the cyclical volatility of unemployment.

We now discuss how this formula shows that the Fundamental Surplus term, and, in
particular, the Nash wage elasticity and the ratio z

w are the key drivers of the cyclical
volatility of unemployment. Ljundqvist and Sargent show that ϒ̃ is bounded below
by 1 and above by min[φ ;1− φ ]−1, a result that can be straightforwardly seen to
also hold in our setting by inspecting the expression for ϒ̃−1. The standard view in
the literature is that the data supports φ ≃ 0.5 (Petrongolo and Pissarides, 2001) in
which case ϒ̃ ∈ [1,2]. Then, the only way to get a high volatility of unemployment
relative to r̂t (which is the easiest way to get the model to produce large fluctuation
in unemployment) is to make the Inverse Fundamental Surplus Ratio large and
the Fundamental Surplus small. Given the very small size of the terms in δ

and δF in the equation for the Fundamental Surplus, it is virtually impossible
to make the Fundamental Surplus small unless the term (w−z)ε̃

w is small – in other
words, either the Nash wage elasticity (which is the main term in ε̃) is small, or
z is close to w – workers are roughly indifferent between being unemployed and
employed. This echoes the conclusion of Christiano et al. (2021) that wage rigidity
is essential to allow SAM models without very high z to deliver large fluctuations
in unemployment.20

3.5.2 Numerical Simulations

We build a very simple calibrated SAM model based on the model framework
laid out in Section 3.5. Our simulations reveal that the NWE closely predicts the
volatility of unemployment in the model, relative to the volatility of rt , which is the
driving shock.

We parametrize the model laid out in Section 3.5 in the simplest possible way while
allowing the NWE to vary. In the next section we show results of simulations of
this model that show that changes in the NWE predict the cyclical volatility of
unemployment well, just as implied by the formal analysis of the Fundamental
Surplus above.

20Ljundqvist and Sargent also argue that, for instance, large fixed hiring costs κ0 will bring
down the fundamental surplus. The formulation here, where κ0 does not directly appear in the
fundamental surplus formula, makes clear that large fixed hiring costs can significantly shrink the
fundamental surplus (only) insofar as they increase the equilibrium steady state ratio z

w .
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We assume that all matches are homogeneous and that the marginal revenue
product of labor rt follows an AR(1) process with quarterly autocorrelation equal to
0.97, roughly the autocorrelation of labor market tightness in our sample period.
We are agnostic about whether changes in the marginal revenue product of labor
are due to changes in markups (e.g. as a consequence of aggregate demand shocks
with nominal rigidities in goods markets) or because of changes in productivity.
The separation rate st is time invariant and set equal to the steady state separation
rate in our empirical analysis.

Workers and firms match according to a Cobb Douglas matching function:

Mt = Mv1−φ

t uφ

t ,

where M is a constant and φ = 0.5.

To examine the aggregate effects of our estimated level of wage rigidity, we assume
that the wage satisfies:

ŵt = γŵN
t , (3.37)

where γ is the Nash wage elasticity, and the Nash wage is determined by the log-
linearized equation (3.22) that was derived in Section 3.2. We consider values of the
Nash wage elasticity γ in the range from 0 to 1.

For simplicity, we assume linear utility, so that σ = 0. This entails that ĉt drops out
of the model equations, which allows us to avoid making assumptions about goods
markets and the determination of aggregate consumption.

Finally, it is necessary to specify the cyclicality of the flow value of unemployment.
For this we consider two cases, one case where zt is acyclical, and one where it is
proportional to wt , in which case:

ẑt = ŵt (3.38)

All other variables are calibrated in line with the steady state values we used in
Section 3.3 above.

Table 3.5 shows the standard deviation of unemployment relative to the marginal
revenue product of labor for different levels of the NWE, and for the case of acyclical
and procyclical z. All moments are hp-filtered, in accordance with our empirical
analysis. To adjudicate the accuracy of the fundamental surplus formula, (3.36), the
volatility implied by that formula is also shown. We see that, except for very low
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Table 3.5: NWE and Simulated Relative Unemployment Volatility

Acyclical z z Proportional to w

NWE Relative Volatility
of Unemployment

Volatility Implied
by FS formula

Relative Volatility
of Unemployment

Volatility Implied
by FS formula

0 21.1 46.1 21.1 46.1
0.05 8.6 13.5 8.4 13.2
0.1 5.4 7.9 5.2 7.6
0.2 3.1 4.3 2.8 3.9
0.3 2.2 3.0 1.9 2.6
0.4 1.7 2.3 1.4 1.9
0.5 1.3 1.8 1.0 1.4
0.6 1.1 1.5 0.8 1.1
0.7 1.0 1.3 0.7 0.9
0.8 0.9 1.2 0.5 0.7
0.9 0.8 1.0 0.4 0.6
1 0.7 0.9 0.4 0.5

values of the NWE, the fundamental surplus formula provides a relatively good
guideline of the likely effect of wage rigidity on the volatility of unemployment.

The relative volatility of unemployment increases substantially as the Nash wage
elasticity falls. With a Nash wage elasticity of 0.1, somewhat higher than most side
of our estimates, the relative volatility of unemployment is more than 7 times as
high as in the case of a Nash wage elasticity of one. Thus, our empirical findings
suggest that wage rigidity may be increasing the cyclical volatility of unemployment
more than sevenfold compared to what would be occurring under flexible wages.21

In our data, the relative cyclical volatility of unemployment is roughly 11 times
that of productivity. Thus, our estimates suggest that if rt represented shocks
to productivity alone (i.e. we ignored e.g. aggregate demand shocks) then the
empirical level of wage rigidity can account for around half of the cyclical volatility
of unemployment. Thus, wage rigidity goes a long way to explaining the ‘Shimer
puzzle’ that unemployment is far more volatile relative to productivity than implied
in a simple model with Nash bargaining: it can explain around half of the Shimer
puzzle just with productivity shocks alone.

21A caveat with this analysis is that, in a richer model, changes in the flexibility of wages could
have additional repercussions for labor demand and therefore the volatility of rt . For instance, if a
higher level of wage flexibility led to a less countercyclical capital-labor ratio, this might make rt less
volatile. Alternatively, if changes in wages affect the aggregate demand for goods, this could also
affect rt if goods markets feature nominal rigidities.
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3.5.3 Implications of the NWE for Non-Nash Wage Models

We now study how far our estimates of the NWE are informative for various models
of non-Nash bargaining. We investigate the implications of our NWE estimates
for four non-Nash approaches to modeling wages from the recent literature, first
models in which the labor market is constrained efficient, as in many models of
directed search (Wright et al., 2021), then three models designed to generate rigid
wages: the approaches of Hall (2005), Gertler and Trigari (2009) and Christiano et al.
(2016). We show that the wage setting assumptions in these papers can, with small
changes, be incorporated into the framework of Section 3.2, at least in the case of
homogeneous firms and matches.

We show that the constrained efficient wage setting model delivers a wage that
is weakly more procyclical than the Nash wage provided the matching function
displays as much complementarity between unemployment and vacancies as the
main matching functions considered in the literature. Therefore, if wages were set
in a way consistent with constrained efficiency, we would expect to estimate a value
of the NWE greater than 1. As such, our low estimates of the NWE indicate, first,
that many directed search models are likely to struggle to explain the pattern of
wages we see in the data and, second, that wages in the data appear to be more
rigid than is consistent with constrained efficiency.

We show that each of the three approaches to rigid wages implies a wage setting
equation where the aggregate wage is a function of the Nash wage, and (possibly)
hiring costs and the flow value of unemployment.22 We study the cyclical
implications of these three approaches to rigid wages by incorporating the wage
setting equation of each into the business cycle model studied in Section 3.5.2. Our
simulation allows us to infer the values of the Nash wage elasticity implied by these
rigid wage models, as well as the resulting cyclical volatility of unemployment.

The simplest approach to rigid wages of the three is the approach of Hall (2005).
In this model, firms are homogeneous and each firm’s wage is assumed to be
fixed provided that the fixed wage is consistent with positive match surplus for
both worker and firm. If the steady state wage rate is consistent with positive
match surplus for both worker and firm, then this will continue to be true in
the neighborhood of the steady state, and so the wage will remain fixed in the

22Consistently with the framework of Section 3.2 the wage setting equation implied by these three
approaches to rigid wages does not depend on many other features of the economic environment
such as frictions in goods markets.
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neighborhood of the steady state. In that case, it follows that ŵt = 0, and so the
Nash wage elasticity implied by the Hall (2005) model is exactly zero. This is not far
from some of our estimates of the NWE in Section 3.4. Since this model is a special
case of the model in Section 3.5.2, the row of Table 3.5 corresponding to an NWE of
0 shows the results implied by the wage setting assumption of Hall (2005).

We now study the cyclical properties of the other three non-Nash models mentioned:
constrained efficient wages, staggered wage bargaining and alternating offer
bargaining.

3.5.3.1 Constrained Efficient Wages and Directed Search

We suppose that the wage is set in such a way that, in the absence of goods market
or financial market frictions, the equilibrium level of unemployment is constrained
efficient. This allows us to infer the wage behavior implied by the many directed
search models which entail constrained efficiency in the absence of frictions in other
markets.23

We suppose that the matching function has an elasticity of substitution between
unemployment and vacancies that is weakly less than 1, so that the elasticity of
matches with respect to unemployment, φt , is weakly decreasing in the number of
unemployed. This assumption nests the cases normally considered in the literature,
including the common Cobb-Douglas matching function which has an elasticity of
substitution of 1, as well as, for instance, urnball matching functions.

A constrained efficient allocation would set vacancies according to the following
first order condition of a benevolent social planner:

pt − zt −
κ1

1−φt

(
vt

ut−1 ft

)
+Et

[(
u′(ct+1)

u′(ct)

)
κ1

1−φt

(
vt+1

ut ft+1

)
(1− st+1 −φt ft+1)

−κ0 +κ0

(
u′(ct+1)

u′(ct)

)
(1− st+1)

]
= 0,

where pt denotes the marginal product of labor. The intuition for the first line
of this first order condition is as follows. Suppose the planner creates enough
extra vacancies at time t to create an extra position at t, and reduces vacancies at
t +1 to leave employment at t +1 unchanged. The benefit of this at time t is that
there is pt extra output, but one fewer worker is unemployed so the flow value

23See Wright et al. (2021) for a discussion of the relationship between directed search and
constrained efficiency.
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of unemployment zt is lost. Furthermore, the planner has to create 1
1−φt

(
vt

ut−1 ft

)
vacancies at time t, because each vacancy has a filling rate of vt

ut−1 ft
, and the elasticity

of matches with respect to vacancies is 1−φt . On the other hand, fraction 1− st+1

of the extra hired workers are still employed at t + 1 so the planner can create
correspondingly fewer vacancies then, but also has to create extra vacancies at t +1
in proportion to φt ft+1, since there will be one fewer unemployed at the start of
t +1 per extra worker hired at t, and so, all else equal, this will lead to φt ft+1 fewer
matches at t +1 because the elasticity of matches with respect to unemployment is
φt . The intuition for the second line is simply that hiring an extra worker at t costs
κ0 but requires 1− st+1 fewer hires at t +1 since 1− st+1 of extra employees will still
be employed then.

