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Abstract
Invasion of the surrounding tissue is a key aspect of cancer growth and spread involving
a coordinated effort between cell migration and matrix degradation, and has been the
subject ofmathematicalmodelling for almost 30 years. In this current paperwe address
a long-standing question in the field of cancer cell migration modelling. Namely,
identify the migratory pattern and spread of individual cancer cells, or small clusters
of cancer cells, when the macroscopic evolution of the cancer cell colony is dictated
by a specific partial differential equation (PDE). We show that the usual heuristic
understanding of the diffusion and advection terms of the PDE being one-to-one
responsible for the random and biased motion of the solitary cancer cells, respectively,
is not precise. On the contrary, we show that the drift term of the correct stochastic
differential equation scheme that dictates the individual cancer cell migration, should
account also for the divergence of the diffusion of the PDE. We support our claims
with a number of numerical experiments and computational simulations.

Keywords Cancer invasion · Multiscale modelling · Hybrid continuum-discrete ·
Coupled partial and stochastic partial differential equations

Mathematics Subject Classification 35Q92 · 35R60 · 60H15 · 60H35 · 65C30 ·
65Z05 · 92C17 · 92C50

B Nikolaos Sfakianakis
n.sfakianakis@st-andrews.ac.uk

Dimitrios Katsaounis
dk204@st-andrews.ac.uk

Mark A. J. Chaplain
majc@st-andrews.ac.uk

1 School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews KY16
9SS, Scotland, UK

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-023-01934-4&domain=pdf
http://orcid.org/0000-0001-5727-2160


    8 Page 2 of 23 D. Katsaounis et al.

1 Introduction

Cancer invasion is a complex process involving numerous interactions between the
cancer cells and the extracellular matrix (ECM) (cf. the tumour microenvironment)
facilitated by matrix degrading enzymes. Along with active cell migration (both indi-
vidual and collective) and increased/excessive proliferation, these processes enable
the local spread of cancer cells into the surrounding tissue. Any encounter with blood
or lymphatic vessels (cf. tumour-induced angiogenesis, lymph-angiogenesis) in the
tumourmicroenvironment initiates and facilitates the spread of the cancer to secondary
locations in the host, i.e., metastasis or metastatic spread. A comprehensive historical
overview of the biology of metastastic spread can be found in the article by Talmadge
and Fidler (2010), while an overview of the core aspects of invasion can be found in
the articles of Hanahan and Weinberg (2000, 2011) and the review article of Friedl
and Wolf (2003). From a mathematical modelling perspective, cancer invasion has
been a topic of interest for almost 30 years with a range of approaches and techniques
being used, and an overview can be found in the recent review paper by Sfakianakis
and Chaplain (2021). Broadly speaking, two different approaches have been used to
model cancer invasion-continuum approaches (i.e. using differential equations with
cancer cell density as one of the dependent variables) and individual-based or agent-
based approaches (i.e. focusing on the movement of individual cells). Some have also
adopted a so-called hybrid approach e.g. Anderson et al. (2000), deriving a discrete
model governing the migration of individual cancer cells from the discretization of an
associated system of PDEs.

It is not our intention here to discuss in detail the previous modelling work in the
area. Rather the aim of this paper is to investigate mathematically the connection
between the stochastic differential and the partial differential equations (SDEs and
PDEs respectively) that are typically used to describe the migration of living cells.
The precise interplay between the SDE and PDE approach is not yet clear and has
been in the research focus the last years. The difference between these two approaches
is significant and it lies primarily in the immediate focus of the mathematical model.
Namely, whereas the SDE approach focuses primarily on the migratory behaviour of
the individual cells, the PDE approach describes the macroscopic behavioural pattern
of a large collective of cells. As the behavioural pattern, in real life biology, of large cell
collectives is related to themigration of individual cells so should the twomathematical
approaches be connected.

By identifying the interplay between the two mathematical approaches, we shed
light in the complexity of multiscale modelling and simulations. This has direct
implications in the biological understanding of solitary cancer cell migration and
the development/growth of tumours. Such detailed knowledge of how far individual
cancer cells can penetrate into the local tissue is very important from a surgical point
of view and can help to minimise the amount of resection required, a point initially
raised and investigated in the work of Anderson et al. (2000).

Our aim, hence, in this work is to investigate the interplay between the SDE and
PDEmodeling approaches of cancer invasion and growth. Namely, we exhibit that the
terms of the numerical scheme solving the underlying SDE are not in a one-to-one
correspondence to the terms of the PDE. In more detail, we show that a particular
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“correction” in the drift terms of the numerical scheme of the SDE that improves the
approximation qualities of the schemes when compared with the numerical solution
of the PDE.

These ideas are studied in the remainder paper in the following way. In Sect. 2 we
provide some background for the motivation to this paper stating the general forms
of PDE and SDE to be considered, while in Sect. 3 we derive the SDE schemes
in some detail. In Sect. 4 we undertake numerical experiments and compare results
from computational simulations of the underlying cell migration PDE model with
simulations of two different SDE schemes. Finally in Sect. 5 concluding remarks are
made.

