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aldi, Dr Veronica Granata, and Dr Antonio Vecchione for the large supply of Sr2RuO4 crystals and

Andrea Gerbi, and Renato Buzio for hosting me for a week in their lab in Genoa. To Dr Andreas

Kreisel and Prof Peter Hirschfeld for theoretical calculations on Sr2RuO4 and fruitful discussions

over Zoom. To Dr Alexander Komarek and Prof Andrew Mackenzie for the Sr3Ru2O7 crystals

and characterization.

I also want to thank my Master’s thesis supervisor, Prof Olinda Conde, who believed in me

when I was an undergraduate student, and for every recommendation letter.

To thank everyone back home, I will switch to Portuguese. Quero agradecer aos meus pais,

Jorge e Leonor, por todo o suporte, carinho, paciência e por sempre acreditarem em mim. À minha
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agradecer ao resto do pessoal, que me recebe sempre com um sorriso e um abraço quando volto a

Lisboa. Queria também agradecer ao pessoal do Barreiro, Tiago, Bernardo, Patrı́cia M., Patrı́cia

F. e Cláudio por me receberem sempre de braços abertos quando volto a casa e, mesmo longe, me

apoiarem nesta jornada.

Finalmente, ao João, por tudo e mais alguma coisa, cujo encorajamento levou-me até aqui.
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Abstract

In strongly correlated electron materials, charge, spin and orbital degrees of freedom exhibit

an intimate relationship, leading to new emergent phases that seemingly break the symmetries

of the underlying crystal and are highly sensitive to external stimuli. This is well illustrated in

the Ruddlesden-Popper series of the strontium ruthenates, Srn+1Run O3n+1, where a wide range of

properties attributed to such physics can be found, including unconventional superconductivity,

quantum criticality, metamagnetic transitions and ferromagnetism. In this thesis, using ultra-low

temperature scanning tunneling microscopy, I show a detailed study of the low-energy electronic

states at the surface of Sr2RuO4, an unconventional superconductor, and Sr3Ru2O7, an itiner-

ant metamagnet associated with quantum criticality. I demonstrate that the increased structural

distortions in the surface layer lead to considerable changes in the Fermi surface, allowing the

stabilization of new emergent phases beyond those accessible in the bulk.

At the surface of Sr2RuO4, we find that the surface reconstruction leads to checkerboard charge

order intertwined with nematicity, intimately linked with four van Hove singularities within 5 meV

of the Fermi level. Including these orders in a tight-binding model gives excellent agreement with

the experiment. By applying a magnetic field, one of the van Hove singularities splits, with one

branch extrapolated to reach the Fermi energy at ∼ 32 T, providing a textbook example of tuning

towards a Zeeman-driven Lifshitz transition.

Measurements at the surface of Sr3Ru2O7 reveal a magnetic ground state, with substantial

anisotropy of the electronic states. With increasing magnetic field, we observe the formation

of a stripe order and were able to track a van Hove singularity shift across the Fermi energy.

Our measurements establish the surface layer as having a distinct ground state from the bulk,

undergoing a magnetic field induced Lifshitz transition at a magnetic field of ∼ 11 T.

Keywords: Scanning tunneling microscopy, scanning tunneling spectroscopy, quasiparticle in-

terference, Sr2RuO4, Sr3Ru2O7, Ruddlesden-Popper series, van Hove singularity, magnetic field-

driven Lifshitz transition
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Chapter 1

Introduction

Current technology relies on controlling electron charges in metals and semiconductors to

transport, store and process information. The underlying physical processes can be understood by

considering the electrons as essentially moving independently of each other on a crystal, giving a

surprisingly accurate description of the observed properties of these materials.

When electronic correlations become significant, the non-interacting electron description breaks

down and entirely new physics becomes accessible. In strongly correlated electron systems, strong

Coulomb repulsion between the electrons results in the interplay between charge, spin and or-

bital degrees of freedom, leading to rich phase diagrams with a variety of emergent orders, such

as unconventional superconductivity, Mott insulator, metamagnetism and colossal magnetoresist-

ance [1,2]. These phase diagrams often show different emergent phases in close proximity to each

other, being highly sensitive to external stimuli such as doping, pressure/strain and magnetic field.

The suppression of the transition temperature to absolute zero of one of the ordered phases by an

external parameter can result in a quantum critical point. In the vicinity of the quantum critical

point, the phase transitions cease to be driven by thermal fluctuations and quantum fluctuations

become dominant, at which the system tends to adopt newly ordered ground states [3]. The above

illustrates two important features of strongly correlated electron systems: high tunability with

applied external stimuli, and a platform to stabilize new emergent phases, both relevant for the

development of new concepts that not only use charge but also spin for technological applications.

High tunability of emergent phases and evidence for quantum criticality can be found in the

members of the Ruddlesden-Popper series of the strontium ruthenates, Sr1+nRunO3n+1. Their

ground states range from an isotropic ferromagnet, passing through an itinerant metamagnet as-

sociated with quantum criticality, to an unconventional superconductor, where the main differ-

ence between the members of this series is the number of RuO6 units within a layer and the

1



presence/absence of distortions to the RuO6 octahedra. The physics found in these systems are in-

fluenced by the proximity of a van Hove singularity (vHs), that is, a divergent peak in the density

of states, to the Fermi energy [4, 5]. The details of the electronic structure, in particular the posi-

tion of the vHs relative to the Fermi level, is intimately linked to the underlying crystal structure,

being highly sensitive to tiny structural distortions induced either by doping [6] or strain [7]. By

gaining insight into how these tiny structural distortions affect the physics observed in the Stron-

tium ruthenate materials, it will be possible to disentangle the role of quantum criticality and that

of the van Hove singularity in the stabilization of different emergent phases.

The unconventional superconductor Sr2RuO4, the single-layer n = 1 compound, provides one

of the cleanest systems to study the emergence and tuning of new phases. Starting from a textbook-

like Fermi liquid state, one of the most enigmatic superconducting states appears [8, 9], whose

symmetry of the order parameter is still under intense debate [10, 11]. The superconducting state

is quickly suppressed by introducing disorder [12] and the system can be pushed towards dif-

ferent magnetic phases by doping [13, 14] and uniaxial strain [11], linked to distortions of the

RuO6 cage and showing that strong magnetic fluctuations play an important role. In the bilayer

n = 2 compound, Sr3Ru2O7, the RuO6 octahedra have in-plane rotations. Superconductivity is

not observed, instead, there is evidence for a metamagnetic quantum critical end point and the

emergence of exotic phases, such as nematicity of the electronic states [15–18]. The effect of

quantum fluctuations is detected throughout the phase diagram at higher temperatures above the

quantum critical end point, and Sr3Ru2O7 provides one of the cleanest systems to study the tuning

towards a quantum critical end point by magnetic field. The ground state of Sr3Ru2O7 is also

highly sensitive to tiny structural distortions of the RuO6 octahedra, with antiferromagnetic and

ferromagnetic phases stabilized by doping [19–21] or strain [22].

To understand the effects of tiny distortions to the electronic structure of these materials, it

is instructive to consider a single layer of Sr2RuO4, where one can show that a small octahedral

rotation is sufficient to move a vHs across the Fermi level from positive to negative energies [23].

Fortunately, this system already exists at the surface of single crystals of Sr2RuO4, in which upon

cleaving, the surface layer undergoes a surface reconstruction with the octahedra rotating in-plane,

doubling the unit cell and drastically changing the electronic structure [24–27]. In Sr3Ru2O7, the

surface layer does not reconstruct but undergoes a relaxation [28], however, even tiny changes can

have a high impact on the ground state of the system [21,22,29,30]. Due to the low-energy scales

involved, the changes to the band structure will occur within less than 5 meV around the Fermi

level (EF), thus, high-energy resolution spectroscopic measurements are necessary. Scanning tun-
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neling microscopy (STM) is the ideal technique to detect such a vHs close to EF : the energy

resolution is limited only by the measurement temperature, which means that at mK temperatures,

energy resolutions on the order of 10 µeV can be achieved; it can probe both occupied and unoc-

cupied states, and can be used under high magnetic fields. It allows us to image quantum critical

matter when tuning through a metamagnetic critical point and to disentangle the surface electronic

structure, giving insights into how tiny distortions drastically change the electronic properties of

the strontium ruthenates.

In this thesis, I investigated the low-energy electronic structure of the surfaces of Sr2RuO4

and Sr3Ru2O7 using scanning tunneling microscopy and spectroscopy, at ultra low-temperatures

(< 100 mK) and under magnetic fields up to 14 T. Combining high-energy resolution spectro-

scopy with quasiparticle interference measurements, we were able to identify the position of the

van Hove singularities at the surfaces of Sr2RuO4 and Sr3Ru2O7. Our measurements show the

stabilization of new emergent orders that are not present in the bulk, definitely establishing the

surface layers of these two Strontium ruthenate compounds as distinct strongly correlated electron

systems from the bulk.

This thesis is organized as follows. In Chapter 2, the concepts of superconductivity, itinerant

metamagnetism and quantum criticality are introduced, followed by a discussion on the current

knowledge of the properties of both Sr2RuO4 and Sr3Ru2O7. In Chapter 3, the principles behind

STM are presented, together with a description of the STM and dilution fridge system used in

this work, as well as the characterization of the samples that were measured. In Chapter 4, two

methods to model the electronic structure will be presented, followed by the description of how to

model quasiparticle interference from the Green’s function formalism. The low energy electronic

states at the surface of Sr2RuO4 are explored in Chapter 5, with the description of how to tune the

system towards a Lifshitz transition by magnetic field. The detailed study of the surface electronic

structure of the metamagnetic Sr3Ru2O7 is presented in Chapter 6, where a magnetic-field driven

Lifshitz transition is demonstrated. Final conclusions and outlook are presented in Chapter 7.
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Chapter 2

Strongly correlated electron systems

Strongly correlated electron systems are technologically relevant materials that promise the

opportunity to exploit the entanglement of spin, charge and orbital degrees of freedom. They have

properties that are highly sensitive to external stimuli and rich phase diagrams where magnet-

ically ordered phases appear in close proximity, or even coexist, with unconventional supercon-

ductivity [1, 31]. Many of these materials show evidence of quantum criticality, where quantum

fluctuations dominate thermal fluctuations close to absolute zero temperature, opening up the op-

portunity to find newly ordered phases [3]. These materials include the cuprate high-temperature

superconductors, iron-based superconductors, heavy fermion systems and the family members of

the Ruddlesden-Popper series of the strontium ruthenates, Sr1+nRunO3n+1, which are the object of

study in this thesis.

In this chapter, the unconventional phases found in these materials will be discussed, namely

superconductivity and itinerant metamagnetism, as well as quantum criticality and some of the

mechanisms used to explain their properties. Then, a review of the current knowledge of the

properties of Sr2RuO4 and Sr3Ru2O7 will be given, the single layer and bilayer members of the

Ruddlesden-Popper series of the strontium ruthenates.

2.1 Unconventional electronic phases in correlated electron materials

2.1.1 Fermi liquid theory

When correlations are introduced in a system of electrons, the description given by the free

Fermi gas can break down. The electrons can no longer be described as independent particles

that move freely through a material, in which the physical properties are derived from the Pauli

exclusion principle and Fermi-Dirac statistics alone, as in the Sommerfeld model. The correlations
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arise primarily from the Coulomb interactions. Once interactions are included, the eigenstates of

the system can no longer be the single-electron states and have to correspond to stationary states of

the whole system. At sufficiently low temperatures, we can consider only the low-energy excited

states of the system, close to the ground state, that is, within an energy range of kBT around the

Fermi level. These low energy excited states can be written as a linear combination of elementary

excitations, which L. D. Landau called quasiparticles [32]. The quasiparticles have well-defined

energies ε and carry the quantum numbers of a bare electron, momenta k and spin σ , with an

energy dispersion ε(k) that has a similar structure as the one of the Fermi gas, in the sense that a

Fermi surface is well defined. As a consequence, the quasiparticle properties are related to those

of the free electron gas such that: their mass is renormalized, m∗ = Cm, with C a constant and

m the electron band mass; they carry only a fraction of the spectral weight associated with all

single-particle excitations, Zk, defined via the real part of the self-energy [33]; and have a finite

lifetime, τk = h̄/Γk, at finite temperature but infinite lifetime at the Fermi surface and at T = 0

(as required for a well-defined Fermi surface). The strength of the interactions in a material can

thus be characterized by the values acquired by m∗ , Z−1
k and Γk, with larger values corresponding

to stronger interactions [34, 35]. The thermodynamic properties will follow the same behavior

as the Fermi gas but replacing m with m∗, with the specific heat maintaining a linear temperature

dependence and the magnetic susceptibility remaining constant, both at low temperatures (T → 0).

The resistivity shows a ρ(T ) ∝ T α behavior with α = 2 at low temperatures due to the electron

interactions, which is qualitatively different compared to the Fermi gas [36]. This is one of the

hallmarks of a Fermi liquid.

2.1.2 Phase diagram of strongly correlated electron systems

To identify regions on a phase diagram that correspond to Fermi liquid (FL) and non-Fermi

liquid (N-FL) behavior, deviations from the expected FL response of the specific heat, magnetic

susceptibility, and resistivity can be used. In the case of the exponent α of the temperature depend-

ence of the resistivity, these regions are identified by deviations from the expected α = 2 of FL

theory, with linear T resistivity indicating N-FL behavior. Regions of Fermi liquid and Non-Fermi

liquid behavior are found on the phase diagram of many strongly correlated electron systems such

as the cuprate high-temperature superconductors, Figure 2.1(a), and the heavy-fermion systems,

Figure 2.1(b), at low temperatures and under applied external stimuli. These materials show rich

phase diagrams, with seemingly mutually exclusive phases appearing close to each other (Fig-

ure 2.1(a)) or even coexisting (Figure 2.1(b)), such as antiferromagnetic order and superconduct-
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Figure 2.1: Illustration of the phase diagrams of two families of strongly correlated electron materials.
(a) Simplified sketch of the typical phase diagram of the cuprate high-Tc superconductors, with hole-doping,
based on ref. [38,39]. (b) Sketch of the low-temperature phase diagram of heavy-fermion superconductors,
based on ref. [1]. The dashed lines indicate the not so strict boundaries between phases (FL: Fermi liquid, N-
FL: non-Fermi liquid, AFM: antiferromagnet, SC: superconductor). Non-Fermi liquid behavior is identified
by a deviation of the temperature dependence of the resistivity from ρ(T ) ∝ T 2.

ivity. The closeness of these orders opens up the unique opportunity to study their interplay and

find new mechanisms with which new phases emerge. Moreover, there is evidence that quantum

fluctuations, due to the proximity to a quantum critical point [37], play an important role in the

stabilization of these phases [38]. By understanding how to tune between them and the role of

quantum fluctuations in the physical mechanisms behind their stabilization, we can expect that it

will become possible to design materials with emergent phases with specific properties, which is

highly desirable for technological applications.

2.1.3 Superconductivity

A superconductor is a material in which the electrical resistivity drops to zero below a critical

temperature Tc, due to the pairing of electrons. This means that electrical current passes through

without energy dissipation. Superconductors are also perfect diamagnets, with their magnetic sus-

ceptibility dropping to−1 at Tc, causing the Meissner effect. Superconductivity was first observed

by H. Kamerlingh Onnes in 1911 while cooling down Mercury (Hg) to liquid Helium temperat-

ures [40], and since then a large range of materials have been found to be superconductors.

To form the electron pairs, a pairing interaction is required which is attractive between the

electrons. It results in an energy gap around the Fermi level that is the order parameter of the

superconducting transition. The pairing interaction and symmetry of the order parameter can be

used to classify the known superconductors, dividing them into two groups: the conventional su-

perconductors, where the pairing of electrons is mediated by weak electron-phonon interactions

as described by the Bardeen-Cooper-Schrieffer (BCS) theory, resulting in an isotropic order para-

meter (s-wave symmetry); and the unconventional superconductors, where the pairing interaction
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cannot be accounted for by weak electron-phonon coupling, exhibiting an order parameter that has

different signs on different parts or sheets of the Fermi surface (e.g. s±- and d-wave symmetries).

Conventional superconductors

In BCS theory [41] to describe conventional superconductivity, the Fermi liquid has an insta-

bility due to attractive interactions, that pair up quasiparticles with equal and opposite momenta

and anti-parallel spins, |k,↑〉 and | − k,↓〉, into bound states. These pairs of quasiparticles are

called Cooper pairs due to an attractive interaction mediated by lattice vibrations, that is, they

occur via an electron-phonon coupling mechanism. As a consequence of pairing, an energy gap

appears around the Fermi energy and the energy dispersion becomes

E±(k) =±
√

ε(k)2 +∆(k)2, (2.1)

where ε(k) is the energy dispersion of the quasiparticles relative to the Fermi energy in the nor-

mal state and |∆(k)| is the superconducting order parameter, given by the magnitude of the energy

gap. The Cooper pairs are made up of two spin-1/2 quasiparticles, which means that the Cooper

pair will have integer spin, in general either 0 or 1. In the case of conventional superconductivity,

the Cooper pair is in a state of total spin S = 0, a spin singlet state, and the order parameter is

isotropic in k-space, ∆(k) = ∆ = 1.76kBTc, so that the whole Fermi surface is gapped out, Fig-

ure 2.2(a). This is refered to as the order parameter having s-wave symmetry, in analogy with the

symmetry of an s-orbital. Examples of conventional superconductors include the elemental super-

conductors, e.g. Al, Hg, Sr, Pb, Nb, and composite materials, e.g. Nb3Ge and Nb3Sn, all with a

crystal structure with high symmetry, and non-magnetic and metallic normal states. Their trans-

ition temperatures are typically low, with Al having Tc ∼ 1.2 K [42] and Nb3Sn a Tc ∼ 18 K [43].

Recently, it was found that some materials show superconductivity with Tc > 200 K under ex-

tremely high pressures (P∼ 200 GPa), such as H2S [44] and LaH10 [45], which are well described

by BCS theory.

Unconventional superconductors

Despite the success of describing conventional superconductivity, the BCS theory described

above fails to explain the properties of unconventional superconductivity found in many strongly

correlated electron materials. The electron-phonon coupling pairing mechanism does not accur-

ately predict the transition temperature Tc, predicting a lower Tc than observed experimentally, and

the order parameter ∆(k) in these materials can have a complex structure, changing sign between
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different parts of the Fermi surface, contrary to the s-wave case. While in conventional super-

conductors, the superconducting state arises from a normal metallic state, the normal state of a

strongly correlated superconductor can be a bad metal or even an insulator. This is the case of the

cuprate high-Tc superconductors, iron-based superconductors and heavy fermion materials.

Cuprate high-Tc superconductors: In the cuprate high-Tc superconductors the undoped ma-

terial is an antiferromagnetic Mott insulator, with Néel type order with characteristic vector q =

(π,π), due to strong Coulomb interactions [38]. These materials have a layered-perovskite crystal

structure, characterized by planes of CuO2, and a Fermi surface consisting of a hole-like pocket

centered around the corner of the Brillouin zone. Upon doping, the antiferromagnetic order is

quickly suppressed, and a superconducting dome appears, as illustrated in Figure 2.1(a), with Tc

reaching a maximum at optimal doping. In the superconducting phase, the quasiparticles form

Cooper pairs, however, the order parameter, while still singlet, becomes modulated in k-space,

∆(k) = (∆0/2)(cos(kxa)− cos(kya)), having d-wave symmetry [46, 47], Figure 2.2(b). It means

that there are points on the Fermi surface whereby symmetry the gap has to be zero and hence they

are gapless at the lowest temperatures, rendering the thermodynamic properties of the high-Tc su-

perconductors completely distinct from those of conventional superconductors. The three main

characteristics of high-Tc superconductors are an antiferromagnetically ordered Mott insulating

ground state in the undoped material, a superconducting dome upon doping and a d-wave su-

perconducting gap, which suggest a distinct pairing mechanism from the simple electron-phonon

+ +

+ +
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ky
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Figure 2.2: Illustration of the s-wave and d-wave gap symmetries for a circular Fermi surface. (a)
Superconducting gap with s-wave symmetry. The shaded region shows an isotropic superconducting gap,
with its width indicating the magnitude of ∆. (b) Superconducting gap with d-wave symmetry. The width
of the shaded regions indicate |∆(k)|. The red (−) and blue (+) colors represent the sign of ∆(k). The
arrows indicate the position of the nodes, where ∆(k) = 0.
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coupling. Currently, the prevalent theories are either based on spin fluctuation pairing [48, 49]

or by electron correlations [50]. In these materials, the superconducting critical temperatures Tc

are much larger than in conventional superconductors, with examples such as YBa2Cu3O7 – δ with

Tc = 93 K [51] and HgBa2Ca2Cu3O6+x with Tc = 133.5 K [52]. Their phase diagrams also show

the presence of a strange phase, the pseudogap phase, characterized by strong suppression of the

density of states (DOS) at the Fermi level (EF), but whose physics is not currently fully under-

stood. The suppression of the onset temperature of this phase is thought to be related to a quantum

critical point, which is hidden inside the superconducting dome [37, 53].

Iron-based superconductors: The iron-based family of superconductors are also layered ma-

terials, but the Fermi surface typically consists of localized hole and electron pockets around the

center and corners of the Brillouin zone. For several of the pnictide superconductors, e.g. the

BaFe2As2 and NaFeAs families, the undoped members show a static spin-density wave (SDW)

with characteristic wave vector q = (0,π) whose onset temperature decreases with doping, giv-

ing rise to a superconducting dome. In this case, there is a region of the phase space where both

SDW and superconductivity coexist. Superconductivity in the iron pnictides is fairly well de-

scribed by spin-fluctuation pairing between the hole and electron pockets in the Fermi surface,

within which different order parameters seem to compete with each other, namely s± state (sign of

the order parameter changes between Fermi surface sheets) and d-wave pairing [54], both singlet

states. In the iron-pnictides and chalcogenides there is an unexpectedly strong symmetry breaking

in the orthorhombic phase indicating the emergence of a nematic order [55], which terminates

above the superconducting dome and is thought to be connected to a quantum critical point [56].

The maximum superconducting transition temperatures found in this family of superconductors

is somewhat lower than those of cuprate superconductors but higher than conventional supercon-

ductors, with examples such as La[O1 – xFx]FeAs with Tc = 26 K [57] and BaFe2(As1 – xPx)2 with

Tc = 30 K [58].

Heavy fermion superconductors: The heavy fermion systems are materials in which, at low

temperatures, the quasiparticles have very large effective masses that can go up to 1000me, and

large electronic specific heat coefficients 100 to 1000 times larger than in usual metals [59–61].

These materials show an antiferromagnetic state at low temperatures, Figure 2.1(b), that can be

suppressed by applied pressure, inducing superconductivity. The line of phase transitions between

the antiferromagnetic state and the non-Fermi liquid state ends on top of the superconducting

dome, suggesting that a magnetic quantum critical point is hidden by the superconducting phase.

Moreover, the presence of non-Fermi liquid behavior in the phase space above the superconducting
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dome is believed to indicate the presence of quantum critical fluctuations, and it is thought that

in these materials they play a crucial role in the superconducting pairing mechanism [62]. The

superconducting transition temperatures is these materials are typically low, with examples such

as CeRhIn5 with Tc = 2.1 K [63] and CePd2Si2 with Tc ∼ 0.4 K [64, 65], both under pressure.

There are a number of features that are common for the superconducting states of strongly

correlated electron materials [66]: (a) phase diagrams with magnetic order (antiferromagnetic or

SDW) close or coexisting with superconductivity; (b) unconventional superconductivity; and (c)

potential proximity to a quantum critical point.

All of the symmetries of superconducting gaps described above were derived from a spin-

singlet state. However, in theory, Cooper pairs could also form from electrons with equal spins

resulting in spin-triplet pairs, in an analog way to the superfluid state of 3He [67, 68]. Here, the

pairing results in a spin-triplet state, which means that due to the Pauli exclusion principle the

spatial part of the pairing wave function must be asymmetric, for example of p-wave symmetry.

Such pairs could form due to ferromagnetic spin fluctuations. This type of order parameter has

a large technological interest because its symmetry can correspond to doubly-degenerate chiral

states, which can serve as qubit base states for quantum computing [69]. One of the key exper-

iments to demonstrate the presence of triplet pairing is the absence of a Knight shift in nuclear

magnetic resonance (NMR) experiments when entering the superconducting state. It corresponds

to the spin susceptibility not changing between the normal and superconducting states as a con-

sequence of the components with equal spins of the spin-triplet pairs being unaffected by a small

magnetic field [70]. This behavior was previously observed in Sr2RuO4 [71], propelling a wide in-

terest in the superconducting state of this material [72]. However, recent NMR experiments show

a considerable Knight shift upon entering the superconducting state [9, 73], excluding the p-wave

scenario for Sr2RuO4. Currently, one of the strongest candidates for p-wave superconductivity is

the heavy-fermion material UPt3, where no Knight shift has been detected so far [74, 75].

2.1.4 Itinerant metamagnetism

Metamagnetism is defined as a sharp increase in magnetization M under the application of an

external magnetic field H, that is, a transition from a low magnetization state into a high magne-

tization state driven by magnetic field. This transition can be described in two different extremes:

from a localized and from an itinerant picture. The first case can be described by a Heisenberg

model where the transition occurs from an antiferromagnetic state into a ferromagnetic state, via a

spin-flip mechanism [76]. In the second case, the properties of the itinerant system depend strongly
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on the characteristics of the electronic band structure and the transition usually occurs between a

paramagnetic state and a state with high net magnetic moment (not necessarily with static magnetic

order) and its magnetism can be described within the framework of Stoner’s model [77].

Itinerant metamagnetism was first observed as a transition from a paramagnetic phase to a

ferromagnetic phase in YCo2 [78], under high magnetic fields ≤ 94 T. Since then, metamagnetic

transitions have been found in several materials such as MnSi [79, 80], UPt3 [81], CeRu2Si2 [82,

83] and Sr3Ru2O7 [15–17].

In the Stoner’s model of itinerant ferromagnetism, the finite magnetization appears due to the

spontaneous spin-splitting of the bands at zero external magnetic field. Spontaneous ferromagnet-

ism becomes possible if the condition Un(EF)≥ 1 is satisfied, that is, if both Coulomb energy U

and the density of states at the Fermi level n(EF) are both large [84]. Consider a paramagnet on

the verge of satisfying the Stoner criterion, for example by having a peak in the density of states

in the vicinity of EF. As an external magnetic field H is applied, the bands spin-split and the peak

in the density of states of one of the spin species is pushed towards the Fermi level, giving rise

to a super-linear increase of the magnetization M, so that there is a crossover to metamagnetism.

