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One Sentence Summary: In this review we discuss the role of Zn2+ and zinc transporters in 8 

regulating cellular Ca2+-dynamics in cardiac muscle.  9 

 10 

Abstract 11 

Increasing evidence suggests that Zn2+ acts as a second messenger capable of transducing 12 

extracellular stimuli into intracellular signalling events. The importance of Zn2+ as a signalling 13 

molecule in cardiovascular functioning is gaining traction. In the heart, Zn2+ plays important 14 

roles in excitation-contraction (EC) coupling, excitation-transcription coupling, and cardiac 15 

ventricular morphogenesis.  Zn2+ homeostasis in cardiac tissue is tightly regulated through 16 

the action of a combination of transporters, buffers and sensors. Zn2+-mishandling is a 17 

common feature of various cardiovascular diseases. However, the precise mechanisms 18 

controlling the intracellular distribution of Zn2+ and its variations during normal cardiac 19 

function and during pathological conditions are not fully understood. In this review we 20 

consider the major pathways by which the concentration of intracellular Zn2+ is regulated in 21 

the heart, the role of Zn2+ in EC coupling and discuss how Zn2+-dyshomeostasis resulting 22 

from altered expression levels and efficacy of Zn2+ regulatory proteins are key drivers in the 23 

progression of cardiac dysfunction. 24 
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Introduction 26 

Zinc is an essential trace element which is proposed to interact with more than 10% of the 27 

human proteome (Andreini et al., 2006). It is essential for processes including cell division 28 

(McDonald, 2000), and protein synthesis (Kimball et al., 1995). The human body contains 29 

approximately 2-3 g of zinc. Of this, ~60% is contained in skeletal muscle, ~30% in bone, ~5% 30 

in liver and skin with the remainder distributed in other tissues, with ~0.4% total zinc in the 31 

heart (reviewed in Jackson, 1989; Kambe et al., 2015). More than 99% of intracellular zinc is 32 

bound to proteins, although increasing evidence suggests that exchangeable zinc ions (Zn2+) 33 

act as second messengers capable of transducing extracellular stimuli into intracellular 34 

signalling events (Yamasaki et al., 2007). As more tools become available to study Zn2+ the 35 

importance and complexity of intracellular Zn2+ signalling is beginning to rival that of calcium 36 

ions (Ca2+), with key roles for Zn2+ evident in regulating many cellular processes. This review 37 

will focus on research specific to the cardiovascular system with a focus on the role of 38 

intracellular Zn2+. 39 

Zn2+ plays an emerging but important role in heart function, including excitation-contraction 40 

(EC) coupling (Turan et al., 1997; Tuncay et al., 2011; Woodier et al., 2015; Reilly-O'Donnell 41 

et al., 2017), excitation-transcription coupling (Atar et al., 1995) and cardiac ventricular 42 

morphogenesis (Lin et al., 2018). In the heart the [Zn2+]i is tightly regulated to maintain low 43 

labile Zn2+ concentrations. Hara et al report the total extracellular [Zn2+] to range from high 44 

micromolar to 10 µM, while the total intracellular [Zn2+] in mammalian cells is around 200 µM. 45 

Intracellular free Zn2+ concentrations are much lower than values reported for total Zn2+ and 46 

are cell-type dependant (Reviewed by Vallee and Falchuk, 1993; Hara et al., 2017). If the 47 

exchangeable Zn2+ concentration moves outside a narrow range, either in excess or 48 

deficiency, this results in cardiac dysfunction, including altered contractile force (for reviews 49 

on this topic see Pitt and Stewart, 2015; Stewart and Pitt, 2015; Turan and Tuncay, 2017). 50 

This highlights the importance of controlled Zn2+-homeostasis in cardiovascular functioning.  51 
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At rest, cardiomyocytes contain a small but measurable pool of free Zn2+ in the cytosol 52 

reported to be between 2 nM to 100 pM. Certain triggers can lead to the release of Zn2+ from 53 

proteins and intracellular pools, and this can result in myocardial damage (Turan et al, 1997; 54 

Chabosseau et al., 2014). Little is known about the precise mechanisms controlling the 55 

intracellular distribution of Zn2+ and its variations during cardiac functioning. In this review, 56 

we consider the major pathways by which [Zn2+]i is regulated in the heart, the role of Zn2+ in 57 

EC coupling and how Zn2+ dyshomeostasis results in cardiac dysfunction. 58 

  59 

 Zn2+ homeostasis in cardiomyocytes 60 

Zinc binding proteins 61 

Extracellular zinc speciation is a critical factor for Zn2+ uptake by all cells, irrespective of the 62 

tight control maintained through the action of transporter proteins. This is exemplified by 63 

recent work where 68Zn was used to measure zinc flux in immortalised endothelial cells 64 

(Coverdale et al., 2022). The concentration of serum albumin in the media was found to 65 

impact upon the rate of Zn2+ influx. This dynamic is of particular importance as serum 66 

albumin is the major carrier of plasma Zn2+ in the circulation (Lu et al., 2008). In the absence 67 

of albumin under the conditions examined (20 μM 68Zn2+), the cells were unable to control 68 

the amount of Zn2+ taken up. This was indicated by an increase in total zinc within the cells 69 

over time, which was not observed when albumin was present in the media (Coverdale et al., 70 

2022). Note that these findings are consistent with an earlier study that found the serum 71 

content of the extracellular media to be important for protecting cells of various types from 72 

otherwise harmful concentrations of Zn2+ (Haase et al., 2015). With relevance to the heart, it 73 

is suggested that low serum albumin levels in both males and females are associated with 74 

increased risk of myocardial infarction and is linked to adverse outcomes post-myocardial 75 

infarction. However, this topic remains controversial (Djoussé et al., 2002; Toida et al., 2020; 76 

Yoshioka et al., 2020).  77 
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Intracellular Zn2+ buffering in cardiomyocytes is tightly controlled by metallothioneins (MTs). 78 

MTs are low molecular weight, cysteine-rich proteins that play important roles in metal 79 

homeostasis and in the protection against intracellular heavy metal toxicity and oxidative 80 

stress at levels sufficient to induce cell damage. In humans, there are four main MT isoforms 81 

(MT1, MT2, MT3, and MT4) that are encoded by genes located on chromosome 16q13 82 

(Thirumoorthy et al., 2011). Each MT protein can bind up to 7 Zn2+ ions with high affinity and 83 

collectively MTs are thought to gather about 5% to 15% of the cytosolic zinc pool (Coyle et 84 

al., 2002). MTs work as zinc acceptors and donors to exchange Zn2+ with other proteins in 85 

the cells via oxidoreduction (Krężel and Maret, 2007). The thiol groups that coordinate zinc 86 

in MTs are redox reactive such that oxidation leads to the release of Zn2+. Basal levels of 87 

MTs in cells are often low, although they vary across different tissue types and their 88 

expression levels can be altered under certain conditions or disease states (Davis and 89 

Cousins, 2000). MT2A is the most abundant isoform found in heart, smooth muscle, and 90 

endothelial cells, whereas MT1E and MT1X are also significantly expressed in these tissues, 91 

suggesting these isoforms collectively play important roles in cardiovascular physiology 92 

(Choi et al., 2018). 93 

Zinc transporters expressed in the sarco/endoplasmic reticulum (S/ER) 94 

The movement of Zn2+ across cell membranes is facilitated by zinc transporters. There are 95 

24 known zinc transporters in humans, which are classified in two groups: Zinc transporters 96 

(ZnTs; 1-10) designated to the solute carrier family 30A (SLC30A) and zrt-, irt-related 97 

proteins (ZIPs; 1-14), grouped as solute carrier family 39A (SLC39A; Paulsen and Saier, 98 

1997; Grotz et al., 1998; Eide, 2004; Palmiter and Huang, 2004; Cousins et al., 2006). ZnTs 99 

transport Zn2+ from the cytosol into organelles or to the extracellular space, while ZIPs 100 

transport Zn2+ into the cell from the extracellular matrix or from organelles into the cytosol 101 

(Conklin et al., 1994; Palmiter and Findley, 1995; Taylor, 2000; Taylor et al., 2003). Zn2+ can 102 

also be transported through Ca2+ channels, such as L-type calcium channel (LTCC) in 103 
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cardiomyocytes (Atar et al., 1995). The expression profile of zinc transporters within the 104 

heart are shown in Table 1 (ZIPs) and Table 2 (ZnTs). The localisation of these zinc 105 

transporters is illustrated in Figure 1A while Table 3 details the localisation and detection 106 

method. Figure 1B shows RNA expression of ZIPs and ZnTs in heart. An increase in 107 

intracellular Zn2+ leads to metal regulatory transcription factor 1 (MTF-1) binding, resulting in 108 

MTF-1 translocation to the nucleus and subsequent activation to bind DNA and initiate MT 109 

expression (Bittel et al., 1998). It is suggested that Zn2+ sequestration into organelles is the 110 

first response to Zn2+ influx to deal with the potential threat of a harmful increase in cytosolic 111 