Now, suppose there are no goods or financial market frictions, so that the marginal
revenue product of labor satisfies rt = pt . The constrained efficient wage is then one
such that, given this wage, firms’ optimal hiring decisions will achieve the same
allocation as the planner. Substituting (3.4) and (3.2) into the planner’s first order
condition, to eliminate pt , reveals that this implies that the constrained efficient
wage, wE

t should satisfy:

φt

1−φt

(
κ0 +

κ1vt

ut−1 ft

)
=wE

t − zt

+Et

[
(1−ρ)

u′ct+1

u′ct

(1− st+1 − ft+1)
φt

1−φt

(
κ0 +

κ1vt+1

ut ft+1

)]
,

Comparing this with equation (3.8) makes clear that the constrained efficient wage
is the same as the Nash wage, except setting the worker bargaining power β equal
to φt (i.e. the well known Hosios condition), and ignoring the fixed cost of hiring κ0.
Now, first consider the Cobb-Douglas matching function, which holds φt = φ fixed.
Then, since our results in Section 3.3 made clear that adding a fixed cost of hiring
will make the Nash wage less cyclical (thereby raising estimates of the Nash wage
elasticity) it follows that the constrained efficient wage will be more procyclical
than the Nash wage if κ0 > 0. Now, alternatively, with a matching function that has
an elasticity of substitution strictly less than 1, φt will tend to be procyclical, since it
is decreasing in the number of unemployed and increasing in vacancies. This adds
an additional procyclical element to the efficient wage, which is increasing in φt .
This further accentuates the tendency for the constrained efficient wage to be more
procyclical than the Nash wage.
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Thus, we may conclude that if wages were set in a way consistent with constrained
efficiency, as in many directed search models, wages would be more procyclical
than Nash wages and we would expect the Nash wage elasticity to be greater than
1. As a consequence of this, it follows that the low Nash wage elasticity we find
in the data not only indicates that directed search models may have difficulty in
matching the empirical behavior of wages over the business cycle, but also indicates
that the movement of wages over the business cycle is likely to be more rigid than
is consistent with constrained efficiency.

3.5.3.2 Staggered Wage Bargaining:

The first model of rigid wages we consider is a staggered wage bargaining model
based on Gertler and Trigari (2009), henceforth GT. In this model, each firm pays
all its workers the same wage. At the start of each period, each firm draws an
idiosyncratic iid shock which determines whether it renegotiates its wages with its
workers or not. Fraction λ of firms retain the same wage as they had in the previous
period, while fraction 1−λ of firms negotiate a new wage with all their workers
according to Nash bargaining,

To isolate the effect of wage rigidity on unemployment fluctuations, we amend
GT’s staggered wage bargaining model so that it is consistent with the modeling
framework outlined in Section 3.2, with as few additional assumptions as possible.
This allows us to compare the wage implied by staggered wage bargaining with the
Nash wage derived in Section 3.2.

To this end, we make one change to the wage bargaining framework in GT. In GT,
the firm, when negotiating wages with its existing workers, takes into account that
this wage will affect the wages of new workers it hires. The effect of this assumption
in GT is to lead firms to bargain as if their discount rate is somewhat lower, and the
effective firm discount rate is time varying and depends on the firm’s expectations
of its future hiring, and also of how its future hiring will be affected by the wage
rate it negotiates. This adds considerable complexity to the bargaining problem,
and also entails that the GT wage bargaining solution depends on convex costs of
hiring, which are a feature of GT but are inconsistent with the framework of Section
3.2. To avoid this complexity and to maintain consistency with the framework of
Section 3.2, we do not assume convex costs of hiring. Furthermore, we assume that
when a firm renegotiates its wages with workers, the outcome of this negotiation
depends only on the match surplus the firm earns from its current workers, and
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the match surplus of these workers, and does not depend on the effect of wages on
future hiring.

As such, we assume that, when a firm renegotiates wages with workers, the
renegotiated wage for each match k satisfies the Nash bargaining solution:

W k
t −Ut = β [(W k

t −Ut)+(J k
t −V i

t )] = β [(W k
t −Ut)+J k

t ],

where β is the worker bargaining share and the Bellman values J k
t , V i

t , W k
t and Ut

are as defined in Section 3.2 and so evolve according to the same Bellman equations
as in Section 3.2.

Since all matches in the same firm are the same, we let J i
t (w) denote the match

surplus of the firm i if it pays the wage w. Likewise, W i
t (w) is the match surplus of

the worker in firm i if they are paid wage w.

Let J
i
t be the expected value of a firm i at the start of the period t, before it discovers

whether or not it will renegotiate its wages that period. That is:

J
i
t = λJ i

t (w
i
t−1)+(1−λ )J i

t (w
∗i
t )

where wi
t−1 is the wage paid by the firm in the previous period, and w∗i

t is the wage
that would be negotiated if the firm renegotiates its wages.

Define W i
t similarly.

The Bellman equations in Section 3.2 imply that:

J i
t (w

∗
t ) = J

i
t − (w∗i

t −wi
t)+λ (1− st+1)Et [mt+1(J

i
t+1(w
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t )−J
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t +(w∗i

t −wi
t)+λ (1− st+1)Et [mt+1(W

i
t+1(w

∗i
t )−W
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t+1)],

where the expected wage of at the start of the period (before it is known whether
renegotiation will happen) is:

wi
t = λw∗i

t +(1−λ )wi
t−1.

When wages are renegotiated, the bargaining solution satisfies:
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t (w
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t )],
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Combining this with the previous two Bellman equations and rearranging, we
obtain:(

β

1−β

)(
W

i
t

)
= J

i
t −

w∗i
t −wi

t
1−β

+λ (1− st+1)Et

[
mt+1

((
β

1−β

)(
W

i
t+1 −J

i
t+1)

))]
Averaging across all firms (and so dropping i superscripts), log-linearizing around
the steady state and rearranging, we obtain:

− β̂t

1−β
=

(
w

βh

)(
1

1−λ (1− s)(1−ρ)
· λ

1−λ

)
(ŵt − ŵt−1)

Substituting in equations (3.21) and (3.16), we obtain:

ŵt − ŵt−1 = (1−δ )Et [ŵt+1 − ŵt ]+
δ

ψ
(ŵN

t − ŵt) (3.39)

where

δ = 1− (1− f − s)(1−ρ)

ψ =
w− z
βh

(
1

1−λ (1− s)(1−ρ)

)(
λ

1−λ

)
.

Equation (3.39) is the wage setting equation for the staggered wage bargaining
model. This resembles New Keynesian Phillips curve equations, in that the rate of
growth of wages depends on the deviation of wages from the negotiated (Nash)
level, and also depends on the expected rate of growth of wages next period.

We now study the business cycle properties of the staggered wage bargaining
model. In particular, we keep the business cycle model assumptions unchanged
from Section 3.5.2, except that we replace the wage equation (3.37) assumed there,
and replace it with the wage equation (3.39). For simplicity, we limit attention to
the ẑt = 0 case. In Table 3.6 below, we consider various values of λ . Since λ is the
probability that a firm is unable to renegotiate its wages in a period, this parameter
determines the level of wage rigidity in the staggered bargaining model.

For each value of λ , the second column of the Table 3.6 shows the estimated NWE
obtained from simulating the model for 10,000 periods and performing an OLS
regression of the wage on the Nash wage in the simulated data, in accordance with
the first approach we used to estimate the Nash wage in Section 3.3. The remaining
columns of Table 3.6 mirror those Table 3.5: they show the relative volatility of
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unemployment implied by the staggered bargaining model, and then they show
the relative volatility predicted by the Fundamental Surplus formula, given the
estimated NWE in the second column.

GT originally calibrated λ at 0.88. As Table 3.6 shows, this is consistent with an
NWE of 0.03, which is rather lower than the majority of our empirical estimates.
On the other hand, if the model is recalibrated with λ = 0.66, the implied NWE is
slightly higher than the majority of our estimates. This suggests that the staggered
bargaining model is consistent with the level of wage rigidity we estimate, provided
that λ is calibrated at a somewhat lower level than assumed by GT.

The last two columns of Table 3.6 also reveal that the NWE implied by the staggered
bargaining model provides a useful guideline to the cyclical volatility of unem-
ployment in that model, using the Fundamental Surplus formula. Nevertheless,
the staggered bargaining model delivers a rather lower level of unemployment
volatility than one would expect given the Nash wage elasticity. This is because the
staggered bargaining model delivers a low NWE only in the short run (recall that
we estimated the NWE delivered by the model using hp-filtered simulated data).
In the long run, the staggered bargaining model implies that the wage should be
fully flexible. Consequently, firms may e.g. hire more in recessions than the low
NWE of the staggered bargaining model would suggest, because they anticipate
that while wages are sticky now, they will fall in future.

Table 3.6: NWE and Relative Unemployment Volatility under Staggered Bargaining

λ Estimated NWE Relative Volatility
of Unemployment

Volatility Implied
by FS formula

0.01 0.99 0.70 0.95
0.02 0.98 0.70 0.96
0.11 0.83 0.72 1.12
0.22 0.61 0.78 1.50
0.33 0.41 0.89 2.20
0.44 0.26 1.10 3.44
0.55 0.14 1.46 5.76
0.66 0.07 2.14 10.25
0.77 0.03 3.47 19.06
0.88 0.01 6.58 33.75
0.99 0.00 18.07 45.68
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3.5.4 Alternating Offer Bargaining

Following Hall and Milgrom (2008) and Christiano et al. (2016) we consider a wage
setting protocol in which wages are determined by an alternating offer bargaining
game. The details of the bargaining game follow Christiano et al. (2016) (henceforth
CET) exactly. We suppose that each period is divided into M = 60 sub-periods. At
the start of the first sub-period, the firm makes an initial wage offer to the worker,
which the worker can accept or reject. If the wage offer is rejected, play proceeds
to the next sub-period. In odd sub-periods, if the firm and worker have not yet
reached agreement, then the firm gets to make a wage offer to the worker, which the
worker can accept or reject. Every offer the firm makes costs the firm γ in processing
costs. In even sub-periods, if the firm and worker have not yet reached agreement,
then the worker makes an offer to the firm, which the firm can accept or reject.
If neither have reached agreement by the end of the last sub-period, the match
terminates. Additionally, each time an offer is rejected, bargaining breaks down
and the match is terminated with probability ς . In each sub-period in which the
two sides have not reached agreement, the worker does not produce the flow value
rk
t and does not get paid, but receives the flow value of unemployment zt .

CET show that the solution of the bargaining game is that the worker accepts the
firm’s offer in the first sub-period and the wage satisfies:

Jt = µ1(Wt −Ut)−µ2γt +µ3(rt − zt)

where µi =
αi+1
α1

and
α1 = 1− ς +(1− ς)M

α2 = 1− (1− ς)M

α3 = α2

(
1− ς

ς

)
−α1

α4 =

(
1− ς

2− ς

)
α2

M
+1−α2

where ς is the probability that bargaining breaks down each day.24.

Into this, we substitute the firm’s Bellman equation to eliminate rt , substitute that
Wt −Ut =

βt
1−βt

·Jt (where βt is the worker’s share of match surplus) to eliminate
Wt and Ut , and substitute the firm’s optimal hiring decision Jt = ht to eliminate

24Here, we have written CET’s result in terms of our own notation
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Jt . We obtain the following form of the alternating offer bargaining solution:

ht = µ1ht ·
βt

1−βt
−µ2γ +µ3(wt +ht −Et [mt+1(1− st+1)ht+1]− zt)

Log-linearizing this around the steady state and using equations (3.16) and (3.21),
we obtain:

ŵt =

(
µ1

µ1 +µ3

)
(ŵN

t − ŵA
t )+ ŵA

t −
(

µ3

µ1 +µ3

)
(1−δ )EtŵA

t+1 +

(
µ3

µ1 +µ3

)
(1−δ )Etŵt+1

(3.40)

where, ŵN
t is the Nash wage (deviation from the steady state) and ŵA

t is the deviation
of an alternative wage, given by:

ŵA
t =

(
h

µ3w

)[
1−µ3 −

β µ1

1−β

]
ĥt +

(1−ρ)(1− s)h
w

Et

[
(σct −σct+1)+ ĥt+1 −

sŝt+1

1− s

]
+

z
w

ẑt .

