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Abstract 

The waters of the European North Atlantic are subject to an increasing amount of 

anthropogenic pressure. Much of the environmental legislation designed to protect 

cetaceans requires detailed knowledge of the abundance and distribution of cetaceans 

within these waters. This data often comes from large scale surveys. Data from two such 

series of surveys, spanning two time periods: the SCANS-II and CODA surveys in 2005/07 and 

the SCANS-III and ObSERVE surveys in 2016 were analysed using Generalised Additive 

Models to describe relationships between cetacean density and static and remotely 

accessed dynamic environmental features.  

Predictive models using spatial covariates as well as environmental predictors were created 

for the full survey area using the most recently available data. This was done to conduct a 

“baseline” snapshot, representing the best possible picture of cetacean distribution for the 

summer of 2016. Subsequent chapters focus in on specific ecoregions. These regions of 

relatively homogeneous habitat were selected with an aim of finding the best environmental 

predictors of genuine ecological relationships. 

In the North Sea ecoregion, models for harbour porpoise, minke whale, and white-beaked 

dolphin were also constructed using additional prey data, which were available only for this 

region. This was found to be no better than modelling only environmental covariates. Depth 

was one of the most commonly retained covariates for all three species in this ecoregion.   

 White-sided, bottlenose, common and striped dolphins and fin whale were investigated in 

the Celtic Seas, and Bay of Biscay and Iberian Peninsula ecoregions. Despite these two 

ecoregions being quite different, in most cases, model fits did not improve with the inclusion 

of ecoregion as a factor covariate, suggesting that relationships between species and their 

environment were similar across both regions.  
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1 General Introduction 
 

IT IS SPECIALLY THE PROVINCE OF MODERN SCIENCE TO EXPLAIN THE PHENOMENA OF 

NATURE ON KNOWN NATURAL LAWS AND FORCES, AND WITH THIS VIEW NO 

PHENOMENA ARE MORE INTERESTING THAN THOSE OF THE GEOGRAPHICAL 

DISTRIBUTION OF SPECIES.(Smith, 1868) 

1.1 Context 

Knowledge of where species exist, and where they do well, is one of the fundaments of 

ecology and conservation (Begon et al., 2006; O’Hara et al., 2017). In times of increasing 

anthropogenic pressure on marine ecosystems (Halpern et al., 2019, 2015), conservation 

and management efforts requiring spatially explicit estimates of density and distribution to 

assess impacts (CIEEM, 2018), can be hampered by a lack of knowledge and understanding 

about the ecology of populations. As such there is a growing need for information on the 

distribution of marine mammal species (Forney et al., 2015; Redfern et al., 2006).  

One such management mechanism, which is active across a large proportion of the region of 

interest in this thesis is the European Union Marine Strategy Framework Directive (MSFD) 

(E.U. 2008). Under this directive, EU member states describe what they consider to be a 

healthy and productive sea, defined as Good Environmental Status (GES). Using descriptor 

species, they then monitor and assess their marine habitats against the criteria for Good 

Environmental Status, and ensure they take appropriate action to maintain or achieve GES 

(E.U. 2008).  Within MSFD, there are four functional groups of marine mammals included for 

assessment and reporting. These are seals, baleen whales, small odontocetes and deep 

diving cetaceans (Authier et al., 2017). To fulfil international obligations under this 

framework, routine monitoring of the species in question must be undertaken.  This 

monitoring work can be expensive and is logistically challenging particularly in offshore 

areas.  

1.2 Filing the data gap - the initiation of large-scale cetacean surveys  

Considerable amounts of effort have been put into the investigation of cetacean abundance 

and distribution over the past 40 years or more (Kaschner et al., 2012). Surveys have 

covered a diverse range of habitats and target species, ranging from the Arctic to the 

Antarctic. One of the first such examples was initiated by the International Whaling 
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Commission (IWC), which commenced cetacean surveys in 1978 in the Southern Ocean. 

These targeted minke whales (Branch and Butterworth, 2001a), but recorded all cetaceans 

seen, and resulted in abundance estimates for eight other species over a twenty year period 

(Branch and Butterworth, 2001b; Kasamatsu and Joyce, 1995).   

In the U.S.A., a range of work has been carried out, covering both large-scale multi-species 

surveys and more targeted species-specific survey programmes. By 1986 in the Eastern 

Tropical Pacific, the U.S. National Marine Fisheries Service initiated a programme of large-

scale surveys to monitor trends in the abundance of dolphin populations, some of which 

were being affected by tuna purse-seining operations (Wade and Gerrodette, 1993).  

1.2.1 Large scale cetacean surveys in the Atlantic 
 

1.2.1.1 The Western North Atlantic 
In the western North Atlantic, the Cetacean and Turtle Assessment Program (CETAP 1982) 

ran between 1978-1982 investigating the distribution of cetaceans within the U.S. Exclusive 

Economic Zone (EEZ). In addition, 1981 saw the initiation of five surveys of Baffin Bay 

conducted for bowhead whale (Balaena mysticetus), beluga whale (Delphinapterus leucas) 

and narwhal (Monodon monoceros) which were repeated in 1982, 1991, 1993 and 1994 

(Heide-Jørgensen et al. 1993), (Heide-Jørgensen and Reeves 1996).  

Subsequent years saw considerable amounts of further survey work along the east coast of 

both Canada and the U.S.A. In 1991, shipboard surveys were conducted in the Gulf of Maine 

to  estimate the abundance of harbour porpoises (Phocoena phocoena) (Palka, 1995) and 

aerial surveys of beluga whales were conducted in James Bay, Hudson Bay and Ungava Bay 

(Canada) in 1993 (Kingsley, 2000).  

Amendments to the U.S. Marine Mammal Protection Act (MMPA) in 1994 (Section 117) 

require the production of annual stock assessment reports for all marine mammal species 

occurring in waters under U.S.A. jurisdiction (Waring et al., 2013). Consequently, activity 

increased in the following years and no less than 37 surveys were conducted between 1995 

and 2012 (Waring et al., 2015). 

The Atlantic Marine Assessment Program for Protected Species (AMAPPS) was set up in 

2010 to estimate the abundance, distribution, ecology and behaviour of marine mammals, 

turtles, and seabirds throughout the U.S. Atlantic Outer Continental Shelf, covering waters 

from Maine to the Florida Keys.  These surveys collect shipboard and aerial line transect 

data, as well as environmental data for 18 different species of marine mammals (Palka et al., 
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2017). The programme is now in its third phase, and  scheduled to run until at least 2024 

(NMFS 2021).  

1.2.1.2 The Eastern and Central North Atlantic 
The North Atlantic Sightings Surveys (NASS), now coordinated by the North Atlantic Marine 

Mammal Commission (NAMMCO), took place in 1987, 1989, 1995, 2001, 2007 (known as 

Trans-NASS – T-NASS) and 2015. These surveys aimed to obtain quantitative information on 

the abundance and distribution of all cetacean species within the survey area (Lockyer and 

Pike, 2009).  Surveys took place over a large geographical region, with data collection during 

NASS-87 taking place in the waters of Greenland, Norway, Iceland, and the Faroe Islands as 

well as extending down the west coast of the UK and Ireland, and down to northern Spain.  

Abundance estimates from these surveys have been published in reports to the 

International Whaling Commission (Buckland & Cattanach 1992a, Buckland and Cattanach 

1992a, 1992b, Cattanach et al. 1993) and a NAMMCO Scientific Publication series Special 

Issue (Lockyer and Pike, 2009). An additional aerial survey of Icelandic shelf and territorial 

waters was conducted in 2016 (Pike et al., 2020). Since 1995, Norwegian Independent Line 

Transect Surveys (NILS) have covered waters of the central and eastern Northeast Atlantic, 

primarily to estimate the abundance of minke whale (Balaenoptera acutorostrata) (Bøthun 

et al., 2009) 

In addition to NASS and NILS, a series of surveys has been conducted in European Atlantic 

waters focussing on the North Sea and European Continental Shelf waters. The Small 

Cetacean Abundance in the North Sea (SCANS) survey was conducted in summer 1994. 

Comprised of concurrent shipboard and aerial surveys, this was designed to generate precise 

and unbiased abundance estimates for the main species in this area. The surveys were 

initiated in response to concerns surrounding large levels of cetacean by-catch from 

fisheries. In the absence of baseline population size, it was very difficult to provide context 

for the reported mortalities.  During the first survey, around 20,000 km of shipboard 

transects were covered in an area of 890,000 km2, alongside 7,000 km of aerial transects in 

an area of 150,000 km2 (Hammond et al., 2002) (Figure 1.2-1).  
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Figure 1.2-1:Survey blocks for the SCANS survey which took place in 1995 (Hammond et al., 1994). All blocks 
were surveyed using ships.  

 

In July 2005, a second survey – SCANS-II – was conducted over a larger area, encompassing 

the entire EU Atlantic continental shelf. Overall coverage by the shipboard survey was 

19,725 km transects in an area of 1,005,743 km2, and 15,802 km aerial survey transects in an 

area of 364,371 km2 ( Hammond et al., 2013) (Figure 1.2-2).  

The 2005 survey produced abundance estimates for five of the 13 species seen during the 

survey: harbour porpoise, bottlenose dolphin (Tursiops truncatus), white-beaked dolphin, 

common dolphin (Dephinus delphis) and minke whale.  

The Cetacean Offshore Distribution and Abundance in the European Atlantic (CODA) project 

was conducted to expand coverage in European Atlantic waters beyond the continental 

shelf. The survey was conducted by ship in July 2007 and covered 9,651 km of transects 

within a 968,000 km2 survey area (Figure 1.2-2). This survey yielded abundance estimates for 

common dolphin, striped dolphin (Stenella coeruleoalba), bottlenose dolphin, long-finned 

pilot whale (Globicephala melas), minke whale, sperm whale (Physeter macrocephalus), fin 

whale (Balaenoptera physalus) and beaked whales (Ziphidae Sp.) (Hammond et al., 2009).  
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Figure 1.2-2 The survey blocks for the SCANS-II and CODA surveys.  Areas coloured in pink were surveyed using 
aircraft, areas in blue were surveyed using ships. The CODA area is designated by a darker blue.  

 

The third SCANS project – SCANS-III – took place in 2016, with survey effort again centred 

around July. This project covered the waters previously covered by the SCANS-II and CODA 

surveys combined (but not in Irish waters – see ObSERVE below), as well as extending north 

to include coastal waters of Norway as far as Vestfjorden. A total of 51,287 km of aerial 

survey transects was completed, along with 9,800 km of shipboard survey effort (Hammond 

et al., 2021).  

The ObSERVE project was one of the first initiatives to include winter data collection as well 

as summer. It took place during 2015 and 2016 and conducted aerial surveys of Ireland’s 

offshore and coastal waters. Over 37,000 km were flown during the combined surveys 

(Rogan et al., 2018).  ObSERVE and SCANS-III were designed in parallel so that the two 

survey areas would join, and the methods between the two surveys were compatible for 

joint analysis. Survey blocks for both the ObSERVE and SCANS-III survey are shown in Figure 

1.2-3. Data from the SCANS-II, SCANS-III and ObSERVE are analysed as part of this thesis.  
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Figure 1.2-3 The survey blocks for the SCANS-III and ObSERVE surveys.  Areas coloured in pink were surveyed 
using aircraft, areas in blue were surveyed using ships. The ObSERVE area is designated by a darker pink. The 
purple area of the Skagerrak to the north of Denmark was surveyed using both plane and ship.  

1.3 Estimating abundance from line transect surveys. 

A great deal has been written on line transect methodologies for cetaceans. Buckland, 

(2001); Buckland et al., (2015) and Hammond et al., (2021) provide detailed information; an 

overview is provided below.  

Line transect surveys are a way of estimating animal density. When undertaken for 

cetaceans they are generally conducted using ships, small boats or aircraft and involve 

surveying defined areas, often termed “strata”, by following defined transect lines, prepared 

in advance as part of a design to ensure each stratum is covered representatively.  

Survey teams typically consist of two observers, each searching one side of the ship or the 

plane, and a data recorder. Observers record sightings of animals. Details noted typically 

include the time of the sighting, location as GPS coordinates, species, and number of animals 

at a minimum. Additional information may include notes on behaviour of the animals or the 

cue for the sightings.  
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In traditional strip transect surveys, it is assumed that all animals on the survey trackline, 

and to a known distance to either side (the survey strip), are seen. The density can then be 

estimated by dividing the total number of animals (or groups) seen by the total area 

surveyed, calculated by adding all the lengths of the transect lines, multiplied by the width 

visible on either side of the trackline. For cetaceans, which spend large amounts of their 

time under the water when they are not available at the surface to be seen, the assumption 

that all animals in the survey strip are seen, is clearly violated. This leads to an 

underestimate of density and subsequently abundance.   

In a line transect (also known as distance sampling) survey, the assumption that all animals 

within the defined strip are detected is relaxed. This methodology only requires that all 

animals on the trackline are seen.  When conducting the survey, additional data on the 

perpendicular distance of the animal from the trackline are collected. Perpendicular distance 

is measured directly on aerial survey. On a ship, perpendicular distance is calculated from 

estimated distance from the observer to the detected animal or group of animals, and the 

angle subtended to the animal/group.   

These perpendicular distances are used to fit a detection function (Thomas et al., 2010), 

which provides an estimate of the average probability of detection within the strip. The 

effective strip width (ESW) is the result of multiplying the survey strip width by the average 

detection probability. Conventionally, this refers only to one half of the transect line, so in 

reality is the effective strip half-width.  

Although this method accounts for animals missed in the strip, it does not account for 

animals that may be missed on the transect line. The method still assumes that all animals 

on the trackline are seen to avoid under-estimating the true density. The term 

conventionally used for the probability of detection on the trackline is g(0).  

One way of estimating g(0) is to use double platform surveys. In this methodology, two 

independent teams of observers search for cetaceans. The “primary” observers operate as 

they would in a single platform survey, looking close to the ship and recording animals when 

they are encountered. The second team, often referred to as “trackers’, look much further 

ahead of the vessel, often with the aid of powerful binoculars. They search for animals far 

ahead of the vessel, which they then track as they come closer to the ship, until they come 

into range for the primary observers, thus setting up “trials” to see whether these animals 

are seen by the primary team. This methodology was implemented for the surveys analysed 

in this thesis. For full details of the methods, see Hammond et al., (2021, 2013). 
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1.4 Modelling analyses: adding value. 

Many cetacean species are wide-ranging and respond to changes in their environment by 

changing their distribution (Forney, 2000).  Considering this, and the fact that data are 

expensive and difficult to obtain, any technique that allows predictions as well as presenting 

the status quo is a valuable management tool for informing decision making (Cañadas et al., 

2005; Gilles et al., 2016; Guisan and Thuiller, 2005; Redfern et al., 2006).  Spatial modelling 

analyses fill the management need for spatial information at a management level.  

Habitat modelling is one example of this type of spatial modelling. It is a method that allows 

prediction of species distributions and, from the resulting models, an understanding of the 

ecological processes which might be driving these distributions (Hedley and Buckland, 2004; 

Redfern et al., 2006). Models relate species distribution data to information on 

environmental conditions at the same locations through statistical functions, and use these 

to map species distribution across a study region (Elith and Leathwick, 2009).   

Many modelling studies of this sort have been conducted for cetaceans. These vary by 

species, by geographic area, and by methodology used, but all aim to examine associations 

between the study species and different environmental parameters. For example, in 

northern California Current System (CCS) Tynan et al., (2005) used a multiple logistic 

regression model  to examine occurrence patterns for several species. Humpback whale 

August distribution was linked to temperature, depth, and distance to the upwelling front. 

Harbour porpoise distribution was associated with high chlorophyll concentrations and 

Pacific white-sided dolphin (Lagenorhynchus obliquidens) distribution was explained by 

distance to the upwelling front, and an acoustic backscatter parameter.  

Large scale surveys, like    the SCANS surveys in scope, have been conducted over the entire 

Hawaiian Islands Exclusive Economic Zone. These have generated habitat models for nine 

different species of cetacean, including spatially explicit density predictions (Becker, 2021). 

These models allow updated information on density to be provided to individual species 

assessment reports, one of the fundamental components of the management aspects of the 

Marine Mammal Protection Act, the cornerstone of U.S. marine mammal conservation 

(Roman et al., 2013). 

These kinds of models can also be used to combined data from multiple different platforms 

and years, again linking these to environmental covariates. One such set of models was 

completed by Roberts et al., (2016), and included information from 23 years of survey, 
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resulting in models for 26 species. These were centred around the U.S. Atlantic, and the Gulf 

of Mexico, and represented the first density maps produced for this region to be published.  

The eastern Atlantic has also been the focus of such studies, including those on hard-to-

study beaked whales (Rogan et al., 2017; Virgili et al., 2019); and those with the ambitious 

scope of the Joint Cetacean Protocol (JCP), which worked with a dataset combining 38 

different data sources, spanning a 17 year period (Paxton et al., 2016). 

Practical applications of these types of studies include, but are not limited to, the 

development of marine protected areas (Ana Cañadas et al., 2002; Embling et al., 2010), 

understanding the impacts of anthropogenic activities (Purdon et al., 2020), or predicting 

the potential impacts of climate change (Becker et al., 2019). 

Density surface modelling (DSM) is a type of habitat modelling that uses data specifically 

collected on line transect surveys, allowing the resulting models to be corrected for 

uncertain detection via distance sampling methodology (Miller et al., 2013).   

To make models as useful as possible some careful consideration must be made to the 

covariates that are used, not least because predictors may be acting in either parallel or 

interactive ways, and over different spatial and temporal scales (Wagner and Fortin, 2005).  

Generalised Additive Models (GAMs) are a well-established regression method, commonly 

used to investigate the relationships between species and their environments (Baines et al., 

2021; Becker et al., 2020; Booth et al., 2013; Redfern et al., 2006; Wood, 2006).  They are 

extremely flexible, which makes them suitable for capturing relationships between study 

species and environmental predictors that may be non-linear, via the use of smoothing 

functions (Redfern et al., 2006).  

A variety of studies have compared the performance of GAMS with that of other 

methodologies. These include boosted regression trees (BRTs) (Becker et al., 2020) and 

hierarchical Bayesian Models using integrated Nested Laplace Approximations (HBM-INLA) 

(Williamson et al., 2022). GAMs have been found in these cases to perform at least as well at 

the geospatial scale used in this thesis (Williamson et al., 2022), or better (Becker et al., 

2020). GAMS are therefore considered an appropriate method for this analysis and have 

been used throughout this thesis. 
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1.5 Building ecologically meaningful models 

Distribution of a species can be affected both directly and indirectly (Austin, 2002; Guisan 

and Thuiller, 2005; Guisan and Zimmermann, 2000). Austin (2002) describes three types of 

idealised environmental predictor in a study on plants:  

Indirect predictors may have no particular effect on the species of interest per se, but they 

correlate with species distribution, due to a location-dependent correlation with other 

variables which do have a direct influence on a species, for example longitude with fin 

whales (Azzellino et al., 2012). Resource predictors are those consumed by the species of 

interest. Direct predictors are those which have a direct physiological influence on a species 

but are not consumed directly – for example, temperature. Tropical delphinids, for example, 

may be restricted to warmer waters due to limitations on their thermoregulatory ability 

(Learmonth et al., 2006).  

The distribution of different species will be influenced in different ways.  Prey predictors, for 

example, are likely to have stronger effects on some species compared to others. It has been 

suggested that harbour porpoises (Phocoena phocoena) need to feed almost continuously 

(Wisniewska et al., 2016), thus it seems plausible that distribution of prey would have a 

direct effect on the distribution of harbour porpoises, as proximity is required at all times. 

This is less likely to hold true for many baleen whale species that have distinct breeding and 

feeding grounds (Chivers, 2009), where direct effect of prey may be expected on the feeding 

grounds, but would not be expected in the breeding grounds.   

Position of a predictor in the “chain” may also cause a variation in the effect it may have on 

a species (Austin, 2002). For example, the depth of the mixed layer in the North Sea has 

been linked to the presence of herring (Clupea harengus) (Maravelias, 1997). When 

considered as a predictor mixed layer depth may have a comparatively proximal influence 

on the presence of predators of herring, including marine mammal species. Looking at 

chlorophyll as a predictor however, there would be a more distal influence on predators of 

herring, as chlorophyll concentrations drive zooplankton concentrations, which are in  turn 

preyed upon by herring, which are in turn preyed upon by marine mammals (Dalpadado, 

2000).  Thus, chlorophyll would have a more distal effect.  

To build a model that is useful over large scales, both proximal and direct predictors are 

desirable (Guisan and Zimmermann, 2000). However, they are not always available, 

requiring the use instead, of more indirect measures (Austin, 2002). 
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Prey availability and distribution can be particularly difficult to measure, and consequently 

modelling studies of cetaceans do not often include prey density as a covariate (C. Lambert 

et al., 2014).  The problem is exacerbated because many cetacean species feed on a wide 

range of different prey species, and so reduction of one species may simply mean they 

switch to an alternative or may mean a change in distribution. Studies which were able to 

include prey data have had mixed results. Lambert et al (2014) examined cetacean density in 

relation to modelled distributions of potential prey species generated by the SEAPODYM 

model. They split cetacean species into three guilds, namely sperm and beaked whales (low 

energy requirement cetaceans), Globicephalinae (medium energy requirement cetaceans) 

and Delphininae (high energy requirement cetaceans).  In this study, both Delphininae and 

Globicephalinae were shown to select habitat where high levels or prey biomass was 

available at shallow depths, and thus within easier foraging range. (Benoit-Bird and Au, 

2003) also found a close overlap between spinner dolphins (Stenella longirostris) and prey 

species, but this work was done at a much finer scale than is possible using large-scale 

survey data. Studies of seabirds and pinnipeds found no spatial overlap between predators 

and areal biomass, density, of numerical abundance of prey (Benoit-Bird et al., 2013).  

This commonly results in the use of indirect variables instead, which are often easier to 

measure, although they may show a more distal influence on cetacean distribution.  Chapter 

4 makes use of some rarely available prey energy surfaces (Ransijn et al., 2019) to compare 

whether models including these perform better than those based only on indirect 

predictors.  

1.5.1 Environmental covariates used. 
As discussed above, this is not the first study to attempt to predict cetacean distribution 

using environmental covariates.  Each study will use its own suite of variables which have 

been selected based on their species of interest, their area of interest and the data that may 

be available to match the time period and resolution at which the cetacean data have been 

collected. Not only is the environment highly variable, but the factors that may be 

influencing the distribution of cetaceans are also varied. These include prey distribution, 

location of breeding and calving areas, likely prevalence of predators and also anthropogenic 

activity (Davis et al., 2002).  The study region encompasses habitat which, during the period 

the data were collected, all the species of interest are known to feed, even the two rorqual 

whale species for which feeding and calving is often separated. As a consequence, the 

covariates chosen to model their distribution within the study region primarily relate to 

factors which may be driving prey availability or foraging ability. Further information on 
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covariates is provided in Chapter 2, and maps of covariates are provided for specific 

modelling regions in Chapters 3-5. The following brief descriptions provide information on 

why different variables were included.  

1.5.1.1 Depth 
Cetaceans live in a 3-dimensional environment, and depth is crucial to defining the habitat a 

species is found in.  If a predator is known to feed on bottom-dwelling prey species, such as 

sand-eels, then the predator species is unlikely to be found in waters with depths that 

exceed their diving abilities. Similarly, if a species is feeding primarily on deep water prey 

species, such as many squid species, then that predator species is unlikely to be found 

routinely in a shallow water habitat.  Many studies have found depth to be an important 

covariate in models examining distribution of cetaceans. Examples include, but are by no 

means limited to, the Gully in Nova Scotia, for which seven species were found to have 

depth as a significant predictor (Hooker et al., 2011); harbour porpoises in the North Sea 

(Gilles et al., 2016)and studies of delphinid distribution in the Mediterranean (A Cañadas et 

al., 2002).  

1.5.1.2 Seabed rugosity 
In this thesis, this is modelled as both slope and as the standard deviation of depth (See 

chapter 2), but both are looking at changes in elevation of the seafloor.  Areas of steep 

slopes are often associated with nutrient rich waters as a result of upwelling processes, in 

which nutrient rich waters are brought closer to the surface. As a result, areas with steep 

slopes are often found to be good predictors for different species of cetacean. As with 

depth, this is a staple covariate, and relationships between slope and density have been 

found for nine species in the Gulf of Mexico (Davis et al., 2002), odontocetes in the Ligurian 

Sea (Azzellino et al., 2008), as well as a variety of species in the Bay of Biscay (Laran et al., 

2017). 

1.5.1.3 Mixed Layer Depth 
Mixed layer depth is the depth that separates the well mixed surface layer from the denser, 

stratified water below. It thought to influence cetacean distribution via influence on prey 

species directly as described for herring in the North Sea in the previous section and to have 

influence at a finer scale than some physiographic variables, such as depth  (Stephenson et 

al., 2020).  
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1.5.1.4 Sea surface temperature 
Sea surface temperature may work on cetacean species in two different ways. Sea surface 

temperature may also influence the distribution of different prey species, but it may also 

influence the distribution of the animals themselves. 

Cetaceans have evolved considerable insulation by way of a thick blubber layer. This 

primarily serves the purpose of insulating the animal and keeping them warm (Ryg et al., 

1993). When excess heat is generated, for example via exercise, then heat can be lost to the 

environment via the less well insulated extremities – the pectoral fins, dorsal fin and fluke 

(Kanwisher and Ridgway, 1983).  Some species are better adapted to cooler waters, and 

others to more tropical habitats (section 1.7.1 below); these adaptations limit the thermal 

window in which a species may comfortably exist (E. Lambert et al., 2014; Lambert et al., 

2011). Consequently, sea surface temperatures may be used to predict the distribution of a 

species. White-beaked dolphins, for example, are particularly associated with sea surface 

temperatures of 140C or lower (MacLeod et al., 2008).  

1.5.1.5 Salinity 
Areas of lower salinity are often associated with having higher levels of nutrients, due to 

run-off from land. These are usually very close to the coast and may form as plumes at river 

estuaries where the fresh and saline water mix. These more productive waters may prove to 

be good areas for different prey species. It is also possible within this study region that the 

areas of low salinity are acting in the model as a proxy for very shallow coastal waters. 

Nevertheless, salinity has been shown to contribute to describing cetacean distribution in 

other studies, for example white-beaked dolphins (Breen et al., 2016). 

1.5.1.6 Proximity to depth contours 
Depth contours are included in the list of potential modelling covariates, as they are a good 

proxy for changes in overall habitat. The 200m isobath demarcates the continental shelf 

break, as well as the approximate ending of the euphotic zone. In waters that exceed this 

depth, there is a change in habitat from a water column which is fully able to 

photosynthesise. The euphotic zone should be more productive waters (Khanna et al., 2009)  

1.5.1.7 Proximity to seabed features 
Rather than modelling the seabed as a combination of different proxy variables, such as 

depth and slope, it is sometimes possible to use the actual seafloor geomorphic features 

themselves as predictors. For example, it may be more appropriate to model “distance to 

seamount” than it is to model a combination of depth or slope. This was shown to be 

successful with striped dolphin by Claro et al., (2020).A selection of different seabed features 
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have been included in the models for chapter 5. The were not included for the models of 

chapter 4, as the features do not occur within the North Sea region.  

1.5.1.8 Measures of mesoscale activity  
Predator abundance and diversity is driven by oceanographic conditions (Scales et al., 2014).  

Whilst marine biodiversity at a global scale is regulated by sea surface temperature (Worm 

et al., 2005), at ocean-basin scale (mesoscale activity refers to changes in flows at a 10s to 

100s of km scale) biodiversity is generally higher in the productive zones associated with 

currents, upwellings and changes in bathymetry. Eddies create movement throughout the 

water column, which redistributes nutrients and other biomass creating areas of increased 

productivity, and persistent aggregation of low-trophic-level prey.  Fish then feed along 

density structures in these eddies, which in turn then attracts predators (Godø et al., 2012; 

Pardo et al., 2015).  

The location of eddies and other oceanographic processes, such as fronts, which may 

indicate areas of higher productivity can be shown using remotely sensed variables.  

absolute dynamic topography (ADT) as well as sea surface height (SSH) and sea level 

anomaly (SLA), from which ADT is derived (Figure 1.5-1). As eddies and other processes 

cause changes in density of water, the volume of the water will also decrease slightly. This 

will result in a corresponding decline in the hight of ADT. ADT, SSH and SLA can therefore be 

used as indicators of mesoscale activity when modelling cetacean distribution. Previous 

studies using these variables include an examination of links between common dolphins and 

blue whales and ADT in the Northeast Pacific Ocean (Pardo et al., 2015)  and between nine 

different cetacean species and SSH and SLA (Correia et al., 2021).  
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Reference ellipsoid: smoothed mathematical representation of Earth's sea level surface, ignoring   the effects of 

tides, seasonal currents, and waves. 

Geoid: the shape that the ocean surface would take under the influence of gravity and the earth’s rotation, 

assuming other influences such as tide and wind were absent.  

MSS: 20-year Mean Sea Surface above the ellipsoid  

SLA: Sea level anomaly (difference between MSS and sea level at time of measurement) 

MDT: Mean Dynamic Topography: mean departure of the sea surface from the geoid due to ocean dynamics. 

ADT: Absolute Dynamic Topography: departure of the sea surface from the geoid due to ocean dynamics. ADT = 

MDT+SLA 

SSH: Sea Surface Height: height of the sea surface above the ellipsoid.  

 
Figure 1.5-1: Schematic showing the differences between the different measures of mesoscale activity SLA, 
ADT and SSH with reference to the geoid. Adapted from (Fernandez and Lellouche, 2021) 

 

1.5.2 Spatial scale 
Marine ecosystems are highly variable. The scale of variation can be anything from a single 

tidal cycle to multi-year processes and spatially can range from meters to many thousands of 

kilometres (Becker et al., 2019; Forney et al., 2015; Redfern et al., 2006). The scale at which 

modelling can be conducted is determined by the resolution of the data. The data used in 

this study were collected at a very large spatial scale.  Whilst these data are not sufficiently 

detailed to conduct fine scale modelling, it is possible to split the survey region into areas of 

more similar habitat, with the objective of isolating predictors which may work better at 

predicting animal distribution. The regions selected for this thesis are the International 

Council for the Exploration of the Sea (ICES) marine ecoregions.  

 

https://en.wikipedia.org/wiki/Ocean
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1.5.2.1 ICES marine Ecoregions 
Ecoregions are defined based on similarity of biogeographic and oceanographic features 

(ICES, 2020a). Twelve ecoregions for the Northeast Atlantic were proposed in 2015 and are 

now used for all ICES-based advice. Of these 12 ecoregions (Figure 1.5-2), three are primarily 

used in this thesis; the Greater North Sea ecoregion (Chapter 4) and the Celtic Seas, and Bay 

of Biscay & Iberian Coast ecoregions (Chapter 5).  Details of the oceanographic 

characteristics are provided in the introductions to the chapters in which they are used.  

 

Figure 1.5-2 The 12 ICES ecoregions. Figure taken from ICES 2020, p1.  

 

1.6 The study region 

The study region for this thesis spans approximately 2,447,300 km2 and more than 300 of 

latitude, from northern Norway to the Straits of Gibraltar (Figure 1.6-1). Such a large area 

encompasses a wide range of habitats and includes parts of seven different ICES ecoregions 

(although the focus is primarily on three of these). Water depths extend from the coast to 

more than 5000m. The deeper parts of the region are heavily influenced by oceanic inputs, 

as well as by prevailing strong westerly winds which can cause the build-up of large swells 

leading to the surface layers being well mixed (McMahon, 1995). Along with the North East 

Trade Winds these drive the North Atlantic Gyre which is a system of comparatively warm 
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waters which flows northwards from Portugal and up past the coast of Ireland (Gonzalez-

Pola et al., 2018).  By contrast, the North Sea region is a temperate shelf sea with 

permanently mixed water in the south and east, and seasonally stratified layers to the north 

(ICES, 2020b).  

 

 

Figure 1.6-1 LEFT: Map of the study region in the north-east Atlantic. Blue areas were surveyed in 2016 by ship, 
pink areas by air. Red lines denote the three ecoregions which are used in chapters 4 and 5. RIGHT: the three 
ecoregions labelled.  

1.7 The Northeast Atlantic Cetacean Community 

The considerable variation in habitat in the study region results in a diverse cetacean 

community. At least 25 different species (Hammond et al., 2009; P. S. Hammond et al., 2013; 

Reid et al., 2003; Rogan et al., 2018; Wall et al., 2013) and maybe as many as 36 species 

(Evans, 2020) have been recorded in these waters. Of these, at least 15 are considered to be 

resident (Reid et al., 2003; Wall et al., 2013).  This thesis looks at 8 of these species. These 

are harbour porpoise – Phocoena phocoena, minke whale – Balaenoptera acutorostrata, 

white-beaked dolphin – Lagenorhynchus albirostris, (chapters 3 & 4) white-sided dolphin – 

Lagenorhynchus acutus, bottlenose dolphin – Tursiops truncatus, common dolphin – 

Delphinus delphis, striped dolphin – Stenella coeruleoalba, fin whale – Balaenoptera 

physalus) (chapters 3 & 5). Due to the number of species, an extensive review of the 
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literature for each is not provided, however relevant background material is presented in 

detail in the introduction sections to the chapters in which their density has been modelled. 

The following brief sections outline the key features of the distribution of each study species 

within the region, as well as the habitat in which they are most frequently sighted.  

1.7.1 Harbour porpoise – Phocoena phocoena 
The harbour porpoise is the most commonly abundant cetacean species in the region, and is 

sighted most commonly on the continental shelf, with an estimated 504,829 animals within 

the study region (Hammond et al., 2021; Rogan et al., 2018, see also chapter 3). The species 

is distributed throughout the shelf waters of the study region, from the Barents Sea and 

Iceland in the north, to the coasts of France and Spain in the south (Evans, 2020; Reid et al., 

2003). There is also a discrete West African population, with sightings and acoustic 

detections recorded in Moroccan waters (Boisseau et al., 2007), showing the species is 

capable of inhabiting both sup-polar waters.  

Whilst they do occasionally form large aggregations, they are usually found in smaller groups 

of 1-3 animals. The SCANS-III survey reported a mean group size of 1.53 individuals 

(Hammond et al., 2021). 

 

Harbour porpoises are small; adult females are around 150cm long on average and males 

slightly smaller.  They are well adapted to living in cold water (110C – 140C) (Bjørge and 

Tolley, 2018), with a selection of different adaptations to this environment. These include 

extremely thick blubber relative to body size and blubber which has the lowest thermal 

conductivity recorded for any cetacean species. In comparison with the Pantropical spotted 

dolphins (Stenella attenuata), which is a similar size, but inhabits tropical waters, harbour 

porpoise was found to have twice the blubber thickness (1.5 ± 0.3cm ) compared to (0.8 ± 

0.1cm), and conductivity of 0.1 ± 0.01 Wm-1, compared with 0.2 ± 0.01 Wm-1 in the spotted 

dolphin (Worthy and Edwards, 1990). This blubber layer is energetically expensive to 

maintain, and so harbour porpoises require the ability to locate predictable, high densities of 

prey in order to maintain their insulation (Wisniewska et al., 2016). They feed on many prey 

species, and some studies have shown that their choice of prey may be dependent on 

calorie content (Andreasen et al., 2017; Heide-Jørgensen et al., 2011; Spitz et al., 2012).  This 

species is known to eat both pelagic and demersal prey (Leopold et al., 2015) 

 

Harbour porpoises are typically noted to be a species found on the continental shelf, in 

waters shallower than 200m. Animals tagged in Danish waters, to the far east of the study 
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region of this thesis, were found to conduct multiple short dives - between 29 and 43 per 

hour depending on the season. Dive depth was found to correspond to the depth of the 

water column itself, usually not exceeding 50m, although the maximum recorded was 132m 

(Teilmann et al., 2023). Harbour porpoises are physically able to dive deeper and longer, 

however, with studies of tagged animals in Greenland waters revealing movements into 

waters well past the continental shelf, and an average dive depth of 248m, with the deepest 

reaching 410m (Nielsen et al., 2018). Models for this species are explored in chapter 4. 

Locations of sightings within the study region are shown in Figure 1.7-1. 

 

Figure 1.7-1 Locations of the combined harbour porpoise sightings (blue dots) seen during the surveys analysed 
in this thesis (SCANS-II, CODA, SCANS-III and ObSERVE), showing where they were most commonly recorded in 
relation to the three ecoregions modelled in chapters 4 and 5.  

 

1.7.2 White-beaked dolphin – Lagenorynchus albirostris 
White-beaked dolphins are generally a sub-polar species, associated with sea surface 

temperatures of 20C to 130C (Evans, 2020). Their northeast Atlantic distribution ranges from 

southwest Greenland, Svalbard and the Barents sea to the Bay of Biscay (Evans, 2020; Reid 

et al., 2003; Wall et al., 2013).  Described by Kinze (2018) as a facultative coastal species, 

within the study region, they are found almost entirely in waters shallower 200m, but do 

also occur in deeper waters in other parts of their range (Hansen and Heide-Jørgensen, 

2013).  Within the study region they are known to prey upon demersal and pelagic fish 

(Canning et al., 2008; Jansen et al., 2010).  The diving capabilities of this species have not 
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been extensively studied, but two tags applied to individuals caught in Iceland recorded 

dives to the bottom of the bay in which the animals were swimming – a depth of 45m. 

Dolphins were noted to conduct both U and V shaped dives, with more time and more 

acoustic activity expended in  U shaped dives (Rasmussen et al., 2013).  

 

The SCANS-III survey reported a mean group size of 3.86 individuals and an abundance of 

36,287 animals (95% C.I. 20,790 – 63,334) (Hammond et al., 2021, see also chapter 3) within 

the study region. Models for this species are explored in chapter 4. Locations of sightings 

within the study region are shown in Figure 1.7-2. 

 

 

Figure 1.7-2 Locations of the combined white-beaked dolphin sightings (blue dots) seen during the surveys 
analysed in this thesis (SCANS-II, CODA, SCANS-III and ObSERVE), showing where they were most commonly 
recorded in relation to the three ecoregions modelled in chapters 4 and 5.  

 

1.7.3 Minke whale – Balaenoptera acutorostrata 
Minke whales have a widespread distribution, ranging from the tropics to the ice-edge, and 

are widespread throughout the study region as well as the wider North Atlantic in general. 

The species can be found in both coastal and offshore waters (Perrin et al., 2018). Most 

baleen whales conduct a seasonal migration from high latitude summer feeding grounds to 

lower latitude winter breeding grounds and it is thought that minke whales do the same, 
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with the study region representing summer feeding habitat for this species (Risch et al., 

2014; Víkingsson and Heide-Jørgensen, 2015). Records of minke whales have, however, been 

made within the study region all year round including some of adults accompanied by 

“young calves” which has led to speculation that some females at least may calve in more 

northerly waters (Anderwald and Evans, 2007; Evans, 2020; Kavanagh et al., 2018).  

 

Telemetry studies of minke whales tagged in Norway and California have shown minke 

whales to rarely diver deeper than 120m, with most dives being much shorter (Kvadsheim et 

al., 2017). Like other rorqual whales, minke whales are obligate lunge filter feeders. This 

technique involves engulfing large volumes of water, ideally also including a high density of 

prey. This process incurs significant drag and energy expenditure which can limit diving 

ability, resulting in a trade-off between foraging efficiency and prey density. Spitz et al., 

(2012) demonstrated that minke whales have a high metabolic cost of living, and as such 

need to target prey patches with high calorie densities. Within the study area this species 

has been reported feeding on both demersal and pelagic species (Meier et al., 2016; Pierce 

et al., 2004; Víkingsson et al., 2014).  

 

The SCANS-III survey reported a mean group size of 1.05 individuals (Hammond et al., 2021). 

The most recent abundance estimate across 21,338 animals (Hammond et al., 2021; Rogan 

et al., 2018, see also Chapter 3). Models for this species are explored in chapter 4. Locations 

of sightings within the study region are shown in Figure 1.7-3. 
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Figure 1.7-3 Locations of the combined minke whale sightings (blue dots) seen during the surveys analysed in 
this thesis (SCANS-II, CODA, SCANS-III and ObSERVE), showing where they were most commonly recorded in 
relation to the three ecoregions modelled in chapters 4 and 5.  

 

1.7.4 Atlantic white-sided dolphin – Lagenorynchus acutus 
Atlantic white-sided dolphins are a temperate and sub-polar species, found predominantly in 

waters of 50C to 160C (Cipriano, 2018). The northeast Atlantic distribution of this species 

extends from Iceland and the Barents Sea down to Ireland, and occasionally into the Bay of 

Biscay (Evans, 2020; Reid et al., 2003; Wall et al., 2013). This species is frequently sighted in 

large schools (Reid et al., 2003; Wall et al., 2013), but the SCANS-III survey reported a low 

mean group size of 3.02 individuals (Hammond et al., 2021).Abundance estimates for white-

sided dolphins from the SCANS-III and ObSERVE surveys sum to 18,416 individuals 

(Hammond et al., 2021; Rogan et al., 2018, see also chapter 3). 

 

This species is not well studied within the survey region. In the northwest Atlantic, analysis 

of stomach contents revealed a wide range of prey species, including cephalopods, 

lanternfish species, cod (Gadus morhua, haddock (Melanogrammus aeglefinus), sand eels 

(Ammodytes spp)  and  other pelagic and demersal species (Craddock et al., 2009). In the 

northeast Atlantic, stomach contents analyses determined the diet to be comprised mainly 

by teleost fish, comprising mostly of Gadiformes. The most important species by weight was 
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blue whiting (Micromesistius poutassou), contributing 36.8% of the overall weight, along 

with Atlantic mackerel (Scomber scombrus) which also contributed 20.6% of the total 

reconstructed mass. Mesopelagic fish were also found to be important. Notably, these are 

prey species which for the most part are species found primarily in shelf waters (Hernandez-

Milian et al., 2016).  

 

Models for this species are explored in chapter 4. Locations of sightings within the study 

region are shown in Figure 1.7-4. 

 

 

Figure 1.7-4 Locations of the combined white-sided dolphin sightings (blue dots) seen during the surveys 
analysed in this thesis (SCANS-II, CODA, SCANS-III and ObSERVE), showing where they were most commonly 
recorded in relation to the three ecoregions modelled in chapters 4 and 5.  

 

1.7.5 Bottlenose dolphin- Tursiops truncatus 
Bottlenose dolphins have a very wide distribution, and substantial geographical variation in 

morphology (Wells and Scott, 2018). In the eastern north Atlantic, the species occurs from 

the Faroe Islands as far south as the equator and beyond (Evans, 2020). It has been 

suggested that the extreme limits to bottlenose dolphin distribution are related to 

temperature, either directly, or indirectly through the distribution of prey (Wells and Scott, 

2018).  Bottlenose dolphins are often found in pelagic waters and over the continental shelf, 
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especially along the shelf break (Reid et al., 2003; Wall et al., 2013). Mean group size from 

the SCANS-III survey was 4.4 animals (Hammond et al., 2021).  Estimated abundance from 

the SCANS-III and ObSERVE surveys is 120,543 (Hammond et al., 2021; Rogan et al., 2018, 

see also chapter 3).  

Bottlenose dolphins are known to forage both in the water column and the seabed, and 

were acoustically tracked dive to at least 50m in a coastal environment  (Hastie et al., 2006), 

and using time-depth recorders were routinely carrying out night-time dives of more than 

450m depth in deep water environments near Bermuda (Klatsky et al., 2007). Prey species 

likely vary hugely, representing the wide range of habitats used by this species. It is also 

likely that there are demographic differences in prey, as males and females often live in 

different groups, and different areas (Barros & Odell, 1990; Mead & Potter, 1990).  Captive 

studies have estimated that adult male bottlenose dolphins would require approximately 

2000 kg prey per year (Kastelein et al., 2002).  

As well as oceanic bottlenose dolphins, small coastal populations of bottlenose dolphins also 

exist, which may be morphologically different (Louis et al., 2014; Oudejans et al., 2015). 

These more resident animals are better studied using other methods, such as mark 

recapture (e.g. Cheney et al., 2014, 2013; Arso Civil 2014) than large-scale surveys such as 

those analysed in this thesis. Models for this species are explored in chapter 5.  Locations of 

sightings within the study region are shown in Figure 1.7-5 

 



 

25 
 

 

Figure 1.7-5 Locations of the combined bottlenose dolphin sightings (blue dots) seen during the surveys 
analysed in this thesis (SCANS-II, CODA, SCANS-III and ObSERVE), showing where they were most commonly 
recorded in relation to the three ecoregions modelled in chapters 4 and 5.  