Zn2+ while transcription and translation of zinc transporters and MTs occurs (Kukic et al., 112 

2014).  113 

Numerous organelles have been identified as Zn2+ stores, as described below. While the 114 

S/ER is classically known as a Ca2+ store, Zn2+ is also stored in this organelle. Using 115 

genetically encoded Zn2+ sensors the labile Zn2+ concentration in the S/ER has been 116 

estimated to be between 1 pM and ≥5 nM (Qin et al., 2011; Chabosseau et al., 2014). There 117 

are numerous proteins in the S/ER that bind Zn2+, including calsequestrin 2 (CSQ2) and 118 

calreticulin which also bind Ca2+ (Baksh et al., 1995; Tan et al., 2006). The S/ER has Zn2+ 119 

transporters within its membrane. Localisation of ZnT7 and ZIP7 to the S/ER was first 120 

demonstrated in the heart by Tuncay et al. (2017). Turan and co-workers also subsequently 121 

reported localisation of ZIP8, ZIP14 and ZnT8 to the S/ER in H9C2 cells (embryonic rat 122 

myoblasts; Olgar et al., 2018a), but ZnT8 has not yet been detected at the gene level (Figure 123 

2).  124 

Zn2+ can be sequestered within other cell organelles. Labile Zn2+ is undetectable in the 125 

nucleus, even though it is estimated that 30-40% of total cellular Zn2+ resides in the nucleus 126 

(Vallee and Falchuk, 1993, Lu et al., 2016). The Golgi is estimated to contain between 0.2 127 

pM and 25.1 nM free Zn2+, while the mitochondria is estimated to contain between 0.14 and 128 

300 pM Zn2+ (Qin et al., 2011; Park et al., 2012; McCranor et al., 2012; Chabosseau et al., 129 
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2014; Kowada et al., 2020). Lysosomes have also been identified as Zn2+ stores although 130 

the concentration in these organelles has not yet been determined (Roh et al., 2012; Kukic 131 

et al., 2014).  132 

Organelle crosstalk shapes Ca2+ and Zn2+ signalling 133 

The importance of communication between cellular organelles and exchange of messenger 134 

molecules in well established (reviewed by Rossini et al., 2020). Membrane-contact sites 135 

regulate many cellular functions. In the heart, dysregulation of different organellar cross talk 136 

pathways results in pathology (reviewed by Dabravolski et al, 2022; Hulsurkar et al., 2022). 137 

Some examples of organellar crosstalk between Ca2+ and Zn2+ are provided below. 138 

Mitochondria and S/ER actively communicate with each other to promote a variety of cellular 139 

events. Mitochondria play multiple roles in cardiac cells, including regulation of energy 140 

homeostasis, signalling, metabolism, and cell death pathways. Crosstalk between the SR 141 

and mitochondria is important in normal cardiomyocyte viability and EC coupling and plays a 142 

key role in regulating Ca2+-signalling responses in cardiac muscle (Griffiths and Rutter, 2009; 143 

Eisner et al., 2013). While the SR and mitochondria are separate compartments with 144 

different functions, the interplay between the SR and mitochondria is essential in supporting 145 

cardiomyocyte contraction and relaxation and this organellar crosstalk facilitates adaptation 146 

to changing metabolic demands during EC coupling (Dorn II and Maack, 2013; Gorski et al., 147 

2015) 148 

Mitochondria have also been identified as intracellular Zn2+ stores. Mitochondrial free [Zn2+] 149 

is maintained at lower concentrations than found in the cytosol (Ye et al., 2001; Kambe et al., 150 

2015). Emerging research suggests that in cardiomyocytes the interplay between Zn2+ 151 

homeostasis and crosstalk between the mitochondria and S/ER is important in 152 

cardiovascular diseases (for a recent review see Dabravolski et al, 2022). Close contact 153 

between the ER and mitochondria was first described by Vance, who through fractionation, 154 

identified a pool of phospholipids which were suggested to be involved in the association of 155 
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the ER and mitochondria (Vance, 1990). These mitochondria associated membranes (MAMs) 156 

are the site at which the mitochondria and ER communicate functionally and through 157 

structural interaction (Reviewed in Giorgi et al., 2009). The role of MAMs in cardiovascular 158 

disease is reviewed in detailed by Wang et al (Wang, Y. et al., 2021). It is thought that 159 

intracellular Ca2+ machinery including the inositol 1,4,5-trisphosphate receptor (IP3R) may 160 

be involved in Ca2+ signalling across the mitochondria and ER (Hirota et al., 1999). Emerging 161 

evidence suggests that this may also be case with Zn2+.        162 

Work from the Turan group illustrates that in aged rats, aged-related increase in intracellular 163 

[Zn2+] is reduced using antioxidant MitoTEMPO, while age-related alterations in 164 

mitochondrial ZIP7, ZIP8 and ZnT8 are reversed by MitoTEMPO treatment (Olgar et al, 165 

2019). They also illustrate that key proteins involved in S/ER-mitochondrial coupling 166 

including mitofusin-protein (Mfn-1/2), mitochondrial fission protein (Fis-1) and S/ER-167 

mitochondrial bridge protein B-Cell receptor associated protein 31 (Bap31) are significantly 168 

altered when ZIP7 was silenced in high glucose and doxorubicin-treated H9C2 cells (Tuncay 169 

et al, 2019). Protein expression of stromal interaction molecule 1 (STIM1), a S/ER Ca2+ 170 

sensor that regulates store-operated calcium entry, is also significantly altered in 171 

hyperglycaemic and doxorubicin-treated H9C2 cells (Tuncay et al, 2019). In cardiomyocytes, 172 

it is suggested that STIM1 contributes to the development of cardiac hypertrophy and 173 

advancement of heart disease. Although, how STIM1 expression and functionality impacts 174 

S/ER Zn2+ and Zn2+ transporters has not yet been investigated (Bootman and Rietdorf, 2017). 175 

Tight coupling between Ca2+ and Zn2+ dynamics is also important for regulation of cellular 176 

functions in the heart. Research by Kamalov and colleagues showed that these ions are 177 

intrinsically coupled in aldosterone-treated rat hearts, suggesting their crosstalk contributes 178 

to altering the redox state of the cardiomyocytes (Kamalov et al., 2009). 179 

In the nucleus, Zn2+ plays an important role in gene transcription and in maintaining the 180 

stability of DNA through zinc-finger proteins, with Zn2+ deficiency leading to a reduction in 181 
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DNA repair and compromise of integrity due to destabilisation of DNA (Ho, 2004). The effect 182 

of nuclear Zn2+ dyshomeostasis on the heart/cardiovascular system has to our knowledge 183 

not yet been investigated. Zn2+ and zinc transporters have also been linked to lysosome 184 

function and cellular autophagy in breast tissue and neuronal cell types (Rivera et al., 2018; 185 

Kim et al., 2022). In Human Embryonic Kidney (HEK293) cells, Cuajungco and colleagues 186 

suggest association of zinc transporter transmembrane protein 163 (TMEM163) and cation 187 

channel transient receptor potential mucolipin 1 (TRPML1) is essential for Zn2+ homeostasis 188 

and disruption to this association may be a mechanism for Zn2+-overload in mucolipidosis 189 

type IV disease, a genetic neurodevelopmental disorder (Cuajungco et al., 2014). It is 190 

suggested that TRPLM1 agonists lead to cell death through a Zn2+-dependent lysosomal 191 

pathway with mitochondrial swelling in metastatic melanoma cells (Du et al., 2021). 192 

Interaction of Zn2+/zinc transporters and TRPLM1 have not been investigated in the heart, 193 

however Li and Li have reviewed the role of TRPLM1 and Ca2+ in cardiovascular disease (Li 194 

and Li, 2021). 195 

Coupling of Zn2+ and Ca2+ homeostasis in the heart 196 

Different divalent cations can often bind to the same or similar binding sites in proteins. In 197 

general, Ca2+ and Mg2+ favour protein binding sites composed of O-ligands (for example 198 

aspartic acid or glutamic acid sidechains), whereas Zn2+ favours protein binding sites that 199 

additionally possess N- and S-ligands (for example histidine and cysteine sidechains, 200 

respectively; reviewed by Vallee and Auld, 1990; Alberts et al., 1998; Bindreither and 201 

Lackner, 2009; Tang and Yang, 2013). Zn2+ sites are typically of a lower coordination 202 

number than Ca2+ or Mg2+ sites (Bock et al., 1995). Whilst a limited degree of overlap does 203 

exist (Zn 2+ also can bind aspartic acid and glutamic acid residues) it is important to point out 204 

that Zn2+ is typically present (both intracellularly and extracellularly) at a lower concentration 205 

than Ca2+ and Mg2+. This, together with the respective affinity of a particular site/region for 206 

each metal, determines which will bind (or whether competition between different metals 207 
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may occur). We have previously shown that the type-2 ryanodine receptor (RyR2) has both 208 

high affinity Zn2+ activation sites and low affinity Zn2+ inhibition sites. Although the inhibitory 209 

action of Zn2+ is likely a consequence of Zn2+ binding to the divalent inhibitory site of the 210 

channel, at least some of the activatory sites are distinct from the Ca2+ binding sites 211 