However, a simple peak is not enough to push the system into a metamagnetic phase transition.

For a metamagnetic phase transition to occur, there has to be a discontinuity in the magnetization

M with increasing magnetic field, resulting in a 1st order phase transition. This transition is of

first-order because it does not involve any spontaneous symmetry breaking since the application

of the magnetic field already broke the rotational symmetry of the paramagnetic state.

The metamagnetic transition can be derived from Ginzburg-Landau theory [85], mean-field

theory [86], from the presence of a singularity in the density of states in the vicinity of EF [4]

or from Fermi liquid theory via a Pomeranchuk instability that results in spin-dependent Fermi-

surface distortions [87]. In Sr3Ru2O7, one of the materials studied in this thesis, the metamagnetic

transition occurs at temperatures below 1 K and at ∼ 5 T, for an in-plane magnetic field. The

transition is seen through a jump in magnetization, indicating a rapid change from a paramagnetic

state at low fields to a more polarized state at high fields. It demonstrates that the system has

strong ferromagnetic coupling [15]. Microscopic theories developed to describe the metamagnetic

transition in Sr3Ru2O7 are presented in section 2.2.2.

2.1.5 Quantum criticality

The emergence of both superconductivity and metamagnetic phases in strongly correlated

electron systems have been associated with quantum criticality [3].
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A quantum phase transition occurs when the critical temperature of an ordered phase, that is,

the characteristic temperature of a second order phase transition, is suppressed towards absolute

zero by an external parameter p, such as doping, pressure or magnetic field (Figure 2.3(a)), giv-

ing rise to a quantum critical point (QCP) at a critical value pc. This quantum phase transition

is driven by quantum fluctuations associated with Heisenberg’s uncertainty principle, instead of

thermal fluctuations [88]. Contrary to thermally-driven critical phase transitions, where the critical

nature of the transition can only be observed very close to the critical point, the effects of quantum

criticality can be detected far away from the QCP (blue area in Figure 2.3(a)), observed as a break-

down of Fermi liquid theory [3]. The non-Fermi liquid behavior is reflected in the properties of

the system as a linear dependence of resistivity with temperature, ρ(T ) ∝ T , and a logarithmic di-

vergence in the specific heat, C/T ∝− log(T ) [89], corresponding to a divergence in the effective

mass of the quasiparticles. To avoid this mass divergence, quasiparticles tend to organize them-

selves into new stable electronic configurations. The importance of quantum criticality is because

it becomes a promoter for the creation of new states of matter. This is observed in cuprate high-Tc

superconductors [53], iron-based superconductors [56] and heavy fermion systems [64], where the

appearance of unconventional superconductivity within a dome in the phase diagram is thought of

as a way to avoid a QCP.

Quantum criticality can also be induced by suppressing a line of first-order phase transitions

in the phase space (b,T ) by a second external parameter p, Figure 2.3(b). The onset temperature,

T ∗, of the critical end point (CEP) at bc1 of the line of first-order phase transitions is pushed

towards absolute zero, creating a quantum critical end point (QCEP) at (bc2, pc). This type of
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quantum criticality, since it involves a first-order phase transition, occurs between a phase of low

density and a phase of high density without involving spontaneous symmetry breaking, as for

example a metamagnetic transition (between a low and a high magnetization state). In this case,

evidence for quantum fluctuations is also detected in a large range of the phase diagram, like in

the case of a quantum critical point. From a renormalization group formalism [91] to describe a

QCEP driven by magnetic field, b = H, once p is tuned to pc and at low temperatures (T → 0),

as one approaches bc2 = Hc (from either side), the specific heat is proportional to C/T ∝ logh−1

for a three-dimensional system, or to C/T ∝ h−1/3 for a two-dimensional system, with h = (H−

Hc)/Hc. The resistivity will have a Fermi-liquid like behavior, ρ(T = 0) = AT 2, with A ∝ h−1/3,

in three-dimensions, and A ∝ h−2/3, in two-dimensions.

One of the materials that is famously known for having a metamagnetic critical point is

Sr3Ru2O7. In this material, a QCEP can be induced in two ways: (1) in less pure samples, T ∗

is suppressed by rotating an external magnetic field from in-plane to out of plane [16] (b = H and

p = θ in Figure 2.3(b)); (2) or in high-purity samples by applied pressure [92] (b = H and p = P

in Figure 2.3(b)).

2.1.6 Van Hove singularities and Lifshitz transitions

Defined by van Hove for the elastic vibrations of a crystal [93], a van Hove singularity (vHs)

is an analytic singularity in the frequency distribution function. This is also valid for the electronic

structure E(k), where now it corresponds to a singularity in the density of states n(E). Singularities

in n(E) appear due to points in the energy dispersion E(k) with ∇E(k) = 0, thus including saddle

points (Figure 2.4) and band maxima and minima. They appear as a consequence of the periodicity

of the crystal lattice, from Morse’s theorem, and the number of vHs present in a system depends on

its dimensionality, crystal symmetry and interaction strength between the electrons. Figure 2.4(a)

and (b) show the case of a saddle-point vHs in the energy dispersion of a one-band model on a

square lattice. In this case, the vHs in the DOS diverges logarithmically, n(E) ∝ log(E), resulting

in a peak with the shape shown in Figure 2.4(c).

A van Hove singularity is associated with a Lifshitz transition [94]. Lifshitz transitions cor-

respond to changes in the topology of the Fermi surface, either by changing from a closed-loop

into an open contour (saddle point), appearance or disappearance of a Fermi pocket (band min-

ima/maxima), or merging of existing Fermi surfaces. An example of a Lifshitz transition is shown

in Figure 2.4(c), where the constant energy contour below the vHs (ii) is a closed pocket around

the center of the Brillouin zone (BZ), whereas above the vHs (i) it is an open loop forming a closed
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Figure 2.4: Saddle point van Hove singularity. (a) Three-dimensional representation of a saddlepoint,
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and kx, with the saddle point at the center of the panel. (c) Density of states corresponding to the van Hove
singularity. Constant energy contours above (i) and below (ii) the van Hove singularity. The red crosses
indicate the position of the van Hove singularity in the Brillouin zone.

pocket around the corner of the BZ.

The case shown in Figure 2.4 corresponds to a vHs where two sheets of the Fermi surface

connect at the Brillouin zone boundary, resulting in the n(E) ∝ log(E) shape of the vHs peak in

the DOS. This is what happens in bulk Sr2RuO4. However, the divergence of the vHs depends on

where in the Brillouin zone it occurs, as well as on the crystal symmetry. In the case of Sr3Ru2O7,

four Fermi pockets join together at the Brillouin zone corner, resulting in n ∝ E−1/2. The type of

divergence of the vHs will determine the physical properties of the system, especially when the

vHs is tuned towards the Fermi level [95].

The presence of a vHs sufficiently close to EF will satisfy the Stoner criterion and can be re-

sponsible for the stabilization of ferromagnetism. In addition, pushing a vHs across the Fermi level

is the kind of mechanism that could lead to a metamagnetic phase transition, as briefly mentioned

in section 2.1.4, as well as promoting superconductivity since in the BCS framework Tc is directly

dependent on the density of states. Many strongly correlated materials have one or multiple vHs

in the vicinity of the Fermi level, which seem to have strong influence on their physical properties.

Examples include the metamagnetic phase transition in UPt3 [81], enhanced superconductivity

on Sr2RuO4 under uniaxial strain [96], and the engeneering of vHs in twisted bilayer graphene

leading to superconducting/Mott insulating states [97–100].

2.1.7 Zeeman-driven Lifshitz transitions

Consider a vHs below EF. Upon the application of a magnetic field, this vHs will Zeeman-

split, Figure 2.5, with the vHs from the minority spin species moving towards the Fermi level

(down, blue), and the one from the majority spin species moving away (up, red). If the vHs from
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Figure 2.5: Zeeman-splitting of a van Hove singularity. A vHs is Zeeman-split by an external magnetic
field, with energy splitting ∆E = g∗µBB. Red and blue indicate spin up and down, respectively.

the minority spin crosses the Fermi level, it will induce a Lifshitz transition.

In heavy-fermion systems, the bands at the Fermi level are quite flat and usually harbour

several vHs, so that a magnetic field can easily Zeeman split the bands, inducing one or more Lif-

shitz transitions within a small range of fields, usually accompanied by jumps in the magnetiza-

tion [101]. This has been shown to be the case for materials such as CeIrIn5 [102], CeRu2Si2 [103],

UPt3 [81] and YbRh2Si2 [104], where their metamagnetic phase transitions seem to be related to

multiple Lifshitz transitions induced by Zeeman-splitting. These metamagnetic phase transitions

are associated with quantum critical end points (see section 2.1.5). The Zeeman-driven Lifshitz

transition mechanism can explain several of the key features of these QCEP, such as Fermi liquid

behavior at low temperatures at magnetic fields below and above the critical field Hc and non-

Fermi liquid behavior at high temperatures above the QCEP [105]. Such a mechanism has been

proposed to describe the metamagnetic phase transition and QCEP in Sr3Ru2O7 [95], where the

Zeeman-splitting of the vHs plus charge conservation considerations are able to reproduce the spe-

cific heat divergence observed in the experiment without the need to invoke quantum fluctuations.

2.2 Strontium ruthenates as a playground for strong electron corre-

lations

A family of materials in which all the above phenomena can be found is the Ruddlesden-

Popper series of strontium ruthenates, Sr1+nRunO3n+1. These materials have layered-perovskite

crystal structures, where n is the number of RuO2 planes in a layer. Figure 2.6 shows four of its

family members: Sr2RuO4 (n = 1), is an unconventional superconductor [8]; Sr3Ru2O7 (n = 2),

has a metamagnetic phase transition intimately linked with quantum criticality and nematicity [16–
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Figure 2.6: The Ruddlesden-Popper series Srn+1RunO3n+1. Members of the Ruddlesden-Popper series
of the strontium ruthenates displayed in increasing number n, where n is the number of RuO6 octahedra
at the center of the unit cell. The superconductivity observed in Sr2RuO4 is suppressed and gives way to
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18]; Sr4Ru3O10 (n = 3), has a rich phase diagram with different metamagnetic and ferromagnetic

phases [106]; and SrRuO3 (n = ∞), is an isotropic ferromagnet [107].

Essentially, the main structural difference between each member of this series is the number of

RuO6 octahedra coupled via the apical oxygen and the octahedral distortions. While in n = 1 the

crystal structure is undistorted, in n = 2,3 the RuO6 octahedra are rotated in-plane and in n = ∞

the octahedra tilt away from the c-axis below room temperature [108]. The electronic structures

of these materials show van Hove singularities in the proximity of the Fermi level, whose position

relative to EF is intimately related to the observed ground states [4] and is extremely sensitive to

tiny structural distortions [7]. This diversity of emergent electronic and magnetic phases appear

from a Fermi liquid ground state [109–112] and since its properties are well known, it should be

possible to understand the emergence of such strongly correlated electron phenomena. Insight into

how tiny distortions are responsible for the stabilization of different emergent electronic states will

allow the control and optimization of the properties of these materials, opening up the opportunity

for the development of novel devices.

2.2.1 The unconventional superconductor Sr2RuO4

Crystal structure

Sr2RuO4 has a layered perovskite crystal structure with a tetragonal unit cell (I4/mmm sym-

metry) [113, 114], Figure 2.7(a), isostructural to the high-Tc superconductor La2CuO4. Due to
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Figure 2.7: Crystal structure of Sr2RuO4. (a) Structural model of Sr2RuO4, showing the tetragonal unit
cell (black: Ru, red: O, blue: Sr atoms). (b) Top view. The blue square indicates the two-dimensional unit
cell, with lattice constant a = 3.87 Å.

the weak coupling between adjacent SrO layers, evidenced by highly anisotropic transport proper-

ties [115], Sr2RuO4 is a quasi-two-dimensional material, where the RuO6 octahedra form a two-

dimensional square lattice with a lattice constant of a = 3.87 Å, Figure 2.7(b). As a consequence,

the prefered cleaving plane occurs between adjacent SrO-SrO layers [116].

Fermi surface and electronic structure

The Fermi surface of Sr2RuO4 has been well established by both quantum oscillations [119]

and angle-resolved photoemission spectroscopy (ARPES) [24,117]. Figure 2.8(a) shows the Fermi

surface of Sr2RuO4 measured in ARPES by Tamai et al. [117]. It is composed of three bands, due

to the crystal field created by the octahedral configuration of the oxygen atoms that splits the 4d

orbitals of the Ru atom into the lower energy t2g (dxz, dyz and dxy) and the higher energy eg (dx2−y2 ,
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Figure 2.8: Fermi surface of Sr2RuO4 and the effect of spin-orbit coupling. (a) ARPES Fermi surface
map, reproduced from A. Tamai et al. [117]. (b) Fermi surface of Sr2RuO4 calculated using the tight-
binding model developed by Scaffidi et al. in ref. [118], without including SOC. The arrow indicates the
ΓX direction and the region where the bands cross. The inset shows a close-up of that region, with the
arrows indicating the crossing points between the γ and β bands. (c) Same, but including SOC. The inset
shows a close-up of the region indicated by the arrow, where the hybridization between the bands is visible.
The Fermi surfaces were calculated on a 2048×2048 k-grid, with energy broadening γ = 0.5 meV.

17



dz2) states, where the four electrons of the Ru4+ ion partially fill the t2g orbitals. The Fermi sheets

are designated as: α and β , the quasi-1D bands of dxz/dyz orbital character, and γ , the quasi-2D

band of dxy character. Thus, the Fermi surface can be well described by a tight-binding model

containing only the t2g states [118, 120–122].

The Fermi surface and band structure of Sr2RuO4 are reasonably well reproduced by Dens-

ity functional theory (DFT) calculations, both within the local density approximation (LDA)

[123–125] and the generalized gradient approximation (GGA) [126]. Both ARPES and quantum

oscillations measurements show that the electronic structure of Sr2RuO4 is strongly correlated,

with a large enhancement of the quasiparticle effective masses, resulting in the need of renormal-

ization of the DFT calculated electronic structure [26] to get good agreement with experiment.

The γ-band is more correlated than the α and β bands, as evidenced by an effective mass of 17me

for the γ-band compared to 6me for the β band along the ΓM direction [70, 117], a consequence

of its vHs being close to EF, where increased correlations are more likely to occur. Calculations

within dynamical mean-field theory (DMFT), reveal that the electronic correlations in Sr2RuO4 are

driven by Hund’s coupling [35], evidenced by the large difference in mass enhancement between

the out-of-plane dxz/dyz and the in-plane dxy states.

The agreement between calculations and experiments is further improved by considering spin-

orbit coupling (SOC). Experimentally, the effects of SOC in the electronic structure of the ruthen-

ates was first demonstrated in the insulating ruthenate Ca2RuO4 by spin-resolved circularly po-

larized photoemission [127], and later on also in Sr2RuO4 [117, 128–130]. The effects of SOC

are strong and k-momentum dependent. To illustrate its effects, Figure 2.8(b) and (c) show the

Fermi surface of Sr2RuO4 calculated using the tight-binding model developed by Scaffidi et al. in

ref. [118], without and including SOC, respectively. Without SOC, the γ band of dxy orbital char-

acter has crossing points with the β band of dxz, dyz character close to the symmetry line Γ−X , as

indicated by the arrows in the inset in Figure 2.8(b). When SOC is included, these bands hybridize

and the crossing points are removed, Figure 2.8(c), reproducing the experimental Fermi surface

shown in Figure 2.8(a). As a consequence, the orbital character of the β and γ bands switches

around the Γ−X direction. In addition, without SOC, LDA calculations show that the γ band

crosses the α and β bands along kz, having a considerable kz dispersion. By including SOC, these

crossings are removed, rendering the kz dispersion negligible [128], in agreement with quantum

oscillations experiments [131].

The electronic structure of Sr2RuO4 calculated from the tight-binding model developed by

Scaffidi et al. [118] including SOC is shown in Figure 2.9(a). It shows that the γ-band has a vHs
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Figure 2.9: Band structure and density of states of Sr2RuO4. (a) Band structure along the path Γ−
M−X close to the Fermi level. (b) Total density of states, calculated on a 2048×2048 k-grid, with energy
broadening γ = 0.5 meV.

at the M-point of the Brillouin zone above the Fermi level, which has been measured by ARPES

to be at ∼ 14 meV above EF [6], corresponding to a peak in the density of states (Figure 2.9(b)).

This vHs has two-fold symmetry, where two pockets join together at the BZ edge and it has been

shown that its proximity to the Fermi level strongly influences the properties of its superconducting

state [7, 96].

Normal state transport and magnetic properties

In the normal state, Sr2RuO4 is a paramagnetic metal with textbook-like Fermi liquid behavior

below T < 25 K [109,132], providing one of the cleanest oxide systems. Its transport properties are

highly anisotropic, with the resistivity along the c-axis approximately three orders of magnitude

larger than the resistivity along the RuO2 plane (ρc/ρab ∼ 103) [115,133]. In addition, the out-of-

plane resistivity shows a maximum at ∼ 130 K, decreasing with increasing temperature, while the

resistivity in-plane remains metallic. It has strongly correlated behavior as indicated by a Wilson

ratio larger than 1, the expected value for a normal metal, with RW = 1.5 [131], which can be

related to the Landé g-factor by RW = g∗/g [134], giving g∗ = 3, assuming spin 1/2.

The low-temperature Fermi liquid state of Sr2RuO4 is known to have strong magnetic fluctu-

ations at specific wavevectors. Evidence for ferromagnetic fluctuations in the Fermi liquid regime

was found early on in nuclear magnetic resonance (NMR) experiments [135] coming from the

γ-band. In addition, inelastic neutron scattering (INS) measurements found incommensurate spin

fluctuations below 200 K with characteristic wavevector q0 = (0.3,0.3,0), in units of 2π/a, which

persist in the superconducting state [136, 137], due to nesting between the β -bands across the BZ

corner. However, although Sr2RuO4 is close to ferromagnetic instabilities, due to proximity to an

isotropic ferromagnetic state in SrRuO3, polarized INS measurements found that the incommen-

surate spin fluctuations dominate the spin fluctuation spectrum of Sr2RuO4 [138].
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The superconducting state

Sr2RuO4 was the first material isostructural to the cuprate high-Tc superconductors of the fa-

mily La2 – xSrxCuO4 to be found to have a superconducting transition without copper [8]. Contrary

to the cuprates, Sr2RuO4 provides a very clean system without structural distortions, with a well-

defined Fermi liquid ground state at low temperatures from which superconductivity emerges. It

was thus thought that the mechanism behind its superconducting state could be easily characterized

and help in understanding the mechanism behind high-temperature superconductivity. However,

as further measurements of its superconducting state were being done the complexity of its order

parameter became evident, making it a subject of intense research in its own right.

The superconducting state in Sr2RuO4 is highly sensitive to disorder being quickly suppressed

by the presence of non-magnetic impurities [12, 139, 140]. Only samples with an in-plane re-

sidual resistivity of ρres < 1.1 µΩcm [12] show a superconducting transition, with the highest

transition temperature of Tc = 1.5 K found in the purest crystals. This is in contrast with the

cuprate superconductors, where the superconducting transition occurs at optimal doping. The

proximity to ferromagnetic fluctuations [135] suggested that these could drive superconductivity,

allowing the formation of Cooper pairs from electrons with aligned spins, originating an order

parameter with p-wave symmetry. Three pieces of evidence supported such an order parameter:

no change in Knight shift upon entering the superconducting phase from NMR spectroscopy meas-

urements [71,141], time-reversal symmetry breaking (TRSB) below Tc, from zero-field muon spin

relaxation [142] and non-zero Kerr rotation [143]. However, other experiments were reporting

results inconsistent with the p-wave scenario. Ultrasound [144], thermal conductivity [145] and

specific heat [146,147] measurements indicated the presence of line nodes in the superconducting

gap, either vertical protected by symmetry, or horizontal. Furthermore, chiral edge currents were

never found [148–150] and the behavior of Tc under uniaxial pressure [96, 151] showed a single

transition with a maximum in Tc, instead of a split transition as expected for a superconducting

gap with p-wave symmetry.

The triplet scenario has become all but excluded when a substantial Knight shift was observed

in NMR experiments at zero and under uniaxial strain [9], in disagreement with the original re-

ports [71]. These experiments have been reproduced [73], and the drop in spin polarization upon

entering the superconducting state compared to the normal state is large enough to be inconsistent

with any purely odd-parity order parameter, also shown from field dependent measurements [152].

The most recent experiments constraint the order parameter to fulfil even parity, chirality and have

two components that are degenerate on the tetragonal lattice [11, 153–157]. Recent muon spin re-
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laxation and heat capacity measurements under uniaxial stress show a split of the onset temperature

of superconductivity and that of time-reversal symmetry breaking, supporting a two-component

superconducting order parameter that breaks time-reversal symmetry [11].

Spectroscopic information promises to allow the determination of the symmetry of the super-

conducting order parameter in Sr2RuO4. This could be attempted in scanning tunneling micro-

scopy (STM), which can access low enough temperatures and has the necessary energy resolution.

Such measurements have been attempted, with sometimes contradictory results. Most works re-

port a SrO surface that is non superconducting [158–161]. The superconducting gap was detected

either on a different surface reconstruction [162] or on surfaces cleaved in air [163,164]. Recently,

an STM work on the SrO-terminated surface reports the detection of a gap consistent with the ex-

pected superconducting gap width of Sr2RuO4 and Bogoliubov quasiparticle interference imaging

measurements, revealing a single component order parameter of dx2−y2 symmetry [165], incon-

sistent with the previous chiral two-component scenario. The reason why it has been so difficult

to detect the superconducting gap at the SrO-terminated surface of Sr2RuO4 by STM rests in the

presence of a surface reconstruction [25], which appears to suppress superconductivity.

Effects of doping and lattice distortions

The electronic structure of Sr2RuO4, and consequently its ground state, is extremely sensitive

to disorder. The substitution of Sr2+ with La3+ leaves the RuO6 cage largely unaffected, inducing

a rigid-band shift of the Fermi level across the vHs, followed by non-Fermi liquid behavior and

enhancement of ferromagnetic fluctuations [6, 140, 170]. The isoelectronic substitution of Sr2+

by Ca2+ induces distortions to the RuO6 octahedra due to the smaller ionic radius of Ca. This is
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Figure 2.10: Illustration of the phase diagram of the system Ca2 – xSrxRuO4. Phase diagram of
Ca2 – xSrxRuO4, based on ref. [13, 166–169]. The structural models show the structural distortions induced
with increasing Ca content (SC: superconductivity, PM: paramagnetic metal, FM: Ferromagnetic fluctu-
ations (wiggly line represents fluctuations), MM: glassy magnetic metallic, AFM: antiferromagnetic).
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illustrated in Figure 2.10, which shows a sketch of the phase diagram of Ca2 – xSrxRuO4. Upon the

introduction of Ca, the RuO6 octahedra rotate in-plane and superconductivity (SC) is suppressed.

The system is still a paramagnetic metal (PM) with Fermi liquid behavior at low temperatures.

With increasing x, the octahedral rotation angle increases until it reaches ∼ 12◦ at x∼ 0.5, where

strong ferromagnetic (FM) fluctuations are detected. Increasing x further results in the tilting of the

RuO6 octahedra about the c-axis, with a glassy magnetic metallic (MM) state appearing. As the

concentration of Ca is increased, the tilting angle increases and an antiferromagnetic (AFM) order

appears, finally stabilizing into a Mott-insulating state in the pure compound Ca2RuO4 when the

tilting angle reaches ∼ 12◦ [13, 166–169]. These are reasonably tiny distortions to the RuO6 cage

(rotation and tilting angles . 12◦) that drive the system through a large diversity of ground states.

Another example is the structural distortion at half doping observed upon the substitution of Ru for

Ir, which changes the symmetry of the lattice and induces an incommensurate antiferromagnetic

order, also driven by the lattice degrees of freedom [14].

The disorder introduced by doping poses challenges when trying to understand the micro-

scopic physics of these phase transitions, making it difficult to separate the effects of chemical in-

homogeneity from the effect of the lattice distortions. One way to create lattice distortions without

introducing disorder is by applying strain. Measurements of the resistivity of Sr2RuO4 crystals un-

der uniaxial strain applied along the [100] crystallographic directions have shown an increase in

the superconducting Tc for both compressive and tensile strains [151, 171]. Upon compressing

the crystal further, the Tc is observed to have a maximum at Tc = 3.5 K [96]. In the same strain

range, the resistivity of the normal state is seen to change to a non-Fermi liquid behavior, with a

decrease in the exponent α of the temperature dependence T α from 2 to 1.5 [172]. This change

in the transport properties corresponds to a Lifshitz transition of the γ band, where the vHs in the

direction perpendicular to the applied strain is moved across the Fermi level, as demonstrated by

ARPES [7]. Epitaxial strain measurements on thin films [173] have shown an enhancement of the

mass of the quasiparticles as the vHs is moving across EF, with non-Fermi liquid behavior when

the vHs is in the close vicinity of EF. Recent experiments on single crystals, where higher strain

values were reached, show not only the separation of the superconducting Tc with the onset energy

of TRSB but also the stabilization of a static magnetic order [11].

To understand how these tiny distortions of the RuO6 octahedra control the stabilization of

such a diversity of ground states, we should ideally start by understanding how the ground state of

a single layer of Sr2RuO4 changes upon the introduction of octahedral rotations. Such a system

can be found at the surface of Sr2RuO4.
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The surface layer of Sr2RuO4

In Sr2RuO4, adjacent SrO layers are weakly coupled, resulting in a preferable cleaving plane

along the [100] direction, exposing a SrO-terminated surface. The bulk crystal of Sr2RuO4 has a

structural instability towards formation of octahedral rotations evidenced by a phonon mode that

corresponds to the in-plane rotational mode of the RuO6 octahedra and softens at the Brillouin

zone corner [174,175]. Upon cleaving, this phonon mode freezes at the surface layer, with adjacent

RuO6 octahedra rotated in opposite orientations (Fig. 2.11(a)) resulting in a doubling of the unit

cell (Fig. 2.11(b)). The angle of rotation has been estimated by IV/LEED to be between 6◦-

9◦ [25, 176], mimicking the octahedral rotation that appears upon Ca-doping and of Sr3Ru2O7.