(3.41)

As with the staggered wage bargaining model above, we study the cyclical
properties of the business cycle model in Section 3.5.2, replacing the wage equation
there (equation (3.37)) with the wage setting equations (3.40) and (3.41). Again, we
fix ẑt = 0. The key parameter that determines the rigidity of wages under alternating
offer bargaining is the probability ς that bargaining breaks down. As we did for λ

with the staggered bargaining model, we vary the level of this parameter, estimate
the resulting NWE on model simulated data and compare the cyclical volatility
of unemployment with what would be implied by the model’s implied NWE and
the Fundamental Surplus formula. The results are in Table 3.7 below. We see that,
across parameter values, the alternating offer model delivers an NWE around 0.7,
significantly higher than almost all our estimates. The volatility of unemployment
predicted by the model is close to what one would expect from its NWE, based on
the fundamental surplus formula.
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Table 3.7: NWE and Relative Unemployment Volatility under Alternative Offer
Bargaining

ς Estimated NWE Relative Volatility
of Unemployment

Volatility Implied
by FS formula

0.000 0.69 0.84 1.34
0.002 0.70 0.87 1.32
0.003 0.71 0.89 1.30
0.005 0.72 0.90 1.29
0.006 0.72 0.91 1.28
0.008 0.73 0.92 1.27
0.009 0.73 0.93 1.26
0.011 0.74 0.93 1.26
0.012 0.74 0.94 1.25
0.014 0.74 0.94 1.25
0.015 0.75 0.95 1.25
0.017 0.75 0.95 1.24

It is surprising that the alternating offer bargaining model generates an NWE so
close to 1, given that a key purpose of the model was to generate wage rigidity.
Inspection of equation (3.40) and (3.41) indicates that a major reason for the
cyclicality of the wage under the alternating offer bargain is the cyclicality of hiring
costs. CET likewise note that the alternating offer bargain fits their macroeconomic
data far better with fixed rather than variable hiring costs. For this reason, we
also study the alternating offer bargaining model with primarily fixed hiring costs.
Specifically, we reduce κ1 from 0.43 to 1, and recalibrate κ0 to maintain the average
total hiring cost. Results of the simulations of this model are presented in Table
3.8 below. In this case, the results are very sensitive to ς , but with values of ς

close to zero, the model achieves an NWE close to 0.3 and correspondingly larger
unemployment fluctuations. Thus, our results support CET’s assertion that fixed
hiring costs help the model fit the data. This is still higher than many of our
estimates. As such, our estimates generally support a level of wage rigidity that is
as great or greater than implied by the alternating offer bargaining model.
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Table 3.8: NWE and Relative Unemployment Volatility under Alternative Offer
Bargaining
with Mostly Fixed Hiring Costs

ς Estimated NWE Relative Volatility
of Unemployment

Volatility Implied
by FS formula

0.000 0.33 3.33 3.99
0.002 0.42 2.71 3.19
0.003 0.50 2.36 2.75
0.005 0.56 2.14 2.48
0.006 0.61 1.99 2.30
0.008 0.64 1.87 2.16
0.009 0.68 1.79 2.06
0.011 0.71 1.72 1.98
0.012 0.73 1.67 1.92
0.014 0.75 1.63 1.87
0.015 0.77 1.60 1.83
0.017 0.78 1.57 1.80

3.6 Conclusion

In this paper, we develop a new measure of aggregate real wage rigidity, the Nash
wage elasticity. The NWE is simply the elasticity of the measured marginal cost of
labor with respect to the Nash wage, where the bargaining share is set to equal the
actual wage in a steady state. A completely rigid wage implies an NWE of 0, and if
wages were set by Nash bargaining then the NWE should in theory equal 1.

We build a broad modeling framework that encompasses a wide variety of cases
studied in the literature, and show that the framework delivers equations for the
worker share of match surplus and the Nash wage that can be calculated from
empirical data. When taking these equations to US data from 1979-2012, we find
that the worker share of match surplus is strongly countercyclical and that the
Nash wage is substantially more procyclical than the observed cost of labor. These
findings hold for a range of different measures of the cost of labor that range from
practically acyclical to strongly procyclical.

Across 180 regressions, which variously use different wage measures and use either
simple OLS or different instruments for the Nash Wage, we obtain estimates of the
Nash wage elasticity that are mainly between 0 and 0.1. We only obtain Nash wage
elasticity estimates above 0.65 for the most procylical series of the cost of labor (the
user cost from the NLSY) and, even with this series, only for specifications that
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assume a relatively high value of fixed hiring costs and/or the opportunity cost of
employment.

We investigate the business cycle implications of the our small estimated values for
the NWE. We find that a small NWE makes an enormous difference to fluctuations
in unemployment. We show that there is a tight link between the NWE and the
Fundamental Surplus of Ljungqvist and Sargent (2017), with smaller values of the
NWE greatly shrinking the Fundamental Surplus and increasing the volatility of
unemployment in SAM models with shocks to the marginal revenue product of
labor. In a simple SAM model with such shocks, an NWE of 0.1 yields fluctuations
in unemployment that are more than seven times as large as occur when the NWE
is 1. In this sense, the vast majority of cyclical movements in unemployment can be
attributed to the effects of wage rigidity.

Finally, we compare our estimated NWE with the implications of various non-Nash
models of wage setting. This includes constrained efficient wage setting, as in
many directed search models, and three models of sticky wages. We find that
our estimated NWE implies much more rigid wages than is consistent with the
constrained efficient wage model. Our NWE estimates do suggest wages may be
less rigid than assumed by Hall (2005) and Gertler and Trigari (2009), but more
rigid than assumed by Christiano et al. (2016).
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CAPPENDIX C

APPENDIX TO CHAPTER
3

C.1 Data Sources

Table C.1: Data Sources

Name Description Source ID Notes

u Unemployment Rate Fred UNRATE
ul Unemployment Level Fred UNEMPLOY
us Short tern unemployment Fred UEMPLT5 unemployed for less than 5 weeks
el Employment Level Fred CE16OV
c Personal Consumption Fred A794RX0Q048SBEA

labor Productivity BLS NFBUS
w NLSY New Hire Wage Basu and House (2016)
wCES Average Hourly Wage Fred AHETPI
wUL NLSY User Cost of labor Kudlyak (2014) reported in Basu and House (2016)
z Elasticity Chodorow-Reich and Karabarbounis (2016)
f Finding Rate Calculated Eq. (3.26)
s Separation rate Calculated Eq. (3.27)
v Vacancy rate Petrosky-Nadeau and Wasmer (2013)

Forecasting VAR

1-Year T-Rate Market Yield on U.S. Treasury Securities at 1-Year Constant Maturity Fred GS1
Real GDP Real Gross Domestic Product Fred GDPC1
GDP Deflator GDP Implicit Price Deflator Fred USAGDPDEFQISMEI

Shock Measures

MP Romer and Romer Narrative Series Romer and Romer (2004b) updated in Wieland and Yang (2020)
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4CHAPTER FOUR

THE ROLE OF INVESTOR
SENTIMENT IN

COMMODITY PRICE
BEHAVIOUR

Evidence via Time-Varying Causality Tests

Introduction

One of the key issues facing academic economists and investors is whether the
behaviour in the last fifteen years or so of commodity prices offers evidence that
the returns in this asset class may have been driven by speculation. Abnormal
behaviour of commodity contract futures arose during and in the immediate
aftermath of the Global Financial Crisis (‘GFC’) of 2007-08. The spectacular run-up
in many commodity prices and their sudden collapse prompted a wave of regulatory
actions and enhanced scrutiny towards ‘speculators’, defined as those myopic agents
motivated only by short term profits. These speculators are investment funds,
swap dealers and pension funds seeking a long-only exposure to commodities.
Throughout this paper I will refer to them as ‘index investors’ since they often
seek to replicate a commodity index through ‘exchange traded funds’ (ETFs) or
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over-the-counter (OTC) derivatives either by purchasing long futures and rolling
them over near maturity or entering into return swap contracts.1

A key distinguishing features of index investment is its long-only perspective and
its approach to commodity contracts for diversification. As a phenomenon, passive
index investment emerged before the GFC, when, observing that the price behaviour
in commodities is different from the asset prices in their portfolios, investors realized
they could treat futures contracts in commodities as assets, including them as part
of an improved, diversified portfolio. Such behaviour pertained to the futures
contract rather because the investors rarely, if ever, held the physical commodities:
investors would see contracts rolled over rather than mature into an obligation to
buy and store the commodity.

The volume of index investments in commodity future contracts increased dramati-
cally in the early 2000s and reached its zenith with the Great Financial Recession.
Whilst ETFs have been popular from the early ‘90s, commodity indexed funds
originated later, beginning from bullion market during its boom in the early 2000s,
and have later expanded to oil, energy markets and agricultural commodities.2 Oil
based index investment has been particularly successful since its inception, fuelled
by oil movements on the back of the Second Gulf War. Along with that surge in
passive investments, it developed also the knowledge that basket investment was
the main driver of the concomitant observed price increase in crude oil products
and energy, i.e. that the market of commodities was ‘financializing’. In my study
the historical aspect is important, as I introduce a time-varying test that needs
interpretation with the help of historical evidence.

The rift between speculators and commercial investor is captured by regulatory
efforts made to prevent and limit excessive speculation. Interestingly the CFTC
clearly distinguishes between index investors and hedgers (e.g. in setting contract
limits). Index investment is seen by policymakers as a way of investing in
commodities speculative in nature, whereas hedging is carried out for necessity
by commercial and noncommercial investors driven by fundamentals. Kang et al.

1The Commodity Futures Trading Commission (‘CFTC’) defines index investment as a ‘long-
side exposure to a broad index of commodity prices as an asset class. This trading is not based on a view
about current or expected individual commodity prices, as would be the case for most speculative trading’
(Commodity Futures Trading Commission, 2006).

2UBS sponsored ‘Street Track Gold Trust‘ (now SPDR Gold) is reported to be the first commodity-
based ETF (FT Article (a)) and in 2005 Oil Securities launched the first crude-only ETF (FT Article
(b))
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(2020) notes how this segmentation appears artificial given that that commercial
hedgers’ position may still have a ‘speculative’ component reflecting a view over
future prices, e.g. they may hold a long position in the expectation of a longer term
appreciation of the underlying commodity.

While market participants are aware that institutional investors, including hedge
funds and commodity index traders, play an important role in determining
commodity futures prices, it is not at all clear whether such activities lack a
fundamental basis in supply and demand, or whether they are simply part of
a mechanism whereby information on market fundamentals becomes incorporated
in competitively determined prices.

A debate has taken place along two axes: between practitioners and academics
and within the two groups. From the former group, debate was brought into
focus by Masters (2009, 2008) and Soros (2008) who argued that commodities were
becoming viewed by some as a distinct and mainstream asset class, leading to
market outcomes where speculative positions taken by an influx of new traders
into oil and other commodity futures markets became essential in explaining the
run-up in commodity future prices seen in the years prior to the GFC.

This process has been described as the ‘financialization’ of commodities markets
(Fattouh et al., 2013; Tang and Xiong, 2012; Irwin and Sanders, 2011). Financial-
ization means that the increased traded volume of commodity contracts results in
higher future prices. A fundamental contribution to the financialization literature is
Singleton (2014), who argues that index investment flows predict oil future prices.

The notion of financialization lies at the centre of an academic debate. The contro-
versy can be deconstructed in 3 arguments: 1) whether increased financialization
has been the major driver of commodity futures prices over the period since the
GFC; 2) whether it has created ‘excessive speculation’ manifesting itself as bubbles; 3)
and whether the large positions taken by such investors have led to self-fulfilling
movements in prices that are tantamount to ‘market manipulation’.

