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The role of Zn2+ in shaping intracellular Ca2+
dynamics in the heart
Amy M. Dorward1, Alan J. Stewart1, and Samantha J. Pitt1

Increasing evidence suggests that Zn2+ acts as a second messenger capable of transducing extracellular stimuli into
intracellular signaling events. The importance of Zn2+ as a signaling molecule in cardiovascular functioning is gaining traction. In
the heart, Zn2+ plays important roles in excitation–contraction (EC) coupling, excitation–transcription coupling, and cardiac
ventricular morphogenesis. Zn2+ homeostasis in cardiac tissue is tightly regulated through the action of a combination of
transporters, buffers, and sensors. Zn2+ mishandling is a common feature of various cardiovascular diseases. However, the
precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during normal cardiac function and
during pathological conditions are not fully understood. In this review, we consider the major pathways by which the
concentration of intracellular Zn2+ is regulated in the heart, the role of Zn2+ in EC coupling, and discuss how Zn2+

dyshomeostasis resulting from altered expression levels and efficacy of Zn2+ regulatory proteins are key drivers in the
progression of cardiac dysfunction.

Introduction
Zinc is an essential trace element that is proposed to interact
with >10% of the human proteome (Andreini et al., 2006). It is
essential for processes including cell division (MacDonald,
2000) and protein synthesis (Kimball et al., 1995). The human
body contains approximately 2–3 g of zinc. Of this, ∼60% is
contained in skeletal muscle, ∼30% in bone, ∼5% in liver and
skin, with the remainder distributed in other tissues, with
∼0.4% total zinc in the heart (reviewed in Jackson, 1989; Kambe
et al., 2015). More than 99% of intracellular zinc is bound to
proteins, although increasing evidence suggests that exchange-
able zinc ions (Zn2+) act as second messengers capable of
transducing extracellular stimuli into intracellular signaling e-
vents (Yamasaki et al., 2007). As more tools become available to
study Zn2+, the importance and complexity of intracellular Zn2+

signaling are beginning to rival that of calcium ions (Ca2+), with
key roles for Zn2+ evident in regulating many cellular processes.
This review will focus on research specific to the cardiovascular
system with a focus on the role of intracellular Zn2+.

Zn2+ plays an emerging but important role in heart function,
including excitation–contraction (EC) coupling (Turan et al.,
1997; Tuncay et al., 2011; Woodier et al., 2015; Reilly-O’Donnell
et al., 2017), excitation–transcription coupling (Atar et al., 1995),
and cardiac ventricular morphogenesis (Lin et al., 2018). In the
heart, [Zn2+]i is tightly regulated to maintain low labile Zn2+

concentrations. Hara et al. (2017) report the total extracellular
[Zn2+] to range from 10 μM to high micromolar concentations,

while the total intracellular [Zn2+] in mammalian cells is around
200 μM. Intracellular free Zn2+ concentrations are much lower
than values reported for total Zn2+ and are cell-type dependent
(reviewed by Vallee and Falchuk, 1993; Hara et al., 2017). If the
exchangeable Zn2+ concentration moves outside a narrow range,
either in excess or deficiency, this results in cardiac dysfunction,
including altered contractile force (for reviews on this topic, see
Pitt and Stewart, 2015; Stewart and Pitt, 2015; Turan and
Tuncay, 2017). This highlights the importance of controlled
Zn2+ homeostasis in cardiovascular functioning.

At rest, cardiomyocytes contain a small but measurable pool
of free Zn2+ in the cytosol, reported to be between 100 pM and
2 nM. Certain triggers can lead to the release of Zn2+ from
proteins and intracellular pools, and this can result in myocar-
dial damage (Turan et al., 1997; Chabosseau et al., 2014). Little is
known about the precise mechanisms controlling the intracel-
lular distribution of Zn2+ and its variations during cardiac
functioning. In this review, we consider the major pathways
by which [Zn2+]i is regulated in the heart, the role of Zn2+ in
EC coupling, and how Zn2+ dyshomeostasis results in cardiac
dysfunction.

Zn2+ homeostasis in cardiomyocytes
Zinc-binding proteins
Extracellular zinc speciation is a critical factor for Zn2+ uptake
by all cells, irrespective of the tight control maintained through
the action of transporter proteins. This is exemplified by recent
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workwhere 68Zn was used to measure zinc flux in immortalized
endothelial cells (Coverdale et al., 2022). The concentration of
serum albumin in themedia was found to impact the rate of Zn2+

influx. This dynamic is of particular importance as serum al-
bumin is the major carrier of plasma Zn2+ in circulation (Lu
et al., 2008). In the absence of albumin under the conditions
examined (20 μM 68Zn2+), the cells were unable to control the
amount of Zn2+ taken up. This was indicated by an increase in
total zinc within the cells over time, which was not observed
when albumin was present in the media (Coverdale et al., 2022).
Note that these findings are consistent with an earlier study that
found the serum content of the extracellular media to be im-
portant for protecting cells of various types from otherwise
harmful concentrations of Zn2+ (Haase et al., 2015). With rele-
vance to the heart, it is suggested that low serum albumin levels
in both males and females are associated with increased risk of
myocardial infarction and linked to adverse outcomes after
myocardial infarction. However, this topic remains controver-
sial (Djoussé et al., 2002; Toida et al., 2020; Yoshioka et al.,
2020).

Intracellular Zn2+ buffering in cardiomyocytes is tightly
controlled by metallothioneins (MTs). MTs are low-molecular-
weight, cysteine-rich proteins that play important roles in metal
homeostasis and in the protection against intracellular heavy
metal toxicity and oxidative stress at levels sufficient to induce
cell damage. In humans, there are four main MT isoforms (MT1,
MT2, MT3, and MT4) that are encoded by genes located on
chromosome 16q13 (Thirumoorthy et al., 2011). Each MT protein
can bind up to seven Zn2+ ions with high affinity, and collec-
tively, MTs are thought to gather about 5–15% of the cytosolic
zinc pool (Coyle et al., 2002). MTs work as zinc acceptors and
donors to exchange Zn2+ with other proteins in the cells via
oxidoreduction (Krężel and Maret, 2007). The thiol groups that
coordinate zinc in MTs are redox reactive such that oxidation
leads to the release of Zn2+. Basal levels of MTs in cells are often
low, although they vary across different tissue types and their
expression levels can be altered under certain conditions or
disease states (Davis and Cousins, 2000). MT2A is the most
abundant isoform found in heart, smooth muscle, and endo-
thelial cells, whereas MT1E and MT1X are also significantly ex-
pressed in these tissues, suggesting these isoforms collectively
play important roles in cardiovascular physiology (Choi et al.,
2018).