(Woodier et al., 2015).  212 

 213 

As well as ion channels, intracellular proteins are also capable of binding both Ca2+ and Zn2+. 214 

One example of this is CSQ2, a Ca2+-binding protein located in the S/ER important in Ca2+ 215 

regulation of RyR2 (Meissner and Henderson, 1987). CSQ2 has been shown to bind both 216 

Ca2+ and Zn2+, while Zn2+ is thought to modulate the function and structure of CSQ2 (Baksh 217 

et al., 1995). Baksh and colleagues report that CSQ2 has a large Ca2+-binding capacity 218 

(~40-50 moles of Ca2+ per mole of protein) with moderate affinity (average Kd ≈ 1 mM) 219 

(Baksh et al., 1995). For Zn2+, the binding capacity is much higher (~200 moles of Zn2+ per 220 

mole protein) exhibiting and average Kd ≈ 300 µM (Baksh et al., 1995). It is not known if 221 

CSQ2 binds Ca2+ and Zn2+ at the same sites, however other Ca2+ proteins which also bind 222 

Zn2+, such as histidine-rich Ca2+-binding protein in skeletal muscle and calmodulin in the 223 

brain, possess separate Zn2+ and Ca2+ binding sites (Baudier et al., 1983; Picello et al., 224 

1992). Furthermore, Zn2+-binding at Ca2+-effector sites in certain proteins may be unable to 225 

induce the same structural changes. For example, in a study by Warren and co-workers, it 226 

was shown that when Zn2+ bound to the EF-hand motif of calmodulin, the overall structure of 227 

the zinc-bound form resembled the apo-form rather than the calcium-bound form (Warren et 228 

al., 2007). 229 

The interaction of Ca2+ and Zn2+ is not a novel concept. Yamasaki and colleagues report that 230 

Zn2+ release in mast cells from the S/ER, in the form of a Zn2+ wave, was Ca2+-dependent 231 

(Yamasaki et al., 2007).  G-protein coupled receptor 39 (GPR39) was identified to be 232 

stimulated by Zn2+ by Holst et al. (2007) and the receptor is now often referred to as the Zn2+ 233 

-sensing receptor (ZnR). GPR39 is located on the plasma membrane and is thought to act 234 
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as an extracellular Zn2+ sensor to trigger activation of several G protein coupled pathways, 235 

including the mobilisation of intracellular Ca2+ through Gq-coupling (Popovics and Stewart, 236 

2011). The presence of a cellular zinc receptor with the ability to trigger Ca2+ release had 237 

much earlier been reported by Hershfinkel et al (2001). With relevance to G-protein coupled 238 

receptors (GPCRs), work by Hojyo and colleagues utilised Slc39a14-knock out mice to 239 

implicate ZIP14 in GPCR signalling, where it was found that mice that lack the ZIP14 240 

transporter display restricted growth (Hojyo et al., 2011). In the heart, GPCR-signalling can 241 

influence intracellular Ca2+ signalling, leading to altered cardiac contractility and 242 

cardiomyocyte apoptosis (Communal et al., 1999; Nash et al., 2001). While the influence of 243 

GPCRs will not be discussed further in this review, Salazar et al (2007) and Wang et al 244 

(2018) have reviewed cardiac GPCRs and the role of GPCRs in cardiovascular disease 245 

(Salazar et al., 2007; Wang et al., 2018).       246 

In 1995, Atar and colleagues demonstrated through use of live cell imaging and 247 

electrophysiology that Zn2+ could enter rat cardiac muscle through the LTCC (Atar et al., 248 

1995). While the role of the LTCC in Ca2+ handling is well established in EC coupling, little is 249 

known about the interaction between LTCCs and Zn2+ in the heart (Bodi et al., 2005). 250 

However, in the brain it was demonstrated that Zn2+ accumulation can occur in astrocytes (a 251 

sub-type of glial cells in the brain) through LTCC in a manner that is attenuated by ZnT1 252 

(Nolte et al., 2004). A subsequent publication by the same group reported that ZnT1 can 253 

regulate Zn2+ and Ca2+ permeation through LTCC in HEK293 cells. In these cells, expression 254 

of ZnT1 reduced Ca2+ influx by approximately 40% (Segal et al., 2004). The Moran 255 

laboratory have shown that ZnT1 is also capable of inhibiting LTCC (Beharier et al., 2007, 256 

2010; Levy et al., 2009). This work shows that crosstalk between ion channels and 257 

transporters can influence the cellular movement of ions, which suggests that the interaction 258 

of LTCC and ZnT1 can influence cardiac function. Increased ZnT1 protein expression as a 259 

result of rapid pacing in culture cardiomyocytes is suggested to lead to reduced Ca2+ influx 260 

through LTCC and contribute to atrial fibrillation in atrial tachycardia (Beharier et al., 2010). 261 
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Recent research by Wang et al. (Wang, J. et al., 2021) has highlighted a link between Ca2+ 262 

signalling and the expression of Zn2+ transporters. Using a cellular model of 263 

ischaemia/reperfusion (I/R) involving H9C2 cells and isolated murine cardiomyocytes in 264 

combination with Ca2+ and Zn2+ chelators, the group reported that Ca2+-mobilisation triggers 265 

a reduction in ZIP13 protein expression. This reduction of ZIP13 was reported to activate 266 

Ca2+/calmodulin-dependent protein kinase II and contribute to I/R injury.  267 

Transient receptor potential kinase ankyrin 1 (TRPA1) is located on the S/ER in cardiac cells, 268 

has also been linked to intracellular Ca2+ movement and is implicated in atherosclerosis and 269 

heart failure (reviewed by Wang et al., 2019). In neurons, TRPA1 has been shown to be 270 

Zn2+-activated at [Zn2+] of 300 nM and inhibitory at [Zn2+] >300 µM (Hu et al., 2009). As well 271 

as being Ca2+ permeable, TRPA1 is also Zn2+ permeable. The interaction between Zn2+ and 272 

Ca2+ and its impact on vascular tone regulation has been recently reported by Betrie et al. 273 

(Betrie et al., 2021). However, this has not been investigated in the heart. TRPML1, transient 274 

receptor potential mucolipin 7 (TRPM7) and transient receptor potential cation channel 275 

subfamily C member 6 (TRPC6) are also present in the heart, have been linked to cardiac 276 

pathologies and are permeable to both Ca2+ and Zn2+ (reviewed by Bouron et al., 2015).  277 

 278 

Actions of Zn2+ during excitation-contraction coupling 279 

Cardiac EC coupling is a process which governs contractility of the heart through the 280 

carefully controlled release of Ca2+ from the S/ER. An action potential travels down the 281 

transverse tubule of a cardiomyocyte where depolarisation activates LTCCs, leading to Ca2+ 282 

influx (Bers, 2002). The resulting [Ca2+] in the dyadic cleft – the intracellular space between 283 

the plasma membrane and SR – increases to >10 μM, leading to activation of localised 284 

RyR2s on the SR membrane (Bers, 2002). This increase in cytosolic [Ca2+] causes activation 285 

of multiple proximal RyR2 channels in a process termed calcium-induced calcium-release 286 

(Fabiato, 1983). Recruitment of RyR2 molecules and their synchronous activation is 287 
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necessary for a Ca2+ release event from the SR to occur (Zima et al., 2010). At low 288 

micromolar levels intracellular Ca2+ binds to troponin C of the troponin complex, causing 289 

troponin I inhibition and initiating a conformational change of the troponin-tropomyosin 290 

complex (de Tombe, 2003; Fearnley et al., 2011). This allows cross-bridge formation 291 

between myosin and actin in the presence of ATP and leads to a power stroke in which ATP 292 

is hydrolysed and the contractile machinery activated. This translates into cardiac muscle 293 

contraction, termed systole (Bers, 2002; de Tombe, 2003). As such, disruption to Ca2+ 294 

handling during EC coupling result in impaired cardiac contractility and function.   295 

The effects of Zn2+ on cardiomyocyte function are thought to involve a competitive effect of 296 

Zn2+ on Ca2+ regulatory mechanisms. In isolated cardiomyocytes extracellular Zn2+ reduces 297 

cardiomyocyte contractile functioning (Ciofalo and Thomas, 1965; Yi et al., 2012, 2013) and 298 

this is thought to be a consequence of extracellular Zn2+ being able to act as a charge carrier 299 

through LTCC resulting in a 70% reduction in the inward Ca2+ current (Atar et al., 1995). 300 