 

 

1.7.6 Common dolphin – Delphinus delphis 
Common dolphins are widely distributed throughout the eastern North Atlantic, extending 

as far north as 650N around the west side of Norway and the Faroe Islands and well past the 

southern extent of the study region (Evans, 2020). Usually seen in shelf waters, common 

dolphins conduct considerable seasonal and inter-annual movements (e.g. Laran et al., 2017; 

Rogan et al., 2018). 

Individuals can undertake foraging dives to at least 200m (Perrin, 2018), and they are known 

to feed on pelagic schooling fish (Moura et al., 2012; Pusineri et al., 2007). Spitz et al., (2012) 

classified common dolphins as being “energetically costly”, meaning that they need to select 

prey with high energetic content to meet their energetic needs.  

Whilst group sizes of common dolphins can number into the thousands, the mean group size 

from the SCANS-III survey was 7.12 animals (Hammond et al., 2021), and estimated 

abundance across the survey region is  487,093 543 (Hammond et al., 2021; Rogan et al., 
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2018, see also chapter 3). Models for this species are explored in chapter 5. Locations of 

sightings within the study region are shown in Figure 1.7-6. 

 

Figure 1.7-6 Locations of the combined common dolphin sightings (blue dots) seen during the surveys analysed 
in this thesis (SCANS-II, CODA, SCANS-III and ObSERVE), showing where they were most commonly recorded in 
relation to the three ecoregions modelled in chapters 4 and 5.  

 

1.7.7 Striped dolphin – Stenella coereualba 
Striped dolphins are found worldwide, most commonly in warm waters. An oceanic dolphin, 

the species is most commonly found beyond the continental shelf, in waters over the slope 

and beyond. Most of their records come from waters of 180C -220C The northern limit of 

distribution appears to be linked to the northern extent of the Gulf Stream. Striped dolphin 

distribution extends well past the southern extent of the study region into waters 

surrounding South Africa (Archer, 2018). Mean group size from the SCANS-III survey was 

27.2 animals (Hammond et al., 2021), and abundance across the region was estimated as 

441,455 (Hammond et al., 2021; Rogan et al., 2018, see also chapter 3).  

 

It is thought that striped dolphins feed at depths of between 200-700m (Archer and Perrin, 

1999), with the majority of feeding activity potentially taking place at night or at dusk 

(Ringelstein et al., 2006)  when prey items may be migrating closer to the surface. Stomach 

content analysis of stranded animals from the Bay of Biscay has revealed a diet of fish, 
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cephalopods and crustaceans, with lanternfish featuring prominently along with 

Teuthowenia megalops and Histioteuthis spp of squid (Archer and Perrin, 1999). 

 

Striped dolphins are known to be able to utilise prey resources from a variety of different 

habitats, including neritic and coastal prey species as well as the more usual oceanic prey 

(Spitz et al., 2006). Models for this species are explored in chapter 5.  Locations of sightings 

within the study region are shown in Figure 1.7-7. 

 

 

Figure 1.7-7 Locations of the combined striped dolphin sightings (blue dots) seen during the surveys analysed 
in this thesis (SCANS-II, CODA, SCANS-III and ObSERVE), showing where they were most commonly recorded in 
relation to the three ecoregions modelled in chapters 4 and 5.  

 

1.7.8 Fin whale – Balaenoptera physalis 
Fin whales are a cosmopolitan species and can be found from tropical to polar regions in 

most of the worlds large water masses (Edwards et al., 2015), with density tending to be 

higher beyond the continental shelf (Aguilar and García-Vernet, 2018), and most records 

from the study region occur in waters 400m-2000m deep (Evans, 2020). Fin whales have 

been associated with areas of high seabed rugosity, and areas of high zooplankton 

concentration (Ingram et al., 2007; Skern-Mauritzen et al., 2009). Like most baleen whale 

species, fin whales feed primarily in the summer and fast during the winter months. 

However, the geographical extent of the migration of animals in the North Atlantic is less 
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well defined than in other areas, and it has been suggested that because of the influence of 

the Gulf Stream, higher latitudes are suitable as wintering grounds than would be the case 

elsewhere (Aguilar and García-Vernet, 2018). Alternatively, individuals may concentrate near 

the coast during feeding season, then move further offshore during the winter which would 

account for the lower number of recordings during winter months (Aguilar and García-

Vernet, 2018). Certainly there are recordings from the study region year round (Reid et al., 

2003; Wall et al., 2013). Mean group size from the SCANS-III survey was 1.37 animals 

(Hammond et al., 2021). Abundance of this species across the region was estimated as 27, 

388 (Hammond et al., 2021; Rogan et al., 2018, see also chapter 3). Models for this species 

are explored in chapter 5. Locations of sightings within the study region are shown in Figure 

1.7-8. 

 

Figure 1.7-8 Locations of the combined fin whale sightings (blue dots) seen during the surveys analysed in this 
thesis (SCANS-II, CODA, SCANS-III and ObSERVE), showing where they were most commonly recorded in 
relation to the three ecoregions modelled in chapters 4 and 5.  
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1.8 Thesis goals and structure 

This thesis is a modelling study of cetaceans in European Atlantic waters, using data 

collected from large scale, international surveys, namely the SCANS series of surveys (P. 

Hammond et al., 2021; P. S. Hammond et al., 2013, 2002), and the ObSERVE survey in Irish 

waters (Rogan et al., 2018).  

Chapter 2 describes the field methods used for data collection across surveys, the data 

processing methods used to ensure modelled data were handled in a standardized fashion, 

the covariates used and the modelling process itself. I was cruise leader for the UK SCANS-III 

survey ship, which collected data for 6 weeks off in the offshore blocks to the west of 

Scotland and in the Bay of Biscay. The remainder of the data used in this thesis were 

collected by others as part of the survey projects outlined above. All the data processing and 

modelling was done by me.  

Chapter 3 provides a snapshot overview of the study region in its entirety. This chapter is 

intended to give context to other three data chapters by providing the most up-to-date 

abundance estimates and predicted distribution maps of the cetacean species which will be 

examined in more detail at an ecoregion scale. The objectives of this work are to provide 

indications of species distribution and then explore those using initial correlative models.  

This overview was part of the main SCANS-III project, more details of which can be found in 

Lacey et al., (2022), for which I conducted all the analysis. Although sharing an origin, this 

chapter contains slightly different work than that the SCANS-III reports, as these models also 

include data from the ObSERVE surveys, which are not included in Lacey et al., (2022). The 

geographical area covered by this chapter is shown in Figure 1.8-1.  
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Figure 1.8-1: Completed effort for each of the main surveys for which data have been used. SCANS-II, CODA 
and SCANS-II data show arial survey blocks in pink, and ship survey blocks in blue. The ObSERVE map is taken 
from Figure 3.2 of Rogan et al., 2018. This is colour coded showing aerial effort achieved in different sea states, 
with seastate 1 shown in green, and seastate 2 shown in brown. All ObSERVE effort was aerial surveys.  

 

Chapter 4 focuses on the North Sea ecoregion. It investigates the three most encountered 

cetacean species in the North Sea ecoregion, the harbour porpoise (Phocoena phocoena), 

minke whale (Balaenoptera acutorostrata), and white-beaked dolphin (Lagenorhynchus 

albirostris), using explanatory modelling including both environmental and prey data to 

investigate the factors driving the distribution of these three species within this ecoregion. 

The objectives of this work are to provide more detailed indications of species distribution 

within this specific ecoregion. These were then explored using initial correlative models. 

Combined year models aimed to identify any persistent relationships with covariates over 

time with the aim of these having better predictive capabilities.   The geographical area 

covered by this chapter is shown in Figure 1.8-2 
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Figure 1.8-2: The Greater North Sea Ecoregion (dark blue) as defined by ICES, shown as a sub-region of the 
main SCANS/ObSERVE study area for which data are available. Named regions: A) Skagerrak, B), Kattegat, C) 
North Sea, D) English Channel.  

 

Chapter 5 focuses on the species most encountered to the west of the UK and Ireland in the 

Celtic Seas, and Bay of Biscay & Iberian Coast ecoregions. Considered together because of 

the commonality of species across them, this chapter uses explanatory modelling to look at 

the environmental factors influencing the distribution of offshore bottlenose dolphin 

(Tursiops truncatus), Atlantic white-sided dolphin (Lagenorhynchus acutus), common dolphin 

(Delphinus delphis), striped dolphin (Stenella coeruleoalba), and fin whale (Balaenoptera 

physalus) in these two ecoregions. As with chapter 4, the objectives of this work are to 

provide more detailed indications of species distribution within this specific ecoregion. 

These were then explored using initial correlative models. Combined year models aimed to 

identify any persistent relationships with covariates over time with the aim of these having 

better predictive capabilities.   The geographical area covered by this chapter is shown in 

Figure 1.8-3  
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Figure 1.8-3: Location of the Celtic Sea ecoregion (top area with red boundary) and the Bay of Biscay ecoegion 
(lower area with red boundary) in comparison to the 2016 survey areas. Areas surveyd by ship are shown in 
blue, and areas survey by air are shown in pink.  

 

Chapter 6 (general discussion) provides a final summary of the thesis results, before placing 

these into a wider context.  

 



 

33 
 

1.9 Literature Cited 

 
Aguilar, A., García-Vernet, R., 2018. Fin Whale, in: Encyclopedia of Marine Mammals. 

Elsevier, pp. 368–371. https://doi.org/10.1016/B978-0-12-804327-1.00128-X 
Anderwald, P., Evans, P.G.H., 2007. Minke whale populations in the North Atlantic: An 

overview with special reference to UK waters, in: An Integrated Approach to Non-
Lethal Research on Minke Whales in European Waters, ECS Special Publication 
Series. San Sebastian, pp. 8–13. 

Andreasen, H., Ross, S.D., Siebert, U., Andersen, N.G., Ronnenberg, K., Gilles, A., 2017. Diet 
composition and food consumption rate of harbor porpoises (Phocoena phocoena) 
in the western Baltic Sea. Mar. Mammal Sci. 33, 1053–1079. 
https://doi.org/10.1111/mms.12421 

Archer, F.I., 2018. Striped Dolphin, in: Encyclopedia of Marine Mammals. Elsevier, pp. 954–
956. https://doi.org/10.1016/B978-0-12-804327-1.00251-X 

Archer, F.I., Perrin, W.F., 1999. Stenella coeruleoalba. Mamm. Species 603, 1–9. 
Arso Civil, M., 2014. Population Ecology of Bottlenose Dolphins (Tursiops truncatus ) off the 

East Coast of Scotland. University of St Andrews. 
Austin, M.P., 2002. Spatial prediction of species distribution: an interface between ecological 

theory and statistical modelling. Ecol. Model. 157, 101–118. 
https://doi.org/10.1016/S0304-3800(02)00205-3 

Authier, M., Commanducci, F.D., Genov, T., Holcer, D., Ridoux, V., Salivas, M., Santos, M.B., 
Spitz, J., 2017. Cetacean conservation in the Mediterranean and Black Seas: 
Fostering transboundary collaboration through the European Marine Strategy 
Framework Directive. Mar. Policy 82, 98–103. 
https://doi.org/10.1016/j.marpol.2017.05.012 

Azzellino, A., Gaspari, S., Airoldi, S., Nani, B., 2008. Habitat use and preferences of cetaceans 
along the continental slope and the adjacent pelagic waters in the western Ligurian 
Sea. Deep Sea Res. Part Oceanogr. Res. Pap. 55, 296–323. 
https://doi.org/10.1016/j.dsr.2007.11.006 

Azzellino, A., Panigada, S., Lanfredi, C., Zanardelli, M., Airoldi, S., Notarbartolo di Sciara, G., 
2012. Predictive habitat models for managing marine areas: Spatial and temporal 
distribution of marine mammals within the Pelagos Sanctuary (Northwestern 
Mediterranean Sea). Ocean Coast. Manag. 67, 63–74. 
https://doi.org/10.1016/j.ocecoaman.2012.05.024 

Baines, M., Kelly, N., Reichelt, M., Lacey, C., Pinder, S., Fielding, S., Murphy, E., Trathan, P., 
Biuw, M., Lindstrøm, U., Krafft, B., Jackson, J., 2021. Population abundance of 
recovering humpback whales (Megaptera novaeangliae) and other baleen whales in 
the Scotia Arc, South Atlantic. Mar. Ecol. Prog. Ser. 
https://doi.org/10.3354/meps13849 

Barros, N.B., Odell, D.K. 1989. Food Habits of Bottlenose Dolphins in the Southeastern 
               United  States. S. Leatherwood, R.R. Reeves (Eds.), The bottlenose 
               dolphin, Academic Press, New York, pp. 309-328 
Becker, E.A., 2021. Habitat-based density estimates for cetaceans within the waters of the 

U.S. Exclusive Economic Zone around the Hawaiian Archipelago. 
https://doi.org/10.25923/X9Q9-RD73 

Becker, E.A., Carretta, J.V., Forney, K.A., Barlow, J., Brodie, S., Hoopes, R., Jacox, M.G., 
Maxwell, S.M., Redfern, J.V., Sisson, N.B., Welch, H., Hazen, E.L., 2020. Performance 
evaluation of cetacean species distribution models developed using generalized 
additive models and boosted regression trees. Ecol. Evol. 10, 5759–5784. 
https://doi.org/10.1002/ece3.6316 



 

34 
 

Becker, E.A., Forney, K.A., Redfern, J.V., Barlow, J., Jacox, M.G., Roberts, J.J., Palacios, D.M., 
2019. Predicting cetacean abundance and distribution in a changing climate. Divers. 
Distrib. 25, 626–643. https://doi.org/10.1111/ddi.12867 

Begon, M., Townsend, C.R., Harper, J.L., 2006. Ecology: from individuals to ecosystems, 4th 
ed. ed. Blackwell Pub, Malden, MA. 

Benoit-Bird, K.J., Au, W.W.L., 2003. Prey dynamics affect foraging by a pelagic predator 
(stenella longirostris) over a range of spatial and temporal scales. Behav. Ecol. 
Sociobiol. 53, 364–373. https://doi.org/10.1007/s00265-003-0585-4 

Benoit-Bird, K.J., Battaile, B.C., Heppell, S.A., Hoover, B., Irons, D., Jones, N., Kuletz, K.J., 
Nordstrom, C.A., Paredes, R., Suryan, R.M., Waluk, C.M., Trites, A.W., 2013. Prey 
Patch Patterns Predict Habitat Use by Top Marine Predators with Diverse Foraging 
Strategies. PLoS ONE 8, e53348. https://doi.org/10.1371/journal.pone.0053348 

Bjørge, A., Tolley, K.A., 2018. Harbor Porpoise, in: Encyclopedia of Marine Mammals. 
Elsevier, pp. 448–451. https://doi.org/10.1016/B978-0-12-804327-1.00144-8 

Boisseau, O., Matthews, J., Gillespie, D., Lacey, C., Moscrop, A., Ouamari, N.E., 2007. A visual 
and acoustic survey for harbour porpoises off North-West Africa: further evidence of 
a discrete population. Afr. J. Mar. Sci. 29, 403–410. 
https://doi.org/10.2989/AJMS.2007.29.3.8.338 

Booth, C., Embling, C., Gordon, J., Calderan, S., Hammond, P., 2013. Habitat preferences and 
distribution of the harbour porpoise Phocoena phocoena west of Scotland. Mar. 
Ecol. Prog. Ser. 478, 273–285. https://doi.org/10.3354/meps10239 

Bøthun, G., Skaug, H.J., Øien, N.I., 2009. Abundance of minke whales in the Northeast 
Atlantic based on survey data collected over the period 2002-2007 (Report to the 
Sceintific Committe of the IWC No. SC/61/RMP 2). 

Branch, T.A., Butterworth, D.S., 2001a. Southern Hemisphere minke whales: standardised 
abundance estimates from the 1978/79 to 1997/98 IDCR-SOWER surveys. J. 
Cetacean Res. Manag. 3, 143–174. 

Branch, T.A., Butterworth, D.S., 2001b. Estimates of abundance south of 60° S for cetacean 
species sighted frequently on the 1978/79 to 1997/98 IWC/IDCR-SOWER sighting 
surveys. J. Cetacean Res. Manag. 3, 251–270. 

Breen, P., Brown, S., Reid, D., Rogan, E., 2016. Modelling cetacean distribution and mapping 
overlap with fisheries in the northeast Atlantic. Ocean Coast. Manag. 134, 140–149. 
https://doi.org/10.1016/j.ocecoaman.2016.09.004 

Buckland, S.T., 2001. Introduction to Distance Sampling - Estimating Abundance of Biological 
Populations. Oxford University Press. 

Buckland, S.T., Cattanach, K.L., 1992a. Fin Whale Abundance in the North Atlantic, Estimated 
from Icelandic and Faroese NASS-87 and NASS-89 Data, in: Report of the 
International Whaling Commission, Vol 42. International Whaling Commission, 
Cambridge, pp. 645–651. 

Buckland, S.T., Cattanach, K.L., 1992b. Fin Whale Abundance in the Eastern North Atlantic, 
Estimated from Spanish NASS-89 Data, in: Reports of the International Whaling 
Commission 42. International Whaling Commission, Cambridge, pp. 457–460. 

Buckland, S.T., Rexstad, E.A., Marques, T.A., Oedekoven, C.S., 2015. Distance Sampling: 
Methods and Applications, Methods in Statistical Ecology. Springer International 
Publishing, Cham. https://doi.org/10.1007/978-3-319-19219-2 

Cañadas, A., Sagarminaga, R., De Stephanis, R., Urquiola, E., Hammond, P.S., 2005. Habitat 
preference modelling as a conservation tool: proposals for marine protected areas 
for cetaceans in southern Spanish waters. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 
495–521. https://doi.org/10.1002/aqc.689 



 

35 
 

Cañadas, Ana, Sagarminaga, R., García-Tiscar, S., 2002. Cetacean distribution related with 
depth and slope in the Mediterranean waters off southern Spain 49, 2053–2073. 
https://doi.org/10.1016/s0967-0637(02)00123-1 

Canning, S.J., Santos, M.B., Reid, R.J., Evans, P.G.H., Sabin, R.C., Bailey, N., Pierce, G.J., 2008. 
Seasonal distribution of white-beaked dolphins (Lagenorhynchus albirostris ) in UK 
waters with new information on diet and habitat use. J. Mar. Biol. Assoc. U. K. 88, 
1159–1166. https://doi.org/10.1017/S0025315408000076 

Cattanach, K.L., Sigurjónsson, J., Buckland, S.T., Gunnlaugsson, T., 1993. Sei Whale 
Abundance in the North Atlantic, Estimated from NASS-87 and NASS-89 Data, in: 
Report of the International Whaling Commission. Vol 43. International Whaling 
Commission, Cambridge, pp. 315–321. 

Cetacean and Turtle Assessment Program (CETAP). 1982. A characterization of marine 
mammals and turtles in the Mid- and North-Atlantic areas of the U.S. outer 
continental shelf. Final report, contract AA551-CT8-48. Bureau of Land 
Management, Washington, DC. 

Cheney, B., Corkrey, R., Durban, J.W., Grellier, K., Hammond, P.S., Islas-Villanueva, V., Janik, 
V.M., Lusseau, S.M., Parsons, K.M., Quick, N.J., Wilson, B., Thompson, P.M., 2014. 
Long-term trends in the use of a protected area by small cetaceans in relation to 
changes in population status. Glob. Ecol. Conserv. 2, 118–128. 
https://doi.org/10.1016/j.gecco.2014.08.010 

Cheney, B., Thompson, P.M., Ingram, S.N., Hammond, P.S., Stevick, P.T., Durban, J.W., 
Culloch, R.M., Elwen, S.H., Mandleberg, L., Janik, V.M., Quick, N.J., Islas-Villanueva, 
V., Robinson, K.P., Costa, M., Eisfeld, S.M., Walters, A., Phillips, C., Weir, C.R., Evans, 
P.G.H., Anderwald, P., Reid, R.J., Reid, J.B., Wilson, B., 2013. Integrating multiple 
data sources to assess the distribution and abundance of bottlenose dolphins 
Tursiops truncatus in Scottish waters. Mammal Rev. 43, 71–88. 
https://doi.org/10.1111/j.1365-2907.2011.00208.x 

Chivers, S.J., 2009. Cetacean Life History, in: Encyclopedia of Marine Mammals. Elsevier, pp. 
215–220. 

CIEEM, 2018. Guidelines for ecological impact assessment in the UK and Ireland. Terrestrial, 
Freshwater, Coastal and Marine. (No. Version 1.2; Updated April 2022). 

Cipriano, F., 2018. Atlantic White-Sided Dolphin, in: Encyclopedia of Marine Mammals. 
Elsevier, pp. 42–44. https://doi.org/10.1016/B978-0-12-804327-1.00051-0 

Claro, B., Pérez-Jorge, S., Frey, S., 2020. Seafloor geomorphic features as an alternative 
approach into modelling the distribution of cetaceans. Ecol. Inform. 58, 101092. 
https://doi.org/10.1016/j.ecoinf.2020.101092 

Correia, A., M., Sousa-Guedes, D., Gil, Á., Valente, R., Rosso, M., Sousa-Pinto, I., Sillero, N., 
Pierce, G.J., 2021. Predicting Cetacean Distributions in the Eastern North Atlantic to 
Support Marine Management. Front. Mar. Sci. 
https://doi.org/10.3389/fmars.2021.643569 

Craddock, J.E., Polloni, P.T., Hayward, B., Wenzel, F.W., 2009. Food habits of Atlantic white-
sided dolphins (Lagenorhynchus acutus ) off the coast of New England. Fish. Bull. 
107, 384–394. 

Dalpadado, P., 2000. Food and feeding conditions of Norwegian spring-spawning herring 
(Clupea harengus) through its feeding migrations. ICES J. Mar. Sci. 57, 843–857. 
https://doi.org/10.1006/jmsc.2000.0573 

Davis, R.W., Ortega-Ortiz, J.G., Ribic, C.A., Evans, W.E., Biggs, D.C., Ressler, P.H., Cady, R.B., 
Leben, R.R., Mullin, K.D., Würsig, B., 2002. Cetacean habitat in the northern oceanic 
Gulf of Mexico. Deep Sea Res. Part Oceanogr. Res. Pap. 49, 121–142. 
https://doi.org/10.1016/S0967-0637(01)00035-8 



 

36 
 

Edwards, E.F., Hall, C., Moore, T.J., Sheredy, C., Redfern, J.V., 2015. Global distribution of fin 
whales Balaenoptera physalus in the post-whaling era (1980–2012). Mammal Rev. 
45, 197–214. https://doi.org/10.1111/mam.12048 

Elith, J., Leathwick, J.R., 2009. Species Distribution Models: Ecological Explanation and 
Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697. 
https://doi.org/10.1146/annurev.ecolsys.110308.120159 

Embling, C.B., Gillibrand, P.A., Gordon, J., Shrimpton, J., Stevick, P.T., Hammond, P.S., 2010. 
Using habitat models to identify suitable sites for marine protected areas for 
harbour porpoises (Phocoena phocoena). Biol. Conserv. 143, 267–279. 
https://doi.org/10.1016/j.biocon.2009.09.005 

Evans, P.G.H., 2020. European Whales, Dolphins and Porpoises. Marine Mammal 
Conservation in Practice., ASCOBANS. Academic Press. 

Fernandez, E., Lellouche, J.M., 2021. Product User Manual: For the Global Ocean Physical 
Reanalysis Product Global_Reanalysis_Phy_001_030 (No. 1.2). 

Forney, K., Becker, E., Foley, D., Barlow, J., Oleson, E., 2015. Habitat-based models of 
cetacean density and distribution in the central North Pacific. Endanger. Species Res. 
27, 1–20. https://doi.org/10.3354/esr00632 

Forney, K.A., 2000. Environmental Models of Cetacean Abundance: Reducing Uncertainty in 
Population Trends. Conserv. Biol. 14, 1271–1286. https://doi.org/10.1046/j.1523-
1739.2000.99412.x 

Gilles, A., Viquerat, S., Becker, E.A., Forney, K.A., Geelhoed, S.C.V., Haelters, J., Nabe‐Nielsen, 
J., Scheidat, M., Siebert, U., Sveegaard, S., Beest, F.M., Bemmelen, R., Aarts, G., 
2016. Seasonal habitat‐based density models for a marine top predator, the harbor 
porpoise, in a dynamic environment. Ecosphere 7. 
https://doi.org/10.1002/ecs2.1367 

Godø, O.R., Samuelsen, A., Macaulay, G.J., Patel, R., Hjøllo, S.S., Horne, J., Kaartvedt, S., 
Johannessen, J.A., 2012. Mesoscale Eddies Are Oases for Higher Trophic Marine Life. 
PLoS ONE 7, e30161. https://doi.org/10.1371/journal.pone.0030161 

Gonzalez-Pola, C., Larsen, K.M.H., Fratantoni, P., Beszcynska-Möller, A. (Eds), 2018. ICES 
Report on Ocean Climate 2017 (ICES Cooperative Research Report No. Special Issue 
#345). ICES. 119pp. 

Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple 
habitat models. Ecol. Lett. 8, 993–1009. https://doi.org/10.1111/j.1461-
0248.2005.00792.x 

Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol. 
Model. 135, 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 

Halpern, B.S., Frazier, M., Afflerbach, J., Lowndes, J.S., Micheli, F., O’Hara, C., Scarborough, 
C., Selkoe, K.A., 2019. Recent pace of change in human impact on the world’s ocean. 
Sci. Rep. 9, 11609. https://doi.org/10.1038/s41598-019-47201-9 

Halpern, B.S., Frazier, M., Potapenko, J., Casey, K.S., Koenig, K., Longo, C., Lowndes, J.S., 
Rockwood, R.C., Selig, E.R., Selkoe, K.A., Walbridge, S., 2015. Spatial and temporal 
changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615. 
https://doi.org/10.1038/ncomms8615 

Hammond, P., Lacey, C., Gilles, A., Viquerat, S., Börjesson, P., Herr, H., Macleod, K., Ridoux, 
V., Santos, M., Teilmann, J., Vingada, J., Øien, N., 2021. Estimates of cetacean 
abundance in European Atlantic waters in summer 2016 from the SCANS-III aerial 
and shipboard surveys. Final project report.  https://scans3.wp.st-
andrews.ac.uk/files/2021/06/SCANS-III_design-
based_estimates_final_report_revised_June_2021.pdf 

Hammond, P., Macleod, K., Gillespie, D., Swift, R., Winship, A., Burt, M., Cañadas, A., 
Vázquez, J., Ridoux, V., Certain, G., Canneyt, O.V., Lens, S., Santos, B., Rogan, E., 



 

37 
 

Uriarte, A., Hernandez, C., Castro, R., 2009. Cetacean Offshore Distribution and 
Abundance in the European Atlantic (CODA). Final project report.  http://biology.st-
andrews.ac.uk/coda/ 

Hammond, P.S., Berggren, P., Benke, H., Borchers, D.L., Collet, A., Heide-Jørgensen, M.P., 
Heimlich, S., Hiby, a. R.R., Leopold, M.F.F., Øien, N., 2002. Abundance of harbour 
porpoise and other cetaceans in the North Sea and adjacent waters. J. Appl. Ecol. 39, 
361–376. https://doi.org/10.1046/j.1365-2664.2002.00713.x 

Hammond, P. S., Berggren, P., Benke, H., Borchers, D.L., Collet, A., Jørgensen, M.P.H.-, 
Heimlich, S., Hiby, A.R., Leopold, M.F., Øien, N., 2002. Abundance of Harbour 
Porpoise and Other Cetaceans in the North Sea and Adjacent Waters. J. Appl. Ecol. 
39, 361–376. 

Hammond, P.S., Francis, T.B., Heinemann, D., Long, K.J., Moore, J.E., Punt, A.E., Reeves, R.R., 
Sepúlveda, M., Sigurðsson, G.M., Siple, M.C., Víkingsson, G., Wade, P.R., Williams, R., 
Zerbini, A.N., 2021. Estimating the Abundance of Marine Mammal Populations. 
Front. Mar. Sci. 8, 735770. https://doi.org/10.3389/fmars.2021.735770 

Hammond, Philip S., Macleod, K., Berggren, P., Borchers, D.L., Burt, L., Cañadas, A., 
Desportes, G., Donovan, G.P., Gilles, A., Gillespie, D., Gordon, J., Hiby, L., Kuklik, I., 
Leaper, R., Lehnert, K., Leopold, M., Lovell, P., Øien, N., Paxton, C.G.M., Ridoux, V., 
Rogan, E., Samarra, F., Scheidat, M., Sequeira, M., Siebert, U., Skov, H., Swift, R., 
Tasker, M.L., Teilmann, J., Van Canneyt, O., Vázquez, J.A., 2013. Cetacean abundance 
and distribution in European Atlantic shelf waters to inform conservation and 
management. Biol. Conserv. 164, 107–122. 
https://doi.org/10.1016/j.biocon.2013.04.010 

Hansen, R.G., Heide-Jørgensen, M.P., 2013. Spatial trends in abundance of long-finned pilot 
whales, white-beaked dolphins and harbour porpoises in West Greenland. Mar. Biol. 
160, 2929–2941. https://doi.org/10.1007/s00227-013-2283-8 

Hastie, G.D., Wilson, B., Thompson, P.M., 2006. Diving deep in a foraging hotspot: acoustic 
insights into bottlenose dolphin dive depths and feeding behaviour. Mar. Biol. 148, 
1181–1188. https://doi.org/10.1007/s00227-005-0143-x 

Hedley, S.L., Buckland, S.T., 2004. Spatial models for line transect sampling. J. Agric. Biol. 
Environ. Stat. 9, 181–199. https://doi.org/10.1198/1085711043578 

Heide-Jørgensen, M.P., Iversen, M., Nielsen, N.H., Lockyer, C., Stern, H., Ribergaard, M.H., 
2011. Harbour porpoises respond to climate change. Ecol. Evol. 1, 579–585. 
https://doi.org/10.1002/ece3.51 

Heide-jørgensen, M.P., Lassen, H., Teilmann, J., Davis, R.A., 1993. An index of the Relative 
Abundance of Wintering Belugas, Delphinapterus leucas, and narwhals, Monodon 
monoceros, off West Greenland. Can. J. Fish. Aquat. Sci. 50, 2323–2335. 

Heide-jørgensen, M.P., Reeves, R.R., 1996. Evidence of a decline in beluga, Delphinapterus 
leucas, abundance off West Greenland. ICES J. Mar. Sci. 53, 61–72. 
https://doi.org/10.1006/jmsc.1996.0006 

Hernandez-Milian, G., Begoña Santos, M., Reid, D., Rogan, E., 2016. Insights into the diet of 
Atlantic white-sided dolphins (Lagenorhynchus acutus ) in the Northeast Atlantic. 
Mar. Mammal Sci. 32, 735–742. https://doi.org/10.1111/mms.12272 

Hooker, S., Cañadas, A., Hyrenbach, K., Corrigan, C., Polovina, J., Reeves, R., 2011. Making 
protected area networks effective for marine top predators. Endanger. Species Res. 
13, 203–218. https://doi.org/10.3354/esr00322 

ICES, 2020a. ICES Ecoregions; Uses, rational and lessons learned. (No. ICES Advice 
Documents). 
https://www.ices.dk/advice/Documents/ICES_ecoregions_use_rationale_lessons_le
arned.pdf 



 

38 
 

ICES, 2020b. Greater North Sea Ecoregion - Ecosystem overview. ICES Advice. 
https://doi.org/10.17895/ICES.ADVICE.7632 

Ingram, S.N., Walshe, L., Johnston, D., Rogan, E., 2007. Habitat partitioning and the influence 
of benthic topography and oceanography on the distribution of fin and minke 
whales in the Bay of Fundy, Canada. J. Mar. Biol. Assoc. U. K. 87, 149–156. 
https://doi.org/10.1017/S0025315407054884 

Jansen, O.E., Leopold, M.F., Meesters, E.H.W.G., Smeenk, C., 2010. Are white-beaked 
dolphins Lagenorhynchus albirostris food specialists? Their diet in the southern 
North Sea. J. Mar. Biol. Assoc. U. K. 90, 1501–1508. 
https://doi.org/10.1017/S0025315410001190 

Kanwisher, J.W., Ridgway, S.H., 1983. The Physiological Ecology of Whales and Porpoises. Sci. 
Am. 248, 110–120. https://doi.org/10.1038/scientificamerican0683-110 

Kasamatsu, F., Joyce, G.G., 1995. Current status of Odontocetes in the Antarctic. Antarct. Sci. 
7, 365–379. https://doi.org/10.1017/S0954102095000514 

Kaschner, K., Quick, N.J., Jewell, R., Williams, R., Harris, C.M., 2012. Global Coverage of 
Cetacean Line-Transect Surveys: Status Quo, Data Gaps and Future Challenges. PLoS 
ONE 7, e44075. https://doi.org/10.1371/journal.pone.0044075 

Kastelein, R.A., Vaughan, N., Walton, S., Wiepkema, P.R., 2002. Food intake and body 
measurements of Atlantic bottlenose dolphins (Tursiops truncates) in captivity. Mar. 
Environ. Res. 53, 199–218. https://doi.org/10.1016/S0141-1136(01)00123-4 

Kavanagh, A.S., Kett, G., Richardson, N., Rogan, E., Jessopp, M.J., 2018. High latitude winter 
sightings of common minke whale calves (Balaenoptera acutorostrata) in the 
Northeast Atlantic. Mar. Biodivers. Rec. 11, 22. https://doi.org/10.1186/s41200-018-
0157-y 

Khanna, D., R, Bhutiani, R., Chandra, K.S., 2009. Effect of the euphotic depth and mixing 
dpeth on phytoplanktonic growth mechanism. Int J Env. Res 3, 223–228. 

Kingsley, M.C.S., 2000. Numbers and distribution of beluga whales, Delphinapterus leucas, in 
James Bay, eastern Hudson Bay, and Ungava Bay in Canada during the summer of 
1993. Fish. Bull. 98, 736–747. 

Kinze, C.C., 2018. White-beaked Dolphin, in: Encyclopedia of Marine Mammals. Elsevier, pp. 
1077–1079. https://doi.org/10.1016/B978-0-12-804327-1.00274-0 

Klatsky, L.J., Wells, R.S., Sweeney, J.C., 2007. Offshore Bottlenose Dolphins (Tursiops 
truncatus): Movement and Dive Behavior Near the Bermuda Pedestal. J. Mammal. 
88, 59–66. https://doi.org/10.1644/05-MAMM-A-365R1.1 

Kvadsheim, P.H., DeRuiter, S., Sivle, L.D., Goldbogen, J., Roland-Hansen, R., Miller, P.J.O., 
Lam, F.-P.A., Calambokidis, J., Friedlaender, A., Visser, F., Tyack, P.L., Kleivane, L., 
Southall, B., 2017. Avoidance responses of minke whales to 1–4kHz naval sonar. 
Mar. Pollut. Bull. 121, 60–68. https://doi.org/10.1016/j.marpolbul.2017.05.037 

Lacey, C., Gilles, A., Börjesson, P., Herr, H., Macleod, K., Ridoux, V., Santos, M.B., Scheidat, 
M., Teilmann, J., Vingada, J., Viquerat, S., Øien, N.I., and Hammond, P.S. 2022. 
Modelled density surfaces of cetaceans in European Atlantic waters in summer 2016 
from the SCANS-III aerial and shipboard surveys. Project report. 
https://scans3.wp.st-andrews.ac.uk/files/2022/08/SCANS-
III_density_surface_modelling_report_final_20220815.pdf 55pp. 

Lambert, C., Mannocci, L., Lehodey, P., Ridoux, V., 2014. Predicting Cetacean Habitats from 
Their Energetic Needs and the Distribution of Their Prey in Two Contrasted Tropical 
Regions. PLoS ONE 9, e105958. https://doi.org/10.1371/journal.pone.0105958 

Lambert, E., MacLeod, C., Hall, K., Brereton, T., Dunn, T., Wall, D., Jepson, P., Deaville, R., 
Pierce, G., 2011. Quantifying likely cetacean range shifts in response to global 
climatic change: implications for conservation strategies in a changing world. 
Endanger. Species Res. 15, 205–222. https://doi.org/10.3354/esr00376 



 

39 
 

Lambert, E., Pierce, G.J., Hall, K., Brereton, T., Dunn, T.E., Wall, D., Jepson, P.D., Deaville, R., 
MacLeod, C.D., 2014. Cetacean range and climate in the eastern North Atlantic: 
future predictions and implications for conservation. Glob. Change Biol. 20, 1782–
1793. https://doi.org/10.1111/gcb.12560 

Laran, S., Authier, M., Blanck, A., Doremus, G., Falchetto, H., Monestiez, P., Pettex, E., 
Stephan, E., Van Canneyt, O., Ridoux, V., 2017. Seasonal distribution and abundance 
of cetaceans within French waters- Part II: The Bay of Biscay and the English 
Channel. Deep Sea Res. Part II Top. Stud. Oceanogr. 141, 31–40. 
https://doi.org/10.1016/j.dsr2.2016.12.012 

Learmonth, J.A., MacLeod, C.D., Santos, M.B., Pierce, G.J., Crick, H.Q.P., Robinson, R., A., 
2006. Potential effects of climate change on marine mammals, in: Oceanography 
and Marine Biology: An Annual Review, Volume 44, Oceanography and Marine 
Biology - An Annual Review. CRC Press. https://doi.org/10.1201/9781420006391 

Leopold, M.F., Begeman, L., van Bleijswijk, J.D.L., IJsseldijk, L.L., Witte, H.J., Gröne, A., 2015. 
Exposing the grey seal as a major predator of harbour porpoises. Proc. R. Soc. B Biol. 
Sci. 282, 20142429. https://doi.org/10.1098/rspb.2014.2429 

Lockyer, C., Pike, D. (Eds.), 2009. North Atlantic Sightings Surveys: Counting whales in the 
North Atlantic 1987-2001, Scientific. ed. Tromso. No. 

Louis, M., Viricel, A., Lucas, T., Peltier, H., Alfonsi, E., Berrow, S., Brownlow, A., Covelo, P., 
Dabin, W., Deaville, R., de Stephanis, R., Gally, F., Gauffier, P., Penrose, R., Silva, 
M.A., Guinet, C., Simon-Bouhet, B., 2014. Habitat-driven population structure of 
bottlenose dolphins, Tursiops truncatus, in the North-East Atlantic. Mol. Ecol. 23, 
857–874. https://doi.org/10.1111/mec.12653 

MacLeod, C.D., Weir, C.R., Santos, M.B., Dunn, T.E., 2008. Temperature-based summer 
habitat partitioning between white-beaked and common dolphins around the 
United Kingdom and Republic of Ireland. J. Mar. Biol. Assoc. U. K. 88, 1193–1198. 
https://doi.org/10.1017/S002531540800074X 

Maravelias, C., 1997. Trends in abundance and geographic distribution of North Sea herring 
in relation to environmental factors. Mar. Ecol. Prog. Ser. 159, 151–164. 
https://doi.org/10.3354/meps159151 

McMahon, T., 1995. Some oceanographic features of North-eastern Atlantic waters west of 
Ireland. ICES J. Mar. Sci. 52, 221–232. https://doi.org/10.1016/1054-3139(95)80037-
9 

Mead, J.G., Potter, C.W. 1989. Natural History of Bottlenose Dolphins along the Central  
Atlantic Coast of the United States. In. The Bottlenose Dolphin. Eds Leatherwood, S., 
Reeves, R. Academic Press, New York (1990) 165-196, 

Meier, S., Falk-Petersen, S., Aage Gade-Sørensen, L., Greenacre, M., Haug, T., Lindstrøm, U., 
2016. Fatty acids in common minke whale (Balaenoptera acutorostrata) blubber 
reflect the feeding area and food selection, but also high endogenous metabolism. 
Mar. Biol. Res. 12, 221–238. https://doi.org/10.1080/17451000.2015.1118513 

Miller, D.L., Burt, M.L., Rexstad, E.A., Thomas, L., 2013. Spatial models for distance sampling 
data: recent developments and future directions. Methods Ecol. Evol. 4, 1001–1010. 
https://doi.org/10.1111/2041-210X.12105 

Moura, A.E., Sillero, N., Rodrigues, A., 2012. Common dolphin (Delphinus delphis) habitat 
preferences using data from two platforms of opportunity. Acta Oecologica 38, 24–
32. https://doi.org/10.1016/j.actao.2011.08.006 

Nielsen, N., Teilmann, J., Sveegaard, S., Hansen, R., Sinding, M., Dietz, R., Heide-Jørgensen, 
M., 2018. Oceanic movements, site fidelity and deep diving in harbour porpoises 
from Greenland show limited similarities to animals from the North Sea. Mar. Ecol. 
Prog. Ser. 597, 259–272. https://doi.org/10.3354/meps12588 



 

40 
 

NMFS, 2021. 2020 Annual Report of a Comprehensive Assessment of Marine Mammal, 
Marine Turtle, and Seabird Abundance and Spatial Distribution in US waters of the 
Western North Atlantic Ocean – AMAPPS III. 

Ó Cadhla, O., Mackey, M., Aguilar de Soto, N., Rogan, E. & Connolly, N. (2004). Cetaceans 
 and Seabirds of Ireland’s Atlantic Margin. Volume II – Cetacean distribution & 
abundance. Report on research carried out under the Irish Infrastructure 
Programme (PIP): Rockall Studies Group (RSG) projects 98/6 and 00/13, Porcupine 
Studies Group project P00/15 and Offshore Support Group (OSG) project 99/38. 
82pp. 

O’Hara, C.C., Afflerbach, J.C., Scarborough, C., Kaschner, K., Halpern, B.S., 2017. Aligning 
marine species range data to better serve science and conservation. PLOS ONE 12, 
e0175739. https://doi.org/10.1371/journal.pone.0175739 

Oudejans, M.G., Visser, F., Englund, A., Rogan, E., Ingram, S.N., 2015. Evidence for Distinct 
Coastal and Offshore Communities of Bottlenose Dolphins in the Northeast Atlantic. 
PLOS ONE 10, e0122668. https://doi.org/10.1371/journal.pone.0122668 

Palka, D., 1995. Abundance Estimate of the Gulf of Maine Harbor Porpoise. Rep. Int. Whal. 
Comm. SC/44/SM24, 27–50. 

Palka, D.L., Chavez-Rosales, S., Josephson, E.A., Cholewiak, D., Haas, H.L., Garrison, L., Jones, 
M., Sigourney, D.B., Waring, G., Jech, M., Broughton, E., Soldevilla, M.S., Davis, G., 
DeAngelis, A., Sasso, C.R., Winton, M.V., Smolowitz, R.J., Fay, G., LaBrecque, E., 
Leiness, J.B., Detloff, M., Warden, M., Murray, K., Orphanides, C., 2017. Atlantic 
Marine Assessment Program for Protected Species: 2010 - 2014 (No. OCS Study 
BOWM 2017-071.). US Dept. of the Interior, Bureau of Ocean Energy Management, 
Atlantic OCS Region, Wahington, DC. 

Pardo, M.A., Gerrodette, T., Beier, E., Gendron, D., Forney, K.A., Chivers, S.J., Barlow, J., 
Palacios, D.M., 2015. Inferring Cetacean Population Densities from the Absolute 
Dynamic Topography of the Ocean in a Hierarchical Bayesian Framework. PLOS ONE 
10, e0120727. https://doi.org/10.1371/journal.pone.0120727 

Paxton, C.G.M., Scott-Hayward, L., Mackenzie, M., Rexstad, E. & Thomas, L. (2016) Revised 
 Phase III Data Analysis of Joint Cetacean Protocol Data Resource, JNCC Report No. 
517, JNCC, Peterborough, ISSN 0963-8091. 