That the entrance of index investor in the commodity market has changed the
composition of such markets is undisputed, for example, Tang and Xiong (2012)
quote a CFTC staff report that estimated the total value of various commodity
index-related instruments purchased by institutional investors to have increased
from around USD 15 billion in 2003 to over USD 200 billion in mid-2008 and to over
USD 300 billion in 2011. The Bank of International Settlements (‘BIS’) estimates a
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volume of commodity forward and swaps derivatives outstanding in 1H-2008 at
USD 8 trillion (excluding gold and precious metals), an all-time high and significant
one-off deviation from the pre-2008 average of USD 1.3 trillion and post-2008 of
USD 1.7 trillion.3

The sheer increase in index investment volumes does not provide prima facie
evidence of a process of financialization and the high frequency nature of trading
data makes it difficult to establish a clear causal link based on a chronological
chain of events. The financialization hypothesis posits that index investors move
the market as to cause a demand-driven increase in prices. Lacking convincing
evidence, one could argue for an opposite causal relation: long-only investors
may have been attracted to commodity futures because of exogenous shifts in
fundamentals.

There is no academic consensus on whether financialization causes artificially high
commodity prices, in terms of bubble dynamics or other significant departures
from fundamentals, but empirical evidence is somewhat mixed. The most studied
commodity market is the crude oil one. In my opinion, the most influential paper
in this literature is Singleton (2014), who find evidence of one-directional causality
from index investment to crude oil prices. Offering a credible evidence-base,
Singleton’s paper was highly influential in the financialization debate that has, to
some extent, relied upon testimony and reports based only on descriptive statistics.

With this paper, I aim to revisit Singleton’s question by looking at a number of
commodities, not just crude oil. Another issue of concern comes from recent
developments in the econometric literature, where proper Granger causality testing
is seen to need to take account of the type of data that was observed during and in
the aftermath of the GFC. Extant causality testing methods based on stationarity or
unit-root non-stationarity do not account for the behaviour in commodities over
the sample period of interest, especially the run-up and abrupt collapse seen in
commodities around 2008.

Accordingly, I will use a new methodology in causality testing, performing the
time-varying Granger causality test introduced by Shi et al. (2018, 2020). This test
builds upon the recently proposed PSY test based on Phillips et al. (2015a) and
uses a recursive-evolving algorithm. My starting point is a recent paper by Gilbert
(2018) who used a battery of static Granger causality tests to assess unidirectional

3BIS OTC Derivatives Outstanding Table D5.2
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causality from two index investment proxies to twelve future contracts in non-
ferrous metals, energy and agriculture commodities. I start with a replication of
Gilbert’s results, broadly confirming them while, at the same time, correcting a
small but fundamental calculation error in creating the proxies. Using the more
powerful and robust PSY testing strategy, I then apply a similar testing methodology
to a number of commodities.

The results herein improve upon results in the literature: firstly, the time-varying
aspect of the Shi et al. (2018). test reduces the risk in the application of static Granger
causality tests of the atypical data around the GFC contaminating the results based
on the whole sample. Secondly, the robustness of this test allows the results to be
taken at face value. Contrasting the results with the results of the static test provides
practitioners with an indication of the (lack of) efficacy of the static test.

The paper offers three main contributions. Evidence is provided to show that the
results of Singleton (2014) are essentially due to the atypicality of the data on crude
oil around the GFC, not financialization. In short, the abrupt behaviour of the
data around then overwhelms the static Granger causality test based on the whole
sample. Secondly, I show that the behaviour of some commodity futures prices
does seem to provide limited evidence for financialization. The results therefore
corroborate the results found by Gilbert (2018) using a different model; while
milder, they still offer some meaningful refinement to mainstream results in the
financialization literature. Thirdly, my work illustrates why commodity traders
and practitioners should now be using the new, robust Shi et al. (2018) test when
conducting Granger causality analyses.

4.1 Does Index Investment Impact Future Prices?

In this Chapter I ask whether the volume of index investment bears an impact on
commodity future prices. There is no consensus on this research question even
though historically high commodity prices have been moving in tandem with index
investment. In this section I explore the most relevant studies that have rigorously
endeavoured in tackling the question at hand with causal inference.

A key reference in this literature is Singleton (2014), which was the first paper
to provide a credible evidence-based approach to the financialization debate.
Singleton (2014) stands in stark contrast with the early discussion around excessive
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speculation that have motivated financial legislation.

Causality from index investment to bubble dynamics is taken for granted and
stated outright in CFTC briefings and documentations without being underpinned
by formal statistical interpretation and reasoning. This rhetoric, according to
which nefarious and predatory speculation artificially inflated commodity prices
in a bubble-like fashion, stems from the observed disastrous consequences of the
financial crisis for the global economy and became dominant in the policy-making
discussion. The policy debate is an interpretation around the phases of expansion
and collapse of commodity prices pre and post GFC.

Hedge-fund manager Micheal W. Masters was amongst the first practitioners to
voice a strong view regarding the causal relation linking long-only investments
to future prices, contributing to its crystallisation in the regulatory consensus. In
his hearings before the CFTC and the Commission on Homeland Security and
Governmental Affairs, (Masters, 2009, 2008) he condemned index investors as the
culprits of 2008 boom-bust.4 The core of Master’s argument is that the sheer weight
of index investors’ on future contracts demand caused a displacement in the future
market, with an increase in prices well above fundamentals and solely motivated
on irrational expectations. But again, this argument is made informally in a series
of testimony given to governmental bodies.

Whilst regulators and market practitioners accept as a datum that the increase in
volume in index investment resulted in artificially higher prices, academics are
divided on whether this is (and was) indeed the case. An alternative explanation of
wild commodity price movements might pertain to shifts to market fundamentals,
which might have underpinned speculators and hedgers trades alike. Hence, the
current literature developed around Singleton (2014) and in relation to it. I note
how financial practitioners, on the other hand, have responded more to the Masters’
arguments.

Academics are perhaps reluctant in embracing the view that index investment a
cause of future prices as it contradicts the Efficient Market Hypothesis (EMH) that
asset prices incorporate already all information available, as famously elaborated in
Fama (1970). The latter explanation is more benign than the former and does not
question the allocative efficiency of markets. But bubbles themselves are evidence of
departures from the EMH, and there is a thriving literature on explosive behaviour

4For a detailed overview of this debate see Irwin and Sanders (2011)
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of commodity prices.

Fanelli (2015) reviews a range of cases where the Efficient Market Hypothesis does
not hold with respect of commodity prices and longer-run cointegration relations
appear in certain commodity contracts.

Gilbert (2010b) contributed to establish the Granger-causality testing methodology
applied to autoregressive-lag models in the index investment literature. He finds
evidence of speculative bubbles in non-ferrous metals and energy prices. Gilbert
and Pfuderer (2014a), however, find negative results from index investment to food
prices through a conventional Granger-test. Gilbert (2010a); Gilbert and Pfuderer
(2014b) notes that even if the EMH holds, there could be a higher-frequency (almost
contemporaneous) interaction between index-investment and commodity prices,
which is not necessarily apparent at longer lags (e.g. weekly).

The bulk of academic consensus have rejected the financialization hypothesis
but with an important caveat: the GFC represented an anomaly during which
commodity future prices and index investment displayed a heightened degree of
correlation and predictability. Even if they end up rejecting a whole-sample causality
linking index investment to commodity prices, many of the papers reviewed in this
section find some evidence of non-linear and time varying relation. In particular,
they acknowledge that the GFC may have represented a one-off anomaly that
temporarily broke down the proper market functioning. For instance, Irwin and
Sanders (2011) comment on a Gilbert (2010b) paper stating that identified bubble
days are all around the GFC.

An early proponent of financialization evidence in commodity market is Phillips
and Yu (2011), who show a statistically significant bubble migration from house
prices to commodity prices between the bust of the housing bubble in December
2007 and the onset of the GFC in September 2008. They do not find evidence of
bubbles in agricultural commodities within the same time frame. Phillips and
Yu (2011) take on bubble migration is similar to the point of view expressed by
Soros (2008), in stating that further to the subprime crisis, speculative flows have
flown from the housing market to commodities, where perceived risk was low
and expected returns high. Phillips and Yu (2011) paper, however, does not offer a
causal view, but is rather concerned with identifying behavioural linkages behind
bubble origination and migration.

In a series of papers, Irwin and Sanders; Irwin tackle directly the Master’s argument
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against index investment. Irwin and Sanders (2011) review much of the literature on
index investment-commodity prices causality pointing out logical inconsistencies in
the Master’s hypothesis as well as statistical shortcomings with quantitative papers
testing causality. In essence, they find the Master’s hypothesis not convincing.

Similarly, Chari and Christiano (2019) reject that financialization has an impact
on spot prices. At the same time they refute the CFTC consensus on specula-
tors/hedgers, showing in a structural model that hedgers and other players trade
to insure each other against demand shocks. Basak and Pavlova (2016) build a
structural model for index investing and find that this type of investing is associated
with higher future prices. Hence, the fragmentation of the literature in regards to
financialization is even more apparent as there is little consensus on the stylised
facts a structural model should be able to explain.

A fundamental paper in this literature is Singleton (2014), who finds a strong and
significant relation between index investment and excess returns on the crude oil
future. This finding is consistent with a theoretical model where heterogeneous
agents disagree on economic fundamentals generating bubble inflation/bust.

Hamilton and Wu (2015) regression analysis using CFTC data does not find evidence
of financialization outside the GFC, when there was a heightened correlation
between index investment and future prices.

Fattouh et al. (2013) break down the Masters hypothesis arguing that the question
at hand is much more suited for a structural model rather than a qualitative exercise
as the one put forward by Masters. They also do not find Singleton (2014) results
conclusive in any way, as the co-movement of index-investment and future prices
does not imply causality even if index-investment moves ahead of prices.

Sanders and Irwin (2011) reject the null hypothesis of Granger-causality in U.S.
grains futures (corn, soybeans, CBOT and KCBT wheat) using an autoregressive-
distributed lag model (‘ADL’). On the same set of commodities and with an
instrumental ADL model, Gilbert and Pfuderer (2014a) detect Granger-causality in
the same grains and oilseeds complex.

Another strand of literature is concerned with commodity risk premiums: Hamilton
and Wu (2014) note how the oil futures risk premium has decreased with time,
probably reflecting the rise in index investors’ share.

Whilst Hamilton and Wu tackle financialization and risk premiums change as two
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separate research questions, others have studied the issue of financialization as a fact
that affects risk premiums. Cortazar et al. (2021) take index-bundled commodities
as a standalone asset class and state a factor model to compute their risk premium
on an indexed basis.

Adams and Glück (2015) highlight a ‘style effect’ of portfolio management. The
fact that during and in the immediate aftermath of the GFC commodity futures
have established themselves as an asset class for long-only investors represents a
structural break and a permanent departure from the earlier status quo. I note how
the concept of ‘risk spillovers’ mentioned in Adams and Glück (2015) resembles
the notion of ‘bubble migration’ of Phillips et al. (2015a), i.e. in 2008 commodities
attracted investors fleeing from other asset classes and this inflow made commodity
returns more volatile. This phenomenon extended past the crisis as commodities
became more correlated to the stock market as institutional investors included them
in their portfolio construction and rebalancing.