Zinc transporters expressed in the sarco/endoplasmic
reticulum (S/ER)
The movement of Zn2+ across cell membranes is facilitated by
zinc transporters. There are 24 known zinc transporters in hu-
mans, which are classified into two groups: zinc transporters
(ZnTs; 1–10) designated to the solute carrier family 30A
(SLC30A) and zrt-, irt-related proteins (ZIPs; 1–14), grouped as
solute carrier family 39A (SLC39A; Paulsen and Saier, 1997;
Grotz et al., 1998; Eide, 2004; Palmiter and Huang, 2004; Cousins
et al., 2006). ZnTs transport Zn2+ from the cytosol into organ-
elles or to the extracellular space, while ZIPs transport Zn2+ into
the cell from the extracellular matrix or from organelles into the
cytosol (Conklin et al., 1994; Palmiter and Findley, 1995; Taylor,

2000; Taylor et al., 2003). Zn2+ can also be transported through
Ca2+ channels, including the L-type calcium channel (LTCC) in
cardiomyocytes (Atar et al., 1995). The expression profile of zinc
transporters within the heart are shown in Table 1 (ZIPs) and
Table 2 (ZnTs). The localization of these zinc transporters is il-
lustrated in Fig. 1 A, while Table 3 details the localization and
detection method. Fig. 1 B shows RNA expression of ZIPs and
ZnTs in heart. An increase in intracellular Zn2+ leads to metal
regulatory transcription factor 1 (MTF-1) binding, resulting in
MTF-1 translocation to the nucleus and subsequent activation to
bind DNA and initiate MT expression (Bittel et al., 1998). It is
suggested that Zn2+ sequestration into organelles is the first
response to Zn2+ influx to deal with the potential threat of a
harmful increase in cytosolic Zn2+ while transcription and
translation of zinc transporters and MTs occur (Kukic et al.,
2014).

Numerous organelles have been identified as Zn2+ stores, as
described below. While the S/ER is classically known as a Ca2+

store, Zn2+ is also stored in this organelle. Using genetically
encoded Zn2+ sensors, the labile Zn2+ concentration in the S/ER
has been estimated to be between 1 pM and ≥5 nM (Qin et al.,
2011; Chabosseau et al., 2014). There are numerous proteins in
the S/ER that bind Zn2+, including calsequestrin 2 (CSQ2) and
calreticulin, which also bind Ca2+ (Baksh et al., 1995; Tan et al.,
2006). The S/ER has Zn2+ transporters within its membrane.
Localization of ZnT7 and ZIP7 to the S/ER was first demon-
strated in the heart by Tuncay et al. (2017). Turan and co-
workers also subsequently reported localization of ZIP8, ZIP14,
and ZnT8 to the S/ER in H9C2 cells (embryonic rat myoblasts;
Olgar et al., 2018a), but ZnT8 has not yet been detected at the
gene level (Fig. 2).

Zn2+ can be sequestered within other cell organelles. Labile
Zn2+ is undetectable in the nucleus, even though it is estimated
that 30–40% of total cellular Zn2+ resides in the nucleus (Vallee
and Falchuk, 1993; Lu et al., 2016). The Golgi is estimated to
contain between 0.2 pM and 25.1 nM free Zn2+, while the mi-
tochondria are estimated to contain between 0.14 and 300 pM
Zn2+ (Qin et al., 2011; Park et al., 2012; McCranor et al., 2012;
Chabosseau et al., 2014; Kowada et al., 2020). Lysosomes have
also been identified as Zn2+ stores, although the concentration in
these organelles has not yet been determined (Roh et al., 2012;
Kukic et al., 2014).

Organelle crosstalk shapes Ca2+ and Zn2+ signaling
The importance of communication between cellular organelles
and exchange of messenger molecules is well established (re-
viewed by Rossini et al., 2021). Membrane-contact sites regulate
many cellular functions. In the heart, dysregulation of different
organellar crosstalk pathways results in pathology (reviewed by
Dabravolski et al., 2022; Hulsurkar et al., 2022). Some examples of
organellar crosstalk between Ca2+ and Zn2+ are provided below.

Mitochondria and S/ER actively communicate with each
other to promote a variety of cellular events. Mitochondria play
multiple roles in cardiac cells, including regulation of energy
homeostasis, signaling, metabolism, and cell death pathways.
Crosstalk between the SR and mitochondria is important in
normal cardiomyocyte viability and EC coupling and plays a key
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role in regulating Ca2+-signaling responses in cardiac muscle
(Griffiths and Rutter, 2009; Eisner et al., 2013). While the SR and
mitochondria are separate compartments with different func-
tions, the interplay between the SR and mitochondria is essen-
tial in supporting cardiomyocyte contraction and relaxation, and
this organellar crosstalk facilitates adaptation to changing met-
abolic demands during EC coupling (Dorn II and Maack, 2013;
Gorski et al., 2015).

Mitochondria have also been identified as intracellular Zn2+

stores. Mitochondrial-free [Zn2+] is maintained at lower
concentrations than found in the cytosol (Ye et al., 2001;
Kambe et al., 2015). Emerging research suggests that in car-
diomyocytes, the interplay between Zn2+ homeostasis and
crosstalk between the mitochondria and S/ER is important in
cardiovascular diseases (for a recent review, see Dabravolski
et al., 2022). Close contact between the ER and mitochondria
was first described by Vance, who through fractionation, iden-
tified a pool of phospholipids that were suggested to be involved
in the association of the ER and mitochondria (Vance, 1990).
These mitochondria-associated membranes (MAMs) are the site
at which themitochondria and ER communicate functionally and
through structural interaction (reviewed in Giorgi et al., 2009).
The role of MAMs in cardiovascular disease is reviewed in detail
by Wang et al. (2021b). It is thought that intracellular Ca2+ ma-
chinery including the inositol 1,4,5-trisphosphate receptor (IP3R)
may be involved in Ca2+ signaling across the mitochondria and
ER (Hirota et al., 1999). Emerging evidence suggests that this
may also be the case with Zn2+.

Work from the Turan group illustrates that in aged rats,
aged-related increase in intracellular [Zn2+] is reduced using
antioxidant MitoTEMPO, while age-related alterations in mito-
chondrial ZIP7, ZIP8, and ZnT8 are reversed by MitoTEMPO
treatment (Olgar et al., 2019). They also illustrate that key pro-
teins involved in S/ER-mitochondrial coupling including
mitofusin-protein (Mfn-1/2), mitochondrial fission protein
(Fis-1), and S/ER-mitochondrial bridge protein B cell receptor
associated protein 31 are significantly altered when ZIP7 was
silenced in high glucose and doxorubicin-treated H9C2 cells
(Tuncay et al., 2019). Protein expression of stromal interaction

molecule 1 (STIM1), a S/ER Ca2+ sensor that regulates store-
operated calcium entry, is also significantly altered in hyper-
glycaemic and doxorubicin-treated H9C2 cells (Tuncay et al.,
2019). In cardiomyocytes, it is suggested that STIM1 contributes
to the development of cardiac hypertrophy and advancement of
heart disease, although how STIM1 expression and functionality
impact S/ER Zn2+ and Zn2+ transporters has not yet been inves-
tigated (Bootman and Rietdorf, 2017). Tight coupling between Ca2+

and Zn2+ dynamics is also important for regulation of cellular
functions in the heart. Research by Kamalov and colleagues
showed that these ions are intrinsically coupled in aldosterone-
treated rat hearts, suggesting their crosstalk contributes to alter-
ing the redox state of the cardiomyocytes (Kamalov et al., 2009).