2 Motivation

We are motivated in this work by typical continuum cancer invasion models (e.g.
Chaplain and Lolas (2005, 2006); Andasari et al. (2011)) and consider the following
general Advection-Diffusion PDE

∂u

∂t
+ ∇ · (Au) − ∇ · (D∇u) = 0, (1)

where, according to the usual practice, u : [0, T ] × � → R represents the space-time
dependent density of cancer cells, and where � ⊂ R

d , with d = 2, 3, is a Lips-
chitz domain. We assume throughout this work that both the advection and diffusion
coefficients A and D are non-constant in the sense that they depend on x ∈ R

d .
It is biologically understood that the macroscopic patterns of a large collective of

cells is related to the migration of individual cells. Hence, our aim is to understand the
connection between the continuous model (1), and models that capture the migration
of solitary cancer cells. Following the ideas developed in the seminalworks byEinstein
(1998) on the investigation of Brownian motion, as well as by Stratonovich (1966);
Ito et al. (2012); Kitanidis (1994), the motion of the solitary cancer cells is usually
described via SDEs that track the position of the cells. These SDEs typically take the
form

dXt = a(Xt , t) dt + d(Xt , t) dWt , (2)

with t ≥ 0. Here Xt ∈ R
d is a stochastic process that represents the position of the

solitary cancer cells, and where a(Xt , t) and d(Xt , t) are the drift and the diffusion
coefficients respectively. Here Wt represents a d-dimensional Wiener process.

The critical question that arises in this work is the following: how do the advection
and diffusion terms A, D of the deterministic PDE (1) relate to the drift and diffusion
terms a, d of the SDE (2)?

By identifying these relations we shed light in the complexity of multiscale mod-
elling and simulations in general, and in the migration of solitary cancer cells and
macroscopic tumour growth within a living organism in particular. Succeeding, hence,
in identifying such relations will allow well established—and phenomenologically
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verifiable—macroscopic models to be used in order to extract, at the smaller scale,
the migratory pattern of solitary cells or small clusters of cancer cells. Vice-versa,
these relations will provide an additional validation to the use of deterministic models
or even encourage ideas for a hybrid method using both deterministic and stochastic
models.

We proceed in this effort under the assumption that u represents a single solitary
cancer cell or a small cluster of cancer cells. We denote by xt ∈ R

d the numerical
approximation of the solution stochastic process Xt ∈ R

d that represents the position
of the cell’s centroid at time t . Following (Kloeden and Platen 1992; Kitanidis 1994;
Ito et al. 2012; Stratonovich 1966; Evans 2013) we exhibit in Sect. 3 that the less
intuitive numerical scheme:

xt+�t = xt + (A(xt ) + ∇ · D(xt )
)
�t + √

2�tV(xt ) ξ, (3)

where ξ is a vector of d independent and normally distributed random variables of
mean 0 and variance 1, and where V given by

V(xt )VT (xt ) = D(xt ) , (4)

provides a better approximation to the PDE (1) than the more intuitive numerical
scheme:

xt+�t = xt + A(xt )�t + √
2�tV(xt ) ξ. (5)

Both schemes account, in the same way, for the “square root” of the diffusion D in
their corresponding diffusion/noise terms. As we will see in Sect. 3 this is derived in
a very natural way.

The SDE (2) is of an Ito-type and, accordingly, the schemes (3) and (5) are derived
using the Euler-Maruyama approximation. The less intuitive scheme (3) should not be
mistaken for the equivalent scheme of a Stratonovich-type SDE emerging from (2),
cf. Evans (2013); it should rather be understood as an Ito-type scheme that is different
from (5).

Structurally, the difference of the two schemes (3) and (5) lies in their corresponding
drift terms. In particular, in the “corrected” scheme (3) the drift term accounts for both
the advection, A, and the diffusion, D, coefficients of the PDE (1). In the scheme (5)
the drift term accounts only for the advection termA. This final remark, the one-to-one
correspondence between the terms of the scheme (5) and the equation (2), justifies
the characterisation of the scheme (5) as “more intuitive”, cf. Evans (2013); Arnold
(1974).

In Sect. 3 we derive the scheme (3) from the PDE (1) and in Sect. 4 we compare it
numerically with the scheme (5) and the PDE (1).

We, hence, conclude that there is not a one-to-one relation between the advection
term of the PDE and the drift term of the SDE—unless the divergence of the diffusion
D vanishes; this is clearly the case when the diffusionD does not depend on the spatial
variable x.
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3 Derivation of the SDE schemes

We make the fundamental modeling assumption that a cell can be viewed as a suf-
ficiently small cell-cluster that satisfies the PDE (1). We furthermore assume that,
without loss of generality, such a cell-cluster has unit mass i.e.

∫

V∞
u(t, x) dx = 1, (6)

where u(t, x) is the density and V∞ the volume of the cell-cluster.
To capture the behaviour of the cell-cluster, and in particular, the position of its

centroid and spread, we use the method of moments. Accordingly, the first and second
moments of u read respectively

ν1(t) =
∫

V∞
xu(t, x) dx, (7a)

ν2(t) =
∫

V∞
xxT u(t, x) dx. (7b)

Note that ν1(t) is a d-dimensional vector and ν2(t) a d × d-dimensional matrix, and
they are both understood via their physical rather than probabilistic interpretation. We
also consider the second moment about the mean

N(t) =
∫

V∞
(x − ν1(t)) (x − ν1(t))