My research question relates to the work of Peter C. B. Phillips, as I use a very
recent statistical methodology that he developed with other co-authors with the
aim of uncovering causal relations and their changing points. In a similar research
strand, Phillips et al. (2015a,b) devised another testing strategy for the real time
detection of asset bubbles based on recursive computations of the Augmented
Dickey-Fuller Test, developing on an earlier article (Phillips and Yu, 2011). In a
host of papers, (Figuerola-Ferretti et al., 2015; Figuerola-Ferretti and McCrorie, 2016;
Figuerola-Ferretti et al., 2020) apply this novel test to most traded commodities:
oil, precious metals and non-ferrous metals. Although they are concerned with
bubble behaviour, their work uncover some evidence circa investor exuberance
on commodities as an individual asset class. They find that precious metals
sporadically displayed the hallmarks of speculative bubbles, but when they did,
it was around the launch of certain specific ETF for silver and palladium. For
non-ferrous metals, the authors paint a more nuanced picture: they find mild
explosivity in copper, nickel, lead, tin and zinc, all commodity contracts analysed
but aluminium. The departure from fundamental value of non-ferrous metals
may be explained by the availability of their supply, which is driven by mining
and industrial processes and therefore cannot easily adjust to periods of increased
demand. This demand-supply interaction can give the rise to bubble dynamics, as
opposed to energy and other commodities.
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4.2 Global Shocks and Commodity Price Cycles

The starting point for my analysis is naturally the Gilbert’s dataset, which is
comprehensive of the weekly returns of twelve commodity future contracts and two
index investment proxies. Gilbert’s sample goes from 11 April 2006 to 27 December
2016, so I retain this original sample for the sake of replicating Gilbert’s analysis but
my first extension of his work is along the time dimension, as I update the series to
reach December 2020.

The first thing I notice in the data is the presence of several distinct commodity
price crashes that highlight the presence of short-lived commodity cycles within the
10 years sample. There is a vast literature about commodity prices swings based
on trend-cycle decomposition techniques. Extremely low-frequency movements
in commodity prices are evidence of a ‘super-cycle’ that spans decades from peak
to trough and is a fundamental driving factor for the individual commodities.
Fernandez et al. (2020) estimate that the current super-cycle had peaked around the
financial crisis and, similarly, Reinhart et al. (2016) concludes that the most recent
non-oil super-cycle peaked in 2011 and had yet to bottom out when the paper was
written. Hence my analysis will partly cover the current super-cycle, starting four
years before its peak and covering the entirety of its decline. This includes the
aftermath of the GCF and the beginning of the Covid-Crisis. Although daily data
are available up to present day, I decide to cut my sample in December 2020, to
exclude recent shocks in commodity prices that might be still ongoing.5

I retain a focus on a much shorter time period than several decades, therefore
I am much more concerned with higher-frequency episodes in the commodity
market, which directly affect my analysis.6 The onset of the GFC in September 2008
represents the peak of both the index investment proxy and most of the commodity
price in analysis and marks the start of a period of heightened correlation between
index investment and commodity prices (see Fig. 4.3). This empirical fact is also
the motivation for this paper.

Fernandez et al. (2020); Reinhart et al. (2016) are also investigating the linkages from
a commodity super-cycle to the macroeconomy, with a particular concern towards
emerging economies. Smaller markets tend to be more reliant on fewer export

5Notably the US presidential election in November 2020 and all the inflation expectations that
were created around then, the unfolding of the Covid-Crisis and, more recently, the War on Ukraine.

6Sadly the starting point for my empirical analysis is dictated by the availability of index
investment data, from 2006
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products and therefore their economy rests more exposed to boom-bust dynamics
that in turn has the potential of spilling over to exchange rate and currency Végh
(2013).

For that reason, also macro- investors and multilateral development institutions
closely follow commodity prices and have developed their own indexes. I report
the major four indexes in Fig. 4.1. These are namely: the S&P GSCI Index, the
Bloomberg Commodity Index, IMF All Commodities and World Bank Energy and
Non-Energy.

S&P GSCI is the most popular commodity index and often taken as a benchmark
by index investors, so its analysis is relevant to this paper as index investor take
long position on synthetic products replicating the GSCI.7

The composition (and shape in the chart below) of S&P GSCI indicator reflects the
higher weighting of crude oil products, whereas the Bloomberg Commodity index
shows a more persistent decline after the GFC since it has a bigger share of grains
and the distribution across energy commodities is flatter.

In general, commodity prices dropped in several other instances besides the GFC,
albeit by never as much as during the financial crisis. If I pick the days in which the
S&P GSCI Index dropped by more than 6%, I can distinguish few other commodity
crashes that are significant for my analysis (see Fig. 4.1).

The bulk of days in which S&P lost more than 6% is clustered around the GFC:
between October 2008 and February 2009. In May 2011 commodity index reached its
highest level before dropping on the back of political unrest in Libya and concerns
for a contagion effect to the Middle East. November 2014: China GDP Deceleration;
The last big commodity prices drop in my sample coincides with the World Health
Organisation declaring a Pandemic in March 2020.

7Another complication for index investment analysis stems from the way these baskets are rolled
forward when the underlying commodity contracts are near expiration. Hamilton and Wu (2015)
specifically test causality in the roll window.
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Figure 4.1: Commodity Price Indexes.

Vertical red lines represent days in which the S&P GSCI Index lost more than 6%.
All the indexes attribute a higher weighting to energy commodities.

4.3 The Data

4.3.1 Commodity Contract Prices

The present work builds on Gilbert (2018) analysis of Granger causality from index
investment proxies to prices of twelve future contracts. These commodities are: soft
wheat, corn, soybeans and soybean oil, aluminium, copper, lead, nickel and zinc,
ICE Brent and West Texas Intermediate (WTI) crude oil and natural gas.

The only difference between my analysis and that of Gilbert is that I source the
data from Datastream, which reports CBOT prices at settlement time rather than at
closing.8 This decision helps me dodge issues related to rolling (which I touched
on briefly in footnote 7). Datastream series are available in form of a continuous
time series splicing together distinct future contracts. This necessity arises as future
contracts have maturity dates and one has to switch from the expiring contract to
the nearest.9

In my statistical analysis I use log-returns of weekly commodity prices to assess
8This makes a minimal difference for the statistical analysis.
9London Metal Exchange Contracts use a different averaging method, to which I am neutral as

the continuous series is available in Datastream.
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their percentage change. Although daily settlement data are available, the weekly
frequency is required in order to have data at the same frequency as the index
investment proxy.

I present summary descriptive statistics in Table 4.2. Returns have naturally 0 mean.
Most volatile commodities are NYM WTI and Natural Gas. When the whole sample
is considered, natural gas becomes the most volatile commodity. The series have all
positive kurtosis, resulting in heavy tails and a degree of skew. In the full sample
these results appear exacerbated: the empirical distributions have more skew and
are more platykurtic. I tabulate histograms and (Fig. D.3) QQ plots for the log
returns (Fig. D.2) finding strong visual indication of non-normality.

Hence, I carry out some additional tests to verify whether the commodity prices
are normally distributed: the Jarque-Bera and Kolmogorov-Smirnov. To these two
tests I append a Ljung-Box test for serial autocorrelation. In all instances I reject the
null hypothesis of non-normality, furthermore, Soybeans Oil, Copper and ICE Brent
and NYM WTI are autocorrelated. The autocorrelation result is stronger across the
whole sample than between 2006 and 2016.

Table 4.1: Normality and Autocorrelation Hypothesis Testing

Test Null Hypothesis Alternative Hypothesis

Jarque-Bera Data are Normally Distributed Data are not Normally Distributed
KSS Data are Normally Distributed Data are not Normally Distributed
Ljung-Box Data are Not Autocorrelated Data are Autocorrelated

These features of financial return series are in accordance with the wider literature
on market prices. The fact that returns are not normally distributed was reported in
Mandelbrot (1963, 1972, 1967).10

10The cited studies are concerned with commodities: Mandelbrot (1963) uses the daily spot
prices of cotton as primary example, citing how his results extend to wheat and other edible grain.
Mandelbrot (1967) extends the analysis to what and railroad stocks.
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Table 4.2: Descriptive Statistics and Normality Tests

Aluminium Copper Lead Nickel Zinc ICE Brent NYM WTI Natural Gas Wheat Corn Soybeans Soybeans Oil

Descriptive Statistics (March 2006- December 2016)

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Standard Dev. 0.03 0.04 0.05 0.05 0.04 0.05 0.06 0.05 0.05 0.05 0.04 0.03
Skewness 0.02 -0.33 -0.09 -0.06 -0.39 0.06 -0.15 0.50 0.21 -0.13 -0.51 0.09
Kurtosis 4.14 5.04 5.00 4.59 4.71 5.09 4.94 4.51 3.91 5.02 4.22 3.92
Maximum 0.12 0.15 0.21 0.21 0.14 0.23 0.22 0.30 0.18 0.18 0.10 0.15
Minimum -0.12 -0.17 -0.18 -0.19 -0.19 -0.17 -0.25 -0.18 -0.18 -0.21 -0.15 -0.12

Descriptive Statistics (March 2006 - December 2020)

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Standard Dev. 0.03 0.03 0.05 0.05 0.04 0.05 0.06 0.07 0.05 0.04 0.03 0.03
Skewness 0.09 -0.38 -0.07 -0.06 -0.38 -0.22 0.55 0.42 0.33 -0.13 -0.45 0.09
Kurtosis 4.45 5.50 5.65 4.85 4.89 16.54 32.76 5.13 4.29 5.51 4.52 4.13
Maximum 0.12 0.15 0.21 0.21 0.14 0.41 0.69 0.33 0.20 0.18 0.11 0.15
Minimum -0.12 -0.17 -0.18 -0.19 -0.19 -0.43 -0.55 -0.25 -0.18 -0.21 -0.15 -0.12
Normality Tests

Normality Tests (March 2006 - December 2016)

Jarque-Bera Test
Statistic 30.490 107.375 94.564 59.107 82.503 102.226 90.113 76.813 23.626 96.503 59.434 20.331
P-value <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001***
KSS Test
Statistic 0.464 0.457 0.444 0.441 0.451 0.447 0.439 0.434 0.447 0.443 0.459 0.460
P-value <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001***
Ljung-Box Test
Statistic 28.716 29.764 12.622 14.840 17.298 28.144 31.662 15.177 17.431 20.237 20.451 33.258
P-value 0.093* 0.073* 0.893 0.785 0.634 0.106 0.047** 0.766 0.625 0.443 0.430 0.031**

Normality Tests (March 2006 - December 2020)

Jarque-Bera Test
Statistic 68.92 218.66 226.29 110.00 132.91 5889.25 28459.94 168.65 67.61 203.49 99.83 41.64
P-value <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001***
KSS Test
Statistic 0.463 0.459 0.449 0.443 0.453 0.446 0.440 0.431 0.449 0.447 0.461 0.463
P-value <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001***
Ljung-Box Test
Statistic 28.18 33.77 14.07 21.01 19.75 38.24 35.85 22.20 24.66 23.42 22.37 36.23
P-value 0.105 0.027** 0.827 0.397 0.474 0.008*** 0.016** 0.330 0.215 0.269 0.321 0.014**
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4.3.2 The Index Investment Proxy

Starting from January 2007, the CFTC started to un-bundle index investment
positions from commercial and noncommercial ones in the framework of a wider
review of its published reports (Commodity Futures Trading Commission, 2006).
Information on index investment integrated the already existing weekly report
called ‘Commitment of Traders’ (COT), 11, which states the aggregate trading
positions of traders across selected commodity contracts. The noncommercial index
traders are managed funds, pension funds and other institutional investors and
commercial ones OTC hedgers (Commodity Futures Trading Commission, 2006).

The Supplemental Commitment of Traders (‘SCOT’) lists the open-interest positions
of index traders in the twelve future contracts that the CFTC deems particularly
impacted by index investments (i.e. that are frequently included in benchmark
indexes).12 SCOT headline series is available weekly, it’s published on Friday
with data updated as at the Tuesday prior and discloses open interest positions of
commercial, noncommercial and index traders.13 The drawback of the SCOT data
is that they are only available for selected agricultural commodities.