In the nucleus, Zn2+ plays an important role in gene tran-
scription and in maintaining the stability of DNA through zinc-
finger proteins, with Zn2+ deficiency leading to a reduction in
DNA repair and compromise of integrity due to destabilization
of DNA (Ho, 2004). The effect of nuclear Zn2+ dyshomeostasis on
the heart/cardiovascular system has to our knowledge not yet
been investigated. Zn2+ and zinc transporters have also been
linked to lysosome function and cellular autophagy in breast
tissue and neuronal cell types (Rivera et al., 2018; Kim et al.,
2022). In human embryonic kidney (HEK293) cells, Cuajungco
and colleagues suggest association of zinc transporter trans-
membrane protein 163 (TMEM163) and cation channel transient
receptor potential mucolipin 1 (TRPML1) is essential for Zn2+

homeostasis and disruption to this association may be a mech-
anism for Zn2+ overload in mucolipidosis type IV disease, a ge-
netic neurodevelopmental disorder (Cuajungco et al., 2014). It is
suggested that TRPLM1 agonists lead to cell death through a
Zn2+-dependent lysosomal pathwaywithmitochondrial swelling
in metastatic melanoma cells (Du et al., 2021). Interaction of
Zn2+/zinc transporters and TRPLM1 has not been investigated in
the heart; however, Li and Li have reviewed the role of TRPLM1
and Ca2+ in cardiovascular diseases (Li and Li, 2021).

Coupling of Zn2+ and Ca2+ homeostasis in the heart
Different divalent cations can often bind to the same or similar
binding sites in proteins. In general, Ca2+ andMg2+ favor protein

Table 1. Protein expression (score) of ZIPs in heart tissue

ZIP1 ZIP2 ZIP3 ZIP4 ZIP5 ZIP6 ZIP7 ZIP8 ZIP9 ZIP10 ZIP11 ZIP12 ZIP13 ZIP14

Heart N/A Low High N/A N/A Med Med Low Med Low N/A N/A ND Med

Score ranged from high to not detected (ND). N/A illustrates transporters on the atlas which are pending normal tissue analysis. Data obtained from Uhlén
et al. (2015) and Human Protein Atlas (2022).

Table 2. Protein expression (score) of ZnTs in heart tissue

ZnT1 ZnT2 ZnT3 ZnT4 ZnT5 ZnT6 ZnT7 ZnT8 ZnT9 ZnT10

Heart Low N/A ND N/A Med Low Med ND Med ND

Score ranged from high to not detected (ND). N/A illustrates transporters on the atlas which are pending normal tissue analysis. Data obtained from Uhlén
et al. (2015) and Human Protein Atlas (2022).
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binding sites composed of O-ligands (for example, aspartic acid
or glutamic acid sidechains), whereas Zn2+ favors protein
binding sites that additionally possess N- and S-ligands (for
example, histidine and cysteine sidechains, respectively; re-
viewed by Vallee and Auld, 1990; Alberts et al., 1998; Bindreither
and Lackner, 2009; Tang and Yang, 2013). Zn2+ sites are typi-
cally of a lower coordination number than Ca2+ or Mg2+ sites
(Bock et al., 1995). While a limited degree of overlap does exist
(Zn2+ also can bind aspartic acid and glutamic acid residues), it is
important to point out that Zn2+ is typically present (both in-
tracellularly and extracellularly) at a lower concentration than
Ca2+ and Mg2+. This, together with the respective affinity of a
particular site/region for each metal determines which will bind
(or whether competition between different metals may occur).
We have previously shown that the type-2 ryanodine receptor
(RyR2) has both high-affinity Zn2+ activation sites and low-
affinity Zn2+ inhibition sites. Although the inhibitory action of
Zn2+ is likely a consequence of Zn2+ binding to the divalent

inhibitory site of the channel, at least some of the activatory sites
are distinct from the Ca2+ binding sites (Woodier et al., 2015).

Aswell as ion channels, intracellular proteins are also capable
of binding both Ca2+ and Zn2+. One example of this is CSQ2, a
Ca2+-binding protein located in the S/ER, important in Ca2+

regulation of RyR2 (Meissner and Henderson, 1987). CSQ2 has
been shown to bind both Ca2+ and Zn2+, while Zn2+ is thought to
modulate the function and structure of CSQ2 (Baksh et al., 1995).
Baksh and colleagues report that CSQ2 has a large Ca2+-binding
capacity (∼40–50 mol of Ca2+ per mole protein) with moderate
affinity (average Kd ≈ 1 mM; Baksh et al., 1995). For Zn2+, the
binding capacity is much higher (∼200 mol of Zn2+ per mole
protein) exhibiting an average Kd ≈ 300 μM (Baksh et al., 1995).
It is not known if CSQ2 binds Ca2+ and Zn2+ at the same sites;
however, other Ca2+ proteins which also bind Zn2+, such as
histidine-rich Ca2+-binding protein in skeletal muscle and cal-
modulin in the brain, possess separate Zn2+ and Ca2+ binding
sites (Baudier et al., 1983; Picello et al., 1992). Furthermore, Zn2+-

Figure 1. Zn2+ transporters in the heart. (A) Localization of zinc transporters in the heart. ZIP transporters are illustrated in blue on the left of the image
while ZnT transporters are colored in red on the right of the image. Transporters with confirmed protein expression through the Human Protein Atlas or
reported in published Western blot/immunofluorescent in heart tissue homogenates, isolated cardiomyocytes, or cardiac cell lines (such as H9C2 cells) were
included. rER, rough ER; TGN, trans-Golgi network. Created with BioRender.com. (B) RNA expression of Zn2+ transporters in normalized protein-coding
transcripts per million (nTPM) in human heart. Figure was created using information available from the Human Protein Atlas (2022), Uhlén et al. (2015), and
Choi et al. (2018).
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binding at Ca2+-effector sites in certain proteins may be unable
to induce the same structural changes. For example, in a study
by Warren and co-workers, it was shown that when Zn2+ bound
to the EF-hand motif of calmodulin, the overall structure of the
zinc-bound form resembled the apo-form rather than the
calcium-bound form (Warren et al., 2007).

The interaction of Ca2+ and Zn2+ is not a novel concept. Ya-
masaki and colleagues report that Zn2+ release inmast cells from

the S/ER, in the form of a Zn2+ wave, was Ca2+ dependent
(Yamasaki et al., 2007). G protein-coupled receptor 39 (GPR39)
was identified to be stimulated by Zn2+ by Holst et al. (2007) and
the receptor is now often referred to as the Zn2+-sensing re-
ceptor. GPR39 is located on the plasmamembrane and is thought
to act as an extracellular Zn2+ sensor to trigger activation of
several G protein-coupled pathways, including the mobilization
of intracellular Ca2+ through Gq coupling (Popovics and Stewart,

Table 3. Subcellular localization of zinc transporters

Zinc
transporter

Localization Detection Method Reference

Immunofluorescence Cell fractionation and
immunoblotting

Zn2+ influx/efflux assay/
measurement of [Zn2+]