This surface reconstruction dramatically changes the electronic structure as revealed by ARPES

measurements [24, 26, 27]. Figure 2.12 shows the ARPES Fermi surface map measured by Veen-

stra et al. [27], showing a Fermi surface that is consistent with the folding of the bands due to

the doubling of the unit cell, with the dxy band displaying a change in its topology due to the vHs

being pushed below EF. This is supported by the observation that the dispersion of the γ-band

changes from electron-like in the bulk to hole-like at the surface. In ARPES, these surface states

are seen superimposed with the bulk bands and can be suppressed either by cleaving in air [7],

degrading the surface through temperature cycles [24] or adsorption of CO molecules [117].

Laser ARPES measurements [177,178] show that the surface is an extremely correlated Hund’s

metal, which is well isolated from the bulk and can thus be treated as a distinct system. The band-

width of the γ-band of the surface system is found to be 3 times narrower than the bulk, being

more correlated, a consequence of the vHs being closer to EF than in the bulk.

DFT calculations of Sr2RuO4 within the local density approximation, with different angles of

octahedral rotations, show that increasing the angle of rotation pushes the vHs down in energy,

Surface top view:
θ = 6°

(b)
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Upon cleaving(a)

Figure 2.11: Sketch of the surface reconstruction in Sr2RuO4. (a) When a crystal of Sr2RuO4 is cleaved,
the topmost layer undergoes a reconstruction where the RuO6 octahedra rotate in-plane, as indicated by the
arrows. (b) Top view of the surface crystal structure, showing the octahedral rotation. The blue square
indicates the surface unit cell.

23



Γ M

X

Figure 2.12: Fermi surface of the surface layer of Sr2RuO4. ARPES Fermi surface map showing the
bands from the surface layer of Sr2RuO4, superimposed on the bulk bands. Reproduced with permission
from Veenstra et al. [27].

being below the Fermi level for θ > 6◦ and reproducing the Fermi surface observed by ARPES

[23]. It also shows that the rotation promotes mixing between the t2g and eg states, with the vHs

at the M-point gaining a small dz2 contribution.

The consequences of this vHs shift to the ground state of the surface layer are not trivial. STM

measurements [25,116] show a checkerboard intensity pattern on top of the Sr atoms, which is not

captured in the I/V LEED [25,176]. Using DFT calculations to compare possible magnetic ground

states with the non-magnetic case, Matzdorf et al. [25] showed that a ferromagnetic configuration

becomes energetically favourable at the octahedral rotation angle observed at the surface layer.

However, this is inconsistent with ARPES measurements, where evidence for ferromagnetism

was never found [26]. Scanning tunneling spectroscopy shows the opening of a partial gap around

the Fermi level [179] instead of a clear peak in the local density of states, in disagreement with the

presence of a single vHs. In addition, it is not clear whether the rotation suppresses superconduct-

ivity. Most STM measurements report the absence of a superconducting gap in high-resolution

STS on the SrO-terminated surface [158–161], whereas the detection of a superconducting gap at

this surface has been recently reported [165].

The Fermi surface of the surface layer of Sr2RuO4 shows similarities with the Fermi surface

of Sr3Ru2O7 (see below Figure 2.14). First, the symmetry of the vHs at the M-point changes from

two-fold in the bulk Sr2RuO4 to four-fold at the surface layer, with four pockets joining together

at the vHs point, as in Sr3Ru2O7 when ignoring orthorhombicity and considering a tetragonal

unit cell. Second, the energy of the vHs in the surface layer of Sr2RuO4 appears at a similar

energy as in Sr3Ru2O7. This brings up the question of whether the surface of Sr2RuO4 has a

ground state similar to that of Sr3Ru2O7, becoming quantum critical. The studies of the surface

reconstruction in the Ca2 – xSrxRuO4 system show that the surface layer of crystals with increasing
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Ca doping stabilize the structural distortion observed in the bulk at higher doping concentration,

as for example, the surface layer of Sr2RuO4 shows rotations, which is only stabilized in the bulk

upon Ca doping.

Unveiling the low-energy electronic states of the surface layer of Sr2RuO4 provides an ideal

model system to understand how the proximity to a vHs in strongly correlated systems stabilizes

different emergent orders. In particular, how in the ruthenates system the distortions of the RuO6

octahedra control the appearance of such a large diversity of states. The surface layer of Sr2RuO4

provides an ultra-clean two-dimensional system to test this. In Chapter 5, I study the low-energy

electronic structure of this system, revealing the presence of emergent orders distinct from the

bulk.

2.2.2 The metamagnetic Sr3Ru2O7

Crystal structure

Sr3Ru2O7 crystallizes in an orthorhombic unit cell (space group Bbcb) [180], Figure 2.13(a).

It is a layered perovskite, where each layer consists of two RuO2 planes (or two RuO6 octahedra

connected by the same apical oxygen), defining a bilayer of strontium ruthenate. It has in-plane

octahedral rotations by ∼ 7.85◦, where the direction of rotation is opposite between adjacent Ru

atoms in the same RuO2 plane and between RuO2 planes in the same bilayer (arrows in Fig-

ure 2.13(a)). The orthorhombicity is a consequence of the stacking of the bilayers because there

are two different ways in which the rotations of the next bilayer can be oriented: either the top

bilayer is shifted by (
√

2/2,
√

2/2) or by (−
√

2/2,
√

2/2) in relation to the bottom bilayer. These

two orientations are energetically identical, but define a symmetry breaking axis. To first order, we

can estimate the effect of the orthorhombicity to be energetically of the same order as the interlayer

coupling.

Despite the orthorhombicity, the distance between the Ru atoms along x and y are the same

within experimental uncertainty [181] with a Ru-Ru distance of a = 3.89 Å. To describe some of

the properties of this material, a pseudo-tetragonal unit cell is used, with the a and b axis defined as

the in-plane lattice vectors that connect adjacent Ru atoms, Figure 2.13(b), and the c-axis parallel

to the [001] direction.

The two RuO6 octahedra in a bilayer couple strongly via the apical oxygen, but the coup-

ling between bilayers is weak, evidenced by anisotropic transport properties [110]. The prefer-

able cleaving plane is along the [100] plane, between adjacent SrO layers, as in Sr2RuO4. Fig-

ure 2.13(b) shows a top view of the crystal structure of Sr3Ru2O7, where the in-plane octahed-
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Figure 2.13: Crystal structure of Sr3Ru2O7. (a) The orthorhombic unit cell of Sr3Ru2O7. (b) Top view
of a bilayer, showing opposite rotation between the top and bottom RuO6 octahedra. The bottom layer
is shown with transparency. The black square indicates the 2D unit cell and the blue arrows the pseudo-
tetragonal axes a and b.

ral rotation is visible. The square shows the 2D unit cell for a single bilayer, with the pseudo-

tetragonal lattice vectors shown as a and b.

Fermi surface and electronic structure

The Fermi surface of Sr3Ru2O7 can be constructed from that of Sr2RuO4 by including the

doubling of the unit cell, due to the octahedral rotation, and bilayer splitting due to the presence

of the second RuO2 layer in a single bilayer unit of Sr3Ru2O7. The unit cell of the bilayer in

Sr3Ru2O7 has 4 Ru4+ ions, each with four electrons partially filling the three t2g orbitals of each

atom, resulting in a total of 12 orbitals per unit cell [182]. However, according to ARPES [183]

and quantum oscillations measurements [182, 184], the Fermi surface of Sr3Ru2O7 has six bands,

half of the expected bands.

Figure 2.14 shows the Fermi surface of Sr3Ru2O7 measured by ARPES, from Tamai et al.

[183] showing the six Fermi pockets: δ , a circular pocket centered around the Γ-point of dx2−y2 or-

bital character; α1 and α2, of dxz/dyz character; γ1 and β centered around the M-point, due to the

mixing of dxz/dyz with dxy orbitals, with the β band with stronger dxz/dyz orbital character; and the

small γ2 pockets around the X-point of dxy character. Both ARPES and quantum oscillations show

quasiparticle mass enhancement, with effective masses between 5.6− 10.1 me, where the lighter

band corresponds to the β pocket and the heavier band to the α2 pocket. The energy-momentum

cuts of the bands from ARPES show a vHs at −4 meV [183, 185] around the X-point of the

Brillouin zone, from the dispersion of the γ2 pocket.

DFT calculations within the local density approximation using the orthorhombic unit cell of

Sr3Ru2O7 fairly reproduce the Fermi surface from ARPES [186]. The renormalization factor to
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(a) (b)

Figure 2.14: Experimental Fermi surface of Sr3Ru2O7. (a) Fermi surface of Sr3Ru2O7 measured by
ARPES. (b) Pockets extracted from (a). The lines indicate the two-atom unit cell. The bands are label in
agreement with quantum oscillatons nomenculature. Reproduced with permission from Tamai et al. [183].

correct for the Fermi velocities found in ARPES is larger than in Sr2RuO4, and to achieve good

agreement requires band-dependent renormalizations to be applied [187]. The bandwidth of the δ

band around the Γ-point is ∼ 20 times lower than the one predicted by DFT. The band structure in

Sr3Ru2O7 shows a slight kz-dispersion due to the interlayer coupling that makes the planes kz = 0

and kz = π slightly different from each other [183, 186].

The effective masses from ARPES are consistent with the ones obtained in quantum oscilla-

tion measurements, indicating that the Fermi surface is representative of the bulk. However, the

surface layer of Sr3Ru2O7 undergoes a slight surface relaxation, with the increase of the octahedral

rotation (∼ 12◦) and possibly a small tilt (. 2.5◦) at low temperatures [28]. It preserves the bulk

unit cell, which, compared to Sr2RuO4, makes it more difficult to distinguish between surface and

bulk bands in ARPES, where small changes to the band structure cannot be excluded.

Metamagnetism and quantum criticality

Sr3Ru2O7 is a paramagnetic metal with a strongly correlated Fermi-liquid ground state at low

temperatures. Its transport properties are highly anisotropic, with the resistivity along the c-axis

two orders of magnitude larger than the in-plane resistivity with ρc/ρab ∼ 300 at 0.3 K [110]. It

has a large Wilson ratio, RW > 10, implying that Sr3Ru2O7 is close to a ferromagnetic instability

[110]. As a function of magnetic field H, it shows a sharp increase in magnetization, undergoing

a metamagnetic phase transition associated with nematicity of the electronic states and a quantum

critical end point [15, 17, 18].

The details of the metamagnetic transition in Sr3Ru2O7 are extremely sensitive to disorder.

Single crystals of Sr3Ru2O7 with residual resistivity of ρres = 2.3−5 µΩcm, show a metamagnetic
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Figure 2.15: Phase diagram of Sr3Ru2O7. (a) Sketch of the phase diagram of Sr3Ru2O7 for H||c-
axis, based on the coefficient of the resistivity measurements from Ref. [16]. The dotted lines indicate the
smooth boundaries between Fermi liquid (FL) and non-Fermi liquid (N-FL) behaviors. The metamagnetic
phase seen in high-purity samples (ρres < 1 µΩcm) is shown in red. For lower-purity samples (ρres =
2.3− 5 µΩcm ), instead of this phase, there is a QCEP at ∼ 8 T. (b) Low-temperature phase diagram of
high purity single crystals of Sr3Ru2O7, focusing on the metamagnetic phases. The black circles indicate
the two QCEP. Sketch based on Ref. [17, 190, 192].

transition below 1.3 K at ∼ 5 T, for H||ab plane [15, 188], corresponding to a first-order phase

transition. Tilting the field out of plane towards the c-axis pushes the metamagnetic field to ∼ 8

T and suppresses the transition temperature to < 100 mK, ending in a quantum critical end point

(QCEP) [16]. The presence of quantum fluctuations in the vicinity of the QCEP is indicated by a

change from Fermi liquid behavior (ρ(T ) = ρres +AT α , with α = 2) at low T and low fields to

non-Fermi liquid behavior (α ∼ 1) in the field range of the transition, recovering FL behavior at

higher fields [16], as illustrated in Figure 2.15(a). In samples of higher purity, ρres < 1 µΩ cm, a

metamagnetic phase (A phase) appears below 1 K for H||c in the field range 7.8−8.1 T, enclosing

the quantum critical end point [17, 18, 189], red region in Figure 2.15(a). This phase has well-

defined phase boundaries, Figure 2.15(b), with two lines of first-order phase transitions on each

side of the field range and a line of second-order phase transitions with decreasing temperature.

The purest samples of Sr3Ru2O7 show a second phase (B phase) in the high field range of 8.1−8.5

T [190] with a lower onset temperature of 0.6 K, and a second metamagnetic QCEP at ∼ 7.5

T [191, 192].

The metamagnetic phase in Sr3Ru2O7 is characterized by anomalies in transport and thermo-

dynamic measurements. In a.c. magnetic susceptibility measurements, two peaks are observed

at the field boundaries of the metamagnetic transition, consistent with first-order phase trans-

itions [17]. When the magnetic field is applied parallel to the c-axis, the electrical resistivity

shows anomalous behavior at 100 mK characterized by a step-like increase as it enters the meta-
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magnetic phase at ∼ 7.8 T, approximately doubling in value, and a sudden decrease as it leaves it

at ∼ 8.1 T for current I applied along the a and b axes [17](see axes definition in Figure 2.13(b)).

However, if the field is rotated towards one of the in-plane axes by a small angle, say the a-axis,

the resistivity becomes anisotropic. If the current is applied along the a-axis, similar behavior

to when the field is out-of-plane is observed, whereas if the current is applied along the b axis

the high resistivity regime is not observed, giving rise to an easy direction for conduction [18].

The easy direction is determined by the in-plane component of the magnetic field, if the magnetic

field is oriented along the b-axis, then the a-axis becomes the easy direction for conduction. This

occurs at both the A and B phases [193] in Figure 2.15(b), and for a small range of angles from

the c-axis, 0 < θ < 40◦. Elastic neutron scattering measurements for H||c puts an upper bound

of 4×10−5 Å to any structural difference between the a and b lattice constants in the anomalous

resistivity region [18]. This behavior is consistent with the formation of a novel quantum phase,

an electron nematic phase that breaks rotational symmetry, in the vicinity of the quantum crit-

ical end point. Linear magnetostriction measurements under H||c show three step-like increases

along the c-axis at 7.5 T, 7.8 T and 8 T, corresponding to the fields of the second QCEP and the

boundaries of the metamagnetic A phase, indicating a strong magnetoelastic coupling along the

c-axis [194], whereas along the ab-plane the observed jump in linear magnetostriction is five times

smaller [195].

The specific heat at zero field shows a broad maximum below 20 K, attributed to an increase

of spin fluctuations near a field-driven quantum phase transition [196]. The temperature T ∗ of

this broad maximum is suppressed towards T = 0 K with increasing magnetic field, resulting in

the divergence of the specific heat at low temperatures as the metamagnetic phase is approached.

The divergence of the specific heat [197] is of the form C/T ∝ h−1, with h = (H−Hc)/Hc where

Hc is the critical field, in disagreement with the predicted trend from the renormalization group

description of QCEP [91], discussed in section 2.1.5. Upon crossing the metamagnetic phase at

higher fields (> 8.1 T), T ∗ reemerges and moves towards higher temperatures. Approaching the

metamagnetic phase at constant field by decreasing the temperature shows C/T ∝ log(T ) [198].

Magnetocaloric measurements identify jumps in the entropy at the boundaries of the metamagnetic

phase transition, suggesting that the formation of the metamagnetic phase is a way for the system

to avoid a singularity in the entropy near the quantum critical end point. In addition, at 1.5 K,

above the phase transition, the entropy shows a peak at the critical field of 8 T, in agreement with

an approach to quantum criticality [197].

Inelastic neutron scattering measurements indicate a strong competition between ferromag-
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Figure 2.16: Metastable AFM orders in Sr3Ru2O7. (a) Illustration of the AFM-I order. The top shows a
side view, where two bilayers are visible. The magnetic moments align ferromagnetically along the bilayer,
but antiferromagnetically between adjacent bilayers. The bottom shows a top view. The black square shows
the unit cell. (b) Illustration of the E-type AFM order. The orientation of the spins is the same between
adjacent bilayers. The bottom shows a top view, where the zigzag patterns of the spins is visible. The black
rectangle shows the unit cell. Red and blue circles indicate up and down spins, respectively.

netic (FM) and antiferromagnetic (AFM) fluctuations throughout its phase diagram. FM fluctu-

ations are observed to dominate at T & 20 K [199], and incommensurate AFM fluctuations prevail

at lower temperatures in a wide range of applied magnetic fields [200]. This competition between

ferromagnetic and antiferromagnetic ordering is visible in DFT calculations [186, 201,202]. Both

LDA and Perdew-Burke-Ernzerhof (PBE) predict a ferromagnetic ground state for Sr3Ru2O7,

however, calculations considering different magnetic orders show that some are almost degen-

erate to the FM order. These include the AFM-I order [201], Figure 2.16(a), with FM in individual

bilayers but AFM between adjacent bilayers, and E-type AFM order, Figure 2.16(b), which is the

lowest energy AFM-ordered metastable state [202]. While the AFM-I order retains the surface

unit cell, in the E-type order, since the spins are aligned in a zigzag pattern, the unit cell changes,

drastically modifying the electronic structure. For the E-type order, the Fermi surface will appear

with C2-symmetry due to the new symmetry of the unit cell.

Magnetic neutron scattering measurements [190] show the appearance of ordered spin-density

waves (SDW) in the A and B phases. In the A phase, at B = 7.95 T and T < 1 K, a magnetic Bragg

peak at qA
SDW = (0.233,0,0), in units of 2π/a, is observed, which changes to qA

SDW = (0.218,0,0)

at B = 8.15 T, in the B phase. These q-vectors are consistent with a linear transverse SDW aligned

with one of the in-plane axes a,b. When the magnetic field is applied parallel to the c-axis, at
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the A phase, two sets of magnetic Bragg peaks are detected, at (±0.233,0,0) and (0,±0.233,0),

indicating the presence of domains of SDW propagating along the a and b axis, respectively. When

the field is tilted to have a component parallel to a, entering the regime of anisotropic resistivity,

the peaks at (0,±0.233,0) are completely suppressed, indicating that the SDW domains align

along the in-plane component of the field. Rotating the field towards the b-axis suppresses the

domains along the a-axis, showing that the domain populations can be tuned with an in-plane

magnetic field. The tuning of the orientation of the SDW with an in-plane magnetic field can

thus be associated with the anisotropic behavior found in resistivity, where the easy direction for

conduction occurs in the direction perpendicular to the SDW.

Microscopic theories for metamagnetism and quantum criticality

Several interpretations for the emergence of the nematic ordering at the metamagnetic phases

have been proposed. One proposal considers that the nematic phase is a spatially modulated

magnetic state analogous to a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase proposed for su-

perconductivity under magnetic field [203, 204]. Another interpretation follows an analogy with

itinerant ferromagnetism where the itinerant metamagnetism appears due to a polarization of the

spin-up and spin-down Fermi surfaces at the critical field so that the fluctuations can be thought of

as fluctuations of the Fermi surface itself [15]. Electron nematicity could then appear via a Pom-

eranchuk instability, where the electronic interactions result in a sudden distortion of the Fermi

surface for one spin species, inducing a different symmetry than the Fermi surface of the other

spin species [18]. Indeed, in a metal, it has been shown that electron nematic order can drive

metamagnetic transitions via topological changes to a spin-up Fermi surface close to a vHs, in an

increasing magnetic field, while the spin-down Fermi surface changes continuously [87].

Different microscopic theories have been proposed to describe the emergence of nematicity

at the metamagnetic phases and its relationship to the quantum critical end point in Sr3Ru2O7,

from the point of view of Fermi surface distortions. There are two different approaches for

metamagnetic and nematic phase transitions driven by the proximity of the vHs to the Fermi en-

ergy [205–208], with some theories arguing that the vHs on the γ band and of dxy orbital character

is the one governing the metamagnetic phase transition [205, 206] and some that it is the one due

to the quasi-1D states of dxz/dyz character of the α1 and α2 bands [207, 208].

The idea behind the first approach is that the octahedral rotation in Sr3Ru2O7 largely affects the

dxy states in relation to the Fermi surface of Sr2RuO4, pushing the dxy vHs below EF and changing

its symmetry from a two-fold vHs in Sr2RuO4 to four-fold in Sr3Ru2O7, due to the doubling of the
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Figure 2.17: Illustration of the Fermi surface topological changes associated with magnetization
jumps. Sketch of the magnetization as a function of magnetic field in Sr3Ru2O7, showing the jumps in
magnetizations that determine the boundaries of the metamagnetic phase. From the model developed by
Puetter et al. [205], the first jump occurs when the vHs along one of the spatial directions is moved across
EF, becoming C2 symmetric. Increasing the magnetic field further pushes the other vHs across EF, restoring
C4-symmetry to the Fermi surface, suppressing the nematic phase, and a second jump in the magnetization
appears. Illustration based on the phase diagram in ref. [205].

unit cell. Puetter et al. [205] developed a mean-field theory in which nematic order is accompanied

by jumps in the magnetization, by focusing on the γ2 band at the X-point of the Fermi surface of

Sr3Ru2O7. Starting from a tight-binding model with the three t2g orbitals, spin-orbit coupling and

unit cell doubling due to the octahedral rotations, they find from a mean-field theory that a finite

nearest-neighbor interaction promotes the nematic state, whereas the on-site intraorbital interac-

tion promotes ferromagnetism. The application of a magnetic field parallel to the c-axis makes the

γ2 band anisotropic, driving one of the γ2 vHs (along one direction) close enough to EF to induce

a nematic transition, resulting in a jump in the magnetization and thus a metamagnetic transition.

Increasing the field further pushes the other vHs to higher energies, restoring C4-symmetry and

suppressing the nematic state, accompanied by a second jump in magnetization (see Figure 2.17).

This implies that the nematic order is sensitive to the location of the vHs and the balance between

competing instabilities, which are controlled via the octahedral rotation and spin-orbit coupling.

In the second approach, the idea is that the major difference between Sr2RuO4 and Sr3Ru2O7

rests in a large bilayer splitting in Sr3Ru2O7, which strongly affects the dxz/dyz states. In this

picture, the nematic and metamagnetic phase transitions arise as a consequence of orbital ordering

between the quasi-1D bands, α1 and α2. Lee et al. [207], extend the Pomeranchuk instabilities

into multiorbital systems, describing the nematic order as arising from the orbital ordering of the

quasi-1D bands, where the magnetic field pushes the majority-spin van Hove singularity of the

dxz/dyz states closer to the Fermi energy, which triggers the nematic distortion in the majority-
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spin Fermi surfaces. Raghu et al. [208] start from a tight-binding model on a bilayer (one layer

of Sr3Ru2O7) to take into account bilayer splitting and construct a mean-field theory considering

only the dxz/dyz states. They find that when the on-site Coulomb repulsion between two electrons

on the same orbital (U) dominates the on-site Coulomb repulsion between two electrons in dif-

ferent orbitals (V ), ferromagnetism is promoted. However, if U ≈ V , then the application of an

increasing magnetic field induces a metamagnetic transition where nematic order develops, and

by increasing the field further, a second metamagnetic transition occurs, destroying the nematic

phase, as observed in the resistivity experiments. By introducing a spin-orbit coupling term that

depends on the angle θ between the magnetic field H and the c-axis while treating the dxy band

as a free-electron system, the model was able to account for the angle-dependent metamagnetic

transitions with increasing θ . The nematic phase arises due to distortions to the α1 and α2 Fermi

pockets around the Γ-point, where the contribution from the bilayer splitting is largest.

Both approaches appear complementary to each other. While one neglects bilayer split-

ting [205, 206], the other overlooks the effects of octahedral rotation [207, 208], when both are

necessary to understand the differences between the bilayer, Sr3Ru2O7, and the single layer,

Sr2RuO4, ruthenates. It has been shown that the change in symmetry of the dxy vHs between

Sr2RuO4 and Sr3Ru2O7, which results in a different divergence law of the peak in the DOS, can

accurately capture the divergence in the specific heat without needing to invoke quantum fluc-

tuations on approaching the metamagnetic phase [95], thus indicating that the shape of the γ2

vHs and its proximity to EF are important to describe the low-energy states of Sr3Ru2O7. One

way to distinguish between these two scenarios is via spectroscopic measurements. Quasiparticle

interference (QPI) simulations [209] on a tight-binding model of Sr3Ru2O7 taking into account

bilayer splitting, octahedral rotations and on-site spin-orbit coupling, suggest that the QPI from

the dxy band should be suppressed at the surface due to its in-plane nature and that the scattering

due to the dxz/ dyz bands should dominate. The resulting QPI is C4-symmetric, and by including a

nematic order parameter on the dxz/ dyz states, the scattering patterns become C2-symmetric along

the a and b directions. Using a scanning tunneling microscope to measure QPI across the critical

magnetic field would allow distinguishing between the two cases. STM QPI measurements at 4 K

on a Ti-doped Sr3Ru2O7 sample show patterns consistent with dominant scattering vectors coming

from the α2 band [210].

Another way to distinguish between both scenarios is by performing first principle calculations

including the effects of magnetic field. DFT calculations with LDA including spin-orbit coupling

(SOC) and electron correlations by Behrmann et al. [211], on the orthorhombic unit cell, show
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a Fermi surface that is C2-symmetric along the [010] direction, mainly affecting the α1 and α2

pockets, with an avoided band crossing along one of the 〈010〉 directions, leaving a crossing point

in the opposite direction, but still consistent with ARPES. This results in two inequivalent M and

M′ symmetry points in the Brillouin zone. In addition, the γ2 band also shows a slight anisotropy

along the 〈110〉 directions, rendering the symmetry points X and X ′ along each direction inequi-

valent. Upon applying a magnetic field along the c-axis, metamagnetism is observed if both SOC

and correlations are included in the calculations. They observe an interorbital charge transfer from

dxy to dxz/dyz with magnetic field. While the dominant dxy part shows substantial paramagnetic

response with field, the generally much smaller dxz, dyz terms exhibit paramagnetic/diamagnetic

orbital response, which appears as a key microscopic building block for the metamagnetic beha-

vior. With increasing field the vHss at the X-point are shifted up in energy, crossing the Fermi

level and changing the topology of the γ2 band in an anisotropic way between X and X ′. The

α2 band also becomes distorted, shrinking and deforming along [100]. The density of states runs

through several peaks at the Fermi energy, but not the same as just moving the Fermi level of

the H = 0 band structure. The pockets of the γ2 band become C2-symmetric upon application of

magnetic field in the metamagnetic region, recovering C4-symmetry at larger fields, similar to the

microscopic model of Puetter et al. [205].