Perrin, W.F., 2018. Common Dolphin, in: Encyclopedia of Marine Mammals. Elsevier, pp. 
205–209. https://doi.org/10.1016/B978-0-12-804327-1.00095-9 

Perrin, W.F., Mallette, S.D., Brownell, R.L., 2018. Minke Whales, in: Encyclopedia of Marine 
Mammals. Elsevier, pp. 608–613. https://doi.org/10.1016/B978-0-12-804327-
1.00175-8 

Pierce, G.J., Santos, M.B., Reid, R.J., Patterson, I.A.P., Ross, H.M., 2004. Diet of minke whales 
Balaenoptera acutorostrata in Scottish (UK) waters with notes on strandings of this 
species in Scotland 1992–2002. J. Mar. Biol. Assoc. U. K. 84, 1241–1244. 
https://doi.org/10.1017/S0025315404010732h 

Pike, D., Gunnlaugsson, T., Sigurjonsson, J., Vikingsson, G., 2020. Distribution and Abundance 
of Cetaceans in Icelandic Waters over 30 Years of Aerial Surveys. NAMMCO Sci. Publ. 
11. https://doi.org/10.7557/3.4805 

Purdon, J., Shabangu, F.W., Yemane, D., Pienaar, M., Somers, M.J., Findlay, K., 2020. Species 
distribution modelling of Bryde’s whales, humpback whales, southern right whales, 
and sperm whales in the southern African region to inform their conservation in 
expanding economies. PeerJ 8, e9997. https://doi.org/10.7717/peerj.9997 

Pusineri, C., Magnin, V., Meynier, L., Spitz, J., Hassani, S., Ridoux, V., 2007. Food and Feeding 
Ecology of the Common Dolphin (Delphinus delphis) in the Oceanic Northeast 
Atlantic and Comparison with Its Diet in Neritic Areas. Mar. Mammal Sci. 23, 30–47. 
https://doi.org/10.1111/j.1748-7692.2006.00088.x 



 

41 
 

Ransijn, J.M., Booth, C.G., Smout, S., 2019. A calorific map of harbour porpoise prey in the 
North Sea (No. 633), JNCC Reports. Peterborough. 

Rasmussen, M.H., Akamatsu, T., Teilmann, J., Vikingsson, G., Miller, L.A., 2013. Biosonar, 
diving and movements of two tagged white-beaked dolphin in Icelandic waters. 
Deep Sea Res. Part II Top. Stud. Oceanogr. 88–89, 97–105. 
https://doi.org/10.1016/j.dsr2.2012.07.011 

Redfern, J.V., Ferguson, M.C., Becker, E.A., Hyrenbach, K.D., Good, C., Barlow, J., Kaschner, 
K., Baumgartner, M.F., Forney, K.A., Ballance, L.T., Fauchald, P., Halpin, P., Hamazaki, 
T., Pershing, A.J., Qian, S.S., Read, A., Reilly, S.B., Torres, L., Werner, F., 2006. 
Techniques for cetacean-habitat modeling. Mar Ecol Prog Ser 310, 271–295. 

Reid, J.B., Evans, P.G.H., Northridge, S.P., 2003. Atlas of Cetacean distribution in north-west 
European waters 82. 

Ringelstein, J., Pusineri, C., Hassani, S., Meynier, L., Nicolas, R., Ridoux, V., 2006. Food and 
feeding ecology of the striped dolphin, Stenella coeruleoalba, in the oceanic waters 
of the north-east Atlantic. J. Mar. Biol. Assoc. U. K. 86, 909–918. 
https://doi.org/10.1017/S0025315406013865 

Risch, D., Castellote, M., Clark, C.W., Davis, G.E., Dugan, P.J., Hodge, L.E., Kumar, A., Lucke, 
K., Mellinger, D.K., Nieukirk, S.L., Popescu, C.M., Ramp, C., Read, A.J., Rice, A.N., 
Silva, M.A., Siebert, U., Stafford, K.M., Verdaat, H., 2014. Seasonal migrations of 
North Atlantic minke whales: novel insights from large-scale passive acoustic 
monitoring networks 17. 

Roberts, J.J., Best, B.D., Mannocci, L., Fujioka, E., Halpin, P.N., Palka, D.L., Garrison, L.P., 
Mullin, K.D., Cole, T.V.N., Khan, C.B., McLellan, W.A., Pabst, D.A., Lockhart, G.G., 
2016. Habitat-based cetacean density models for the U.S. Atlantic and Gulf of 
Mexico. Sci. Rep. 6, 22615. https://doi.org/10.1038/srep22615 

Rogan, E., Breen, P., Mackey, M., Cañadas, A., Scheidat, M., Geelhoed, S., Jessopp, M., 2018. 
Aerial Surveys of Cetaceans and Seabirds in Irish waters: Occurrence, distribution 
and abundance in 2015-2017 298. 

Rogan, E., Cañadas, A., Macleod, K., Santos, M.B., Mikkelsen, B., Uriarte, A., Van Canneyt, O., 
Vázquez, J.A., Hammond, P.S., 2017. Distribution, abundance and habitat use of 
deep diving cetaceans in the North-East Atlantic. Deep Sea Res. Part II Top. Stud. 
Oceanogr. 141, 8–19. https://doi.org/10.1016/j.dsr2.2017.03.015 

Roman, J., Altman, I., Dunphy-Daly, M.M., Campbell, C., Jasny, M., Read, A.J., 2013. The 
Marine Mammal Protection Act at 40: status, recovery, and future of U.S. marine 
mammals. Ann. N. Y. Acad. Sci. 1286, 29–49. https://doi.org/10.1111/nyas.12040 

Ryg, M., Lydersen, C., Knutsen, L., Bjørge, A., Smith, T.G., Øritsland, N.A., 1993. Scaling of 
insulation in seals and whales. J. Zool. Soc. Lond. 230, 193–206. 

Scales, K.L., Miller, P., L., Hawkes, L.A., Ingram, S.N., Sims, D.W., Votier, S.C., 2014. On the 
Front Line: frontal zones as priority at-sea conservation areas for mobile marine 
vertebrates. J. Appl. Ecol. 51, 1575–1583. 

Skern-Mauritzen, M., Skaug, H.J., Øien, N., 2009. Line transects, environmental data and GIS: 
Cetacean distribution, habitat and prey selection along the Barents Sea shelf edge. 
NAMMCO Sci. Publ. 7, 179. https://doi.org/10.7557/3.2713 

Smith, S.I., 1868. The Geographical Distribution of Animals. Am. Nat. 2, 14–23. 
https://doi.org/10.1086/270176 

Spitz, J., Richard, E., Meynier, L., Pusineri, C., Ridoux, V., 2006. Dietary plasticity of the 
oceanic striped dolphin, Stenella coeruleoalba, in the neritic waters of the Bay of 
Biscay. J. Sea Res. 55, 309–320. 

Spitz, J., Trites, A.W., Becquet, V., Brind’Amour, A., Cherel, Y., Galois, R., Ridoux, V., 2012. 
Cost of Living Dictates what Whales, Dolphins and Porpoises Eat: The Importance of 



 

42 
 

Prey Quality on Predator Foraging Strategies. PLoS ONE 7, e50096. 
https://doi.org/10.1371/journal.pone.0050096 

Stephenson, F., Goetz, K., Sharp, B.R., Mouton, T.L., Beets, F.L., Roberts, J., MacDiarmid, A.B., 
Constantine, R., Lundquist, C.J., 2020. Modelling the spatial distribution of cetaceans 
in New Zealand waters. Divers. Distrib. 26, 495–516. 
https://doi.org/10.1111/ddi.13035 

Teilmann, J., Larsen, F., Desportes, G., 2023. Time allocation and diving behaviour of harbour 
porpoises (Phocoena phocoena) in Danish and adjacent waters. J Cetacean Res 
Manage 9, 201–210. https://doi.org/10.47536/jcrm.v9i3.668 

Thomas, L., Buckland, S.T., Rexstad, E.A., Laake, J.L., Strindberg, S., Hedley, S.L., Bishop, 
J.R.B., Marques, T.A., Burnham, K.P., 2010. Distance software: design and analysis of 
distance sampling surveys for estimating population size. J. Appl. Ecol. 47, 5–14. 
https://doi.org/10.1111/j.1365-2664.2009.01737.x 

Tynan, C.T., Ainley, D.G., Barth, J.A., Cowles, T.J., Pierce, S.D., Spear, L.B., 2005. Cetacean 
distributions relative to ocean processes in the northern California Current System. 
Deep Sea Res. Part II Top. Stud. Oceanogr. 52, 145–167. 
https://doi.org/10.1016/j.dsr2.2004.09.024 

Víkingsson, G.A., Elvarsson, B.Þ., Ólafsdóttir, D., Sigurjónsson, J., Chosson, V., Galan, A., 
2014. Recent changes in the diet composition of common minke whales 
(Balaenoptera acutorostrata) in Icelandic waters. A consequence of climate change? 
Mar. Biol. Res. 10, 138–152. https://doi.org/10.1080/17451000.2013.793812 

Víkingsson, G.A., Heide-Jørgensen, M.P., 2015. First indications of autumn migration routes 
and destination of common minke whales tracked by satellite in the North Atlantic 
during 2001-2011. Mar. Mammal Sci. 31, 376–385. 
https://doi.org/10.1111/mms.12144 

Virgili, A., Authier, M., Boisseau, O., Cañadas, A., Claridge, D., Cole, T.V.N., Peter Corkeron, 
Dorémus, G., David, L., Di‐Méglio, N., Dunn, C., Dunn, T.E., García‐Barón, I., Laran, S., 
Lauriano, G., Lewis, M., Louzao, M., Mannocci, L., Martínez‐Cedeira, J., Palka, D.L., 
Panigada, S., Pettex, E., Roberts, J.J., Ruiz, L., Saavedra, C., Santos, M.B., Van 
Canneyt, O., Bonales, J.A.V., Monestiez, P., Ridoux, V., 2019. Combining multiple 
visual surveys to model the habitat of deep‐diving cetaceans at the basin scale. 
Large-scale modelling of deep-diving cetacean habitats. Glob. Ecol. Biogeogr. 28, 
300–314. https://doi.org/DOI: 10.1111/geb.12850 

Wade, P.R., Gerrodette, T., 1993. Estimates of Cetacean Abundance and Distribution in the 
Eastern Tropical Pacific, in: Donovan, G.P. (Ed.), Report of the International Whaling 
Commission, No. 43. International Whaling Commission, Cambridge, pp. 477–493. 

Wagner, H.H., Fortin, M.-J., 2005. Spatial Analysis of Landscapes: Concepts and Statistics. 
Ecology 86, 1975–1987. https://doi.org/10.1890/04-0914 

Wall, D., Murray, C., O’Brien, J., Kavanagh, L., Wilson, C., Ryan, C., Glanville, B., Williams, D., 
Enlander, I., O’Connor, I., McGrath, D., Whooley, P., Berrow, S., 2013. Atlas of the 
Distribution and Relative Abundance of Marine Mammals in Irish Offshore Waters: 
2005 – 201 65. 

Waring, G.T., Josephson, E., Maze-Foley, K., Rosel, P.E., 2013. U. S. Atlantic and Gulf of 
Mexico Marine Mammal Stock Assessments - 2012. 

Waring, G.T., Josephson, E., Maze-foley, K., Rosel, P.E., Byrd, B., Cole, T.V.N., Engleby, L., 
Garrison, L.P., Hatch, J., Henry, A., Horstman, S.C., Litz, J., Mullin, K.D., Orphanides, 
C., Pace, R.M., Palka, D.L., Lyssikatos, M.C., Wenzel, F.W., 2015. U.S. Atlantic and 
Gulf of Mexico Marine Mammal Stock Assessments - 2014. 

Wells, R.S., Scott, M.D., 2018. Bottlenose Dolphin, Tursiops Truncatus, Common Bottlenose 
Dolphin, in: Encyclopedia of Marine Mammals. Elsevier, pp. 118–125. 
https://doi.org/10.1016/B978-0-12-804327-1.00072-8 



 

43 
 

Williamson, L.D., Scott, B.E., Laxton, M., Illian, J.B., Todd, V.L.G., Miller, P.I., Brookes, K.L., 
2022. Comparing distribution of harbour porpoise using generalized additive models 
and hierarchical Bayesian models with integrated nested laplace approximation. 
Ecol. Model. 470, 110011. https://doi.org/10.1016/j.ecolmodel.2022.110011 

Wisniewska, D.M., Johnson, M., Teilmann, J., Rojano-Doñate, L., Shearer, J., Sveegaard, S., 
Miller, L.A., Siebert, U., Madsen, P.T., 2016. Ultra-High Foraging Rates of Harbor 
Porpoises Make Them Vulnerable to Anthropogenic Disturbance. Curr. Biol. 26, 
1441–1446. https://doi.org/10.1016/j.cub.2016.03.069 

Wood, S.N., 2006. Generalized Additive Models: an introduction with R 397. 
Worm, B., Sandow, M., Oschlies, A., Lotze, H.K., Myers, R.A., 2005. Global Patterns of 

Predator Diversity in the Open Oceans. Science 309, 1365–1369. 
https://doi.org/10.1126/science.1113399 

Worthy, G.A.J., Edwards, E.F., 1990. Morphometric and Biochemical Factors Affecting Heat 
Loss in a Small Temperate Cetacean (Phocoena phocoena) and a Small Tropical 
Cetacean (Stenella attenuata). Physiol. Zool. 63, 432–442. 
https://doi.org/10.1086/physzool.63.2.30158506 

 

 

  

WHALESBLOW [@WHALESBLOW] “BAD REVIEWS OF WHALE WATCHING – THE TRUTH”. INSTAGRAM, 

JANUARY 3 2022. https://www.instagram.com/p/CYStVlzLBk 

 

https://www.instagram.com/p/CYStVlzLBk


 

44 
 

2 Methodology 
 

This chapter outlines the data collection, data processing, and modelling methodologies used 

throughout this thesis. On occasions when different approaches were used, these are detailed 

in the relevant chapters. The environmental data used during the modelling process are also 

described. Results of the modelling are presented in chapters 3-5.  

2.1 Data Sources 

The cetacean data modelled in this thesis were all collected during the following large-scale, 

dedicated marine mammal surveys: the SCANS-II (Small Cetacean Abundance in the North Sea) 

survey, conducted during July of 2005 (Hammond et al. 2013); the CODA (Cetacean Offshore 

Distribution and Abundance) survey, conducted during July of 2007 (Hammond et al. 2009); 

the SCANS-III survey, conducted during July and the first half of August 2016 (Hammond et al. 

2021)  and the ObSERVE survey conducted during  May, June and July of 2015 and 2016 (Rogan 

et al. 2018). The SCANS-II and SCANS-III surveys used a combination of ship and aerial 

platforms, whilst CODA used only ship-based, and ObSERVE used only aerial data collection 

methods. Survey design and field protocols are detailed in the literature cited above. 

SCANS-II covered the North Sea and European Atlantic waters out to the edge of the 

continental shelf (Figure 2.1-1). The SCANS-III survey covered all the waters included in the 

CODA and SCANS-II surveys and extended the area north to include Norwegian coastal waters. 

However, Irish waters were not included in SCANS-III, instead being surveyed as part of the 

ObSERVE surveys.  These surveys are summarised in Table 2.1-1. Completed effort achieved 

during each of these surveys is shown in Figure 2.1-3  
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Table 2.1-1 Dates and platform types of main data sources used within this thesis. NB, the ObSERVE surveys were 
conducted over a two-year period, in both summer and winter. Only the 2016 summer data were included for 
these analyses. 

Survey name Date Platform Figure Primary citation 

SCANS-II 
June - July 2005 
June - August 2005 

Ship  
Aerial 

Figure 
2.1-1 

Hammond et al. 2013 

CODA July 2007 Ship only 
Figure 
2.1-1 

Hammond et al. 2009 

SCANS-III  
July2016 - August 2016 
July2016 - August 2016 

Ship  
Aerial 

Figure 
2.1-3 

Hammond et al., 
2021 

ObSERVE May 2016 to July 2016 
Aerial 
only 

Figure 
2.1-3 

Rogan et al. 2018 

 

 

Figure 2.1-1 Survey blocks for the CODA (outlined in red, labelled 1-4) and SCANS-II (labelled with letters) surveys. 
Blue survey blocks were surveyed by ship. Blocks coloured pink were surveyed by aircraft. 
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Figure 2.1-2: Survey blocks for the SCANS-III and ObSERVE (outlined in thick blue lines, labelled O_1-O_7) surveys. 
Blue survey blocks were surveyed by ship. Blocks coloured pink were surveyed by aircraft. SCANS-III blocks 1 was 
covered by both aerial and ship survey teams due to poor weather. 
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Figure 2.1-3: Completed effort for each of the main surveys for which data have been used. SCANS-II, CODA and 
SCANS-II data show arial survey blocks in pink, and ship survey blocks in blue. The ObSERVE map is taken from 
Figure 3.2 of Rogan et al., 2018. This is colour coded showing aerial effort achieved in different sea states, with 
seastate 1 shown in green, and seastate 2 shown in brown. All ObSERVE effort was aerial surveys.  

 

2.1.1 Ship surveys 
For SCANS-II, CODA and SCANS-III ship surveys Figure 2.1-1 & Figure 2.1-2, blue survey blocks), 

a double platform line transect survey was carried out in tracker configuration, in which there 

is one-way independence between the so-called "Tracker" and "Primary" teams on each ship 

(Hammond et al. 2009, 2013, 2021). The Primary team searched within 500m of the vessel 

using the naked eye. The Tracker team, situated higher on the vessel, searched from 500m to 

the horizon, using high-power (15x80) and 7x50 binoculars. This methodology generates data 
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that allow abundance estimates to be corrected for animals missed on the transect line, g(0), 

and potentially for responsive movement (Laake and Borchers, 2004).   

For all ships, target speed was 10 knots, although realised speed was slower when travelling 

into heavy swell. Observers worked in two teams of four people. The Tracker observers 

located animals as far ahead of the vessel as possible, then tracked the animals until they had 

passed abeam of the vessel. A "duplicate identifier" was assigned from the observers not 

currently on watch whose role was to assess whether groups of animals detected by the 

Tracker team were re-sighted by the Primary team. This person was located on or near 

(depending on ship configuration) the tracker platform, next to the data recorder, and was 

assessing duplicates in real time wherever possible. They were not conducting watches for 

animals themselves. Duplicates were defined as either "Definite" (at least 90% confident it was 

a duplicate), "Probable" (between 50% and 90% confident), or "Remote" (less than 50% 

confident). Confidence in whether a sighting was a duplicate was subjective, but informed by 

time of sighting, species, group size and swim direction. Trackers were also tracking these 

animals using binoculars for as long as possible, providing additional information to the 

duplicate identifier.  

Effort data, including environmental conditions and sightings data, were recorded by a 

designated data recorder. All data were stored in a laptop computer running the LOGGER 

software, modified specifically for SCANS surveys (Gillespie et al. 2010). Environmental 

conditions data included sea conditions measured on the Beaufort scale, swell height and 

direction, sun glare, visibility (distance to horizon) and sightability. Sightability was a subjective 

measure of conditions for detecting small cetaceans comprising an assessment of all 

environmental conditions together. Although subjective, classifying environmental conditions 

in this way was done consistently by all observers. Personnel changes were recorded as they 

happened. Environmental data was recorded every 15 minutes or more often if conditions 

changed.  

Distance to detected groups was measured by observers on the Primary platform using 

individually calibrated measuring sticks (Leaper, R. Pers. Comm).  

2.1.2 Aerial surveys 
Aerial data were collected according to the same protocols for each of the SCANS-II, SCANS-III 

and ObSERVE aerial surveys (Figure 2.1-1 & Figure 2.1-2 pink survey blocks). Aerial teams 

consisted of a pilot and three scientific crew members. In all cases, the target altitude was 600 
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feet (183 m), and the target speed was 90 knots (167 kmph). Of the three scientific crew, two 

acted as observers, utilising bubble windows on either side of the aircraft. The third team 

member was deployed as data recorder, recording both environmental conditions and 

sightings data; entering data into a laptop computer running bespoke dedicated data 

collection software package VOR, written by Phil Lovell  (SCANS-II 2008 Appendix A3.2). 

Environmental conditions were classified based on the observers judgement about the 

chances of their seeing a porpoise. Conditions were classified as "good", "moderate", or "poor" 

based on the following definitions, which are intentionally subjective and based on the 

observers own judgement  ((SCANS-II 2008 Appendix A3.2, p7): 

 

Good:  when the observer believes that the likelihood of seeing a porpoise should occur 

within the searching area is good. Normally good subjective conditions will require a sea 

state of two or less and a turbidity of less than 2.  

Moderate: when the observer believes that the likelihood of seeing a porpoise should occur 

within the searching area is moderate.  

Poor: when the observer believes that they are unlikely to see a porpoise should one occur 

within the searching area, unless for example it is showing exuberant behaviour or is very 

close to the trackline.  

 

Time and angle from the observer to the sighted animal (the angle of declination) were 

recorded when detected cetaceans passed abeam of the aircraft. Angle of declination and 

altitude were used to calculate perpendicular distance. Additional detail on methods is 

described by Gilles et al. (2009). 

In all surveys except ObSERVE, the circle-back or "racetrack" method (Hiby and Lovell 1998; 

Hiby 1999; Scheidat et al. 2008) was used to collect data from which it was possible to correct 

for animals missed on the transect line, g(0). When following this methodology, when a group 

of animals was detected, the aircraft circled back to re-survey a pre-determined section of 

track-line to see if animals were sighted on the second pass. GPS data, times at which animals 

pass abeam and measured angles of declination were used to ascertain the likelihood that 

pods of animals seen on the first and second pass were duplicates. “Racetrack” software, 

written by Lex HIby, is used to analyse the duplicates and produce estimates of g(0) (Scheidat 

et al. 2008). 
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Resulting g(0) estimates from the SCANS-III surveys were applied to data collected during 

ObSERVE on the basis that the same aircraft and data collection protocols were used. In 

SCANS-II, this method was used only for harbour porpoise. In SCANS-III, it was also 

implemented for dolphin species and minke whale as these were the only species with enough 

sightings.  

2.2 Data Processing 

2.2.1 Design-based estimates of Abundance 
Design-based estimates of abundance were obtained for each of the species, for each of the 

surveys prior to completion of the modelling work described here. This includes the calculation 

of estimates of the total effective strip width (esw). This work does not form part of this thesis; 

however, the results are discussed in Chapter 3 as context to the modelling presented in that 

and subsequent chapters. Estimates of esw calculated in these prior studies were used in the 

modelling completed as part of this thesis. The esw was derived directly from the detection 

function, so may include multiple values depending on the conditions if the detection function 

incorporated multiple categorical variables.  Correcting estimates for animals missed on the 

transect line (g(0)) was done for all species for which there were sufficient data. A summary of 

the models used to estimate detection probability for each species or species grouping is 

provided in Table 2.2-1. As data had been collected using common protocols, analysis could 

also be standardised across platforms and surveys. For full details of design-based abundance 

estimates, see Hammond et. al. (2013) for SCANS-II, Hammond et al. (2009) for CODA, 

Hammond et al. (2021) for SCANS-III and Rogan et al. (2018) for ObSERVE. Calculation of g(0) 

was not conducted as part of this thesis. Esw and g(0) estimates for the SCANS-III surveys are 

provided in Table 2.2-2 and Table 2.2-3.  
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Table 2.2-1 Summary of data and models used to estimate detection probability for each species or species 
grouping in the SCANS-II, CODA and SCANS-III surveys. Taken from; Hammond et al., 2009 (CODA); Hammond et 

al., 2013 (SCANS-II). Hammond et al., 2021 (SCANS-III). estimates for species not corrected or partially 

corrected are negatively biased to an unknown extent. 

Survey Ship or 
aerial 

Species / Species 
grouping  

Detection function 
covariates 

G(0) corrected? 

SCANS-II Aerial Harbour porpoise Subjective conditions  

SCANS-II Aerial Minke whale None  

SCANS-II Aerial White-beaked dolphin Subjective conditions  

SCANS-II Aerial Common dolphin Subjective conditions  

SCANS-II Aerial Bottlenose dolphin None  

SCANS-II Ship Harbour porpoise Beaufort, ship  

SCANS-II Ship Minke whale None  

SCANS-II Ship White-beaked dolphin None  

SCANS-II Ship Common dolphin Cluster size  

SCANS-II Ship Bottlenose dolphin None  

CODA Ship Common and striped 
dolphin 

Beaufort, Cue   

CODA Ship Fin whale Sightability, platform 
height 

 

CODA Ship Bottlenose dolphin Cluster size  

CODA Ship Minke whale None  

SCANS-III Ship Harbour porpoise Swell, Beaufort 
 

Yes 

SCANS-III Ship Bottlenose dolphin None Yes 

SCANS-III Ship White-sided / white-
beaked dolphin 

None Yes 

SCANS-III Ship Common and striped 
dolphin 

Beaufort Yes 

SCANS-III Ship Large baleen whales 
(blocks 8 & 9) 

Swell  

SCANS-III Ship Large baleen whales 
(blocks 11, 12, & 13) 

Swell, Beaufort  

SCANS-III Ship Minke whale None  

SCANS-III Aerial 
 

Harbour porpoise 
 

Subjective conditions  

SCANS-III Aerial Dolphins (all species) Subjective conditions  

SCANS-III Aerial Minke whale None  
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Table 2.2-2 Estimates of ESW (CV in parentheses) and g(0) for harbour porpoise, all dolphin species combined and 
minke whale, for good and moderate sighting conditions during the SCANS-III aerial survey. Note that ESW is the 
total effective strip width on both sides of the aircraft. Reproduced from Hammond et al., 2021.  

 ESW (in meters), incorporating the 
effect of g(0) on detection probability 

g(0) 

Conditions Good Moderate Good Moderate 

Harbour porpoise 138 (0.16) 109 (0.17) 0.364 0.279 

Dolphins (all species) 390 (0.13) 213 (0.14) 0.805 0.414 

Minke whale 154 (0.42) 0.302 

 

Table 2.2-3 Estimates of ESW (CV in parentheses) and g(0) for species seen during the SCANS-III vessel survey. 
Note that ESW is the total effective strip width on both sides of the survey vessel. A g(0) minke whale estimate is 
not available for ship data. Reproduced from Hammond et al., 2021. 

Species / Species group 
ESW (in meters), 

incorporating the effect of 
g(0) on detection probability 

g(0) 

Harbour porpoise 93.9 (0.186) 0.221 (0.177) 

Bottlenose dolphin 151 (0.377) 0.400 (0.358) 

White-beaked and white-sided dolphin 129 (0.697) 0.455 (0.330) 

Common and striped dolphin 110 (0.164) 0.421 (0.115) 

Large baleen whales (blocks 8 & 9) 789 (0.061) Not estimated 

Large baleen whales (blocks 11, 12, 13) 933 (0.088) 0.614 (0.073) 

Minke whale 208 Not estimated 

 

2.2.2 Preparation of data for modelling 
Data from the aerial and ship surveys were processed in the same way. For the ship surveys, 

only data from the primary platforms were used for modelling. Similarly, for the aerial surveys, 

data collected during the circle-back manoeuvres were excluded. 

Short sections of searching effort were created from the raw data. Files containing effort data 

were linked to the GPS locations recorded every 4 seconds on the aerial survey and every 10 

seconds on the ship survey. On the few occasions when the GPS data were missing for short 

sections, positions were interpolated linearly. This resulted in short sections of effort of 

approximately 200m for aerial survey and approximately 50m for the ship survey per GPS 

location. Multiples of these short sections were then joined to form modelling segments (see 

below).   

To take account of environmental conditions during data collection, the short sections of effort 

were linked with estimates of the total effective strip width (esw), according to the 

environmental conditions recorded during the period when the searching took place. These 

estimates of esw were derived from the detection functions fitted for each species during the 
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analysis for the design-based estimates of abundance, according to the covariates included in 

the detection function (section 2.2.1) (Hammond et al. 2009, 2013, 2021;  Rogan et al., 2018). 

Environmental conditions included the subjective assessment of conditions used on the aerial 

survey; and Beaufort scale, swell and overall sightability measured or assessed on the ship 

surveys. The effective area searched in each short section of effort was calculated as the esw 

multiplied by the distance travelled. 

Values of depth and slope (see Section 2.2.3) were linked to each of these short sections of 

effort using R version 4.0.3 (R Core Team 2020), package Raster (Hijmans 2020). Particularly for 

depth, adding values at this stage was found to be more accurate than doing so later in the 

process. 

Segments of effort of target 10km length (all between 1km and 15km) were created by joining 

consecutive short sections of effort using R function segmentate (Viquerat, pers. comm). 

Values of depth, slope and aspect in the short effort sections were averaged to provide values 

for each 10km segment.   

Measurements from the centre point of each segment to the coast and to the 50m (North Sea 

only), 200m and 2000m isobaths at the closest point were made using the QGIS (QGIS 

Development Team, 2018)  NNJoin plug-in. These effort segments formed the sampling unit 

for data analysis. 

Dynamic environmental variables (see section 2.2.3 and Table 2.1) were provided as .netCDF 

files by either NEODAAS (https://www.neodaas.ac.uk/) or obtained from Copernicus 

(https://resources.marine.copernicus.eu/).  These were converted to raster files, and a 

weighted mean value across a circle of 10km diameter originating at the mid-point of the 

segment was calculated and linked to the segment. For some of the shorter segments, 

covariate resolution was larger than length of segment. 

A 10x10km spatial grid was created, and values of all environmental variables were associated 

with each grid cell using the same extract functions described above for the effort segments. 

The grid was used as a basis for predicting cetacean density spatially from the fitted models 

using the values of the environmental variables in each grid cell (see 2.3.7). 

All data processing was undertaken in software R version 4.0.3 (R Core Team 2020). 

https://www.neodaas.ac.uk/
https://resources.marine.copernicus.eu/
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2.2.3 Environmental Data 
Table 2.2-4 shows the environmental variables that were considered as candidate covariates 

during modelling (see section 2.3.1). Unless otherwise stated, these were processed as 

described above. Two types of environmental variable were used – physiographic and 

dynamic. The physiographic variables included depth, slope (rate of depth change in degrees), 

and distance to depth and seabed features. Dynamic variables included Sea surface 

temperature (SST), salinity and a selection of different measurements of mesoscale activity 

(sea surface height, sea level anomaly, absolute dynamic topography). For dynamic variables, 

monthly averaged data for July (the month in which the majority of the cetacean data were 

collected) of the same year in which the cetacean data were collected were used. Maps of 

covariates are provided for the relevant geographic areas in chapters 3-5.  
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Table 2.2-4 Environmental variables used as candidate covariates during cetacean modelling. 

Covariate Abbreviated 

name 

Description Unit of 

measurement 

Data source 

X X Longitude converted into UTM30 coordinate 

system 

N/A N/A 

Y Y Latitude converted into UTM30 coordinate 

system 

N/A N/A 

Depth  Depth Mean depth of the values assigned to effort 

making up the segment. Depth raster created 

using R package MARMAP (Pante and Simon-

Bouhet 2013). 

m ETOPO1 database, hosted by NOAA (Amante & Eakins, 2009). 

Standard deviation 

of depth 

SDdepth Standard deviation of depth calculated over a 

buffer of 5km radius. Depth raster created 

using R package MARMAP (Pante and Simon-

Bouhet 2013). Analysis of raster conducted 

using R package RASTER (Hijmans, 2020) 

m ETOPO1 database, hosted by NOAA (Amante & Eakins, 2009). 

Slope Slope Seabed gradient, extracted from a single point 

location using depth data extracted using R 

package MARMAP (Pante and Simon-Bouhet 

2013).  

 

Analysis of raster conducted using R package 

RASTER (Hijmans, 2020) 

(°) ETOPO1 database, hosted by NOAA (Amante & Eakins, 2009). 

Surface salinity  Sal Sea water salinity PSU  GLORYS12V1: a reanalysis of the Copernicus Marine Environment Monitoring 

Service (CMEMS) global ocean eddy-model, based largely on the current real-time 

global forecasting CMEMS system. Downloaded from 

https://resources.marine.copernicus.eu/ ((Fernandez and Lellouche 2021) 

Mixed Layer Depth MLD Ocean mixed layer thickness. The depth where 

the density increase compared to density at 

10m depth corresponds to a temperature 

decrease of 0.2°C in local surface conditions. 

m GLORYS12V1: a reanalysis of the Copernicus Marine Environment Monitoring 

Service (CMEMS) global ocean eddy-model, based largely on the current real-time 

global forecasting CMEMS system. Downloaded from 

https://resources.marine.copernicus.eu/ ((Fernandez and Lellouche 2021) 

https://resources.marine.copernicus.eu/
https://resources.marine.copernicus.eu/
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Sea surface 

temperature 

SST  °C This is the Optimally Interpolated (OI) merged microwave-infrared SST product 

from the Advanced Very High-Resolution Radiometer (AVHRR) instrument. Data 

provided by NEODAAS (Casey et al. 2010) 

Sea Level Anomaly SLA Sea level anomaly is the difference between 

sea surface height and a mean sea surface. Sea 

surface height is derived from satellite 

altimetry, and the mean sea surface is 

calculated from 20 years of these data. 

m Data provided by NEODAAS 

Sea surface Height SSH Sea surface height above the ellipsoid. SSH is 

the difference between the actual sea surface 

height at any given time and place, and that 

which it would have if the ocean were at rest. 

SSH = geoid +ADT 

m GLORYS12V1: a reanalysis of the Copernicus Marine Environment Monitoring 

Service (CMEMS) global ocean eddy-model, based largely on the current real-time 

global forecasting CMEMS system. Downloaded from 

https://resources.marine.copernicus.eu/ ((Fernandez and Lellouche 2021) 

Absolute Dynamic 

Topography 

ADT ADT gives the departure of the sea surface 

from the geoid due to ocean dynamics. The 

geoid is a surface of constant geopotential 

with which mean sea level would coincide if 

the ocean were at rest. 

ADT is calculated from the sea level anomaly 

(SLA) and the mean dynamic topography 

(MDT): ADT = SLA +MDT 

m Data were produced by the Copernicus Marine Environment Monitoring Service 

(CMEMS) Sea Level-TAC multimission altimetry processing system and processed 

by NEODAAS 

Absolute distance 

to the 2000 isobath 

D2000_iso Distance at shortest point. Calculated using 

the NNJoin package in QGIS, uses nearest 

neighbour analysis. 

km ETOPO1 database, hosted by NOAA (Amante & Eakins, 2009). 

Absolute distance 

to the coast 

Distance to 

coast 

Distance at shortest point. Calculated using 

the NNJoin package in QGIS, uses nearest 

neighbour analysis. 

km  

Absolute distance 

to the 200m 

isobath 

D200_iso Distance at shortest point. Calculated using 

the NNJoin package in QGIS, uses nearest 

neighbour analysis. 

km ETOPO1 database, hosted by NOAA (Amante & Eakins, 2009). 

Absolute distance 

to the 50m isobath 

(North Sea only 

D50_iso Distance at shortest point. Calculated using 

the NNJoin package in QGIS, uses nearest 

neighbour analysis. 

km ETOPO1 database, hosted by NOAA (Amante & Eakins, 2009). 

Distance to 200m CS200 Distance at shortest point, but with values on km ETOPO1 database, hosted by NOAA (Amante & Eakins, 2009). 

https://resources.marine.copernicus.eu/
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isobath accounting 

for contour  

the deep side of the contour multiplied by -1 

to provide a linear measure. Calculated using 

the NNJoin package in QGIS, uses nearest 

neighbour analysis. 

Distance to 50m 

isobath accounting 

for contour 

CS50 Distance at shortest point, but with values on 

the deep side of the contour multiplied by -1 

to provide a linear measure. Calculated using 

the NNJoin package in QGIS, uses nearest 

neighbour analysis. 

km ETOPO1 database, hosted by NOAA (Amante & Eakins, 2009). 

Absolute distance 

to escarpments 

Distance to 

escarpments 

Distance at shortest point. Escarpment is the 

bottom of a cliff or steep slope. Calculated 

using the NNJoin package in QGIS, uses 

nearest neighbour analysis. 

km Seafloor Geomorphic Features map 

(Harris et al. 2014)) 

Absolute distance 

to canyons 

Distance to 

canyons 

Distance at shortest point. Canyons are deep, 

narrow valleys with steep sides. Calculated 

using the NNJoin package in QGIS, uses 

nearest neighbour analysis. 

km Seafloor Geomorphic Features map 

(Harris et al., 2014) 

Absolute distance 

to seamounts 

Distance to 

seamounts 

Distance at shortest point. Seamounts are 

isolated rises in elevation of 1000m or more 

from the surrounding seafloor. Calculated 

using the NNJoin package in QGIS, uses 

nearest neighbour analysis. 

km Seafloor Geomorphic Features map 

(Harris et al., 2014) 

Absolute distance 

to troughs 

Distance to 
troughs 
 

Distance at shortest point. A trough is a linear 

depression extending over a distance. 

Shallower than a canyon. Calculated using the 

NNJoin package in QGIS, uses nearest 

neighbour analysis. 

km Seafloor Geomorphic Features map 

(Harris et al., 2014) 
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2.3 Modelling Methodology 

Several analyses of similar large-scale datasets have been undertaken in recent years (e.g. Becker et 

al., 2016, 2017; Gilles et al., 2016; Rogan et al., 2017). The analyses undertaken here followed the 

same overall Generalised Additive Model (GAM) framework established in this previous work.   

2.3.1 Overall GAM framework 
GAMS were developed in R (v 4.0.3; (R Core Team 2020) using package “mgcv” (v 1.8.33; Wood, 

2003, 2004, 2017; Marra and Wood, 2011; Wood et al., 2016). 

Cetacean data are often over-dispersed., meaning there is greater variability present in a dataset 

than would be expected. This is common due to populations being heterogeneous (non-uniform) in 

distribution.  To combat this, Tweedie and Negative Binomial distributions were both considered as 

candidate error structures (Miller et al. 2013). Models for each species were tried with each error 

distribution, and the best fitting model was taken forward to generate predictions. Poisson 

distribution was not tried, due to the over-dispersion of data.  

The general structure of the model, using a logarithmic link function, was:  

𝑛𝑖 = 𝑒𝑥𝑝 [ln(𝑎𝑖) + 𝜃0 +∑𝑓𝑘(𝑧𝑖𝑘)] 

where ni is the number of individuals detected in the ith effort segment, the offset ai is the effective 

area searched (segment length * estimated total effective strip width) for the ith segment, θ0 is the 

intercept, fk are smoothed functions of the explanatory environmental covariates, and zik is the value 

of the kth explanatory covariate in the ith segment.  

Smooth functions were fitted using restricted maximum likelihood (REML) with automatic term 

selection (Marra and Wood 2011). Thin-plate regression splines (Wood 2003) were used for all 

covariates. This method was chosen because it helps avoid overfitting of the smooth functions by 

including a modification to slightly penalise the null space. The method can reduce the estimated 

degrees of freedom of a covariate term to one or less and even to zero if it does not contribute 

sufficiently to explaining the variability in the data.  

Following initial fitting of a model including all candidate covariates, those covariates with estimated 

degrees of freedom of 0.1 or less were removed from the model. Selection among models was 

conducted based on Akaike's Information Criterion (AIC). Selecting the model with the lowest AIC 

can sometimes result in retention of covariates that are not significant but nevertheless contribute 

to explaining variability in the data. Goodness of fit of models was assessed by inspection of QQ 

plots and plots of model residuals. 
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2.3.2 Correlated environmental covariates. 
Prior to conducting any modelling, correlation matrices were calculated using the corrplot R 

package, version 0.92 (Wei and Simko 2021).  This was used investigate the level of correlation which 

existed between similar covariates. A cut off of 0.6 / -0.6 was used. Cut-off points of 0.7 is commonly 

considered to be a “strong correlation”, so 0.6 was chosen to be on the precautionary side (Schober 

et al. 2018) Covariates on distance to coast or isobaths were found to be correlated in many cases, 

although the levels of correlation depended on the exact dataset modelled (see Chapters 3-5). To 

select which of the correlated covariates should be included in the model in each instance, they 

were first modelled independently, and the covariate resulting in the lowest AIC score was taken 

forward for use in subsequent modelling.  

2.3.3 Model application 
The following steps were followed to apply the models.  Firstly, for covariates that were considered 

to be of the same “type”, for example SD depth and slope, or SLA, SSH and ADT, individual models 

were run with each of these variables individually (Table 2.3-1). These models were then compared 

by AIC, and the best of these models was taken forward to the next stage. This process was done for 

both the negative binomial and Tweedie distributions separately.   

Table 2.3-1 Example table showing the potential number of models that would arise from a stepwise forward selection 
model building process, if that had been used here. Some of the covariates are in sets of the same type, of which only 
one would go into a model -so for example both SD and slope would never end up in the same model.  

Covariate “type” Number of options Candidates 

Depth 1 1 – depth 

Salinity 1 1 - salinity 

Sea surface temperature 1 1 – sea surface temperature 

Seabed rugosity 2  -Slope 
 -SD depth 

Mixed Layer depth 2 - MLD 
- Log MLD 

Mesoscale activity 3 - SSH 
- ADT 
- SLA 

Distance to feature 10 - CS50 
- Dist_50_iso 
- CS200 
- Dist_20_iso 
- Distance to coast 
- Dist_2000_iso 
- Distance to escarpments 
- Distance to canyons 
- Distance to troughs 
- Distance to seamounts 
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Matrices were then built to check for correlation between covariates that have been selected for the 

model. The same covariates were often selected by the negative binomial and Tweedie model-sets, 

but not exclusively. In cases where different covariates went through each time, a correlation matrix 

was prepared for each error distribution.  

“Full” models were then built which modelled the cetacean data as either individuals or groups 

(section 2.3.3) against one covariate of each type (Depth+salinity+SST+1 of “seabed slope” + 1 of 

“mesoscale activity”+1 of “distance to”) all included in the same model. In instances where there 

was a correlation score higher than 0.6 or lower than -0.6. two separate models were run, one for 

each covariate, alongside all of the other candidate covariates.  

Results of this “full” model were examined, and any covariate found to retain fewer than 0.1 

estimated degrees of freedom (edf) was removed, and the model run again. This approach was 

pioneered by Mara and Wood (2011) to help avoid overfitting, and also aids in efficient evaluation of 

candidate covariates. Building a model by adding one covariate at a time could have resulted in up to 

2349 candidate models for each species, repeated for each error distribution to evaluate all of the 

potential options (Table 2.3-2). The use of REML with automatic term selection allows a much more 

efficient examination of large numbers of candidate covariates.   

Table 2.3-2 Example table showing the potential number of models that would arise from a stepwise forward selection 
model building process, if that had been used here. Some of the covariates are in sets of the same type, of which only 
one would go into a model -so for example both SD and slope would never end up in the same model.  

Number of potential individual covariate models 18 

Possible number of two covariate models 171 

Possible number of three covariate models 1200 

Possible number of four covariate models 720 

Possible number of five covariate models 160 

Possible number of six covariate models 80 

Total number of models for each error distribution 2349 

 

The threshold of 0.1 edf was chosen as the cut-off as per Canadas et al (2021, pers comm). This 

represents a covariate with a flat slope, in which the covariate is causing little or no partial effect.  

2.3.4 Individuals or groups? 
All species were first modelled using the number of individuals detected in a segment as the 

response variable. For some species, these models did not fit well, and so the data were re-modelled 

using the number of groups detected in a segment instead of individuals. Species for which 

individual models did not fit well were typically those with large groups sizes (e.g., common 

dolphins). The larger group sizes cause more severe over-dispersion in the distribution of counts of 

individuals. Following the methodology outlined by Becker et al., (2016), if the number of groups 
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was modelled, models of group size were also developed to establish if group size varied across the 

study area. However, in all such models of group size, an intercept only model was the most 

supported. Therefore, in all these cases, estimated densities of groups from the selected models 

were multiplied by observed mean group size to generate estimates of the density of individuals (see 

section 2.3.7).  

2.3.5 Inclusion of XY variables 
Latitude and longitude (often modelled as X,Y) are often included in models as a catch-all proxy for 

specific or unknown habitat features (Forney 2000). These covariates are included as an isotropic 

smooth, along with other environmental covariates selected during the model selection process 

described above. Since space is often the best descriptor of a species' distribution, with the XY 

covariates accounting for a lot of the unknown variability, the inclusion of these covariates usually 

results in excellent "predictive" models, best describing the current distribution of animals based on 

the field data collected. However, these models can be difficult to interpret ecologically, as it is not 

always clear what processes the XY variables are acting as a proxy for (Guisan et al. 2002; Redfern et 

al. 2006).  

Explanatory models are run using only the environmental covariates, with no XY smooth. These 

models may not be as good a descriptor of where the animals were seen, but they are better suited 

to describe the environmental features that might explain the ecological processes that define 

spatial distribution (Becker et al. 2019). Whether or not to include Latitude and Longitude really 

depends what question you are hoping the model will answer (Shmueli 2010).  Predictive models are 

used in Chapter 3 to best describe the current state of knowledge on study species using the most 

recent available data. Explanatory models are used in Chapters 4 and 5 with an aim of explaining 

what could be causing the observed distributions.  