ZIP1 PM 3 3 Gaither and Eide, 2001

Mitochondria 3 3 Cho et al., 2019

ZIP2 PM 3 3 Gaither and Eide,
2000

ZIP3 PM 3 Kelleher and
Lönnerdal, 2003

ZIP6 PM 3 Taylor and Nicholson,
2003

ZIP7 TGN 3 3 Huang et al., 2005

S/ER 3 3 3 Tuncay et al., 2017

Mitochondria 3 3 3 Tuncay et al., 2019

ZIP8 PM 3 3 Dalton et al., 2005

Lysosomes 3 Aydemir et al., 2009

Mitochondria
S/ER

3

3

Olgar et al., 2019

ZIP9 PM 3 3 3 Thomas et al., 2014

TGN 3 Matsuura et al., 2009

ZIP10 PM 3 3 Lichten et al., 2011

ZIP11 TGN 3 Kelleher et al., 2012

Nucleus 3 3 Martin et al., 2013

ZIP13 TGN 3 3 Fukada et al., 2008

ZIP14 PM 3 Taylor et al., 2003

S/ER 3 Olgar et al., 2018a

ZnT1 PM 3 Palmiter and Findley,
1995

ZnT2 Lysosomes 3 Palmiter et al., 1996

ZnT5 TGN 3 3 3 Kambe et al., 2002

ZnT6 TGN 3 3 Suzuki et al., 2005

ZnT7 TGN 3 Kirschke and Huang,
2003

S/ER 3 3 Tuncay et al., 2017

Mitochondria 3 3 Tuncay et al., 2019

ZnT8 Mitochondria
S/ER

3

3

Olgar et al., 2019

ZnT9 Nucleus 3 3 Sim and Chow, 1999

Mitochondria 3 Kowalczyk et al., 2021

Subcellular localization of ZIPs and ZnTs as illustrated in Fig. 1 A. PM, plasma membrane; TGN, trans-Golgi network.
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2011). The presence of a cellular zinc receptor with the ability to
trigger Ca2+ release had much earlier been reported by
Hershfinkel et al. (2001). With relevance to G protein-coupled
receptors (GPCRs), work by Hojyo and colleagues utilized
Slc39a14-knockout mice to implicate ZIP14 in GPCR signaling,
where it was found that mice that lack the ZIP14 transporter
display restricted growth (Hojyo et al., 2011). In the heart, GPCR
signaling can influence intracellular Ca2+ signaling, leading to
altered cardiac contractility and cardiomyocyte apoptosis
(Communal et al., 1999; Nash et al., 2001). While the influence of
GPCRs will not be discussed further in this review, Salazar et al.
(2007) and Wang et al. (2018) have reviewed cardiac GPCRs and
the role of GPCRs in cardiovascular disease.

In 1995, Atar and colleagues demonstrated through use of live
cell imaging and electrophysiology that Zn2+ could enter rat
cardiac muscle through the LTCC (Atar et al., 1995). While the
role of the LTCC in Ca2+ handling is well established in EC
coupling, little is known about the interaction between LTCCs
and Zn2+ in the heart (Bodi et al., 2005). However, in the brain, it
was demonstrated that Zn2+ accumulation can occur in as-
trocytes (a subtype of glial cells in the brain) through LTCC in a

manner that is attenuated by ZnT1 (Nolte et al., 2004). A sub-
sequent publication by the same group reported that ZnT1 can
regulate Zn2+ and Ca2+ permeation through LTCC in HEK293 cells.
In these cells, expression of ZnT1 reduced Ca2+ influx by ∼40%
(Segal et al., 2004). The Moran laboratory has shown that ZnT1 is
also capable of inhibiting LTCC (Beharier et al., 2007; Beharier
et al., 2010; Levy et al., 2009). This work shows that crosstalk
between ion channels and transporters can influence the cellular
movement of ions, which suggests that the interaction of LTCC
and ZnT1 can influence cardiac function. Increased ZnT1 protein
expression as a result of rapid pacing in culture cardiomyocytes is
suggested to lead to reduced Ca2+ influx through LTCC and con-
tribute to atrial fibrillation in atrial tachycardia (Beharier et al.,
2010). Recent research by Wang et al. (2021a) has highlighted a
link between Ca2+ signaling and the expression of Zn2+ trans-
porters. Using a cellular model of ischemia/reperfusion (I/R) in-
volving H9C2 cells and isolated murine cardiomyocytes in
combination with Ca2+ and Zn2+ chelators, the group reported that
Ca2+ mobilization triggers a reduction in ZIP13 protein expression.
This reduction of ZIP13 was reported to activate Ca2+/calmodulin-
dependent protein kinase II and contribute to I/R injury.

Figure 2. RNA expression of S/ER-located Zn2+ transporters. (A) Mean reads per kilobase of transcript per million reads mapped (RPKM) of Zn2+

transporters in human heart (RNA sequencing [RNA-Seq] data from Fagerberg et al., 2014). (B)Mean RPKM of Zn2+ transporters in rat heart (21 wk; RNA-Seq
data from Yu et al., 2014). (C) Mean RPKM of Zn2+ transporters in mouse heart (RNA-Seq data from Yue et al., 2014).
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Transient receptor potential kinase ankyrin 1 (TRPA1) is lo-
cated on the S/ER in cardiac cells, has also been linked to in-
tracellular Ca2+ movement, and is implicated in atherosclerosis
and heart failure (reviewed by Wang et al., 2019). In neurons,
TRPA1 has been shown to be Zn2+-activated at [Zn2+] of 300 nM
and inhibitory at [Zn2+] >300 μM (Hu et al., 2009). As well as
being Ca2+ permeable, TRPA1 is also Zn2+ permeable. The inter-
action between Zn2+ and Ca2+ and its impact on vascular tone
regulation has been recently reported by Betrie et al. (2021).
However, this has not been investigated in the heart. TRPML1,
transient receptor potential mucolipin 7, and transient receptor
potential cation channel subfamily Cmember 6 are also present in
the heart, have been linked to cardiac pathologies, and are per-
meable to both Ca2+ and Zn2+ (reviewed by Bouron et al., 2015).

Actions of Zn2+ during EC coupling
Cardiac EC coupling is a process that governs contractility of the
heart through carefully controlled release of Ca2+ from the S/ER.
An action potential travels down the transverse tubule of a
cardiomyocyte where depolarization activates LTCCs, leading to
Ca2+ influx (Bers, 2002). The resulting [Ca2+] in the dyadic
cleft—the intracellular space between the plasma membrane
and SR—increases to >10 μM, leading to activation of localized
RyR2s on the SRmembrane (Bers, 2002). This increase in cytosolic
[Ca2+] causes activation of multiple proximal RyR2 channels in a
process termed calcium-induced calcium release (Fabiato, 1983).
Recruitment of RyR2molecules and their synchronous activation is
necessary for a Ca2+ release event from the SR to occur (Zima et al.,
2010). At low micromolar levels, intracellular Ca2+ binds to tro-
ponin C of the troponin complex, causing troponin I inhibition and
initiating a conformational change of the troponin–tropomyosin
complex (de Tombe, 2003; Fearnley et al., 2011). This allows
crossbridge formation betweenmyosin and actin in the presence of
ATP and leads to a power stroke in which ATP is hydrolyzed and
the contractile machinery is activated. This translates into cardiac
muscle contraction, termed systole (Bers, 2002; de Tombe, 2003).
As such, disruption to Ca2+ handling during EC coupling results in
impaired cardiac contractility and function.