To disentangle the role of quantum fluctuations near the quantum critical point in Sr3Ru2O7,

high-energy resolution spectroscopic data is necessary, to follow the density of states as the meta-

magnetic phase is approached. STM measurements [212] on Sr3Ru2O7, for samples with a resid-

ual resistivity of ρres ∼ 7 µΩcm, show a partial gap around EF, with a two-peak structure within

±5 meV of the Fermi level. The topographies show a checkerboard intensity pattern similar to the

one found at the surface of Sr2RuO4. The evolution of tunneling spectra from 0 T to 11 T shows

a complex behavior, with shifts of the spectral density towards lower energies and the filling of

states at the Fermi level with increasing field, not allowing a definite determination of the role of

quantum fluctuations in the phases observed in Sr3Ru2O7, calling for more detailed studies.

Effects of doping and lattice distortions

The ground state of Sr3Ru2O7 can be tuned towards different magnetic orders by doping

and lattice distortions. The substitution of Sr by Ca, (Sr1 – xCax)3Ru2O7, increases the octahedra

distortions similar to Sr2RuO4, increasing the susceptibility towards ferromagnetism with an in-

creased rotation and ultimately stabilising long-range antiferromagnetic order accompanied by

tilting [19, 29]. On the other hand, Ru substitution by Mn, Sr3(Ru1 – xMnx)2O7, reduces the oc-

34



tahedral rotations and shrinks the unit cell volume, with the octahedra rotation angle suddenly

dropping to zero for x > 0.16 [213], resulting in a metal-to-insulator transition and E-type an-

tiferromagnetic order (Figure 2.16(b)) [20, 214, 215]. Introducing magnetic impurities via dop-

ing with Fe, Sr3(Ru1 – x Fex)2O7, also induces E-type antiferromagnetic order for concentrations

x > 0.03 [21].

Cleaner ways to induce distortions to the lattice without disorder include hydrostatic pressure

and uniaxial strain. Via hydrostatic pressure, the metamagnetic critical field for H||ab, is tuned to

higher fields, reaching ∼ 10 T at a pressure of ∼ 16 kbar, followed by the decrease in transition

temperature, giving rise to another quantum critical end point [92]. Uniaxial strain applied along

the c-axis induces ferromagnetism [22], while when applied in-plane, it enhances the metamag-

netism and nematic behavior [30].
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Chapter 3

Experimental technique and

methodology

To fully comprehend the properties of strongly correlated electron systems, it is necessary

to obtain information about both localized and delocalized states in real and momentum space,

with high energy, spatial and k-resolution. This can be achieved in scanning tunneling microscopy

(STM), where the local density of states of both occupied and unoccupied states of a sample can be

directly measured in real-space, and momentum space information can be obtained via the Fourier

transform of such images. The possibility of measuring at ultra-low temperatures (< 100 mK) and

under high magnetic fields makes STM a powerful technique, where a large phase space can be

probed, with extremely high-precision.

This chapter contains a brief introduction to the principles behind Scanning Tunneling Micro-

scopy, based on the detailed descriptions found in references [216, 217]. Different types of STM

measurements will be discussed, such as topography, spectroscopy and quasiparticle interference.

The experimental setup used in this work is described in detail. Characterization of the properties

and quality of the single crystals measured as part of this thesis is given.

3.1 Scanning tunneling microscopy

The concept behind scanning probe microscopy is simple: put a sharp tip very close to a

surface and measure the interaction between them. In scanning tunneling microscopy, the quantity

that is measured is the current Itip−s due to quantum tunneling of electrons through the vacuum

barrier between a metallic tip and a sample when a voltage difference Vsetis applied between them
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[218, 219], as illustrated in Figure 3.1. This current is proportional to

Itip−s ∝ e−2κd , with κ =

√
2meφeff

h̄2 , (3.1)

where d is the tip-sample distance, φeff is a combination of the work functions of the tip and

sample, me is the mass of the electron and h̄ is the reduced Planck constant. Thus, the current is

highly sensitive to changes in tip-sample distance d. The typical work function of a metal is∼ 5 eV,

resulting in a decrease of one order of magnitude in the current when the tip-sample distance d

is increased by only 1Å. By attaching the tip to a piezoelectric scanner, the tip can be scanned

over the sample surface, where its topographic features will result in changes in the distance d,

and consequently, to measurable changes in Itip−s. Comparing the tip-sample current with a preset

current via a feedback loop, the height profile of the topography of the surface is obtained. As it

will be discussed in the following sections, STM is not only sensitive to topographic changes, but

it can probe the local density of states of the sample, having access to its electronic properties for

both occupied and unoccupied states.

The first prototype of using quantum tunneling current has a probe was developed by Young

et al. [220], but it was Binnig, Rohrer and coworkers [218] that first measured the dependence of

Eq. 3.1 between a Tungsten tip and a Platinum sample and were able to achieve atomic resolution

for the first time [221, 222] (winning the Nobel prize in Physics in 1986). Since then, STM has

become one of the most important experimental techniques in the study of strongly correlated

electron materials. From atomic manipulation [223, 224], observation of quantum confinement

[225], standing waves due to quasiparticle interference at defects [226–228], STM has played a

tip
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Figure 3.1: Illustration of STM. A sharp metallic tip is put a few ångström away from a sample surface.
When a bias voltage Vset is applied between tip and sample, a current Itip−s flows through the vacuum
between the two. The tip is scanned over the surface along (x,y) by a piezoelectric scanner which also
controls the tip-sample distance, d, due to a feedback loop that applies Vfeedback to the scan piezo to keep
the current at a preset value Iset .
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crucial role in shedding light on problems such as the symmetry of the order parameter of High-

Tc [47] and iron-based superconductors [229], Kondo systems [230,231], magnetic textures [232,

233] and magic angle graphene [98, 100], just to name a few examples.

3.1.1 Measurement modes

Topography

There are two ways of obtaining a topographic image of the surface of a sample using STM:

either the tip height z is kept constant and the changes in current are measured as the tip is scanned

(constant-height imaging, Figure 3.2(a)) or the current is kept constant and the height z of the tip is

changed to maintain a constant current while scanning (constant-current imaging, Figure 3.2(b)).

In constant-height imaging, Figure 3.2(a), the tip is scanned at a constant height z over the

surface of the sample. Variations in the surface topography change the tip-sample distance d as the

tip is scanned, changing the current I(x,y) accordingly. Since the tunneling current depends on the

local density of states (LDOS), regions of high electronic density will result in an increase in the

current, exemplified by the dark circle in Figure 3.2(a). As it will be discussed in Section 3.1.2, this

imaging mode provides a two-dimensional image that is a measurement of the integrated density

of states in the plane above the surface in which the tip is moving.

In constant-current imaging, Figure 3.2(b), a feedback loop is used to extend/contract the

piezo scanner, decreasing/increasing the tip-sample distance, in order to maintain the current at a

constant value Iset . By knowing the calibration of the piezo scanner, the exact amount z by which

the tip-sample distance is adjusted is known, and a real-space image of the surface topography is

tip

z

I

sample

(a) tip

z

I

sample

(b)

Figure 3.2: Illustration of imaging modes. (a) Constant-height imaging mode. The tip height z is kept
constant while it is scanned over the surface (constant z-channel). All the topographic information will
appear on the current I channel. An impurity with high DOS (dark circle) will show as an increase in
current at its position. (b) Constant-current imaging mode. The tip height z is changed due to a feedback
loop to keep the current constant at a setpoint value, Iset. The current I channel is now ideally a constant
line, while all the topographic information is in the z-channel. On top of an impurity with high DOS, the
tip will retract to keep the current constant, which could otherwise increase due to the increased density of
states.
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obtained, z(x,y). Figure 3.2(b) shows the ideal case of a constant-current scan, where the current

channel shows a straight line, whereas the z channel contains all the topographic information. In

this case, an impurity with high DOS will appear with a larger apparent height despite being at

a lower or at the same height as the atomic lattice, because the feedback loop will retract the

tip to keep the current constant. This has to be taken into account in the interpretation of STM

constant-current images, in order to distinguish true topographic features from local changes in

the DOS.

Both methods have their advantages and disadvantages. On one hand, in constant-current

imaging, the feedback loop can accommodate abrupt topographic changes, such as step edges,

and counter-acts on the effect of thermal drift, keeping the tip always at about the same distance

above the surface and therefore preserving the tip shape and properties. On the other hand, in the

constant-height imaging mode, the tip can slowly drift towards or away from the sample, possibly

touching the surface or loose tunneling after long periods of time. In this mode, the tip is not

able to react to rapid changes in the topography, risking destroying not only its apex but also

the surface itself. Therefore, constant-current imaging is more suitable for large area scans, and

constant-height mode is usually used in areas of just a few nm. The advantage of constant-height

imaging is that it is in principle faster than the constant-current mode because the scanning speed is

only limited by how fast one can record the current, whereas in constant-height mode it is limited

by how fast the feedback loop is. In this work, the topographies shown were measured using the

constant-current mode, unless stated otherwise.

Spectroscopy

In scanning tunneling spectroscopy (STS), the local density of states is measured at a fixed

position on the surface of the sample by sweeping the tip-sample bias V and recording the response

of the current I. This is a consequence of the differential conductance, g(V ) =dI(V )/dV , being

proportional to the density of states of the sample, as it will be shown in Section 3.1.2.

To measure g(V ) directly, a lock-in amplifier is used to overlap an AC-voltage of frequency

ω , VAC = VL cos(ωt), with the tip-sample bias V . As a consequence, the tunneling current I will

now have a modulation with the same frequency. Its amplitude can be determined from the first

order term in the Taylor expansion,

I = I(V )+
dI
dV

(V )VL cos(ωt)+O(V 2
ac), (3.2)

where one sees that the component at frequency ω is proportional to g(V ). The amplitude VL
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will act as an averaging window on the measurement of g(V ), and so this approximation will be

valid if g(V ) is a slowly varying function, that is, if it does not vary over smaller voltage scales

than VL. In addition, to resolve sharp features in the LDOS, VL should not exceed the thermal

energy kBT , to ensure enough energy resolution, otherwise, the modulation will dominate and the

true g(V ) will not be resolved.

Differential conductance maps

Since the tip is a local probe, a g(V ) spectrum can be taken at every point of an image of

the surface, while simultaneously recording the topography. At each point, a Vset is applied to the

sample, the feedback loop adjusts the tip position to keep the current at Iset, and its displacement

z is recorded. After stabilising for a few ms, the feedback loop is switched off, the voltage is

swept over a chosen energy range and both I(V ) and g(V ) are recorded. As it will be discussed in

Section 3.1.2, one effectively gets two-dimensional real-space images that are proportional to the

LDOS of the sample, at each bias voltage, where any spatial changes will be mapped.

3.1.2 Principles

Tunneling current

Consider a positive bias voltage V applied to the sample. The Fermi level of the sample, Es
F, is

lowered by an energy eV with respect to the Fermi level of the tip, E t
F, as illustrated in Figure 3.3.

Electrons can now tunnel through the vacuum barrier over an energy window of width eV + kBT ,

with kB the Boltzmann constant. The total tunneling current will be dominated by the current It→s

EFE
t

nt tip

eV

0
EFE
s

nssample

E

d z

vacuum

Figure 3.3: Sketch of the tunneling process. Diagram of a tip with constant DOS, nt , at a distance d from
a sample with DOS ns. The applied bias V shifts the Fermi level of the sample, Es

F, by an energy eV below
the Fermi level of the tip, E t

F. The tunneling current will be dominated by the flow of electrons from the
occupied states of the tip (gray shaded area) through the vacuum potential barrier to the unoccupied states
of the sample. Due to thermal excitations, there will be a small contribution to the current from electrons
tunneling from the sample occupied states (shaded blue area) above Es

F to the tip.
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due to the flow of electrons from occupied states on the tip to unoccupied states on the sample.

However, for finite temperatures, the probability of electrons flowing from sample to tip is non-

zero and a current Is→t will also contribute. Setting Es
F as the origin of the energy scale, and

considering only elastic tunneling, the total tunneling current will be given by [216, 217]

I =
∫ +∞

−∞

[
It→s(ε)− Is→t(ε)

]
dε =−4πe

h̄

∫ +∞

−∞

|M|2ns(ε)nt(ε− eV )[ f (ε− eV )− f (ε)]dε. (3.3)

where −e is the electron charge, |M|2 is the matrix element for the tunneling barrier, ns(ε) is

the density of states (DOS) of the sample, nt(ε) is the DOS of the tip and f (ε) is the Fermi-Dirac

distribution. By doing measurements at low temperatures, the Fermi-Dirac distribution approxim-

ates a step function and the integral in the previous equation will only have non-negligible terms

in an energy window ε ∈ [0,eV ], so that

I ≈−4πe
h̄

∫ eV

0
|M|2ns(ε)nt(ε− eV )dε. (3.4)

Bardeen [234] showed that the tunneling matrix element, M, only depends on the properties

of the wavefunction inside the barrier. For a one dimensional potential barrier of energy φeff, the

modulus squared of M reduces to the transmission factor of the traveling wavefunction [217], such

that |M|2 = T (φeff,d) ∝ e−2κd , recovering the behavior in Eq. (3.1). For low bias voltages, |M|2

can be assumed to be constant in energy, and thus can be taken outside the integral. In addition,

Eq. (3.4) shows that the total tunneling current is a convolution of both the tip and sample DOS.

By using a tip with a featureless DOS in the relevant energy range of ±200 meV (e.g. W or Pt-Ir),

nt is constant in energy and the total current becomes

I ≈C
∫ eV

0
ns(ε)dε, with C =−4πe

h̄
|M|2nt(0). (3.5)

However, in STM the two electrodes (tip and sample) do not have the same surface area, with

the tip being, ideally, atomically sharp. This implies that the tunneling current is highly localized

at the sample surface. Tersoff and Hamann [235] showed that for a tip with a spherical apex, the

current for low bias voltages (V ∼ 0 V) becomes proportional to the LDOS of the surface at its

Fermi level at the position of the tip rt , ns(rt ,Es
F)

I ∝ ∑
n
|ψn(rt)|2δ (Es

F− εn)≡ ns(rt ,Es
F), (3.6)
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where ψn(rt) is the wavefunction of an electron in the sample of energy εn at position rt .

Thus, by scanning the tip over the sample and measuring the current as a function of position rt ,

one obtains a real-space image of the local density of states at the Fermi level.

Differential conductance

From Eq. (3.5), the tunneling current is proportional to the integrated DOS of the sample. The

differential conductance,

g(V ) =C
d

dV

{∫ eV

0
ns(ε)dε

}
(3.7)

∝ns(eV ), (3.8)

is, therefore, directly proportional to the DOS of the sample at the energy eV , defined by the

sample bias V . This is also valid for applied negative bias (E t
F lowered in relation to Es

F ), switching

the energy range of interest to −|eV | < ε < 0. Thus, by sweeping the sample bias voltage V , the

DOS of a sample for both occupied (negative bias) and empty (positive bias) states can be obtained

as a function of energy. This is the principle of scanning tunneling spectroscopy.

The above equation is valid when the tunneling matrix element |M|2 is constant in energy,

which is obtained in the limit of small bias V . However, for many systems, the energy range of

interest is not confined to a few meV around the Fermi level, and the energy dependence of |M|2

becomes relevant. The tunneling matrix element is proportional to [236],

|M|2 ∝ exp

(
−2

√
2mφeff

h̄2 d

)
. (3.9)

For large voltages V , the effective tunneling barrier φeff becomes bias dependent. For a positive

bias voltage applied to the sample, Figure 3.4, the Fermi level of the sample, Es
F, lowers down in

energy by an amount eV/2, whereas the tip Fermi level, E t
F, is increased by the same amount. The

effective tunneling barrier becomes

φeff =
φt +φs

2
+

eV
2
− ε, (3.10)

where φt and φs are the work functions of the tip and the sample, respectively. This equation

shows that for states at the Fermi level of the tip, ε = eV , the tunneling barrier is smaller (red arrow

in Figure 3.4), resulting in a large tunneling matrix element |M|2. On the other hand, for states

with energy ε = 0, the tunneling barrier is higher, and |M|2 is small (gray arrow in Figure 3.4).
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Figure 3.4: Bias dependence of the tunneling matrix element |M|2. For a positive bias V applied to the
sample, the electrons with energy eV at the tip see a potential barrier with lower height (red arrow) than the
electrons with energy 0 (gray arrow). The tunneling matrix element is thus larger for electrons with energy
eV , and these are the states which will dominate the integration in Eq. (3.4).

Thus, the terms which will dominate in the integral in Eq. (3.4) are the DOS of the tip at its Fermi

level and the DOS of the sample at eV . It shows that for positive bias voltages, mainly the Fermi

level of the tip probes the DOS of the sample, and thus the tunneling spectrum will show the

features corresponding to the DOS of the sample. Since |M|2 increases exponentially with the bias

voltage, the tunneling spectrum will have an exponentially increasing background overlapping the

sample DOS. For negative bias voltage, this scenario is flipped: the Fermi level of the tip is an

energy eV below the Fermi level of the sample. The magnitude of |M|2 will be larger for states at

the sample Fermi level, which is now probing the DOS of the tip. It is thus necessary to have a tip

with a constant DOS at the desired energy range, to guarantee that the features that appear in the

tunneling spectrum are dominated by the sample density of states.

The stabilization of the tip height z by the feedback loop at a setpoint (Vset, Iset) introduces a

constant background in the differential conductance g(V ) spectrum. To keep the current I constant

means keeping the integral in Eq. (3.5) in the range 0 to Vset, at a constant value. If the LDOS of

the sample ns is not uniform along the surface, this integral will have different values at different

tip positions (x,y). Therefore, the differential conductance g(V ) spectra taken at different tip

positions (x,y) over the surface will have different backgrounds, which will be proportional to∫ eVset
0 ns(ε)dε . This is responsible for the well-known setpoint effect.

At low bias, the effects from the background due to the bias dependence of |M(ε,V )|2 can be

canceled out by dividing the differential conductance by the total conductance, (dI/dV )/(I/V ).

Using Eq. (3.5) and Eq. (3.7),

dI/dV
I/V

=
C d

dV {
∫ eV

0 ns(ε)dε}
C
V

∫ eV
0 ns(ε)dε

∝
V ns(eV )∫ eV

0 ns(ε)dε
, (3.11)

which is often called the Feenstra function [237]. Furthermore, since the denominator is given
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by the integral of Eq. (3.5), it will also remove the effects due to the stabilizing setpoint conditions.

Inelastic tunneling

In addition to the elastic tunneling processes described above, the tunneling electrons can

interact with bosonic excitations, such as phonons and magnons, at the sample surface. Consider a

vibrational mode of energy hν , with ν its frequency, at the surface of the sample. For a tunneling

electron of energy e|V | lower than hν , only elastic tunneling channels are available. However,

for e|V | > hν , the tunneling electron can give up some of its energy to excite the vibrational

mode and still tunnel to empty states on the sample, opening up an inelastic tunneling channel.

This additional tunneling channel increases the slope of the I(V ) curve, resulting in kinks in the

differential conductance spectrum at V = ±hν . The derivative of g(V ) as a function of voltage,

d2I/d2V , will have sharp peaks at ±hν and their shape and intensity will depend on the details of

the electron-phonon interaction. [238]

Energy resolution in STS

There are two main sources of energy broadening in STS. The first one is due to finite temper-

ature, where the Fermi-Dirac distribution function in Eq. (3.3) will not be step-like and the integral

has to be taken over infinity. As a consequence, rather than the approximation used in Eq. (3.7),

the DOS of the sample has to be convoluted by the derivative of f (ε,T ), [239]

g(V,T ) ∝

∫
∞

−∞

ns(ε)

[
−∂ f (ε + eV,T )

∂V

]
dε. (3.12)
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∂f
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Figure 3.5: Plot of the derivative of the Fermi-Dirac distribution at T = 2 K.
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At zero energy, the partial derivative of f (eV,T ) with respect to V is given by

1
e

∂ f (eV,T )
∂V

=− eeV/(kBT )

kBT [1+ eeV/(kBT )]2
. (3.13)

This function is plotted in Figure 3.5 as a function of energy, at a temperature of T = 2 K.

Its full width at half maximum is ∼ 3.52kBT , which will determine the energy broadening. The

energy resolution at T = 2 K is 608 µV, being reduced to 15 µV by measuring at T = 50 mK.

The second source of energy broadening comes from the lock-in modulation. It induces an

energy broadening that can be taken into account by convoluting Eq. (3.12) with a half-circle [239]

g′(V,T ) ∝

∫ √2VL

−
√

2VL

g(V + ε,T )
√

2V 2
L − ε2dε. (3.14)

Quasiparticle interference

The quasiparticles will interact with inhomogeneities at the surface, such as impurities and

step edges. For a quasiparticle that scatters off an impurity, the wavefunction of the incoming qua-

siparticle will interfere with the wavefunction of the scattered quasiparticle, giving rise to standing

wave patterns in the LDOS, which can be detected in differential conductance maps. An example

of an g(x,y,V ) image is shown in Figure 3.6(a), taken at the surface of a PbS sample. Several im-

purities can be identified with clear modulations emanating from them. The wavevectors of these

oscillations will carry information about the underlying electronic structure, and so will change

with energy accordingly. Their dispersions can be obtained by taking the Fourier transform of a

set of real-space g(x,y,V ) images taken at different bias voltages. Figure 3.6(b) shows a three-

dimensional stack of the Fourier transforms of real space images from QPI measurements on PbS

5 nm

(a)

Bi
as
(V
)

q x (2
�/aPb)

q
y (2�/a

Pb )

(b)

Figure 3.6: Example of a g(V ) real-space image. (a) A real space image of
(
dI/dV

)
/(I/V ) of the surface

of PbS at 1.44 V. Clear oscillations are visible around the defects due to quasiparticle interference. (b)
Three-dimentional stack of the Fourier transforms of real space

(
dI/dV

)
/(I/V ) images of PbS in the bias

range ±1.6 V. Cuts along the high symmetry directions [10] and [11] reveal the energy dispersion of the
scattering vectors, highlighted by the dashed lines.
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Figure 3.7: QPI from a circular constant energy contour. (a) Constant energy contour consisting of
a parabolic band with momentum k. (b) Scattering pattern with momentum q = 2k resulting from the
interference between states with ki =−k and k f = k.

in the range ±1.6 V, where the cuts along the high symmetry directions [10] and [11] reveal clear

energy dispersions.

To get a better description, one can go back to the definition of LDOS in Eq. (3.6). The

weighting factor in the LDOS is the square-modulus of the quasiparticle eigenstates ψk(r). In the

simple case where these eigenstates can be written as Bloch wavefunctions, ψk(r) = u(r)eik.r, the

modulus becomes |ψk(r)|2 = |u(r)|2, and the LDOS is sensitive only to modulations in real space.

By definition of the Bloch wavefunction, u(r) has the periodicity of the crystal lattice, and so the

only modulation that will appear in the real space image is the atomic corrugation. However, the

breaking of the translational symmetry by any inhomogeneity in the atomic lattice may induce

coherent scattering between quasiparticle states with the same energy εn, but different momenta

kn. As a result, an additional k-dependent term appears in the quasiparticle eigenstates, resulting in

energy-dependent standing waves [240]. This scattering leads to quasiparticle interference (QPI)

patterns with wavevector q(ε) = k f (ε)−ki(ε) and wavelength λ = 2π/q, where ki and k f are the

wavevectors of the initial and final states. These patterns appear as modulations in the LDOS and

can thus be detected in the constant energy g(x,y,V ) real-space images obtained by STM [241],

as seen in Figure 3.6(a). By calculating the Fourier transform of such images, one has access

to the scattering vectors q, obtaining information about the dominant scattering processes. This

is illustrated in Figure 3.7(a) for the simplest case of a circular constant energy contour, where

scattering occurs between states with ki = −k and k f = k. The resulting pattern in q-space, the

space of the scattering vectors, is thus a circle with a radius of q = 2k, retaining the shape of the

original contour. Although QPI measurements are not directly sensitive to k-space, the underlying

bandstructure may still be extracted from the energy dispersion of the detected q-vectors.

The setpoint effect discussed previously has to be taken into account in the analysis of QPI
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measurements. Since the feedback loop is switched on each time the tip moves onto the next

pixel, adjusting its z position according to (Vset, Iset), the g(V ) layers will have a background which

depends on the bias setpoint. This effect can induce non-dispersive features in QPI measurements

[242], which can sometimes be confused with real energy dispersions.

kz scattering in QPI

At the surface, because there is no translational symmetry in the direction of the surface nor-

mal, kz is not a good quantum number anymore, and only kx and ky are well-defined. As a con-

sequence, QPI measurements are two-dimensional in nature and have been successful in unveiling

the electronic properties of highly anisotropic materials, such as layered materials [47, 243, 244]

where the band structure can be approximated as 2D, and of surface states, which by definition are

two-dimensional [226,227,245,246]. In these cases, considering only the kz = 0 plane of the bulk

band structure is enough to have a full description of the measurements.

However, if the band structure has some degree of kz dispersion, considering the kz = 0 plane

alone will not allow to fully describe QPI measurements. In cubic systems, such as Cu and Au,

besides the signatures from surface states, scattering due to the three-dimensional Fermi surface is

also detected [247]. Scattering from subsurface defects is detected at the surface, which can only

originate from a 3D electronic structure, where scattering between different kz planes is possible

[248]. Here, the kz planes relevant for scattering are the ones where parts of the Fermi surface have

group velocities with the same direction as the tip-defect distance vector [249]. This constrains the

number of kz planes needed to describe the QPI and implies that for surface defects, where the tip-

defect distance vector is parallel to the surface, only the kz planes with zero group velocity along

z will contribute to scattering. This has been observed in iron-based superconductors, where the

Fermi pockets have a slight kz-dispersion, and considering only the kz = 0 plane fails, but including

the scattering from planes with zero Fermi velocity along z is needed to describe the observed QPI

dispersion [250,251]. For truly isotropic systems, such as the cubic PbS, Figure 3.6, the evolution

of the constant energy surfaces is such that the relevant kz planes for scattering change with energy,

having energies with no states at kz = 0, but strong QPI is detected [252]. This clearly shows that

a naive description by only the kz = 0 plane of the electronic structure fails in this case.