2.3.6 Modelling process  
The same steps were followed to complete the modelling in all subsequent chapters unless 

otherwise described.  Prior to starting, the data for the specific region to be modelled were subset 

from the overall master dataset, which had been prepared as described above.  

In some cases, effort segments contained missing values for specific covariates. This usually occurred 

when segments were very short. All effort segments which contained missing covariate values were 

removed to ensure the same dataset was used when comparing models by AIC. 

The correlation coefficients for the environmental covariates to be considered for the model were 

calculated. Covariates with a correlation coefficient greater than 0.6 or less than -0.6 were modelled 
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individually. Of these individually modelled, correlated covariates, the covariate with the lowest AIC 

score from the individual models was selected to take forward into the full model.  

Using the covariates selected this way, a full model containing the best of any correlated covariates 

along with all other candidate covariates, was run using number of individuals as the response 

variable. Model results were examined, and all covariates resulting in an edf of <0.1 were removed, 

and the model re-run. This process was repeated until no covariates with edf <0.1 remained.   

Depending on the species and overall model fit, it was sometimes necessary to repeat this process 

again, using the number of groups instead of number of individuals as the response variable.  

Model diagnostics for the final Tweedie and Negative Binomial models were examined and the best 

model selected and used for prediction. A step-by-step version of this process is provided in 

Appendix 1. 

 

2.3.7 Model Prediction 
Model prediction grids consisting of 10 x 10km grid cells (as described in section 2.2.2) were 

prepared for the area being modelled. Covariate values for the effort segments were compared with 

those of the prepared prediction grid, and any grid squares containing values of covariates which 

were outside the range covered by the covariates in the effort segments were removed from the 

prediction grid. This was done to avoid predicting in areas where covariate values were outside the 

range of the modelled data.  

Best models, as determined using the process described above, were predicted onto this grid using 

the mgcv predict.gam function to predict density and standard error. The predicted density was 

plotted to create maps of density for each species. Map figures were created in R using the tmap 

package (Tennekes 2018), coordinate reference system EPSG:4326.  

For species modelled as number of groups instead of number of individuals, the density of groups 

was predicted and multiplied by mean group size, to generate estimates of density of individuals. 

Maps were created using this estimated density (from the mgcv predict.gam function, as described 

above) of individuals to ensure maximum comparability between species.  

2.3.8 Calculating prediction Coefficient of Variation 
The coefficient of variation (CV) of predicted density in each grid cell was estimated using methods 

described by Schleimer et al. (2019), which are based on simulation of posterior distributions of the 

model results. Function mvrnorm  from the MASS library in R (Venables and Ripley 2002) was used 

to simulate 1,000 vectors of the model coefficients. From these, 1,000 predictions of density in each 
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grid cell were created and the standard deviation and hence CV of density was calculated from 

these.   

The estimated CV includes variability in encounter rate (how the count varies along the transect line) 

but does not include uncertainty in ESW and will therefore be underestimated, the extent of which 

will depend on the precision of estimates of ESW. 

Maps of CV were included alongside the maps of model predictions to provide an indication of 

confidence in the predictions, particularly at higher densities, which is indicated by CV.  Maps of 

standard error (SE) of density have also been provided.  
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3 The Big Picture  
 

 

 

Harbour porpoise doodle, courtesy of Anni Sharpe 

 

The current status – distribution and abundance – of eight species of cetacean in the European 

Atlantic using the best available data, from the SCANS-III and ObSERVE surveys (2016). 
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3.1 Introduction 

Large-scale surveys of cetaceans are designed to obtain design-based abundance estimates over a 

large geographical area and are often designed as multi-species surveys. They typically take place 

from large ships and may also incorporate the collection of data on other taxa, often seabirds, as 

well as oceanographic parameters. These types of surveys have been conducted in a wide range of 

locations, including (but not limited to) the Hawaiian Exclusive Economic zone (EEZ) (Bradford et al. 

2017); the Eastern Tropical Pacific (ETP) (Wade 1993), the South Atlantic (Baines et al. 2021), the 

western North Atlantic (Palka et al. 2017)(CETAP 1982), the U.S Atlantic Outer Continental Shelf 

(Palka et al. 2017), and the Central and Eastern North Atlantic (Hammond et al. 2002, Lockyer and 

Pike, 2009). Depending on the location of the study area, aerial surveys may also be used, for 

example in northern Canada (Kingsley 2000), and the North Sea (Scheidat et al. 2012).  

These types of survey routinely generate abundance estimates within their survey region. These 

regions may be split into smaller sub-regions, or strata; and depending on the data collected, 

estimates may be available for species for these smaller sub-regions (Hammond et al. 2013). The 

availability of the estimates for smaller regions is determined by the survey design and the data 

collected and it may not always be possible to calculate estimates for regions of interest, if the 

regions were not taken into account during the original survey design.   

As discussed in section 1.4, modelling analyses can use data collected on these large-scale surveys 

and conduct further analysis. They can be used to combine data from multiple surveys, to 

investigate patterns and possible causes of patters, predict future distribution, and generate 

spatially explicit model-based abundance estimates, which may be of smaller sub-regions than the 

original survey. The wide range of applications makes these very popular, and there have been a 

considerable number of previous studies (Becker et al. 2012; Forney et al. 2012; Roberts et al. 2016; 

Breen et al. 2016; Mannocci et al. 2017; Becker 2021). 

3.1.1 Study area 
This chapter uses approximately 60,000 km of survey effort (Table 3.2-1) collected via shipboard and 

aerial surveys during the SCANS-III and ObSERVE cetacean surveys (Rogan et al. 2018; Hammond et 

al. 2021). These data were all collected during the summer of 2016. Further information on the 

surveys is provided in section 2. The area covered by the surveys is shown in Figure 2.1-2.  
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Figure 3.1-1: Survey blocks for the SCANS-III and ObSERVE (outlined in thick blue lines, labelled O_1-O_7) surveys. Blue 
survey blocks were surveyed by ship. Blocks coloured pink were surveyed by aircraft. SCANS-III block 1 was covered by 
both aerial and ship survey teams due to poor weather. 

 

3.1.2 Cetaceans within the study area  
At least 28 species of cetacean are known to have occurred within the area covered by the SCANS-III 

and ObSERVE surveys (hereafter, the study area) (Reid et al. 2003; Wall et al. 2006, 2013). The 

number of species which are regularly present in the study area vary between 13 (Evans and 

Hammond 2004) and 15 (Weir et al. 2001), with the remainder being classed as either vagrant (eight 

species) or occasional visitors.  Of the 13 or so regularly present species, the SCANS-III survey was 

able to calculate design-based estimates of abundance – derived using distance analysis as per 
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Buckland (2001) – for ten of these (Hammond et al., 2021).  The ObSERVE survey was able to 

estimate design-based abundance for 11 species (Rogan et al., 2018). This demonstrates the 

applicability and value of these large-scale surveys in providing baseline and snapshot data. 

Furthermore, models of these data have been independently produced on a survey-by-survey basis 

(Rogan et al., 2019, Lacey et al., 2022). In contrast to the two independent modelling studies, the 

models presented in this chapter are fitted to the two datasets combined. This analysis provides a 

much more complete snapshot of the summer 2016 distribution than looking at the two areas in 

isolation, as animals are highly mobile and could easily be moving between the two areas.  Models 

are presented for harbour porpoise, five species of delphinid, minke whale and fin whale. As context 

for the following work, Table 3.1-1 provides the design-based abundance estimates for the eight 

species which are further explored in this thesis.  

Table 3.1-1 Design based abundance estimates and confidence intervals for 8 cetacean species within the SCANS-III and 
ObSERVE survey areas. SCANS-III estimates are taken from Hammond et al., 2021l; ObSERVE estimates are taken from 
Rogan et al., 2018. NA values are provided if an abundance estimate was not calculated from a survey.  

Species 
SCANS-III 
estimate 

SCANS-
III Lower 
95% CI 

SCANS-III 
Upper 
95% 
 CI 

ObSERVE 
estimate 
(season 3 – 
Summer 
2016) 

ObSERVE 
Lower 
95% CI 

ObSERVE 
Upper 
95% 
CI 

Total 

Harbour 
porpoise 

466,569 345,306 630,417 38,260 30,972 47,265 504,829 

Minke 
whale 

14,759 8,016 27,173 6,579 3,576 12,104 21,338 

White-
beaked 
dolphin 

36,287 20,790 63,334 NA NA NA 36,287 

White-
sided 
dolphin 

15,510 4,389 54,807 2,906 120 1,030 18,416 

Bottlenose 
dolphin 

33,123 20,305 54,033 87,330 58,029 131,426 120,453 

Common 
dolphin 

473,461 286,094 783,539 13,633 5,214 35,646 487,093 

Striped 
dolphin 

441,455 245,974 792290 NA NA NA 4 

Fin whale 27,293 13,187 56,487 95 26 342 27,388 
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3.1.3 Chapter objective 
The aim of this chapter is to use the combined SCANS-III and ObSERVE dataset (see Rogan et al., 

2018 for ObSERVE; Hammond et al., 2021 for SCANS-III) to produce predictive models (including an 

isotropic X, Y smooth) to best describe the distribution of eight different species of cetacean across 

the study region. These selected species include the two baleen whale species for which there are 

sufficient data, the delphinid species for which there are sufficient data, and the harbour porpoise.  

3.2 Methods 

Predictive GAMS, including an isotropic smooth of latitude and longitude (converted into UTM30 

coordinate system, represented as X & Y) as well as environmental covariates (Section 2.3.1) were 

fitted to data for 10 cetacean species, the species that were most frequently encountered across the 

two surveys. Both negative binomial and Tweedie error distributions were tried for each species, and 

the distribution found to allow the best fit of the model to the data is presented below. For species 

for which models of individual animals did not fit well, (common dolphins, striped dolphins and pilot 

whales) the number of groups was modelled as the response variable as described in Section 2.3.3.  

Separate models were run for environmental data incorporating a time lag (section 2.3.5) and a 

model using just the July data. The best of these are presented below.  

3.2.1 Description of data 

3.2.1.1 Cetacean data 
The data modelled in this chapter all come from the SCANS-III survey (Hammond et al. 2021) and the 

ObSERVE survey (Rogan et al. 2018). Data are all from the summer of 2016.  More specific details of 

the surveys are outlined in section 2.1. The area covered by the survey is shown in Figure 2.1-2.  

Table 3.2-1 summarises the effort and sightings available for modelling the whole of the SCANS-III 

and ObSERVE (hereafter S3/ObSERVE) survey region. Only data collected in sea conditions less than 

Beaufort 3 were used for harbour porpoise modelling (less than Beaufort 5 for other species). Maps 

showing achieved survey effort and the locations of the sightings included in the modelling are 

included alongside the relevant predictions below.  

The survey area is large, and as a consequence there are a large number of segments with no 

sightings. For the harbour porpoise, the most commonly sighted species, there were sightings in 

0.15% of the effort segments. For the other species, only 0.002-0.04% of the segments contained 

sightings.  
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Table 3.2-1 Number of effort segments and number of groups and individuals sighted of each species used in analysis of 
data from the combined SCANS-III and ObSERVE dataset, collected during summer 2016. 

Species 
Total no. 
of effort 
segments 

Total 
effort (km) 

No. of effort 
segments 
with groups 

Number 
of groups 

Number of 
Individuals 

Mean 
group 
size 

Minke whale 6961 62,375 96 (0.01%) 114 118 1.04 

White-beaked 
dolphin 

6961 62,375 68 (0.01%) 111 435 3.92 

Harbour porpoise 6448 57,150 945 (0.15%) 1584 2146 1.35 

White-sided 
dolphin 

6961 62,375 15 (0.002%) 20 87 4.35 

Bottlenose dolphin 6961 62,375 138 (0.02%) 222 1346 6.06 

Common dolphin 6961 62,375 224 (0.03%) 557 4779 8.58 

Striped dolphin 6961 62,375 54 (0.008%) 74 1974 26.7 

Fin whale 6961 62,375 261 (0.04%) 567 797 1.4 

 

3.2.2 Covariate data – static covariates 
Covariates for models of the S3/ ObSERVE dataset were selected using the methods outlined in 

Chapter 2. The values of each covariate assigned to the modelled effort segments, are summarised 

in   
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Table 3.2-2Table 3.2-2 and Figure 3.2-1 to Figure 3.2-3. In this area, water depth ranges from the 

coast to more than 5,000m (0-5,364m) with most segments having depths shallower than 500m 

(Figure 3.2-1 to Figure 3.2-3). The slope is generally shallow across the region, with most of the 

segments having less than 10 of gradient, although some are very steeply sloped, with the maximum 

being 190.   

Most effort segments are within 200km of the coast and 250km of the 200m depth isobath – with 

the majority of the segments being in waters less than 200m deep. Similarly, most segments are 

within 250km of escarpments and troughs, whilst distances to seamount and trough features are 

typically further Figure 3.2-1 to Figure 3.2-3.  Maps of covariates are provided in Figure 3.2-4 to 

Figure 3.2-8. 
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Table 3.2-2: Summary of static covariate values assigned to effort segments used to model the cetacean data across the 
full SCANS-III and ObSERVE area. 

Variable Min Max 

Depth (m) 0 -5364 

Standard deviation of depth (SDdepth) 0 806 

Slope (0) 0 19.4 

Distance to coast (km) (Dcoast) 0 503 

Distance to 200m isobath (km) (D200_iso) 0 820 

Distance to 2000m isobath (km) (D2000_iso) 0 1255 

Distance to 200m isobath, scaled to take account of whether 
segments are deeper (negative numbers) or shallower (positive 
numbers) than 200m (CS200) (km) 

-479 820 

Distance to escarpments (km) 0 1234 

Distance to canyons (km) 0 1115 

Distance to seamounts (km) 13 1815 

Distance to troughs (km) 0 182 

 

3.2.3 Covariate data – dynamic covariates 
Monthly mean values for dynamic covariates for the effort segments within the study region are 

provided in Table 3.2-3 below. Mean sea surface temperature (SST) varied from 11.70 to 23.90 across 

the region, with warmer areas to the south.  Mean depth of mixed layer depth (MLD) ranged from 

6.9m to 25m. Salinity varied from a low of 20 PSU up to 36 PSU. Maps of covariates are provided in 

Figure 3.2-4 to Figure 3.2-8. 

Table 3.2-3: Summary of dynamic covariate values assigned to effort segments used to model the cetacean data across 
the full S3/ ObSERVE region. 
 

Variable Min Max 

Sea surface temperature (SST) (°C) 11.7 23.9 

Sea Level Anomaly (SLA) (m) -0.1 0.2 

Sea Surface Height (SSH) (m) -0.58 0.14 

Absolute Dynamic Topography (ADT) (m) -0.3 0.3 

Mixed Layer Depth (MLD) (m) 6.9 25.2 

Salinity (SAL) (PSU) 20.1 36.3 
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Figure 3.2-1: Raincloud plots showing the distribution of covariate data for depth, SD depth, slope, distance to the 50m isobath, distance to the 200m isobath and distance to the 2000m 
isobath associated with the effort segments used to model the S3/ObSERVE cetacean data 
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Figure 3.2-2: Raincloud plots showing the distribution of covariate data for contour-side scaled distance to 200m isobath, distance to escarpments, distance to canyons, distance to 
seamounts and distance to trough covariates associated with the effort segments used to model the S3/ObSERVE cetacean data 
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Figure 3.2-3: Raincloud plots showing the distribution of covariate data for absolute dynamic topography (ADT), mixed layer depth (MLD), salinity (SAL), sea surface temperature (SST), 
sea level anomaly (SLA) and sea surface height (SSH covariates associated with the effort segments used to model the S3/ObSERVE cetacean data. 
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Figure 3.2-4 Map of the depth(m) covariate data associated used to model the S3 / ObSERVE cetacean data. 

 

 

Figure 3.2-5 Map of the standard deviation of depth(m) covariate (LEFT) and the slope covariate (degrees) (RIGHT) data 
associated used to model the S3 / ObSERVE cetacean data 
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Figure 3.2-6: Map of the sea surface temperature (°C) covariate (LEFT) and the salinity covariate (PSU) (RIGHT) data 
associated used to model the S3 / ObSERVE cetacean data 

 

 

Figure 3.2-7 Map of the sea level anomaly (m) covariate (LEFT) and the mixed layer depth  covariate (m) (RIGHT) data 
associated used to model the S3 / ObSERVE cetacean data 
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Figure 3.2-8: Map of the absolute dynamic topography (m) covariate (LEFT) and the sea surface height covariate (m) 
(RIGHT) data associated used to model the S3 / ObSERVE cetacean data 
 
  

3.3 Results 

3.3.1 Harbour porpoise  
Summary results of the final model selected for harbour porpoises across the full survey area are 

provided in Table 3.3-1. Model diagnostics indicated a satisfactory fit to the data, with the 

proportion of null deviance explained by the model being 42.1%. The QQ plot and the residuals vs 

linear are provided in (Appendix 2); partial effects plots of the fitted smooth functions in Figure 

3.3-2.  The negative binomial error distribution best described the data. The fitted smooth functions 

showed relatively low levels of “wiggliness”, with all environmental covariates (excluding the 

isotropic XY smooth) requiring less than 1 estimated degree of freedom (edf) except for ADT_July. 

 Harbour porpoise predicted density ranged from 0 to 1.7 animals per km2(Figure 3.3-3). There were 

higher estimated densities of harbour porpoises at areas of flat seabed (low SDdepth), and shallow 

depths, with density decreasing linearly with increase in depth and increased levels of variation in 

seabed topography.  

There were also positive effects for increased distance from the 200m isobath, with a clear 

preference for the shallower side of the contour (CS200). The July data for two dynamic covariates 



 

81 
 

were retained in the final model, with a positive linear effect for slightly higher salinity. The absolute 

dynamic topography (ADT) covariate is the only one not to show a clear, non-linear signal, with the 

highest densities of harbour porpoises being predicted at values of zero ADT, decreasing as ADT 

values both increased and decreased. This suggests there was no strong association to current 

mesoscale activity.  The highest densities of harbour porpoises were predicted in the North Sea, 

particularly the south-western part of the North Sea (Figure 3.3-3 b), which is a good match with the 

observed sightings data (Figure 3.3-3 a). The plot of predicted CV shows reasonable levels of 

confidence in the model except in the Bay of Biscay region (Figure 3.3-4c). Prediction standard errors 

(SE) are provided in Figure 3.3-4 d. 

Table 3.3-1  Model outputs for harbour porpoise predictive GAM 

Error 
distribution 

Model 
covariates 

Estimated degrees 
of freedom 

P 
value 

% Deviance 
explained 

Model degrees 
of freedom 

Negative 
binomial 

X, Y 21.65 2e-16 

42.1 29.0 

SDdepth 0.60 0.12 

Depth 0.97 4.2e-6 

ADT 3.35 4.2e-6 

Salinity 0.92 4.7e-4 

CS200 0.55 0.07 
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Figure 3.3-1. Plots of the fitted smooth functions for the harbour porpoise predictive GAM. “Rug” marks on the x-axis of 
the fitted smooth plots show the distribution of the data. Shaded areas represent the 95% confidence intervals.  
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Figure 3.3-2. X, Y spline plot for the harbour porpoise predictive GAM, also showing survey effort 

 

 

Figure 3.3-3: Location of effort and sightings (LEFT) and predicted density surface (RIGHT) for the harbour porpoise 
S3/ObSERVE model.  models. White areas are outside of predictive space. In some cases, prediction grid cells had 
covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-
cells were excluded from the prediction. 
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Figure 3.3-4: Coefficient of variation CV of density (CV) (LEFT) and standard error (SE) (RIGHT) for S3/ObSERVE survey 
data. Range of values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% 
quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate values which 
were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from 
the prediction.  
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3.3.2 White-beaked dolphin 
Summary results of the final model selected for white-beaked dolphins across the full survey area 

are provided in Table 3.3-2. Although model diagnostics (Appendix 2) indicated a good fit to the 

data, the amount of null deviance explained by the model was high at 60.4%, which could be 

indicative of a high signal to noise ratio, likely in particular due to the restricted spatial distribution 

of this species in comparison with the full study region (Figure 3.3-5).  

The negative binomial error distribution best described the data. The fitted smooth functions are 

linear, with both remaining environmental covariates (excluding the isotropic XY smooth) requiring 

fewer than 1 estimated degrees of freedom. The density of white-beaked dolphins was predicted to 

decrease as depth increased, whilst the highest estimated densities were also predicted to increase 

with increasing salinity (Figure 3.3-5). There is a broad, north-south pattern visible in the XY spline 

(Figure 3.3-6) with the highest densities predicted in the north of the study region.  

Predicted density of white-beaked dolphins is between 0 and 0.27 across the region, with the 

highest densities of white-beaked dolphins were predicted in the coastal waters around the north of 

Scotland (Figure 3.3-8). This is a good match with the sightings and reflects their overall distribution. 

The plot of predicted CV shows reasonable levels of confidence in the model outside the Bay of 

Biscay region (Figure 3.3-8). 

Table 3.3-2. Model outputs for white-beaked dolphin predictive GAM 

Error 
distribution 

Model 
covariates 

Estimated degrees of 
freedom 

P value % Deviance 
explained 

Model degrees of 
freedom 

Negative 
binomial 

X, Y 10.55 2e-16 

58.1% 13.3 Depth 0.89 0.006 

Salinity 0.84 0.008 
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Figure 3.3-5. Plots of the fitted smooth functions for the white-beaked dolphin predictive GAM. “Rug” marks on the x-
axis of the fitted smooth plots show the distribution of the data. Shaded areas represent the 95% confidence intervals.  

 

 

Figure 3.3-6. X, Y spline plot for the white-beaked dolphin  predictive GAM, also showing survey effort 
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Figure 3.3-7: Location of effort and sightings (LEFT) and predicted density surface (RIGHT) for the white-beaked dolphin 
S3/ObSERVE model.  models. White areas are outside of predictive space. In some cases, prediction grid cells had 
covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-
cells were excluded from the prediction. 

 

Figure 3.3-8: Coefficient of variation CV of density (CV) (LEFT) and standard error (SE) (RIGHT) for S3/ObSERVE survey 
data. Range of values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% 
quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate values which 
were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from 
the prediction.  
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.  

3.3.3 White sided dolphin 
Summary results of the final model selected for white-sided dolphins across the full survey area are 

provided in Table 3.3-3. Model diagnostics indicated a reasonable fit to the data, and the amount of 

null deviance explained by the model was 35.8%. The QQ plot and the residuals vs linear plot are 

provided in Appendix 2.  Partial effects plots are provided in Figure 3.3-9.  

For white-sided dolphins, the Tweedie error distribution best described the data. The fitted smooth 

functions showed relatively low levels of “wiggliness”, with all environmental covariates requiring 

fewer than 1 estimated degrees of freedom. This is likely due to low numbers of sightings for this 

species The X, Y smooth was not retained in the model.  

Maximum predicted density across the region was 0.11. This was associated with increased water 

depths, density decreased linearly as depth decreased. 

In addition to water depth, white-sided dolphin density was associated with areas with low SDdepth, 

with density decreasing with increasing variability in the seabed gradient (increasing levels of 

SDdepth). The confidence limits around this fitted relationship were wide, especially towards the 

most extreme (variable) end of the scale. White-sided dolphin density was also predicted to be 

highest in areas of highest salinity, with a linear decrease in predicted density as salinity decreased. 

The confidence levels were very wide towards lower salinity (and density), where there was a 

reduced number of data points. Finally, highest dolphin densities were predicted in the areas of 

coolest sea surface temperatures, with predicted density declining as temperatures increased.  

The highest densities of white-sided dolphins were predicted in the waters to the far northwest of 

the study area (Figure 3.3-10). Whilst this is a good match to most of the detections of this species 

(Figure 3.3-7 a), there were a few sightings in the northern North Sea which were not reflected in 

the density surface.  The plot of predicted CV showed reasonable levels of confidence in the model 

in most areas, with the main areas of higher CV being close to the coast of Norway (Figure 3.3-11).  
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Table 3.3-3. Model outputs for white-sided dolphin predictive GAM 

Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

P value 
% Deviance 
explained  

Model 
degrees of 
freedom 

Tweedie 

SDdepth 0.81 0.63 

35.8 4.5 
Depth 0.87 0.005 

Salinity 0.85 0.02 

SST 1.01 7.3e-6 

 
 

 
Figure 3.3-9 Plots of the fitted smooth functions for the white-sided dolphin predictive GAM. “Rug” marks on the x-axis 
of the fitted smooth plots show the distribution of the data. Shaded areas represent the 95% confidence intervals. 
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Figure 3.3-10: Location of effort and sightings (LEFT) and predicted density surface (RIGHT) for the white-sided dolphin 
S3/ObSERVE model.  models. White areas are outside of predictive space. In some cases, prediction grid cells had 
covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-
cells were excluded from the prediction. 

  
Figure 3.3-11: Coefficient of variation CV of density (CV) (LEFT) and standard error (SE) (RIGHT) for S3/ObSERVE survey 
data. Range of values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% 
quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate values which 
were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from 
the prediction.  
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3.3.4 Bottlenose dolphin 
The bottlenose dolphin results summary is provided in Table 3.3-4.  Model diagnostics indicated an 

adequate fit to the data, which explained 38% of the null variance. The QQ plot and the residuals vs 

linear plot are provided in Appendix 2. Plots of the fitted smooth functions are provided in Figure 

3.3-12. The Tweedie error distribution best described the data. The fitted smooth functions showed 

relatively low levels of “wiggliness”, with all environmental covariates (excluding the isotropic XY 

smooth) requiring fewer than 1 estimated degrees of freedom.  

High density of bottlenose dolphins was predicted in areas of shallow water depth, with density 

declining as depth increased, although this effect was small.  

Bottlenose dolphin density was associated with lower sea surface height, with density showing a 

linear decrease as sea surface height increased, which was towards the south of the region. Distance 

to coast was retained as a covariate in the model, with dolphin density being highest closer to the 

coast, and decreasing linearly with distance from coast. The XY spline showed a general increase 

from east to west, with the highest densities being predicted in the west of the study region (Figure 

3.3-13). 

The highest densities of bottlenose dolphins, 1.15 animals per km2, were predicted to the south-

west of Ireland (Figure 3.3-14 -RIGHT). Whilst this is a good match to the detections of this species 

(Figure 3.3-14 -LEFT. The plot of predicted CV showed reasonable levels of confidence in the model 

outside of the Bay of Biscay region Figure 3.3-15). 

Table 3.3-4. Results of the best predictive model for bottlenose dolphin. 

Error 
distribution 

Model 
covariates 

Estimated degrees 
of freedom 

P value % Deviance 
explained 

Model degrees of 
freedom 

Tweedie 

X, Y 14.4 2e-16 

38.3 17.8 
Depth 0.7 0.05 

SSH 0.8 0.02 

Distance to 
coast 

0.8 
0.008 
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Figure 3.3-12. Plots of the fitted smooth functions for the bottlenose dolphin predictive GAM. “Rug” marks on the x-axis 
of the fitted smooth plots show the distribution of the data. Shaded areas represent the 95% confidence intervals.  

 

 
Figure 3.3-13. X, Y spline plot for the bottlenose dolphin  predictive GAM, also showing survey effort 
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Figure 3.3-14: Location of effort and sightings (LEFT) and predicted density surface (RIGHT) for the bottlenose dolphin  
S3/ObSERVE model.  models. White areas are outside of predictive space. In some cases, prediction grid cells had 
covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-
cells were excluded from the prediction.

 
Figure 3.3-15: Coefficient of variation CV of density (CV) (LEFT) and standard error (SE) (RIGHT) for S3/ObSERVE survey 
data. Range of values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% 
quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate values which 
were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from 
the prediction.  
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3.3.5 Common dolphins 
Summary results of the final model selected for common dolphins across the full survey area are 

provided in Table 3.3-5. The model diagnostics indicated an adequate fit to the data, but the amount 

of null deviance explained by the model was high at 63.4%, indicating that the model could have 

over-fitted. The QQ plot and the residuals vs linear plot are provided in Appendix 2. The residuals 

show a little deviation outside of the confidence interval at the higher end of the QQ plot. Partial 

effects plots are shown in Figure 3.3-16.  

Common dolphins were modelled as groups, rather than as individuals. The negative binomial error 

distribution best described the data. The fitted smooth functions showed higher levels of 

“wiggliness” compared to the species presented so far, with only depth having a linear relationship 

and fewer than 1 estimated degrees of freedom. It is possible this due to higher numbers of 

sightings for this species than for the majority of the others (Table 3.2-1). 

Predicted density of common dolphins was highest at shallow depths and decreased linearly with 

increasing depth. Density of common dolphins was highest in areas with moderate levels of seabed 

variation, peaking at around SDdepth = 200m, suggesting that shallow slope habitats are preferred. 

The highest density of common dolphins was predicted at sea surface temperatures around 180. The 

slope for D200 iso was a curious shape, showing a dip in predicted density at around 200m from the 

200m depth isobath, with higher densities both closer and further away from this feature.  

The XY spline shows a general east-west tendency, with higher densities of animals predicted in the 

west of the region Figure 3.3-17. The highest densities of common dolphins (2.8 animals per km2) 

were predicted in coastal waters around Portugal, and further offshore in the northern part of the 

Bay of Biscay (Figure 3.3-18 RIGHT). The prediction is a good match to the sightings (Figure 3.3-18 

LEFT) The plot of prediction CV showed reasonable levels of confidence in the model outside the 

North Sea and Norwegian waters. Standard errors are highest around areas of high predicted density 

(Figure 3.3-19). 

Table 3.3-5. Results of the best predictive model for common dolphin. 

Error 
distribution 

 
Model 
covariates 

Estimated 
degrees 
of 
freedom 

P value 
% Deviance 
explained 

Model 
degrees of 
freedom 

NB 

 X, Y 15.01 2e-16 

63.4 24.7 

 Depth 0.93 4.5e-4 

 SDdepth 2.15 0.003 

 SST 1.89 0.086 

 D200 iso 3.68 2e-16 
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Figure 3.3-16. Plots of the fitted smooth functions for the common dolphin predictive GAM. “Rug” marks on the x-axis of 
the fitted smooth plots show the distribution of the data. Shaded areas represent the 95% confidence intervals.  

 
Figure 3.3-17. X, Y spline plot for the common dolphin  predictive GAM, also showing survey effort 
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Figure 3.3-18: Location of effort and sightings (LEFT) and predicted density surface (RIGHT) for the common dolphin  
S3/ObSERVE model.  models. White areas are outside of predictive space. In some cases, prediction grid cells had 
covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-
cells were excluded from the prediction. 

 
Figure 3.3-19: Coefficient of variation CV of density (CV) (LEFT) and standard error (SE) (RIGHT) for S3/ObSERVE survey 
data. Range of values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% 
quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate values which 
were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from 
the prediction.  
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3.3.6 Striped dolphin 
Summary results of the final model for striped dolphins are provided in Table 3.3-6. Model 

diagnostics (Appendix 2) indicated a sufficient fit to the data, although the residuals deviate from the 

optimised line, they fall within the confidence interval of the QQ plot. The amount of null deviance 

explained by the model was 55.2%. This is comparatively high and may be indicative of the model 

potentially over-fitting. Plots of the fitted smooth functions are provided in Figure 3.3-20.  Striped 

dolphins were modelled as groups. 

The negative binomial error distribution best described the data. Highest striped dolphin density was 

predicted by deeper water, with predicted density decreasing linearly with decreasing depth. 

Predicted density also increased with increasing SD depth, suggesting a preference for habitats of 

steep slope. Higher salinity values were also found to predict higher dolphin densities, with a linear 

decrease in predicted density with decreasing salinity. The confidence levels were very wide towards 

the lower salinity (and density) areas, where there was a reduced number of data points. The XY 

spline shows a high effect in the south-west part of the study area Figure 3.3-21.. 

The highest densities of striped dolphins (0.28 animals per km2)  were predicted in the offshore 

waters of the Bay of Biscay (Figure 3.3-22 LEFT), which was a good match to the observed detections 

(Figure 3.3-22 RIGHT). The plot of prediction CV shows good levels of confidence across the majority 

of the area (Figure 3.3-23 c). 

 

Table 3.3-6. Results of the best predictive model for striped dolphin.  

Error 
distribution 

Model 
covariates 

Estimated degrees 
of freedom 

P 
value 

% Deviance 
explained 

Model degrees 
of freedom 

Negative 
binomial 

X, Y 5.3 2.e-6 

56.2 11.4 

Depth 0.9 6e-4 

SLA 2.6 0.005 

SD depth 0.9 0.0005 

Salinity 0.7 0.07 
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Figure 3.3-20. Plots of the fitted smooth functions for the striped dolphin predictive GAM. “Rug” marks on the x-axis of 
the fitted smooth plots show the distribution of the data. Shaded areas represent the 95% confidence intervals.  

 
Figure 3.3-21. X, Y spline plot for the striped dolphin  predictive GAM, also showing survey effort 
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Figure 3.3-22: Location of effort and sightings (LEFT) and predicted density surface (RIGHT) for the striped dolphin  
S3/ObSERVE model.  models. White areas are outside of predictive space. In some cases, prediction grid cells had 
covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-
cells were excluded from the prediction. 

 
Figure 3.3-23: Coefficient of variation CV of density (CV) (LEFT) and standard error (SE) (RIGHT) for S3/ObSERVE survey 
data. Range of values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% 
quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate values which 
were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from 
the prediction.   
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.  

3.3.7 Minke whale 
A summary of the results of the final model selected for minke whales across the full survey area is 

provided in Table 3.3-7. The QQ plot and the residuals vs linear are provided in Appendix 2. The 

model explained 28.2% of null deviance, and partial effects plots are provided in Figure 3.3-24. The 

negative binomial error distribution best described the data. The fitted smooth functions showed 

relatively low levels of “wiggliness”, with all environmental covariates (excluding the isotropic XY 

smooth) requiring one or fewer edf.  

There were positive effects (higher estimated density of minke whales) in shallow depths, decreasing 

linearly as waters became deeper. It should be noted, however, that the confidence intervals 

increased with depth, particularly once depth exceeded 1,000m. Estimated density of minke whales 

also decreased linearly with increased depth of the mixed layer. Confidence intervals around this 

fitted smooth function were much wider at the extremes of the data, providing less confidence in 

the relationship where there were fewer data points, particularly in the places where the mixed 

layer exceeded 20m depth. A similar pattern can be seen in the modelled relationship between the 

predicted density of minke whales and sea surface height, with higher densities of minke whales 

being predicted in areas of lower SSH, and density declining as SSH increased, which was generally 

towards the southern part of the region. The XY spline shows highest effects around the coastal 

waters of the UK( Figure 3.3-25). 

The highest densities of minke whales (0.2 animals per km2)  were predicted to the west of Ireland 

and in the Hebridean Sea, to the west of Scotland, with medium density areas being predicted in the 

North Sea (Figure 3.3-26 LEFT), which is a reasonable match with the observed sightings data (Figure 

3.3-26 RIGHT). The plot of prediction CV shows relatively high levels of confidence for the majority of 

the shelf seas, although this is much reduced     to the west of the Bay of Biscay region (Figure 3.3-27 

c). 

Table 3.3-7. Results of the best predictive model for minke whale. 

Error 
distribution 

Model 
covariates 

Estimated 
degrees 
of 
freedom 

P value 
% Deviance 
explained 

Model degrees 
of freedom 

Negative 
binomial 

XY 12.46 2e-16 

28.2 16.3 
Depth 0.92 0.001 

MLD 0.87 0.004 

SSH 1.04 4e-65 
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Figure 3.3-24. Plots of the fitted smooth functions for the minke whale predictive GAM. “Rug” marks on the x-axis of the 
fitted smooth plots show the distribution of the data. Shaded areas represent the 95% confidence intervals.  

 

 
Figure 3.3-25. X, Y spline plot for the minke whale  predictive GAM, also showing survey effort 
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Figure 3.3-26: Location of effort and sightings (LEFT) and predicted density surface (RIGHT) for the minke whale  
S3/ObSERVE model.  models. White areas are outside of predictive space. In some cases, prediction grid cells had 
covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-
cells were excluded from the prediction. 

 

 
Figure 3.3-27: Coefficient of variation CV of density (CV) (LEFT) and standard error (SE) (RIGHT) for S3/ObSERVE survey 
data. Range of values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% 
quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate values which 
were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from 
the prediction. 
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3.3.8 Fin whale 
Summary results of the final model selected for fin whales across the full survey area are provided in 

Table 3.3-8. The model diagnostics indicated a good fit to the data and the amount of null deviance 

explained by the model was 73%. The QQ plot and the residuals vs linear plot are provided along 

with plots of the fitted smooth functions in Figure 3.3-28.  

The negative binomial error distribution best described the data. Only one covariate, CS200, was 

retained in addition to the isotropic XY smooth. This showed a positive effect (highest density of fin 

whales) in waters close to, and deeper than the 200m isobath, with a rapid decline in density at 

increasing distances from the isobath on the shallower side. The confidence interval also increased 

to be extremely wide here.  The XY spline shows the highest effects in the areas around the Bay of 

Biscay (Figure 3.3-29). 

The highest densities of fin whales (0.02 animals per km2) were predicted in the offshore waters of 

the Bay of Biscay Figure 3.3-30  LEFT). Whilst this was a good match to the large majority of the 

detections of this species (Figure 3.3-30 RIGHT), there were a few sightings in the far north of the 

survey area, which are not reflected in the density surface.  The plot of predicted CV reflected the 

confidence interval around the smooth function for CS200; in deeper waters the prediction is precise 

but is less so in waters shallower than 200m (Figure 3.3-31 c). 

 

Table 3.3-8 . Results of the best predictive model for fin whales. 

Error 
distribution 

Model 
covariates 

Estimated degrees 
of freedom 

P 
value 

% Deviance 
explained 

Model degrees 
of freedom 

Negative 
binomial 

XY 12.03 2e-16 
73.1 16.9 

CS200 3.91 2e-16 
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Figure 3.3-28. Plots of the fitted smooth function for the fin whale predictive GAM. “Rug” marks on the x-axis of the 
fitted smooth plots show the distribution of the data. Shaded areas represent the 95% confidence intervals.  

 

 

Figure 3.3-29. X, Y spline plot for the fin whale  predictive GAM, also showing survey effort 
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Figure 3.3-30: Location of effort and sightings (LEFT) and predicted density surface (RIGHT) for the minke whale 
S3/ObSERVE model.  models. White areas are outside of predictive space. In some cases, prediction grid cells had 
covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-
cells were excluded from the prediction. 

 
Figure 3.3-31: Coefficient of variation CV of density (CV) (LEFT) and standard error (SE) (RIGHT) for S3/ObSERVE survey 
data. Range of values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% 
quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate values which 
were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from 
the prediction. 
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3.4  Discussion 

This chapter provides predictive models for eight species of cetacean using combined data from the 

SCANS-III and ObSERVE surveys, which were conducted during the summer of 2016, with the 

majority of the data being collected during July. Models were created using a selection of static 

environmental covariates, including X, Y; depth, slope and standard deviation of depth, as well as 

remote-sensed, monthly averaged dynamic environmental covariates, for which July 2016 data was 

used.  

These types of studies are subject to error during both data collection and analysis stages (Barry and 

Elith 2006). As the data sources and analysis framework used was the same for this chapter and 

chapters 4 and 5, sources of error are reviewed and discussed for these three chapters together in 

section 6.1.2.   

3.4.1 Harbour porpoise 
One of the notable results of the 2005 SCANS-II survey, was the shift in distribution of harbour 

porpoises to the south in the North Sea when compared with the results of the original SCANS 

survey in 1994 (Hammond et al., 2013).  The model of the SCANS-III and ObSERVE data shows a 

similar predicted distribution to that presented for 2005, indicating that whatever had led to that 

shift (likely changes in prey availability, Hammond et al., 2013) persisted through 2016 (Figure 3.4-1).  

A range of covariates was retained in the final harbour porpoise model, including SDdepth, depth, 

ADT, Sal and CS200, as well as an X, Y smooth.  The model of the ObSERVE only part of the data also 

included a relationship with the 200m depth isobath (the side of the contour was not modelled) 

(Rogan et al., 2018), as did the model for the SCANS-III only part of the data, which also similarly 

retained ADT and depth (Lacey et al., 2022).  

This modelling framework allowed only one “distance to” parameter to be included, which for the 

harbour porpoise model was CS200. Several other studies have found distance to coast to be an 

important predictor (Marubini et al. 2009; Gilles et al. 2011; Booth et al. 2013). The large spatial 

scale of the model presented here seems to have accounted for this relationship as distance from 

the 200m contour, on the shallower side, with highest densities being in water depths shallower 

than 200m, at large distances from the contour, that is, in shallower water. 

 Depth has also been found to be an important predictor of harbour porpoise density (e.g. Marubini 

et al. 2009; Gilles et al. 2011; Booth et al. 2013), as it was in earlier, separate models of the SCANS-III 

and ObSERVE data.  This is not the case throughout the range. In the Iberian peninsula, Goetz et al. 
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(2015) found no relationship between water depth and harbour porpoise distribution, although 

animals were found primarily on the continental shelf.  

The modelled relationship with ADT, an indicator of mesoscale activity, does not indicate a 

preference of harbour porpoise for more productive waters. In contrast, other studies have 

demonstrated that harbour porpoises have a preference for waters such as headland wakes, which 

may aggregate prey species spatially (Johnston et al. 2005), as well as tidal current (Embling et al. 

2010), and residual current (Gilles et al. 2011). The process of prey aggregation may therefore be 

occurring at a finer scale than that represented by the ADT covariate when modelled over the scale 

of the whole study region.  

More detailed explanatory modelling of harbour porpoises at a smaller ecoregion area will be 

presented in Chapter 4.  
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A   B  C   

 

Figure 3.4-1: Maps of predicted harbour porpoise distribution from surveys undertaken in 1994 (A), 2005 (B) and 2016 (C). Maps A & B are taken from Figures 7 & 8 of Hammond et al., 
(2013). Map C is the same as that presented in Figure 3.3.3 but recoloured to match the scale of these maps from the earlier surveys.  Please note that the survey area is different for all 
three of these surveys, expanding s each time. 
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3.4.2 White-beaked dolphin.  
The final white-beaked dolphin model retained depth and salinity as well as an X, Y smooth.  White-

beaked dolphins weren’t modelled as part of the ObSERVE survey (Rogan et al., 2018), but the SCANS-III 

only model retained SST and distance to the 200m contour  as covariates, both of which have been 

found to be significant predictors of white-beaked dolphin distribution in previous studies (Evans et al. 

2003; MacLeod et al. 2008). The retention of the depth predictor in the final model also corroborates 

the well-documented preference of this species for shelf waters (Macleod 2013). Slope has been 

suggested as an important predictor of this species from previous studies (MacLeod et al. 2007; Weir et 

al. 2009), but those were undertaken on the  west coast of Scotland, an area where there is slope close 

to the coast. A large number of the sightings in this study came from the North Sea, which has very little 

seabed gradient at all, consequently it is not surprising that slope was not selected as an important 

covariate in this area.  

There was a positive effect of salinity on predicted density of white-beaked dolphins. It is unlikely that 

the salinity is having a physiological effect on the dolphins themselves, but instead influencing the 

availability of prey organisms through its effect on the oceanography of the region (Fiedler 2018). Breen 

et al. (2016) have also found salinity to be a driver of white-beaked dolphin density.  

More detailed explanatory modelling of white-beaked dolphins at a smaller ecoregion, with a more 

detailed focus on prey modelling area will be presented in Chapter 4.  

 

3.4.3 White-sided dolphin.  
The final white-sided dolphin model retained SDdepth, depth, sea surface temperature and salinity. As 

with white-beaked dolphins, there is no ObSERVE only model for this species (Rogan et al., 2018), and it 

was also not modelled individually for SCANS-III (Lacey et al., 2022). It is a less well studied species than 

many of the others, but the predicted offshore distribution and predicted density increasing with depth 

is consistent with that found by (MacLeod et al. 2007). Similarly to white-beaked dolphins, there is a 

positive effect of salinity on the predicted density, which is likely influencing the distribution of prey 

organisms indirectly. Doksæter et al. (2008) found a positive link between areas of steeper slope and 

white-sided dolphin density. That is the opposite of what was found in this model. Whilst it did not 

retain the slope covariate, it did retain SDdepth. This is a measure of variability in the seabed – and 

white-sided dolphin density is predicted by levels of high consistency – the areas are all at similar depths 

– so not areas of slope.  In the northeastern United States, white-sided dolphins have been associated 
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with cool sea surface temperatures and less saline waters (Selzer and Payne 1988), which is the opposite 

relationship with salinity to the one shown here, but the same relationship with sea surface 

temperature. Differing relationships with seabed relief and salinity may indicate different prey 

preferences than those from other areas.  