A second data series on index investors is the Special Call, so called because it
aggregates all index positions of investors who have received a ‘special call’ from
the CFTC’s Division of Market Oversight.14

The Special Call reports also the dollar value of open index investment interest
positions besides the equivalent number of future contracts and is not only limited
to agricultural commodities. Hence, the Special call is more detailed than the
SCOT as the classification of index investment activity is made at the reporting
entities level. The trade-off is that the Special Call was initially published quarterly
(between September 2009 and June 2009) and then it became monthly. Since it was
time-consuming for the CFTC to gather and publish these data, its publication was
stopped in October 2015 also as a consequence of the reduced interest of market
participants after the GFC.15

11The CFTC publishes COT reports since 1962
12Other than in Gilbert, CFTC index data have been used widely in the literature (inter alia by

Sanders and Irwin (2011); Hamilton and Wu (2015); Kang et al. (2020)), surprisingly, Shahzad et al.
(2021) the paper most similar to ours in the econometric analysis, does not use CFTC data to inform
their time-varying Granger Test.

13Link: (Commitment of Traders)
14The CFTC issued 43 special calls to commodity index funds and swap dealers. (CFTC

Explanatory Notes)
15CFTC Press Release 7282-15
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In his econometric analysis, Gilbert (2018) uses the dis-aggregated data on index
investment as proxies for overall index activity. These are proxies because they do
not provide a complete figure of all index investment but rather the best effort of
the Regulator to distinguish index investors from other players. The key limitation
of the SCOT is that trading positions are classified in accordance to what is the
predominant activity of the reporting entity. The Special Call reports are provided by
the entities specifically prompted to provide these figures, and hence may exclude
other important parties.

To uncover the portion of index investment carried out through OTC swap
agreements, the CFTC issued a ‘Special Call’ to index funds and swap dealers
known to engage in index investment. These investors are required to disclose the
notional value of their index investment positions and equivalent number of future
contracts.

Gilbert uses the SCOT data to derive his proxies for index investment in the
following fashion: first, he retains four individual SCOT series for the respective
agricultural contracts listed above, secondly he aggregates the SCOT across all
commodities to have an aggregate measure of index investment. In both cases,
prices are kept constant as at the first Special Call observation, making the
investment proxies Laspeyres indexes. I follow exactly his aggregation method.

Indext =
12

∑
j=12

x j,t p j (4.1)

Where the index investment proxy in time t is the sum across the twelve commodity
contracts of the number of contracts x times their price p as at December 2007 relative
to CBOT wheat. Commodity future prices and the SCOT proxy are plotted in Figure
4.3. I note that implementing this indexing methodology, I correct a small but
fundamental error in the Special Call reported by Gilbert (2018). Whilst intending
to do as stated above, he applied to commodity contracts the price-weights offset
by one position, resulting in erroneous weights for all commodity and in particular
0 weights for WTI oil and natural gas, thus severely underestimating the impact of
index investment in the energy sector.
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Figure 4.2: Commodity Prices (blue line - LHS) plotted Against the Index Investment
Proxy (red line - RHS)

Figure 4.3: Commodity Prices (blue line - LHS) plotted Against the Special Call
Investment Proxy (red line - RHS)

4.4 Replication of Gilbert (2018)

The first step that I take towards a more robust modelling of time-varying causality
is the replication of Gilbert (2018). Re-appraising Gilbert’s results offer a natural
starting point for this Chapter as I can point out strengths and weaknesses of his
approach and compare his findings from a standard Granger test against a PSY test.
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As in Gilbert (2018), I perform a static conventional Granger causality based
on the F-test using an Autoregressive Distributed Lag (ADL) Model for the
twelve commodity contracts. This type of testing strategy is common in the
literature. Gilbert’s ADL takes the form of the following linear regression for
the j-th commodity contract:

∆ln(Price j) = µ +
p

∑
i=1

α j,i∆ln(Price j,t−1)+
p

∑
i=1

β j,i∆ln(Index j,t−1)+ εt

(Unrestricted Model)

Where p is the maximum lag order. Index is the selected proxy for Index Investment.
A contract specific proxy is only available for Agricultural commodities. In this
context, the Granger causality test is an F-test that compares that model with its
restricted version, where β j = 0.

∆ln(Price j) = µ +
p

∑
i=1

α j,i∆ln(Price j,t−1)+ εt (Restricted Model)

And the F-Stat is:

F-Stat =
(RSSrestricted −RSSunrestricted)/p

RSSunrestricted/(T −2p−1)
(4.2)

Where RSS is the Residuals Sum of Squares. Whole sample Granger test results
reported in Gilbert (2018) are below successfully replicated (See Table 4.3). I also
fail to reject the null of no Granger causality for Aluminium, Copper, Nickel, Zinc,
ICE Brent, Corn and Soybeans Oil.

Table 4.3: Replication of Gilbert Tables 1,2,3.

F-statistic based Granger Causality Test. Same ballpark results but slightly different
since I use a different dataset of prices at settlement instead that at closing.

Aluminium Copper Lead Nickel Zinc ICE Brent NYM WTI Natural Gas Wheat Corn Soybeans Soybeans Oil

SCOT
F-Stat 3.874 4.120 1.940 2.989 3.356 3.794 1.448 0.0458 0.365 3.015 1.449 7.739
P-Value 0.002*** 0.006*** 0.164 0.051* 0.067* 0.0519** 0.236 0.830 0.546 0.0295** 0.229 0.000***
DoF Nominator 5 3 1 2 1 1 2 1 1 3 1 2
DoF Denominator 549 553 557 555 557 557 555 557 557 553 557 555
Special Call
Fstat 9.252 1.079 1.665 4.517 11.28 2.281 4.63 1.31 0.634 0.886 2.159 0.892
P-Value 0.003*** 0.392 0.094* 0.036** 0.001*** 0.019** 0.034** 0.251 0.533 0.349 0.099* 0.545
Dof Nominator 1 12 12 1 1 11 1 8 2 1 3 10
Dof Denominator 90 68 68 90 90 70 90 76 88 90 86 72
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I arrive at the same results as Gilbert, finding Granger Causality from index-
investment proxies to Aluminium, Copper, Lead, Nickel, Zinc and ICE Brent and
NYM WTI for the period comprised between 2006 and 2016. There is Granger-
causality from the SCOT proxy to Corn and Soybeans Oil, and weak causality from
the Special Call to Soybeans. I note that the way non-ferrous metals respond to
investment proxies is consistent with Figuerola-Ferretti and McCrorie (2016), i.e.
hard constraint in metals mining and production result in more volatile prices when
the demand picks up.

I find a number of issues with this approach i) Gilbert (2018) did not use any
diagnostic for residuals autocorrelation, and I know from the previous section that
log-returns in commodity prices display strong indications of non-normality. ii) I
correct a typo in Gilbert’s calculation of the Special Call, which resulted in a wrong
index proxy severely underestimating the impact of energy prices on the overall
series. This means that my Special Call results are novel in the literature and I
draw comfort from the fact that they confirm and are consistent with the SCOT
results. iii) I aggregate the Special call at his lower frequency (monthly) rather than
interpolating it as in Gilbert (2018) and and (iv) It has to be recognized that the
test statistic involved in applying a Granger causality test to the ADL model has
different statistical properties to a test statistic based on an autoregressive model,
owing to the presence of the lagged dependent variable. Nevertheless, as I now
show, when I apply the same analysis to a VAR model, Gilbert’s essential results
carry over.

4.5 Time Varying Granger Causality Test

In this section I use similar data as Gilbert to gauge the efficacy of standard Granger
causality testing when the data behave in ways such as seen around the GFC and
using the recently proposed PSY causality test to examine the extent to which
Gilbert’s conclusions still hold. To do so, I have i) to recast the time-series model
into a vector autoregression; ii) perform an array of evolving-recursive calculations
to detect when the causal relation becomes significant.

I offer a novel contribution expanding on the Gilbert (2018) analysis on two
dimensions: one is to support the argument that the results based on the time-
varying test are the ones that should be taken at face-value. Based on this
new econometric evidence, I reinterpret known views and perspectives in the
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financialization debate. The second contribution is the argument that the PSY test
should be preferred to the standard Granger test for statistical reasons. This Chapter
shows how the results from the two styles of testing are different and how the PSY
test is more insightful for the practitioner.

I use the PSY test intended as the recursive evolving econometric procedure applied
to Granger causality testing in Shi et al. (2018). The PSY test is a computation
intensive strategy, according to which a standard test is performed within a double
recursion in order to detect changes to the causal structure of the data and find in
real time the changing points of the causal relation. This test is explicitly designed
for data with discontinuities such as the ones seen around the GFC. For a standard
Granger test, structural breaks result in a loss of statistical power, whereas in
the PSY style of tests, the robustness is drawn from its recursive nature and data
discontinuities help detecting the changing points in causality.

The choice to use a VAR model is because VAR model behaviour under non-
stationarity and non-normality is well known in the context of causality testing and
I am therefore able to mitigate data characteristics that will make the estimation
and inference not robust. Specifically, in the case at hand data are stationary but
non-normal and I can take advantage on a heteroscedastic consistent version of the
Wald test.

4.5.1 The VAR Model

I extend the Gilbert framework by using the PSY algorithm for change detection in
causality relations. The PSY algorithm uses a reduced form vector autoregressive
model (VAR). In practice, I pair the SCOT index with each individual commodity
indexed by i and I test causality from the SCOT and Special Call index investment
proxies to the selected commodity log-return. Hence yt = [Proxy,Pricei]

′. The VAR
model has the conventional textbook representation:16

yi,t = c+
p

∑
j=1

Ai,pyi,t− j +ui,t (4.3)

The key difference from the ADL model is that now the index investment proxies
are endogenous and respond to commodity prices. A first issue is to select the

16For an exhaustive reference: Lütkepohl (2005).
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right lag order. Bayesian Information Criterion (BIC) is the most parsimonious yet
consistent selection criterion and it would suggest adding just 1 lag across all the
contracts. When minimizing the selection criterion, I follow Ng and Perron (2005)
and I keep the sample size constant.

I noted in the previous section how the log-return data display strong evidence
of non-normality and their empirical distribution resembles more a Student t.
Heteroscedasticity is however a well-known feature of financial series and it does
not pose a problem for the Granger test since Shi et al. (2018) have devised a
heteroscedastic-consistent Granger test based on limit theory.17

4.5.2 Granger Test

In a twin set of papers Shi et al. (2018, 2020) lay the theory for using both a standard
and a heteroscedastic-consistent Wald statistic based Granger-test in an evolving-
recursive fashion to derive a time series of Supremum Norm Wald statistics. PSY
heteroscedastic-consistent Granger test takes the following form:

W = Tw[R vec(Â)]′[R((V−1
Ω̂V−1)R′)]−1[R vec(Â)] (4.4)

Where V = Q̂⊗ In and Q̂ = 1
Tw

∑
T f2
t=T f1

xtx′t ,and Ω̂ = ∑
T f2
t=T f1

ξ̂t ξ̂
′
t with ξ̂ = xt ⊗ ût .

Â represent the coefficient matrix; X is the matrix of lagged y and R is a [n×(k2 p+k)]

selection matrix that selects the zero constraints, where p are the lags, k the VAR
dimension and n the number of restrictions to be tested.

I use 4.4 to test for Granger Causality across two sub-samples (2006-2016 and 2006-
2020) and using the Special Call, the SCOT and the Commodity-Specific SCOT. The
VAR based heteroscedastic Granger test yields similar results as the ADL model
(see Table 4.3). With the SCOT, I find evidence of a Granger-causal relation again in
Aluminum, Copper, Zinc and Soybeans Oil, so in fewer commodities as before (I
cannot reject the null for ICE Brent and Corn). Using the Special Call I find stronger
evidence of a causal relation for all non-ferrous metals and weak significance in
NYM WTI. I find that I cannot reject the null for any of the agricultural commodities.