T u(t, x) dx = ν2(t) − ν1(t)ν
T
1 (t), (8)

where N(t) is d×d-dimensional matrix. The first moment ν1 in (7a) can be interpreted
as the position of the cell-cluster centroid, and, accordingly, it’s (time) rate of change
as the velocity of the cell-cluster. On the other hand, the rate of change of the second
moment ν2 in (7b) represents the spreading of the cell-cluster. These two remarks
together allow to (heuristically) identify the drift and diffusion coefficients, a and d,

of the SDE (2) as dν1(t)
dt and dN(t)

dt respectively.
As a direct consequence of that, we will construct a numerical scheme in line

with the classical Euler-Maruyama approximation, cf. Kloeden and Platen (1992), as
follows

xt+�t = xt + dν1(t)

dt
�t +

√
dN(t)

dt
�t ξ , (9)

where the square root in the above, should be understood in the usual matrix notation,
see e.g. (4).

To this end, we impose the following boundary conditions that indicate an expo-
nential decay of u(t, x) as |x| → ∞.

∫

S∞
ez

T xu(t, x)ATn dS = 0, (10a)
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∫

S∞
ez

T x(D∇u(t, x))Tn dS = 0, (10b)

∫

S∞
ez

T xu(t, x)Dn dS = 0, (10c)

where S∞ represents the surface of the cell-cluster V∞ and z a d-dimensional vector.
Through the i-th derivative of (10a)–(10c) with respect to z and setting z = 0 one
can retrieve the boundary conditions for the i-th moment. In our case we only need to
differentiate twice since we only need the first two moments.

With all these in mind, we proceed by calculating through (7a) and (8) the time
derivatives of ν1(t) and N(t). For ν1 we multiply (1) by xi , for i = 1, . . . , n, integrate
over the cell-cluster volume V∞, and obtain

∫

V∞
xi

[
∂u

∂t
+ ∇ · (Au) − ∇ · (D∇u)

]
dx = 0 ⇐⇒

∫

V∞
xi

∂u

∂t
dx

︸ ︷︷ ︸
=I11

+
∫

V∞
xi∇ · (Au) dx

︸ ︷︷ ︸
=I12

−
∫

V∞
xi∇ · (D∇u) dx

︸ ︷︷ ︸
=I13

= 0. (11a)

We work on each of the terms I11, I12, I13 on the left hand side separately; and obtain
for I11

I11 =
∫

V∞
xi

∂u

∂t
dx = ∂

∂t

∫

V∞
xi u dx = d(ν1)i

dt
. (11b)

For the second term I12, after invoking the Divergence Theorem and the boundary
conditions (10a)–(10c), we obtain

I12 =
∫

V∞
xi∇ · (Au) dx =

∫

V∞
∇ · (Auxi ) dx −

∫

V∞
Aiu dx

=
∫

S∞
uxiATn dS −

∫

V∞
Aiu dx

(10a)= −
∫

V∞
Aiu dx, (11c)

where Ai is the i-th element of the vector A. Similarly, the third term I13 recasts into

I13 =
∫

V∞
xi∇ · (D∇u) dx =

∫

V∞
∇ · (xiD∇u) dx −

∫

V∞
(∇u)T Di dx

=
∫

S∞
xi (D∇u)Tn dS −

∫

V∞
∇ · (uDi ) dx +

∫

V∞
u∇ · Di dx
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(10b)= −
∫

S∞
uDT

i n dS +
∫

V∞
u∇ · Di dx

(10c)=
∫

V∞
u∇ · Di dx, (11d)

where Di is the i-th column of the diffusion matrix D. So, by combining (11a) with
(11b)–(11d) we obtain the following representation for the rate of change of the i-th
(vector) component of the first moment:

d(ν1)i

dt
=
∫

V∞
(Ai + ∇ · Di )u dx. (12)

In a similar way, we identify the relation satisfied by the i j th element of the second
moment ν2, which allows us to compute the rate of change of N(t) in (8):

∫

V∞
xi x j

[
∂u

∂t
+ ∇ · (Au) − ∇ · (D∇u)

]
dx = 0 ⇐⇒

∫

V∞
xi x j

∂u

∂t
dx

︸ ︷︷ ︸
=I21

+
∫

V∞
xi x j∇ · (Au) dx

︸ ︷︷ ︸
=I22

−
∫

V∞
xi x j∇ · (D∇u) dx

︸ ︷︷ ︸
=I23

= 0. (13a)

As with (11a), we employ the Divergence Theorem and the boundary condition (10a)–
(10c) and calculate these three integrals one-by-one. The first one, I21, reads

I21 =
∫

V∞
xi x j

∂u

∂t
dx = ∂

∂t

∫

V∞
xi x j u dx = d(ν2)i j

dt
, (13b)

the second integral, I21, recasts into

I22 =
∫

V∞
xi x j∇ · (Au) dx =

∫

V∞
∇ · (xi x jAu) dx −

∫

V∞
(x j Ai + xi A j )u dx

=
∫

S∞
xi x j uATndS −

∫

V∞
(x j Ai + xi A j )u dx

(10a)= −
∫

V∞
(x j Ai + xi A j )u dx, (13c)

and for the third term, I21, it holds

I23 =
∫

V∞
xi x j∇ · (D∇u) dx

=
∫

V∞
∇ · (xi x jD∇u) dx −

∫

V∞

[
x j (D∇u)i + xi (D∇u) j

]
dx

=
∫

S∞
xi x j (D∇u)Tn dS −

∫

V∞
∇ · (ux jDi + uxiD j ) dx
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+
∫