More detailed explanatory modelling of white-sided dolphins at a smaller ecoregion will be presented in 

chapter 5.  

 

3.4.4 Bottlenose dolphin.  
This species retained a comparatively high number of covariates from a range of different months. With 

the exception of XY, none of these are the same as were retained for the SCANS-III only model and only 

depth is the same as for the ObSERVE model (Rogan et al., 2018). The lack of consistency in retained 

predictors and the variety of months of covariate retained for this species suggest that none of the 

retained covariates have a particularly strong link with predicted density of this species. Bottlenose 

dolphins are known to exist in both coastal and offshore ecotypes; the number of retained covariates 

may be indicative of the two ecotypes being modelled together (Bearzi et al. 2009). More detailed 

explanatory modelling of bottlenose dolphins at a smaller ecoregion will be presented in chapter 5.  

 

3.4.5 Common dolphin. 
The common dolphin model also retained a comparatively high number of covariates. Due to insufficient 

sightings, the ObSERVE survey did not produce a comparable model for common dolphins, whilst the 

SCANS-III only model retained depth, slope and aspect as well as X, Y. Depth was retained in the final 

model here too, as was SDdepth, which although not the same as slope, does also provide an indication 

of levels of variability in the seabed.  

This model, like many others, has found a positive link between predicted common dolphin and sea 

surface temperatures (e.g. MacLeod et al. 2008; Weir et al. 2009; Svendsen et al. 2015; Correia et al. 

2019), with the link also being associated not just with daily distribution patterns, but also with genomic 

variation (Amaral et al. 2012; Barceló et al. 2022).  

Measures of seabed uniformity (either slope or SDdepth) were retained both in this model and in the 

SCANS-III only model (Lacey et al., 2022). This species is very closely associated with preying on locally 

abundant pelagic fish, and so any predictors which might suggest regions where these fish aggregate are 
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likely to be good indicators for high densities of common dolphins (Cañadas and Hammond 2008; Moura 

et al. 2012; Castro et al. 2020) More detailed explanatory modelling of common dolphins at a smaller 

ecoregion will be presented in chapter 5.  

 

3.4.6 Striped dolphin. 
The striped dolphin model retained depth, SDdepth, SLA and salinity as predictors as well as XY. Due to 

insufficient sightings, the ObSERVE survey did not produce a comparable model for striped dolphins, and 

the SCANS-III only model retained depth, SDdepth and aspect as well as XY.    

Striped dolphins are generally considered to be an offshore species (Carlucci et al. 2016), associated 

with deeper waters, and this association is borne out by the model here as well as that for the SCANS-III 

only data (Lacey et al., 2022). SD depth is also common to both models, likely implying that higher 

variability of seabed gradient is associated with striped dolphin predicted density, as has also been 

shown in other studies (Ballance et al. 2006; Azzolin et al. 2020).   

Salinity (June data) is a good predictor of striped dolphin density in this model. Whether salinity itself is 

contributing to distribution, or whether the areas of higher salinity (Appendix 1) simply reflect the 

offshore areas in which striped dolphins live is not clear. 

More detailed explanatory modelling of striped dolphins at a smaller ecoregion will be presented in 

Chapter 5. 

3.4.7 Minke whale 
The final minke whale model retained depth, MLD and SSH as well as an X,Y smooth.  The model of the 

ObSERVE-only part of the data included only a relationship with the coast along with latitude and 

longitude (Rogan et al., 2018), whereas the model for the SCANS-III only part of the data retained X,Y, 

depth, ADT and  distance to coast (Lacey et al. 2022). The different suite of predictors that were retained 

by each of the models may indicate that different processes are driving distribution in different parts of 

the minke whales’ range, or that there are no strong relationships between these predictors and minke 

whale distribution.  

Previous modelling studies have found substrate to be a significant predictor of minke whale presence, 

particularly substrate which is good habitat for sandeels (Naud et al. 2003; Macleod et al. 2004; de Boer 

2010). Unfortunately, substrate data were not available for the full region so were not included in this 

model. 
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MLD has previously been linked to the presence of herring (Maravelias 1997), in which deeper mixed 

layers were associated with higher probabilities of encountering herring (Clupea harengus), but that 

herring were also present in well-mixed waters. These models predict the density of minke whales to 

decrease with increasing MLD, which would suggest that either high probability of encountering herring 

is not the primary driver of distribution in this area, or that MLD is not a good predictor of herring in this 

instance. 

The modelled relationship with SSH, an indicator of mesoscale activity, indicates a preference of minke 

whale for slightly cooler, more productive waters, which may be aggregating minke whale prey species 

such as mackerel (Scomber scombrus), which are known to feed on euphausiids and copepods in this 

region. 

The field data on which these models are built were collected during the summer season, during which 

time minke whales are feeding. Consequently, it is intuitive that minke whale summer distribution 

would be largely predicted based on prey resources. Like harbour porpoises, there are now density 

surfaces available for minke whales over a 30-year time span (Figure 3.4-2). Overall distribution is not 

hugely different to 2005 (B), but densities across the area are lower across the region, except for around 

the west coast of Scotland. This may reflect changes in the distribution of prey species across the region.  

More detailed explanatory modelling of minke whale at a smaller ecoregion, with a more detailed focus 

on prey modelling will be presented in Chapter 4.   

  



 

113 
 

A  B C  

Figure 3.4-2: Maps of predicted minke whale distribution from surveys undertaken in 1994 (A), 2005 (B) and 2016 (C). Maps A & B are taken from Figures 9 & 10 of Hammond 
et al., (2013). Map C is the same as that presented in Figure 3.3.26 but recoloured to match the scale of these maps from the earlier surveys.  Please note that the survey 
area is different for all three of these surveys, expanding s each time 
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3.4.8 Fin whale 
The fin whale model retained only one covariate alongside XY, which was distance to the 

200m isobath. It was not modelled for ObSERVE, and whilst the covariate is different (CS200 

in this model, SDdepth in Lacey et al., 2022), a single covariate was retained for the SCANS-III 

only model also.  

This model is in accord with previous work which notes that fin whales are likely to be found 

in waters outside the continental shelf (Aguilar and García-Vernet 2018). 

The model of the full area presented above is a good match to the field data. More detailed 

explanatory modelling of fin whales at a smaller ecoregion will be presented in Chapter 5.  

3.4.9 Conclusion 
These models represent the most up-to-date knowledge on the 2016 distribution of these 

species that is available for this region, representing the field observations well. Some of the 

models have found similar patterns with those of earlier studies, whilst others have not. This 

is a large modelling region compared to many of the previous studies and may reflect 

different patterns due to variation across the geographical scale. Modelling of smaller 

geographical regions is presented in the following two chapters.  
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4 Cetaceans in the Greater North Sea Ecoregion 
 

 

 

Minke whale sketch, courtesy of Anni Sharpe 

 

A focus on the three most common species of cetaceans in the Greater North Sea Ecoregion; do the 

factors affecting their distribution differ in this distinct body of water, as compared to the wider 

area? Have these factors changed between 2005 and 2016? 
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4.1 Introduction 

Ecology “plays out” at various different scales, both temporally and spatially and, as Wiens (1989) 

noted, “to understand the drama, we must view it on the appropriate scale”. The distribution of a 

species can span a very large geographical area; for example the common minke whale 

(Balaenoptera acutorostrata) is found in waters at all latitudes from almost 700S to 800N (Cooke 

2018). When a species has such a wide geographic range, a wide variety of different habitats and 

different environmental processes will be encountered. Individuals in different locations will interact 

with their environment in different ways, with processes acting at different geographical scales. 

Individuals of a species may also be highly mobile, and different parts of the range of individual 

animals may be used for different purposes, such as feeding and breeding (Risch et al. 2014). It 

therefore is not surprising that studies on marine top predators have shown that the relative 

importance of different habitat variables can depend upon the spatial scale of the study (Pribil and 

Picman 1997; Hastie et al. 2003).  

The work presented in the previous chapter covered a large geographical area and a range of 

habitats. The aim of this chapter is to investigate the environmental features that influence the 

distribution of cetaceans in a smaller section of the overall study area, the North Sea ecoregion, as 

defined by ICES (ICES 2020). Ecoregions are areas with relative homogeneity of environment and 

ecosystems and as such are often used as units of analysis for environmental assessment (Loveland 

and Merchant 2004).  This chapter compares models using abiotic variables (often proxies) with 

those using more direct measures of prey for the three most common cetacean species within this 

ecoregion, the common minke whale (hereafter minke whale), the white-beaked dolphin 

(Lagenorynchus albirostris) and the harbour porpoise (Phocoena phocoeana).  

4.1.1 Regional description 
The North Sea, an approximately rectangular-shaped basin, is situated in the northeast Atlantic 

between Britain, France, Belgium, the Netherlands, Germany, Denmark, and Norway. For the 

purposes of this chapter, the term “North Sea” refers to the entire Greater North Sea ecoregion, as 

defined by (ICES 2020), which also includes the English Channel and the Skagerrak and Kattegat 

Figure 1.8-2).   

This is a shallow shelf-sea area. The water depth averages 70m  (Huthnance 1991), although there is  

a general depth gradient from shallower waters in the south to deeper waters in the north, with a 

much deeper channel to the northeast along the Norwegian coast in which depths exceed 650m 

(Figure 4.1-1). Most of the water mass within the North Sea flows in from the Atlantic in the north 

(Turrell et al. 1992). This means the northern parts of the region are strongly influenced by oceanic 
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mixing, and the area is well stratified during the summer (Clark and Frid 2001; ICES,2020, Figure 

4.2-6) including the months during which the cetacean data used in these analysis were collected. A 

pronounced thermocline is usually present by June and remains in place usually until November 

(Clark and Frid, 2001).   

A second large influx of water enters through the Straits of Dover via the English Channel (Salomon 

and Breton 1993), which leads to the waters of the south and east of the region being almost 

permanently thermally mixed (ICES 2020). To the east, the waters of the Skagerrak and Kattegat join 

the Baltic Sea and are both less tidal and less saline than the rest of the ecoregion. The waters of the 

Skagerrak and Kattegat are usually well mixed (ICES, 2020).The primary direction of water mass 

circulation is in an anticlockwise gyre (Laane 1996).  

The North Sea has been the subject of a long-running, marine monitoring programme with the 

community of subsurface plankton studied via Continuous Plankton Recorders since 1931  (Laane 

1996; Edwards 2001; Reid et al. 2003b; Alvarez-Fernandez et al. 2012). During this period there have 

been multiple regime changes which can be defined as “apparent shifts in oceanic and climatic 

conditions and marine community structure” (Alvarez-Fernandez et al. 2012). These are 

documented to have taken place around 1977, 1988 and 1998, although the 1998 shift is less 

pronounced (Weijerman et al. 2005) . Following the 1977 “cold” shift,  the spring bloom was less 

pronounced, biomass peaked later in the year, and there was a rise in the numbers of cold water 

copepods (Reid and Edwards 2001; Edwards et al. 2002). The post-1988 phase saw waters warming, 

a return to a  warm-type plankton system, and overall higher phytoplankton biomass  (Alvarez-

Fernandez et al. 2012). The 1998 shift saw a decline in the total number of copepods, particularly in 

neritic species. The North Sea is thus a highly dynamic ecosystem. 
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Figure 4.1-1: Left panel: The Greater North Sea Ecoregion (dark blue) as defined by ICES, shown as a sub-region of the main SCANS/ObSERVE study area for which data are available. 
Named regions: A) Skagerrak, B), Kattegat, C) North Sea, D) English Channel. Right panel: Bathymetry of the Greater North Sea ecoregion. The 50m depth contour, used as a modelling 
covariate, is shown in grey.   
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4.1.2 Cetaceans within the North Sea 
At least 21 different species of cetacean have been recorded in the North Sea, either as sightings of 

live individuals  ( Reid et al. 2003) or as strandings records (Kinze et al. 2021).  

Some of these species, including the blue whale (Balaenoptera musculus) are occasional visitors only 

and make up a very small portion of the record; only a single blue whale stranding was reported 

from the German portion of the North Sea in the period between 1818 and 2017 (Kinze et al., 2021), 

and no sightings are reported by Reid et al., in the period up to 2003.   

Some other species, particularly deep diving species, including the sperm whale (Physeter 

macrocephalus), visit comparatively regularly (Reid et al., 2003), but these visits often end with the 

animals stranding (IJsseldijk et al. 2018). Sperm whales are known to use the deeper Norwegian 

trench at the northern end of the North Sea, and it is theorised that animals enter the North Sea 

from there. Due to the particularly shallow southern region, and the coastline acting like something 

of a dead-end, the North Sea has been recognised as one of the global hotspots for sperm whale 

strandings, despite it not representing core habitat for the species  (Smeenk 1997; IJsseldijk et al. 

2018). 

Of the more frequently recorded species, four have been extensively documented and studied in the 

region: the bottlenose dolphin (Tursiops truncatus) (Wilson et al. 1997; Janik 2000; Cheney et al. 

2013; Arso Civil et al. 2019), harbour porpoise (Phocoena phocoena) (Hammond et al. 2002, 2013 ; 

Santos and Pierce 2003; Peschko et al. 2016; Gilles et al. 2016) and to a lesser extent, the white-

beaked dolphin (Lagenorhynchus albirostris) (Weir et al. 2007; Canning et al. 2008; Jansen et al. 

2010) and minke whale (Balaenoptera acutorostrata) (Olsen and Holst 2001 ; Andersen et al. 2003 ; 

Macleod et al. 2004 ; de Boer 2010).  

During the SCANS-III aerial surveys in 2016 (Chapter 2), six cetacean species were recorded within 

the ecoregion;  harbour porpoise, bottlenose dolphin, Risso’s dolphin (Grampus griseus), white-

beaked dolphin, white-sided dolphin  (Lagenorhynchus acutus) and minke whale (Hammond et al. 

2021). Of these, two species – Risso’s dolphin and white-sided dolphin were seen only once each in 

this area, whilst bottlenose dolphins were seen only three times. The small number of sightings of 

these species within the ecoregion means that they will not be considered further in this chapter. 

This chapter focuses on the three species – minke whale, harbour porpoise and white-beaked 

dolphin - that were seen in sufficient numbers for meaningful analysis to be conducted. Estimates of 

the abundance of these species within the ecoregion from the SCANS-III survey are shown in Table 

4.1-1. Error around these summed estimates from multiple blocks was derived by taking the sum of 
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the variances of the estimates, then taking the square root to derive the SE of the sum. This was 

then used to derive a CV for the pooled estimate log-normal confidence interval. 

Table 4.1-1: Estimates of abundance of minke whale, white-beaked dolphin and harbour porpoise from the SCANS-III 
surveys (Hammond et al. 2021). Estimates for survey blocks P1, P, V, U, T, R, Q, O, N, M, L, C (Figure 3.1-1) have been 
summed to provide an estimate for the Greater North Sea Ecoregion.  

 Abundance Lower 95% CL Higher 95% CL 

Minke whale 9,040 5,161 15,834 

White-beaked dolphin 20,711 10,211 42,008 

Harbour porpoise 347,399 289,687 416,609 

 

4.1.2.1  Minke whales in the Greater North Sea Ecoregion 
Minke whales have been recorded throughout the Greater North Sea ecoregion, although this 

species is less frequently sighted in the south of this area (Reid et al., 2003; Hammond et al., 2013; 

Hammond et al., 2021). Minke whales are seen predominantly in the summer months (Reid et al. 

2003a; Weir et al. 2007), with a peak in reporting from July to September (Evans et al. 2003; 

MacLeod, Colin D. et al. 2007; Weir et al. 2007). Their winter distribution is not well understood, 

although eastern Atlantic wintering grounds extend at least to the Straits of Gibraltar (Perrin et al. 

2018). It is not known whether North Sea animals undertake southerly migrations like those 

undertaken by minke whales in more northern latitudes, or whether they simply move further from 

the coast and thus are seen less often during the winter months, potentially due to poorer 

conditions and lower search effort during these months.  Seasonal variation in body condition has 

been reported for whales in the northeast Atlantic, implying some type of cessation of feeding, 

during the winter months, consistent with that seen in other baleen whales (Niæss et al. 1998). 

Telemetry studies of Icelandic minke whales have shown them heading south along the mid-Atlantic 

ridge, with signals received from one animal until it had passed the Azores (3,700 km and 100 days)  

(Víkingsson and Heide-Jørgensen 2015).  

Minke whales consume a wide variety of different prey species. Although they show some degree of 

specialisation within season and area (Anderwald and Evans 2007), they have not been found to 

exhibit strong preferences for any particular species when multiple options are available (Skaug et 

al. 1997). Diet studies on northeast Atlantic minke whales from whales lethally sampled in 

Norwegian and Icelandic waters show the diet to comprise various species and sizes of fish and 

crustaceans, and to vary both spatially and temporally (Windsland et al. 2007). Of 210 whales 

sampled in different areas of the north-eastern Atlantic between 2000-04, krill dominated in the 

Barents Sea and capelin dominated in northern Norway, but this changed over time, with herring 

and haddock making up a larger part of the diet in later years. The diet of whales in the Norwegian 

Sea consisted mainly of mature herring. In the North Sea prey samples were dominated by sand eels 
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and mackerel (Windsland et al. 2007). Similar spatial differentiation was confirmed by fatty acid 

composition analysis using blubber of 56 minke whales caught during whaling operations between 

2009-2011 at four different feeding grounds including the North Sea (Meier et al. 2016).  This study 

also found sandeel and mackerel to be the dominant prey for North Sea whales and reported no 

indication of differences between male and female whales, or whales of smaller sizes indicating 

there is no segregation of feeding.   Other studies of Norwegian and Icelandic waters have reported 

similar findings, with species predated upon being reported as krill, capelin, herring, mackerel, 

whiting and haddock  (Lindstrøm et al. 1997; Olsen and Holst 2001; Lindstrøm 2002; Víkingsson et al. 

2014). Studies of stomach contents from stranded animals from Scottish waters showed a majority 

of herring, sprat, mackerel and sandeels (Pierce et al. 2004) in the diet of the sampled individuals.  

4.1.2.2 White-beaked dolphins in the Greater North Sea Ecoregion 
White-beaked dolphins are found throughout the Greater North Sea ecoregion, although, similarly 

to minke whales, this species is less frequently sighted in the south of the area of interest (Reid et 

al., 2003; Hammond et al., 2013; Hammond et al., 2021). Their seasonal movements are not well 

known, although they seem to be more frequent within the ecoregion during summer (Reid et al., 

2003. Evans et al., 2003, Weir et al., 2007). In this region, white-beaked dolphins are found mainly in 

waters ranging from 50-100m depth, and almost exclusively within waters less than 200m depth 

(Evans et al., 2003).  

White-beaked dolphin diet has been shown to vary geographically. Analysis of stomach contents 

from stranded animals from the east coast of Scotland found haddock and whiting to be the primary 

prey species in the diet, with cod, herring and mackerel also being represented  (Canning et al. 

2008). Outside the North Sea, interactions with the Dutch mid-water trawl fishery west of Ireland 

have been reported, leading to the supposition that white-beaked dolphins in this area are targeting 

mackerel in spring (Couperus 1997). Cod, hake, octopus and sandeel have also been reported in 

stomach contents of stranded animals from elsewhere around the UK (MacLeod 2013). Stomach 

contents of Dutch stranded animals were dominated by whiting and cod (Jansen et al. 2010). 

Elsewhere in their range, the species is anecdotally linked with capelin (in the Barents Sea) (Fall and 

Skern-Mauritzen 2013).  

4.1.2.3 Harbour porpoise in the Greater North Sea Ecoregion 
The harbour porpoise is the most abundant cetacean in the ecoregion and is found throughout the 

Greater North Sea (Reid et al., 2003; Hammond et al., 2013; Hammond et al, 2021). In the north-east 

Atlantic, the species  is primarily restricted to the continental shelf, in waters less than 200m deep 

(Evans et al., 2003), although this is not the case throughout its range (Nielsen et al. 2018).  
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The diet of the harbour porpoise comprises small fish of a wide variety of species (Read 1999). They 

generally forage near the sea bed in waters less than 200m deep, but they do also forage in the 

water column, particularly at night time (Schaffeld et al. 2016) Sandeels have been shown to be 

important prey items in Scottish waters, particularly early in the year (Santos et al. 2004). Strandings 

along the entire British coastline from 1989-1994 found the most important prey items to be 

gadoids, including whiting, haddock and pollock. Norway pout was eaten in Shetland, but not found 

in stomachs from anywhere else. Danish porpoises were found to eat much higher proportions of 

gobies than elsewhere (Santos and Pierce 2003). 

4.1.3 Chapter aims. 
This chapter aims to explore the relationships between three different species of cetacean and 

different aspects of their environment. To do this, I have used explanatory ( Guisan et al. 2002) 

generalised additive models  (GAMs) to statistically explore the strength of the relationship between 

animal density and a variety of environmental – explanatory – variables, including sea surface 

temperature, depth, distance to the 50m isobath, salinity and seabed rugosity (modelled via slope 

and standard deviation of depth within a grid cell), hereafter termed “environmental models”.  

These variables are frequently selected when modelling marine mammals as proxies for prey data as 

data on prey species themselves can be very hard to obtain.  Whilst it is noted that distribution of 

cetaceans may also be influenced by predators, competitors and conspecifics as well as by 

availability of prey, it is not possible in this instance to model these other factors which may 

influence distribution.  

GAMs exploring the strength of the relationship between animal density and some candidate prey 

species have also been implemented. These models use as covariates the estimated amount of 

energy which would be available from different prey species in the form of modelled surfaces 

created by Ransijn et al. (2019), and provide information for a portion of the Greater North Sea 

ecoregion. This second set of explanatory models was created to investigate any potential 

relationships between the density of the three cetacean species of interest and the modelled 

amount of available prey energy. They are termed “prey models”.  Both environmental and prey 

models were run separately for data from 2005 (Hammond et al., 2013) and 2016 (Hammond et al., 

2021). They were also run for the two time periods combined to investigate whether relationships 

persisted between years.  Information on the time periods and surveys can be found in Table 2.1-1. 
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4.2 Methods 

4.2.1 Description of data 

4.2.1.1 Cetacean data 
Table 4.2-1 summarises the effort and sightings available for modelling the whole of the Greater 

North Sea Ecoregion in both 2016 and 2005. Only data collected in sea conditions less than Beaufort 

3 were used for harbour porpoise modelling (less than Beaufort 5 for other species). Maps showing 

the locations of the sightings included in the modelling are shown in Figure 4.2-1,  Figure 4.2-2 and 

Figure 4.2-3. 

Table 4.2-1 Number of effort segments and number of groups and individuals sighted of each species used in analysis of 
data from the Greater North Sea ecoregion in 2016 and 2005. 

Year Species 
Total no. of 

effort 
segments 

No. of effort 
segments with 

groups 

Number 
of groups 

Number of 
Individuals 

Mean 
group 
size 

2016 

Minke whale 2208 36 (1.6%) 36 41 1.1 

White-beaked dolphin 2208 35 (1.6%) 64 221 3.5 

Harbour porpoise 2239 664 (29%) 1313 1662 1.3 

2005 

Minke whale 1259 24 (1.9%) 35 36 1.0 

White-beaked dolphin 1259 21 (1.7%) 23 109 4.7 

Harbour porpoise 1021 250 (25%) 505 749 1.5 

 

For the harbour porpoise, there were sightings in 25% or more of the effort segments. For the other 

species, only 1.5-2% of the segments contained sightings. There are slightly more harbour porpoise 

effort segments than for the other two species. This was due to additional ship survey effort in the 

Kattegat and Skaggerak regions which was included in the datasets for harbour porpoise, but not for 

minke whales or white-beaked dolphins No sightings of white-beaked dolphins or minke whales 

were made on this effort.  
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Figure 4.2-1: 2016 (left) and 2005 (right) minke whale sightings used in modelling the relationships between minke 
whale density and a range of environmental covariates. The full ecoregion is indicated by the blue and yellow regions 
combined. The area (and sightings) included in the prey models are represented just by the blue area.  

 
 

Figure 4.2-2: 2016 (left) and 2005 (right) white-beaked dolphin sightings used in modelling the relationships between 
density and a range of environmental covariates. The full ecoregion is indicated by the blue and yellow regions 
combined. The area (and sightings) included in the prey models are represented just by the blue area.  
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Figure 4.2-3: 2016 (left) and 2005 (right) harbour porpoise sightings used in modelling the relationships between 
porpoise density and a range of environmental covariates. The full ecoregion is indicated by the blue and yellow regions 
combined. The area (and sightings) included in the prey models are represented just by the blue area.  

 

4.2.1.2 Covariate data  
Covariates for models of the full ecoregion were selected using the method outlined in Chapter 2, 

and covariate values assigned to the effort segments, are summarised in Table 4.2-2,  

 

Table 4.2-3 and Figure 4.2-4 to Figure 4.2-6. The full range of water depths within the ecoregion was 

represented (0—657m) with most of the segments having depths shallower than 200m (Figure 

4.2-4). The slope was generally shallow across the region, which is to be expected considering the 

relatively flat bathymetry across most of the ecoregion, with most of the segments having less than 

10 of gradient.   

Due to the shape of the North Sea basin, only distance to 50m isobath was considered as a “distance 

to” covariate. By including either distance to coast or distance to 200m isobath, the covariates 

mimicked the effect of including latitude and longitude in the model and so these were not 

considered. The maximum distance from the 50m isobath to any effort segment was 319km. No 

seabed covariates (escarpments, canyons, troughs or seamounts) were included in these models, 

because the seabed features to which the distances are measured are located outside the ecoregion.  
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In addition to the static covariates, monthly mean values for sea surface temperature (SST), mixed 

layer depth (MLD), salinity (SAL), absolute dynamic topography (ADT), sea surface height (SSH) and 

Sea Level Anomaly (SLA)  were also used in the models. The mean value for the month of July was 

used in each instance as this was the month in which the majority of the cetacean survey data were 

collected.  

Table 4.2-2: Summary of static covariate values assigned to effort segments used to model the cetacean data from 2005 
and 2016.  These are presented for both data collection periods due to differences in geographical coverage between the 
two surveys.  

Year Covariate Min Max Mean 

2005 Depth (m) -1 -640 -87 

2005 Standard deviation of 
depth (SDdepth) 

0 136 7 

2005 Slope (0) 0 3.3 0.1 

2005 Distance to 50m isobath 
(km) (D50_iso) 

0 319 70 

2016 Depth (m) -3 -658 -84 

2016 Standard deviation of 
depth (SDdepth) 

0 160 6 

2016 Slope (0) 0 1.6 0.2 

2016 Distance to 50m isobath 
(km) (D50_iso) 

0 330 75 

 
 
Table 4.2-3: Summary of dynamic covariate values assigned to effort segments used to model the cetacean data from 
2005 and 2016. These are monthly averages for July of the year of the survey. 

 

Year Covariate Min Max Mean 

2005 Sea surface temperature (SST) (0C) 10 21 15.8 

2005 Sea level anomaly (SLA) (m) -0.11 0.14 0.02 

2005 Sea surface height (SSH) (m) -0.51 -0.17 -0.4 

2005 Absolute dynamic topography (ADT) (m) -0.17 0.3 0.02 

2005 Mixed layer depth (MLD) (m) 7 17 11 

2005 Salinity (SAL) (PSU) 11 35 33 

2016 Sea surface temperature (SST) (0C) 12 18 15 

2016 Sea level anomaly (SLA) (m) -0.06 0 0.07 

2016 Sea surface height (SSH) (m) -0.5 -0.1 -0.36 

2016 Absolute dynamic topography (ADT) (m) -0.12 0.2 0.06 

2016 Mixed layer depth (MLD) (m) 7 16 11 

2016 Salinity (SAL) (PSU) 20 35 33.8 
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Figure 4.2-4: Raincloud plots showing the distribution of covariate data associated with the effort segments used to model the 2005 and 2016 cetacean data.  
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Figure 4.2-5: Raincloud plots showing the distribution of covariate data associated with the effort segments used to model the 2005 and 2016 cetacean data.  
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Figure 4.2-6a: Maps of the covariate data associated with the effort segments used to model the 2005 and 2016 cetacean data.  
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Figure 4.2-6b: Maps of the covariate data associated with the effort segments used to model the 2005 and 2016 cetacean data.  
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Figure 4.2-6c: Maps pf the covariate data associated with the effort segments used to model the 2005 and 2016 cetacean 
data. 

 

4.2.2 Modelling methodology 

4.2.2.1 Environmental models 
Explanatory GAMS (not including latitude and longitude as covariates) were used to model minke 

whale, white-beaked dolphin, and harbour porpoise density as a function of environmental 

covariates. In these environmental models all data collected within the full Greater North Sea 

ecoregion were used, for both 2016 and 2005. Separate models were fitted for each species and 

each year. A third model combining the years for each species was also fitted. 

4.2.2.2  Modelling cetacean prey more directly 
It is typically assumed that prey is the main driver of cetacean species distribution, but proxy 

covariates usually need to be used because prey data are not available. However, for a large part of 

the Greater North Sea Ecoregion, data on the energetic availability of four key prey species were 

available in the form of summer (Jun-Aug) energy surfaces (Ransijn et al. 2019). The fish energy 

surfaces were produced by running GAMS to generate density surface models using data collected 

from International Bottom Trawl survey data for the selected prey species. Biomass of fish was 

converted to energetic content using values from the literature. Only fish smaller than 40cm were 

included in the models as this work was designed with harbour porpoise prey in mind.  Efforts were 

made by the authors to correct for catchability, time of year, gear type and size of fish. Density These 

were predicted on to a 1km x 1km grid.  
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These energy surfaces can be used to model the density of the three cetacean species of interest. 

These models are termed “prey models”. The prey species for which energy data were available 

were cod, whiting, herring, and sprat (Figure 4.2-7). Ransijn et al (2019) did also produce a model of 

sandeel energy distribution, however, due to the highly localised nature of sandeel density, distance 

to sandeel ground (km) (Jensen et al. 2011) was modelled instead of energy, similar to the approach 

taken by Gilles et al. (2016) (Figure 4.2-8). Summaries of the fish energy data are provided in Figure 

4.2-9. 

In addition to the fish energy covariates, the same environmental covariates initially considered for 

the full ecoregion environmental models were considered for the prey models. However, several 

were excluded for various reasons. Depth (and consequently derivative covariates such as SDdepth) 

were excluded from the modelling because they were included in the models that generated the fish 

energy maps, and their inclusion here would have led to multicollinearity in the models. As the 

sandeel models used distance to grounds, and not the sandeel energy layer, these models were able 

to retain both depth and standard deviation of depth covariates without risk of collinearity.  

Several physical covariates (sea surface temperature, sea level height anomaly, sea surface height, 

sea surface temperature, salinity and absolute dynamic topography) were also excluded because the 

mechanism by which they are thought likely to act on cetacean distribution is through distribution of 

prey, which was described by the fish energy covariates. 

The spatial extent of the modelled prey energy data is slightly smaller than that of the full ecoregion.  

For the prey models, only cetacean data collected within the area covered by the prey models was 

included in these “prey models”. 

4.2.2.3 Prey modelling methods – covariate selection 
Therefore, in addition to fish energy, four candidate covariates were available for inclusion in the 

prey models: slope, aspect, distance to 50m isobath (D50_iso), and CS_50_cont. Because D50_iso 

and CS_50_cont are colinear, these were both modelled separately, and the best covariate (selected 

by AIC) was taken forward into subsequent modelling. This process was carried out for each fish 

species individually. In addition to the individual fish species energy layers, Ransijn et al (2019) also 

calculated a layer containing energy for all fish species combined (“All prey”). Therefore, for each 

cetacean species, a total of seven prey models were fitted: one for each species energy layer (cod, 

herring, whiting, sprat), one for distance to sandeel grounds, one for the “All prey” layer, and one 

combining the energy layer for all individual species together into the same model. The best prey 

model for each cetacean species, as selected by AIC, was then predicted. Maps showing the 

uncertainty surrounding these  modelled prey energy surfaces, taken from Ransijn et al. (2020) are 
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provided in Appendix 3.  These figures show that the uncertainty around the  predicted energy  

levels is generally higher where prey energy is predicted to be higher, as would be expected (Ransijn 

et al. 2020). 

 

 

Figure 4.2-7:  Distribution of energy (MJ) per Km2 of four different fish prey species throughout the North Sea. The dark 
blue area shows the extent of the full ecoregion. Fish energy data (from Ransijn et al, 2019) are only available for a 
subset of this. 
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Figure 4.2-8: Location of sandeel grounds (yellow) from Jensen et al., 2011.  

 

 

Figure 4.2-9: Summary statistics for the fish energy data, in MJ, as calculated by Ransijn et al., (2019). 
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4.1. Results of full ecoregion environmental models 

4.1.1. Minke whale 
Summary results of the final full ecoregion environmental models selected for minke whales are 

provided in Table 4.1-1. Model diagnostics (Appendix 3) indicate a satisfactory fit to the data, with 

the proportion of null deviance explained by the 2016 model being 18.2%., and for the 2005 model 

being 30.7%. The 2016 data were best described using the negative binomial distribution, whilst the 

Tweedie error distribution best described the data for the 2005 data. An additional model combining 

the data from the two years and adding year as a categorical variable was also run. This explained 

29% of the null deviance (Table 4.1-2).   

The fitted smooth functions (Figure 4.1-1) show relatively low levels of “wiggliness” – with only SSH, 

when modelled for 2016 and in the combined model, requiring more than 1 estimated degrees of 

freedom. This is possibly due to low numbers of data points. The satisfactory fit of the models as 

indicated by the residual and QQ plots (Appendix 3) indicates that the resulting predictions should 

be an appropriate representation of the relationships between minke whale density and the model 

covariates.  

For the 2016 data, there were positive effects (higher estimated density of minke whales) in areas of 

flatter seabed (lower SD depth values) although the confidence interval here is wide at higher SD 

depth, reflecting the lower number of modelled segments with higher values. This covariate was not 

retained in either the 2005 model or the combined model. Depth was retained in both, showing a 

similar relationship in both models in which predicted density of minke whales decreased as depth 

decreased. The confidence interval increases in width towards the higher depths, likely driven again 

by the very low number of modelled segments with these deep-water values.  

A similar relationship with the log mixed layer depth data was found across all three minke whale 

models, in which predicted density increased with increasing mixed layer depth.  Sea surface height 

was also retained in all three models. Here the relationship was very similar for 2016 and the 

combined model, where it was largely flat across most of the range of covariates, but predicted 

density decreased as SSH became larger than around -0.35.  In the 2005 model the estimated 

density of whales increased as SSH increased from -0.5 to -0.2, but the effect was not very strong. It 

is possible that in this model the effect of SSH is acting as a proxy for an unknown, unmodelled 

covariate.  

Both the 2005 model and the combined model also retained salinity, although 2016 did not. The 

relationship was similar in both models, showing a decrease in predicted density as salinity 

decreased. The confidence intervals at low salinities y end of the graphs are wide, particularly for the 
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2005 model. The number of effort segments with low salinity values was quite small and the 

confidence intervals around the two slopes reflected that.  

The highest densities of minke whales were predicted in the central and northern parts of the North 

Sea for 2016 (Figure 4.1-1b), which reflects the location of the sightings (Figure 4.1-1a). The plot of 

predicted CV shows that we can be confident in these predictions, except for in the very far north of 

the region (Figure 4.1-1c), which is reflected in the map of standard error of the predictions (Figure 

4.1-1d).  

The 2005 prediction was a less good reflection of the observations (Figure 4.1-1a, b). The model has 

been overly influenced by datapoints at the edge of the predicted region, causing levels of over 

prediction in this area and reflected by the higher CV across the area ( Figure 4.1-1c). The standard 

errors are highest in the northern part of the region.  

A similar pattern is also visible in the combined 2016 and 2005 model. Areas of high predicted 

density matched the sightings fairly well giving confidence in the predictions (Figure 4.1-1-a, b). 

Table 4.1-1: Model outputs for minke whale GAMs for 2016 and 2005 data. 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

P value 

2016 
Negative 
binomial 

SD Depth 0.7 

18.2 5.9 

0.09 

Sea surface 
height  

3.5 0.002 

Ln Mixed 
Layer depth 

0.7 0.05 

2005 Tweedie 

Depth 1.0 

30.7 4.5 

4.25e-6 

Salinity 0.9 0.0003 

Sea surface 
height 

0.8 0.04 

Ln Mixed 
Layer depth 

0.8 0.02 
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Table 4.1-2: Model outputs for combined 2005 and 2016 minke whale GAM 

Model Factor levels Estimate Std. Error Z value PR(>z) 

Combined 
2016 & 2005 
model 

Intercept 
(2005) 

-137.7 
67.0 -2.05 0.04 

Year = 2016 0.07 0.03 1.96 0.05 

       

 Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

% Deviance 
explained 

Model 
degrees of 
freedom 

P 
value 

Combined 
2016 & 2005 
model 

Negative 
binomial 

Depth 0.8 

29.2 8.6 

0.02 

Salinity 0.9 0.002 

Sea surface 
height 

3.9 0.0002 

Ln Mixed 
Layer depth 

0.9 0.003 
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Figure 4.1-1: Plots of the fitted smooth functions for minke whale GAMS for 2016, 2005 and the combined model. “Rug” marks on the x-axis of the fitted smooth plots show the 
distribution of the data. Shaded areas represent the 95% confidence intervals. Where the same covariate is retained in multiple models, the smooths are shown on the same row. Effect 
sizes are variable, so axis scales are also variable in order to preserve necessary detail.   
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Figure 4.1.1 ctd: Plots of the fitted smooth functions for minke whale GAMS for 2016, 2005 and the combined model. “Rug” marks on the x-axis of the fitted smooth plots show the 
distribution of the data. Shaded areas represent the 95% confidence intervals. Where the same covariate is retained in multiple models, the smooths are shown on the same row. Effect 
sizes are variable, so axis scales are also variable in order to preserve necessary detail.   





 

                                                                                                                                                               144 
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Figure 4.1-2: Location of effort and sightings (A), predicted density surface (B) coefficient of variation CV of density (CV) (C) and standard error (SE) (D) for 2016, 2005 and combined year 
minke whale models. Range of values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive 
space. In some cases, prediction grid cells had covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded 
from the prediction. Combined year data are predicted using 2016 covariates. 
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4.1.2. White-beaked dolphin 
Summary results of the final full ecoregion environmental models selected for white-beaked dolphin 

are provided in Table 4.1-3.  Model diagnostics indicate a satisfactory fit to the data (Appendix 3), 

with the proportion of null deviance explained by the model being 34.1% for the 2016 model, 49.4% 

for the 2005 model and 38.1% for the combined years model. The residual and QQ plots for these 

models are provided in Appendix 3.  Plots of the fitted smooth functions are provided in  Figure 

4.1-3: Plots of the fitted smooth functions for white-beaked dolphin GAMS for 2016, 2005 and the 

combined model. “Rug” marks on the x-axis of the fitted smooth plots show the distribution of the 

data. Shaded areas represent the 95% confidence intervals. Where the same covariate is retained in 

multiple models, the smooths are shown on the same row. Effect sizes are variable, so axis scales are 

also variable in order to preserve necessary detail.  The negative binomial error distribution best 

described the 2016 and combined years model; the Tweedie error distribution best described the 

data for 2005.  The effect of year, modelled as a categorical variable, was not retained in the best 

combined year model.  

The 2016 model showed a positive linear effect on estimated density of white-beaked dolphins of 

increasing distance from the 50m depth contour, on the deep-water side of the contour. This 

covariate was only retained in the 2016 model.  

All three models retained one of the measures of mesoscale activity. For the 2016 model, this was 

sea level anomaly. The partial effects plot for this covariate shows a linear relationship, with higher 

predicted dolphin density being found at low SLA. The confidence intervals are wider at either end of 

the smooth where there are fewer datapoints. 

Dolphin density was predicted to decrease with decreasing salinity. This relationship was found in 

both the 2016 and 2005 data. There were only a very few effort segments with low salinity values 

leading to a comparatively wide confidence interval, although overall the effect is small in 2016.  

The highest densities of white-beaked dolphins were predicted in the northern part of the North Sea 

(Figure 4.1-4) as well as in the south of the study region, in the waters of the English Channel, where 

there are no sightings of this species in the modelled data. This prediction is thus not a good 

reflection of all the sightings.  

The 2005 model retained three covariates: mixed layer depth, salinity and sea surface height.  The 

relationship with mixed layer depth was linear; the highest densities of white-beaked dolphins were 

predicted at shallow mixed layer depths, and the predicted density decreased as MLD increased. The 

confidence intervals were uniform across the range of the data.  
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The shape of the salinity smooth for the 2005 data is very similar, albeit with a larger effect, to that 

from the 2016 model showing an increase in predicted dolphin density with increasing salinity. 

Predicted dolphin density peaked at a sea surface height of -0.45m, with decreases at both higher 

and lower values. The confidence intervals around this become very wide as SSH increases, however. 

The highest densities of white-beaked dolphins were predicted in the central part of the North Sea 

(Figure 4.1-4 b), which is a good reflection of the observed sightings (Figure 4.1-4 a). The plot of 

prediction CV shows low levels of confidence in waters close to the eastern coastline to the south of 

the North Sea (Figure 4.1-4 c). 

The combined 2005-2016 model retained depth, mixed layer depth, sea surface height and slope. 

The shape of the mixed layer depth smooth was very similar to that of the 2005 model but the effect 

was smaller.  

Whereas the 2005 model showed a peak predicted density of dolphins at -0.45m SSH, the combined 

model showed a linear decline with increasing values of SSH. Slope and depth covariates were both 

retained in the combined model, despite not being retained in either of the individual year models. 

Predicted densities of dolphins were highest in areas of flatter seabed (lower slope), and shallower 

waters. For both covariates the confidence intervals are wide at the extremes of the covariate range 

with the fewest data points.  

Table 4.1-3: Model outputs for white-beaked dolphin GAMs for 2016, 2005 and combined 2016 & 2005 data. 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

P value 

2016 
Negative 
binomial 

CS_50_cont 1.1 

34.1 3.65 

2e-16 

Sea Level 
Anomaly  

0.9 0.002 

Salinity 0.7 0.12 

2005 Tweedie 

Salinity 0.9 

49.4 5.6 

0.002 

Sea surface 
height 

2.8 0.001 

Mixed Layer 
depth 

0.9 0.003 

2016 and 
2005 
combined 

Negative 
binomial 

Depth 1.0 

38.1 4.1 

 1.1e-4 

Ln Mixed 
Layer depth 

0.3 0.30 

Sea surface 
height 

1.2  2e-16 

Slope 0.7 0.06 
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Figure 4.1-3: Plots of the fitted smooth functions for white-beaked dolphin GAMS for 2016, 2005 and the combined model. “Rug” marks on the x-axis of the fitted smooth plots show the 
distribution of the data. Shaded areas represent the 95% confidence intervals. Where the same covariate is retained in multiple models, the smooths are shown on the same row. Effect 
sizes are variable, so axis scales are also variable in order to preserve necessary detail.   
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Figure 4.3-3 ctd. Plots of the fitted smooth functions for white-beaked dolphin GAMS for 2016, 2005 and the combined model. “Rug” marks on the x-axis of the fitted smooth plots show 
the distribution of the data. Shaded areas represent the 95% confidence intervals. Where the same covariate is retained in multiple models, the smooths are shown on the same row. 
Effect sizes are variable, so axis scales are also variable in order to preserve necessary detail.   
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Figure 4.1-4: Location of effort and sightings (A), predicted density surface (B) for 2016, 2005 and combined year white-beaked dolphin models. Range of values represented by colours in 
the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate values which 
were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from the prediction. Combined year data are predicted using 2016 
covariates. 
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Figure 4.3-4 ctd. Maps of predicted coefficient of variation CV of density (CV) (C) and standard error (SE) (D) for 2016, 2005 and combined year white-beaked dolphin models. Range of 
values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid 
cells had covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from the prediction. 
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4.1.3. Harbour porpoise 
Summary results of the final full ecoregion environmental models selected for harbour porpoise are 

provided in Table 4.1-4. Model diagnostics indicated a good fit to the data in both cases (Appendix 

3), and the proportion of null deviance explained by the model was 9.3% for the 2016 model, 12.8% 

for the 2005 model and 7.5% for the combined model. The partial effects plots are included in Figure 

4.1-5.  The negative binomial error distribution best described the data for all three models.  