The effects of Zn2+ on cardiomyocyte function are thought to
involve a competitive effect of Zn2+ on Ca2+ regulatory mecha-
nisms. In isolated cardiomyocytes, extracellular Zn2+ reduces
cardiomyocyte contractile functioning (Ciofalo and Thomas, 1965;
Yi et al., 2012; Yi et al., 2013) and this is thought to be a conse-
quence of extracellular Zn2+ being able to act as a charge carrier
through LTCC resulting in a 70% reduction in the inward Ca2+

current (Atar et al., 1995). Studies have shown that car-
diomyocytes exposed to extracellular Zn2+ display a 50% reduction
in S/ER calcium load (Turan 2003; Qin et al., 2011; Yi et al., 2012),
revealing a relationship between intracellular organelles, intra-
cellular Zn2+ dynamics, and intracellular Ca2+ movements.

Zn2+-induced regulation of RyR2
RyR2 is the route through which Ca2+ is released from the S/ER
providing the necessary driving force for cellular contraction.
Interestingly, RyR2 discriminates only slightly between divalent
cations (Tinker and Williams, 1992) and has been shown to be
permeable to Mg2+, Sr2+, Ba2+ (Diaz-Sylvester et al., 2011), and

very recently Zn2+ (Gaburjakova and Gaburjakova, 2022). This
suggests that Zn2+ may contribute to the RyR2 current during EC
coupling. Recent work has also suggested that even a very small
Zn2+ current in the lumen-to-cytosol direction is sufficient to
saturate the Zn2+ finger motif situated within the C-terminal tail
of the four RyR2 subunits, and that binding of Zn2+ in this region
is essential for RyR2 function (Gaburjakova and Gaburjakova,
2022). At the cellular level, Tuncay and co-workers showed
ryanodine-sensitive Zn2+ transients with similar kinetics to Ca2+

in stimulated rat cardiomyocytes, providing further evidence
that the S/ER is an intracellular Zn2+ pool and that Zn2+ levels
are elevated during the cardiac cycle (Tuncay et al., 2011). They
proposed that the rapid changes in free Zn2+ resulted from
displacement by Ca2+ from intracellular binding sites that are
highly sensitive to the redox status of the cardiomyocytes. It is
not unreasonable to speculate that RyR2 also contributes to this
Zn2+ signal.

Zn2+ release from the S/ER is unlikely to trigger contraction,
but this small release of Zn2+ may be sufficient to shape Ca2+

dynamics in cardiomyocytes by amplifying the Ca2+ response
through RyR2. In our own study, it was shown at the single-
channel level that cytosolic Zn2+ can act as a high-affinity acti-
vator of RyR2 (Woodier et al., 2015). Concentrations of free Zn2+

≤1 nM potentiated RyR2 activity but the presence of activating
levels of cytosolic Ca2+ was a requirement for channel activation.
However, at concentrations of Zn2+ >1 nM, the main activating
ligand switched from Ca2+ to Zn2+, and the requirement of Ca2+

for channel activation was removed. The ability of Zn2+ at a
concentration of 1 nM to directly activate RyR2 reveals that RyR2
has a much higher affinity for Zn2+ than Ca2+ (by approximately
three orders of magnitude). We also showed that Zn2+ modu-
lated both the frequency and amplitude of Ca2+ waves in car-
diomyocytes in a concentration-dependent manner and that
reduction of the [Ca2+]i to subactivating concentrations failed to
abolish Ca2+ waves in the presence of 1 nM Zn2+. These data
suggest that RyR2-mediated Ca2+ homeostasis is intimately re-
lated to intracellular Zn2+ levels. In the heart, RyR2 channels
operate in closely packed clusters (Baddeley et al., 2009; Hayashi
et al., 2009; Sheard et al., 2022). It is conceivable that the Zn2+

current mediated through RyR2, although small, is sufficient to
sensitize and recruit other RyR2 channels to help shape cellular
Ca2+ responses. The role of Zn2+ as both a high-affinity activator
of RyR2, modulator of channel function in the absence of Ca2+,
and charge carrier that contributes to the RyR2-mediated cur-
rent is a paradigm shift in our understanding of how RyR2 is
activated during EC coupling. The recently identified role of
ZnT1 as a neuronal Ca2+/Zn2+ transporter (Gottesman et al.,
2022) opens the suggestion that Zn2+ is delivered to RyR2 by a
zinc transporter located in the S/ER or the plasma membrane.
However, further work is required to address this question.
What is certain is that Zn2+ and Ca2+ dynamics are intrinsically
coupled.

Mitsugumin-23 as a putative Zn2+-regulated, Ca2+-permeable
ion channel
RyR2 is not the only Ca2+-permeable ion channel localized to
S/ER stores. TMEM109 or Mitsugumin-23 (MG23) is a 23-kD
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transmembrane protein found in the S/ER and nuclear mem-
branes of cardiac muscle cells and other tissues including skel-
etal muscle, epithelial cells, and the brain (Nishi et al., 1998).
MG23 is a voltage-sensitive non-selective cation channel. MG23
has an unusual morphology as shown by electron microscopy
and 3-D particle reconstruction. Two types of particles were
consistently observed: a small asymmetric particle composed of
six homomeric subunits and a larger bowl-shaped particle
forming a hexametric megastructure composed of six asym-
metric particles (Venturi et al., 2011). Themega pore structure is
hypothesized to readily assemble and disassemble, and this is
functionally mirrored in the observed gating behavior of MG23.
Recombinant purified MG23 proteins reconstituted into planar
lipid bilayers exhibit very unusual gating behavior characterized
by brief “flickery” opening events and coordinated gating of
multiple channels (Venturi et al., 2011; Reilly-O’Donnell et al.,
2017). It is likely that both the asymmetric particle and the
megastructure permit ion permeation, and that the unusual
gating behavior reflects the apparent instability of MG23. The
MG23 channel has received little attention, but given its location
and its ability to conduct Ca2+, it is likely that it contributes to
the Ca2+ leak and/or Ca2+ current in cardiac cells. Information
regarding modulators of MG23 activity is currently lacking but
our recent work has shown that cytosolic Zn2+ increases MG23
activity (Reilly-O’Donnell et al., 2017). Glutamate, aspartate,
histidine, and cysteine amino acid residues are commonly as-
sociated with Zn2+ binding sites. Surprisingly, human MG23
does not have any cysteine residues and so lacks the classic C2H2
zinc finger motif. MG23 does have a common conserved H-x-x-
x-E sequence, which is attributed to Zn2+ binding in Zn2+

transporters including ZIP1, ZIP2, and ZIP3 (Fig. 3; Kambe et al.,
2015). Hydrophobicity plots published by Nishi et al. (1998)
suggest the part of the protein containing this sequence is lo-
calized in the SR lumen. It is not known whether RyR2 and
MG23 interact with each other or if MG23 is part of the calcium
release unit. One could speculate that the recently described
RyR2-mediated Zn2+ current might trigger recruitment and in-
itiation of MG23-mediated Ca2+ fluxes, as summarized in Fig. 4.