3.1.3 Surface preparation - possibility of surface reconstruction

When analyzing STM data, care has to be taken when interpreting the observations at the

surface in terms of the properties of the bulk crystal. One of the limitations is the possibility of
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surface reconstruction, in which the surface of a sample undergoes a structural distortion due to

the breaking of translational symmetry in the z-direction. Origins of such distortions include stress

between a relaxed surface layer and the bulk layers, freezing of a soft phonon mode at the surface

layer or surface polarity. In these cases, the surface is not representative of the bulk system, and

the properties being measured cannot usually be extended to the bulk properties. Early examples

of the observation of such reconstructions by STM include the 7×7 reconstruction of the Si(111)

surface [222] and the herringbone reconstruction of the Au(111) surface [253].

Certain strongly correlated electron systems, such as the ruthenates materials, are known to

have surface reconstructions [24, 28, 254] that dramatically change their properties, potentially

stabilizing new orders not present in the bulk material. In addition, since the vacuum interface

is not a small perturbation and considering the extreme sensitivity of the electronic structure of

strongly correlated electron systems to external stimuli, one should expect the electronic states at

the surface to be different than the bulk even without reconstruction.

3.1.4 Milli-Kelvin STM instrumental setup

The STM used in this work operates at temperatures from 10 K to 20 mK, by means of a

dilution refrigeration system, and in magnetic fields up to 14 T generated by a superconducting

magnet. The dilution refrigerator, a Kelvinox 400MX, cryostat and superconducting magnet are

from Oxford Instruments. There are three key aspects of the insert to which the STM is attached,

described by Enayat et al. [232, 239]: (1) a clear shot tube from room temperature to the STM to

allow for sample transfer/exchange without warming up, (2) in-situ cleavage mechanism, and (3)

a pre-cool system to allow cooling down without the need for exchange gas.

The essential components of an STM are the tip, the piezo scanner, voltage contacts, walker,

and sample holder, which makes the STM head, Figure 3.8(a). In this work, the tip was made of

a Pt-Ir wire. It is attached to a piezoelectric scan tube composed of four quadrants responsible for

movements in the (x,y) plane with one interior electrode for movements along z. The scanner is

inside a triangular sapphire prism clamped between six piezo stacks that walk the tip macrosco-

pically closer or farther away from the sample. This is mounted inside a sapphire body, to provide

high mechanical stiffness and good thermal conductivity to the system. The sample holder will

be clamped between the sapphire body and an aluminum oxide plate with the voltage contacts,

Figure 3.8(b), which is placed over the sapphire body. I built a contact plate with four independent

electrical contacts [255], where the outer tungsten contacts are used to apply the bias voltage,

while the inner contacts can be used to perform different experiments on the sample or to allow
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Figure 3.8: STM insert and vibration isolation system. (a) Photo of the STM head, with the essential
parts labeled. (b) Four-contact plate. The outer contacts V1 and V2 are used to apply the bias voltage to
the sample, the inner ones can be used for additional functionalities. (c) Dilution refrigerator insert. The
different stages of the dilution fridge unit are indicated. The STM head is clamped to the bottom copper
plate. (d) Photo of the vibration isolation table, which makes the system mechanically twice-decoupled
from the environment.

the use of more complex devices [256]. A brass sample holder is used, with the sample glued on

top with Epotek H20E conductive epoxy. For the in-situ cleaving of the sample, a rod is glued on

top of it, which is knocked out by the cleaver mounted on the 4K-plate of the dilution fridge (see

Figure 3.8(c)).

The STM head is attached to a copper plate, suspended by three gold-coated copper rods from

a dilution refrigerator, Figure 3.8(c). The STM position in the copper plate is such that it is aligned

with the line of sight for the sample transfer, making it 2 cm off-centered from the magnet main

axis. However, this does not pose a major source of uncertainty, since it leads to a deviation

from the desired applied magnetic field of less than 1% [239]. During ramping up and down

of the magnetic field, a residual magnetic field of approximately 30 mT usually remains on the

superconducting magnet. A Hall-probe is used to accurately measure the applied field, with an

uncertainty of ±1 mT.

The dilution refrigerator is composed of three stages: 1K-pot, still, and mixing chamber,

shown in Figure 3.8(c). With the 1K-pot shut down, the STM operates at 10 K. When the 1K-pot

system is running, the system is able to cool down to 1.2 K. Here, liquid He (LHe) flows from

the main bath at 4.2 K through a small capillary into the 1K-pot where the vapor above the liquid
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is pumped, cooling the system [257]. To reach temperatures down to 20 mK, a mixture of 4He

and 3He is circulated through the insert. Firstly, the mixture passes through liquid nitrogen and

LHe cold traps to trap any dirt which might have leaked from air. Then, the mixture enters the

insert, goes through the 1K-pot where the 3He and 4He condensate, until it reaches the mixing

chamber where a phase separation into concentrated and diluted phases occurs. The concentrated

phase is rich in 3He, whereas the diluted phase is rich in 4He. When the concentration of 3He is

6.6% in the diluted phase, the cooling power at the phase separation is at its maximum. Inside

the mixing chamber, 3He diffuses through the phase boundary from the concentrated phase to the

diluted phase, while the 4He acts as a superfluid background. 3He flows to the still due to the

pressure difference between the still and the mixing chamber. The still temperature (∼ 800 mK) is

such that 3He is evaporated, while 4He stays liquid. A roots pump is used to pump the 3He out of

the still line, through pipes installed outside of the cryostat at room temperature (RT). 3He passes

through a gas handling system, which controls the flow of the mixture. As the mixture circulates

through the system, the cooling of the system increases, cooling it down to mK temperatures. The

mixing chamber will be the coldest part of the insert, reaching 10 mK, and the STM head will be

at ∼ 20 mK, cooling through good thermal coupling [232].

The only way in and out of the insert is through the sample transfer line of sight. To mini-

mize thermal radiation from room temperature along the transfer path to the STM head, mechanic

shutters are placed at each important stage of the dilution refrigerator: mixing chamber, still, and

4K-plate, where the cleaver also acts as a radiation shield. In addition, two radiation shields are

used. The first shield is closed on top of the mixing chamber stage and the second one is fixed to

the 4K-plate. Before putting the insert into the LHe cryostat, the inside of the shields is pumped

to pressures 3.4−8×10−6 mbar with a turbopump. This results in a cryogenic ultra-high vacuum

when the system is cooled down.

To isolate the whole system as much as possible from external mechanical noise, the cryo-

stat is mounted on a lead-filled table suspended on three pressurized air springs, Figure 3.8(d).

This rests on a 17 t concrete slab which is also supported by pressurized air springs, making the

instrument twice decoupled from the outside environment. The whole setup is inside an indi-

vidual measurement box, which is also twice separated from the outside environment by two sets

of soundproofed walls. All the vacuum and circulation pumps are outside the measuring box to

minimize mechanical noise.

The energy resolution of the instrument was characterized by measuring the superconducting

gap of Sn4As3 at a base temperature of T = 50 mK [258], Figure 3.9. A fully formed supercon-
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Figure 3.9: Energy resolution at base temperature. Tunneling spectrum measured at T = 50 mK, show-
ing the superconducting gap of Sn4As3. The red line shows the fit of a Dynes function, taking into account
both thermal and lock-in broadening. The fit gives a superconducting gap of width ∆ ∼ 180 µV and an
electronic temperature of Telec ∼ 223 mK (Vset= 0.8 mV, Iset= 400 pA, VL= 25 µV).

ducting gap can be observed, with sharp coherence peaks. Fitting a Dynes function including both

thermal and lock-in broadening using Eq. (3.12) and Eq.(3.14) [239] gives a superconducting gap

of width ∆∼ 180 µ V and an electronic temperature of 223 mK. Here, the electronic temperature

is dominated by the lock-in modulation, VL= 25 µV, whose contribution to broadening is larger

than the temperature. This measurement puts an upper bound of 60 µeV of energy resolution,

given by the width of the coherence peaks, which are the narrower features that can be resolved in

Figure 3.9.

3.1.5 STM data analysis

While taking a topography, the hysteresis and thermal drift of the scanner will induce a small

distortion in the image, so that the atomic lattice will appear slightly distorted. Due to the hys-

teresis, the tip will also drift slightly between scans, such that images taken in the same area will

not appear fully aligned. To correct these imaging artifacts in topographies, I use two procedures.

Firstly, the image distortions are corrected by a Lock-in algorithm (Appendix D). Secondly, the

images are aligned via a translation transformation estimated using the phase correlation between

the two images, from the Registration Estimator of the image processing toolbox in Matlab.

The time of data acquisition for a differential conductance map can take up to ∼ 96 hours,

depending on the lateral size of the image, pixel number, number of layers, and averaging time.

To minimize the effects of the hysteresis of the scanner, we scan the same area for ∼ 6 hours with

the chosen setpoint conditions (Vset, Iset) before starting a map, but there is always going to be some

residual piezo creep. As a result, and due to the long measurement time, the tip will drift over time
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and the maps will show a distortion in the real-space images. To correct for this distortion, we

use a geometrical transformation to map the atomic peaks of the map onto the atomic peaks of

a perfect lattice, so that they are all at the same distance from q = (0,0) and with 90◦ between

them, assuming a perfect square lattice, which is the case for Sr2RuO4 and, within experimental

precision, for Sr3Ru2O7.

To probe large area maps of lateral size ∼ 90 nm, the maps were taken with undersampling,

that is, with a pixel size lower than the one required for the atomic resolution. As a result, the

atomic peaks appear aliased, that is, folded to a lower q-value. To recover the original position

of the atomic peaks, an anti-aliasing algorithm is applied, shown in Appendix E. This is followed

by the distortion correction described in the previous paragraph. Before setting up the maps, we

made sure that the aliased atomic peaks do not interfere with the QPI signals we were interested

in.

3.2 Sample preparation and characterization

To give the reader a complete picture of the samples measured in this work by STM, a short

description of their growth and characterization will be given in this section. These were not per-

formed by myself, and acknowledgment of those who have grown the samples and characterized

them is given.

3.2.1 Sr2RuO4 single crystals

Crystal growth

The Sr2RuO4 single crystals used in this thesis were provided by Rosalba Fittipaldi, Veron-

ica Granata and Antonio Vecchione, from CNR-SPIN, Italy. The crystals were grown using a

commercial image furnace with double-elliptical mirrors and two 2.0 kW halogen lamps, by the

floating-zone technique with Ru self-flux.

Characterization

At low temperatures, the electrical resistivity of a metal is dominated by quasiparticle colli-

sions with lattice imperfections and impurities. The purer the crystal, the lower its residual res-

istivity will be, therefore, the residual resistivity can be used to determine the quality of a crystal.

The resistance of the Sr2RuO4 single crystals was measured by a four-probe technique in a 3He

refrigerator, from room temperature to 500 mK. The resistance curve is shown in Figure 3.10(a),
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Figure 3.10: Resistivity measurements. (a) Resistance curve from room temperature to 500 mK. The inset
shows a close-up at low temperatures, where the superconducting transition can be observed. (b) Resistance
curve at temperatures below 5 K. The superconducting transition occurs at Tc = 1.5 K. These curves were
provided by Rosalba Fittipaldi, Veronica Granata and Antonio Vecchione.

showing metallic behavior. The sample is observed to undergo a superconducting transition, as

seen in the inset of Figure 3.10(a). Extrapolating the resistance to T = 0 K by fitting a Fermi

liquid behaviour R(T ) = R0 +AT 2 to the curve in the normal state, the residual-resistance ratio

(RRR) obtained is ∼ 666, defined as limT→0KR300K/R(T ). This is within the values reported for

high-purity single crystals [12]. Figure 3.10(b) shows a close-up at low temperatures, focusing on

the superconducting transition. The transition occurs at Tc = 1.5 K, with a width of∼ 0.14 K. Due

to the extreme sensitivity of Tc to disorder, such high critical temperature confirms the high-quality

of the Sr2RuO4 samples.

To check the orientation of the Sr2RuO4 single crystal and to exclude the presence of inclu-

sions of Sr3Ru2O7 or Sr4Ru3O10, electron back-scattered diffraction (EBSD) and transmission

[001]

[100]

(d)(a) (b)

100

010

001

10 μm 10 μm

Sr2RuO4 98%
Sr3Ru2O7 2%

[001]

[100]

(c)

Figure 3.11: Electron back-scattered diffraction and transmission electron microscopy images. (a)
EBSD Image quality (IQ) and inverse pole figure (IPF) map on a single crystal of Sr2RuO4, showing
that the surface has the preferential orientation [001] (b) EBSD phase image, showing that the surface is
Sr2RuO4. (c) TEM image along the b-axis. (d) High-resolution TEM image, showing atomic resolution and
confirming the structural purity of the sample with no evidence for layers with different stoichiometry. The
inset shows a close-up image with the Sr2RuO4 crystal structure superimposed by circles (black: Ru, red:
oxygen and blue: Sr). The dotted lines indicate the bulk unit cell. These measurements were performed by
David Miller and were taken on a Sr2RuO4 crystal after STM measurements.
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electron microscopy (TEM) measurements were performed on a sample after it had been meas-

ured in STM, by David Miller, University of St Andrews. The EBSD was performed on a FEI

Scios focused beam scanning electron microscope (FIBSEM) equipped with an EDAX Hikari Su-

per EBSD detector. Figure 3.11(a) shows a map of EBSD image quality (IQ) plus inverse pole

figure (IPF) of the surface of a single crystal of Sr2RuO4 after cleaving on the STM and exposure

to air. It shows that the surface orientation is homogeneous and oriented perpendicular to the [001]

direction, as expected of a single crystal. The EBSD phase image, Figure 3.11(b), which determ-

ines the structure of the surface, shows that the surface is Sr2RuO4 and is homogeneous, with the

2% of Sr3Ru2O7 detected within the measurement uncertainty and due to the diffraction spots not

being well defined at the step edges.

After determining the orientation with the EBSD, the sample for STEM analysis was prepared

by conventional gallium focused ion beam (FIB) milling using the FIBSEM. TEM high angle

annular dark-field (HAADF) images were recorded using a probe corrected FEI Themis 200 scan-

ning/transmission electron microscope operated at 200 kV. Figure 3.11(c) shows an image of the

cross-section of the sample, cut along the b-axis. It shows that the sample is homogeneous along

the c-axis on the scale of ∼ 80 nm up to the surface, and no inclusions of other members of the

Ruddlesden-Popper series are found. Figure 3.11(d) shows a zoom in, where the atomic stacking

is visible. Superimposing the crystal structure of Sr2RuO4 on top of the atomic stacking (inset)

shows good agreement, with both Ru and Sr atoms visible.

3.2.2 Sr3Ru2O7 single crystals

Crystal growth

The Sr3Ru2O7 single crystals used in this thesis were provided by the group of Andrew Mack-

enzie, Max Planck Institute for Chemical Physics of Solids, Dresden, Germany. The crystals were

grown in an image furnace by the floating-zone technique.

Characterization

The resistivity of the Sr3Ru2O7 single crystals was measured by a four-probe method from

room temperature to 2K. Figure 3.12(a) shows the resistivity curve at 0 T, revealing a residual-

resistivity ratio of RRR = ρ300K/ρ2K = 102. It has a residual resistivity of ρres = 1.3 µΩcm,

obtained from fitting ρ(T ) = ρres +AT α to the low temperature regime (inset of Figure 3.12(a)).

This residual resistivity is slightly higher than the residual resistivity of the samples that show
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Figure 3.12: Transport and specific heat measurements of Sr3Ru2O7 single crystals. (a) Resistivity
curve. The inset shows a close up at low temperatures, where the red line is the fit to the function ρ(T ) =
ρres +AT α . (b) High temperature phase diagram of the exponent α of resistivity ρ(T,B) as a function of
temperature T and magnetic field B, at temperatures down to 2 K. Magnetic field applied parallel to the
c-axis. (c) Specific heat at zero applied magnetic field. Data provided by Alexander Komarek.

the formation of the itinerant metamagnetic region in the proximity of the quantum critical end

point (ρres < 1 µΩcm) [17, 18, 189, 190], but of higher quality than the samples where evidence

for the quantum critical end point was first found (ρres = 3 µΩcm) [15, 16]. These are the highest

purity single crystals of Sr3Ru2O7 ever reported to be measured in STM. Figure 3.12(b) shows the

evolution of the resistivity exponent α , from the previous expression, as a function of temperature

and applied magnetic field, for B||c-axis. It shows the typical region of Fermi liquid behavior

at low temperatures and fields (α = 2), whose value decreases to α ∼ 1 near the metamagnetic

transition, having the typical signatures found in Sr3Ru2O7 near the quantum critical point [16].

Thermodynamic measurements, Figure 3.12(c), at 0 T, also show the typical behavior for good

quality single crystals of Sr3Ru2O7.

To access the homogeneity of the sample and in particular the quality of the cleaved surface,

EBSD was measured on a sample after it was measured by STM. The SEM image, Figure 3.13(a),

shows a flat surface with few step edges visible close to the edges of the sample. The phase

map measured by EBSD, Figure 3.13(b), shows a homogeneous phase of Sr3Ru2O7, represented

(a) (b) (c)

100

010

001

200 μm200 μm200 μm

SrL/RuL 64%
AgL 21%

Figure 3.13: EBSD on a Sr3Ru2O7 single crystal. (a) SEM image. (b) Phase map. Yellow indicates
the presence of Sr and Ru and red the presence of Ag. (c) IQ + IPF image. Measurements done by David
Miller.
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by yellow. Red patches indicate traces left by the silver epoxy glue, after cleaving with a brass

rod. The IQ+IPF map, Figure 3.13(c), shows that the exposed surface is perpendicular to the

[001] plane, as expected and identical to the case of Sr2RuO4, consistent with cleaving between

adjacent SrO-SrO layers. The random distribution of green dots indicating [100] are within the

experimental noise/error.
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Chapter 4

Modeling electronic structure and

quasiparticle interference

QPI measurements allow indirect access to the electronic structure at the surface of a material.

As discussed in the previous chapter, it gives information about the dominant electronic scattering

processes with wavevector q = k f (ε)−ki(ε). While in one-band systems [226] the interpretation

of QPI measurements is rather straight-forward, in multi-band systems the difficulty of disen-

tangling the original band structure from q dispersions increases rapidly with N, the number of

bands in the system, due to the possibility of both intra- and inter-band scattering. Additional

complexity comes in once charge, orbital and spin degrees of freedom are introduced into the

system [259], especially when these are momentum dependent. In these cases, it is imperative to

have an accurate model of the band structure of the system in question, as well as account for the

matrix element effects between the tip and the sample, to be able to do realistic model calculations

enabling a correct interpretation of the QPI and reveal the physical properties of the system.

In this chapter, I will describe ab-initio calculations using DFT and how to use tight-binding

models of the electronic structure to qualitatively model QPI using a continuum LDOS calculation.

4.1 Density-functional theory

In a material containing N electrons, its electronic structure is described by the many-body

Schrödinger equation

ĤΨ(r1, ...,rN) = EΨ(r1, ...,rN), with (4.1)
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Ĥ =− h̄2

2me
∑

i
∇

2
i +∑

i
V (ri)+

1
2 ∑

i6= j

e2

|ri− r j|
, (4.2)

where ri is the position of electron i, Ψ is the many-electron wave function and E is the energy

eigenvalue of the system. The first term of the Hamiltonian Ĥ describes the kinetic energy of

the system, the second term contains the potential due to electron-nucleus and nucleus-nucleus

interactions, and the third term the Coulomb repulsion. The problem with this equation is that,

even in the simplest case where only the positions of the electrons are considered, the number of

parameters needed to get an accurate solution scales as 33N . The number of atoms in a crystal

is of the order of the Avogadro’s number (NA = 6.02× 1023), and so, there is no hope in solving

Eq. (4.2) for a given crystal in any modern computer.

To get around this limitation, Density-functional theory was developed. The basic principle

behind DFT is given by the Hohenberg-Kohn theorem [260], which states that an external potential

Vext(r) is uniquely defined by the ground-state electron density n(r) of a system of interacting

electrons in that potential, such that the total energy of the system is the functional of the electronic

density

E[n] = T [n]+
∫

n(r)Vext(r)dr+EH[n]+Exc[n], (4.3)

where T [n] is the kinetic energy of the non-interacting electron system, Vext is the external

potential felt by the electrons (e.g., the potential created by the atomic nuclei), EH[n] is the Hartree

energy (Coulomb interaction energy due to n(r)) and Exc[n] is the exchange-correlation energy

(contains all correlation effects due to interacting electrons).

The Kohn-Sham equations [261] are derived by mapping the many-body wavefunction into

the one-electron wavefunctions, φi(ri), such that the many-body states are written as

Ψ(r1, ...,rN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) · · · φN(r1)

φ1(r2) φ2(r2) · · · φN(r2)
...

...
. . .

...

φ1(rN) φ2(rN) · · · φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.4)

so that the electron density can be written via the one-electron wave functions as

n(r) =
N

∑
i=1
|φi(r)|2. (4.5)
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The minimization of Eq. (4.3) using this mapping results in the Kohn-Sham equations

(
−1

2
∆+Vext(r)+VH [ρ](r)+Vxc[ρ](r)

)
φi(r) = εiφi(r), (4.6)

which are solved self consistently to get the eigenvalues εi and corresponding eigenfunctions

φi(r). This is achieved by calculating the density via Eq. (4.5), inputting the result onto Eq. (4.6)

to get the eigenfunctions φi(r) which are then used to calculate the density again through Eq. (4.6).

Self-consistency is achieved when the input density n(r) is equal (within a set tolerance) to the

output density calculated through Eq.(4.5).

The functional in Eq. (4.3) is exact if the exchange correlation functional, Exc[n], was known

exactly. However, this is not the case and therefore approximations are needed to estimate Exc[n].

Currently, there is a large variety of exchange-correlation functionals, but in the following chapters,

the two that will be used are the local density approximation (LDA) and the Generalized Gradient

approximation (GGA). In LDA [261], Exc[n] is approximated to that of an uniform electron gas

with the same electron density as the local electron density of the real system, so that Exc[n] is a

functional only of n(r),

Exc[n(r)] =
∫

n(r)E0
xc(n(r))dr, (4.7)

where E0
xc is the functional of a homogeneous electron gas. Since it is exact for a uniform

electron gas, it is a good approximation for systems with slowly varying electron densities.

On the other hand, in GGA, Exc[n] is now a functional of both n(r) and its gradient |∇n(r)|.

Here, care has to be given to how the functional is defined because |∇n(r)| can be very large in

real materials resulting in the break down of the expansion. It is thus defined in a generalized

form, through the echange-correlation functional of the uniform electron gas times an enhance-

ment factor Fxc(n(r), |∇n(r)|),

Exc[n(r)] =
∫

E0
xc(n(r))Fxc(n(r), |∇n(r)|)dr. (4.8)

The definition of Fxc is what distinguishes the different GGA exchange-correlation functionals.

Here, the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional [262] will be used.

In addition, solving Eq. (4.6) depends on an initial choice for the eigenfunctions φi to calculate

the initial density in Eq. (4.5). This choice is determined by the basis set in which to expand

the wavefunctions φi. Two different basis sets will be used in the following chapters, the linear
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combination of atomic orbitals (LCAO) and plane waves (PW). In LCAO, the wavefunctions, φi,

are expanded in the basis set defined by atomic-like orbitals ψm(r),

φi(r) = ∑
m

cmiψm(r), (4.9)

with cmi the transformation coefficients and

ψnml(r) = ϕnl(rα)Ylm(r̂α), (4.10)

constructed as products of numerical radial functions, ϕnl(rα), and spherical harmonics, Ylm(r̂α),

with rα = r−Rα , where Rα is the position of the nucleus α .

On the other hand, in PW, the basis set is composed of plane-waves

φnk(r) =
1

Ω1/2 ∑
G

CGnkei(G+k)r, (4.11)

with Ω the volume of the unit cell and G a reciprocal lattice vector. Since there is an infinite

number of possible plane waves, a cut-off energy, Ecutoff, is defined so that the basis set only

includes all the plane waves with kinetic energy lower than Ecutoff, (h̄2/2me)|G+k|2 < Ecutoff.

In practice, solving Eq. (4.6), even with the above approximations, is still computationally

expensive. The reason for this is because the number of wavefunctions one needs to solve the

Kohn-Sham equations scales with the number of electrons in the system, such that the wavefunc-

tions close to the nucleus become highly oscillatory, and one would need incredibly high Ecutoff

to account for them in the calculation. To solve this issue, two more approximations can be done.

The first one is the frozen core approximation, which stems from the fact that the core electrons

do not contribute actively to the chemical and physical properties of the system. Therefore, the

potential due to the core electrons can be pre-calculated in an atomic environment and kept frozen

during the rest of the calculations. The second one is replacing the exact potentials of the non-core

electrons with pseudopotentials. Here, the general idea is that it is only necessary to reproduce the

potential correctly at a certain distance from the center of the atom, after which it becomes relevant

to determine the physical and chemical properties. One of the methods to construct these pseudo-

potentials is the projector augmented-wave (PAW) method. The PAW method is formally an all-

electron method that provides an exact transformation between the smooth pseudo-wavefunctions

and the all-electron wavefunctions.

DFT is an ab-initio method, where the band structure of a system is obtained by using as

input only the atomic positions in the unit cell and the type of elements in the system. This
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method can reproduce well the properties of weakly interacting systems, however, it has some

difficulties in getting good agreement for materials with strong electron correlations, where large

band renormalizations are needed and some bands are not well captured. This is because the

exchange-correlation functional includes only local correlation effects and because only one Slater

determinant is used, rather than a series of Slater determinants including higher excited states.

In this work, the DFT calculations will be performed using the GPAW code1, which imple-

ments the PAW method [263, 264] and the atomic simulation environment (ASE)2 [265, 266].

4.2 Tight-binding model

While DFT provides an ab-initio description of the electronic structure, it does not allow to

easily track the mechanisms that drive changes on a microscopic level. Using a tight-binding

model to describe the system provides an easier way to constrain the electronic structure, more

flexibility to include different order parameters (e. g. superconducting order parameter), and the

possibility to use it in a Green’s function formalism to calculate the local density of states and

quasiparticle interference patterns.