Studies have shown that cardiomyocytes exposed to extracellular Zn2+ display a 50% 301 

reduction in S/ER calcium load (Turan 2003; Qin et al., 2011; Yi et al., 2012) revealing a 302 

relationship between intracellular organelles, intracellular Zn2+ dynamics and intracellular 303 

Ca2+ movements.  304 

Zn2+-induced regulation of RyR2 305 

RyR2 is the route through which Ca2+ is released from the S/ER providing the necessary 306 

driving force for cellular contraction. Interestingly, RyR2 discriminates only slightly between 307 

divalent cations (Tinker and Williams, 1992), and has been shown to be permeable to Mg2+, 308 

Sr2+ and Ba2+ (Diaz-Sylvester et al., 2011), and very recently Zn2+
 (Gaburjakova and 309 

Gaburjakova, 2022). This suggests that Zn2+ may contribute to the RyR2 current during EC 310 

coupling. Recent work has also suggested that even a very small Zn2+ current in the lumen-311 

to-cytosol direction is sufficient to saturate the Zn2+ finger motif situated within the C-terminal 312 

tail of the four RyR2 subunits, and that binding of Zn2+ in this region is essential for RyR2 313 
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function (Gaburjakova and Gaburjakova, 2022). At the cellular level, Tuncay and co-workers 314 

showed ryanodine-sensitive Zn2+ transients with similar kinetics to Ca2+ in stimulated rat 315 

cardiomyocytes, providing further evidence that the S/ER is an intracellular Zn2+ pool and 316 

that Zn2+ levels are elevated during the cardiac cycle (Tuncay et al., 2011). They proposed 317 

that the rapid changes in free Zn2+ resulted from displacement by Ca2+ from intracellular 318 

binding sites that are highly sensitive to the redox status of the cardiomyocytes. It is not 319 

unreasonable to speculate that RyR2 also contributes to this Zn2+ signal.  320 

Zn2+ release from the S/ER is unlikely to trigger contraction, but this small release of Zn2+ 321 

may be sufficient to shape Ca2+ dynamics in cardiomyocytes by amplifying the Ca2+ 322 

response through RyR2. In our own study, it was shown at the single channel level that 323 

cytosolic Zn2+ can act as a high affinity activator of RyR2 (Woodier et al., 2015). 324 

Concentrations of free Zn2+ ≤1 nM potentiated RyR2 activity but the presence of activating 325 

levels of cytosolic Ca2+ was a requirement for channel activation. However, at concentrations 326 

of Zn2+ >1 nM, the main activating ligand switched from Ca2+ to Zn2+ and the requirement of 327 

Ca2+ for channel activation was removed. The ability of Zn2+ at a concentration of 1 nM to 328 

directly activate RyR2 reveals that RyR2 has a much higher affinity for Zn2+ than Ca2+ (by 329 ∼3-orders of magnitude). We also showed that Zn2+ modulated both the frequency and 330 

amplitude of Ca2+-waves in cardiomyocytes in a concentration-dependent manner and that 331 

reduction of the [Ca2+]i to sub-activating concentrations failed to abolish Ca2+-waves in the 332 

presence of 1 nM Zn2+. These data suggest that RyR2-mediated Ca2+-homeostasis is 333 

intimately related to intracellular Zn2+ levels. In the heart, RyR2 channels operate in closely 334 

packed clusters (Baddeley et al., 2009; Hayashi et al., 2009; Sheard et al., 2022). It is 335 

conceivable that the Zn2+ current mediated through RyR2, although small, is sufficient to 336 

sensitise and recruit other RyR2 channels to help shape cellular Ca2+ responses. The role of 337 

Zn2+ as both a high affinity activator of RyR2, modulator of channel function in the absence 338 

of Ca2+, and charge carrier that contributes to the RyR2-mediated current is a paradigm shift 339 

in our understanding of how RyR2 is activated during EC coupling. The recently identified 340 
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role of ZnT1 as a neuronal Ca2+/Zn2+ transporter (Gottesman et al., 2022) opens the 341 

suggestion that Zn2+ is delivered to RyR2 by a zinc transporter located in the S/ER or the 342 

plasma membrane. However, further work is required to address this question. What is 343 

certain is that Zn2+ and Ca2+ dynamics are intrinsically coupled. 344 

Mitsugumin-23 as a putative Zn2+-regulated Ca2+-permeable ion-channel  345 

RyR2 is not the only Ca2+-permeable ion channel localised to S/ER stores. TMEM109 or 346 

Mitsugumin-23 (MG23) is a 23 kDa transmembrane protein found in the S/ER and nuclear 347 

membranes of cardiac muscle cells and other tissues including skeletal muscle, epithelial 348 

cells, and the brain (Nishi et al., 1998). MG23 is a voltage-sensitive non-selective cation 349 

channel. MG23 has an unusual morphology as shown by electron microscopy and 3D 350 

particle reconstruction. Two types of particles were consistently observed; a small 351 

asymmetric particle composed of six homomeric subunits, and a larger bowl-shaped particle 352 

forming a hexametric mega structure composed of six asymmetric particles (Venturi et al., 353 

2011). The mega pore structure is hypothesised to readily assemble and disassemble, and 354 

this is functionally mirrored in the observed gating behaviour of MG23. Recombinant purified 355 

MG23 proteins reconstituted into planar lipid bilayers exhibit very unusual gating behaviour 356 

characterised by brief ‘flickery’ opening events and co-ordinated gating of multiple channels 357 

(Venturi et al., 2011; Reilly O’Donnell et al., 2017). It is likely that both the asymmetric 358 

particle and the mega structure both permit ion permeation, and that the unusual gating 359 

behaviour reflects the apparent instability of MG23. The MG23 channel has received little 360 

attention but given its location and its ability to conduct Ca2+, it is likely that it contributes to 361 

the Ca2+ leak and/or Ca2+ current in cardiac cells. Information regarding modulators of MG23 362 

activity is currently lacking but our recent work has shown that cytosolic Zn2+ increases 363 

MG23 activity (Reilly O’Donnell et al., 2017). Glutamate, aspartate, histidine and cysteine 364 

amino acid residues are commonly associated with Zn2+ binding sites. Surprisingly human 365 

MG23 does not have any cysteine residues and so lacks the classic C2H2 zinc finger motif. 366 
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MG23 does have a common conserved, H-x-x-x-E sequence which is attributed to Zn2+ 367 

binding in Zn2+ transporters including ZIP1, ZIP2 and ZIP3 (Figure 3; Kambe et al., 2015). 368 

Hydrophobicity plots published by Nishi et al (1998) suggests the part of the protein 369 

containing this sequence is localised in the SR lumen (Nishi et al, 1998). It is not known 370 

whether RyR2 and MG23 interact with each other or if MG23 is part of the calcium release 371 

unit. One could speculate that the recently described RyR2-mediated Zn2+ current might 372 

trigger recruitment and initiation of MG23-mediated Ca2+ fluxes, as summarised in Figure 4.  373 

Zn2+-induced regulation of IP3Rs 374 

The role of IP3R in EC coupling is considered of most importance during early cardiac 375 

development (Luo et al., 2020). As the S/ER matures, the number of RyR2 channels 376 

increases and in adult cardiomyocytes RyR2 mRNA levels are ~50-fold higher than IP3R 377 

(Moschella and Marks, 1993). Despite this, IP3Rs located in the nuclear envelope are 378 

involved in excitation–transcription coupling, thereby participating in the control of gene 379 

expression (Nakayama et al., 2010).  In mammalian cardiomyocytes Zn2+ plays a key role in 380 

excitation-transcription coupling where Zn2+ influx through LTCC mediates voltage-381 

dependent gene expression (Atar et al., 1995), suggesting a possible link between Zn2+ and 382 

IP3R in regulation of gene expression. In dissociated rat hippocampal neuronal cultures 383 

relatively small changes in cytosolic Zn2+ during stimulation altered expression levels of 931 384 

genes with IP3R type-2 being markedly upregulated (Sanfold et al., 2019). Zn2+ can be 385 

released from S/ER stores upon IP3R stimulation. The release of caged inositol 1,4,5-386 

trisphosphate (IP3) in cultured cortical neurons resulted in the release of Zn2+ from 387 

thapsigargin-sensitive stores, suggesting that sequestration of Zn2+ into the S/ER is 388 

important in regulation of intracellular levels and that Zn2+ is released following agonist 389 

stimulation (Stork and Li, 2010). How Zn2+ modulates IP3 signalling in the heart is an 390 

underexplored area of research. Although to date there is no demonstration that IP3Rs are 391 

directly modulated by Zn2+, IP3Rs have a C2H2 zinc finger domain in the C-terminal tail that 392 
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plays a critical role in regulation of channel activity (Furuichi et al., 1989). Individual or 393 

combined cysteine and histidine mutations within this conserved C2H2 domain resulted in 394 

the abolition of IP3R type-1 functioning (Uchida et al., 2003; Bhanumathy et al., 2012). This 395 