V∞

[
x j∇ · Di + xi∇ · D j + 2Di j

]
u dx

(10b)= −
∫

S∞
(ux jDi + uxiD j )

Tn dx

+
∫

V∞

[
x j∇ · Di + xi∇ · D j + 2Di j

]
u dx

(10c)=
∫

V∞

[
x j∇ · Di + xi∇ · D j + 2Di j

]
u dx, (13d)

where Di j is the element in the i-th row and j-th column of thematrixD. By combining
(13a) with (13b)–(13d), we obtain the following relation for i j-th (matrix) element of
the second moment

d(ν2)i j

dt
=
∫

V∞
(x j Ai + xi A j )u dx +

∫

V∞

[
x j∇ · Di + xi∇ · D j + 2Di j

]
u dx.

(14)

Summing up (12) and (14), we deduce the following set of equations in a vector
form for any given advection and diffusion terms A and D in (1)

dν1

dt
=
∫

V∞
(A + ∇ · D) u(t, x) dx (15)

dν2

dt
=
∫

V∞

(
x(A + ∇ · D)T + (A + ∇ · D)xT + 2D

)
u(t, x) dx (16)

dN
dt

=
∫

V∞

(
x(A + ∇ · D)T + (A + ∇ · D)xT + 2D

)
u(t, x) dx

− ν1(t)

(∫

V∞
(A + ∇ · D)u(t, x) dx

)T

−
(∫

V∞
(A + ∇ · D)u(t, x) dx

)
νT1 (t). (17)

We retrieve (17) by taking the time derivative of (8) and substituting equations (15)
and (16).

Assuming that the mass of the cell-cluster is concentrated, at time t , in a single
point xt , we can represent the density of the cell-cluster as

u(t, x) = δ (x − xt ) ,

where δ is the Dirac function centered at xt . Then the velocity of the cell-cluster in
(15), is given as the sum of the advection A and the divergence of the diffusion matrix
D at xt :

dν1

dt
= A(xt ) + ∇ · D|xt . (18)
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Accordingly, the rate of change of second moment about the mean in (17) recasts into

dN
dt

= xt (A + ∇ · D)T
∣
∣∣∣
xt

+ (A + ∇ · D)

∣
∣∣∣
xt

xTt + 2D

∣
∣∣∣
xt

− xt (A + ∇ · D)T
∣∣∣
∣
xt

− (A + ∇ · D)

∣∣∣
∣
xt

xTt

= 2D

∣∣∣∣
xt

, (19)

which clearly indicates that the rate of spreading of the cell-cluster is given by the
diffusion matrix at the point xt .

We close this section by substituting (18) and (19) into (9) to obtain the corrected
numerical scheme

xt+�t = xt + (A(xt ) + ∇ · D(xt )
)
�t + √

2�tV(xt )ξ2, (20)

where V(xt )VT (xt ) = D(xt ) and where ξ2 is a vector of d independent and normally
distributed random variables with 0 mean and variance 1.

The scheme (20) that we have just derived, is different from the one without the
correction of the drift term, i.e. (5), which we repeat here for completion:

xt+�t = xt + A(xt )�t + √
2�tV(xt )ξ1, (21)

where, as before, ξ1 is a vector of independent and normally distributed random
variables with mean 0 and variance 1.

In the next section we numerically investigate the two schemes (21) and (20)
and provide evidence of their differences and their fitting with the correspond-
ing/underlying PDE (1).

4 Numerical experiments

We have seen in the previous section that the drift term of the SDE scheme (20)
incorporates a diffusion-based contribution/correction that is not found in the more
intuitive scheme (21). This is a significant difference between the two schemes and is
central in our numerical investigations. Namely our aim in this section is to numer-
ically investigate the impact that this correction has on the simulations of these two
schemes. To this end, we consider three specific numerical settings that highlight the
difference of the two schemes, and compare their predictions with each other and with
the corresponding/underlying PDE (1).

In more detail, in Experiment 1, we investigate the behaviour of the two schemes,
(21) and (20), on a particular application where the corresponding noise terms ξ1, ξ2
are the same. This allows to csompare the two schemes as a result of their differences
on the drift terms alone.
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In Experiment 2, we consider the same computational setting as in Experiment 1,
with the only difference being that the two SDE schemes (21), (20) are augmentedwith
different noise terms ξ1, ξ2. With a large number of scheme realisations we extract
information on the full spectrum of differences between the two schemes.

In Experiment 3 we consider a more generic, and common in the cancer invasion
modelling literature, experimental setting where the advection and diffusion terms
A, D of (1) depend on the spatial variable x ∈ R

d through their dependence on the
non-uniform tumour microenvironment v : Rd → R. For both SDE schemes (21) and
(20), we perform a large number of realisations and compare them with the solution
of the underlying PDE (1). We accordingly conclude that the corrected SDE scheme
(20) provides a much better approximation to the PDE (1) than the more intuitive SDE
scheme (21).

For the numerical solution of the PDE (1) we use a numerical method that was
previously developed in Kolbe et al. (2016); Sfakianakis et al. (2017) and which we
briefly discuss in the Appendix 1. All algorithm implementations, simulations, and
visualisations were conducted in MATLAB (2022).