The partial effects plot for depth shows comparatively high amounts of wiggliness for 2016. 

Estimated density declined sharply with increasing depth to approximately 250m depth. In waters 

deeper than 250m density was then predicted to increase linearly. The confidence interval was very 

narrow at shallower depths but increased in deeper waters where there were fewer data points, 

suggesting less confidence in this part of the relationship, although the effect was quite small. The 

broad shape of the plot was replicated in the combined 2005/2016 model which showed a similar 

dip in predicted density at around 300m depth. The 2005 slope relationship was linear, with 

predicted density peaking at deeper depths. Although the effect was small, the confidence intervals 

were wider at this end of the plot indicating that this relationship should be interpreted with 

caution.  

The partial effects plots for mixed layer depth for 2016 and for the combined years model show that 

highest densities of porpoises were predicted in waters with a mixed layer depth of around 10.5m or 

deeper; the relationship was then relatively flat at deeper depths. The confidence intervals were 

comparatively narrow, particularly around the inflection point. They widened where there were 

fewer data points, namely at very shallow mixed layer depths. For 2005 the relationship was linear 

with lower predicted densities at shallower MLD and higher densities at deeper MLD. 

The 2016 model predicted porpoise density decreasing with increasing salinity. The shape of this 

relationship appears to be driven by a few datapoints at the lower end of the salinity range where 

the confidence intervals are also widest. This covariate was not retained in the other models. The 

relationship was not strong, with a low partial effect.  

The 2005 model retained CS_50_cont. This predicted a peak in predicted density of porpoises in 

waters close to but deeper than the 50m contour, and a decline on either side. Again, confidence 

intervals at either end of the range where there were fewer datapoints were wider. This covariate 

was not retained in the other models.  

The combined years model retained SST, with density of porpoises predicted to increase linearly 

with temperature. Confidence intervals were narrower where there were more data in the centre of 

the range. This covariate was not retained by the other models.   
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All three models retained a covariate measuring mesoscale activity. For 2016 and 2005 it was ADT, 

for the combined model it was SLA. The relationships for ADT are very wiggly, with 5.8 edf in 2016 

and 4.7 edf in 2005. The confidence intervals were narrow for the central part of the relationship, 

which may be a result of the larger number of sightings of this species over the range of the 

covariate when compared with other species.  The two years showed broadly opposite relationships. 

Coupled with this covariate not being retained in the combined years model, this suggests that this 

covariate may be acting as a proxy for an unknown process. The SLA covariate in the combined years 

model predicted a peak in porpoise density in areas with a 0.1m SLA, decreasing on either side.  

The 2016 and combined years models show positive effects higher estimated density of harbour 

porpoises) at areas of flatter seabed (lower values of slope), which decreased linearly but not 

strongly as the slope angle increased. The confidence interval became much wider at the steeper 

slope angles reflecting fewer data points here. The 2005 model retained SD depth instead of slope, 

but the shape of the relationship is the same as for slope, with higher densities of porpoises being 

predicted at lower seabed rugosity.  

The combined model with year as a categorical variable was found to be better (lower AIC) than the 

one which did not contain year. However, the effect was weak and not significant (p = 0.55) (Table 

4.1-5). 

The highest densities of harbour porpoises for 2016 were predicted throughout the central and 

southern North Sea (Figure 4.1-6b), and in areas of the Skagerrak and Kattegat around Denmark, 

Norway and Sweden. This is a good match with many of the observed sightings; however, animals 

were also seen to the south in the English Channel and in northern areas (Figure 4.1-6 a). Low CV 

was predicted throughout most of the area (Figure 4.1-6 c). 

The highest densities of harbour porpoises in 2005 were predicted in the southern part of the North 

Sea and in the Kattegat/Belt Seas region, which reflects many of the observed sightings (Figure 4.1-6 

a). The plot of predicted CV showed adequate levels of confidence in the predictions except in deep 

waters to the south of Norway and in the central northern North Sea (Figure 4.1-6 c). 

As would be expected from the 2016 and 2005 predictions, density predicted from the model of the 

combined data is also a good reflection of the combined sightings data.  
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Table 4.1-4: Model outputs for harbour porpoise GAMs for 2016 and 2005 model. 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

% Deviance 
explained 

Model 
degrees of 
freedom 

P value 

2016 
data 

Negative 
binomial 

Depth 6.6 

9.3 19.3 

 2e-16 

MLD 4.1 0.001 

ADT 5.8 2e-16 

Slope 0.9 0.0024 

Salinity 1.0 8.53e-7 

2005 
data 

Negative 
binomial 

Depth 0.7 

12.8 10.4 

0.093 

CS_50_cont 2.3 0.017 

ADT 4.7 2e-16 

SD depth 0.9 0.011 

MLD 0.9 0.0049 

 

Table 4.1-5: Model outputs for combined 2005 and 2016 harbour porpoise GAM 

Model Factor levels Estimate Std. Error Z value PR(>z) 

Combined 
2016 & 2005 
model 

Intercept 
(2005) 

-13.07 
20.7 -0.6 0.53 

Year = 2016 0.006 0.01 0.6 0.55 

       

 Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

P value 

Combined 
2016 & 2005 
model 

Negative 
binomial 

Depth 3.5 

7.5 15.3 

 2.27e-6 

MLD 3.4 0.0009 

SST 0.8 0.0303 

Slope 0.9 0.0009 

SLA 4.9 2e-16 
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Figure 4.1-5:  Plots of the fitted smooth functions for harbour porpoise GAMS for 2016, 2005 and the combined model. “Rug” marks on the x-axis of the fitted smooth plots show the 
distribution of the data. Shaded areas represent the 95% confidence intervals. Where the same covariate is retained in multiple models, the smooths are shown on the same row. Effect 
sizes are variable, so axis scales are also variable in order to preserve necessary detail.   
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Figure 4.3-5 ctd: Plots of the fitted smooth functions for harbour porpoise GAMS for 2016, 2005 and the combined model. “Rug” marks on the x-axis of the fitted smooth plots show the 
distribution of the data. Shaded areas represent the 95% confidence intervals. Where the same covariate is retained in multiple models, the smooths are shown on the same row. Effect 
sizes are variable, so axis scales are also variable in order to preserve necessary detail.   
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Figure 4.1-6: Location of effort and sightings (A), predicted density surface (B) for 2016, 2005 and combined year harbour porpoise models. Range of values represented by colours in the 
maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate values which 
were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from the prediction. Combined year data are predicted using 2016 
covariates. 
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Figure 4.3-6 ctd: Maps of predicted coefficient of variation CV of density (CV) © and standard error (SE) (D) for 2016, 2005 and combined year harbour porpoise models. Range of values 
represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid cells 
had covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from the prediction. 
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4.2. Results of prey models 

The area for which prey data were available was smaller than the full ecoregion. As a result, there 

were fewer modelling segments used for each model. The number of segments for both the 2016 

and 2005 data are shown in Table 4.2-1. In 2016, all but three minke whale and white-beaked 

dolphin sightings occurred within the North Sea section of the ecoregion for which prey data were 

available.  

Table 4.2-1 Number of effort segments and number of groups and individuals sighted of each species used in prey data 
for the North Sea. 

Year Species 
Total no. of 

effort 
segments 

No. of effort 
segments with 

groups 

Number 
of groups 

Number of 
Individuals 

Mean 
group 
size 

2016 

Minke whale 1667 33 (1.9%) 36 38 1.1 

White-beaked dolphin 1667 32 (1.9%) 61 212 3.5 

Harbour porpoise 1604 533 (33%) 1002 1323 1.3 

 
2005 

Minke whale 726 18 (2.4%) 27 28 1.0 

White-beaked dolphin 726 21 (2.9%) 23 109 4.8 

Harbour porpoise 576 164 (28%) 327 479 1.5 

4.2.3  

4.2.1. Minke whales prey models 
The results of the best model for each of the individual prey species are shown in Table 4.2-2: Model 

output for minke whale prey models, 2016 data. The best models for cod, herring and sprat retained 

no environmental covariates.  The whiting covariate was not retained in the whiting model, meaning 

that an intercept only model was the best model (results not presented). The “All fish species 

separately” in one model retained only herring.  

The cod model, with no additional environmental covariates was selected as the best model. The 

partial effects plots are shown in Figure 4.2-1. The model prediction with associated SE and CV is 

shown in Figure 4.2-3. The smooth relationship for slope used 3.7 edf and showed a peak in 

predicted density of minke whales in areas where there was approximately 4 MJ of cod energy. 

There was a second peak in areas with no cod present, with lowest predicted densities of porpoises 

at either low, or high (higher than 4MJ) cod energy levels. The confidence intervals are very wide 

when there were few cod data.  
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Table 4.2-2: Model output for minke whale prey models, 2016 data.  

Model ID 
Error 
distribution 

Model covariates 
Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

Model 
AIC 

Cod 
Negative 
binomial 

Cod – Summer 
2016 

3.7 10.3 4.7 
348.8 

Herring  
Negative 
binomial 

Herring – Summer 
2016 

0.8 3.4 1.8 
354.5 

Sprat 
Negative 
binomial 

Sprat – summer 
2016 

2.0 4.1 3.0 
356.4 

Sandeel 
Negative 
binomial 

Depth 0.9 
6.4 2.8 

358.2 

Dist_sandeels 0.8 

All prey 
combined 

Negative 
binomial 

All prey combined – 
summer 2016 

0.7 2.2 1.8 

356.6 

All fish 
species 
separately  

Negative 
binomial 

Herring – Summer 
2016 

0.8 3.4 1.8 
354.4 

 

For the 2005 data, the “All prey combined” model,  Table 4.1-4 was selected as the best model, with 

no additional environmental covariates. The partial effects plot is shown in Figure 4.2-1.  The 

relationship was linear, with highest predicted minke whale density being associated with highest 

prey energy. The confidence interval was wider at the extremes of the covariate data where there 

were fewer data points. The model prediction with associated SE and CV is shown in Figure 4.2-3 c, 

d.  
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Table 4.2-3: Model output for minke whale prey models, 2005 data. Neither herring nor sprat was retained in the final 
model for minke whales, so were not taken further.  

Model ID 
Error 
distribution 

Model covariates 
Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

Model 
AIC 

Cod 
Negative 
binomial 

Cod – Summer 
2016 

3.1 
25.6 6.2 200.6 

Slope 2.1 

Whiting 
Negative 
binomial 

Whiting – summer 
2016 

3.1 21.0 4.1 199.3 

Sandeel 
Negative 
binomial 

Depth 0.9 

15.3 3.3 
 
201.7 

Slope 0.5 

Dist_sandeels 0.9 

All prey 
combined 

Negative 
binomial 

All prey combined – 
summer 2016 

1.0 15.2 2.0 198.8 

All fish 
species 
separately  

Negative 
binomial 

Slope 0.7 

15.9 4.1 203.8 

Herring – Summer 
2016 

0.9 

Cod – Summer 
2016 

0.7 

Dist_sandeels 0.8 

 

For the combined 2016 and 2005 model, individual covariates for whiting, herring and cod were 

retained, as was distance to sandeel grounds and slope (Table 4.2-5). Partial effects plots are 

provided in Figure 4.2-2.  The smooths for whiting and cod energy follow the same shape, with peaks 

of predicted minke whale density being associated with whiting energy of around 10 MJ and cod 

energy of around 4 MJ. This is a similar shape to that of cod in the 2016 model. For both cod and 

whiting in the combined model, there was a second peak in areas with no prey energy present, with 

lowest predicted densities of porpoises at either low or highest fish energy levels. Year was not 

retained as a covariate in the combined model. 

The relationship for herring energy was linear, with predicted minke whale density increasing as 

herring energy increased. Minke whale predicted density was also highest in areas with close 

proximity to sandeel grounds, with predicted density decreasing as distance increased. Slope was 

also retained in this final minke whale model, with predicted density of minke whales increasing 

slightly as slope increased. This relationship has very wide confidence intervals, however, and so 

should be interpreted with caution. 

The prey models produced very different predictions from the environmental-only models for the 

corresponding years (Figure 4.2-3 b), with predicted minke whale densities from the prey models 

being much higher and extending much further south into the central North Sea, into areas where 
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there were no sightings of this species. The prey models showed very high levels of over-prediction, 

which is likely driving this change in predicted density. Maps of CV and SE (Figure 4.2-3 c, d) show 

these values to be correspondingly high.  

 
Table 4.2-4: Model output for best minke whale combined year prey model. 

Model ID 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

P value 
% 
Deviance 
explained 

Model 
degrees 
of 
freedom 

Model 
AIC 

All fish 
species 
separately  

Negative 
binomial 

Slope 0.8 0.021 

18.7 11.2 594.3 
Cod energy 3.9 0.003 

Whiting energy 3.7 0.021 

Dist_sandeels 0.8 0.025 

 

  
Figure 4.2-1: Plots of the fitted smooth function for the 2016 and 2005 best prey models for minke whale. The 2016 
model retained only the cod covariate, the 2005 model retained only the “all prey” covariate.  
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Figure 4.2-2: Plots of the fitted smooth functions for the combined 2016 and 2005 prey model for minke whale.  
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Figure 4.2-3: Location of effort and sightings (A), predicted density surface (B) for 2016, 2005 and combined year minke whale prey models. Range of values represented by colours in the 
maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate values which 
were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from the prediction. Combined year data are predicted using 2016 
covariates. 
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Figure 4.3-3 ctd: Maps of predicted coefficient of variation CV of density (CV) (C) and standard error (SE) (D) for 2016, 2005 and combined year minke whale prey models. Range of values 
represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid cells 
had covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from the prediction. 
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4.2.2. White-beaked dolphins 
The results of the best white-beaked dolphin model for each of the individual prey species are 

shown in Table 4.2-5. The best models for most prey species retained no environmental covariates, 

although the herring model retained slope and the sandeel model retained depth in addition to the 

prey covariate.   

The best model, with a lot more support from the data than any other model, and used for 

prediction, was the “All fish species separately” model. Partial effects plots and predictions of this 

model, along with SE and CV are shown in Figure 4.2-4 and Figure 4.2-5. This retained all fish species, 

as well as slope and CS_50_cont. All relationships were linear, with higher levels of white-beaked 

dolphin density being associated with low slope values, larger distances to the 50m contour on the 

shallower side of the contour, low levels of cod energy, low levels of sprat energy, but high levels of 

herring and whiting energy, and proximity to sandeel grounds. The confidence intervals of slope and 

cod energy were wide, particularly for slope.  

Table 4.2-5: Model output for white-beaked dolphin prey models, 2016 data.  

Model ID 
Error 
distribution 

Model covariates 
Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

Model 
AIC 

Cod 
Negative 
binomial 

Cod – Summer 
2016 

3.3 40.4 4.3 465.0 

Herring  
Negative 
binomial 

Slope 0.6 
49.2 5.8 455.3 Herring – Summer 

2016 
4.2 

Whiting 
Negative 
binomial 

Whiting – summer 
2016 

0.8 3.3 1.8 499.6 

Sprat 
Negative 
binomial 

Sprat – summer 
2016 

2.4 35.5 3.4 472.0 

Sandeel 
Negative 
binomial 

Depth 2.8 
57 5.3 501.2 

Dist_sandeels 1.1 

All prey 
combined 

Negative 
binomial 

All prey combined – 
summer 2016 

1.6 26.8 2.6 476.8 

All fish 
species 
separately  

Negative 
binomial 

Slope 0.7 

61.3% 7.1 429.5 

CS_50_cont 0.8 

Cod – Summer 
2016 

0.4 

Herring – Summer 
2016 

1.1 

Whiting – summer 
2016 

0.9 

Sprat – summer 
2016 

1.1 

Dist_sandeels 1.0 
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Some of the white-beaked dolphin prey models, including the best model, had unrealistically high 

levels of deviance explained given the relatively small sample size. The best model used for 

prediction – the “All fish species separately” model also showed evidence of over-predicting 

abundance, resulting in approximately 29,000 animals in the North Sea area, compared to the 

design-based estimate for the full ecoregion of 20,525 animals (Hammond et al. 2021). However, 

whilst the densities were high, the actual pattern of the prediction did reflect the observed locations 

of animals.  

For the 2005 data, the best prey model, and used for prediction, was the “All fish species separately” 

model. Outputs, diagnostics and predictions of this model , along with CVs and SEs, are shown in 

Table 4.2-6, Figure 4.2-4 and Figure 4.2-5. The relationships for herring, sprat and distance to 

sandeel grounds were linear, with higher levels of white-beaked dolphin density being predicted at 

higher levels of herring energy, closer distances to sandeel grounds and lower levels of sprat energy. 

The cod relationship had a peak predicted density of dolphins at around 5MJ of energy.  

Table 4.2-6: Model output for white-beaked dolphin prey models, 2005 data.  

Model ID 
Error 
distribution 

Model covariates 
Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

Model 
AIC 

Cod 
Negative 
binomial 

Cod – Summer 
2005 

2.8 43.2 3.8 292.0 

Herring 
Negative 
binomial 

Herring – Summer 
2005 

0.9 11.2 1.9 312.0 

Whiting 
Negative 
binomial 

Whiting – summer 
2005 

1.0 14.2 2.0 310.2 

Sprat 
Negative 
binomial 

Sprat – summer 
2005 

1.0 27.2 2.0 300.9 

Sandeel 
Negative 
binomial 

Depth 3.0 
55.1 4.9 281.3 

Dist_sandeels 0.9 

All prey 
combined 

Negative 
binomial 

All prey combined – 
summer 2005 

0.8 5.7 1.8 315.2 

All fish 
species 
separately  

Negative 
binomial 

Herring – Summer 
2005 

0.9 

58.6 6.3 279.5 

Cod – summer 
2005 

2.6 

Sprat – summer 
2005 

0.9 

Dist_sandeels 0.9 

 

For the combined 2016 and 2005 model, individual covariates for whiting, herring, sprat and 

distance to sandeel grounds were retained, but no environmental covariates (Table 4.2-7). Year was 
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retained as a covariate in the combined model and was significant (p < 0.05). Partial effects plots are 

provided in Figure 4.2-4.  

The partial effect for herring energy was linear in this combined year model with predicted white-

beaked dolphin density increasing as herring energy increased. This was also the case with the 2005 

data and 2016 data when modelled separately.  The plot for whiting shows the same shape, 

although this covariate was not retained in the 2005 model. 

White-beaked dolphin predicted density was highest in areas in close proximity to sandeel grounds, 

with predicted density decreasing as distance increased; again, this effect was seen in all three 

models.   

The relationship for sprat was linear and in the opposite direction to the other fish species. This 

predicted the lowest dolphin density at highest sprat energy values. This pattern is seen in all three 

models.  

Table 4.2-7: Model outputs for combined 2005 and 2016 white-beaked dolphin prey model 

Name Factor 
levels 

Estimate 
Std. Error Z value PR(>z) 

Combined 
2016 & 2005 
model 

Intercept 
(2005) 

175.6 
83.5 -2.1 0.034 

Year = 2016 -0.09 0.04 -2.2 0.030 

Model Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

P value 

Combined 
2016 & 2005 
model 

Negative 
binomial 

Herring energy 1.15 

52.8 6.2 

2e-16 

Whiting energy 0.9 0.012 

Sprat energy 1.1 2e-16 

Distance to 
sandeels 

1.02 2e-16 

 

Some of the white-beaked dolphin prey models, including the best model, had unrealistically high 

levels of deviance explained given the relatively small sample size. These models also showed strong 

evidence of over-predicting abundance, the 2016 model resulting in approximately 70,725 animals in 

the North Sea area, compared to the design-based estimate for the full ecoregion of 9,588 animals 

(Hammond et al. 2021). However, whilst the densities are very high, the actual pattern of the 

prediction is an adequate reflection of the observed locations of animals.  
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Figure 4.2-4: Plots of the fitted smooth functions for the 2016, 2005 and the combined 2016 and 2005 prey model for white beaked dolphin prey models.  
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Plots of the fitted smooth functions for the 2016, 2005 and the combined 2016 and 2005 prey model for white beaked dolphin prey models.  
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Figure 4.2-5: Location of effort and sightings (A), predicted density surface (B) for 2016, 2005 and combined year white-beaked dolphin models. Range of values represented by colours in 
the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate values which 
were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from the prediction. Combined year data are predicted using 2016 
covariates. 
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Figure 4.4-5 ctd: Maps of predicted coefficient of variation CV of density (CV) (C) and standard error (SE) (D) for 2016, 2005 and combined year white-beaked dolphin models. Range of 
values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid 
cells had covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from the prediction.  



 

                                                                                                                                                               173 
 

4.2.3. Harbour porpoise 
The results of the best prey models for each of the individual prey species for harbour porpoise are 

shown in Table 4.2-8. The “All fish species separately” model was selected as the best harbour 

porpoise prey model. Partial effects plots are provided in Figure 4.2-6, diagnostics in Appendix 3 and 

predictions of this model, along with SE and CV, are shown in Figure 4.2-7 . Three covariates were 

retained. Slope was also retained in the 2005 model and the combined years model with a similar 

relationship in each. In all three cases this predicted the highest densities of harbour porpoise in 

areas of flat seabed (low slope).  

The relationship for sprat energy had a peak predicted porpoise density at around 5MJ sprat energy, 

following which porpoise density was predicted to decrease rapidly, in particular at higher energy 

levels. The same relationship could be seen in the combined years model.  

Porpoise density was associated with close proximity to sandeel grounds, although the decline was 

not linear and there was a very small secondary peak at around 200km distance. The confidence 

interval at larger distances was wide. This relationship was also replicated in the combined years 

model, although the effects in the model were larger.  

  



 

                                                                                                                                                               174 
 

Table 4.2-8: Model output for harbour porpoise prey models, 2016 data. Slope was retained in all models along with the 
prey covariate(s).  

Model ID 
Error 
distribution 

Model covariates 
Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

Model 
AIC 

Cod 
Negative 
binomial 

Slope 0.9 
4.4 8.0 3764.9 Cod – Summer 

2016 
6.1 

Herring  
Negative 
binomial 

Slope 0.9 
1.8 2.8 3784.8 Herring – Summer 

2016 
0.9 

Whiting 
Negative 
binomial 

Slope 0.9 
1.8 2.8 3789.2 Whiting – summer 

2016 
0.9 

Sprat 
Negative 
binomial 

Slope 0.9 
3.0 4.8 3775.6 Sprat – summer 

2016 
2.9 

Sandeel 
Negative 
binomial 

Slope 0.6 
3.9 5.1 3766.6 

Dist_sandeels 3.5 

All prey 
combined 

Negative 
binomial 

Slope 0.9 

1.2 2.5 3791.6 All prey combined 
– summer 2016 

0.6 

All fish 
species 
separately  

Negative 
binomial 

Slope 0.86 

5.5 7.14 3759.2 Sprat – summer 
2016 

2.33 

Dist_sandeels 2.94 

 

For 2005, the results of the best harbour porpoise prey model for each of the individual prey species 

are shown in Table 4.2-9. The “All fish species separately” model was selected as the best model. 

Partial effects plots are provided in Figure 4.2-6, diagnostics in Appendix 3 and predictions of this 

model, along with SE and CV, are shown in Figure 4.2-7. 

Both of the retained covariates had linear relationships predicting porpoise density. Porpoise 

predicted density was highest at shallow slopes, as described for the 2016 model, and declined 

linearly as slope steepness increased. There were fewer data points at steeper slopes, however, and 

the confidence intervals here were very wide.  Predicted porpoise density was highest in areas of 

low whiting energy and decreased linearly as whiting energy increased.   
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Table 4.2-9: Model output for harbour porpoise prey model, 2005 data. The “All fish species separately” model had each 
fish species as a separate covariate, along with environmental covariates. AllPrey was not retained in the final model for 
that fish species, so this was not taken further. 

Model ID 
Error 
distribution 

Model covariates 
Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

Model 
AIC 

Cod 
Negative 
binomial 

Slope 0.7 
1.8 2.4 1301.0 Cod – Summer 

2016 
0.7 

Herring  
Negative 
binomial 

Herring – Summer 
2016 

0.9 2.6 1.9 1296.4 

Whiting 
Negative 
binomial 

Whiting – summer 
2016 

1.0 4.2 2.0 1290.4 

Sprat 
Negative 
binomial 

Slope 0.8 
1.3 2.3 1302.2 Sprat – summer 

2016 
0.3 

Sandeel 
Negative 
binomial 

Depth 0.9 
2.3 2.3 1298.5 

Dist_sandeels 0.4 

All prey 
combined 

Negative 
binomial 

Slope 0.8 1.1 1.8 1301.8 

All fish 
species 
separately  

Negative 
binomial 

Slope 0.4 

5.1 3.1 1290.0 

Whiting – summer 
2016 

1.0 

Sprat – summer 
2016 

0.7 

 

The combined years model retained four covariates (Table 4.2-10), all of which appeared in at least 

one of the single year models. Partial effects plots are provided in Figure 4.2-6, diagnostics in 

Appendix 3 and predictions of this model, along with SE and CV, are shown in Figure 4.2-7. 

The only major difference in the shape of the relationship between harbour porpoise predicted 

density and any of the covariates in this combined model, compared with the individual year 

models, was in the whiting energy plot. The 2005 relationship was linear whereas in this combined 

model it was slightly curved, with the lowest porpoise densities being predicted at around 8 MJ of 

whiting energy. It is possible that this increased edf may be a result of the larger number of data 

points available for modelling in the combined year model. 
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Table 4.2-10: Model output for best harbour porpoise combined year prey model. 

Model ID 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

P 
value 

% 
Deviance 
explained 

Model 
degrees 
of 
freedom 

Model 
AIC 

All fish 
species 
separately  

Negative 
binomial 

Slope 0.9 0.0006 

5.4 10.2 5399.3 

Whiting 
energy 

1.78 
0.0324 

Sprat energy 2.5 0.0040 

Dist_sandeels 4.0 
8.88e-
6 

 

 

 

Figure 4.2-6: Plots of the fitted smooth functions for the 2016, 2005 and the combined 2016 and 2005 prey model for 
harbour porpoise prey models.  
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Figure 4.2-7: Location of effort and sightings (A), predicted density surface (B) for 2016, 2005 and combined year harbour porpoise models. Range of values represented by colours in the 
maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate values which 
were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from the prediction. Combined year data are predicted using 2016 
covariates. 
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Maps of predicted coefficient of variation CV of density (CV) (C) and standard error (SE) (D) for 2016, 2005 and combined year harbour porpoise models. Range of values represented by 
colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate 
values which were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were excluded from the prediction.
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4.3. Discussion:  

This chapter presents the results of explanatory density surface models for the three species of 

cetacean most commonly found in the North Sea ecoregion, modelled firstly using environmental 

covariates and secondly using prey energy covariates.  

To the best of my knowledge, the models presented in this chapter represent the first attempt to 

create an ecoregion-wide predicted density surface for two of these three species. Whilst previous 

studies have been conducted in this region, they are generally focussed on either a much smaller 

study region or a much larger one. This means they are likely to capture much finer scale 

movements than would show up at this scale, or incorporate multiple different environmental 

regions, which may conflate relationships. They may use data collected over a longer timescale, for 

example Tetley et al. (2008) and de Boer (2010) for minke whales and Canning et al. (2008) for 

white-beaked dolphin. Paxton et al. (2016) used the Joint Cetacean Protocol data to produce density 

surfaces over a wide area from multiple combined sources, covering a 17-year period. This and other 

larger-scale projects (e.g., SCANS, ObSERVE) covered a wide geographic region, which may span 

multiple biogeographic regions. Cetaceans can inhabit a wide range of environments and exploit 

multiple niches; the aim of the work presented in this chapter was to investigate the relationship 

between species and their environment across a single complete ecoregion, an area with shared 

biogeographic characteristics. 

4.3.1. Sources of error 
These types of studies are subject to error during both data collection and analysis stages (Barry and 

Elith 2006). As the data sources and analysis framework used was the same for this chapter and 

Chapters 3 and 5, sources of error are reviewed and discussed for these three chapters together in 

section 6.1.2.   

The fish energy surfaces which were included in the “prey” models also have their own sources of 

unquantified error, which may come from catchability of the fish species, energy content and 

spatiotemporal model predictions (Ransijn et al. 2019).  There are elements of uncertainty 

acknowledged by the authors which are not included in these prey energy surfaces, to which they 

estimate catchability uncertainty would be the largest source of error.  This unquantified uncertainty 

would, of course, propagate forward into the models presented here as well.  
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4.3.2. Minke whale 
The distributions of minke whales predicted by the selected full ecoregion, environmental models 

show the highest density to the north of the ecoregion. For 2016, this area of high density also has 

an area of high density in the central North Sea.  The high-density area for 2005 is limited to the 

central northern area. The combined years model shows very high densities in the north of the 

region, which extend southwards through the central North Sea. There is a secondary area of high 

density to the western end of the English Channel (Figure 4.1-2).  

A limited number of explanatory covariates were retained in the full ecoregion minke whale models. 

The 2016 model for minke whales retained SD depth, SSH and mixed layer depth with minke whale 

density being associated with lower SSH and increasing MLD.  The MLD shows an approximate east-

west gradient, with higher values being towards the western half of the North Sea (Figure 4.2-6c). 

These waters are also shallower, avoiding the trench around the Norwegian coastline. 

Most baleen whale species segregate their breeding and feeding activities both temporally and 

spatially. As a consequence, during the summer their distribution in an area should  be a reflection of 

the availability of their prey or of preferred feeding areas (Anderwald et al. 2012). Minke whales 

feed on a wide variety of prey species, which vary seasonally and geographically (Anderwald and 

Evans 2007), with little preference when many options are available (Skaug et al. 1997). In the North 

Sea, prey samples are dominated by sand eels and mackerel (Windsland et al. 2007), so it could be 

expected that covariates explaining the distribution of these prey species may be important.   

During summer months, Atlantic mackerel use the north-east Atlantic, including the North Sea, to 

spawn and feed. Mackerel spawning distribution has shifted northwards between 1992 and 2013 

but studies have been unable to link this to a direct set of oceanographic variables, including MLD 

and SST (Bruge et al. 2016). Stomach samples of mackerel from the North Sea have found their prey 

to be dominated by copepods, euphausiids and fish (Mehl and Westgard 1983).  Minke whales may 

be targeting areas of cooler SST as these may be more likely to have increased availability of 

mackerel, but SST was not retained in any of the minke whale models. It is possible the temperature 

range is not wide enough to fully show this effect.  

The covariates retained for 2005 were different; MLD and SSH as with 2016, but also depth and 

salinity addition. Low salinities are primarily found in shallower waters closest to the coast, and the 

relationships for both depth and salinity show minke whale predicted density increasing with 

increasing depth and salinity. The few data points at low salinity (and associated poor precision) may 

be driving the strength of this relationship.  The combined year model retained all the covariates 

which had been used in the separate year models. The relationships were all broadly similar, and the 
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selection of the model containing the year covariate showed that there may be a difference in the 

individual relationships depending on the year.  

Whereas it is often necessary to rely on proxy covariates such as SSH, here, in the absence of in-situ 

prey information, I was able to include the energy represented by a range of prey species in separate 

prey models. Of the species tested, cod energy was found to explain most variation in the minke 

whale data in 2016, and “All prey combined” in 2005.  The selected model itself was not a 

particularly good fit to the data, and the predicted density surface was not a good match to the 

sightings for this species. The 2005 “all prey” energy surface shows an increase in predicted density 

of minke whales as combined prey energy increases. In both instances, the prey models produced a 

very different spatial density prediction from the environmental models for the corresponding years, 

with predicted minke whale densities extending much further south into the central North Sea into 

areas where there were no sightings of this species. The prey models showed very high levels of 

over-prediction leading to the conclusion that, at least in this instance, the prey covariates modelled 

here are not good predictors of minke whale density. If mackerel is still the dominant prey species 

for minke whales in the North Sea, this is perhaps not surprising because energy layers were not 

available for mackerel, so it was not possible to include this species in the prey model.  

Various modelling studies have previously attempted to link minke whale distribution to a range of 

explanatory variables. The linked variables vary both spatially and temporally. Studies around 

Scotland (some outside the ecoregion modelled in this chapter, but geographically close) have 

positively linked minke whale presence with areas with a high probability of sandeel occurrence 

(month of June only) (Anderwald et al. 2012); seabed topography (Macleod et al. 2004; Robinson et 

al. 2009); and depth or a particular depth contour (Tetley 2004; Gutiérrez-Muñoz et al. 2021). In 

addition, sea surface temperature (SST) was found to be significant in June and August/September 

but not during July (Anderwald et al. 2012). Seabed type has also been found to influence minke 

whale presence (Macleod et al. 2004). Different age classes have been reported to have different 

preferences, with juvenile minke whales reportedly preferring shallow inshore waters with sandy-

gravel sediments and adults preferring deeper offshore waters with a steeper slope (Robinson et al. 

2021). This wide variety of different selected predictors perhaps highlights how difficult it is to find 

meaningful relationships. That the ones in this study persist across time periods perhaps suggests 

that they are more likely to represent significant predictors.  

Further afield, minke whale distribution has been positively associated with heterogenous seabed 

topography (Doniol-Valcroze et al. 2007), continental shelf structures and their slopes (Solvang et al. 

2015) and the presence of underwater sand dunes  (Naud et al. 2003). 
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Studies of minke whales in this ecoregion, albeit earlier in the year than the data in this study were 

collected, show a link with the slopes of Dogger Bank in the south-east of the ecoregion as well as 

the 50m depth contour (de Boer 2010). 

 

4.3.3. White beaked dolphin 
Environmental covariate models predicted white-beaked dolphins to be primarily in the northern 

part of the ecoregion. This pattern holds true for both time periods modelled and is a good fit with 

the observed locations of animals from sightings data. 

Whilst previous studies have found white-beaked dolphin distribution to be linked to certain 

temperature ranges (Macleod et al. 2008), that was not the case with these models, and no sea 

surface temperature covariates were retained. It should be noted, however, that the Macleod et al., 

(2008) study was conducted in areas in which there is overlap between common dolphins (Delphinus 

delphis) and white-beaked dolphins. In the absence of common dolphins (which are not found 

routinely throughout the North Sea ecoregion), such partitioning may be irrelevant. It should also be 

noted that the sea surface temperatures within the ecoregion during the time of the study, which 

ranged from 100C  to 210C in 2005 and 120C to 180C in 2016 ( 

 

Table 4.2-3) are, except for the very high temperatures of 2005, within the preferred habitat range 

for this species, which has been reported as 130C -180C (Macleod, 2013), which may also explain why 

this covariate was not retained.  

In the combined years model white-beaked dolphin distribution is predicted to linearly decrease 

with increasing depth. Described by Kinze (2018) as a species that is present where prey items 

concentrate, this strong association with depth is not unexpected. Species which are known prey 

items of white-beaked dolphins, North Sea haddock and whiting, are found in waters less than 200m 

depth (ICES 2014a, 2014b) . 

The only covariate retained by both 2016 and 2005 models was salinity, and this was not retained in 

the combined year model. As the lowest salinities within the region are to be found in areas very 

close to the coast, it is possible that the relationship here is not with the water salinity per se, but 

that this is working as a proxy variable for a more general set of conditions found nearer the coast, 

or in shallow waters.  

Areas with lower SSH are associated with areas of colder water, which may be more productive; 

thus, this could be considered a proxy for areas of higher prey aggregations.  However, the wide 
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confidence intervals of the 2005 model preclude making strong assumptions about habitat 

preferences based on SSH alone.  

Slope was retained in the combined year model, with higher dolphin densities being associated with 

shallower slopes. The majority of the North Sea area is very flat, so this is not particularly 

informative within the study area covered by this model. Canning et al. (2008) also reported an 

effect of slope, although they found this to be linked with aspect, which was not used as a covariate 

in these models. Canning et al (2008) found that steep north-facing slopes resulted in lower dolphin 

densities, and east-facing shallow slopes were associated with higher dolphin densities.  

Compared to other species, there have been very few investigations of habitat use in white-beaked 

dolphins. Studies of this species to the west of Scotland (outside the North Sea ecoregion) have 

noted that white-beaked dolphins are predominantly found in waters less than 130C (MacLeod et al. 

2008), and that in waters over 180C they are almost entirely absent, with a preference between 50C -

150C (Kinze 2018). This pattern appears to be supported by the strandings record, with fewer white-

beaked dolphin strandings being found toward the south of the region where waters are warmer 

(IJsseldijk et al. 2018a). Other studies in the same area have linked white-beaked dolphins with a 

depth range of 106-135m and a distance from shore of 22-32km (Weir et al. 2009). On the east coast 

of Scotland, slope and aspect have been related to dolphin presence, as well as variation in 

temperature which reportedly explained almost 45% of the variation in observed group size; higher 

sea surface temperatures were linked with smaller group sizes (Canning et al. 2008). This species has 

been reported to be present where prey items congregate, in areas such as fronts, or where there is 

upwelling (Kinze 2018). Further afield, white-beaked dolphins in Greenland have been shown to 

prefer habitats with deep water over steep slopes (Hansen and Heide-Jørgensen 2013), implying that 

their distribution is prey-driven and not due to limits of the species physiology.  

The prey model predictions were an acceptable reflection of the sightings data but were subject to a 

large amount of over-prediction.  That the “best fish model”, which includes all fish combined into 

one model was the best for white-beaked dolphins is perhaps expected because this species preys 

on a variety of different species (Canning et al. 2008; Jansen et al. 2010; MacLeod 2013). However, 

there is also some regional specialisation. South-eastern North Sea white-beaked dolphins show a 

very strong preference for cod and whiting as prey (Jansen 2013). A model that can in some way 

approximate this is likely to do better at predicting density. In the 2016 model, higher numbers of 

dolphins were predicted by shallower slopes, being on the shallower side of and not too close to, the 

50m isobath, low sprat energy, high herring energy, high whiting energy and proximity to sandeel 

grounds.  It is possible that herring, whiting and sandeels may have been important prey species 
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during July 2016. This corresponds to the preference for shallower waters shown from the 

environmental only model.  The relationships with herring, sprat and sandeel covariates persist 

across all three models.   

The 2005 model did not retain whiting but did retain cod. Cod energy of 4MJ resulted in the highest 

prediction of dolphins.  No environmental covariates were retained, which is also true for the 

combined year model, suggesting that these are perhaps not important over long time periods, or at 

least explain less variability than the fish species.  

 

4.3.4. Harbour porpoise 
Harbour porpoises are found throughout the North Sea, particularly in the central and southern 

parts and this pattern is reflected in the predicted distributions provided by these models. In 

previous studies, covariates in harbour porpoise habitat models which have been found to explain 

variation in the data include proxies for primary productivity (Gilles et al., 2011), distance to coast 

(Marubini et al. 2009; Gilles et al. 2011; Booth et al. 2013), water depth (Marubini et al. 2009; Gilles 

et al. 2011; Booth et al. 2013), slope (Isojunno et al. 2012; Booth et al. 2013; Stalder et al. 2020), 

residual current (Gilles et al. 2011), maximum tidal current (Embling et al. 2010), distribution of 

herring (Sveegaard et al. 2012) and salinity (Van Beest et al. 2018). Residual current and tidal current 

data were not available for the full area, so these were not included as candidate covariates in this 

thesis.   There are some shared predictors in the best-supported models here with previous studies, 

however. The 2016 model retained five covariates, including depth and slope in common with those 

earlier studies but also MLD, ADT and salinity. The 2005 model retained SDdepth, depth, distance to 

50m isobath, ADT and MLD.  Depth, slope and MLD were also retained in the combined year model, 

suggesting that these may be useful predictors over time.  

Despite the number of retained covariates, the amount of deviance explained was low: only 9.3% for 

2016 and 12.8% for 2005.  There were considerably more sightings for harbour porpoise than there 

were for either of the other two species, and this might explain why so many more edf were used in 

the modelled relationships for the harbour porpoise models than for the other species, and possibly 

also why there were so many more covariates retained. Seabed topography (slope for 2016, 

SDDepth for 2005) maintained a linear relationship for both models. Despite the low levels of 

deviance explained, predicted density surfaces for both years reflected the sightings data well.  

The use of prey covariates did not improve the predictions for harbour porpoises. The 2016 model 

retained slope, sprat and distance to sandeel grounds. As with the environmental model, these 

relationships used more edf than for other species, with only slope showing a linear relationship. 
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Highest levels of harbour porpoise predicted density was associated with shallow slope, mid-levels 

of sprat energy and proximity to sandeel grounds.  

The 2005 model also retained slope as well as whiting.  In this model, relationships were linear, and 

peak porpoise density was predicted by shallow slope and low levels of whiting energy. 

The combined year model was a combination of the previous two, retaining the covariates from 

each model, namely slope, sprat, whiting and distance to sandeels.  

That the prey models did not perform better is somewhat surprising, considering harbour porpoises 

have been shown to be susceptible to rapid loss of body condition during  periods of fasting and are 

thought likely to have a requirement to consume prey on a daily basis, with Wisniewska et al. (2018) 

reporting almost continual foraging to fulfil their energy needs.  Studies have found large 

proportions of sandeels in the diet of North Sea harbour porpoises (Santos et al. 2004; Jansen 2013), 

and a recent modelling framework suggests that harbour porpoises demonstrate a preference for 

sandeels as prey, even when other species are available (Ransijn et al. 2021). Sandeels were retained 

in two of the three models, but even so the predictions are no better than the environmental model. 

For several of the fish covariates, there was a negative relationship, with porpoise density being 

higher at lower energies of some prey species. This may be due to selection of specific size classes of 

prey by porpoises, which cannot be shown in the model energy surface. It is possible that the scale 

at which these models are run is too large to capture the detail for fine-scale prey-related 

interactions.  

Marine ecosystems, particularly the North Sea, are constantly changing, and cetacean species – 

which can be very wide ranging and are highly mobile –are able to respond to this variability by 

changing their distribution patterns (Forney 2000), which can make representing the processes 

driving this distribution and establishing what processes are the most critical very challenging.  

A number of harbour porpoise spatial modelling studies have been conducted with findings 

suggesting a range of different parameters may all be significant at explaining harbour porpoise 

occurrence, depending on the area and the time of year. Covariates which have been found to be 

important predictors in harbour porpoise habitat models include proxies for primary productivity 

(Gilles et al., 2011), distance to coast (Marubini et al. 2009; Gilles et al. 2011; Booth et al. 2013), 

water depth (Marubini et al. 2009; Gilles et al. 2011; Booth et al. 2013), slope (Isojunno et al. 2012; 

Booth et al. 2013; Stalder et al. 2020), residual current (Gilles et al. 2011), maximum tidal current 

(Embling et al. 2010), distribution of herring (Sveegaard et al. 2012) , distribution of sandeel grounds 
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(Giles et al., 2016) and relatively low salinity (Stalder et al. 2020); whilst movement models also 

indicated the presence of foraging in shallower and more saline waters (van Beest et al. 2018). 

A large scale modelling study by Gilles et al. (2016)  produced seasonal models of a very similar area 

to that covered by this investigation.  The SCANS-III design-based abundance estimate for this region 

is  347,399 (95% CI = 289-687 – 416,609) (Table 4.1-1), and Gilles et al. (2016) produced a model 

based estimate of summer distribution which is comparable, 361,146 animals (95% CI = 159,264 – 

329,022), although it should be noted that the Gilles et al. (2016) study was completed prior to the 

collection of data on the SCANS-III survey, so these time periods do not overlap. Their best model 

retained depth, distance to coast and distance to sandeel ground as well as day length, SST-SD Time 

(SST for 8- d period ending on each survey day) and SST- SD- Space20 (SST variability in 41 × 41 km 

box), which were not included in models run as part of this thesis.  The most comparable time period 

included in this modelling is the 2005 model. The predicted density surfaces from the environmental 

model and the prey model are shown in Figure 4.3-1 alongside the predicted density surface for 

summer from Gilles et al. (2016) for comparison. There are some important things to note when 

comparing these, namely that the Gilles et al. (2016) model contains an XY smooth, which is not 

included in the models generated in this chapter. The only shared parameter between the 

environmental model from the prey model and the Gilles et al. (2016) model is depth, and with the 

prey model, the distance to sandeel grounds was the only shared covariate. The predictions 

generated by the models are quite different, but since the Gilles et al. (2016) model was run on a 

much larger dataset, containing data from much finer-scale surveys, and also included different 

covariates, as well as a XY smooth, this is perhaps unsurprising.  
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A B C  

Figure 4.3-1 : Maps of predicted harbour porpoise distribution in the North Sea generated for data collected up to and including SCANS-II by Gilles et al (2016) (A) and the environmental 
(B) and prey(C) models for 2005 generated in this study.  Maps B & C are the same as that presented in Figure 4.1-6 and Figure 4.2-7 but recoloured to match the scale of the map from 
Gilles et al. (2016).  Please note the slight differences in study regions. 
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4.3.5. Conclusions 
The environmental models produced in this chapter provide reasonable fits to the data. Despite 

small numbers of datapoints in the case of minke whales and white-beaked dolphins, the model 

diagnostics are acceptable, and the predictions generally fit the observed data. Overall, the 2005 

data fit less well than the 2016 data, which may be due to less good survey coverage across the area. 