C2H2 C-terminal domain region is also highly conserved across the RyR family and is 396 

thought to be important in maintenance of the RyR2-mediated Zn2+ currents (Gaburjakova 397 

and Gaburjakova, 2022), suggesting a fundamental role for Zn2+ in intracellular Ca2+ channel 398 

regulation and cellular Ca2+ dynamics. 399 

 400 

Dysregulation of cardiac Zn2+ homeostasis in disease 401 

Role of Zn2+-binding proteins in disease 402 

The ability of serum albumin in the extracellular environment to bind and buffer Zn2+ is 403 

known to be compromised by the binding of fatty acids (Stewart et al., 2003; Lu et al., 2012; 404 

Sobczak et al., 2021a), which it transports through binding at up to seven different sites 405 

(Bhattacharya et al., 2000). Total plasma levels of fatty acids are generally quite low (<1 mol 406 

eq. relative to albumin; Sobczak et al., 2021a; Sobczak et al., 2021b) but can be elevated in 407 

some disease states. Although high plasma fatty acid levels are known to increase the risk 408 

of heart failure and sudden cardiac death (Pilz et al., 2007; Djoussé et al., 2013), how this 409 

dynamic might impact upon cellular Zn2+ uptake under physiological conditions has yet to be 410 

investigated.  411 

Zn2+ supplementation is known to induce cardiac MT expression (Wang et al., 2006), 412 

emphasising its importance in regulating zinc homeostasis in the heart. Several studies have 413 

highlighted a protective role for MTs in helping to prevent/reduce cardiomyopathy and 414 

oxidative stress. It has been shown that overexpression of MT in cell and animal models 415 

protects cardiomyocytes from diabetic cardiomyopathy (Liang et al., 2002; Cai et al., 2006; 416 

Huang et al., 2021). Cardiac-specific overexpression of MT reduces cigarette smoking 417 
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exposure-induced myocardial contractility and mitochondrial damage (Hu et al., 2013). Zinc-418 

induced MT expression has been shown to reduce doxorubicin-induced damage in 419 

cardiomyocytes (Kimura et al., 2000; Jing et al., 2015). In addition, alcohol-induced cardiac 420 

hypertrophy and fibrosis were observed in metallothionein-knockout (MT-KO) mice fed an 421 

alcohol-containing liquid diet for 2 months but not in wildtype mice fed the same diet (Wang 422 

et al., 2005). Similarly, doxorubicin-induced cardiomyopathy was found to be more severe in 423 

MT-KO mice in than wildtype mice (Kimura et al., 2000).  424 

The mechanisms by which MTs mediate their cardioprotective effects have been examined. 425 

MT protection against doxorubicin-induced cytotoxicity was found to be at least partially 426 

mediated via the JAK2/STAT3 pathway in murine cardiomyocytes (Rong et al., 2016). MT-427 

induced inhibition of the NF-κB pathway has been linked to prevention of age-associated 428 

cardiomyopathy (Cong et al., 2016). A recent study suggests that MT2A protects 429 

cardiomyocytes from I/R through p38 inhibition (Zhao et al., 2021).  It has also been shown 430 

that MT inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 431 

activation in cardiomyocytes (Wang et al., 2001). Collectively, these studies demonstrate 432 

that MTs act to induce the expression of cardioprotective genes and reduce mitochondrial 433 

damage due to oxidative stress in cardiac tissue. 434 

Zinc transporter expression in cardiac dysfunction 435 

In cardiac dysfunction, intracellular Zn2+ levels are known to be altered. A role for Zn2+ in 436 

ischaemia was first established in cerebral ischaemia in rat brain in 1990 (Tønder et al., 437 

1990), and later demonstrated in isolated rat cardiomyocytes where an ∼30-fold increase in 438 

[Zn2+]i was observed during ischaemia that rapidly decreased upon reoxygenation (Ayaz and 439 

Turan, 2006). Hare et al observed an accumulation of [Zn2+]i in the left ventricle of rat cardiac 440 

tissue following I/R (Hare et al., 2009).  441 

Alterations in the expression levels of zinc transporters are associated with several 442 

cardiovascular events (Table 4). Hara and colleagues suggest that modulation of ZIP13 443 
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expression may be important for inflammatory signalling responses in the heart following in 444 

vitro treatment with doxorubicin (Hara et al., 2022). In S/ER, ZIP7 and ZnT7 expression is 445 

reported to be altered in type 2 diabetes and high glucose conditions, which are both 446 

considered risk factors for cardiovascular disease. Protein expression of ZIP7 was 447 

significantly decreased while expression of ZnT7 was significantly increased in 448 

cardiomyocytes cultured in high glucose conditions and in hearts excised from a diabetic rat 449 

model (Tuncay et al., 2019). Tuncay et al also identified significant alterations in ZIP7 and 450 

ZnT7 S/ER protein expression in H9C2 cells treated with doxorubicin to simulate heart 451 

failure (Tuncay et al., 2017). Furthermore, in cardiac tissue from individuals with heart failure 452 

the expression of ZIP14 and ZnT8 was significantly increased and ZIP8 levels decreased 453 

relative to controls (Olgar et al, 2018a). Screening all ZIP and ZnT transporters, Bodiga and 454 

colleagues reported alterations in multiple transporters in cardiomyocytes exposed to a 455 

hypoxia/reoxygenation protocol, among which were the S/ER-located ZIP7 and ZIP14 456 

transporters (Bodiga et al., 2017). 457 

Zn2+ dyshomeostasis in EC coupling 458 

The importance of tightly controlled cellular Zn2+ homeostasis for the prevention of cardiac 459 

dysfunction is beginning to emerge (Alvarez-Collazo et al., 2012; Turan and Tuncay, 2017). 460 

In animal models, dysregulated levels of intracellular Zn2+ are associated with severe cardiac 461 

degeneration in Duchenne muscular dystrophy (Crawford and Bhattacharya, 1997). Male 462 

mice deficient of ZnT5 have significantly higher frequency of bradyarrhythmias and mortality 463 

rate compared with control animals (Inoue et al., 2002). Also, Zn2+ significantly contributes to 464 

oxidant-induced alterations of EC coupling (Turan et al., 1997). Defective Zn2+ handling 465 

contributes to the cellular pathology of certain cardiomyopathies including altered 466 

contractility and heart failure (Kleinfeld and Stein, 1968; Kalfakakou et al., 1993; Little et al., 467 

2010). The underlying mechanism of how Zn2+ contributes to these pathologies is still not 468 

fully understood. Cytosolic Zn2+ has recently been shown to act as a high affinity activator of 469 

RyR2, able to activate channels even when [Ca2+]i is subactivating (Woodier et al., 2015; 470 
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Reilly O’Donnell et al., 2017) providing an important mechanistic explanation for how Zn2+ 471 

dyshomeostasis can result in altered Ca2+ dynamics and cardiac dysfunction. An emerging 472 

and important research area is therefore to understand how altered Zn2+ levels evoke 473 

deleterious effects on cardiac functioning. 474 

 475 

Zn2+ dyshomeostasis in cardiac morphogenesis 476 

Zinc transporters are of key importance in embryonic development and cardiac 477 

morphogenesis. Knock-out of ZnT1 or ZIP7 is embryonically lethal (Andrews et al., 2004; 478 

Woodruff et al., 2018). Knock-out of ZIP8 is also embryonically lethal in mice with 479 

hypertrabeculation and noncompaction of the ventricles observed, while knock-down of 480 

ZIP10 in zebrafish results in heart deformities (Taylor et al., 2016; Lin et al., 2018). 481 

Additionally, recent research shows primary neonatal cardiomyocytes from ZIP13 knock-out 482 

mice display arrhythmic beating (Hara et al., 2022). 483 

The findings of Inoue and colleagues are also noteworthy, where ZnT5 knock-out resulted in 484 

male-specific sudden death from bradyarrhythmia (Inoue et al., 2002). Loss of function 485 

mutation of ZnT5 is reported to result in lethal cardiomyopathy and premature death in case 486 

study by Lieberwirth et al (2021). This illustrates that zinc transporters as well as calcium 487 

channels are necessary in cardiac development and function.  488 

Zn2+ dyshomeostasis as a new pharmacological target in cardiovascular disease 489 

Sacubitril/valsartan (formally known as LCZ696) is an active substance in the drug Entersto, 490 

which is used to treat chronic heart failure (Khali et al., 2018). Sacubitril/valsartan is an 491 

angiotensin II type 1 receptor blocker that inhibits neprilysin and is currently being trialled for 492 

treatment of patients with chronic systolic heart failure (ClinicalTrials.gov Identifier: 493 

NCT01035255; McMurray et al., 2013). These trials are of interest as neprilysin is a zinc-494 

dependent plasma membrane type II integral protein metallopeptidase which contains a 495 
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Zn2+-binding site on its extracellular C-terminal domain (Fulcher and Kenny, 1983; Nalivaeva 496 

et al., 2020), linking Zn2+ dependent processes with cardiovascular function. 497 