Zn2+-induced regulation of IP3Rs
The role of IP3R in EC coupling is considered of most importance
during early cardiac development (Luo et al., 2020). As the S/ER
matures, the number of RyR2 channels increases and in adult
cardiomyocytes RyR2 mRNA levels are ∼50-fold higher than
IP3R (Moschella and Marks, 1993). Despite this, IP3Rs located in
the nuclear envelope are involved in excitation–transcription
coupling, thereby participating in the control of gene expression
(Nakayama et al., 2010). In mammalian cardiomyocytes, Zn2+

plays a key role in excitation–transcription coupling where Zn2+

influx through LTCC mediates voltage-dependent gene expres-
sion (Atar et al., 1995), suggesting a possible link between Zn2+

and IP3R in regulation of gene expression. In dissociated rat
hippocampal neuronal cultures, relatively small changes in cy-
tosolic Zn2+ during stimulation altered expression levels of 931
genes with IP3R type-2 being markedly upregulated (Sanford
et al., 2019). Zn2+ can be released from S/ER stores upon IP3R
stimulation. The release of caged inositol 1,4,5-trisphosphate

(IP3) in cultured cortical neurons resulted in the release of Zn2+

from thapsigargin-sensitive stores, suggesting that sequestra-
tion of Zn2+ into the S/ER is important in regulation of intra-
cellular levels and that Zn2+ is released following agonist
stimulation (Stork and Li, 2010). How Zn2+ modulates IP3 sig-
naling in the heart is an underexplored area of research. Al-
though to date there is no demonstration that IP3Rs are directly
modulated by Zn2+, IP3Rs have a C2H2 zinc finger domain in the
C-terminal tail that plays a critical role in regulation of channel
activity (Furuichi et al., 1989). Individual or combined cysteine
and histidine mutations within this conserved C2H2 domain
resulted in the abolition of IP3R type-1 functioning (Uchida et al.,
2003; Bhanumathy et al., 2012). This C2H2 C-terminal domain
region is also highly conserved across the RyR family and is
thought to be important in maintenance of RyR2-mediated Zn2+

currents (Gaburjakova and Gaburjakova, 2022), suggesting a
fundamental role for Zn2+ in intracellular Ca2+ channel regula-
tion and cellular Ca2+ dynamics.

Dysregulation of cardiac Zn2+ homeostasis in disease
Role of Zn2+-binding proteins in disease
The ability of serum albumin in the extracellular environment to
bind and buffer Zn2+ is known to be compromised by the
binding of fatty acids (Stewart et al., 2003; Lu et al., 2012;
Sobczak et al., 2021a), which it transports through binding at up
to seven different sites (Bhattacharya et al., 2000). Total plasma
levels of fatty acids are generally quite low (<1 mol eq. relative to
albumin; Sobczak et al., 2021a; Sobczak et al., 2021b) but can be
elevated in some disease states. Although high plasma fatty acid
levels are known to increase the risk of heart failure and sudden
cardiac death (Pilz et al., 2007; Djoussé et al., 2013), how this
dynamic might impact cellular Zn2+ uptake under physiological
conditions has yet to be investigated.

Zn2+ supplementation is known to induce cardiac MT ex-
pression (Wang et al., 2006), emphasizing its importance in
regulating zinc homeostasis in the heart. Several studies have
highlighted a protective role for MTs in helping to prevent/re-
duce cardiomyopathy and oxidative stress. It has been shown
that overexpression of MT in cell and animal models protects
cardiomyocytes from diabetic cardiomyopathy (Liang et al.,
2002; Cai et al., 2006; Huang et al., 2021). Cardiac-specific

Figure 3. Possible Zn2+ binding sites onMG23. Partial sequence alignment
of human zinc transporters ZIP1, ZIP2, and ZIP3 illustrating the conserved
Zn2+ binding motif, H-x-x-x-E. Histidine residues (H) are highlighted in orange
and glutamate (E) residues are highlighted in blue. This motif is also con-
served across human (h), rat (r), and murine (m) MG23.
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overexpression of MT reduces cigarette smoking exposure–
induced myocardial contractility and mitochondrial damage (Hu
et al., 2013). Zinc-induced MT expression has been shown to re-
duce doxorubicin-induced damage in cardiomyocytes (Kimura
et al., 2000; Jing et al., 2016). In addition, alcohol-induced cardi-
ac hypertrophy and fibrosis were observed in MT-knockout mice
fed an alcohol-containing liquid diet for 2 mo but not in wild-type
mice fed the same diet (Wang et al., 2005). Similarly, doxorubicin-
induced cardiomyopathy was found to be more severe in MT-
knockout mice in than wild-type mice (Kimura et al., 2000).

Themechanisms bywhichMTsmediate their cardioprotective
effects have been examined. MT protection against doxorubicin-
induced cytotoxicity was found to be at least partially mediated via
the JAK2/STAT3 pathway in murine cardiomyocytes (Rong et al.,
2016).MT-induced inhibition of the NF-κB pathway has been linked
to prevention of age-associated cardiomyopathy (Cong et al., 2016). A
recent study suggests that MT2A protects cardiomyocytes from I/R
through p38 inhibition (Zhao et al., 2021 Preprint). It has also been
shown that MT inhibits doxorubicin-induced mitochondrial cyto-
chrome c release and caspase-3 activation in cardiomyocytes (Wang
et al., 2001). Collectively, these studies demonstrate that MTs act to
induce the expression of cardioprotective genes and reduce mito-
chondrial damage due to oxidative stress in cardiac tissue.

Zinc transporter expression in cardiac dysfunction
In cardiac dysfunction, intracellular Zn2+ levels are known to be
altered. A role for Zn2+ in ischemia was first established in ce-
rebral ischemia in rat brain in 1990 (Tønder et al., 1990) and
later demonstrated in isolated rat cardiomyocytes where an
∼30-fold increase in [Zn2+]i was observed during ischemia that
rapidly decreased upon reoxygenation (Ayaz and Turan, 2006).
Hare et al. (2009) observed an accumulation of [Zn2+]i in the left
ventricle of rat cardiac tissue following I/R.

Alterations in the expression levels of zinc transporters are
associated with several cardiovascular events (Table 4). Hara
and colleagues suggest that modulation of ZIP13 expression may
be important for inflammatory signaling responses in the heart
following in vitro treatment with doxorubicin (Hara et al.,
2022). In S/ER, ZIP7 and ZnT7 expression is reported to be al-
tered in type 2 diabetes and high glucose conditions, which are
both considered risk factors for cardiovascular disease. Protein
expression of ZIP7 was significantly decreased while expression
of ZnT7 was significantly increased in cardiomyocytes cultured
in high glucose conditions and in hearts excised from a diabetic
rat model (Tuncay et al., 2019). Tuncay and co-workers also
identified significant alterations in ZIP7 and ZnT7 S/ER protein
expression in H9C2 cells treated with doxorubicin to simulate

Figure 4. Graphical summary of the suggested role of MG23 in cardiovascular function.MG23may contribute to the release of Ca2+ from S/ER Ca2+ stores.
In pathophysiological conditions where intracellular Zn2+ is elevated, the activity of MG23 will be increased, leading to increased release of Ca2+ from the S/ER.
Increased [Zn2+]i will result in activation of RyR2. Dotted lines and question marks suggest putative interactions/functions. Figure created with BioRender.com.
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heart failure (Tuncay et al., 2017). Furthermore, in cardiac tissue
from individuals with heart failure, the expression of ZIP14 and
ZnT8 was significantly increased and ZIP8 levels decreased
relative to controls (Olgar et al., 2018a). Screening all ZIP and
ZnT transporters, Bodiga and colleagues reported alterations in
multiple transporters in cardiomyocytes exposed to a hypoxia/
reoxygenation protocol, among which were the S/ER-located
ZIP7 and ZIP14 transporters (Bodiga et al., 2017).