Here we consider the tight-binding approximation for a system of atoms rigidly placed in a

periodic lattice. The orbitals are assumed to be well-described by atomic-like localized wave-

functions, and the overlap between the wavefunctions on neighboring sites is described by a hop-

ping term t. In this picture, the electrons are allowed to hop between neighboring atoms and the

Hamiltonian is written in the form

Ĥ0 = ∑
R,R′

∑
α,β

tαβ

RR′ ĉ
†
Rα

ĉR′β −µ0 ∑
Rα

n̂Rα , (4.12)

where ĉ†
Rα

is the creation operator that creates an electron at the lattice vector R on orbital α

and ĉR′β is the anihilation operator that removes a particle from the lattice vector R′ and orbital

β . The tαβ

RR′ elements are the hopping parameters between orbitals α and β in unit cells R and

R′. The chemical potential is µ0 and enters as diagonal terms in the Hamiltonian. From Bloch’s

theorem, the wavefunctions are periodic in space, with the periodicity of the underlying crystal

lattice. The Fourier transform is thus well defined, and the following relation holds for the matrix

1https://wiki.fysik.dtu.dk/gpaw
2https://wiki.fysik.dtu.dk/ase
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elements that connect orbital α to orbital β

Hαβ (k′) = ∑
R

eik′.RHαβ (R). (4.13)

This can be diagonalized to obtain the eigenvectors, un(k), and eigenvalues, εn(k), and thus

the electronic structure of the system.

4.2.1 Green’s function of a homogeneous system

The Green’s function, often called the propagator, describes how electrons propagate through

the system between two distinct states k and k′. The homogeneous retarded Green’s function can

be obtained from the eigenvectors and eigenvalues of the previous tight-binding model by [267]

G0
k(ω) = ∑

n

un(k)u∗n(k)
ω + iΓ− εn(k)

, (4.14)

where n denominates the band index and Γ ensures the analyticity of the function and effect-

ively acts as an energy broadening. The density of states (DOS) in k-space is given by

n0(ω) =− 1
π

Tr

Im

(
∑
k

G0
k(ω)

) . (4.15)

The retarded lattice Green’s function describing propagation of an electron from lattice site R

to lattice site R′ is given by the Fourier transformation of 4.14

G0
R−R′(ω) = ∑

k
G0

k(ω)ei(R−R′).k. (4.16)

For a homogeneous system (no impurity) we have

GR,R′(ω) = G0
R−R′(ω). (4.17)

4.2.2 Green’s function of a system with an impurity

Let us introduce a single impurity in the system at lattice site Rn. The Hamiltonian will be

given by

Ĥ(R) = Ĥ0(R)+V̂impδ (Rn). (4.18)
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The retarded Green’s function, GR,R′ , corresponding to the impurity problem, can be written

in terms of the Green’s function of the unperturbed system, G0
R−R′ using

GR,R′(ω) = G0
R−R′(ω)+G0

R−Rn
(ω)V̂impGRn,R′(ω). (4.19)

For simplicity let’s put the impurity at the origin, Rn = (0,0,0). After expanding it into an

infinite series, the previous equation can be written in the form

GR,R′(ω) = G0
R−R′(ω)+G0

R(ω)T̂ (ω)G0
−R′(ω), (4.20)

where the T-matrix is defined by the geometrical series

T̂ (ω) = V̂imp

[
1+G0(R = 0,ω)V̂imp +(G0(R = 0,ω)V̂imp)

2 + ...
]
, (4.21)

which can be rewritten in closed form as

T̂ (ω) =
V̂imp

Î−V̂impG0(R = 0,ω)
=

V̂imp

Î−V̂imp ∑k G0
k(ω)

, (4.22)

where G0(R = 0,ω) is the zeroth component of the Fourier transform of G0
k(ω), which follow

form equation 4.16.

4.2.3 Continuum Green’s function and continuum LDOS calculation

In the above description, the Green’s function is calculated on a discrete lattice where each

point corresponds to the center of a unit cell. However, in reality, the space in which the atomic

lattice exists is not discrete and there is a continuous space which is occupied by the atoms in each

unit cell, over which the DOS changes. An STM, although it measures on a discrete grid of pixels,

probes the density of states in continuous real space coordinates. To be able to simulate STM

measurements, it is necessary to calculate the local DOS in the continuum. This section follows

the description given in references [268–272].

The transformation from the discrete space consisting only of the lattice vectors R into the

continuum space is done via a basis transformation

Ψσ = ∑
R,α

ĉRαwRα(r), (4.23)

where wRα are the Wannier functions at the position R and of the orbital α . They contain

spatial information of the shape of the orbitals, and can be calculated in ab-initio calculations.
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The continuum Green’s function can thus be written as

G(r,r′;ω) = ∑
RR′

∑
αβ

Gαβ

R,R′(ω)wRα(r)wR′β (r′), (4.24)

where r and r′ are the continuum coordinates of real space. The continuum local density of

states (cLDOS) can be obtained from equation 4.24 by

n(r,ω) =− 1
π

Im
[
G(r,r;ω)

]
. (4.25)

Substituting eq. 4.20 into the continuum Green’s function, Eq. (4.24), allows the calculation

of the cLDOS in the presence of an impurity, obtaining a simulated image in real space, effect-

ively providing a simulated topographic image. The Fourier transform of such an image will give

information about the scattered vectors, equivalent to a QPI measurement. In addition, calculating

the cLDOS for a series of energies allows simulating tunneling spectra of the clean and perturbed

surface.

4.2.4 Choice of Wannier functions

There are multiple choices for the Wannier functions, wRα , used in the continuum transform-

ation of equation 4.23. Wannier functions are functions that play the role of the atomic wave

functions [273]. These can be obtained from ab-initio slab calculations, where the correct orbital

spread and vacuum tail of the orbitals are taken into account. In the case where the vacuum tail of

the Wannier functions looks essentially identical to atomic-like orbitals [272], a simple way to ap-

proximate these Wannier functions is by using gaussian-like orbitals with the correct symmetries.

In this work, we chose as wRα gaussian-type orbitals with the symmetry of the orbitals present

in the system. For a tight-binding model which describes the strontium ruthenates, three orbitals

are necessary: dxz, dyz and dxy. The following gaussian based functions are used

wR,xz(r) = (x−Rx)(z−Rz)e−
1
2 πφ[(x−Rx)

2+(y−Ry)
2+(z−Rz)

2], (4.26)

wR,yz(r) = (y−Ry)(z−Rz)e−
1
2 πφ[(x−Rx)

2+(y−Ry)
2+(z−Rz)

2], (4.27)

wR,xy(r) = (x−Rx)(y−Ry)e−
1
2 πφ[(x−Rx)

2+(y−Ry)
2+(z−Rz)

2]. (4.28)

with R = (Rx,Ry,Rz), r = (x,y,z) and φ = a/σ which is the ratio of the lattice spacing to the

gaussian spread [274].
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4.2.5 One-band model on a square lattice

To illustrate the Green’s function formalism described above for the calculation of the con-

tinuum LDOS in real space as means to simulate QPI measurements, it is instructive to first con-

sider a one-orbital tight-binding model on a square lattice, Figure 4.1(a), where each atom has

an s-orbital and hopping is allowed between nearest-neighbors. The Hamiltonian in the form of

Eq. (4.12) is given by

Ĥ = ∑
R

t(ĉ†
R+aĉR + ĉ†

RĉR+a + ĉ†
R+bĉR + ĉ†

RĉR+b),

for a,b defined in Figure 4.1(a) and we choose the hopping amplitude t = −0.1 eV and on-

site energy of 0 eV. The band structure (Figure 4.1(b)) consists of an electron-pocket centered at

the Γ-point of the Brillouin zone at energies below the Fermi level. The Fermi surface (inset of

Figure 4.1(b)) has a saddle point at the M-point and marks the energy across which the constant

energy contours change from an electron pocket around the Γ-point to a hole-pocket around the

X-point, corresponding to a van Hove singularity. The density of states of this model is shown in

Figure 4.1(c), where a logarithmic peak is observed.
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Figure 4.1: Square lattice tight-binding model. (a) Sketch of a square lattice with nearest-neighbor
hopping t. (b) Bandstructure along the path Γ−X−M−Γ, for a hopping term of t = −0.1 eV. There is
a saddle point (van Hove singularity) at EF at the M-point, across which the system undergoes a Lifshitz
transition. The inset shows the Fermi surface. (c) Total density of states n(E), with a peak corresponding to
the van Hove singularity at EF with logarithmic divergence. The Fermi surface and density of states were
calculated on a 640×640 k-grid, with energy broadenings of γ = 4 meV and γ = 1 meV, respectively. The
band structure was calculated in 10001 points along the path shown.

We can now follow the procedure described in the previous subsections and calculate the

continuum LDOS, using spherical gaussian-type orbitals as an approximation for the s-orbitals and

including an impurity with impurity potential Vimp = 0.05 eV. Figure 4.2(a) shows the real space

cLDOS, n(r,E), for E =−20 meV, capturing the square lattice of the s-orbitals and the impurity
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at the center of the image. Clear oscillation patterns are seen around the impurity, which originate

from scattering between k-states on the same constant energy contour. Possible scattering vectors

are shown in Figure 4.2(b) for E =−20 meV: one intra-pocket vector (q1), and two inter-Brillouin

zone scattering vectors (q2 and q3). The Fourier transform of n(r,E) reveals which q-vectors

contribute to the scattering events. Figure 4.2(c) and (d) show the Fourier transform of n(r,E) at

−20 meV and 20 meV, respectively. At −20 meV, a pocket corresponding to q1 is visible, with

increasing intensity at q = (±0.5,±0.5) due to strong nesting in this direction (parallel sections

of the pocket) as indicated by the orange arrow. Two additional scattering patterns are visible,

although with weaker intensity. The inter-pocket q-vector q2 is observed around q = (0,0), while

q3 appears around the Bragg peaks (q3 = q2 + 2π). A different situation occurs at 20 meV. The

strongest q-vector still corresponds to q1 but now it connects pockets centered around opposite

X-points in the Brillouin zone. The vector q2 is visible around q = (0,0), however, q3 is no longer

visible along the Γ−M direction since the constant energy contour now consists of a hole-pocket

around the X-point.

To illustrate how the dispersion of a band with a van Hove singularity is expected to appear

in differential conductance maps measured in STM, n(r,E) was calculated for energies between

±0.10 eV. The dispersion of the van Hove singularity is captured in a cut-through q = (0,0) along

the M− Γ−M direction, Figure 4.2(e), and across the Bragg peaks at qat = 1, Figure 4.2(f).

It can be observed in two ways: via q2 with scattering around q = (0,0) and via q3 around

qat = (±1,0),(0,±1). The scattering from q2 allows access to the dispersion at both negative

and positive energies in a single cut, whereas the full dispersion from q3 around the Bragg peaks

can only be obtained from the analysis of the M−Γ−M line cut and a line cut through qat in the

perpendicular direction. However, in QPI measurements from STM, access to low-q scattering is

often difficult, because not only large area images are necessary to have good q-resolution to be

able to resolve the patterns (requiring long measuring times), the presence of randomly distributed

defects over the surface contribute to increasing noise around q = (0,0) in the Fourier transform

of real space dI/dV images. On the other hand, it is easier to resolve features around the Bragg

peaks, where only the atomic lattice will contribute to the intensity. Moreover, since the dispersion

of the van Hove singularity collapses onto q = (±1,0),(0,±1), the intensity at the Bragg peaks

will show a maximum at the energy of the vHs, as is shown in the left panel of Figure 4.2(f),

giving us another way to determine the energy of vHs. In the following chapters, we will identify

the presence of van Hove singularities in the band structure of the studied materials and determine

their energies by detecting QPI dispersions around the Bragg peaks.
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Figure 4.2: Continuum LDOS of a one-band model. (a) Real space cLDOS at−20 meV. The impurity is
at the center of the image, with an impurity potential of Vimp = 0.05 eV. (b) Constant energy contour at−20
meV, shown in the extended Brillouin zone. Possible scattering vectors are shown: orange arrow indicates
the intra-pocket q1 vector, the green and blue arrows indicate inter-Brillouin zone vectors q2 and q3. (c)
and (d) show the Fourier transform of cLDOS layers at -20 meV and +20 meV respectively. Both intra
and inter-pocket scattering vectors are observed, as indicated by the orange, green and blue arrows. The
red dotted lines indicate the path of the linecuts in (e) and (f). The Green’s functions were calculated on a
640×640 grid with energy broadening γ = 5 meV. The transformation into the continuum was performed
using gaussian-like orbitals with s-symmetry at the center of the unit cells with a width of φ = 1. The
real space images were calculated with 5 pixels per unit cell, with 64 unit cells in the field of view, and
considering only contributions up to two next-nearest neighbor unit cells. (e) Energy linecuts along the
M−Γ−M direction. The dominant scattering occurs around the M-point between inter-Brillouin zone q-
vectors, q2 and q3. The q2 vector collapses onto q = (0,0) at the energy of the vHs (Fermi level), changing
from inter-pocket to intra-pocket scattering. The q3 scattering vector collapses onto qat = (1,0) at the vHs
energy and disappears at positive energies (in units of 2π/a). Red vertical lines indicate the position of the
Bragg peaks. Due to the perfect lattice arrangement, the Bragg peaks fall onto a single pixel. To avoid the
intensity contribution from the Bragg peaks, the linecut was taken one pixel above the center of the image.
(b) Linecut across qat, as indicated by the dashed red line in (d). The dispersion of the equivalent vector to
q3 at positive energies is seen. The left panel shows the intensity at qat as a function of energy, revealing a
peak at the vHs energy when the magnitude of the q3 vector equals 1. The intensities shown are the square
root of the calculated values to increase the image contrast. Both color bars are scaled to the same intensity
values.
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Chapter 5

Unveiling the low-energy states of the

surface layer of Sr2RuO4

The electronic properties of strontium ruthenates are highly sensitive to tiny distortions of

the RuO6 octahedra. In Sr2RuO4, superconductivity is enhanced by uniaxial strain [96], while it

is suppressed by doping and structural distortions, giving rise to different magnetic phases [13,

14]. Understanding how the shape of the RuO6 octahedra influences the electronic structure and

stabilizes distinct electronic phases in this material will allow us to gain insight into the fluctuations

that drive the different phase transitions. In return, it will ultimately result in a controlled tuning

of the properties of the ruthenates, imperative for the development of new electronic devices.

The first step towards this goal is to establish the relationship between structural distortions and

electronic structure in the most simple system: a single layer of Sr2RuO4 with a tiny octahedral

distortion. Such system is present in the surface layer of single crystals of Sr2RuO4, where the

surface reconstruction results in an in-plane rotation of the RuO6 octahedra [25]. The goal of

this chapter is to study and establish the low-energy electronic structure of this system using low-

temperature Scanning tunneling microscopy.

STM/STS measurements on the reconstructed surface of Sr2RuO4 were taken in the temper-

ature range 56 mK to 35 K and in magnetic fields up to 14 T. A phenomenological tight-binding

model is presented and used in continuum LDOS calculations to describe the experimental results.

Possible origins of the observed low-energy states are presented, including DFT calculations for

single layer and three-layer slabs of Sr2RuO4 with different lattice distortions. The detection of

the dxy band with STM, limitations of the use of gaussian-type orbitals for cLDOS calculations,

absence of the superconducting gap and the possibility of quantum criticality in the surface layer
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of Sr2RuO4 are discussed. The experimental data shown in this chapter was collected together

with Luke C. Rhodes, who also developed the tight-binding model used in section 5.8.

5.1 The surface layer of S2RuO4

The bulk of Sr2RuO4 has a lattice instability towards in-plane octahedral rotation due to the

softening of the corresponding phonon mode at the zone corner at (0.5,0.5) [174, 175], in units

of 2π/a. While the bulk structure itself does not show octahedral distortions, having a tetragonal

unit cell of side a = 3.87 Å ( black square in Figure 5.1(a)), the surface layer suffers a structural

reconstruction due to the freezing of this soft phonon mode. The octahedra at the surface layer

are locked into rotated positions in opposite directions on adjacent lattice sites, Figure 5.1(a),

resulting in the doubling of the unit cell (blue square). As a consequence, the Brillouin zone (BZ)

corresponding to the surface structure is halved in size and is rotated 45◦ relative to the bulk BZ,

Figure 5.1(b).

Despite the doubling of the unit cell, this octahedral distortion does not result in additional

periodicities by itself. Adjacent Sr atoms are still equivalent by symmetry, via 90◦ rotation or a

mirror plus a glide plane. This is in agreement with IV/LEED measurements on Sr2RuO4 [25,176],

where no additional spots besides the ones due to the rotation at the surface were found.

To allow for a clear comparison between the bulk and surface electronic structures and with

the literature, the results presented in this chapter will be discussed within the BZ of the bulk unit

cell. All values corresponding to the reciprocal space will be given in units of 2π/a.

(a)

a
[10]

[01]

(b)

Γ M

X

Figure 5.1: Surface reconstruction of Sr2RuO4 and Brillouin zone. (a) Crystal structure of the recon-
structed surface layer of Sr2RuO4 with rotation of the RuO6 octahedra . The black and blue squares indicate
the unit cells of the bulk and surface structures, respectively. The bulk in-plane lattice constant is a = 3.87
Å. (b) Sketch of the Brillouin zone corresponding to the bulk (black) and surface (dotted blue) unit cells.
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Figure 5.2: Topography of the surface of Sr2RuO4(a) Typical topography of the reconstructed surface
of Sr2RuO4 showing a SrO-terminated cleave (Vset= 5 mV, Iset= 50 pA, T = 76 mK). The upper inset
shows the Fourier transform. Atomic peaks are visible at (0,1) (black circle) and at (0.5,0.5) (red circle),
corresponding to the Sr lattice and the surface reconstruction periodicity, respectively (units of 2π/a). (b)
Topography of a step edge on the same surface as (a). (c) Laplacian of the image in (b) after Gaussian
filtering, showing the Sr lattice on both terraces. The dotted line is a guide to the eye. (d) Line profile
obtained from averaging (b) along the y-axis, to extract the step height. The inset shows a three-layer stack
of Sr2RuO4 along the [010]-axis, with the height of two layers indicated.

5.2 Topography of the reconstructed surface of Sr2RuO4

Cleaving results in atomically flat terraces of sizes larger than 100 nm. A typical topography

with atomic resolution taken at the surface of a single crystal of Sr2RuO4 is presented in Fig-

ure 5.2(a). It shows a square lattice with an atomic distance of ∼ 3.9 Å, consistent with the lattice

constant of bulk Sr2RuO4 (see Figure 5.1(a)).

There are two possible cleaving planes in Sr2RuO4: between perovskite layers, exposing a

SrO-terminated surface, or at the RuO2 layer, breaking the RuO6 octahedra . To determine which

termination is measured, step edges found on the surface were investigated. A topography with a

step edge is shown in Figure 5.2(b) imaged with an atomically sharp tip. From the relative phase

between the atomic lattices on the two terraces, one can determine whether the step edge is an even

or odd number of layers high. Figure 5.2(c) shows the Laplacian of Figure 5.2(b) after Gaussian

filtering, which enhances the atomic contrast, showing no phase shift between the atomic lattices

on the two terraces (dotted line) indicating a step height of an even number of perovskite layers.

This is confirmed by measuring its height. The line profile obtained by averaging the topography

in Figure 5.2(b) along the y-axis shows a step height of ≈ 1.35 nm, consistent with a bilayer step

within 5% error. Additionally, if the step edge separated terraces of two different terminations,

one would expect them to look considerably different. However, the two terraces look identical.
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This confirms that the imaged surface corresponds to an SrO layer.

Having established that the cleaved surface corresponds to SrO, it is now necessary to de-

termine which atomic lattice is being imaged. To do so, a simulated STM image from DFT slab

calculations was performed and is shown in Appendix A, Figure A.1(a). It reveals that the charge

density has maxima on top of the Sr atoms when the tip is 5 Å away from the surface. Therefore,

the atomic lattice seen in Figure 5.2(a) corresponds to the Sr atoms, in agreement with previous

reports [116, 158, 179, 275].

Besides the Sr atomic lattice, Figure 5.2(a) shows the presence of point defects that occupy

positions in between Sr atoms, corresponding to the Ru sites. The analysis of large area topo-

graphies reveals that they cover about 0.1% of the surface. These defects are surrounded by clear

QPI modulations whose characteristic wavevectors are captured in the Fourier transform (FT),

inset of Figure 5.2(a). Additionally, the FT reveals the presence of two sets of atomic peaks: at

(0,±1), (±1,0) and (±0.5,±0.5),(±0.5,∓0.5) corresponding to the Sr square lattice and to the

periodicity of the surface reconstruction, respectively, consistent with previous reports [179].

5.2.1 Chiral defects at the Ru sites

The defects on Ru sites have two distinct orientations, reflecting the two directions of rotation

of the RuO6 octahedra in the surface reconstruction. Two of the defects in Figure 5.2(a) with

opposite orientations are shown in more detail in Figure 5.3(a). The sketch below the topography

confirms that the two defects are at two inequivalent Ru lattice sites, corresponding to the two

sites in the unit cell with opposite rotations, Ru(A) and Ru(B). The QPI patterns coming from

each defect have opposite chiralities: for the defect on the left the closest Sr atoms have a change

in intensity which follows the direction of rotation (clockwise), whereas on the defect on the right

the intensity modulation of the closest Sr has the opposite direction (couterclockwise), as indicated

in the sketch in Figure 5.3(a) as red circles with different sizes. This is more clearly seen when

these defects are sufficiently separated in space. Figure 5.3(b) and (c) show topographies centered

at defects with each rotation. The long-range QPI patterns that emanate from them have the

chirality of the defect encoded in them. The Fourier transformation of such topographies contains

information about this chirality, shown in Figure 5.3(d) and (e), where the intensity of the QPI

patterns reflects the chirality of the defects in real space, as shown by the red lines. Subtracting (e)

from (d) shows this point more clearly (Figure 5.3(f)), where the high intensity points (red) follow

the chirality of dRu(A) and the low intensity points (blue) the chirality of dRu(B). This means that

the overall QPI from a large area topography will have contributions from both chiralities.
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Figure 5.3: Chiral defects at the Ru sites.(a) Magnified image of two defects present in Figure 5.2(a). The
two defects occur at two inequivalent Ru sites, Ru(A) and Ru(B), in the surface unit cell, as shown on the
sketch below: the defect on the left corresponds to a RuO6 octahedron rotated clockwise (red), whereas
the defect on the right resides in an octahedron with counterclockwise rotation (yellow). The octahedral
rotation results in a change of the intensity of the closest Sr atoms in a chiral way, as sketched by the bright
red circles, the size of which reflects their intensity. (b) and (c) show topographies centered at defects at
sites Ru(A) and Ru(B) (dRu(A) and dRu(B)), respectively (Vset = 5mV, Iset = 100pA, T = 500 mK). (d) and
(e) show the absolute value of the Fourier transformations of (b) and (c). The intensity of the QPI patterns
follows the chirality seen in the topography, evidenced by the red lines. (f) Difference of (d) and (e). The
brightest red spot is 10◦ rotated in relation to the [100] direction.

The position of the maximum intensity spots in Figure 5.3(f) can be used to determine the angle

from the high-symmetry directions. It gives an angle of θ ≈ 10◦. While it suggests a very good

agreement with the angle of rotation of the RuO6 octahedra as determined by IV-LEED [25], it

is not clear whether the maximum intensity spots are directly connected to the angle of octahedral

rotation.
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Figure 5.4: Tunneling spectroscopy at the surface of Sr2RuO4 (a) Typical tunneling spectrum g(V ) of
the SrO-terminated surface, measured at T = 76 mK (Vset = 100 mV, Iset = 265.2 pA, VL = 1.75 mV).
Four distinct features are observed, indicated by the red arrows. (e) High energy resolution g(V ) spectrum
(Vset = 8 mV, Iset = 500.2 pA, VL = 155 µV, T = 56 mK). Four peaks are indicated by the blue arrows.

5.3 Spectroscopy

A typical differential conductance spectrum, g(V ), measured at T = 76 mK on the clean sur-

face of Sr2RuO4 is shown in Figure 5.4(a). Four distinct features are visible (red arrows) in agree-

ment with previous reports [158–160, 179]. The outer arrows indicate kinks at ±40 mV, whose

particle-hole symmetry suggests that they are due to inelastic tunneling and have been attributed

to the coupling of the β -band with a surface phonon [179]. The energy at which these kinks occur

is close to the energy of vibrational modes where the oxygen octahedron moves opposite to the Ru

core, which has been measured by high-resolution electron energy loss spectroscopy (HREELS)

to have an energy of 50 meV [276].

The inner arrows in Figure 5.4(a) indicate the edges of a partial gap around EF, with a width of

5 mV. In Figure 5.4(b), a g(V ) spectrum in a narrower energy range is shown. It reveals the pres-

ence of at least four sharp peaks in the vicinity of the Fermi level at energies −4.8 mV, −3.2 mV,

3.7 mV and 5.2 mV, approximately, indicated by the arrows. The partial gap is asymmetric in

relation to EF and represents a suppression of differential conductance by about 40% relative to

the value at 8 mV.

The g(V ) spectrum shown in Figure 5.4(b) was taken at a temperature well below the super-

conducting temperature of our samples, as obtained by resistivity measurements. Although the

measurement was taken with sufficient energy resolution to see signs of a superconducting gap

of width ∆ ∼ 350 µV, no signs of such a feature can be observed. To confirm the absence of a
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Figure 5.5: Point spectra below 100 mK and in the range ±1 mV. The different curves were taken
at different positions on the surface and with different setpoint parameters. The curve in black shows an
example of a curve where a gap-like feature of width ∆ = 212.5 µV can be observed ( Vset = 8.0 mV,
Iset = 800.25 pA, VL = 30 µV).

superconducting gap, several point spectra were taken with higher energy resolution. Figure 5.5

shows a set of spectra taken at different places on the sample surface with different setpoint para-

meters (Vset = 5−8 mV, Iset = 200−1000 pA and VL = 80−25 µV). No consistent feature can be

observed, with gap-like and peak shaped features appearing around EF depending on the charac-

teristics of the tip. Occasionally, a gap-like feature with a width similar to the one expected is seen

(black curve in Figure 5.5), which however was not reproducible when moving the tip by a few

nm. These results suggest that the surface reconstruction on a SrO-terminated surface suppresses

superconductivity.