There have also been trials examining the usefulness of Zn2+ chelation. The TACT trial 498 

(NCT00044213) investigated the effect of chelation therapy using EDTA on the occurrence 499 

of subsequent cardiovascular events in participants with previous myocardial infarction 500 

(Lamas et al., 2013). EDTA is a chelator of not only Zn2+, but also of Ca2+, Mg2+, Fe2+/Fe3+, 501 

Cd2+ and Cu2+ (Lamas et al., 2013). Reactive binding of EDTA to metals is as follows: 502 

Cr2+ >Fe3+ >Cu2+ >Pb2+ >Zn2+ >Cd2+ >Co2+ >Fe2+ >Mn2+ >Ca2+ >Mg2+, therefore EDTA will 503 

preferentially bind Zn2+ (estimated Kd 10-16 M) over other divalent metals in plasma including 504 

Ca2+ (Kd approximately 10-11 M) due to the high affinity EDTA has for Zn2+ (Waters et al., 505 

2001; commentary by Nyborg and Peersen 2004). The trial concluded that treatment with 506 

EDTA modestly reduced the risk of adverse cardiovascular outcomes. However, the 507 

evidence was not sufficient to justify the implementation of chelation therapy as a routine 508 

post-myocardial infarction treatment (Lamas et al., 2013). The research has been continued 509 

in the TACT2 trial, which is focusing on chelation therapy in patients with diabetes who have 510 

had a previous myocardial infarction (NCT02733185; U.S. National Library of Medicine, 511 

2022). This trial is due for completion in December 2023 (U.S. National Library of Medicine, 512 

2022). The targeting of Zn2+ to improve patient outcome in myocardial infarction and heart 513 

failure have not yet resulted in development of new cardiovascular disease treatments. In 514 

addition, Zn2+ levels cannot be used as a biomarker for cardiovascular disease as several 515 

factors including dietary intake and blood glucose levels can alter plasma Zn2+ concentration 516 

and zinc handling (Fernández-Cao et al., 2019). However, it is possible that chelation of Zn2+ 517 

in the short term, for example during a myocardial infarction, would help to attenuate the 518 

damage observed post-myocardial infarction.  519 

   520 

Concluding remarks 521 
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The role of ZIPs, ZnTs and Zn2+-binding proteins in the heart provides novel insights into the 522 

regulation of cellular Zn2+ and its role as a signalling molecule in cardiac tissue. The ability of 523 

Zn2+ to act as a regulator and/or activator of cellular Ca2+ channels suggest a new and 524 

important role for Zn2+ in cardiac function under both physiological and pathological 525 

conditions, raising the suggestion that correction of Zn2+ dyshomeostasis may be a novel 526 

therapeutic strategy to combat cardiovascular disease.  527 

In comparison to Ca2+, there has been relatively little work investigating the biological 528 

function of Zn2+ in the heart. Consideration of accurate [Zn2+]i measurements should be 529 

emphasized as failure to acknowledge dynamic Zn2+ changes could lead to significant 530 

overestimation of [Ca2+]i. Indeed, many of the tools routinely used to measure Ca2+ also bind 531 

Zn2+, challenging us to consider how many processes driven by Ca2+ may also be in part, 532 

attributable to Zn2+ (Stork and Li, 2006; Figueroa et al., 2014; Fujikawa et al., 2015). Thanks 533 

to the development of appropriate tools enabling us to accurately monitor Zn2+ fluxes, and 534 

the ability of these methods to distinguish Zn2+ from Ca2+ in biological systems, the field of 535 

zinc biology is currently advancing rapidly (for a comprehensive overview of different Zn2+ 536 

sensors see Huang and Lippard, 2012; Carpenter et al., 2016; Pratt et al., 2021;). Much has 537 

been learned relating to the intrinsic relationships that exist between Zn2+ and Ca2+ 538 

homeostatic mechanisms and their roles in heart disease. However, more work is needed to 539 

fully understand the role of Zn2+ in the heart. This includes better understanding of cellular 540 

Zn2+ dynamics, how Zn2+ is regulated and the biological targets of labile Zn2+. This will 541 

require a greater appreciation of the spatio-temporal patterning of intracellular Zn2+ fluxes in 542 

the heart and how these relate to cardiac functioning in health and disease. 543 
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Figure Legends 550 

Figure 1. Zn2+ transporters in the heart. A) Localisation of zinc transporters in the heart. 551 

ZIP transporters are illustrated in blue in the left of the image while ZnT transporters are 552 

coloured in red on the right of the image. Transporters with confirmed protein expression 553 

through the Human Protein Atlas or reported in published western blot/immunofluorescent in 554 

heart tissue homogenates, isolated cardiomyocytes, or cardiac cell lines (such as H9C2 cells) 555 

were included.  Rough endoplasmic reticulum (rER), sarcoplasmic/endoplasmic reticulum 556 

(S/ER), trans-Golgi network (TGN). Created with BioRender.com. B) RNA expression of Zn2+ 557 

transporters in normalized protein-coding transcripts per million (nTPM) in human heart. 558 

Figure was created using information available from the Human Protein Atlas, Uhlén et al., 559 

2015 and Choi et al., 2018.  560 

Figure 2. RNA expression of S/ER-located Zn2+ transporters. A) Mean reads per kilobase 561 

of transcript per million reads mapped (RPKM) of Zn2+ transporters in human heart (RNA-562 

Seq data from Fagerberg et al., 2014). B) Mean RPKM of Zn2+ transporters in rat heart (21 563 

weeks; RNA-Seq data from Yu et al., 2014). C) Mean RPKM of Zn2+ transporters in mouse 564 

heart (RNA-Seq data from Yue et al., 2014).  565 

Figure 3. Possible Zn2+ binding sites on MG23. Partial sequence alignment of human zinc 566 

transporters ZIP1, ZIP2 and ZIP3 illustrating the conserved Zn2+ binding motif, H-x-x-x-E. 567 

This motif is also conserved across human (h), rat (r) and murine (m) MG23.  568 

Figure 4. Graphical summary of the suggested role of MG23 in cardiovascular function. 569 

MG23 may contribute to the release of Ca2+ from S/ER Ca2+ stores. In pathophysiological 570 

conditions where intracellular Zn2+ is elevated, the activity of MG23 will be increased, leading 571 

to increased release of Ca2+ from the S/ER. Increased [Zn2+]i will result in activation of RyR2. 572 
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Dotted lines and question marks suggest putative interactions/functions. Figure created with 573 

BioRender.com.  574 
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Table 3.  
Sub-cellular localisation of zinc transporters. 

 
 
Sub-cellular localisation of ZIPs and ZnTs as illustrated in figure 1A. PM – Plasma 
membrane; TGN – Trans-Golgi Network; S/ER – Sarco/Endoplasmic Reticulum.     

Zinc 
Transporter 

Localisation Detection Method Reference 
Immuno-
fluorescence 

Cell fractionation 
and 
immunoblotting 

Zn2+ influx/efflux 
assay/measurement 
of [Zn2+] 

ZIP1 PM   Gaither and Eide, 2001.
 Mitochondria    Cho et al., 2019. 

ZIP2 PM    Gaither and Eide, 2000. 
ZIP3 PM  Kelleher and Lönnerdal, 

2003. 
ZIP6 PM  

 
Taylor and Nicholson, 
2003. 

ZIP7 TGN    Huang et al., 2005. 
 S/ER    Tuncay et al., 2017. 
 Mitochondria    Tuncay et al., 2019. 

ZIP8 PM   Dalton et al., 2005. 
 Lysosomes    Aydemir et al., 2009. 
 Mitochondria 

S/ER 
 

 
Olgar et al., 2019. 

ZIP9 PM    Thomas et al., 2014. 
 TGN    Matsuura et al., 2014. 

ZIP10 PM    Lichten et al., 2011. 
ZIP11 TGN  Kelleher et al., 2012. 

 Nucleus    Martin et al., 2013. 
ZIP13 TGN    Fukada et al., 2008. 
ZIP14 PM  Taylor et al., 2003. 

 S/ER    Olgar et al., 2018a 
ZnT1 PM    Palmiter and Findley, 

1995. 
ZnT2 Lysosomes    Palmiter et al., 1996. 
ZnT5 TGN    Kambe et al., 2002. 
ZnT6 TGN    Suzuki et al., 2005. 
ZnT7 TGN    Kirschke and Huang, 

2003. 
 S/ER   Tuncay et al., 2017. 
 Mitochondria    Tuncay et al., 2019. 

ZnT8 Mitochondria 
S/ER 

 
 

 Olgar et al., 2019. 

ZnT9 Nucleus    Sim and Chow, 1999. 
 Mitochondria  Kowalczky et al., 2021.



  
1

Ta
bl

e 
4.