Zn2+ dyshomeostasis in EC coupling
The importance of tightly controlled cellular Zn2+ homeostasis
for the prevention of cardiac dysfunction is beginning to emerge
(Alvarez-Collazo et al., 2012; Turan and Tuncay, 2017). In animal
models, dysregulated levels of intracellular Zn2+ are associated
with severe cardiac degeneration in Duchennemuscular dystrophy
(Crawford and Bhattacharya, 1987). Male mice deficient in ZnT5
have significantly higher frequency of bradyarrhythmias and
mortality rate compared with control animals (Inoue et al., 2002).
Also, Zn2+ significantly contributes to oxidant-induced alterations
of EC coupling (Turan et al., 1997). Defective Zn2+ handling con-
tributes to the cellular pathology of certain cardiomyopathies, in-
cluding altered contractility and heart failure (Kleinfeld and Stein,
1968; Kalfakakou et al., 1993; Little et al., 2010). The underlying
mechanism of how Zn2+ contributes to these pathologies is still not
fully understood. Cytosolic Zn2+ has recently been shown to act as a
high-affinity activator of RyR2, able to activate channels even
when [Ca2+]i is subactivating (Woodier et al., 2015; Reilly-O’Donnell
et al., 2017) providing an important mechanistic explanation for
how Zn2+ dyshomeostasis can result in altered Ca2+ dynamics and
cardiac dysfunction. An emerging and important research area is
therefore to understand how altered Zn2+ levels evoke deleterious
effects on cardiac functioning.

Zn2+ dyshomeostasis in cardiac morphogenesis
Zinc transporters are of key importance in embryonic develop-
ment and cardiac morphogenesis. Knockout of ZnT1 or ZIP7 is
embryonically lethal (Andrews et al., 2004; Woodruff et al., 2018).
Knockout of ZIP8 is also embryonically lethal in mice with
hypertrabeculation and noncompaction of the ventricles ob-
served, while knockdown of ZIP10 in zebrafish results in
heart deformities (Taylor et al., 2016; Lin et al., 2018). Addi-
tionally, recent research shows that primary neonatal car-
diomyocytes from ZIP13 knockout mice display arrhythmic
beating (Hara et al., 2022).

The findings of Inoue and colleagues are also noteworthy,
where ZnT5 knockout resulted in male-specific sudden death
from bradyarrhythmia (Inoue et al., 2002). Loss-of-function
mutation of ZnT5 is reported to result in lethal cardiomyopathy
and premature death in a case study by Lieberwirth et al. (2021).
This illustrates that zinc transporters as well as calcium chan-
nels are necessary in cardiac development and function.

Zn2+ dyshomeostasis as a new pharmacological target in
cardiovascular disease
Sacubitril/valsartan (formally known as LCZ696) is an active
substance in the drug Entersto, which is used to treat chronic
heart failure (Khalil et al., 2018). Sacubitril/valsartan is an

angiotensin II type 1 receptor blocker that inhibits neprilysin
and is currently being trialed for treatment of patients with
chronic systolic heart failure (ClinicalTrials.gov identifier:
NCT01035255; McMurray et al., 2013). These trials are of in-
terest as neprilysin is a zinc-dependent plasmamembrane type II
integral protein metallopeptidase which contains a Zn2+-binding
site on its extracellular C-terminal domain (Fulcher and Kenny,
1983; Nalivaeva et al., 2020), linking Zn2+ dependent processes
with cardiovascular function.

There have also been trials examining the usefulness of Zn2+

chelation. The TACT trial (NCT00044213) investigated the effect
of chelation therapy using EDTA on the occurrence of subse-
quent cardiovascular events in participants with previous my-
ocardial infarction (Lamas et al., 2013). EDTA is a chelator of not
only Zn2+ but also of Ca2+, Mg2+, Fe2+/Fe3+, Cd2+, and Cu2+

(Lamas et al., 2013). Reactive binding of EDTA to metals is as
follows: Cr2+ >Fe3+ >Cu2+ >Pb2+ >Zn2+ >Cd2+ >Co2+ >Fe2+ >Mn2+

>Ca2+ >Mg2+, therefore, EDTA will preferentially bind Zn2+

(estimated Kd 10-16 M) over other divalent metals in plasma in-
cluding Ca2+ (Kd ∼10−11 M) due to the high affinity EDTA has for
Zn2+ (Waters et al., 2001; commentary by Nyborg and Peersen,
2004). The trial concluded that treatment with EDTA modestly
reduced the risk of adverse cardiovascular outcomes. However,
the evidence was not sufficient to justify the implementation of
chelation therapy as a routine postmyocardial infarction treat-
ment (Lamas et al., 2013). The research has been continued in
the TACT2 trial, which is focusing on chelation therapy in
patients with diabetes who have had a previous myocardial
infarction (NCT02733185; U.S. National Library of Medicine,
2022). This trial is due for completion in December 2023 (U.S.
National Library of Medicine, 2022). The targeting of Zn2+ to
improve patient outcome in myocardial infarction and heart
failure has not yet resulted in development of new cardio-
vascular disease treatments. In addition, Zn2+ levels cannot be
used as a biomarker for cardiovascular disease as several
factors including dietary intake and blood glucose levels
can alter plasma Zn2+ concentration and zinc handling
(Fernández-Cao et al., 2019). However, it is possible that chela-
tion of Zn2+ in the short term, for example, during myocardial
infarction, would help to attenuate the damage observed post-
myocardial infarction.

Concluding remarks
The role of ZIPs, ZnTs, and Zn2+-binding proteins in the heart
provides novel insights into the regulation of cellular Zn2+ and
its role as a signaling molecule in cardiac tissue. The ability of
Zn2+ to act as a regulator and/or activator of cellular Ca2+

channels suggests a new and important role for Zn2+ in cardiac
function under both physiological and pathological conditions,
raising the suggestion that correction of Zn2+ dyshomeostasis
may be a novel therapeutic strategy to combat cardiovascular
diseases.

In comparison to Ca2+, there has been relatively little work
investigating the biological function of Zn2+ in the heart. Con-
sideration of accurate [Zn2+]i measurements should be empha-
sized as failure to acknowledge dynamic Zn2+ changes could lead
to significant overestimation of [Ca2+]i. Indeed, many of the tools
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Table 4. Studies examining zinc transporters in cardiovascular disease

Zinc
transporter

Experimental model Protocol Quantification Expression
change

Reference

Protein
expression

mRNA
expression

ZIP1 CMs isolated from Sprague-Dawley
rats (WT, male, 8 wk)

In vivo chronic aldosterone/salt
treatment, 4 wk

3 ↑

∼4.2-fold
Kamalov et al.,
2009

CMs isolated fromWistar Kyoto rats In vitro H/R 3 ↑ hypoxia
0.5 to ∼1.4 AU
↑ H/R
0.5 to ∼0.7 AU

Bodiga et al.,
2017

ZIP2 CMs isolated fromWistar Kyoto rats In vitro H/R 3 ↑ hypoxia
1 to ∼1.3 AU
↓ H/R
1 to ∼0.8 AU
(NS)