17As the alternative for a plain Wald test as in Lütkepohl (2005)
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Table 4.4: Heteroscedastic VAR Granger Test

Aluminium Copper Lead Nickel Zinc ICE Brent NYM WTI Natural Gas Wheat Corn Soybeans Soybeans Oil

SCOT Index to Commodity Prices (2006 - 2016)
χ2 5.77 10.15 1.72 2.12 2.89 2.03 0.60 0.048 0.32 1.25 1.30 7.19
P-Value 0.016** 0.00*** 0.19 0.14 0.09* 0.15 0.43 0.82 0.56 0.26 0.25 0.00***

SCOT Index to Commodity Prices (2006 - 2020)
χ2 6.98 12.86 1.75 1.49 3.23 3.97 2.07 0.015 0.19 0.52 0.61 3.54
P-Value 0.00*** 0.00*** 0.18 0.28 0.07* 0.04** 0.15 0.90 0.65 0.46 0.43 0.06*

Special Call Index Proxy to Commodity Prices
χ2 6.86 10.01 10.63 3.49 6.73 7.14 3.03 0.246 0.223 0.67 1.123 1.99
P-Value 0.00*** 0.00*** 0.06* 0.09* 0.01** 0.00*** 0.08* 0.619 0.632 0.412 0.268 0.157

Commodity Specific Index Proxy to Commodity Prices (2006 - 2016)
χ2 2.143 2.308 0.106 2.839
P-Value 0.143 0.129 0.745 0.09*

Commodity Specific Index Proxy to Commodity Prices (2006 - 2020)
χ2 4.61 0.78 0.01 2.31
P-Value 0.03** 0.37 0.91 0.12

DoF 1 1 1 1 1 1 1 1 1 1 1 1

4.5.3 Time Varying Results

4.5.3.1 Time-Varying Granger Test: the PSY Algorithm

Given a fractional minimum regression sample of f0 observations, the algorithms is
initialised at time f1, when a first regression is estimated on a sample of length f0T

that goes from 1 to f2. After this first step I save and store the associated Suptemum
norm Wald statistics. With the evolving step the starting point of the algorithm
is shifted one period forward at f2 +1, then the recursion takes place as now two
VAR regressions are estimated with two Wald Statistics of length f0T and f0T +1.
The higher Wald Statistic is then saved as the Supremum Norm. The evolution
step is then repeated up to the last observation in the dataset and at that point
sub-regression expanding backwards to the first observation.18

4.5.3.2 Bootstrap

The critical values are obtained by the bootstrap method laid out in Shi et al. (2018,
2020): i) I estimate a whole sample VAR and store its residuals; ii) fit a second VAR
model to a subset of the data (bootstrap window) to which I add the randomly
drawn residuals from the firs step; iii) compute the PSY Supremum norm Wald
statistics on the bootstrap sub-sample. I repeat these steps 499 times and I use the
95% percentiles of the Supremum norm Wald statistic as my critical values. This
testing method is geared to solve the multiplicity issue associated with running
a battery of tests for each step forward in the PSY algorithm and ensure that the
empirical sizes approximates the nominal size of the Granger test.

18I report an example of the algorithm in Matlab pseudo code in Figure D.5.
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4.5. Time Varying Granger Causality Test

4.5.3.3 Optimal length of f0

The testing strategy hinges on a key modelling decisions: the minimum regression
window f0. Such parameter also determines how many observations I have to
discard at the beginning of the sample in order to derive a meaningful Supremum
norm Wald statistic for the regression starting the algorithm. I would not want to
throw away too many observations, as I am chiefly interested in the Great Financial
Crisis, which happens relatively early within the sample. I face another trade-off,
as longer regression windows may understate more transient episodes of Granger
causality. Shi et al. (2018) define the length of the minimum regression window as
a fraction of the whole sample f0T , setting it at 0.24 for the sake of a simulation
exercise for which the duration of the causal relation is known ex-ante. They
however note how the optimal size of the minimum regression window is data
dependent and should ideally be as long as the ‘true’ causal episode. I do not know
ex-ante what is the length and strength of the underlying causal relation. A f0

which is longer than the duration of the actual causal relation will not result in
more testing power. I settle on a minimum window of 104 weeks, conditioning
on my expectations of a causal relation of approximately 2 years, consistent with
the brewing and the eruption of the GFC in the biennium 2007-09. Hence my f0

is approximately 18% of the Gilbert sample and 15% of the 2006-2020 sample. I
note how the approach to the PSY set up depends on the data characteristics. In
Shi et al. (2018), f0 is 20% of the whole period, controlled over a 3 years bootstrap
window. In Shi et al. (2020), the minimum regression window is set at 72 monthly
observations, i.e. 10.8% of the whole sample. Shi et al. (2020) control over a period
of 1-year. A shorter window will capture more short-lived episodes as the collapse
in commodity prices in 2014/15, but downplays the GFC as the W-stat is very high
for very short. I investigate alternative minimum regression sizes in the section
below on Robustness Checks.

4.5.3.4 Gilbert’s Sample

Gilbert reported a statistically significant static causal relation in the non-ferrous
metals and oilseeds markets. I confirm this finding as in my time-varying model
aluminium, copper and soybean oil are Granger-caused by the index investment
proxy for almost the entirety of the 2006-2016 sample (Fig. 4.4).

There is also one-way causality from the SCOT proxy to Zinc and Nickel in a
more intermittent way and concentrated at the beginning of the time period. The
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shape of the time-varying Wald statistic is similar for the two crude products, as
they experience an increase in magnitude of the Granger causality relationship
coincidentally with the GFC, which quickly tapers and stays below the critical value
for the remainder of the sample period.

These findings represent a first sense check for my results. Gilbert’s findings
carry over to a time varying setting despite of the data properties that make the
conventional Granger test less robust than the PSY alternative.

Figure 4.4: Time Varying Wald Statistic

The picture is more mixed for the other two commodity classes: energy and
agriculture. Causality in ICE Brent and NYM spikes with the GFC to be re-absorbed
by 2009. Evidence of occasional causality appears again in 2011 for NYM, on the
back of geopolitical unrest in Libya and a fear of contagion to the Middle East. On
the other hand, causality in the Natural Gas is much stronger in 2011 and 2015 than
it is during the GFC. This change points in the causal relation can be ascribed to
narrative evidence: in 2011, and in 2015 gas prices fell because of a boom in US
shale production and a warmer winter than expected.

Next, I substitute the SCOT aggregate investment proxy with the commodity
specific proxy. I arrive to similar results, fleshing out more the output of the
previous exercises.

Interestingly, as I regress agricultural commodities log-returns and their specific
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SCOT index investment proxy on their lagged values, I end up with slightly
differently shaped Supremum norm Wald statistic (Fig. 4.5). Wheat has a central
peak in 2011 as corn, whereas soybeans and soybeans oil display a different causality
profile, with the first displaying a single peak in 2013 and the second having a strong
Granger-causality relation at the beginning of the sample, clustered between 2008
and 2010. For Soybeans oil, the strength of the causal relation is significant only
during the GFC and wanes in the rest of the sample.

The 2011 spike in corn appears magnified when I consider causality coming from the
corn specific index. That event out-weights the 2015 uptick, which in the aggregate
case shows with a larger magnitude.

Figure 4.5: Time Varying Wald Statistic

4.5.3.5 Full Sample

The first takeaway of extending Gilbert’s sample forward to end of 2020 is that there
is no significant change in the causal relation profile between index investment and
commodity prices. There are no new episodes in the causal relation linking index
returns and future prices in the period 2016-2020. The Covid pandemic has little
impact on the strength of the Granger-causal relation as the Supremum norm W
statistic does not exceed the critical value for any of the twelve future contracts
in 2020 (see Fig. 4.6). This finding qualifies the GFC as a recession different in its
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own rights, as it stands out more prominently in a 14 years sample. This result
is consistent with the bubble migration hypothesis put forward in Phillips et al.
(2015a), which I corroborate with clearer evidence of financialization in selected
commodities.

Once again this extended sample show a much more significant response of non-
ferrous metals, with the Granger-causality of SCOT to Aluminium confirmed
throughout the whole sample together with Copper.

Figure 4.6: Full Sample Time Varying Wald Statistic

Again, updating the sample period does not yield significantly different causality
results also when considering the commodity specific SCOT. The outset of Covid
does not trigger a change in causality per se, but movements in commodity could
be attributed to idiosyncratic and commodity-specific factors. As opposed to the
restricted period, in the full sample I show an additional episode of heightened
causality in the wheat market from May 2019, this coincides with an all-time high
of the wheat future prices.

I desire to draw the Reader attention to the fact that the time-varying Granger-test
results the GFC marks the first point of causal change for many of the commodity
considered. Exceptions are lead, natural gas, and corn.
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Figure 4.7: Time Varying Wald Statistic

4.5.3.6 Robustness

In addition to the baseline specification, I check for robustness to shorter regression
windows, trying two additional specifications, setting f0T to one year and six
months. This specification remains robust with a minimum regression sample of 52
weeks (with equal bootstrap sample). In this latter case however, causality is general
more persistent than in the baseline specification. Stronger and almost continuous
causality is detected across the whole non-ferrous metals compartment. The causal
profile of oil is fairly similar to the baseline specification. I fail to detect causality in
the wheat market but I find overwhelming evidence of a strong causal relationship
in Corn, Soybeans and Soybeans oil. Interestingly, using a regression window of
1 year instead than 2, shows a cluster of statistically significant Supremum Norm
Wald stats starting in February 2015 and ending in June 2015, suggesting that a
shorter window may capture occasional episodes of causality that are averaged-out
in the baseline specification. However, also this robustness check shows heightened
causality during the GFC.

Performing the time-varying Granger causality test using an even shorter window
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( f0T = 30 observations), yields a more volatile profile for the Supremum norm
statistic. Results are overall in lie with what I found above, but more occasional
spikes become visible between 2010 and 2015, years which continue standing apart
as the strongest causal episodes. On the other hand, the increased volatility of the
Supremum norm may mean that the length of actual causal episodes is indeed
longer than six months.

I run the analysis of Granger causality from SCOT to spot prices finding approxi-
mately the same time-varying pattern as in Fig. 4.6 but in a weaker form.19

4.6 Discussion: Prices and Change Detection

I argue that the heightened correlation between index investment and commodity
returns at specific points in time is driving the static results in Table 4.4. Taking
an historical perspective and with the help of the time-varying Supremum norm
indicator, I uncover some key differences between commodities. This helps me
qualify better the Singleton and Gilbert results since elements that are structural to
individual commodities are affecting them in different ways. The causality profile
and its strength is different across commodity classes.

Secondly I confirm that the GFC is a structural break and was the catalyst for the
increase in Granger causality at the beginning of the sample. This stylised fact is
accepted by the wide literature I cited in Section 4.1. The explanation for this finding
may be the bubble migration which led to the emergence of index investment as a
standalone asset class Phillips et al. (2015b); Adams and Glück (2015). Regrettably
my index investment proxy starts in 2006 and I cannot verify other episodes of
Granger causality connected to the increase in index investment volume in the early
2000.

Taken together these results give us evidence to support a mild re-appraisal of
Singleton (2014) result of financialization, extending his findings outside the oil
markets.