Some of the covariates persisted in multi-year models, which may indicate that these are covariates 

linked to distribution of these species.  

Whilst comparing models with and without XY smooths directly is difficult, due to the amount of 

variability explained by the XY covariates, mixed layer depth and sea surface height have been 

retained in all minke whale models using environmental covariates. White beaked dolphin models 

show less persistent covariates, with none of them present in all models run so far. For harbour 

porpoises, for which there is by far the largest amount of data, MLD, depth persisted across all North 

Sea environmental models, and depth was also retained in the full survey model from Chapter 3, 

again possibly indicating the value of this covariate in predicting distribution.  

The prey models overall performed much less well than the environmental models. There are 

multiple reasons for this. The prey species energy layers were prepared using only small fish (<40cm, 

(Ransijn et al. 2019), as they were produced with harbour porpoises in mind. It is possible that they 

are not representative of the size classes of prey being targeted. Only a select number of species 

were available as prey energy surfaces, which may not reflect the preferred prey of all three of these 

cetacean species, which are all known to take a wide variety of prey species.  

It is also worth noting that the prey surfaces represent an average of prey energy over a grid cell. 

The prediction grid used for these density surfaces is at a finer scale than that at which the cetacean 

data are modelled (1km x 1km for the prey grid vs 10km x 10km for the cetacean grid), but that 

cetacean species are likely selecting prey at a finer scale than can be represented by these models.  

For these three species, it seems that going forward the best focus for building a predictive model 

would not be to focus on prey, but instead to refine the environmental model further. Aside from 

the XY smooth, future work could investigate the use of further interaction terms with 

environmental covariates with clear geographical variation, for example a SST: latitude interaction 

term (as per (Becker et al. 2019)). It has been suggested that models incorporating static and 

dynamic predictors, as well as more complicated interaction terms may be more appropriate for 

predicting changes in distribution with changing conditions, so this is certainly an area that would 

merit future investigations (Araujo and New 2007; Gritti et al. 2013). 
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5. Cetaceans of the Celtic Sea and Bay of Biscay & 
Iberian Peninsula ecoregions 

 

 

 

Common dolphin sketch, courtesy of Anni Sharpe 

 

 

A focus on five of the species found in the Celtic Sea and Bay of Biscay Ecoregions; do the factors 

affecting their distribution differ, as compared to the wider area? Do they differ between these two 

ecoregions? Have they changed between 2005 and 2016? 
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5.1 Introduction 

Following on from the investigations of the Greater North Sea ecoregion in chapter 4, this 

chapter continues the ecoregion scale investigations to look at cetacean distribution 

towards the western edge of the survey region. This chapter compares models using abiotic 

for five species of cetacean, common within these ecoregions. These are the Atlantic white-

sided dolphin (Lagenorynchus acutus), common bottlenose dolphin (Tursiops truncatus), 

common dolphin (Delphinus delphis), striped dolphin (Stenella coerualba) and fin whale 

(Balaenoptera physalus). 

 

5.1.1 Physical regional description 
The work in this chapter is linked to two different ecoregions – the Celtic Seas ecoregion, 

and the Bay of Biscay & Iberian Peninsula ecoregion (hereafter Bay of Biscay) (Figure 5.1-1).  

The Celtic Seas ecoregion extends from Shetland to Brittany and contains both coastal seas 

and deeper Atlantic Ocean regions (ICES, 2020a). It has an extensive continental self-area  

(OSPAR Commission, 2000), with a steep drop off. The ecoregion has several notable 

bathymetric features; the western part of the shelf edge contains the Porcupine Sea bight, 

north of which is Porcupine Bank, an area of relatively shallow water (200m depth), 

approximately 120 miles west of Ireland. To the North of Porcupine Bank is the Rockall 

Trough, a deep water feature running approximately southwest to northeast (Mason et al., 

2006)(Figure 5.1-2).  

The Bay of Biscay ecoregion is characterised by a wide shelf in most of the region, in which 

upwelling events are known to occur during the summer. There are also some low salinity 

regions associated with river outflows. There is marked seasonal mixing and stratification, as 

is typical for temperate seas, although the over-shelf upwelling is wind driven. In 

conjunction with the tidal processes of the region, this results in increased productivity, but 

also a large variation, as the offshore habitats are instead shaped by the Atlantic Ocean 

(ICES, 2020b).  

The temperature across both regions varies between 7 and 150c, and the salinity sits at a 

mean of 35 PSU or higher throughout the water column (EEA 2017).  Primary productivity 

increases from approximately 45g carbon/m2 in the south of the region to 90g carbon/m2 

over the summer season in the north of the region. The main large-scale current is the North 

Atlantic Current, which becomes the North Atlantic Drift Current (Mason et al., 2006). 
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The two ecoregions are quite different, but many of the cetaceans that inhabit these two 

regions have ranges that span both, making it more appropriate to assess the two together 

than to separate them.  

 

Figure 5.1-1: Location of the Celtic Sea ecoregion (top area with red boundary) and the Bay of Biscay ecoegion 
(lower area with red boundary) in comparison to the 2016 survey areas. Areas surveyd by ship are shown in 
blue, and areas survey by air are shown in pink. CRS: EPSG 32630.  

 
Figure 5.1-2 General diagram showing the main features of the Celtic Sea and Bay of Biscay. Taken from Mason 
et al., 2006, page 17. 
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5.1.2 Cetaceans in the study region 
At least 25 different species have been recorded in these waters (Hammond et al., 2009, 

2013; Reid et al., 2003; Rogan et al., 2018; Wall et al., 2013) and, of these, at least 15 are 

considered to be resident (Reid et al., 2003; Wall et al., 2013).  Three of the shelf species 

have already been considered in chapter 3, and this chapter will focus on five of the species 

which are more commonly recorded in the deeper, more offshore western regions of the 

European Atlantic study area. Whilst other species were recorded during the surveys of 

these areas, these are the species which dominated the sightings record, and for which 

there are sufficient data to complete analyses. As with all species investigated in this thesis, 

the study area, although large, covers only a small section of the full range for these species.  

5.1.2.1 Atlantic white-sided dolphin – Lagenorhynchus acutus 
Atlantic white-sided dolphins (hereafter white-sided dolphins) are regularly sighted on 

surveys of this region, most commonly over the edge of continental shelf and slope, 

extending into the deeper, more oceanic areas (Hammond et al., 2009; MacLeod et al., 

2007; Macleod, 2004; Wall et al., 2006; Weir et al., 2001).  

Diet studies have concluded that white-sided dolphins show a preference for an oceanic and 

continental slope diet, which varies in composition depending on whether the samples come 

from adults or juveniles, with juvenile dolphins diet containing mainly mesopelagic prey and 

blue whiting, whilst mackerel dominated the adult diet (Hernandez-Milian et al., 2016). 

Capelin, lanternfish and Gonatus squid species have also been positively correlated with 

white-sided dolphin presence (Doksæter et al., 2008). 

5.1.2.2 Bottlenose dolphin – Tursiops truncatus 
Bottlenose dolphins have been described as belonging to either a coastal or an offshore 

ecotype in many areas worldwide (Perrin et al., 2011; Rosel et al., 2009; Tezanos-Pinto et al., 

2009), including in the study area (Louis et al., 2014; Oudejans et al., 2015).  

Characterisation of the two ecotypes can be morphological (e.g. Perrin et al., 2011) and 

genetic (e.g. Oudejans et al., 2015; Tezanos-Pintos et al., 2009); although field identification 

can be difficult (Simões-Lopes et al., 2019). Ecotypes often result from niche specialization 

(Louis et al., 2014). In bottlenose dolphins, the coastal ecotype is characterized by relatively 

high site fidelity, whereas oceanic ecotype dolphins tend towards low-site fidelity and more 

extensive movement patterns (Oudejans et al., 2015). It would be expected that the factors 

driving the distribution of the coastal and offshore ecotypes of bottlenose dolphins would 

differ.  
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Coastal bottlenose dolphins in the region have been studied in several key locations where 

they demonstrate high levels of site fidelity. These locations include Cardigan Bay, Wales 

(e.g. Bristow and Rees, 2001; Simon et al., 2010), the Sound of Barra, Scotland (Grellier and 

Wilson, 2003), the Shannon Estuary, Ireland (e.g. Berrow, 2012; Ingram and Rogan, 2002) 

and the Sado Estuary, Portugal (e.g. Gaspar, 2003; Harzen, 1998). Large scale surveys of the 

sort analysed in this thesis are not designed to capture the detail of small patchy populations 

(Hammond et al., 2014), such as coastal bottlenose dolphins. However, due to the 

difficulties in telling which ecotype an animal belongs to in the field, both coastal and 

offshore ecotypes may be represented in the data collected. Due to the locations of the 

majority of the sightings Figure 5.3-5 a & d), it is likely that these primarily represent 

offshore bottlenose dolphins.  

5.1.2.3 Common dolphin – Delphinus delphis 
The common dolphin is one of the most frequently sighted cetacean species throughout the 

Celtic Sea and Bay of Biscay ecoregions (Hammond et al., 2021, 2009; Laran et al., 2017; 

Rogan et al., 2018), although distribution can be patchy and is known to change year on year 

(Moura et al., 2012).  

Common dolphin distribution around the Iberian Peninsula has been found to be best 

predicted by chlorophyll concentration. Not because the chlorophyll itself was important 

but, it was suggested, due to it acting as a proxy for pelagic schooling fish, a known prey type 

of common dolphins in this area (Moura et al., 2012; Pusineri et al., 2007). Chlorophyll has 

also been linked to common dolphin abundance in the Alboran Sea (Cañadas and Hammond, 

2008).  Moura et al (2012) suggest that common dolphins may be an “ecological specialist” 

with diet being restricted to small pelagic schooling fish. These prey species are filter feeders 

and tend to occur in nutrient-rich waters (Amaral et al., 2012)   

5.1.2.4 Striped dolphin – Stenella coerualba 
Striped dolphins are typically found off the continental shelf, in the southern part of the 

study area (Hammond et al., 2021, 2009; Kiszka et al., 2007; Laran et al., 2017; Rogan et al., 

2018)). 

Stomach content analysis of stranded animals from the Bay of Biscay has revealed a diet of 

fish, cephalopods and crustaceans, with lanternfish featuring prominently along with 

Teuthowenia megalops and Histioteuthis spp of squid. Striped dolphins may be feeding at 

depths of between 200-700m (Archer and Perrin, 1999). The majority of feeding activity 

potentially takes place at night or at dusk (Ringelstein et al., 2006) when prey items may be 



 

                                                                                                                                                                201 

migrating closer to the surface. Striped dolphins are known to be able to utilise prey 

resources from a variety of different habitats, including neritic and coastal prey species as 

well as the more usual oceanic prey (Spitz et al., 2006) 

5.1.2.5 Fin whale – Balaenoptera physalus 
The Bay of Biscay represents an important area for fin whales during the summer months 

(Hammond et al., 2021, 2009; Rogan et al., 2018). Unlike the other species discussed so far, 

this species is characterized by large seasonal migrations. As such, their habitat preferences 

are likely to change spatio-temporally. The analysis presented here is relevant only to their 

summer distribution.  There is evidence that some animals remain in the area year-round, 

however (Clark and Charif, 1998).  In the northern part of the Celtic Sea ecoregion, animals 

are most often seen in waters more than 1000m deep (Weir et al., 2001). 

 

5.1.3 Chapter aims 
This chapter aims to explore the relationships between five different species of cetacean and 

different aspects of their environment. To do this, I have used explanatory ( Guisan et al. 

2002) generalised additive models  (GAMs) to statistically explore the strength of the 

relationship between animal density and a variety of environmental – explanatory – 

variables, including sea surface temperature, depth, distance to the a variety of bathymetric 

features (Section 5.2.1.1) , salinity and seabed rugosity (modelled via slope and standard 

deviation of depth within a grid cell), hereafter termed “environmental models”.  As noted in 

previous chapters, these variables are frequently selected when modelling marine mammals 

as proxies for prey data because data on prey species themselves can be very hard to obtain. 

It is also acknowledged that these may not be the only drivers of cetacean distribution.  As 

with chapter 4, an ecoregion approach has been used to define the area of investigation. 

The distribution of the majority of the species described in this chapter spans two 

ecoregions within the study area (the Celtic Sea ecoregion and the Bay of Biscay ecoregion), 

so these are both considered here. The modelling attempts to take account of this by 

including ecoregion as a categorical variable; retention of this variable in the model implies 

that there is a difference in importance of different covariates to a species between the two 

ecoregions.  

Data are available from two time periods – 2005/2007 (from the SCANS-II and CODA surveys, 

modelled as a single dataset), and 2016.  Environmental models were run separately for data 

from 2005/7 (Hammond et al., 2009, 2013) and 2016 (Hammond et al., 2021). They were 
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also run for the two time periods combined to investigate whether relationships persisted 

between years.  Information on the time periods and surveys can be found in Table 2.1-1. 

5.2 Methods 

5.2.1 Variations to standard methodology 
The modelling methodology is largely the same as described in Chapter 2, but with the 

addition of a categorical covariate to the models with two levels – one for each of the two 

ecoregions included in this chapter. The modelling process was followed in the same way as 

described previously, but the “full model” – that which contains the best of each set of 

correlated covariates – was run both with and without the inclusion of the categorical 

variable for ecoregion. The best of these two was selected by AIC and is presented in the 

results section below.  

None of the surveys for which data have been analysed in this thesis cover the entire region 

of interest and in this chapter, surveys have been combined to provide the best coverage. 

Surveys SCANS-II and CODA represent summer of 2005 and 2007 (S2 / CODA in figure 

legends) and surveys SCANS-III and ObSERVE have been combined to represent summer of 

2016 (S3 / ObSERVE in figure legends).  

5.2.2 Description of data  

5.2.2.1 Cetacean data 
This chapter uses data from the SCANS-II (SCANS-II 2008; Hammond et al. 2013), CODA 

(CODA 2009), SCANS-III (Hammond et al. 2021) and ObSERVE (Rogan et al. 2018) visual 

surveys, which have been described in Chapter 2. 

The species modelled in the chapter are Atlantic white-sided dolphin, offshore bottlenose 

dolphin (hereafter bottlenose dolphin), common dolphin, striped dolphin, and fin whale. A 

summary of the data used is provided in Table 5.2-1. 
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Table 5.2-1 Number of effort segments and number of groups and individuals sighted for each species used in 
analysis of data from the Celtic Sea and Bay of Biscay ecoregions in 2016 and 2005/7.  

Year Species 
Total no. of 
effort 
segments 

No. of effort 
segments 
with groups 

Number 
of groups 

Number of 
Individuals 

Mean 
group 
size 

2016 White-sided 
dolphin 

4400 12 (0.3%) 17 79 4.6 

Bottlenose 
dolphin 

4400 134 (3.0%) 216 1322 6.1 

Common 
dolphin 

4400 224 (5.1%) 557 4779 8.6 

Striped 
dolphin 

4400 53 (1.2%) 74 1975 26.7 

Fin whale 4400 261 (5.9%) 467 798 1.7 

2005/7 White-sided 
dolphin 

2057 17 (0.8%) 20 234 11.7 

Bottlenose 
dolphin 

2057 34 (1.7%) 39 348 8.9 

Common 
dolphin 

2057 131 (6.4%) 243 3,397 14.0 

Striped 
dolphin 

2057 24 (1.2%) 30 525 17.5 

Fin whale 2057 98 (4.7%) 149 232 1.6 

 

There is a wide disparity in the number of segments with sightings between species. White-

sided dolphins for 2016 had sightings in only 0.3% of the effort segments, whereas there 

were fin whale sightings in 5.9% of the effort segments. A similar pattern was evident in the 

2005/7 data, with white-sided dolphin sightings occurring in only 0.8% of the effort 

segments, and common dolphin sightings occurring in 6.4%.  Within species, the percentages 

are broadly similar between the two survey periods, with the exception of bottlenose 

dolphins for which there are approximately 50% fewer segments with sightings in 2005/7 

compared with 2016. The number of white-sided dolphin sightings is small in both surveys.  

5.2.2.2 Covariate data  
Covariates for models of both ecoregions combined were selected using the method 

outlined in Chapter 2, and covariate values assigned to the effort segments are summarised 

in Table 5.2-2, and Figure 4.2-4.to  Figure 5.2-7. Water depths range from -4.9 to -5364m Slope 

varied across the two regions, which both include areas of steep slope and relatively flat 

seabed. Distance to a variety of different bathymetric features has also been included.  

In addition to the static covariates, monthly mean values for sea surface temperature (SST), 

mixed layer depth (MLD), salinity (SAL), absolute dynamic topography (ADT), sea surface 

height (SSH) and Sea Level Anomaly (SLA) were also used in the models. The mean value for 
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the month of July was used in each instance as this was the month in which the majority of 

the cetacean survey data were collected.  These values shown in raincloud plots below 

(Figure 5.2-1-3), which are  provided to demonstrate the spread of values within the dataset. 

From these it is apparent that there are both between region and between time-period 

differences in the July data.  

Table 5.2-2: Summary of static covariate values assigned to effort segments used to model the cetacean data 
from in the two ecoregions. 

 Celtic Sea Ecoregion Biscay Ecoregion 

 Min Max Mean Min Max Mean 

Depth (m) -4.9 -4417 -696 -7.3 -5364 -1676 

Standard deviation of 
depth (SD depth) 

0.6 773 60.4 1.4 805 70 

Slope (0) 0 9 0.7 0 19 2 

Distance to coast 
(km) 
(Dcoast) 

0 406 130 0.2 503 127 

Distance to 200m 
isobath (km) 
(D200_iso) 

0 458 112 0 478 81 

Distance to 200m 
isobath (km) – taking 
side into account 
(CS200) 

-322  458 34 161 -477 -41 

Distance to 2000m 
isobath (km) 
(D2000_iso) 

0 778 200 0 266 78 

Distance to 
escarpments (km) 
(Descarp) 

0 726 195 0 203 51 

Distance to 
seamounts (km) 
(Dseam) 

86 1232 684 13 452 215 

Distance to canyons 
(km) (Dcanyon) 

0 727 210 0 280 280 

Distance to troughs 
(km) (Dtrough) 

0 1023 414 526 1149 892 
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Figure 5.2-1: Raincloud plots showing the distribution of covariate data associated with the effort segments used to 
model the cetacean survey data in both ecoregions. 
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Figure 5.2-2: Raincloud plots showing the distribution of covariate data associated with the effort segments used to 
model the cetacean survey data in both ecoregions. 
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Figure 5.2-3:  Raincloud plots showing the distribution of covariate data associated with the effort segments used to 
model the cetacean survey data in both ecoregions. 
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Figure 5.2-4:  Maps showing the distribution of covariate data associated with the effort segments used to model the 
cetacean survey data in both ecoregions. 
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Figure 5.2-5: Maps showing the distribution of covariate data associated with the effort segments used to model the 
cetacean survey data in both ecoregions. 
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Figure 5.2-6: Maps showing the distribution of covariate data associated with the effort segments used to model the 
cetacean survey data in both ecoregions. 



 

                                                                                                                                                                211 

 
Figure 5.2-7: Maps showing the distribution of covariate data associated with the effort segments used to model the 
cetacean survey data in both ecoregions. 
 

5.3 Results of combined ecoregion environmental models 

5.3.1 White-sided dolphin 
Summary results of the final environmental models for both ecoregions combined selected for 

white-sided dolphins are provided in Table 5.3-1. Model diagnostics indicated a satisfactory fit to the 

data, with the proportion of null deviance explained by the S3/ObSERVE model being 37.1%., and for 

the S2 / CODA model being 22.7%. A model containing the data from both combined surveys 

modelled together is also presented in Table 5.3-2. This model included year as a categorical variable. 

Deviance explained by this model was 35.8%.  

 The QQ plots and the residuals vs linear plots for all three models are provided in Appendix 4. The 

adequate fit of the models indicates that the resulting predictions should be an appropriate 

representation of the relationships between predicted white-sided dolphin density and the model 

covariates, despite the low number of sightings.  Partial effects plots are shown in Figure 5.3-1 

The data in all cases were best described using the Tweedie distribution. Due to both the low 

number of sightings and the fact that white-sided dolphins were only seen in the Celtic Sea region, a 

factor covariate for ecoregion was not included in these models.  
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For the S3/ObSERVE model, there were higher estimated densities of dolphins in areas of flatter 

seabed (low SD depth) with estimated densities decreasing as slope became steeper, with a very 

wide confidence interval around the steepest slopes. This pattern was also seen in the combined 

survey model.  White-sided dolphin density was predicted to decrease as depth increased, although 

this relationship was only found in the S3/ObSERVE model. 

In addition, higher levels of predicted density were associated with cooler SST – a relationship that 

held through all three models.  Higher dolphin densities were also predicted at higher levels of 

salinity. Confidence intervals were very wide at the lowest salinity values, where there were few 

data points. All the relationships were linear, likely reflecting the low number of sightings.  

For the S2/CODA model, only SST and salinity were retained, both showing the same relationship as 

described above for S3/ObSERVE.  The combined survey model retained the same three covariates 

as the S3/ObSERVE model, two of which were also retained for the S2/CODA model. The year factor 

was found to be significant (P = 0.0001).  

The highest densities of white-sided dolphins were predicted throughout the northern part of the 

Celtic Seas ecoregion in 2016, with very few animals predicted south of 540N (Figure 5.3-2b); this is a 

reasonable reflection of the sightings data (Figure 5.3-2-a). The plot of predicted CV shows we can 

be reasonably confident in this model for most of the ecoregion, although there is an area of lower 

precision running along the shelf-edge ( Figure 5.3-4-c).  

The 2005 prediction is also an acceptable reflection of the observations in terms of patterns of 

density in the northern part of the study region but shows much higher densities than would be 

expected (over-predicting). In the southern part of the region, the model predicted high densities of 

animals further to the south and west, where there were no comparable field sightings.  The 

combined survey prediction reflects the combined sightings well to the north of 520N, but less so to 

the south of that.  

Table 5.3-1: Model outputs for white-sided dolphin GAMs for S3/ObSERVE and S2/CODA data. 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

P-
value 

% Deviance 
explained 

Model 
degrees of 
freedom 

S3/ObSERVE Tweedie 

SD depth 0.8 0.79 

37.1 4.4 
Depth 0.9 0.009 

SST 1.0 3.8e-5 

Salinity 0.7 0.102 

S2/CODA Tweedie 
SST 0.9 0.013 

22.7 2.9 
Salinity 1.0 4.1e-6 
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Table 5.3-2: Model outputs for combined S2/CODA and S3/ObSERVE white-sided dolphin GAM. 

Name 
Factor 
levels 

Estimate Std. Error Z value PR(>z) 

Combined 
S2/CODA and 
S3/ObSERVE 
model 

Intercept 
(2007) 

343.8 90.6 3.8 0.0002 

Year = 2016 -0.17 0.05 -3.8 0.0001 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

P value 

Combined 2016 
& 2005 model 

Tweedie 

SD depth 0.9 

35.8 5.0 

0.02 

SST 1.2 2e-16 

Salinity 1.0 0.0003 

 

 
Figure 5.3-1: Plots of the fitted smooth functions for white-sided dolphin GAMS for S3/ObSERVE, S2/CODA and the 
combined survey model. “Rug” marks on the x-axis of the fitted smooth plots show the distribution of the data. Shaded 
areas represent the 95% confidence intervals. Where the same covariate is retained in multiple models, the smooths are 
shown on the same row. Effect sizes are variable, so axis scales are also variable in order to preserve necessary detail.   
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Figure 5.3-2: Location of effort and sightings (a), predicted density surface (b) for S2 / CODA , S3 / ObSERVE and 
combined survey white-sided dolphin models. Range of values represented by colours in the maps show the 1%, 2%, 5%, 
10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction 
grid cells had covariate values which were outside the range encompassed by the modelled effort segments. In these 
instances, grid-cells were excluded from the prediction. Combined survey data are predicted using 2016 covariates. 
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Figure 5.3-3: Coefficient of variation (CV) of density (C) and standard error (SE) of density (D) for S2 / CODA , S3 / 
ObSERVE and combined survey white-sided dolphin models. Range of values represented by colours in the maps show 
the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some 
cases, prediction grid cells had covariate values which were outside the range encompassed by the modelled effort 
segments. In these instances, grid-cells were excluded from the prediction. Combined survey data are predicted using 
2016 covariates. 
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5.3.2 Offshore bottlenose dolphin 
Summary results of the final environmental models for both ecoregions combined selected for 

bottlenose dolphins are provided in Table 5.3-3. Model diagnostics indicated a satisfactory fit to the 

data, although the proportion of null deviance explained by the S3/ObSERVE model was very low, 

just 4.2%. This was considerably higher for the S2/CODA model at 20.9%.  The model containing the 

combined survey data explained 15% of the null deviance (Table 5.3-4). This model included both 

survey year and ecoregion as categorical variables.  

The QQ and residual plots for all three models are provided in appendix 4. The adequate fit of the 

models indicates that the resulting predictions should be an appropriate representation of the 

relationships between predicted bottlenose dolphin density and the model covariates overall.  

Partial effects plots are shown in Figure 5.3-4. The data in call cases were best described using the 

negative binomial distribution.  

All three models retained depth, showing the same relationship in each instance in which predicted 

density of dolphins is highest in shallower waters and decreases linearly as depth increases.  

Two of the models retained salinity. For the S3/ObSERVE model, there were higher estimated 

densities of dolphins at higher salinity. This was a pattern echoed in the combined survey model, 

although the partial effect was smaller in the combined model. In both cases the confidence interval 

was wider towards the areas of lower salinity for which fewer data were available. 

All three models retained a covariate representing mesoscale activity, but a different covariate was 

selected for each model. In S3/ObSERVE, the covariate selected was SLA, and predicted density of 

dolphins was highest in areas of low SLA values. The S2/CODA model retained ADT, but the partial 

effect plot shows a very similar relationship as was observed in the previously described model with 

SLA. The combined model used the SSH covariate. The predicted density of dolphins was again 

highest in areas of low SSH, decreasing as SSH increased.  

No further covariates were retained in the S3/ObSERVE model. Of these, MLD was also retained in 

the combined survey model. In both cases the highest density of dolphins was predicted at shallower 

mixed layer depths, with dolphin density predicted to decrease as MLD increased. The partial effect 

for the combined survey is smaller than for the S2/CODA survey only.  

Both S2/CODA and the combined survey model also retained a distance to feature covariate. For 

S2/CODA it was canyons and for the combined survey model it was seamounts. For both of these the 

predicted density of dolphins was highest closest to the selected feature and declined with distance. 
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The final covariate which was retained only in the combined survey model was SD depth. This 

showed only a very small partial effect but predicted highest dolphin densities at high seabed 

rugosity (high SD depth). Confidence intervals were comparatively wide at highest SD depth values. 

All the slopes were linear, likely reflecting the low number of sightings.  

High densities of bottlenose dolphins were predicted throughout the Celtic Seas ecoregion in 2016, 

with lower densities throughout most of the Bay of Biscay ecoregion ( Figure 5.3-5-b); this is a 

reasonable reflection of the sightings data ( Figure 5.3-5a). The plot of predicted CV shows we can be 

reasonably confident in this model, except in the very far south of the region (Figure 5.3-6-c).  

The 2005 prediction was not such a good reflection of the observations, indicating a level of over 

prediction at the highest densities (Figure 5.3-6 e, d). The model predicted high densities of animals 

in the north of the region, where there were no comparable sightings. 

The combined years model predicted adequately well in the centre of the region, but at the far north 

of the area showed some considerable over prediction of very high densities in locations where 

there were no sightings. This is reflected in the CV plots, the combined survey plot having by far the 

large CVs throughout the region.  The flagged areas of over prediction also show very high Standard 

Errors Figure 5.3-6e, d).  

 

Table 5.3-3: Model outputs for bottlenose dolphin GAMs for S3/ObSERVE and S2/CODA data. 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

P-
value 

% Deviance 
explained 

Model 
degrees of 
freedom 

S3/ObSERVE 
Negative 
binomial 

Depth 0.7 0.067 

4.2 3.5 SLA 0.9 0.003 

Salinity 0.9 0.002 

S2/CODA Tweedie 

Depth 0.9 0.002 

20.9 4.6 
MLD 0.7 0.06 

ADT 0.7 0.005 

Distance to 
canyons 

1.0 0.0001 
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Table 5.3-4: Model outputs for combined S2/CODA and S3/ObSERVE bottlenose dolphin GAM. 

Name Factor levels Estimate Std. Error Z value PR(>z) 

Combined 
S2/CODA and 
S3/ObSERVE 
model 

Intercept -4.2 0.4 -11.2 2e-16 

Year (2007) 0.5 0.6 0.9 0.4 

Year (2016 2.2 0.4 6.0 3e-9 

Ecoregion 
Bay of Biscay 

-1.4 0.5 -3.0 0.003 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

P value 

Combined 
S2/CODA and 
S3/ObSERVE 
model 

Tweedie 

SD depth 0.3 

15 8.4 

0.23 

Depth 0.9 0.01 

MLD 0.8 0.02 

SSH 1.0 3e-4 

Salinity 0.3 0.36 

Distance to 
seamounts 

1.1 5e-7 
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Figure 5.3-4: Plots of the fitted smooth functions for bottlenose dolphin GAMS for S3/ObSERVE, S2/CODA and the 
combined survey model. “Rug” marks on the x-axis of the fitted smooth plots show the distribution of the data. Shaded 
areas represent the 95% confidence intervals. Where the same covariate is retained in multiple models, the smooths are 
shown on the same row. Effect sizes are variable, so axis scales are also variable in order to preserve necessary detail.   
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Figure 5.3-5: Location of effort and sightings (a), predicted density surface (b) for S2 / CODA, S3 / ObSERVE and 
combined survey bottlenose dolphin models. Range of values represented by colours in the maps show the 1%, 2%, 5%, 
10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction 
grid cells had covariate values which were outside the range encompassed by the modelled effort segments. In these 
instances, grid-cells were excluded from the prediction. Combined survey data are predicted using 2016 covariates. 
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Figure 5.3-6: Coefficient of variation (CV) of density (C) and standard error (SE) of density (D) for S2 / CODA, S3 / 
ObSERVE and combined survey bottlenose dolphin models. Range of values represented by colours in the maps show 
the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some 
cases, prediction grid cells had covariate values which were outside the range encompassed by the modelled effort 
segments. In these instances, grid-cells were excluded from the prediction. Combined survey data are predicted using 
2016 covariates. 
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5.3.3 Fin whale 
Summary results of the final environmental models for both ecoregions combined selected for fin 

whales are provided in Table 5.3-5. Model diagnostics indicated a good fit to the data, with the 

proportion of null deviance explained by the 2016 model being 66.3%., and for the 2005 model 

being 60.1%. The combined survey model showed 63.9% deviance explained. The QQ and residual 

plots are provided in Appendix 4. Partial effects plots are given in Figure 5.3-7. The good fit of the 

models indicates that the resulting predictions should be a good representation of the relationships 

between predicted fin whale density and the model covariates.   

All three data combinations were best described using the negative binomial distribution. The best 

fin whale model for S2/CODA (Table 5.3-6) was the model retaining a factor for ecoregion (p=2.3e-5). 

The combined survey model also retained categorical covariates, with both ecoregion and year being 

significant (8.4e-4, 8.4e-4, 3.6e-16 for 2007, 2016 and ecoregion Bay of Biscay, respectively). The 

best fin whale model for S2/CODA and S3/ObSERVE combined is shown in Table 5.3-7. 

All three models retained at least four covariates. Depth was retained in all three models and 

maintained a broadly similar shaped relationship in all models. In all cases, predicted fin whale 

density was lowest in very shallow waters, increasing to around 1000m depth, then broadly 

plateauing until around 5000m depth, when the predicted density started to decrease again.  

Sea surface temperature was retained in the models for S3/ObSERVE and S2/CODA. The relationship 

was wigglier in the S3/ObSERVE model, but the general trend was for predicted density to increase 

as temperature increases, although not linearly.  In the S2/CODA model, the relationship was less 

wiggly and went in the opposite direction, with predicted density decreasing as temperature 

increases. As the two relationships are opposite and the covariate is not retained in the combined 

survey model, which spans a much wider time frame, it can be inferred that this covariate is not 

representing any useful biological relationships here, but rather picking up on an unknown source of 

variability.  

For the 2016 data, there were positive effects (higher estimated density of fin whales) at water 

depths of at least 1000m, at low MLD (which decreased linearly as MLD increased), and an increase 

in SST, with a general increase in density as SST increased. Highest fin whale density was also 

associated with areas at least 100km from the 200m isobath.  

SD depth was retained in S2/CODA and the combined surveys model with a very similar, linear 

relationship in both instances, with predicted density of whales decreasing as SD depth increases. 

Salinity was also retained in the same two models, also with a very similar relationship across the 

two models, with predicted density increasing as salinity increases.  
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The only “distance to” covariate was retained in the S3/ObSERVE model, which retained distance to 

the 200m isobath. This plot shows predicted whale density increasing until around 100km from the 

200m isobath, at which point it broadly levels off, with small fluctuations. This would support the 

relationship proposed by the depth plot, which showed higher predicted densities in deeper waters.  

Mixed layer depth was retained in all three models. In the S3/ObSERVE and S2/CODA surveys the 

relationship was linear, with highest predicted densities at lowest mixed layer depths and density 

decreasing as mixed layer depth increased. In the combined survey model, the relationship was 

slightly different with the peak predicted density at a mixed layer depth of around 10m and 

decreases in density at higher and lower MLD.  

The predicted high densities of fin whales were strongly concentrated in the Bay of Biscay in 2016 

which reflected the sightings well (Figure 5.3-8-a). The plot of predicted CV shows we can be 

reasonably confident in this model, particularly in the Bay of Biscay region (Figure 5.3-9c). That the 

ecoregion categorical variable was retained in the combined model and the S2/CODA model shows 

that the relationship between whale density and covariates varies by region.  

The 2005 prediction was not such a good reflection of the observations (Figure 5.3-8-e, d). Whilst the 

sightings were again concentrated in the Bay of Biscay, this model predicted high densities of 

animals in the north of the region, where there were very few comparable sightings. This is reflected 

in the map of standard error of density. The combined survey model does a good job overall, and 

also shows comparatively low CVs.  
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Table 5.3-5: Model outputs for fin whale GAMs for S3/ObSERVE data. 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

P-
value 

% Deviance 
explained 

Model 
degrees of 
freedom 

S3/ObSERVE 
Negative 
binomial 

Depth 7.3 2e-16 

66.3 18.9 

MLD 0.9 7.5e-5 

SST 5.5 2e-16 

Distance to 
200m isobath 
(km) 

4.2 7.1e-5 

 

Table 5.3-6: Model outputs for combined S2/CODA fin whale GAM 

Name Factor levels Estimate Std. Error Z value PR(>z) 

Combined 
S2/CODA and 
S3/ObSERVE 
model 

Intercept 
(Ecoregion 
Celtic seas) 

-8.99 0.54 -16.5 2e-16 

Ecoregion 
Bay of Biscay 

2.90 0.61 4.7 2.3e-5 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

P value 

Combined 
S2/CODA and 
S3/ObSERVE 
model 

Negative 
Binomial 

SD depth 0.91 

60.1 10.8 

0.002 

Depth 4.96 2e-16 

MLD 0.92 6e-4 

SST 2.51 3e-4 

Salinity 0.62 0.15 

  

Table 5.3-7: Model outputs for combined S2/CODA and S3/ObSERVE fin whale GAM. 

Name Factor levels Estimate Std. Error Z value PR(>z) 

Combined 
S2/CODA and 
S3/ObSERVE 
model 

Intercept -12.07 1.09 -11.09 2e-15 

Year (2007) 3.46 1.04 3.34 8.4e-4 

Year (2016 4.12 1.04 3.97 8.4e-4 

Ecoregion 
Bay of Biscay 

2.24 0.28 7.86 3.6e-16 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

P value 

Combined 
S2/CODA and 
S3/ObSERVE 
model 

Negative 
binomial 

SD depth 0.96 

63.9 15.6 

2.1e-5 

Depth 7.24 2e-16 

MLD 2.65 8.4e-4 

Salinity 0.75 7.1e-5 
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Figure 5.3-7: Plots of the fitted smooth functions for fin whale GAMS for S3/ObSERVE, S2/CODA and the combined 
survey model. “Rug” marks on the x-axis of the fitted smooth plots show the distribution of the data. Shaded areas 
represent the 95% confidence intervals. Where the same covariate is retained in multiple models, the smooths are 
shown on the same row. Effect sizes are variable, so axis scales are also variable in order to preserve necessary detail.   
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Figure 5.3-8: Location of effort and sightings (a), predicted density surface (b) for S2/CODA, S3/ObSERVE and combined 
survey fin whale models. Range of values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 
90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate 
values which were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were 
excluded from the prediction. Combined survey data are predicted using 2016 covariates. 
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Figure 5.3-9: Coefficient of variation (CV) of density (C) and standard error (SE) of density (D) for S2/CODA, S3/ObSERVE 
and combined survey fin whale models. Range of values represented by colours in the maps show the 1%, 2%, 5%, 10%, 
25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid cells 
had covariate values which were outside the range encompassed by the modelled effort segments. In these instances, 
grid-cells were excluded from the prediction. Combined survey data are predicted using 2016 covariates. 
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5.3.4 Common dolphins 
Summary results of the final environmental models for both ecoregions combined selected for 

common dolphins are provided in Table 5.3-8 to Table 5.3-10. Model diagnostics indicated a satisfactory 

fit to the data, with the proportion of null deviance explained by the S3/ObSERVE model being 

49.4%., the S2/CODA model being 26.7% and the combined survey model being 46.4%.  The QQ and 

residual plots are provided in Appendix 4 along with plots of the partial effects plots in Figure 5.3-10. 

The adequate fit of the models indicates that the resulting predictions should be an appropriate 

representation of the relationships between predicted common dolphin density and the model 

covariates.  

Common dolphins were modelled as groups. All three of the survey datasets were best described 

using the negative binomial distribution. The S2/CODA model retained ecoregion as a categorical 

variable (P=5.3e-6), whilst the combined survey model retained ecoregion and year (P= 5.6e-4, 0.3 

and 2e-16 for ecoregion Bay of Biscay, 2007 and 2016, respectively). 

All three models retained a high number of covariates compared to models of other species. MLD 

was the only covariate to be retained in all three models. In each case, highest predicted density of 

dolphins was predicted at the shallowest MLDs and decreased as MLD increased. In the S3/ObSERVE 

model and the combined survey model, this decrease in predicted density was linear. In the 

S2/CODA model, density remained high until MLD was approximately 14m, then started to decline. 

In all cases the deepest MLD has fewest data points, leading to wider confidence intervals in these 

regions.  

All three models retained a “distance to” covariate, although for S3/ObSERVE it was distance to the 

2000m isobath, and for the other two models it was distance to escarpment features. In reality, 

these are very similar covariates, because escarpment features are the areas located at the bottom 

of steep slopes. In the S3/ObSERVE model, highest predicted densities of dolphins were found close 

to the 2000m isobath, and then to decline with increasing distance. The two escarpment 

relationships both showed higher levels of wiggliness and the same overall shape, although the 

combined survey model had a decreasing trend overall which the S2/CODA model did not have.  

Common dolphin density was predicted to decrease linearly with depth in both the S3/ObSERVE and 

combined survey models. The same two models also retained SST and salinity. The relationship with 

salinity revealed a peak in predicted density at around 17PSU, and a decrease in density at values 

both higher and lower than this. The relationship with salinity was linear for both the S3/ObSERVE 

model and the combined model, although the effect was less in the combined model. In both cases 

the predicted density increased with increasing salinity.  
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The SST with the highest predicted density was around 170C, with a sharp decrease in density as 

temperature became either cooler than 150C or warmer than 200C. As previously, the confidence 

interval was wider at the extremes of the range of the covariate where there were fewest data 

points. Proximity to the 2000m isobath resulted in higher predicted density in this model, with a 

steep linear decline as distance from this feature increased. High predicted density was associated 

with high levels of salinity.  

High densities of common dolphins were predicted  throughout the more southerly shelf waters of 

the Celtic Seas and along the Portuguese coast of the Bay of Biscay ecoregion in 2016, with lower 

densities throughout most offshore waters (Figure 5.3-11-b); this is a  reasonable reflection of the 

sightings data (Figure 5.3-11-a). The plot of predicted CV shows we can be reasonably confident in 

this model, except for in the very far north of the region ( Figure 5.3-12c).  

The 2005/7 prediction was also a reasonable reflection of the sightings (Figure 5.3-11-e, d) although 

the CV was very throughout most of the region (Figure 5.3-12).  

Table 5.3-8: Model outputs for common dolphin GAMs for S3/ObSERVE data. 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

P Value 
% Deviance 
explained 

Model 
degrees of 
freedom 

2016 
Negative 
binomial 

Slope 2.2 0.0005 

49.4 11.5 

Depth 1.0 2e-16 

MLD 1.0 2e-16 

SST 4.3 2e-16 

SAL 1.0 2e-16 

Distance to 
2000m isobath 

1.0 
3e-5 

 

Table 5.3-9: Model outputs for combined S2/CODA common dolphin GAM 

Name Factor levels Estimate Std. Error Z value PR(>z) 

Combined 
S2/CODA and 
S3/ObSERVE 
model 

Intercept 
(Ecoregion 
Celtic seas) 

-6.6 0.2 -29.3 2e-16 

Ecoregion 
Bay of Biscay 

1.9 0.41 4.6 5.3e-6 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

P value 

Combined 
S2/CODA and 
S3/ObSERVE 
model 

Negative 
Binomial 

MLD 2.1 

26.7 12.9 

0.004 

SSH 3.2 2.8e-4 

Distance to 
escarpments 

6.7 2e-16 
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Table 5.3-10: Model outputs for combined S2/CODA common dolphin GAM 

Name Factor levels Estimate Std. Error Z value PR(>z) 

Combined 
S2/CODA and 
S3/ObSERVE 
model 

Intercept -6.7 0.2 -32.0 2e-16 

Ecoregion 
Bay of Biscay 

0.9 0.3 3.5 5.6e-4 

Year (2007) 0.3 0.3 1.03 0.3 

Year (2016) 1.8 0.2 7.8 2e-16 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

P value 

Combined 
S2/CODA and 
S3/ObSERVE 
model 

Negative 
binomial 

Depth 1.0 

46.6 26.2 

2e-16 

SLA 6.5 2e-16 

MLD 0.9 0.0001 

Salinity 0.5 0.18 

SST 6.3 2e-16 

Distance to 
escarpments 

6.9 2e-16 
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Figure 5.3-10: Plots of the fitted smooth functions for common dolphin group GAMS for S3/ObSERVE, S2/CODA and the 
combined survey model. “Rug” marks on the x-axis of the fitted smooth plots show the distribution of the data. Shaded 
areas represent the 95% confidence intervals. Where the same covariate is retained in multiple models, the smooths are 
shown on the same row. Effect sizes are variable, so axis scales are also variable in order to preserve necessary detail.   
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Figure 5.3-11: Location of effort and sightings (a), predicted density surface (b) for S2/CODA, S3/ObSERVE and combined 
survey fin whale models. Range of values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 
90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had covariate 
values which were outside the range encompassed by the modelled effort segments. In these instances, grid-cells were 
excluded from the prediction. Combined survey data are predicted using 2016 covariates. 
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Figure 5.3-12: Coefficient of variation (CV) of density (C) and standard error (SE) of density (D) for S2 / CODA , S3 / 
ObSERVE and combined survey common dolphin group  models. Range of values represented by colours in the maps 
show the 1%, 2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In 
some cases, prediction grid cells had covariate values which were outside the range encompassed by the modelled 
effort segments. In these instances, grid-cells were excluded from the prediction. Combined survey data are predicted 
using 2016 covariates. 
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5.3.5 Striped dolphins 
Summary results of the final environmental models for both ecoregions combined selected for 

striped dolphins are provided in Table 5.3-11. Model diagnostics indicated a satisfactory fit to the data, 

with the proportion of null deviance explained by the S3/ObSERVE model being 45.8%., and for the 

S2/CODA model being 34.2%. The combined survey plot explained 51.9% of the null deviance.  The 

QQ plots and the residuals vs linear plots are provided in Appendix 4. Partial effects plots of the 

fitted smooth functions are shown in Figure 5.3-13. The satisfactory fit of the models indicates that the 

resulting predictions should be an appropriate representation of the relationships between 

predicted striped dolphin density and the model covariates.  