  
St

ud
ie

s 
ex

am
in

in
g 

zi
nc

 tr
an

sp
or

te
rs

 in
 c

ar
di

ov
as

cu
la

r d
is

ea
se

. 

 
Zi

nc
 

Tr
an

sp
or

te
r 

Ex
pe

rim
en

ta
l M

od
el

 
Pr

ot
oc

ol
Qu

an
tif

ica
tio

n 
Ex

pr
es

sio
n 

ch
an

ge
Re

fe
re

nc
e

Pr
ot

ei
n 

Ex
pr

es
sio

n 
 

m
RN

A 
Ex

pr
es

sio
n 

ZI
P1

 
Ca

rd
io

m
yo

cy
te

s (
CM

s)
 

iso
la

te
d 

fro
m

 S
pr

ag
ue

-D
aw

le
y 

ra
ts

 (W
T,

 m
al

e,
 8

 w
ee

ks
) 

In
 v

iv
o

ch
ro

ni
c 

al
do

st
er

on
e/

sa
lt 

tr
ea

tm
en

t, 
4 

w
ee

ks
 


 

ñ ~4
.2

-fo
ld

 
 

Ka
m

al
ov

 e
t a

l.,
 2

00
9

 
CM

s i
so

la
te

d 
fro

m
 W

ist
ar

 
Ky

ot
o 

ra
ts

 
In

 v
itr

o
hy

po
xia

/r
eo

xy
ge

na
tio

n 
(H

/R
)  


 

ñ
hy

po
xia

0.
5 

to
 ~

1.
4 

AU
 

ñ
 H

/R
 

0.
5 

to
 ~

0.
7 

AU
 

Bo
di

ga
 e

t a
l.,

20
17

ZI
P2

 
CM

s i
so

la
te

d 
fro

m
 W

ist
ar

 
Ky

ot
o 

ra
ts

 
In

 v
itr

o
H/

R


 
ñ

hy
po

xia
1 

to
 ~

1.
3 

AU
 

ò
 H

/R
 

1 
to

 ~
0.

8 
AU

 (N
S)

 

Bo
di

ga
 e

t a
l.,

20
17

 
He

ar
ts

 fr
om

 C
57

BL
/6

 m
ice

 
(W

T,
 m

al
e,

 8
-1

0 
w

ee
ks

) 
In

 v
iv

o
isc

ha
em

ia
/r

ep
er

fu
sio

n 
by

 le
ft 

an
te

rio
r d

es
ce

nd
in

g 
co

ro
na

ry
 a

rt
er

y 
oc

clu
sio

n.
 




 
ñ

pr
ot

ei
n

~1
50

%
 

ñ
 m

RN
A 

~4
-fo

ld
 

Du
 e

t a
l.,

20
19

ZI
P3

 
CM

s i
so

la
te

d 
fro

m
 W

ist
ar

 
Ky

ot
o 

ra
ts

 
In

 v
itr

o
H/

R


 
ñ

hy
po

xia
1 

to
 ~

1.
6 

AU
 

ñ
 H

/R
 

1 
to

 ~
1.

6 
AU

 

Bo
di

ga
 e

t a
l.,

20
17

ZI
P6

 
CM

s i
so

la
te

d 
fro

m
 W

ist
ar

 
Ky

ot
o 

ra
ts

 
In

 v
itr

o
H/

R


 
ñ

hy
po

xia
0.

8 
to

 ~
1 

AU
 (N

S)
 

ò
 H

/R
 

0.
8 

to
 ~

0.
7 

AU
 (N

S)

Bo
di

ga
 e

t a
l.,

20
17

ZI
P7

 
CM

s i
so

la
te

d 
fro

m
 W

ist
ar

 
Ky

ot
o 

ra
ts

 
In

 v
itr

o
H/

R


 
ñ

hy
po

xia
1 

to
 ~

2 
AU

 
ò

 H
/R

 
1 

to
 ~

0.
9 

AU
 (N

S)
 

Bo
di

ga
 e

t a
l.,

20
17



  
2

ZI
P7

 
He

ar
ts

 fr
om

 W
ist

ar
 ra

ts
 (W

T,
 

m
al

e,
 2

 m
on

th
s)

 
In

 v
iv

o
tr

an
sv

er
se

 a
or

tic
 

co
ns

tr
ict

io
n 


 

ñ ~2
-fo

ld
 

Ol
ga

r e
t a

l.,
20

18
b

 
H9

C2
 ce

ll 
ly

sa
te

s 
In

 v
itr

o
do

xo
ru

bi
cin

 (D
OX

) 
tr

ea
tm

en
t 


 

ñ ~1
.5

-fo
ld

 
Tu

nc
ay

 e
t a

l.,
20

19

 
CM

s i
so

la
te

d 
fro

m
 C

57
BL

/6
 

m
ice

 (W
T,

 m
al

e,
 8

-1
0 

w
ee

ks
) 

In
 v

itr
o

H/
R


 

ñ ~0
.7

 to
 ~

1.
2 

Zh
an

g 
et

 a
l.,

 2
02

1

 
He

ar
ts

 fr
om

 W
ist

ar
 ra

ts
 (W

T,
 

m
al

e,
 2

50
-3

50
 g

) 
Ex

 v
iv

o
isc

ha
em

ia
/r

ep
er

fu
sio

n
(I/

R)
 


 

ñ ~0
.7

5 
to

 ~
0.

9 
Zh

an
g 

et
 a

l.,
 2

02
1

 
He

ar
ts

 fr
om

 C
57

BL
/6

 m
ice

 
(W

T,
 m

al
e,

 8
-1

0 
w

ee
ks

) 
In

 v
iv

o
I/R

 b
y 

le
ft 

an
te

rio
r 

de
sc

en
di

ng
 co

ro
na

ry
 a

rt
er

y 
oc

clu
sio

n 




 
ñ

pr
ot

ei
n

~0
.8

 to
 ~

1 
ñ

 m
RN

A 
fro

m
 ~

1 
to

 2
 

Zh
an

g 
et

 a
l.,

 2
02

1

ZI
P8

 
H9

C2
 ce

ll 
ly

sa
te

s 
In

 v
itr

o
DO

X-
tr

ea
tm

en
t


 

ò ~0
.4

-fo
ld

 
Ol

ga
r e

t a
l.,

20
18

a

 
Hu

m
an

 h
ea

rt
 fa

ilu
re

 ti
ss

ue
 

Pa
tie

nt
s w

ith
 e

nd
-s

ta
ge

 h
ea

rt
 

fa
ilu

re
 


 

ò ~0
.5

-fo
ld

 
Ol

ga
r e

t a
l.,

20
18

a

 
He

ar
ts

 fr
om

 W
ist

ar
 ra

ts
 (W

T,
 

m
al

e,
 2

 m
on

th
s)

 
In

 v
iv

o
tr

an
sv

er
se

 a
or

tic
 

co
ns

tr
ict

io
n 


 

ò ~0
.5

-fo
ld

 
Ol

ga
r e

t a
l.,

20
18

b

ZI
P9

 
CM

s i
so

la
te

d 
fro

m
 W

ist
ar

 
Ky

ot
o 

ra
ts

 
In

 v
itr

o
H/

R


 
ñ

hy
po

xia
1 

to
 ~

2 
AU

 
≈ 

H/
R 

Bo
di

ga
 e

t a
l.,

20
17

ZI
P1

0 
CM

s i
so

la
te

d 
fro

m
 W

ist
ar

 
Ky

ot
o 

ra
ts

 
In

 v
itr

o
H/

R


 
ñ

hy
po

xia
1 

to
 ~

1.
5 

AU
 

ñ
 H

/R
 

1 
to

 ~
1.

2 
(N

S)
 

Bo
di

ga
 e

t a
l.,

20
17

ZI
P1

1 
CM

s i
so

la
te

d 
fro

m
 W

ist
ar

 
Ky

ot
o 

ra
ts

 
In

 v
itr

o
H/

R


 
ñ

hy
po

xia
1 

to
 ~

2 
AU

 
≈ 

H/
R 

Bo
di

ga
 e

t a
l.,

20
17

ZI
P1

2 
Hu

m
an

 p
ul

m
on

ar
y 

ar
te

ry
 

sm
oo

th
 m

us
cle

 ce
lls

 
In

 v
itr

o
hy

po
xia

 in
cu

ba
tio

n


 
ñ ~3

-fo
ld

 
Zh

ao
 e

t a
l.,

 2
01

5

ZI
P1

3 
CM

s i
so

la
te

d 
fro

m
 W

ist
ar

 
Ky

ot
o 

ra
ts

 
In

 v
itr

o
H/

R


 
ñ

hy
po

xia
0.