Experiment 1 In the first experiment,we consider amodelling settingwhere the advec-
tion and diffusion terms, A and D, of the PDE (1) have an explicit dependence on the
space variable x, namely:

A(x) =
(
ax71

ax72

)

, D(x) =
(
bx71 0
0 bx72

)
, (22)

where x = (x1, x2) ∈ R
2 and a, b ∈ R are constants. Accordingly, the PDE (1) reads

as

∂u

∂t
+ ∇ ·

[(
ax71

ax72

)

u

]

− ∇ ·
[(

bx71 0
0 bx72

)
∇u

]
= 0, (23)

where t ∈ [0, T ]. Similarly, the SDE schemes (21) and (20) are re-formulated, for

V(xt) =
⎛

⎝

√
bx71 0

0
√
bx72

⎞

⎠ , (24)

as follows:

xt+�t = xt +
(
ax71

ax72

)

�t + √
2�t

⎛

⎝

√
bx71 0

0
√
bx72

⎞

⎠ ξ1, (25)

xt+�t = xt +
[(

ax71

ax72

)

+ ∇ ·
(
bx71 0

0 bx72

)]

�t + √
2�t

⎛

⎜
⎝

√
bx71 0

0
√
bx72

⎞

⎟
⎠ ξ2. (26)

These two SDE schemes are augmented with the same noise terms ξ1, ξ2 to allow for
a direct, one-to-one, comparison of their realisations.
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Table 1 Parameters used in Experiments 1 and 2

– t0 T N a b x0 Realisations

Experiment 1 0 1 1000 0.01 0.001 (1, 1)T 102

Experiment 2 0 1 1000 0.01 0.001 (1, 1)T 105

Fig. 1 Experiment 1. Showing
here the cell migration
tracks/sample paths of 100
realisations of the SDE schemes
(25), in orange, and (26), in light
blue, with the same random
noise. The initial position of the
cells is set at (1,1) for all
realisations and the total
travelling time is T = 1. Note
that the sample paths of the two
schemes are parallel shifts of
one another. The shift between
the two schemes is due to the
adaptation of the drift term of
the scheme (26) (color figure
online)

The parameters used in this numerical experiment can be found in Table 1 and the
simulation results are presented in Fig. 1. In more detail, we perform 100 realisations
of the two schemes (25), (26)—each pair of experiments with the same noise—starting
from the same initial position (x1, x2) = (1, 1) and running over the time t ∈ [0, 1].
These results show that the realisations of the two schemes appear to be—in a one-to-
one conformation—slightly shifted and parallel to each other.More specifically, as can
be seen, the corrected scheme (26) introduces an additional displacement of the cell
migration track/sample paths directed towards larger values of x1 and x2. This is due
to the nature and structure of the drift term as well as the diffusion-based correction
introduced in (26) and the positivity of the parameter b, cf. Table 1.

Experiment 2 The intuition we have gained from Experiment 1, namely the way the
adaptation of the drift term in the corrected scheme (26) affects the distance and direc-
tion of the cell migration, can be investigated further by considering independent noise
terms for the two schemes. Hence, in the current experiment, we choose independent
noise terms ξ1, ξ2 for the two SDE schemes (25) and (26) and perform 105 new
realisations with each, all start from the initial point (x1, x2) = (1, 1) and running
over time t ∈ [0, 1]. We otherwise consider the same setting and parameters as in
Experiment 1; the parameters for this experiment can be found in in Table 1.

The simulation results are presented in Figs. 2 and 3. In Fig. 2, in particular, we see
that cells migrate further away from the origin and in a more biased fashion when they
follow the corrected scheme (26) rather than the scheme (25). This is clearly the result
of the additional bias introduced in the drift term of the corrected scheme (26). The
qualitative difference between the two schemes can be further seen in Fig. 3 where
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Fig. 2 Experiment 2. Comparison of the migration tracks traversed the cells following the SDE schemes
(25) and (26). For both schemes, we considered initial position at (1, 1) and a total travelling time T = 1. a,b
the full migration tracks of 105 cells following the SDE scheme (25) and (26) respectively. c superimposing
the migration patterns of (a) and (b) clearly reveals that the corrected scheme (26) introduces additional
migratory bias

we present the final positions of the cells at time T of both schemes, along with their
corresponding convex hulls.

To measure the quantitative difference of the two schemes (25) and (26), we first
measure the average distance traversed by the cells from their initial position until the
final time T . In more detail, we perform K realisations of the schemes and calculate,
for each one, the distance between the initial and the final position. We then calculate
the average distance the cells have traversed by the formula

d = 1

K

K∑

i=1

√
(xi1,T − xi1,t0)

2 + (xi2,T − xi2,t0)
2, (27)
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Fig. 3 Experiment 2. Showing
here the final positions of all cell
migration after 105 realisations
of the SDE schemes (25) and
(26)—in orange and light blue
respectively—as shown in Fig.
2. All realisations start from
(1, 1) and run for time t ∈ [0, 1].
The corresponding convex hulls
of these final positions are also
shown. Note that the adaptation
in the drift term of the corrected
scheme (26), as opposed to the
scheme (25), induces additional
migration of the cells and spread
of their final positions (color
figure online)

where
(
xi1,t0 , x

i
2,t0

)
and

(
xi1,T , xi2,T

)
represent the initial and final positions of the

cells in the realisation i = 1, . . . , K . We apply the above formula for the two schemes
(25) and (26), after performing K = 106 realisations of each, calculate their respective
average distances d1 and d2 respectively, and evaluate the signed relative difference
between the two to obtain