Bodiga et al.,
2017

Hearts from C57BL/6 mice (WT,
male, 8–10 wk)

In vivo I/R by left anterior
descending coronary artery
occlusion

3 3 ↑ protein
∼150%
↑ mRNA
∼fourfold

Du et al., 2019

ZIP3 CMs isolated fromWistar Kyoto rats In vitro H/R 3 ↑ hypoxia
1 to ∼1.6 AU
↑ H/R
1 to ∼1.6 AU

Bodiga et al.,
2017

ZIP6 CMs isolated fromWistar Kyoto rats In vitro H/R 3 ↑ hypoxia
0.8 to ∼1 AU
(NS)
↓ H/R
0.8 to ∼0.7 AU
(NS)

Bodiga et al.,
2017

ZIP7 CMs isolated fromWistar Kyoto rats In vitro H/R 3 ↑ hypoxia
1 to ∼2 AU
↓ H/R
1 to ∼0.9 AU
(NS)

Bodiga et al.,
2017

ZIP7 Hearts from Wistar rats (WT, male,
2 mo)

In vivo transverse aortic
constriction

3 ↑

∼twofold
Olgar et al.,
2018b

H9C2 cell lysates In vitro DOX treatment 3 ↑

∼1.5-fold
Tuncay et al.,
2019

CMs isolated from C57BL/6 mice
(WT, male, 8–10 wk)

In vitro H/R 3 ↑

∼0.7 to ∼1.2
Zhang et al.,
2021

Hearts from Wistar rats (WT, male,
250–350 g)

Ex vivo I/R 3 ↑

∼0.75 to ∼0.9
Zhang et al.,
2021

Hearts from C57BL/6 mice (WT,
male, 8–10 wk)

In vivo I/R by left anterior
descending coronary artery
occlusion

3 3 ↑ protein
∼0.8 to ∼1
↑ mRNA from
∼1 to 2

Zhang et al.,
2021

ZIP8 H9C2 cell lysates In vitro DOX treatment 3 ↓

∼0.4-fold
Olgar et al.,
2018a

Human heart failure tissue Patients with end-stage heart
failure

3 ↓

∼0.5-fold
Olgar et al.,
2018a

Hearts from Wistar rats (WT, male,
2 mo)

In vivo transverse aortic
constriction

3 ↓

∼0.5-fold
Olgar et al.,
2018b

ZIP9 CMs isolated fromWistar Kyoto rats In vitro H/R 3 ↑ hypoxia
1 to ∼2 AU
≈ H/R

Bodiga et al.,
2017
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Table 4. Studies examining zinc transporters in cardiovascular disease (Continued)

Zinc
transporter

Experimental model Protocol Quantification Expression
change

Reference

Protein
expression

mRNA
expression

ZIP10 CMs isolated fromWistar Kyoto rats In vitro H/R 3 ↑ hypoxia
1 to ∼1.5 AU
↑ H/R
1–∼1.2 (NS)

Bodiga et al.,
2017

ZIP11 CMs isolated fromWistar Kyoto rats In vitro H/R 3 ↑ hypoxia
1 to ∼2 AU
≈ H/R

Bodiga et al.,
2017

ZIP12 Human pulmonary artery smooth
muscle cells

In vitro hypoxia incubation 3 ↑

∼threefold
Zhao et al.,
2015

ZIP13 CMs isolated fromWistar Kyoto rats In vitro H/R 3 ↑ hypoxia
0.5 to ∼2 AU
≈ H/R

Bodiga et al.,
2017

ZIP13 Heart tissue from C57BL/6 mice
(WT, male, 8–10 wk)

In vivo left anterior descending
coronary artery ligation

3 3 ↓ protein
∼0.5-fold
↓ mRNA
∼0.6-fold

Wang et al.,
2021a

H9C2 cell lysates In vitro H/R 3 ↓

∼0.6-fold
Wang et al.,
2021b

Neonatal CMs isolated from
newborn C57BL/6N mice

In vitro DOX treatment 3 ↓

∼0.75 to ∼0.1
Hara et al.,
2022

Heart tissue from C57BL/6N mice In vivo intraperitoneal DOX
injection

3 ↓

∼1 to ∼0.6
Hara et al.,
2022

ZIP14 CMs isolated fromWistar Kyoto rats In vitro H/R 3 ↑ hypoxia
0.5 to ∼2 AU
≈ H/R

Bodiga et al.,
2017

H9C2 cell lysates In vitro DOX treatment 3 ↑

∼1.5-fold
Olgar et al.,
2018a

Human heart failure tissue Patients with end-stage heart
failure

3 ↑

∼twofold
Olgar et al.,
2018a

Heart tissue from Wistar rats (WT,
male, 2 mo)

In vivo transverse aortic
constriction

3 ↑

∼2.5-fold
Olgar et al.,
2018b

ZnT1 Cultures CMs from rats (1–2 d old) In vitro rapid pacing 3 ↑

214.4%
Beharier et al.,
2007

Heart homogenates from Sprague-
Dawley rats (WT, male, 250–350 g)

In vivo rapid atrial pacing 3 ↑

148%
Beharier et al.,
2007

Human cardiac tissue Cardiac tissue obtained from
control and atrial fibrillation
patients

3 ↑

0.73–1.88
Etzion et al.,
2008

CMs from Sprague-Dawley rats
(WT, male, 8 wk)

In vivo chronic aldosterone/salt
treatment, 4 wk

3 ↑

∼twofold
Kamalov et al.,
2009

CMs isolated fromWistar Kyoto rats In vitro H/R 3 ↑ hypoxia
1 to ∼2 AU
↑

1 to ∼1.2 AU
(NS)

Bodiga et al.,
2017

ZnT2 CMs isolated fromWistar Kyoto rats In vitro H/R 3 ↑ hypoxia
0.5 to ∼0.6 AU
(NS)
↑ H/R
0.4 to ∼1.4 AU

Bodiga et al.,
2017

ZnT5 CMs isolated fromWistar Kyoto rats In vitro H/R 3 ≈ hypoxia
↑ H/R
0.8 to 1.2 AU

Bodiga et al.,
2017
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routinely used to measure Ca2+ also bind Zn2+, challenging us to
consider howmany processes driven by Ca2+ may also be in part,
attributable to Zn2+ (Stork and Li, 2006; Figueroa et al., 2014;
Fujikawa et al., 2015). Thanks to the development of appropriate
tools enabling us to accurately monitor Zn2+ fluxes and the
ability of these methods to distinguish Zn2+ from Ca2+ in bio-
logical systems, the field of zinc biology is currently advancing
rapidly (for a comprehensive overview of different Zn2+ sensors,
see Huang and Lippard, 2012; Carpenter et al., 2016; Pratt et al.,
2021). Much has been learned relating to the intrinsic relation-
ships that exist between Zn2+ and Ca2+ homeostatic mechanisms
and their roles in heart disease. However, more work is needed
to fully understand the role of Zn2+ in the heart. This includes
better understanding of cellular Zn2+ dynamics, how Zn2+ is
regulated, and the biological targets of labile Zn2+. This will re-
quire a greater appreciation of the spatio-temporal patterning of
intracellular Zn2+ fluxes in the heart and how these relate to
cardiac functioning in health and disease.
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