5.3.1 Temperature dependence

If the partial gap observed in the tunneling spectrum was a BCS-type gap of width ∆g = 5 meV,

it should disappear at a temperature of about ∆/1.76kB ∼ 33 K (as for a charge density wave in

mean field theory). To investigate its temperature dependence, measurements were performed at

temperatures between 76 mK and 35 K, where the higher temperature was limited by the instru-

mental setup1. The curves at the different temperatures are shown in Figure 5.6(a), where the

depth of the gap is seen to reduce with increasing temperature, followed by a slight increase in

width. At 35 K, signs of the partial gap are still visible. The change in the spectrum background

between 10 K and 20 K is due to a tip change between measurements, a result of an increasingly

1The warming up of the radiation shield of the dilution fridge insert and its large surface area implies that the amount

of particles which evaporate from its walls as the temperature is increased becomes too large above 35 K to allow for a

stable tunneling junction between the tip and sample
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Figure 5.6: Temperature dependence of tunneling spectroscopy. (a) Measured point spectra at increasing
temperatures, from 76 mK to 35 K. (Vset= 100 mV for all curves; 35 K: Iset= 2 nA, VL= 3 mV; 27.5 K:
Iset= 1 nA, VL= 2.5 mV; 20 K: Iset= 265 pA, VL= 2 mV; 10 K - 76 mK: Iset= 265 pA, VL= 1.75 mV). The
curves are vertically displaced by a constant for clarity. (b) Point spectra at 76 mK convoluted with the
derivative of the Fermi function to account for thermal broadening for increasing temperatures.

unstable tunneling junction, with the tip becoming blunt at temperatures higher than 10 K.

To investigate the effects of energy broadening due to the increase in temperature alone, the

density of states in Eq. (3.12) can be approximated by the tunneling spectrum taken at 76 mK,

gdata(V,T = 0.076), where the thermal broadening is minimized and of the order of 23 µV, and

the energy broadening is dominated by the lock-in modulation, as discussed in section 3.1.2. By

convoluting gdata(V,T = 0.076) with the derivative of the Fermi-Dirac function, f (ε,T ), as given

by the expression

gcalc(V,T ) =
∫

∞

−∞

gdata(V,T = 0.076)
[
−d f (ε− eV,T )

dε

]
dε, (5.1)

it is possible to calculate how the tunneling spectrum at 76 mK would evolve with increasing

temperature if the only change is the increased thermal energy broadening.

Figure 5.6(b) shows the calculated gcalc(V,T ) curves for temperatures from 0.5 to 100 K. For

an effect due purely to thermal broadening, the gap depth should decrease and its edges should

appear broader, with its full disappearance at 100 K. Comparing Figures 5.6(a) and (b), the meas-

ured spectra seem consistent with the calculated curves, suggesting that the observed suppression

of the gap in the tunneling spectra with increasing temperature comes predominantly from thermal

broadening. It can not be clearly attributed to the closing of a gap.
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5.4 Line defects

In addition to point defects, some of the surfaces show line defects aligned with the 〈110〉

directions with different widths and depths, see Figure 5.7(a) and (b). These look identical to the

line defect chains observed by Pennec et al. [116] for samples cleaved at 20 K. Similar defects have

also been observed by Kambara et al. [160] on a sample that exhibits the 3K-phase of Sr2RuO4

and were attributed to Ru-lamella inclusions.

The line defects could be a consequence of domains of the surface reconstruction, however, the

Laplacian of Figure 5.7(b), presented in Figure 5.7(c), shows that there is no phase shift between

the atomic lattices on either side of the defect (dotted black line). The line profile perpendicular to

the direction of the defect (dotted black line) gives a width of ∼ 8a
√

2 and a depth of ∼ 214 pm,

significantly less than the full step height of 640 pm. Figure 5.7(c) also reveals an atomic lattice at

the bottom of the defect. A line profile taken parallel to the direction of the defect along its center

(red dotted line), Figure 5.7(e), shows an atomic corrugation with a distance between maxima of

∼ a
√

2, consistent with a Sr lattice. The rather small depth of the line defects suggests that it is a

consequence of missing rows of Sr atoms at the surface than a full step, where locally a full layer

is removed.

To test this hypothesis, I have simulated STM constant current topographic images from DFT

calculations. Figure 5.7(f) shows a simulated STM image showing the charge density 5 Å above

the top-most Sr layer of a slab with a 3× 3× 1 supercell, where a row of Sr atoms has been

removed along the [110] direction (open blue circles). It shows that a missing row of Sr atoms gives

rise to dark rows in the topography of width a
√

2, consistent with the experiment. A line profile

perpendicular to the missing row of Sr atoms (red dotted line in Figure 5.7(f)), Figure 5.7(g), shows

a height difference of ∼ 122 pm between the rows with and without Sr, which has reasonably

comparable size with the one observed experimentally.

The TEM and EDX analysis of our sample shows that the sample is homogeneous along the

c-axis, see section 3.2.1. Stacking faults and Ru-inclusions were not observed, suggesting that

these line defects are induced by the cleaving of the crystal. Our results are thus consistent with

missing rows of Sr atoms.

5.4.1 Point spectra across a line defect

The presence of the line defects shown in section 5.4 provides an opportunity to investigate

how the tunneling spectrum changes across a discontinuity in the lattice, which could give further
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Figure 5.7: Line defects. (a) Topography of an area with several line defects, which occur along the 〈110〉
directions with different widths and depths (Vset= 20 mV, Iset= 50 pA). (b) Topography showing a section
of a wide line defect at the center (Vset= 20 mV, Iset= 200 pA). The arrows indicate the crystallographic
directions [100] and [010] as in (a). (c) Laplacian of the image in (b) after Gaussian filtering. It reveals
atomic structure inside the line defect. Following the dotted line shows that there is no phase shift between
the two sides of the defect, as might be expected if it was a boundary between different domains of the
surface reconstruction. (d) Line profile along the black dotted line in (b). (e) Line profile of the red dotted
line in (b). (f) Simulated STM topography at 100 meV and 5 Å above the surface obtained from a DFT
calculation of a single layer slab with a 3× 3× 1 supercell, where a row of Sr atoms was removed along
the [110] direction. The colored circles show the top SrO layer of the supercell, with the full blue circles
representing the Sr positions, empty blue circles the removed Sr atoms and red the position of the O atoms.
The arrows indicate the spatial directions as in (a). The DFT calculation was performed with GPAW, using
atomic orbitals as basis functions (LCAO, double-zeta polarized basis set) and the local density approx-
imation, in a 8× 8× 1 k-grid. (g) Line profile along the red dotted line in (f), showing a corrugation of
magnitude ∼ 122 pm.

insights into its origin. Figure 5.8(a) shows a point spectrum at the bare surface (black) and inside

the line defect (red), as indicated by the circles in the inset topography. The kinks at ±40 mV

seem to be broadened and the partial gap is suppressed. Individual spectra in a narrower energy

range, Figure 5.8(b), show that both the width and depth of the partial gap decrease at the center

of the line defect, without it being fully suppressed.

To investigate the evolution of the width and depth of the partial gap, the differential con-

ductance has been mapped over the topography shown in Figure 5.8(c), which contains a section

of a line defect at the center. The gap width is extracted by subtracting the peak positions of two

Lorentzian functions fitted to the derivative of each curve. The obtained values were then averaged

along the vertical direction of the topography and plotted in Figure 5.8(d). The width of the gap

decreases continuously when approaching the line defect, with a maximum reduction of∼ 2.7 mV

at its center. The change in gap depth across the line defect is shown in Figure 5.8(e), where the

values indicate the reduction in differential conductance at its minimum relative to the value at
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Figure 5.8: Point spectra across line defects. (a) Point spectra on the bare surface (black) and at the
center of the line defect (red), at the positions indicated on the topography in the inset (Vset= 60 mV,
Iset= 250 pA, VL= 2.8 mV, T = 2 K). (b) Same, in a narrower energy range and at the positions indicated
in (c)(Vset= 20 mV, Iset= 225 pA, VL= 0.9 mV, T = 2 K). (c) Topography taken at the same time as the
g(V ) map from where the curves in (b) were extracted. (d) The full width 2∆g of the gap-like feature as a
function of position x. The width is defined as the difference between the center of two Lorentzian peaks
fitted to the first derivative of each curve of the map. Each point is the mean of this difference along each
column of the topographic image and the error bars are the corresponding standard deviations. (e) Relative
depth of the gap as a function of x, normalized to the value at 20 mV.

20 mV. The gap starts to become shallower at about 5 nm away from the edges of the line defect,

filling up to a reduction of only 16% at its center. It suggests that a band that is gapped out at the

clean surface is not gapped at the center of the defects.

5.5 Checkerboard order

The Fourier transform of the topography shown in Figure 5.2(a) shows faint peaks at (±0.5,±0.5)

and (±0.5,∓0.5), coinciding with the periodicity of the surface unit cell. Bias dependent imaging

showed that the intensity of these peaks is highly dependent on the bias setpoint, corresponding to

a checkerboard modulation on top of the Sr atoms. This is demonstrated in Figure 5.9(a), where

topographies taken with increasing bias voltages in the same area are shown, with a quarter of the

respective FT shown as insets. At Vset= −70 mV, the Sr square lattice is visible with adjacent Sr

atoms appearing with the same intensity, corresponding to strong atomic peaks at (0,1) and (1,0).

The peak at (0.5,0.5) is barely visible. Closer to EF, at Vset = −5 mV, the topography shows a

clear checkerboard modulation on top of the Sr lattice. This modulation has the periodicity of the

doubled unit cell due to the octahedral rotations at the surface, resulting in the increase of the peak

intensity at (0.5,0.5). With increasing bias setpoint towards more positive voltages (20 mV and

100 mV), the checkerboard modulation is seen to fade away, with a decrease in the (0.5,0.5) peak

intensity.
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Figure 5.9: Bias dependence of topography. (a) Topographies measured with bias setpoints of −70, −5,
20 and 100 mV (T = 56 mK, Iset= 100 pA). The insets show a quarter of the Fourier transform, where the
atomic peaks are aligned with the x and y directions. At −70 mV, the (0.5,0.5) peak is almost invisible.
At −5 mV, the (0.5,0.5) peak has a strong intensity, which decreases as the bias voltage is increased, as
seen in the panels for 20 and 100 mV. (b) (0.5,0.5) peak intensity as a function of setpoint bias at 2 K and
56 mK. There is a peak around −5 mV at both temperatures.

The bias dependence of the checkerboard modulation can be obtained by taking a series of

topographies at different setpoint bias and plotting the intensity of the (0.5,0.5) peak as a function

of bias, as shown in Figure 5.9(b), for T = 2 K and T = 56 mK. The intensity of the (0.5,0.5)

peak increases by a factor of 1000 close to EF. A fitting of a Lorentzian to the curves gives a

peak centered at −4.3 mV with a width of 6.7 mV at 2 K and of 4.0 mV at 56 mK. It shows

that the checkerboard modulation of adjacent Sr atoms is pinned to very low energies close to

the Fermi level. If the checkerboard modulation was due to a structural reconstruction of the

surface Sr atoms, with a staggered vertical displacement of the Sr atoms, this should show up as

a corrugation in topographic images which is largely bias independent. By extracting the height

difference between adjacent Sr atoms as a function of bias, see Appendix B Figure B.1, an upper

bound for the vertical displacement of the Sr atoms can be obtained. For bias voltages |V |> 20 mV,

the contrast of the checkerboard becomes largely bias independent, so can be expected to be most

representative of the actual atomic displacements if there are any. At 100 mV, the height difference

between adjacent Sr atoms is∼ 130 fm, providing an upper bound for the vertical displacement of

the Sr atoms. In addition, the topographies taken in STM have contributions from the local DOS

at energies between 0 and eVset, as discussed in section 3.1.2. Since the Sr states only contribute

to the density of states at energies far away from the Fermi level (E > 1 eV) [124], if the Sr atoms

were physically displaced in a checkerboard pattern, this should become more visible at higher
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Figure 5.10: Checkerboard charge order. (a) Atomically resolved topography, measured simultaneouly as
a g(V ) map, with Vset = 7 mV. The positions of Sr and Ru atoms are indicated by purple and black circles,
respectively. (b), (c) Differential conductance layers at energies −3.5 and 3.5 mV, respectively. Both
show a checkerboard modulation on top of the Sr atoms, with opposite phase between them (T = 59 mK,
Vset = 7.0 mV, Iset = 250 pA, VL = 495 µV). (d) g(V ) spectra on top of adjacent Sr atoms (Sr1 and Sr2 in
(b)). (e) Phase-referenced FT, Re

[
g̃R(q,V )

]
, as a function of energy at the (0.5,0.5) peak in the Fourier

transform for g(V ) maps taken at 2 K and 59 mK. The dotted lines indicate the energy of the peaks in the
PR-FT.

bias voltages, contrary to what is observed.

To investigate the characteristic energy scale of the checkerboard modulation, a differential

conductance map with atomic resolution is shown in Figure 5.10. While the Sr lattice is seen

with uniform intensity in the topography taken simultaneously with the map (Vset= 7 mV, Fig-

ure 5.10(a)), the checkerboard dominates over the atomic contrast at −3.5 mV (Figure 5.10(b)).

At 3.5 mV, Figure 5.10(c), a checkerboard with opposite phase is observed. The g(V ) spectrum

on top of each inequivalent Sr site, Sr1 and Sr2, shows that the two checkerboard modulations

correspond to a modulation in the intensity of the peaks at −3.5 and 3.5 mV in the spectroscopy

(Figure 5.10(d)).

In order to obtain information on both the intensity and phase of the checkerboard modulation

as a function of energy, a phase-referenced Fourier transform (PR-FT) [277] can be performed on

the energy layers of the g(V ) map. Here, to remove the intrinsic global phase factor present in

each energy layer, the phase at each energy is referenced to the phase φ(q,V0) such that

g̃R(q,V ) =
g̃(q,V )

eiφ(q,V0)
=

√
∆x∆y
NxNy

| g̃(q,V ) | ei(φ(q,V )−φ(q,V0)). (5.2)

where ∆x and ∆y are the size of the map along the x and y directions and Nx and Ny are the
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number of pixels in each direction. The real part of g̃R(q,V ) is then given by

Re
[
g̃R(q,V )

]
=

√
∆x∆y
NxNy

| g̃(q,V ) | cos
(
φ(q,V )−φ(q,V0)

)
, (5.3)

where the cosine will take positive values if the phase at V is equal to the referenced phase at

V0 and negative values if it has the opposite phase. Since we are interested on the energy evolution

of the checkerboard modulation, we reference the phase of all energy layers to the phase at V0 =

−3.5 mV, where the checkerboard is strongest and plot the quantity Re
[
g̃R(q,V )

]
at q= (0.5,0.5)

as a function of energy, Figure 5.10(e). At both T = 2 K and T = 59 mK, the PR-FT shows a

sharp peak with positive intensity centered at−3.5 mV, with a width of 1 mV. A second peak with

similar width but with negative intensity is seen centered at 3.5 mV, representing the phase reversal

as seen by comparing Figure 5.10(b) and (c). In the 1D model of a charge density wave with a

gap opening close to or at the Brillouin zone boundary, the LDOS at the gap boundaries at positive

and negative energies have a phase change of π [278]. As a result, in STM, this is expected to be

detected as a contrast inversion of the modulation between occupied and unoccupied states, as the

one observed here. Thus, the phase reversal of the checkerboard modulation between ±3.5 mV

and the partial gap observed in the spectroscopy seem to be consistent with what is expected from

a charge density wave [279–281].

5.6 C4-symmetry breaking and nematicity

In addition to the characteristic energy scale of the checkerboard order, the g(V ) maps reveal

more intriguing patterns at the atomic scale. In Figure 5.11(a), like in Figure 5.10(a), the topo-

graphy at Vset = 7.8 mV shows the square Sr lattice, which we can use to pinpoint the position of

the Sr atoms in the g(V ) layers as purple circles. The position of the Ru atom is shown as a black

circle. The g(V ) layer at 7.8 mV, outside the partial gap in the spectrum, Figure 5.11(b), shows

a square lattice sitting on top of the Ru positions. However, as the energy approaches the Fermi

level, the electronic states align along the [10] direction, Figure 5.11(c) at 4.6 mV. At 3.4 mV,

less than 2 mV lower, the electron density switches direction, aligning along the [01] direction,

Figure 5.11(d). It shows that the low energy electronic states break C4-symmetry, as expected

for a nematic order. This modulation at the atomic scale will reveal itself as an anisotropy in the

intensity of the atomic peaks at (0,1) and (1,0) as a function of energy in the Fourier transform of

such g(V ) maps.

Another way in which this C4-symmetry breaking can be observed is in the QPI patterns
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Figure 5.11: C4-symmetry breaking of the atomic scale modulations. (a) Topography with Vset= 7.8 mV.
(b)-(d) Energy layers of a g(V ) map taken simultaneously as (a), at 7.8, 4.6 and 3.4 mV, respectively
(T = 1.8 K, Vset = 7.8 mV, Iset = 500 pA, VL = 370 µV).
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Figure 5.12: C4-symmetry breaking of the quasiparticle interference patterns. (a)-(f) Energy layers of
a g(V ) map in an area containing point defects at energies −6.4, −4.4, −2.4, 3.2, 4.8, 6.4 mV, respectively
(T = 56mK, Vset = 6.4 mV, Iset = 225 pA, VL = 398 µV). The positions of the point defects are indicated
by crosses.

around point defects, shown in Figure 5.12. At −6.4 mV, Figure 5.12(a), the QPI patterns around

the defects look four-fold symmetric. This energy is outside the partial gap observed in the g(V )

spectrum. With decreasing energy, entering the ±5 mV of the gap, the QPI patterns become

unidirectional, aligning with the [01] direction at −4.4 mV (Figure 5.12(b)) then with the [10]

direction at −2.4 mV (Figure 5.12(c)), switching back to horizontal at 3.2 mV (Figure 5.12(d))

and then to vertical at 4.8 mV (Figure 5.12(e)), and becoming C4-symmetric again at 6.4 mV (Fig-
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ure 5.12(f)). Both these results demonstrate that the underlying electronic structure of the surface

layer of Sr2RuO4 has states that break C4-symmetry at certain energies. This C4-symmetry break-

ing is not consistent with the crystal structure shown in Figure 5.1(a), which remains four-fold

symmetric despite the octahedral rotations, suggesting additional mechanisms for its origin, such

as a magnetic order, electronic correlations or additional structural distortions.

5.7 DFT calculations

5.7.1 Single layer

To understand how the band structure of Sr2RuO4 changes with the RuO6 octahedral rotation, a

series of DFT calculations were performed on a single perovskite layer of Sr2RuO4 with increasing

angle of rotation. The calculations were performed using the linear combination of atomic orbitals

(LCAO) representation of the wavefunctions, using local-density approximation (LDA) as the

exchange-correlation functional. The unit cell used in the calculations was the surface unit cell

shown in Figure 5.1(a). Spin-orbit coupling was not included, as a result, the band hybridizations

along the ΓX direction are not captured (see Chapter 2, section 2.2.1). Although the overall shape

of the bands is well captured by DFT, the Fermi velocity is considerably higher when compared to

experiment [27]. In order to put the vHs at the M point at 14 meV, as measured experimentally [6],

the energy of the bands was renormalized by a factor of 2.3. After renormalization, the band

structure for θ = 0◦, Figure 5.13(a), compares well to the dispersion of the bulk bands measured

by ARPES from ref. [117], and while the dispersion of the dxz/dyz bands is in good agreement for

binding energies lower than 40 meV, the dispersion of the dxy band is considerably heavier in the

experiment, highlighting the highly correlated nature of this band.

Figure 5.13 shows the Fermi surface, band structure and total DOS for calculations with in-

plane octahedral rotation angles from 0◦ to 8◦. The vHs at the M point is pushed below EF with

increasing angle of rotation: for θ = 0◦ the vHs is above EF, resulting in a peak in the total DOS

above but close to EF, and as θ is increased, the vHs touches EF for θ = 4◦, being pushed to

lower energies for θ = 6◦ and θ = 8◦. This occurs as a consequence of hybridization between

dxy and dz2 states which is allowed due to the octahedral rotations. As the vHs is pushed below

EF, its saddle point becomes more flat resulting in the increase in the intensity of the peak in the

DOS. Additionally, for angles θ > 5◦, an electron pocket at the Γ point crosses the Fermi level,

also moving down in energy, as a result of the hybridization between the dxy and the dx2−y2 states.

These calculations reproduce previous reports [23, 27, 282].
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Figure 5.13: DFT calculations on a single layer of Sr2RuO4 with increasing angle of rotation. (a) - (d)
Fermi Surface, band structure and total DOS for angles of rotation of the RuO6 octahedra of 0◦, 4◦, 6◦ and
8◦, respectively. The band of dxy character which has the relevant vHs is shown in blue. The path along
which the band structure was calculated is indicated by red lines in (a), with M’ the middle point of the edge
of the reconstructed BZ. The DFT calculations were performed using GPAW, using atomic orbitals as basis
functions (LCAO, double-zeta polarized basis set) and the local density approximation. The band structure
plot was calculated in a 40× 40× 1 k-grid, and the Fermi surface plots were obtained from a calculation
with a 151×151×1 k-grid. The total DOS was calculated with a broadening of 19.6 meV and the x-axis
goes from 2.5 to 6.5 states/eV. The energy of the bands was renormalized by a factor of 2.3 such that the
vHs at 0◦ angle is at 14 meV, as estimated from experiment [6].

The Fermi surfaces for θ = 6◦,8◦ show overall agreement with the Fermi surface measured

by ARPES [24, 26, 27, 117], where the Fermi pockets corresponding to the dxz/dyz and dxy bands

have the correct shape, despite differences in kF. The circular pocket at the Γ and X points is

overestimated, with its minimum below EF, while ARPES measurements reveal that it should be

a few meV above the Fermi level [26]. However, the band structure is not in agreement with the

STM measurements presented in this chapter: it does not reproduce the partial gap around EF, the

four peaks in LDOS, C4-symmetry breaking nor the checkerboard on top of the Sr lattice.
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5.7.2 Three-layer slab

To study what kind of structural distortions could lead to the appearance of four peaks in

the DOS and a partial gap around EF, DFT calculations on a three-layer slab of Sr2RuO4 were

performed. The following distortions of the surface layer were investigated here: (i) octahedral

rotation plus the tilt characteristic of Ca2RuO4; (ii) vertical displacement of the topmost Sr atoms

in a checkerboard pattern; (iii) displacement of the surface layer along the [100] direction; and

(iv) checkerboard AFM order on the Ru atoms in the surface layer. These distortions were chosen

to either create a checkerboard pattern (i,ii and iv) or to induce C4-symmetry breaking (iii). The

calculations were performed using a plane-wave basis set, with an energy cut-off of 650 eV and the

generalized gradient approximation (PBE) for the exchange-correlation functional, on a 8×8×1

k-grid (unless otherwise stated). The results are summarised in Table 5.1, with the respective total

energies.

θ (◦) ∆d (pm) ET (eV)

Slab† 0.00 0.0 −286.512 (−265.530∗)

Rotation 1st layer† 5.02 0.0 −286.517

Rotation + 5.00
0.0 −286.493

Tilt 1st layer 2.00

Staggered Sr 5.00 ±5.0 −286.505

[100] shift 1st 5.00 7.0 −286.509

Ru AFM 5.00 0.0 −265.462∗

Table 5.1: Summary of DFT calculations on a three-layer slab of Sr2RuO4, with θ the angle of octahedral
rotation, ∆d the displacement magnitude and ET the total energy. All calculations had a vacuum layer of
21 Å, were performed in a 8×8×1 k-grid, and using a plane-wave basis with an energy cut-off of 650 eV,
and PBE. The relaxations were done with the bottom layer fixed. ∗ Calculations performed with a cut-off
energy of 450 eV and in a 6×6×1 k-grid. † Calculations after relaxation with bottom layer fixed.

First, the slab representative of the bulk of Sr2RuO4 was relaxed, fixing the positions of the

bottom layer. The resulting band structure is shown in Figure 5.14(a), showing three vHss cor-

responding to each layer, with the bands from the top layer shown in blue. The vHss appear at

different energies for each layer due to an increasing elongation of the RuO6 octahedra along the

c-axis between the top and middle layers. Second, the RuO6 octahedra of the first layer were

rotated by 5◦ and relaxed, with the bottom layer fixed. This resulted in a slightly larger rotation

angle of 5.02◦, and a total energy 5 meV lower than the undistorted slab, suggesting that this con-

figuration is more stable, reproducing the reconstruction of the surface layer. The band structure,
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Figure 5.14(b), shows the expected shift of the vHs to lower energies. The following calculations

with different distortions were done using this relaxed structure as a basis.

The first distortion was to induce a staggered tilt of the RuO6 octahedra, in the same way as

observed at the surface of Ca2 – xSrxRuO4 samples [254]. The total energy of the system is 24 meV

higher than the slab with rotation on the top layer. The band structure, Figure 5.14(c), shows the

vHs at the same energy as before, with a hybridization gap between the dxy and dxz/ dyz bands

appearing at slightly higher energies.

The second distortion was to move the Sr atoms along the z axis in a checkerboard-like fashion,

by ±5 pm, as represented in Figure 5.14(d). The total energy of the system is 12 meV higher

than the slab with only rotation of the oxygen octahedra on the top layer. The band structure in

Figure 5.14(d) shows that the vHs of the top layer splits into two and that it breaks C4-symmetry.

However, our measurements provide an upper bound of ∼ 130 fm for a vertical displacement of

the Sr atoms, far smaller than what is necessary to obtain a sizeable symmetry breaking.
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Figure 5.14: Slab calculations with different distortions. (a) Bandstructure calculated from DFT of a
non-reconstructed three-layer slab of Sr2RuO4 after the relaxation of the two top layers. The bands of the
surface layer are shown in blue. (b) Same, but with a 5◦ octahedral rotation on the topmost layer followed
by the relaxation of the two top layers. (c) including tilt, (d) staggered vertical displacement of Sr atoms
by ±5 pm (indicated by the plus and minus signs in the inset), (e) horizontal displacement of the top layer
along the [100] direction by 7 pm and (f) with AFM order on the Ru atoms (local magnetic moments of
0.195 µB/Ru and −0.190 µB/Ru, indicated by the plus and minus signs in the inset). The insets show
a sketch of the unit cell, with red, black and blue circles as O, Ru and Sr atoms. The calculations were
performed over 144 k-points along the path shown and the energies of the bands were renormalized by a
factor of 2.3.
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The third distortion was shifting the top layer laterally along the [100] direction by 7 pm

relative to the second layer in the slab, as illustrated in Figure 5.14(e), giving rise to an increase

of 8 meV of total energy in relation to the slab with rotation on the top layer. This breaks C4-

symmetry due to the inequivalent positions between the first and second layer, however, the band

structure does not show such symmetry breaking at the van Hove point, showing a dispersion

almost identical to Figure 5.14(b).