E = d2 − d1
d1

≈ 0.076 . (28)

To further quantify the difference between the two schemes, we perform a uniform
binning approach of the final positions of the cancer cells as described in Anderson
et al. (2008). Namely, we consider a partition of the x1-axis into non-overlapping bins
of fixed size r , and assign to each bin the quantity:

Ui =
Ni∑

j=1

Ii, j , (29)

where Ni is the total number of positions (x1, x2) in the i-th bin and Ii, j is the j-th
element of the set Ii = {x2 : for positions (x1, x2) in the i-th bin}. The quantification
was made by computing the J2 criterion which is defined as follows

J2 = |Sw + Sb|
Sw

, (30)

where

Sw =
M∑

i=1

Pi Si , Sb =
M∑

i=1

Pi (μi − μ0)(μi − μ0)
T ,
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Pi = ni
K

, Si = E
[
(x − μ0)(x − μ0)

T ], μ0 =
M∑

i=1

Piμi (31)

where ni is the number of positions in the i-th bin, K is the number of realisations,
and μi is the mean value of i-th bin. After computing the J2 values of both schemes
(25) and (26), we compute the signed relative error for different values r of the size
of the bins

Er = J 2,r2 − J 1,r2

J 1,r2

, (32)

where J 1,r2 , J 2,r2 are the values of the J2-criterion for schemes (25) and (26) respec-
tively. Larger values of J2 correspond to better separated data. For the choice of
r = 0.01 + kh , where h = 0.001, for k = 1, . . . , 60 , we observe that for smaller
sizes of the bins we get larger values of J2 and that J 1,r2 < J 2,r2 for all the values of
r . The average value of the k−different values of Er is

Er ≈ 0.0082. (33)

This result provides a second confirmation that (26) introduces additional migratory
bias to the one side of the plane.

Experiment 3 In this experiment we consider a PDE that is more common in the field
of cancer invasion than the PDE in Eq. (23). Namely, we consider here a model where
the growth of the tumour depends on the extracellular environment. This could repre-
sent, e.g. an extracellular chemical signal, the density of the extracellular matrix, or a
completely different extracellular bio-chemical queue. Still, for the sake of simplicity
of presentation, we do not make any particular biological assumptions on the nature
of the extracellular environment and rather refer to it simply as “environment”.

Furthermore, we assume that this environment is non-uniform in space, does not
change in time, and influences the growth of tumour in a very specific fashion. These
assumptions are incorporated in the following model:

∂u

∂t
(t, x) − ∇ ·

(
∇v(x)u(t, x)

)
− ∇ ·

(
(v(x) − 1) ∇u(t, x)

)
= 0, (34)

where t ≥ 0, x = (x1, x2) ∈ � = [−12, 12]2, and where u : [0,∞) × � →
R represents the density of the cancer cells. As previously mentioned, we do not
investigate the biomedical realism of this model, nor do we interpret its findings under
this light.

The PDE (34) is augmented with the initial condition

u(0, x) = u(0, x1, x2) = 3 × 105 e−20(x21+x22 ), (35)
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Fig. 4 Experiment 3. Numerical solution of the PDE (34). a showing here the isolines of the concentration
u at time t = 0; they serve as initial conditions for the PDE (34). b the structure of the (fixed) extracellular
environment v that participates in the advection and diffusion terms of (34); the formula of v is given in
(36). c isolines of the solution u of the PDE (34) at the final time t = 10; they reveal a higher concentration
of the cancer cells in the “valleys” of the (fixed) extracellular environment v shown in b

for x ∈ � as shown in Fig. 4, and zero-Neumann boundary conditions over ∂�.
Furthermore, the (fixed) extracellular environment v : � → R, shown in Fig. 4, is
given by

v(x) = v(x1, x2) = 1 + 0.5
(
sin2(x1) + cos2(x2)

)
. (36)

Note that, for v given in (36), the diffusivity v(x) − 1 of (34) is non-negative for all
x ∈ �.

We plot in Fig. 4 the isolines of the solution of the PDE (34) at the final time t = 10.
These illustrate clearly a significantly higher concentration of the cancer cells in the
“valleys” of the extracellular environment v.
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Based on the advection and diffusion terms of the PDE (34), we rewrite the SDE
schemes (21) and (20) as follows:

xt+�t = xt − ∇v(xt )�t + √
2�t

√
v(xt ) − 1ξ1, (37a)

xt+�t = xt + √
2�t

√
v(xt ) − 1ξ2. (37b)

Note that the corrected SDE scheme (37b), which corresponds to the corrected scheme
(20), lacks a drift term; this is a result of the particular structure of the advection and
diffusion terms of the PDE (34) and the way they are combined in the drift term of
the corrected scheme (20).

The simulations that we perform for Experiment 3 are shown in Fig. 5 and are
similar to the ones for Experiment 2 (cf. Figs. 2 and 3). We note that the cell tracks of
the more intuitive scheme (37a) spread out from the origin in a lesser extend than the
corrected scheme (37b). This is due to the presence of the drift term in the scheme (37a)
which leads almost all cancer cells to high densities of the extracellular environment
v. On the other hand, the final positions of the sample paths given by (37b) concentrate
less in the “valleys” of the extracellular environment.