All three models were best described using the negative binomial distribution. For both S3/ObSERVE 

and S2/CODA models, the model without a factor covariate for ecoregion was best. In the combined 

survey models, the model containing factor covariates for ecoregion and year was best (Table 5.3-12).  

None of the covariates were retained in all three models. However, slope was retained in both 

S2/CODA and the combined survey model, and SD depth was retained in the S3/ObSERVE model. All 

three show the same relationship, with predicted dolphin density increasing linearly with increasing 

measure of seabed rugosity. In the two slope plots, the confidence intervals became wide towards 

the high end of the scale.  

Depth was retained in both S2/CODA and the combined survey model. In S2/CODA, the relationship 

was linear, with predicted dolphin density being highest in deep water. This was refined somewhat 

in the combined survey model, with a slight shoulder to the shape of the relationship with peak 

predicted densities at around 3000-4000m depth.  

The S3/ObSERVE model retained ADT, which showed an increase in predicted density with increasing 

ADT until 0.1m, at which point it started to decline gradually. The S2/CODA model retained SST, 

which showed a linear relationship between predicted density and temperature, with predicted 

density increasing with temperature.  

Both S3/ObSERVE and the combined survey model retained salinity. The same relationship is evident 

in both plots, with predicted density increasing linearly with increasing salinity.  

The S3/ObSERVE model also retained the distance to coast covariate. The effect of this was not very 

pronounced, however it did show an increase in predicted density further from the coast.  

The highest densities of striped dolphins were predicted throughout the offshore part of the Bay of 

Biscay ecoregion in the S3/ObSERVE model, with very few animals predicted in the Celtic Seas 
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ecoregion (Figure 5.3-14-b); this is a  good reflection of the sightings data (Figure 5.3-14-a). The plot 

of predicted CV shows high CVs in areas of low predicted density (Figure 5.3-15c).  

The S2/CODA prediction is a reasonable reflection of field sightings across most of the range except 

for predicting high densities of animals along the Portuguese coast in shelf waters where there are 

no observations (Figure 5.3-14-e, d).  The combined model shows some evidence of over prediction, 

with large densities of dolphin groups being predicted along the shelf edge into waters much further 

north than those which contained any sightings.  

Table 5.3-11: Model outputs for striped dolphin GAMs for 2016 and 2005 data. 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

P value 
% Deviance 
explained 

Model 
degrees of 
freedom 

2016 
Negative 
binomial 

SDdepth 0.9 0.0006 

45.8 6.2 
ADT 3.2 2e-16 

Salinity 0.9 0.001 

Distance to 
coastline 

0.7 
0.082 

2005 
Negative 
binomial 

Depth 1.0 2e-16 

34.2 3.7 SST 1.0 
0.0003 

Slope 0.7 0.1 

 

Table 5.3-12: Model outputs for combined S2/CODA striped dolphin GAM 

Name Factor levels Estimate Std. Error Z value PR(>z) 

Combined 
S2/CODA and 
S3/ObSERVE 
model 

Intercept -11.2 0.78 -14.4 2e-16 

Ecoregion 
Bay of Biscay 

3.7 0.62 6.1 1.3e-9 

Year (2007) -0.3 0.62 -0.5 0.6 

Year (2016) 2.5 0.57 4.4 9.1e-5 

Model 
Error 
distribution 

Model 
covariates 

Estimated 
degrees of 
freedom 

% 
Deviance 
explained 

Model 
degrees of 
freedom 

P value 

Combined 
S2/CODA and 
S3/ObSERVE 
model 

Negative 
binomial 

Slope 0.6 

51.9 7.9 

0.1 

Depth 2.5 3.7e-7 

Salinity 0.7 0.06 
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Figure 5.3-13: Plots of the fitted smooth functions for striped dolphin group GAMS for S3/ObSERVE, S2/CODA and the 
combined survey model. “Rug” marks on the x-axis of the fitted smooth plots show the distribution of the data. Shaded 
areas represent the 95% confidence intervals. Where the same covariate is retained in multiple models, the smooths are 
shown on the same row. Effect sizes are variable, so axis scales are also variable in order to preserve necessary detail.   
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Figure 5.3-14: Location of effort and sightings (a), predicted density surface (b) for S2/CODA, S3/ObSERVE and combined 
survey striped dolphin models. Range of values represented by colours in the maps show the 1%, 2%, 5%, 10%, 25%, 
50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, prediction grid cells had 
covariate values which were outside the range encompassed by the modelled effort segments. In these instances, grid-
cells were excluded from the prediction. Combined survey data are predicted using 2016 covariates. 
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Figure 5.3-15: Coefficient of variation (CV) of density (C) and standard error (SE) of density (D) for S2/CODA, S3/ObSERVE 
and combined survey striped dolphin group  models. Range of values represented by colours in the maps show the 1%, 
2%, 5%, 10%, 25%, 50%, 75%, 90% and 100% quantiles. White areas are outside of predictive space. In some cases, 
prediction grid cells had covariate values which were outside the range encompassed by the modelled effort segments. 
In these instances, grid-cells were excluded from the prediction. Combined survey data are predicted using 2016 
covariates. 
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5.4 Discussion 

The highest predicted densities of white-sided dolphins are in the very north of the Celtic Seas 

ecoregion (S3/ObSERVE), and mid to north Celtic Seas ecoregion (S2/CODA). From the field data 

alone, it does appear that there was a more northerly distribution in 2016, and this is reflected in the 

model predictions. Compared to the other species included in this chapter, it should be noted that 

there were relatively few data upon which these models are based.  

The final model for both time periods, as well as for the combined year period, retained SST and 

salinity, whilst the S3/ObSERVE model also retained depth and SD depth, and the combined year 

model retained SD depth. The relationships for covariates which occur in multiple models show the 

same, or very similar shapes. The preference for waters of a higher salinity may be an artefact of 

animals preferring deeper or more offshore waters rather than a preference for the salinity itself.   

Possibly due to their more offshore distribution, this species has been the subject of fewer habitat 

modelling studies than many of the other species in the chapter. Some studies have been conducted 

however, and have reported a strong preference for the 200m isobath (particularly associated with 

the Rockall Bank) (Breen et al., 2016), and distance to coast (MacLeod et al., 2007). Despite being 

considered as a cooler water species, white-sided dolphins prefer waters that are not too cold, being 

associated with waters warmer than 12.20C (MacLeod et al., 2007). The July mean values of SST for 

2016 was 14.60C and for 2007 was 15.30C. With there being minimal data for waters below 120C, 

that may explain why SST was not retained in these models.  

Areas of steeper slopes have also been linked to dolphin occurrence (Doksæter et al., 2008). This 

was not found to be the case with these models, which predicted highest density in areas of low SD 

depth, which are areas with minimal change of depth, so therefore low or no slope. Doksæter et al., 

(2008) reported white-sided dolphins to be associated primarily with water with a salinity of 35.02 

PSU, which is comparable to that in areas where sightings occurred. 

5.4.1 Offshore bottlenose dolphins 
Sightings of this species were widely distributed throughout the central part of both ecoregions. 

There are considerably more sightings data from 2016 than from 2005/7, but the overall distribution 

of sightings is broadly similar.  

A variety of covariates were retained across the three models, but the only one to persist in all three 

was depth, which predicted highest densities of dolphins in shallower waters, with a linear decrease 

in density as depth increased. The shape of this relationship was consistent across the models. The 

wide variety of variables and the differences between years is perhaps indicative of two things. 
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Firstly, the bottlenose dolphin is a highly opportunistic species, with a variable worldwide 

distribution, and a wide range of known prey species. Secondly, this species is known to contain 

different ecotypes, which inhabit different ecological niches (Perrin et al., 2011; Rosel et al., 2009; 

Tezanos-Pinto et al., 2009), including in the study area (Louis et al., 2014; Oudejans et al., 2015). It is 

likely that the survey in both years sampled animals from both offshore and coastal ecotypes in 

different parts of their range. The ecological drivers of distribution for each ecotype may not be the 

same, and this may be reflected here in the range of different variables which are linked with high 

predicted density.  

 

5.4.2 Fin whales 
The 2016 field sightings of fin whales are largely in the Bay of Biscay, with a few to the far north of 

Scotland, and two to the south-west of Ireland. These are reasonably well reflected in the predicted 

density surface, where the majority of the prediction is centred on the Bay of Biscay.  

The 2005/7 field sightings are also largely centred in the Bay of Biscay, with a few to the north of the 

area – this time to the northwest of Ireland.  The predicted density map however is a poorer 

reflection of the observations for this time period, with the highest densities being predicted off of 

the west of Ireland where there only a handful of field detections. This model is the only one for 

which the model containing a factor for ecoregion was the best.  

Two of the same covariates were maintained across all three models – MLD and depth.  

In both of the two single year models, depth of the mixed layer predicted density of fin whales to 

linearly decrease as the mixed layer became deeper. For the combined year model, there was a peak 

density of whales predicted for a mixed layer depth of around 12m. Data for very shallow and very 

deep mixed layer depths are sparce, however, and the confidence intervals are correspondingly wide 

at the extremities.  

Depth was also retained in the 2016 model and predicted densities were more or less constant in 

waters deeper than 1000m. Tagging studies of fin whales have shown that prey consumption can 

increase by as much as 4x during deep dives compared with shallow foraging, so whales may be 

targeting deeper areas to maximise feeding efficiency (Friedlaender et al., 2020). This is an areas in 

which fin whales are known to feed during the summer months (Spitz et al., 2018). 

5.4.3 Common dolphin 
Whilst there are field sightings and model predictions of common dolphins in both ecoregions, the 

majority are predicted in the Bay of Biscay region, in the shelf waters. They are also predicted into 
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the Irish Sea in the S2/ObSERVE model and further offshore into the Bay of Biscay, to the north of 

Spain. There are a large number, comparatively, of sightings of common dolphins, and this allowed 

for more covariates to be retained in both final models. Common dolphins conduct considerable 

seasonal and inter-annual movements (e.g. Laran et al., 2017; Rogan et al., 2018). and that may be 

reflected in the different distribution of sightings seen in the data between the two survey periods.  

Previous studies have linked their presence strongly with temperature variables, with presence 

around the UK and Ireland predicted to be more likely in temperatures warmer than 120C (MacLeod 

et al., 2008, 2007). In contrast, in the Alboran Sea in the Mediterranean Sea, where maximum SST 

can be higher, there is a preference for temperatures below 200C (Cañadas and Hammond, 2008).  A 

preference for depth in the range 100-400m has been predicted from surveys in the Alboran Sea  

(Cañadas et al., 2005), but an association with deeper waters and shelf-edge features at depths of 

400-1000m have been found in areas of the offshore North Atlantic (Cañadas et al., 2009). 

In this study, the only covariate to persist in all three models in MLD. It shows a broadly similar 

shape in all three models, with declining density of dolphins predicted as MLD increases. The 

S2/CODA model is flat to around 14m before decreasing, the other two years show a simple linear 

decrease. 

Previous studies have found that common dolphin distribution is best predicted by chlorophyll 

concentration, as a proxy for pelagic schooling fish (Moura et al., 2012; Cañadas and Hammond, 

2008, Pusineri et al., 2007). Chlorophyll was not included in any of these models, however in the 

case of this species, it is possible that the dynamic covariates retained in the modelling process are 

not sufficient to capture the variability of distribution of this wide-ranging species. It has been 

hypothesized that they follow small pelagic schooling fish, and inter-annual distribution can vary 

widely, so further studies of common dolphins may be best targeted towards modelling predictors 

specific to their preferred prey items (Moura et al, 2012). It should be noted, however, that this is 

not straightforward, as was shown by the inclusion of prey covariates in the previous chapter, which 

were less successful than the environmental only models.  It has been suggested that overall 

relationships between environmental variables and distribution or even population structure in 

common dolphins may be caused by prey behaviour. This, Amaral et al., (2012) suggests is believed 

to determine their movement patterns as well as their associations with environmental 

characteristics.  
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5.4.4 Striped dolphins 
Striped dolphins field sightings were primarily located in the Bay of Biscay ecoregion. The predicted 

density surfaces for all models were both relatively good reflections of the sightings, however the 

maps of CVs show high levels of uncertainty in the predictions. From looking at the field sightings 

and comparing the distribution of the two species, there appears to be broad separation of common 

and striped dolphins around the 200m depth contour, with striped dolphins found primarily in 

deeper waters, and common dolphins primarily in shallower waters. This is particularly marked in 

the S3/ObSERVE data. (Reilly, 1990) also reported a summer separation in the distribution of these 

two species from large scale surveys of the Eastern Tropical Pacific. 

Much of the previous work on striped dolphin distribution has been conducted on animals in the 

Mediterranean Sea. Here, bathymetric variables have been found to be the most useful predictors, 

although a relationship with the temperature range 21-240C has also been described (Panigada et 

al., 2008). Distance from coast, depth and distance from industrial areas and slope have also been 

found to be useful predictors (Azzolin et al., 2020; Carlucci et al., 2016). 

None of the same covariates were retained across the three models. The highest densities of animals 

in S3/ObSERVE models were predicted by high levels of seabed rugosity, areas of higher ADT 

(associated with warmer water), areas of high salinity, and increasing distance from coast.  

The highest densities of animals in the S2/CODA model were predicted in areas of steep slope, 

increasing depth, and increasing SST. The combined year model retained slope, depth and salinity.  

The association with sea surface temperature is in broad agreement with findings from studies in the 

Mediterranean by Panigada et al (2008), and the relationships with depth and distance to coast are 

in broad agreement with the findings of Azzolin et al., (2020) and Carlucci et al., (2016). The lack of 

shared covariates between years, and the high CV in the predicted densities suggests however that 

the distribution of this species cannot be well predicted by the environmental covariates used in 

these models. Dietary studies of striped dolphins have found them to be able to feed on prey items 

of more than 30 distinct taxa, including individuals representing oceanic, neritic and coastal prey 

types, indicating high levels of prey plasticity (Spitz et al., 2006), with prey composition and size 

range differing slightly with sex and age / size of the dolphins themselves (Ringelstein et al., 2006; 

Saavedra et al., 2022).  This level of adaptability likely compromises our ability to describe 

environmental drivers of distribution.  

5.4.5 Conclusions 
The environmental models produced in this chapter provide reasonable fits to the data. Despite 

small numbers of datapoints in the case of white-sided dolphins in particular, the model diagnostics 
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are generally acceptable, and the predictions fit the observed data. Overall, the S2/CODA data fit 

less well than the S3/ObSERVE data, which may be due to less good survey coverage across the area. 

In an attempt to investigate this, multi-year models were also produced. In some cases, some of the 

covariates persisted in multi-year models, for example MLD and depth in fin whales, which may 

indicate that these are covariates represent genuine ecological relationships. In other instances, 

such as striped dolphins, there were no covariates which were retained in all three models.  

This chapter was focused on species with a more offshore distribution, which are known to conduct 

seasonal movements and migrations (Aguilar and García-Vernet, 2018; Couperus, 1997; Laran et al., 

2017; Rogan et al., 2018). The study region, large as it is, represents only a small proportion of their 

potential habitat, as such we are able to capture only a small proportion of their summer 

distribution, and only able to model a small fraction of what processes may be acting on this species.  
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6. Discussion 
 

This thesis has examined the use of density surfaces to model the distribution of cetaceans. It has 

presented models using XY covariates to best explain the current distribution (Chapter 3) of animals, 

providing the best available snapshot of summer 2016 distribution currently available for this region. 

In addition, models intended to examine ecological relationships have been conducted at smaller 

spatial scales. This was an attempt to model a more homogeneous study area, in the hopes this 

would provide clearer indications of relationships within this environment. For one of these regions, 

the North Sea (Chapter 4) models including prey covariates were also attempted. The use of prey 

covariates did not improve the models, however the use of the smaller, North Sea ecoregion was 

successful. The larger ecoregions modelled in Chapter 5 provided fewer clear relationships.  

6.1 Evaluation of methodology 

6.1.1  Use of GAMs 
GAMs are widely used in ecology due to their ability to model potentially complex and non-linear 

relationships, particularly when there are a large number of candidate explanatory covariates to be 

considered (Chambers and Dinsmore, 2014). One of the disadvantages of this technique, however, is 

the propensity of GAMs to overfit. For species models with very low numbers of sightings this can be 

a major issue.  In this thesis, in many of the models fitted to data that had a low percentage of effort 

segments with observations, few covariates were retained, and those that were had very low 

estimated degrees of freedom (edf), with relationships often reduced to linear. Whilst this is not 

intrinsically problematic, in this case it is likely this was due to insufficient data to fully describe 

relationships, and further investigations of these relationships may benefit from limiting the initial 

number of starting covariates to see if more complex relationships were retained.  

Ecological systems are complex by their nature, and trying to summarise this complexity with a set of 

predictor variables inevitably introduces error (Barry and Elith, 2006). This can be exacerbated if 

there is error during data collection which may cause masking of genuine ecological relationships. 

Because the data for this study were collected by multiple platforms across multiple years, it is 

possible that data collection errors were introduced. Effort was taken to standardize the data 

however, both during collection – which was done using common protocols and consideration given 

to having survey areas which were adjacent but not overlapping - and during the pre-modelling data 

assimilation phase in which the disparate datasets were merged. If collection errors persisted in the 

data, it would be impossible to remove these.   
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Whenever maps of predictions are presented in this thesis, I have provided a map of uncertainty 

associated with the prediction to try to make the reader as aware of the modelling uncertainty 

surrounding each model as possible (Barry and Elith, 2006; Miller et al., 2021). The data collection 

error remains unquantified. These unquantified errors are discussed below.  

Cetacean data used in this these were collected using line transect methodology. This relies on the 

assumption that all objects on the transect line are detected with certainty (g(0) = 1). In reality, for 

cetacean surveys, this is known not to be the case. There are two reasons why animals may be 

missed.  

1) They may be under water, and thus unavailable for detection (availability bias) 

2) They may be available for detection, but they may be missed by the observers (perception 

bias) ((Buckland, 2001) 

Increasing Beaufort sea state has been shown to have a deleterious impact on the ability of 

observers to detect animals at the surface (Palka, 2000), and so field efforts were only conducted 

during conditions of Beaufort 4 or less, 2 or less for harbour porpoises, in order to minimize 

perception bias from this source. This does not, of course, ensure that no animals were missed.  

Survey specific estimates of g(0) were calculated for as many species as had sufficient amounts of 

data. This work was not undertaken as part of this thesis, but the results are outlined in Chapter 2.  

These detection probabilities are incorporated into the density surface models via an offset, by 

modelling effective area searched.  The offset is the length of the modelling segment, multiplied by 

the effective strip width (ESW). This ESW incorporates the estimate of detection probability, 

meaning that the modelling segment is able to expand and contract with different environmental 

conditions, as they were collected in the field (Cañadas et al., 2018).  

The use of these two combined stages aims to take account of changes in detectability of the 

animals but they are not the only sources of uncertainty. Others include the smooths within the 

spatial model (the GAM) itself, since these are estimated; variability in environmental covariates, 

movement of animal into or out of the study area during the study period and  availability of the 

animals for detection (Miller et al., 2022). These remain unquantified in this study, however the 

mechanism proposed by Miller et al. (2022) for quantifying these would be a good candidate for 

further investigation.  
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6.1.2 Error from environmental covariates 
Variability in environmental covariates used in the models also comes from a variety of different 

sources. The dynamic model covariates used in this study are monthly averages. They do not take 

into account any short-term ephemeral features, such as upwelling events, that may have taken 

place, and may influence cetacean distribution in the short term.  

The resolution of the covariates is also fairly course. Whilst every effort has been made to match 

these with the resolution of the cetacean prediction grid, they are still smoothed, averaged surfaces, 

often derived from remote sensed data. Data were provided from NEODASS as “Level 3 data” which 

means they are satellite derived data, that have been geocorrected for position and view angle, 

before being projected into a mapped image.  Data were requested at a resolution of 9km, to ensure 

that there was at least one measurement per prediction grid square (resolution of prediction grid is 

10km x 10km) (NEODASS 2017). Some ground-truthing with in-situ measurements would be a 

valuable addition. There have been studies comparing the use of remotely sensed data with those 

collected in situ for the process of habitat modelling, which found that the two performed 

comparably. However, it should be noted that the scale of the remote sensed data, as well as the 

time period over which averages were taken, was at a much finer scale than those used in this study 

(Becker et al., 2010). 

6.1.3 Explanatory vs predictive models 
There is a difference between explanatory and predictive modelling (Shmueli, 2010). Models 

including XY covariates (explanatory models) often do best at describing the current distribution of a 

species, but perform less well at predicting patterns in distributions over time, due to the amount of 

variability usually explained by the XY covariates (Lambert et al., 2014). As the primary aim of this 

work was to highlight the association between particular species and their environment, the 

majority of the work conducted was explanatory modelling (with no XY smooth), although predictive 

modelling was conducted in chapter 3 in order to provide a snapshot of the current status of 

cetacean distribution across the full study region.  Predictive models explained between 28% (minke 

whales) and 73% (fin whales) null deviance, with the majority of models explaining at least 30%. 

These values are comparable with other cetacean modelling studies (e.g. Becker et al., 2017; Gilles 

et al., 2016; Virgili et al., 2019).  

Explanatory models conducted in chapters 4-5 generally explained less of the deviance, with values 

ranging from 7.5% (harbour porpoise, chapter 4) to 64% (fin whale model, chapter 5). This was not 

unexpected, as using X,Y in predictive models tends to account for variability that can’t be explained 

by the limited number of covariates in the explanatory models  Whilst deviance explained itself is 

not a direct indication of how well a model is performing, since an over-fitting model can provide a 
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very high deviance explained, if the other model diagnostics indicate an appropriate model, it can 

provide a useful indicator of model performance.  

 

6.1.4 Model fit. 
Two different error distributions were considered in order to try to produce the most appropriate 

model for the data. The Negative Binomial distribution is a generalisation of a Poisson regression, 

which loosens the assumption that variance is equal to the mean. This is often used to model counts, 

particularly for count data which is over dispersed – that is, contains greater variability than would 

be expected (Jain and Consul, 1971)  Tweedie is a family of exponential type distributions, are 

tolerant to large numbers of zero observations (Candy, 2004).  In most, but not all cases, the 

negative binomial distribution was found to better fit the data.  

In general models using number of individuals as the response variable had better fit than models 

using groups of animals as the response variable. The group models often had worse diagnostics, 

deviance explained and diagnostic plots. The worse a model fits, the less well you would expect it to 

predict. This is due to the relationship between expected (fitted) and observed (actual data) is less 

good. The worse the fit, the less variability is generally explained, and the greater deviation there is 

between expected values and observed, as seen in the residual plots. 

The chapter 5 models have the least good diagnostic plots, and the common dolphin models from 

chapter 5 have the worst diagnostic plots of all. These models are characterized by retention of lots 

of covariates, few of which persist between years. The predicted surfaces show levels of over 

prediction. In general, the chapter 5 models are characterized by low numbers of segments with 

data, which may help explain their less good fit.  

 

6.1.5 Spatial scale 
The study area covered in this study is very large –2,447,300 km2 for the modelling conducted in 

chapter 3 - and is simultaneously both too large and too small to be an accurate unit for assessing 

cetacean distribution. Despite its large scale, it represents only a fraction of the North Atlantic 

distribution for many of the species included in the thesis, which for some may include the entire 

North Atlantic (chapter 1). When representing a small proportion of the habitat of highly mobile 

organisms, associations between density and environmental variables should be considered with 

due caution. As this is a multi-year study, it is worth noting that for a survey region that does not 

include the entire range of a population, a variable proportion of the population is likely to have 
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been available for sampling on each of the sampling occasions, which may have an influence on the 

resulting modelling (Forney 2000). 

 

The study region is also large enough to be made up of multiple diverse habitats, comprising three 

ICES ecoregions in entirety, as well as small sections of four additional ones. It is reasonable to 

assume that the processes driving distribution of a species will vary depending on the conditions 

within the habitat, and the modelling conducted in chapters 4-6 was an attempt to investigate the 

extent to which this is true. One piece of further additional work which could be conducted would 

be to use the models derived for each ecoregion and predict those across the full study area covered 

in chapter 3 to quantify how transferable the relationships with environmental covariates are.  

As stated, the surveys from which the data are derived are large-scale, designed to provide a 

snapshot overview over a wide area. As such, the scale at which they can be modelled is also broad. 

The unit of prediction used throughout this thesis was a 10km x 10km grid cell. Whilst this is 

sufficient to gather broad scale distribution patterns across the large area of the study area, it is not 

sufficiently detailed to draw any conclusions on fine-scale habitat usage by the cetacean species 

modelled in this study. Typically, this would involve modelling the data on a finer scale prediction 

grid, such as the 4km x 4km grid used by Booth et al. (2013)  

It is not possible to directly compare whether the large-scale models conducted in chapter 3 are 

better or worse at capturing relationships between cetaceans and their environment than the 

ecoregion models presented in chapters 4-6, because the chapter 3 models were predictive and 

included a geographical XY predictor. At this stage, therefore, it is not possible to quantify whether 

the ecoregion model approach was a success, but this is an avenue that should be explored further.  

It should be noted that species–habitat relationships are scale-dependent, however (Balance et 

al.,2006) and the outcome of species–habitat modelling will thus also be scale dependent.  

6.1.6 Direct vs indirect predictors 
Oceanic environments are inherently variable, however there are some aspects which are 

predictable. Physical geomorphological features such as seamounts, canyons and escarpments  are 

associated with predictable patterns of higher primary productivity and prey aggregation (Genin, 

2004), and other persistent features such as oceanic fronts or water mass boundaries are often also 

predictable areas of prey aggregation. It would be expected that high-level predators, such as the 

cetacean species included in this thesis, would target persistent features in order to reduce time 

spent searching for prey. This has been shown for cetaceans in the Pacific (Ballance et al., 2006), and 

telemetry studies of oceanic predators in the Southern Ocean and southern Indian Ocean have 
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found penguin and seal species to also use this strategy  (e.g. Baylis et al., 2012; Bost et al., 1997, 

2009).  

Indirect predictors, such as geomorphological features, are used throughout this thesis. This is 

primarily because these data are much easier to obtain for use in models. Due to the timespan and 

spatial area covered by this project, data for some covariates were not available. For example, the 

British Geographical Society provided an excellent substrate dataset, but this covered only UK 

territorial waters; it did not cover the whole of any ecoregion in its entirety. 

Some direct predictors were available for the North Sea ecoregion to use in models for minke whale, 

white-beaked dolphin and harbour porpoise (Chapter 4). Models that used direct predictors 

generally explained less deviance than the models using indirect predictors. Whilst all species 

modelled in this thesis are known to be feeding in the area, distribution of animals is also 

determined by other factors, including access to areas used for resting and breeding, avoidance of 

predators, and anthropogenic activity (Davis et al., 2002). In this area, for these species, we do not 

have detailed knowledge on all of these other components to distribution, so modelling direct 

predictors like prey was worth investigating. Based on the results, however, it seems that the 

modelling was either not conducted on the right scale or using the right prey covariates for this to be 

successful.  

Across all chapters, depth was the covariate retained most often by a considerable margin (22/28 

times). From a management perspective, this is perhaps useful as indirect predictors are generally 

more available and more transferable between areas and may make for more robust models when 

predicting distribution.  All three of the species which were modelled using direct predictors can 

exploit a wide range of different prey resources, which also vary spatially. It is possible that the 

direct predictors available did not sufficiently encompass the full range of prey species which are 

exploited in this region.  

The use of GAMS is successful, and these models have been shown to work well. For occasions when 

data may be available at a more detailed resolution,  Bayesian methods could be worth exploring to 

better understand more fine-scale movements and associations (Williamson et al., 2022). 

 

6.1.7 Anthropogenic impacts 
Anthropogenic pressures can strongly affect habitat quality, and it stands to reason that this may 

obscure any relationships between cetaceans and environmental data.  As well as climate change 

(Lambert et al., 2014; MacLeod et al., 2005), the three main ICES ecoregions modelled chapters 4-6 
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have between them no less than 13 different anthropogenic activities highlighted as pressures to the 

region. These include fishing, aquaculture, dredging, offshore structures, agriculture (causing 

nutrient and organic enrichment), pollution from urban and industry run-off, coastal construction, 

shipping transport, tourism, telecommunications, aggregate extraction, military activities and 

renewable energy (ICES, 2020a, 2020b, 2020c). Whilst these will not all act directly on cetacean 

populations, their effects may range from impacting the seabed, to degrading the water column, to 

depleting prey species to causing direct injury to cetacean species. These changes to habitat may, 

directly or indirectly, cause cetaceans to change their relationship with their environment – either 

temporarily (Thompson et al., 2013) or more longer term (MacLeod et al., 2005). 

 

6.2 Final conclusions 

Cetacean distribution is driven by lots of different factors. Relationships may not be with a specific 

feature, but may be with combinations of variables, all of which operate on a gradient. These 

relationships change with both time and space, and many of these are dynamic in themselves 

(Ballance et al., 2006).  

Some predictors performed better than others. The most frequently retained covariate in these 

analyses was depth. The success of this could be due to a number of factors. Not only is this a static 

covariate which persists through time without change, but it is a good indicator or limiter of niche. 

For example, species that feed on bottom dwelling prey and are limited by their own dive capacity 

will be closely associated with a particular depth profile – there is little requirement for them to be 

associated with predictors outside of this habitat.  For some species more dynamic covariates were 

also useful, however care must be taken when selecting these to ensure that the chosen predictors 

are representative of genuine habitat parameters.  

For species for which at-sea detection is difficult, the approaches covered in this thesis provide 

useful additional information which would not be possible without pooling datasets. Initiatives 

which are able to expand on this, potentially via the use of community science initiatives, would be 

increasingly valuable. 

The ecoregion approach was attempted to investigate whether modelling across regions of 

comparatively homogenous habitat would make ecologically meaningful relationships more 

apparent. This worked well for the environmental models of the North Sea (Chapter 4) but was less 

successful in the more offshore Celtic Sea and Bay of Biscay ecoregions (chapter 4). This is perhaps 

due to the larger movements undertaken by the species modelled in this chapter. In all cases, 
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relationships may be obscured by un-modelled factors. Within the study region, these are most 

likely to be anthropogenic in origin. It may be possible to incorporate some of these into future 

models (for example the presence of structures) but many of these may be ephemeral, and also 

cumulative, making their quantification very difficult.  
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Appendix 1 – Appendix for Chapter 2  

Illustration of the model building process, using the minke whale models for 2016, chapter 4 as a 

worked example.  

Modelling process – illustrated using the minke whale models from chapter 3. 

Step 1:  Choose best of each covariate “type.” 

Model structure: GAM= SumIndivids~Covariate +offset 

a) Select best mesoscale activity type. Models are selected by AIC, and selected models are 

highlighted in red.  

ModelID dev devexp n REML AIC deltaAIC AICweight 

gam1.nb.ssh_best 153.6054 14.832492 1659 168.2299 330.6509 0.00000 0.9648702 

gam1.nb.adt_best 152.4775 10.513914 1659 169.9863 337.4966 6.84572 0.0314731 

gam1.nb.sla_best 154.3563 7.595971 1659 171.7197 341.8018 11.15085 0.0036567 

 

b) Select best MLD type. 

ModelID dev devexp n REML AIC deltaAIC AICweight 

gam1.nb.mld_log_best 153.8442 0.1575239 1659 173.4053 349.5962 0.0000000 0.5213901 

gam1.nb.mld_best 153.8504 0.4721391 1659 173.3815 349.7674 0.1712252 0.47 

 

c) Select best seabed rugosity type. 

ModelID dev devexp n REML AIC deltaAIC AICweight 

gam1.nb.d_sd 153.8997 8.23e-05 1659 173.408 349.3259 0.0000000 0.5000246 

gam1.nb.slope 153.8999 6.00e-07 1659 173.408 349.3261 0.0001967 0.4999754 

 

d) Select best distance to covariate 

ModelID dev devexp n REML AIC deltaAIC AICweight 

gam1.nb.CS_50 153.6826 2.5652027 1659 172.516 347.2352 0.000000 0.7398682 

gam1.nb.dist_50 153.8998 0.0000214 1659 173.408 349.3258 2.090568 0.2601318 

Please note, this example contains only 2 “distance to” covariates, as it is taken from the modelling 

of the North Sea ecoregion where only these two were considered. For full details please see 

chapter 4.  
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Step 2:  Build a correlation matrix using the best models selected in step 1, plus depth, sea surface 

temperature and salinity. Correlations over 0.6 / -0.6, indicating they are not to go in the same full 

model, are highlighted with red borders.  

 

 

Step 3:  Build a series of “full” models for each combination of covariates to ensure no correlated 

ones (as indicated in step 2) are in the same model. In this case three distinct models are required to 

encompass all combinations.  

Model structure: GAM= SumIndivids~Covariate +Covariate+Covariate+offset 

a) Full model 1 
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#  

## Family: Negative Binomial(0.095)  

## Link function: log  

##  

## Formula: 

## SumIndiv ~ s(Depth_StDev, bs = "ts") + s(depth, bs = "ts") +  

##     s(sst_jul, bs = "ts") + s(mld_jul_log, bs = "ts") + s(sal_jul,  

##     bs = "ts") + offset(log(offset)) 

##  

## Parametric coefficients: 

##             Estimate Std. Error z value            Pr(>|z|)     

## (Intercept)  -4.6061     0.2272  -20.27 <0.0000000000000002 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Approximate significance of smooth terms: 

##                       edf Ref.df Chi.sq p-value    

## s(Depth_StDev) 0.00000494      9  0.000 0.43003    

## s(depth)       0.82008088      9  4.715 0.01306 *  

## s(sst_jul)     0.53054170      9  1.088 0.14090    

## s(mld_jul_log) 0.00008666      9  0.000 0.95303    

## s(sal_jul)     0.91100217      9  8.241 0.00184 ** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## R-sq.(adj) =  0.00463   Deviance explained = 10.8% 

## -REML = 193.19  Scale est. = 1         n = 2208 

Full model, remove any covariates with edf <0.1 (outlined red above). 

##  

## Family: Negative Binomial(0.095)  

## Link function: log  

##  

## Formula: 

## SumIndiv ~ +s(depth, bs = "ts") + s(sst_jul, bs = "ts") + s(sal_jul,  

##     bs = "ts") + offset(log(offset)) 

##  

## Parametric coefficients: 

##             Estimate Std. Error z value            Pr(>|z|)     

## (Intercept)  -4.6061     0.2272  -20.27 <0.0000000000000002 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Approximate significance of smooth terms: 

##               edf Ref.df Chi.sq p-value    

## s(depth)   0.8201      9  4.715 0.01306 *  

## s(sst_jul) 0.5305      9  1.088 0.14090    

## s(sal_jul) 0.9110      9  8.241 0.00184 ** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## R-sq.(adj) =  0.00463   Deviance explained = 10.8% 

## -REML = 193.19  Scale est. = 1         n = 2208 
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b) Full model 2 

##  

## Family: Negative Binomial(0.097)  

## Link function: log  

##  

## Formula: 

## SumIndiv ~ s(Depth_StDev, bs = "ts") + s(CS_50_cont, bs = "ts") +  

##     s(sst_jul, bs = "ts") + s(mld_jul_log, bs = "ts") + s(sal_jul,  

##     bs = "ts") + offset(log(offset)) 

##  

## Parametric coefficients: 

##             Estimate Std. Error z value            Pr(>|z|)     

## (Intercept)  -4.5408     0.2185  -20.78 <0.0000000000000002 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Approximate significance of smooth terms: 

##                       edf Ref.df Chi.sq p-value   

## s(Depth_StDev) 0.00010035      9  0.000  0.5750   

## s(CS_50_cont)  0.00020251      9  0.000  0.3683   

## s(sst_jul)     0.82674166      9  4.215  0.0217 * 

## s(mld_jul_log) 0.00005638      9  0.000  0.7907   

## s(sal_jul)     0.84248902      9  4.349  0.0216 * 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## R-sq.(adj) =  0.00629   Deviance explained =  8.6% 

## -REML = 194.28  Scale est. = 1         n = 2208 

Full model, remove any covariates with edf <0.1 (outlined red above).##  

## Family: Negative Binomial(0.097)  

## Link function: log  

##  

## Formula: 

## SumIndiv ~ +s(sst_jul, bs = "ts") + s(sal_jul, bs = "ts") + 

offset(log(offset)) 

##  

## Parametric coefficients: 

##             Estimate Std. Error z value            Pr(>|z|)     

## (Intercept)  -4.5408     0.2185  -20.78 <0.0000000000000002 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Approximate significance of smooth terms: 

##               edf Ref.df Chi.sq p-value   

## s(sst_jul) 0.8267      9  4.215  0.0217 * 

## s(sal_jul) 0.8425      9  4.349  0.0216 * 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## R-sq.(adj) =  0.00629   Deviance explained =  8.6% 

## -REML = 194.28  Scale est. = 1         n = 2208 
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c) Full model 3 

##  

## Family: Negative Binomial(0.13)  

## Link function: log  

##  

## Formula: 

## SumIndiv ~ s(Depth_StDev, bs = "ts") + s(ssh_jul, bs = "ts") +  

##     s(mld_jul_log, bs = "ts") + offset(log(offset)) 

##  

## Parametric coefficients: 

##             Estimate Std. Error z value             Pr(>|z|)     

## (Intercept)  -5.6356     0.6974  -8.081 0.000000000000000644 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Approximate significance of smooth terms: 

##                   edf Ref.df Chi.sq p-value    

## s(Depth_StDev) 0.7420      9  2.172 0.08598 .  

## s(ssh_jul)     3.4648      9 13.817 0.00232 ** 

## s(mld_jul_log) 0.7072      9  2.557 0.05421 .  

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## R-sq.(adj) =  0.0145   Deviance explained = 18.2% 

## -REML = 191.77  Scale est. = 1         n = 2208 

No covariates to remove from this model 

Step 4:  Compare AIC of the three models with edf<0.1 removed. Select lowest AIC as best model. 

ModelID dev devexp n REML AIC deltaAIC AICweight 

gam1.nb.xy.v3 177.8759 18.215181 2208 191.7671 376.5276 0.00000 0.9932707 

gam1.nb.xy.v1 178.2555 10.816397 2208 193.1942 386.9468 10.41915 0.0054272 

gam1.nb.xy.v2 183.8772 8.595936 2208 194.2823 389.8017 13.27410 0.0013021 

 

Step 5:  Check diagnostic plots of chosen model to assess model fit. 
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Step 6:  Repeat steps 1-4 using Tweedie error distribution instead of negative biniomial error 

distribution (not shown).  

Step 7:  Compare diagnostic plots, primarily QQ plot and residuals vs linear plots of the chosen 

model of the two error distributions.  Based on these diagnostics, chose the error distribution that 

best represents the data, use this model going forward for predictions.  
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Appendix 2 – Appendix for Chapter 3  

Residual and QQ plots for models presented in Chapter 3.  

 

A2.1 Residual and QQ plots from the harbour porpoise explanatory model for the S3/ObSERVE data. 
 

 
A2.2 Residual and QQ plots from the white-beaked dolphin explanatory model for the S3/ObSERVE data. 
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A2.3 Residual and QQ plots from the Atlantic white-sided dolphin explanatory model for the S3/ObSERVE data. 
 

 
A2.4 Residual and QQ plots from the bottlenose dolphin explanatory model for the S3/ObSERVE data. 
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A2.5 Residual and QQ plots from the common dolphin explanatory model for the S3/ObSERVE data. 

 
A2.6 Residual and QQ plots from the striped dolphin explanatory model for the S3/ObSERVE data. 
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A2.7 Residual and QQ plots from the minke whale explanatory model for the S3/ObSERVE data. 

 
A2.8 Residual and QQ plots from the fin whale explanatory model for the S3/ObSERVE data. 
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Appendix 3 –Appendix for Chapter 4  

 
A3.1 Spatiotemporal summer (July-September), 2005 distribution and uncertainty estimate of porpoise prey species 

energy density in (MJ) per 10 x 10 km for the North Sea. Plots indicate (A) cod, (B) herring, (C) sprat, (D) whiting. Left 
panel illustrates original model predictions, and right panel shows standard deviation. The colour scale relates to maps 
of both model prediction and standard deviation. The standard deviation is a measure of absolute uncertainty in 

A 

D 

C 

B 
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predicted energy in the same units as the mean; it is not a relative measure of the confidence in the model prediction. 
Taken from Ransijin et al., 2020. 

 
A3.2 Residual and QQ plots from the minke whale environmental model for the 2016 data 

 
A3.3 Residual and QQ plots from the minke whale environmental model for the 2005 data  
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A3.4 Residual and QQ plots from the minke whale environmental model for the combined 2005 / 2016 data  

 
A3.5 Residual and QQ plots from the white-beaked dolphin environmental model for the 2016 data  
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A3.6 Residual and QQ plots from the white-beaked dolphin environmental model for the combined 2005 data 

 
A3.7 Residual and QQ plots from the white-beaked dolphin environmental model for the 2005 data  
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A3.8 Residual and QQ plots from the white-beaked dolphin environmental model for the combined 2005 / 2016 data  
 

 
A3.9 Residual and QQ plots from the harbour porpoise environmental model for the 2016 data  



 

275 
 

 
A3.10 Residual and QQ plots from the harbour porpoise environmental model for the 2005 data  
 

 
 
A3.11 Residual and QQ plots from the harbour porpoise environmental model for the combined 2005 / 2016 data  
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A3.12 Residual and QQ plots from the minke whale prey model for the 2016 data  
 

 
A3.13 Residual and QQ plots from the minke whale prey model for the 2005 data 
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A3.14 Residual and QQ plots from the minke whale prey model for the combined 2005/ 2016 data 

 
A3.15 Residual and QQ plots from the white-beaked dolphin prey model for the 2016 data 
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A3.16 Residual and QQ plots from the white-beaked dolphin prey model for the 2005 data 

 
A3.17 Residual and QQ plots from the white-beaked dolphin prey model for the combined 2005/ 2016 data 
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A3.18 Residual and QQ plots from the harbour porpoise prey model for 2016 data 

 
A3.19 Residual and QQ plots from the harbour porpoise prey model for 2005 data 
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A3.20 Residual and QQ plots from the harbour porpoise prey model for the combined 2005/16 data
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Appendix 4 – Appendix for Chapter 5  

Residual and QQ plots for models presented in Chapter 5.  

 

A4.1 Residual and QQ plots from the Atlantic white-sided dolphin model for the combined S3/ObSERVE data 

 

A4.2 Residual vs Linear and QQ plot from the Atlantic white-sided dolphin model for the combined S2/CODA 
data 
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A4.3 Residual vs Linear and QQ plot from the Atlantic white-sided dolphin model for the combined year model 

 

A4.4 Residual vs Linear and QQ plot from the bottlenose dolphin model for the combined S3/ObSERVE data 
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A4.5 Residual vs Linear and QQ plot from the bottlenose dolphin model for the combined S2/CODA data 

 

A4.6 Residual vs Linear and QQ plot from the bottlenose dolphin model for the combined year data 
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A4.7 Residual vs Linear and QQ plot from the fin whale model for the combined S3/ObSERVE data 

 

A4.8 Residual vs Linear and QQ plot from the fin whale model for the combined S2/CODA data 
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A4.9 Residual vs Linear and QQ plot from the fin whale model for the combined year data 

 

A4.10 Residual vs Linear and QQ plot from the common dolphin model for the combined S3/ObSERVE data 
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A4.11 Residual vs Linear and QQ plot from the common dolphin model for the combined S2/CODA data 

 

A4.12 Residual vs Linear and QQ plot from the common dolphin model for the combined year data 
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A4.13 Residual vs Linear and QQ plot from the striped dolphin model for the combined S3/ObSERVE data 

 

A4.14 Residual vs Linear and QQ plot from the striped dolphin model for the combined S2/CODA data 
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A4.15 Residual vs Linear and QQ plot from the striped dolphin model for the combined year data 
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“NOW, BRING ME THAT HORIZON.” 

- PIRATES OF THE CARIBBEAN,  

CURSE OF THE BLACK PEARL 

 

 

 