5 
to

 ~
2 

AU
 

≈ 
H/

R 

Bo
di

ga
 e

t a
l.,

20
17

ZI
P1

3 
He

ar
t t

iss
ue

 fr
om

 C
57

BL
/6

 
In

 v
iv

o
le

ft 
an

te
rio

r 



 

ò
pr

ot
ei

n
W

an
g 

et
 a

l.,
 2

02
1



  
3

m
ice

 (W
T,

 m
al

e,
 8

-1
0 

w
ee

ks
) 

de
sc

en
di

ng
 co

ro
na

ry
 a

rt
er

y 
lig

at
io

n 
~0

.5
-fo

ld
ò

 m
RN

A 
~0

.6
-fo

ld
 

 
H9

C2
 ce

ll 
ly

sa
te

s 
In

 v
itr

o
H/

R


 
ò ~0

.6
-fo

ld
 

W
an

g 
et

 a
l.,

 2
02

1

 
Ne

on
at

al
 C

M
s i

so
la

te
d 

fro
m

 
ne

w
-b

or
n 

c5
7B

L/
6N

 m
ice

 
In

 v
itr

o
DO

X-
tr

ea
tm

en
t


 

ò ~0
.7

5 
to

 ~
0.

1 
Ha

ra
et

 a
l.,

20
22

 
He

ar
t t

iss
ue

 fr
om

 c5
7B

L/
6N

 
m

ice
 

In
 v

iv
o

in
tr

ap
er

ito
ne

al
 D

OX
 

in
je

ct
io

n 


 
ò ~1

 to
 ~

0.
6 

Ha
ra

 e
t a

l.,
20

22

ZI
P1

4 
CM

s i
so

la
te

d 
fro

m
 W

ist
ar

 
Ky

ot
o 

ra
ts

 
In

 v
itr

o
H/

R


 
ñ

hy
po

xia
0.

5 
to

 ~
2 

AU
 

≈ 
H/

R 

Bo
di

ga
 e

t a
l.,

20
17

 
H9

C2
 ce

ll 
ly

sa
te

s 
In

 v
itr

o
DO

X-
tr

ea
tm

en
t


 

ñ ~1
.5

-fo
ld

 
Ol

ga
r e

t a
l.,

20
18

a

 
Hu

m
an

 h
ea

rt
 fa

ilu
re

 ti
ss

ue
 

Pa
tie

nt
s w

ith
 e

nd
-s

ta
ge

 h
ea

rt
 

fa
ilu

re
 


 

ñ ~2
-fo

ld
 

Ol
ga

r e
t a

l.,
20

18
a

 
He

ar
t t

iss
ue

 fr
om

 W
ist

ar
 ra

ts
 

(W
T,

 m
al

e,
 2

 m
on

th
s)

 
In

 v
iv

o
tr

an
sv

er
se

 a
or

tic
 

co
ns

tr
ict

io
n 


 

ñ ~2
.5

-fo
ld

 
Ol

ga
re

t a
l.,

 2
01

8b

Zn
T1

 
Cu

ltu
re

s C
M

s f
ro

m
 ra

ts
 (1

 to
 2

 
da

ys
 o

ld
) 

In
 v

itr
o

ra
pi

d 
pa

cin
g


 

ñ 21
4.

4%
 

Be
ha

rie
r e

t a
l.,

20
07

 
He

ar
t h

om
og

en
at

es
 fr

om
 

Sp
ra

gu
e-

Da
w

le
y 

ra
ts

 (W
T,

 
m

al
e,

 2
50

-3
50

 g
) 

In
 v

iv
o

ra
pi

d 
at

ria
l p

ac
in

g


 
ñ 14

8%
 

Be
ha

rie
r e

t a
l.,

20
07

 
Hu

m
an

 ca
rd

ia
c t

iss
ue

 
Ca

rd
ia

c t
iss

ue
 o

bt
ai

ne
d 

fro
m

 
co

nt
ro

l a
nd

 a
tr

ia
l f

ib
ril

la
tio

n 
pa

tie
nt

s 


 

ñ 0.
73

 to
 1

.8
8 

Et
zio

n 
et

 a
l.,

 2
00

7

 
CM

s f
ro

m
 S

pr
ag

ue
-D

aw
le

y 
ra

ts
 (W

T,
 m

al
e,

 8
 w

ee
ks

) 
In

 v
iv

o
ch

ro
ni

c 
al

do
st

er
on

e/
sa

lt 
tr

ea
tm

en
t, 

4 
w

ee
ks

 


 

ñ ~2
-fo

ld
 

Ka
m

al
ov

 e
t a

l.,
 2

00
9

 
CM

s i
so

la
te

d 
fro

m
 W

ist
ar

 
Ky

ot
o 

ra
ts

 
In

 v
itr

o
H/

R


 
ñ

hy
po

xia
1 

to
 ~

2 
AU

 
ñ

 
1 

to
 ~

1.
2 

AU
 (N

S)
 

Bo
di

ga
 e

t a
l.,

20
17

Zn
T2

 
CM

s i
so

la
te

d 
fro

m
 W

ist
ar

 
In

 v
itr

o
H/

R


 
ñ

hy
po

xia
Bo

di
ga

 e
t a

l.,
20

17



  
4

Ky
ot

o 
ra

ts
 

0.
5 

to
 ~

0.
6 

AU
 (N

S)
ñ

 H
/R

 
0.

4 
to

 ~
1.

4 
AU

 
Zn

T5
 

CM
s i

so
la

te
d 

fro
m

 W
ist

ar
 

Ky
ot

o 
ra

ts
 

In
 v

itr
o

H/
R


 

≈
hy

po
xia

ñ
 H

/R
 

0.
8 

to
 1

.2
 A

U 

Bo
di

ga
 e

t a
l.,

20
17

Zn
T7

 
He

ar
ts

 fr
om

 W
ist

ar
 ra

ts
 (W

T,
 

m
al

e,
 2

 m
on

th
s)

 
In

 v
iv

o
tr

an
sv

er
se

 a
or

tic
 

co
ns

tr
ict

io
n 


 

ò ~0
.6

-fo
ld

 
Ol

ga
r e

t a
l.,

20
18

b

 
H9

C2
 ce

ll 
ly

sa
te

s 
In

 v
itr

o
DO

X-
tr

ea
tm

en
t


 

ò ~0
.5

-fo
ld

 
Tu

nc
ay

 e
t a

l.,
20

19

Zn
T8

 
H9

C2
 ce

ll 
ly

sa
te

s 
In

 v
itr

o
DO

X-
tr

ea
tm

en
t


 

ñ ~1
.6

-fo
ld

 
Ol

ga
r e

t a
l.,

20
18

a

 
Hu

m
an

 h
ea

rt
 fa

ilu
re

 ti
ss

ue
 

Pa
tie

nt
s w

ith
 e

nd
-s

ta
ge

 h
ea

rt
 

fa
ilu

re
 


 

ñ ~2
-fo

ld
 

Ol
ga

r e
t a

l.,
20

18
a

 
He

ar
ts

 fr
om

 W
ist

ar
 ra

ts
 (W

T,
 

m
al

e,
 2

 m
on

th
s)

 
In

 v
iv

o
tr

an
sv

er
se

 a
or

tic
 

co
ns

tr
ict

io
n 


 

ñ ~1
.5

-fo
ld

 
Ol

ga
r e

t a
l.,

20
18

b

Zn
T9

 
CM

s i
so

la
te

d 
fro

m
 W

ist
ar

 
Ky

ot
o 

ra
ts

 
In

 v
itr

o
H/

R


 
ñ

hy
po

xia
0.

8 
to

 ~
1 

AU
 (N

S)
 

ñ
 H

/R
 

0.
8 

to
 ~

1.
1 

AU
 (N

S)

Bo
di

ga
 e

t a
l.,

20
17

 C
ha

ng
es

 o
bs

er
ve

d 
in

 Z
IP

s 
an

d 
Zn

Ts
 in

 c
on

di
tio

ns
 o

f c
ar

di
ov

as
cu

la
r d

is
ea

se
 in

cl
ud

in
g 

ex
pe

rim
en

ta
l m

od
el

, e
xp

re
ss

io
n 

ch
an

ge
 a

nd
 

st
ud

y.
 A

ll 
ex

pr
es

si
on

 c
ha

ng
es

 a
re

 s
ig

ni
fic

an
t e

xc
ep

t w
he

re
 N

S 
(n

ot
 s

ig
ni

fic
an

t) 
is

 s
pe

ci
fie

d.
 C

M
s 

– 
ca

rd
io

m
yo

cy
te

s;
 D

O
X 

– 
do

xo
ru

bi
ci

n;
 

H
/R

 –
 h

yp
ox

ia
/re

ox
yg

en
at

io
n;

 I/
R

 –
 is

ch
ae

m
ia

/re
pe

rfu
si

on
. ñ

 d
en

ot
es

 in
cr

ea
se

d 
ex

pr
es

si
on

; ò
 il

lu
st

ra
te

s 
a 

de
cr

ea
se

 in
 e

xp
re

ss
io

n;
 ≈

 
sh

ow
s 

no
 c

ha
ng

e;
 N

S 
is

 n
ot

 s
ig

ni
fic

an
t. 

  