In Fig. 6 we present a direct qualitative comparison between the numerical solution
of the PDE (34) and the SDE schemes (37a) and (37b). What this figure shows is that,
at the final time t = 10, the positions of the cells of 104 realisations of the SDE scheme
(37a) are much more concentrated than the corresponding solution of the PDE (34).
On the other hand, the distribution at the same final time t = 10, of 104 realisations of
the corrected scheme (37b) is more spread out and much closer to the solution of the
PDE (34). In effect, these simulation results indicate that the corrected scheme (37b)
is a better approximation to the numerical solution of the PDE (34) than the scheme
(37a).

Similarly to Experiment 2, we quantify the difference between the two schemes by
measuring the corresponding average distances traversed by the cells from their initial
position. In more detail, we perform K = 104 realisations for each scheme, calculate
the average distances d1 and d2 using the formula (27), and their relative difference
via:

E = d2 − d1
d1

≈ 0.516 . (38)

To further quantify the difference of the two schemes, we perform a uniform binning
and calculate the relative error of the J2-criterion for (37a) and (37b) for k−different
values of the size r of the bins as in (32). We noticed that, for smaller values r we have
that again J 1,r2 < J 2,r2 .We choose r = 0.01+kh, where h = 0.001, for k = 1, ..., 140,
and calculate the average value of the k−different values of the signed relative error
Er which is

Er ≈ 3.0692 . (39)

This confirms, yet again, that (37b) brings an additional migratory bias to the move-
ment of solitary cancer cells to the entire plain.
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Fig. 5 Experiment 3. Simulations and comparison of 104 realisations of SDE schemes (37a) and (37b).
a, b full set of tracks/sample paths for the more intuitive scheme (37a) and the corrected scheme (37b)
respectively. It can be clearly seen that the spread in (37b) is much wider than in (37a); this is justified
by the adaptation introduced in the drift term of the corrected scheme (26). This remark is confirmed by
superimposing the cell tracks of (a) in (b) in (c). d this shows the final positions of the 104 realisations of
(37a) and (37b), in orange and light blue respectively, along with the convex hulls of the corresponding
points. It is clearly seen that the cells concentrate in the “valleys” of the environment v, cf. with the solution
of the PDE (34) in Fig. 4, and that the final positions of (37b) (shown in light blue) spread more than
those of (37a). The final positions of (37a) are not visible as they are overlapped by the final positions
of (37b) (color figure online)
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Fig. 6 Experiment 3. Qualitative comparison of the numerical solution of the PDE (34) against the pre-
dictions of the SDE schemes (37a) and (37b). a isolines of the final time solution u of the PDE (34), cf.
Fig. 4, superimposed with 104 (final time) realisations of the SDE scheme (37a). b isolines of the final time
solution u of the PDE (34), cf. Fig. 4, superimposed with 104 (final time) realisations of the SDE scheme
(37b). We note that the cells described by the SDE scheme (37a) are concentrated, at the final time, almost
exclusively in the “valleys” of the (fixed) environment v, cf. Fig. 4, much more than cells described by the
corrected SDE scheme (37b), and much more than the final time solution u of the PDE (34). The results
confirm that the corrected scheme (37b) offers a much better approximation of the PDE (34) than the more
more intuitive scheme (37a)

5 Discussion

In this paper we have investigated the long-standing question of bridging the scales in
problems of multiscale modelling and simulations. As we are motivated by the study
of cancer growth and invasion models, we can rephrase this question as follows: how
does one identify the correct SDEs (2) that dictate the migratory pattern of solitary
cancer cells or small clusters of cancer cell, when the macroscopic evolution of the
cancer cell colony follows the advection-diffusion PDE (1)?

We have exhibited in this paper, that the answer to this question is not trivial. The
usual heuristic understanding that the advection and diffusion terms of the PDE (1)
are responsible for the biased and random motion of the cancer cells, respectively,
is not precise. Were this correct, the drift term in the SDE schemes that describe the
migration of the cells in the solitary cell regime would have been solely dependent on
the advection termA of the PDE (1), as e.g. is the case in the numerical scheme (5).We
have seen with the derivations of the SDE schemes in Sect. 3 and with the numerical
investigations in Sect. 4 that this is not the case. On the contrary, we have shown with
(3) that the drift term of the correct SDE schemes should account for the advection A
as well as the divergence of the diffusion D of the PDE (1) in a very specific way.
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When comparing the corrected scheme (3) with themore heuristically expected one
(5), we see that their difference depends solely on the divergence of the diffusion D.
This clearly indicates that the two schemes would be/are identical in the case of space
independent diffusion D. If though, both the advection and diffusion terms depend
on the spatial variable—as is typically the case in cancer invasion models—then,
identifying the inconsistency of the SDE schemes with the underlying PDE is not
trivial and quite often is not readily apparent due to the inherent stochasticity.