For oil financialization is localised at a specific point in time, which Phillips et al.
(2011) have connected to bubble migration dynamics around the collapse of housing
prices. But apart from that oil does not show any other significant events of causality.
Non-ferrous metals and Soybeans Oil are seemingly more ‘financialized’ than the

19Results available upon request.
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others, for them Granger causality was detected at more frequent intervals and
was overall more persistent. Figuerola-Ferretti and McCrorie (2016) note how the
rigidity in non-ferrous metals supply might have been a driver for their prices to
rise between 2003-07 at times in an explosive-fashion. Given the hard constraints
on metals mining and productions, it makes sense that their future prices are more
responsive to index money flows.

For other commodities, the changing points in Granger Causality appear as more
episodic and, if taken at face value, they show evidence of financialization that
extends to agricultural markets.

Figure 4.8: Commodity Prices (blue line - LHS) and a Granger Causality Dummy (1
if Wald stat > Critical Value - RHS)
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Figure 4.9: Commodity Prices (blue line - LHS) and a Granger Causality Dummy (1
if Wald stat > Critical Value - RHS)
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My results help to better nuance Gilbert’s results regarding causality in grains and
oilseed markets Gilbert and Pfuderer (2014b). They found a causal relation when
accounting for contemporaneous causality vis-à-vis a much larger literature that
rules out such a link. There is time-varying causality from the aggregate SCOT proxy
to the soybeans contract around the GFC, whereas the soybeans oil is intermittently
Granger-caused by the same proxies along the entirety of the sample.

4.7 Conclusion

In this paper I analyse the strength and changes in significance in the causal relation
linking index investment to commodity futures log-returns. My work is aimed to
inform the literature about the evolution of causal relation in such markets and
to do so I use a novel and more powerful time-varying Wald test as opposed to
the standard static Granger test generally applied in the literature. I do so because
whether the commodity market is efficient or not is an open question. Regulators
and practitioners have accepted the hypothesis of financialization, whereas the
academic literature has failed to reach a consensus.

The literature has settled on using a standard Granger causality test, which can
overstate the results in presence of structural breaks. I note how the extreme
movements in commodity prices may incorrectly reflect in a static Granger test
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and I use a different testing strategy to gain a more comprehensive insight on the
relevance of index investment flows in the commodity future price formation.

This Chapter replicated Gilbert (2018), correcting a small but important error
in calculating the Special Call index proxy. I then applied a standard Granger
test based on a Wald statistics in a VAR, providing limited but nonetheless
discernible evidence of financialization in non-ferrous metals and some agricultural
commodities. This result ties to the important result offered by Singleton (2014),
extending it to contracts other than crude oil. My final contribution is applying a
more robust testing strategy based on the Shi et al. (2018) (PSY) test to the same
twelve commodities, producing a richer set of results that allows us to see (or
measure) how the Granger causal relationships have evolved over time.

My results are novel in the literature and they are useful in supporting established
facts. Aluminium and Copper display an essentially constant Granger causality,
which is intermittent for Nickel, Lead and Zinc.

For crude oil, the heightened causality appears only during the GFC, whilst Natural
Gas follows its own cycle. In the case of Natural Gas and agricultural commodities,
the causal relation may be reconciled with narrative identifiable evidence: the
unidirectional relation stemming from changes in index investment materialises in
relation with peak and through of a high frequency commodity cycle.
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DAPPENDIX D

APPENDIX TO CHAPTER
4

D.1 Data Sources
Table D.1: Data Sources

Prices Exchange Datastream Ticker

Aluminium London Metal Exchange LAH3MTH(P)
Copper London Metal Exchange LCP3MTH(P)
Lead London Metal Exchange LED3MTH(P)
Nickel London Metal Exchange LNI3MTH(P)
Zinc London Metal Exchange LZZ3MTH(P)
NYM Oil New York Mercantile Exchange NCLCS00(PS)
NYM Natural Gas New York Mercantile Exchange NNGCS00(PS)
ICE Brent Intercontinental Exchange LLCCS00(PS)
IPE Brent Intercontinental Exchange LCRCS01(PS)
Soyabeans eCBOT CSNCS00
Corn eCBOT CCFCS00
Wheat eCBOT CWFCS00
Soyabeans eCBOT CZSCS00
Soyabeans eCBOT CS.CS00

• Supplemental Commitment of Traders Data (SCOT): https://www.cftc.
gov/MarketReports/CommitmentsofTraders/HistoricalViewable/index.

htm
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D. APPENDIX TO CHAPTER 4

• Special Call Data: https://www.cftc.gov/MarketReports/IndexInvestmentData/
index.htm

D.2 Descriptive Statistics

Figure D.1: Commodity Prices (blue line - LHS) plotted Against the Commodity
Specific Index Investment Proxy (red line - RHS)

Figure D.2: Q-Q Plots of Empirical Log Returns against t-Location Scale Distribution
Quantiles
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D.2. Descriptive Statistics

Figure D.3: Histogram of Log Returns against t-Location Scale Distribution
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D.3 Recursive Evolving Algorithm

Figure D.4: Evolving Recursive Algorithm Code Example

% Set Parameters
Y = [ Price , Index ] ;
T = length (Y) ;
window = minimum regression sample ;

%% Start R−E Algorithm
for r2=window: 1 :T % Ending point of the regression moves forward

dimW=r2−window+1; % Cut−off point for backward window,
ensures that the minimum regression sample i s respected

backwardFstat=zeros (dimW, 1 ) ;
% For each movement forward of r2 , the tes t i s performed

recursively on a backward window.
for r1 =1:1:dimW

backwardFstat ( r1 , : ) = Perform Granger Test on sub−sample
Y( r1 : r2 )

end
i f r2==window

Wstat ( r2−window+1 , : )=backwardWstat ; % W−Stat for f i r s t
period is the F−Stat of regression Y( 1 :window)

else
[Wstat ( r2−window+1 , : ) , ind]=max(backwardWstat) ;% W−Stats

for subsequent periods are the sup W−Stat of
regressions Y( r1 : r2 )

end
end

% Result
W−stat i s the vector of sup W−Stat
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D.4 Robustness

Figure D.5: Full Sample Granger Test on 52 weeks window
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CONCLUDING REMARKS

In this thesis I have presented four Chapters on macroeconomics focussing on in-
stances in which markets behaviour deviated from what we would normally expect
under textbook assumptions. My research contributes to the existing literature in
three areas: asset price targeting, labour market frictions and commodity prices
behaviour.

In Chapter 1 and 2 I analyse deleverage and defaults dynamics following monetary
policy shocks. I show empirically how defaults increase rapidly on impulse of an
exogenous surge in the interest rate while household debt and house prices follow a
more sluggish adjustment path. This suggests that part of the household deleverage
is not benign and happens because households are not able to pay back their debt,
rather than by a structured deleverage through pre-payments or refinancing.

The fact that debt moves at a lower frequency and insolvencies have a higher
frequency component has policy implications, as some papers in the literature have
put forward the case for an activist monetary policy stance geared to curb credit
cycles (dubbed ‘leaning against the wind’ or ’LATW’).

In Chapter 2 I construct a model with mortgagors and entrepreneurs with a banking
intermediary extending loans to the former while taking deposits from the latter.
I then use this representative agent model to evaluate several types of monetary
policy rules. I do not find compelling evidence for house price targeting and I find
that targeting house prices and inflation together may result in model indeterminacy,
especially when debt is not indexed and payable in nominal terms.

With this modelling exercise, I aim to contribute to the academic literature on
credit frictions with a New-Keynesian model that explicitly factors in the supply
and demand of credit and a net-worth channel for monetary policy. In terms of
transmission mechanisms, I show that asset price targeting is similar to output
targeting, given the fact that house prices are central for the aggregate demand.
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My results could understate the effects of LATW policy as mortgage loans are
modelled as a 1-period adjustable rate bonds. This is obviously different from
longer term mortgages, which in the real world could go up to 30 years. So similar
models could try to assess the transmission mechanism in presence of longer term
debt contracts. Longer maturity mortgages may result in a levered IS schedule with
higher sensitivity to interest rates.

In the thesis I highlight how defaulting of contractual obligations is a business cycle
stylised fact that is difficult to capture in a micro-founded model. Nevertheless,
I use a costly-state verification friction to derive a default rate, an additional
control variable that responds to other macro-variables. The response of the default
threshold are qualitatively correct, but the model does not capture the volatility of
the default rate observed in the business cycle. Again, the modification mentioned
above could translate in a stickier debt stock that is difficult for the mortgagors to
re-absorb upon a negative shock.

The central theme of the first two Chapters of this thesis is the conduct of monetary
policy. I do various policy experiments using the model I developed as a sandbox to
observe the performance of various monetary policy rules. Among other findings, I
find that interest rate smoothing shifts the efficient frontier of the output-inflation
variance trade-off.

Interestingly, there is no consensus on the optimal degree of smoothing in the
United Kingdom or if the Central Bank smooths the interest rate at all. DSGE
estimates of the Taylor rule often find a high degree of smoothing, but micro-
econometric estimates show that highly significant interest rate smoothing might
be spurious and due to the endogenous regressor problem. In the first Chapter I
deal with endogeneity presenting a VAR identification that hinges on the retrieval
of exogenous shock. In Chapter 2 I remain agnostic on the optimal degree of
smoothing, commenting just on how that changes my results. An interesting
extension of Chapter 2 could be around Taylor rules, as those enter into DSGE
models in a formulaic way. Factoring in different laws for expectation formation
may offer a different case for LATW or other monetary policy rules targeting
financial stability. Having different laws for expectation formation may provide a
more natural framework to ask a follow up question such as can monetary policy
stabilise the housing market by playing a role in anchoring expectations. A model
in which the Central Bank has to learn the workings of the economy could also
provide a case for smoothing, which is already quantitatively important for a model
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with rational expectations.

In Chapter 3 we show how the US wage is very sticky. To formalise this notion of
stickiness, we compare different measures for the user cost of labour to a model
implied Nash wage. The actual wage is much stickier relative to the Nash wage.
We call this empirical measure of elasticity ‘Nash Wage Elasticity’ (NWE) and we
suggest that NWE can be calibrated in DSGE models to match the volatility of
unemployment. Overall, we show that wage rigidity amplifies the business cycle.

This finding can be used in future DSGE model efforts as it helps matching the
volatility of unemployment in the business cycle. Our NWE measure can provide
a basis for comparison across other models with rigid wages and help to inform
macro-modellers about the actual degree of wage rigidity in the data.

In Chapter 4 I test the hypothesis of financialization in the commodity market
contributing to a wide and thriving literature concerned with causal linkages from
the increase in traded volume of commodity indexes to future prices. Such one-
directional causality is often referred to as ‘financialization’. I apply a novel Granger-
testing methodology suitable to detect changing points in the causal relation and its
strength from index investment to a panel of commodities. Through this method I
can confirm that the Great Financial Crisis (GFC) represented a key changing point
in causal relation, but I also uncover differences among commodities that are due
to idiosyncratic factors.

The empirical results provide mild evidence of financialization in oil and agricul-
tural markets. However, my estimates do support the hypothesis of financialization,
although heightened causality is clustered at specific points in time. Our inference
is more robust than alternative testing methodology and thus can be taken at face
value despite the outliers due to having the GFC early in the sample.

This chapter helps to shed some light on financial markets behaviour, providing
some compelling evidence supporting occasional departures from the efficient
market hypothesis. The fact that data exhibit a heightened correlation at certain
points in time and thus a time-varying causal profile in the Granger sense, means
that there is evidence that investor sentiment is a major driver for certain observed
financial market patterns.

I provide a re-interpretation of Singleton (2014) on financialization of the crude oil
market and appraisal of the work of Christopher Gilbert and co-authors. I can do
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so using a testing strategy that is robust to the behaviour of data around the Great
Financial Crisis, when the structural break associated with wild price movement
can bias standard test results. I argue for using a time-varying test as a robust
alternative for the static Granger causality
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