From a biological/oncological perspective this is important in determining accu-
rately how far individual cancer cells can penetrate the local tissue, and so from a
clinical point of view the model results have much predictive potential. It is known
that resection margins (i.e. how much tissue is removed surgically) and the pattern of
cancer invasion are predictors both of local recurrence and of survival in patients who
undergo surgery (Tam et al. 2022; Lee et al. 2012; Spiro et al. 1999; Yokota et al. 1993;
Kim et al. 2014; Tsujitani et al. 1995). With further refinement, accurate parameterisa-
tion and testing, using the results from the model would enable quantitative estimates
to be made of the likely extent of local spread by an invasive cancer. This would then
enable a surgical oncologist to tailor the radicality of surgical excision for a given
individual situation. Further, more accurate estimation of metastatic spread (with the
associated implications for adjuvant systemic therapy) will also be possible.

Future work in further developing the insights gained from the current modelling
will focus on parameterising the model more accurately in order to make quantitative
comparisonwith any available data. A promising avenue of development in this regard,
given the difficulty in obtaining in vivo data, is to use in vitro data from organotypic
invasion assays (cf. Franssen et al. 2021; Nurmenniemi et al. 2009; Nyström et al.
2005).
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Appendix

A Numerical solution of advection-reaction-diffusion PDEs

We present here the main components of the numerical method we use to solve the
generic Advection-Reaction-Diffusion (ARD) system of the form

wt = A(w) + R(w) + D(w), (40)

where w = w(t, x), t ≥ 0, x ∈ � (domain), represents the solution vector, and A, R,
and D the advection, reaction, and diffusion operators respectively.

We denote bywh(t) the corresponding (semi-)discrete numerical approximation—
indexed here by the maximal spatial grid diameter h—that satisfies the system of
ODEs

∂twh = A(wh) + R(wh) + D(wh), (41)

where the numerical operators A, R, and D are discrete approximations of the oper-
ators A, R, and D in (40) respectively.

We use a second order Implicit-Explicit Runge-Kutta (IMEX-RK) Finite Vol-
ume (FV) numerical method that was previously developed in Kolbe et al. (2016);
Sfakianakis et al. (2017) where we refer for more details, see also Lakkis et al. (2012).
This method is based on a splitting in explicit and implicit terms in the form

∂twh = I(wh) + E(wh). (42)

The actual splitting depends on the particular problem in hand but in a typical case,
the advection terms A are treated explicitly in time, the diffusion terms D implicitly,
and the reaction termsR partly explicit and partly implicit.

After splitting, we employ a diagonally implicit RK method for the implicit part,
and an explicit RK for the explicit part. They are combined in the following scheme

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W∗
i = wn

h + τn

i−2∑

j=1

āi, jE j + τnāi,i−1Ei−1, i = 1 . . . s

Wi = W∗
i + τn

i−1∑

j=1

ai, j I j + τnai,i Ii , i = 1 . . . s

wn+1
h = wn

h + τn

s∑

i=1

b̄iEi + τn

s∑

i=1

bi Ii

, (43)
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Table 2 Butcher tableaux for the explicit (upper) and the implicit (lower) parts of the third order IMEX
scheme (43), see also Kennedy and Carpenter (2003)

0
1767732205903
2027836641118

1767732205903
2027836641118

3
5

5535828885825
10492691773637

788022342437
10882634858940

1 6485989280629
16251701735622 − 4246266847089

9704473918619
10755448449292
10357097424841

1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

0 0

1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

3
5

2746238789719
10658868560708 − 640167445237

6845629431997
1767732205903
4055673282236

1 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

where s = 4 are the stages of the IMEXmethod,Ei = E(Wi ), Ii = I(Wi ), i = 1 . . . s,
{b̄, Ā}, {b, A} are respectively the coefficients for the explicit and the implicit part
of the scheme, given by the Butcher Tableau in Table 2, cf. Kennedy and Carpenter
(2003).

We solve the linear systems in (43) using the iterative biconjugate gradient sta-
bilised Krylov subspace method, for which we refer to Krylov (1931); van der Vorst
(1992).

B Uniform binning

In this section we present some graphic results of the uniform binning performed
for Experiment 2 in Sect. 4. We illustrate the binning of the final positions of 105

realisations of both schemes (25) and (26). At the centre of each bin we place the
valueUi calculated in (29) for both schemes. We perform this sequence with different
sizes r of the bins. In addition we present in Table 3 the J2 values of the both schemes
(25) and (26) for r = {0.02, 0.04, 0.06} (Fig. 7).

Table 3 Bin size r and J2 values in Exp. 2

r 0.01 0.02 0.03 0.04 0.05 0.06 0.07

J2 of (25) ≈ 6.90562 1.67652 1.18584 1.07234 1.03471 1.01896 1.01138

J2 of (26) ≈ 7.24178 1.70981 1.19329 1.07589 1.03633 1.01929 1.01199

We also worked in a similar fashion for the schemes (37a) and (37b) in the Exper-
iment 3.
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Fig. 7 Experiment 2. Graphical comparison of uniform binning of the final positions of the migration tracks
traversed the cells following the SDE schemes (25) and (26) respectively. For both schemes, we considered
initial position at (1, 1) and a total travelling time T = 1. a uniform binning of the final positions of
migration tracks of 105 cells for the SDE schemes (25) and (25) with bin size r = 0.06. b Uniform binning
of the final positions of migration tracks of 105 cells for the SDE schemes (25) and (25) with bin size
r = 0.04. c uniform binning of the final positions of migration tracks of 105 cells for the SDE schemes
(25) and (25) with bin size r = 0.02
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