The last attempt was to include antiferromagnetic order on the Ru atoms at the top layer, as

illustrated by the plus and minus signs in Figure 5.14(f). The local magnetic moments of the Ru

atoms were initialized as ±1 µB/Ru, and the calculations stabilized in local magnetic moments of

0.195 µB/Ru and −0.190 µB/Ru. The bandstructure in Figure 5.14(f) shows the splitting of the

vHs at the surface layer, opening a gap at the Fermi level. However, the antiferromagnetic order

does not lead to a breaking of C4-symmetry alone.

None of the above cases seems to capture all the changes to the band structure needed to

explain the STM measurements. On one hand, there are cases where a gap is opened but C4-

symmetry breaking occurs along a different direction than that observed experimentally, such

as the rotation plus tilt distortion and the AFM order at the surface layer. On the other hand, the

staggered displacement of the Sr atoms captures the C4-symmetry breaking in the correct direction

but, to obtain a considerable gap, a much larger distortion than that observed exprimentally is

needed.

5.8 Tight-binding model

The DFT calculations presented in the previous section show that the octahedral rotations

alone are not enough to describe the STM measurements. To gain insight into how the checker-

board charge order and nematicity modify the band structure of the surface, we will include them

phenomenologically into a tight-binding model.

To describe the surface of Sr2RuO4, a model with a two-atom unit cell is necessary due to

the octahedral rotation. Consider the lattice shown in Figure 5.15, where the unit cell has two Ru

atoms, Ru(A) and Ru(B), at the positions (−0.25,0.25) and (0.25,−0.25) in relation to the center

of the unit cell (size 1×1). We will use a tight-binding model with lattice Hamiltonian of the form

of Eq. 4.12, described in section 4.2. As a minimal model to describe the surface layer, and in

agreement with previous models developed to describe the physical properties of Sr2RuO4 [118]

and also Sr3Ru2O7 [205–208] (where octahedral rotations are present), we will only account for
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the 4d t2g orbitals of the Ru atoms. This results in a 6-band tight-binding model with orbital basis

{dA
xz,d

A
yzd

A
xy,d

B
xz,d

B
yzd

B
xy}.

The hopping parameters are illustrated in Figure 5.15. The nearest-neighbor (NN) dxz/dyz hop-

ping terms are given by t1 in the plane of the lobes of the orbitals and t2 in the perpendicular direc-

tion, Figure 5.15(a). Hopping between dxz and dyz orbitals between next-nearest-neighbors (NNN)

is given by tinter, Figure 5.15(b). For the dxy channel, we include hopping up to the third nearest

neighbor, Figure 5.15(c), with t3 as NN hopping, t4 as NNN hopping, and t5 as the third NN hop-

ping term. The chemical potential of the degenerate dxz and dyz orbitals is given by µ . To account

for the octahedral rotation, which from the DFT shifts the dxy band down in energy, the chemical

potential of the dxy orbital was set to µc. Spin-orbit coupling is included as off-diagonal terms in

the 3× 3 diagonal blocks, with strength η . The values of the parameters are shown in Table 5.2

in eV and were given by Luke C. Rhodes in Ref. [161]. The value of µc places the dxy vHs within

[0,0] [1,0]

[1,1]

[-1,0]

[-1,-1]

[-1,1] [0,1]

[0,-1] [1,-1]

t1 t2

BA B

A

tinter

BA

t3 t4 t5

(a) (b) (c)

x

y

Figure 5.15: Sketch of hopping parameters. (a) Sketch of a square lattice with a two-atom unit cell. A and
B indicate the atomic positions at (−0.25,0.25) and (0.25,−0.25), in relation to a unit cell of size 1× 1.
The nearest-neighbor hopping between dxz orbitals on Ru(A) and Ru(B) is illustrated by the colored lines.
The hopping in the direction of the orbital lobes is t1 (black line) and in the perpendicular direction is t2
(orange line). The same picture can be drawn for the dyz orbitals, with t1 and t2 swapped. The unit cells are
labeled relative to the unit cell at the center. (b) Next-neighbor inter-orbital hopping between the dxz and
dyz orbitals on Ru(A) on adjacent unit cells, and on Ru(B). (c) Hopping parameters for hopping between
dxy orbitals. The nearest-neighbor hopping is t3 (black dashed line), next-nearest neighbor is t4 (dashed
orange line) and third nearest neighbor hopping is t5 (solid blue line).
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Figure 5.16: Tight-binding model Fermi surface and band structure. (a) Fermi surface from the tight-
binding model using the hopping parameters of Table 5.2. (b) Corresponding band structure.
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less than 1 meV above the Fermi level. Figure 5.16(a) shows the Fermi surface obtained from

this tight-binding model. The Fermi wave vector of the dxz and dyz bands are in agreement with

the ARPES measurements of the surface bands [27]. While the dxy pockets are slightly narrower

than the pockets observed in ARPES and DFT (see Figure 2.12 and Figure 5.13, respectively), this

does not affect the comparison with the experiment. The band structure, Figure 5.16(b), shows the

correct hole-like behavior of the dxy band, in agreement with the ARPES dispersion of the surface

dxy band.

t1 t2 tinter t3 t4 t5 η µ µc

0.150 0.015 0.0015 0.120 0.045 0.01425 0.015 0.1125 0.1218

Table 5.2: Hopping parameters for the two-atom unit cell tight-binding model of the surface of Sr2RuO4,
optimized by Luke C. Rhodes in ref. [161]. The values are given as absolute values and in eV.

5.8.1 Staggered bond order and nematic order parameter

The checkerboard order can be phenomenologically included in this tight-binding model by

adding a tbond term to the NNN hopping terms of the dxy orbitals, with opposite signs on Ru(A) and

Ru(B), as illustrated by the blue and red lines in Figure 5.17(a), realizing a staggered bond order

[272]. The nematic order parameter is included by making the NN hopping between dxy orbitals

inequivalent in the x and y-directions by an amount tnem, Figure 5.17(b).

Choosing tbond = tnem = 3.5 meV, results in the Fermi surface shown in Figure 5.17(c), presen-

ted in the extended Brillouin zone. The sheets of the Fermi surface of dxy character show an

anisotropy around the M-point, where the vector that connects the tips of the two dxy Fermi sheets

along the kx-direction is shorter than the connecting vector along the ky-direction. The M-points

along kx and ky are now inequivalent and will be defined as Mx and My. The 3D band dispersion

around the Mx point, shown in Figure 5.17(d), reveals the appearance of four van Hove singu-

larities: three saddle points S1, S2, and S3 and a maximum M, labelled according to van Hove’s

notation [93]. The band structure plot along the path Γ−Mx−X , Figure 5.17(e), shows that the

dxy band is gapped at the Mx and My points, with two vHss below (S1 and M) and above (S2 and

S3) the Fermi level. The total DOS from this model is shown in Figure 5.17(f) for ±10 mV, and

shows strinking similarities with the measured g(V ) spectrum of Figure 5.4(b), with an anisotropic

partial gap around the Fermi level and four sharp peaks.

The band structure obtained from this tight-binding model bears similarity with the band struc-

ture observed for the slab calculation including a displacement of the Sr atoms along the z-direction
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in a checkerboard pattern, Figure 5.14(d). Both show the splitting of the dxy vHs at the M-point,

resulting in C4-symmetry breaking along the same direction, as well as the gapping of this band (al-

though almost negligible in the case of the slab calculation). It illustrates the equivalence between

checkerboard and nematic orders in this system.

5.8.2 Continuum local density of states calculations

This model can now be used to calculate the continuum local density of states following the

formalism described in section 4.2. The calculations presented in this chapter were performed

using the parameters summarized in Table 5.3. A k-grid of 2560×2560 was chosen so that a sub-

meV energy broadening, γ , can be used and the effects of the scattering involving the four vHs

can be resolved. The calculation was performed over 64 unit cells in real space, corresponding
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Figure 5.17: Tight-binding model with a staggered bond order and a nematic order parameter. (a)
The staggered bond order is introduced by adding a term tbond to the NNN hopping of the dxy orbitals with
opposite sign on the A and B sites, as indicated by the blue and red lines. (b) Illustration of the nematic order
parameter realized by an additional term, tnem, to the dxy NN hopping, with opposite signs along the two
spatial directions. (c) Fermi surface in the extended Brillouin zone, with the dashed lines representing the
BZ of the two-atom unit cell. (d) Three-dimensional band dispersion around the Mx-point within 15 meV of
EF. The plane indicates EF. (e) Band structure along the path Γ−Mx−X (with a k-resolution of 1×10−4).
The vHs are labelled according to van Hove’s notation, with the three saddle points and maximum labelled
S1, S2, S3 and M, respectively. (f) Density of states. The calculations were performed with tnem = 3.5 meV
and tbond = 3.5 meV. The Fermi surface and DOS were calculated over a 2560×2560 k-grid, with energy
broadenings of 2.5 meV and 1.50 µV, respectively.
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k grid γ (µeV) npixel Ncells φ Vimp (eV) Cxz/yz Cxy θrot (◦)

2560 150 6 64 2 0.1 1 4 6

Table 5.3: Parameters for continuum LDOS calculations.

to a q-resolution of 0.003 Å−1 for a lattice constant of a = 3.87 Å . To do the continuum trans-

formation, gaussian-type orbitals with the symmetries of the dxz, dyz and dxy orbitals were used

(Figure C.1 in Appendix C). The spread of the gaussian-type orbitals, φ , was chosen such that

no artifacts appeared in the homogeneous cLDOS calculation over two unit cells (see Figure C.2

in Appendix C). With this spread, the gaussian-type orbitals extend to the neighboring and next-

neighboring unit cells (see Figure C.1 in Appendix C), but its effect is barely seen in unit cells

further away. Therefore, the calculation was performed such that the sum in Eq. (4.24) only goes

over up to the next-neighboring unit cells of the unit cell at [0,0]. To enhance the contribution

from the dxy channel to the cLDOS calculations, the dxy gaussian-type orbital was multiplied by

a constant Cxy = 4, while the dxz/ dyz gaussian-type orbitals constant was Cxz/yz = 1. To simulate

the rotation of the RuO6 octahedra at the surface, the gaussian-type orbitals were rotated in op-

posite directions at the two Ru sites by an angle θ = 6◦. The impurity potential is then put on site

A or B in the unit cell at the center of the field of view. An example of the outcome of such a

calculation is shown in Figure 5.18(a), with a close-up on the impurity. The high intensity spots

building the atomic lattice occur in between the Ru positions, reproducing the Sr lattice observed

in the experiment.
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Figure 5.18: cLDOS calculations. (a) Real space cLDOS at 1.75 meV. The impurity is located at site
Ru(A) in the unit cell at the center of the field of view. Inset shows a close up on the impurity, also showing
the atomic lattice in detail. The maxima that make up the atomic lattice occur at the positions of the Sr
atoms. (b) cLDOS as a function of energy averaged over a unit cell. The inset shows the cLDOS on top of a
Ru(A) site (Blue) and a Ru(B) site (red). (c) and (d) Homogeneous cLDOS over four unit cells at −5 meV
and 5 meV. The checkerboard modulations is more clearly observed at the Ru positions.
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Figure 5.19: QPI comparison between experiment and model. (a) Experimental QPI layer at 1.87 mV
where four characteristic vectors q1, q2, q3 and q4 are identified (Vset = 5.8 mV, Iset = 200 pA, T = 600 mK,
B = 12 T). The map was performed in a field of view of 85× 85 nm2 with a pixel number lower than
necessary to resolve the atomic lattice, therefore the atomic peaks were aliased. To recover the full QPI
pattern, an antialiasing algorithm was performed and the intensity of the aliased peaks was suppressed
by the subtraction of a gaussian at the positions of the aliased atomic peaks. (b) Calculated QPI layer at
1.75 meV, averaging over impurity patterns from both types of Ru impurities. The same q-vectors as in (a)
are shown.

The simulated cLDOS spectrum, obtained from averaging over a unit cell far from the impurity

(top left corner of Figure 5.18 (a)) is shown in Figure 5.18(b). It shows good agreement with the

experimental g(V ) spectrum in Figure 5.4(b). The cLDOS spectra on top of the two inequivalent

Ru sites in the unit cell, Ru(A) and Ru(B), are shown in the inset of Figure 5.18(b). There is a

modulation in the intensity of the vHs peaks, where the vHss at negative energies appear more

intense on top of Ru(A) sites, whereas the vHss at positive energies are more intense on Ru(B).

This results in a checkerboard intensity modulation at the energies of the vHss on top of the

Ru sites, with the phase changing across EF. Comparing with experiment, while it reproduces a

stronger checkerboard at the energy of the vHs and the phase reversal, the checkerboard appears

more clearly on top of Ru sites instead on top of the Sr lattice, see Figure 5.18(c) and (d).

Due to the rotation of the gaussian-like orbitals, placing the impurity on site A or B results in

chiral QPI patterns, as in the experiment (Figure 5.3). Since the experimental QPI will have con-

tributions from defects with both chiralities, the cLDOS was calculated individually for impurities

placed on site A and site B. Then, the absolute value of the FT of the cLDOS was taken for both

calculations and averaged to obtain a QPI pattern with contributions from both types of impurities.
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5.9 Quasiparticle interference

As shown in Figure 5.12, clear quasiparticle interference patterns are observed around defects

at the surface of Sr2RuO4. In order to identify the scattering processes responsible for the observed

QPI patterns, in this section the QPI from experimental measurements is presented together with

the cLDOS calculations described above.

Figure 5.19(a) shows a QPI map layer taken at 1.87 mV over a field of view of lateral size 85

nm. It shows a QPI pattern consistent with the literature [165, 179]. Four specific shapes can be

distinguished, characterized by the q-vectors indicated by the colored arrows, labeled q1, q2, q3

and q4. The magnitude of q1, if it is an interband scattering vector, gives kF = 0.53±0.18 Å−1 and

its energy dispersion gives a Fermi velocity of vF = 0.55±0.32 eV Å, in agreement with the Fermi

velocity extracted from ARPES for the surface β band [27]. This confirms that the observed QPI

patterns originate from the surface bands due to the surface reconstruction, as probed by ARPES.

The Fourier transform of the cLDOS calculation shown in Figure 5.18 at energy 1.75 meV is

presented in Figure 5.19(b). The same q-vectors are indicated, showing good agreement with the

experimental data in Figure 5.19(a), where the overall patterns seem to be captured. Differences

in shape are observed due to the details of the underlying tight-binding model.

To disentangle the contributions from the dxz/ dyz and the dxy channels, a cLDOS calculation

can be performed where the amplitude of the gaussian-type orbitals of the unwanted channels

is put to zero. Figure 5.20(a) shows a cLDOS calculation with the same parameters as before,

but with Cxy = 0 so that only the contributions from the dxz and dyz channels enter into the con-

tinuum Green’s function. The three q-vectors q1, q2 and q3 are captured. On the other hand,

Figure 5.20(b) shows a calculation with Cxz/yz = 0, so that only the dxy channel contributes to

the continuum Green’s function, capturing q4. Looking at the extended Fermi surface shown in

Figure 5.20(c), the outer ring comes from intraband scattering between the β band around the

zone center with q-vector q1, whereas both q2 and q3 are due to intraband scattering across the

boundaries of the Brillouin zone of the two-atom unit cell. The q-vector q4 is due to the scattering

between the Fermi sheets with dxy character.

Note also that only the dxy channel has significant spectral weight around q= (0,0) and around

the atomic peaks (±1,0) and (0,±1). Comparing with the experimental data in Figure 5.19(a),

q4 is well visible, as well as low-q scattering. The scattering close to the atomic peaks is quite

weak and only visible at certain energies. In these calculations, the intensity of the dxy gaussian-

like orbitals was exaggerated so that the signal coming from the dxy channel is clearly visible. To
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Figure 5.20: Contribution from different orbital channels to QPI. (a) cLDOS calculation with Cxy = 0.
The q-vectors q1, q2 and q3 are identified. (b) cLDOS calculation with Cxz/yz = 0. The q-vector q4 is
identified. Both calculations are at 1.75 meV. (c) Fermi surface with the previous q-vectors identified.

model the relative intensities more realistically requires independent determination of the relative

weights of the band with different orbital character, as it is achieved when using Wannier functions

as obtained from an ab-initio calculation [272].

5.9.1 QPI from the van Hove points

Since the vHss are saddle points in the energy dispersion corresponding to high DOS, strong

scattering with a q-vector connecting van Hove points is expected. This scattering can occur in

two ways: across the M-points with small q-vector which collapses onto q = (0,0) or across the

Γ-point with large q-vector that becomes |q| = 1 at the energy of the vHs, collapsing onto the

atomic peaks in QPI measurements.

QPI scattering patterns with small q-vectors correspond to long wavelength modulations in

real space. This means that in order to have sufficiently high q-resolution to be able to capture the

small q-vectors, the surface area to perform a g(V ) map has to be large. In Figure 5.21 eight energy
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Figure 5.21: Low-q scattering from dxy band. QPI patterns around q = (0,0) from a g(V ) map measured
in an area of 63×63 nm2 (Vset = 8 mV, Iset = 350 pA, VL = 800 µV, T = 56 mK).
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Figure 5.22: QPI dispersion from vHs at the atomic peaks. (a) Two QPI layers at 1.40 mV and 2.52 mV.
The arrows indicate QPI features close to the atomic peaks along different spatial directions at the different
energies. (b) QPI energy dispersion along qx around the (1,0) atomic peak. A dispersion collapses onto
the atomic peak, as indicated by the arrow. (c) QPI dispersion along qy around the (1,0) atomic peak,
where a clear dispersion is observed, which collapses onto the atomic peak at a lower energy than along qx
(Vset = 5.6 mV, Iset = 225 pA, VL = 300 µV, T = 76 mK, B = 6.5 T). (d) Differential conductance g̃(qat,V )
at the atomic peaks qat = (1,0) and (0,1).

layers of the FT of a g(V ) map with 63 nm lateral size are shown, focusing on the low-q patterns.

For energies |ε| > 5 mV, outside the partial gap, almost no weight is observed. Approaching

the energies of the vHss, the intensity of the QPI around q = (0,0) gets stronger and becomes

C2-symmetric, switching between the two high symmetry directions. This is expected from the

vHss reaching the Mx and My points at different energies. Althought the breaking of C4-symmetry

is clearly detected in these measurements, it is difficult to measure the energy dispersion around

q = (0,0) because in order to have enough q-resolution large area g(V ) maps are needed, which

result in long-time measurements in order to get enough energy resolution. In addition, the broad

background from the random defect distribution appears as spectral weight around q = (0,0),

possibly masking the low-q QPI.

On the other hand, scattering vectors with magnitude q ∼ 1 result in modulations with short

wavelength, close to the atomic corrugation. Figure 5.22(a) shows two energy layers of a QPI map

taken over an area of (28 nm)2 at energies 2.52 mV and 1.40 mV. While a clear feature (indicated

by the arrow) is observed close to qat = (1,0), no feature is observed close to the atomic peak

at qat = (0,1). The opposite is found at 1.40 mV, revealing the expected nematicity. The energy

dispersions around the two atomic peaks are shown in Figure 5.22(b), where two clear dispersions

are observed that collapse onto the atomic peaks along the qx and qy directions at different energies.

We can determine the energy of the vHss along the different directions by looking at the intensity

of the atomic peaks, g̃(qat,V ), Figure 5.22(c). The vHs along qx occurs at 3.08 mV and along qy

it is at 1.96 mV. The energy difference between the two is 1.12 mV, giving an indication of the
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Figure 5.23: Energy dispersion from cLDOS calculations. (a) and (b) Show the energy dispersion of the
cLDOS calculations around the atomic peaks along the qx and qy directions, respectively. The white and
blue arrows indicate the position where the vHs dispersion collapses onto the atomic peaks. Lines serve as
a guide to the eye. (c) cLDOS averaged over a unit cell. The arrows indicate the position of the vHss.

energy scale of the nematicity in this system.

Energy dispersions around the atomic peaks are also captured in the cLDOS calculations,

Figure 5.23(a) and (b), where two hole-like dispersions are seen collapsing onto the atomic peaks

at different energies for each spatial direction, corresponding to the energy of the vHss as observed

in the cLDOS spectrum, Figure 5.23(c). However, there are important differences. First, the

dispersion due to the vHs at negative energies is clearly present, whereas it is not observed in the

experiment. In the experimental g(V ) spectrum, the vHs at ∼−3.5 mV is the most prominent one

and so one would expect to see a larger contribution to QPI coming from it. However, this is not

the case, and it seems to be because the signal due to the strong checkerboard order completely

dominates over modulations with a wavelength similar to the atomic corrugation. Second, the

hole-like dispersions from the vHss at positive energies appear weak and have other dispersions

overlapping with them. These dispersions are also from scattering close to the van Hove points, but

since the dxy sheets have a small area and very straight edges, their dispersion is narrow compared

to the experiment. Continuum LDOS calculations using the Wannier functions and tight-binding

model derived from DFT calculations show the hole-like dispersions with larger intensity [272],

in better agreement with the experiment.

5.10 Magnetic-field dependence - towards a Lifshitz transition

The comparison between experimental data, the phenomenological tight-binding model and

cLDOs calculations establish the four peaks detected in the g(V ) spectrum as four vHss. Such

vHss so close to EF open up the possibility to tune the system towards a Lifshitz transition via the

application of a magnetic field.
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Here, magnetic fields up to 14 T were applied perpendicular to the surface plane, at a temperat-

ure of T = 76 mK. Figure 5.24(a) shows point spectra with increasing magnetic field, focusing on

the most prominent peak at∼−3.5 mV. As the magnitude of the magnetic field is increased from 0

T to 13.4 T, the peak splits, with one of its branches moving towards EF, and the other branch mov-

ing away, getting washed out by the edges of the partial gap above 11.8 T. To obtain the peak pos-

itions as a function of field, first, an arctangent and a constant ( f (V ) = A · arctan[(V −V0)/Γ]+ c)

are fitted to the background of the data at 13.4 T to describe the partial gap edge at negative ener-

gies. For the curves at other fields, V0 and Γ are fixed at the values of the fit at 13.4 T, while A and

c are fitted to the background using the same arctangent function. After subtracting the resulting

function f (V ) at each field as a baseline, the peaks are fitted by Lorentzian functions. The peak

positions as a function of applied field for both vHs branches are shown in Figure 5.24(b). For

a Zeeman splitting under magnetic field, the peak positions will follow (assuming quasiparticles

with spin 1/2):

ε± = ε0±
1
2

g∗µBB+∆µB, (5.4)

where g∗ is the Landé g-factor, µB is the Bohr magneton, B is the applied magnetic field and

∆µB is a field-dependent chemical potential shift due to charge conservation. The positive and
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Figure 5.24: Magnetic-field splitting of a vHs. (a) Tunneling spectra with increasing magnetic field ap-
plied along the [001] direction, from 0 T (blue) to 13.4 T (red) (T = 76 mK, Vset = 5 mV, Iset = 225 pA,
VL = 100 µV). The vHs at −3.4 mV splits into two, with one branch moving towards the Fermi energy. (b)
Peak position extracted from (a) as a function of applied field (error bars: 95% confidence intervals). The
splitting follows a linear field dependence, as expected from a Zeeman splitting, with g∗ ≈ 3.
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the average tunneling spectra 〈g(r,V )〉r for the maps at each field. The vertical dashed lines indicate the
positions of the split vHs. Each spectrum is normalized and vertically shifted for clarity, the short dashed
gray lines indicate g(V ) = 1.

negative moving vHs branches are seen to follow an approximate linear trend, consistent with

Zeeman splitting and Eq. (5.4). Both ∆µ and g∗ can be estimated from the slopes a1 = 0.10 mV/T

and a2 =−0.07 mV/T of the linear fits to the positive and negative vHs branches, respectively, by

∆µ =
a1 +a2

2
≈ 17 µV/T, (5.5)

and

g∗ =
a1−a2

µB
≈ 3, (5.6)

which is consistent with the Wilson ratio of the bulk material RW = g∗/2 = 1.5 [131, 134].

Extrapolating the linear fit to the positive moving vHs branch predicts that this vHs will reach

EF at a magnetic field of 32 T. While there are high-field magnets capable of reaching magnetic

fields higher than 32 T, currently, this value is not reachable by currently commercially available

superconducting laboratory magnets.

The checkerboard order reported in section 6.4 is associated with the vHs which splits under

field. To determine if the bias voltage at which it exhibits maximum contrast follows the peak once

it is split, the PR-FT analysis was performed for maps taken at magnetic fields of 0 T, 6.5 T and

12 T, shown in Figure 5.25. The maximum intensity in the PR-FT, corresponding to the energy

where the checkerboard is strongest, is seen to move with the peak in the g(V ) spectrum (lower

panel of Figure 5.25). Therefore, the checkerboard order is intimately linked with the vHs energy

and becomes spin-polarized under magnetic field.

Despite shifting the checkerboard modulation in energy according to the split vHs, the applica-
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Figure 5.26: QPI feature at 1/3 under magnetic field. (a) QPI layer at−2.80 mV, under 6.5 T, for negative
energies. Features at (0,1/3) and (0,2/3) are indicated by the arrows. (b) - (e) Energy linecuts at negative
energies at qy = 0 (left) and qx = 0 (right) for magnetic fields of 0 T, 1 T, 6.5 T and 12 T, respectively. The
dotted lines correspond to q = 1/3,2/3 and the arrows indicate the peaks energies.

tion of a magnetic field does not seem to change the energy dispersion of the QPI scattering vectors

close to the Fermi level. However, for QPI maps taken under magnetic field, sharp features appear

at 1/3 and 2/3 along a preferential direction at fixed energies, as highlighted in Figure 5.26(a) by

the arrows. The energy linecuts of the QPI maps at different magnetic fields along qx and qy show

at which energies these peaks appear. At 0 T, Figure 5.26(b), no peak is observed along both qx

and qy directions. Upon applying 1 T, Figure 5.26(c), peaks appear at q = 1/3,2/3 first along the

qx direction at −4.48 mV, and then along qy direction at −3.36 mV. At 6.5 T, Figure 5.26(d), two

sets of peaks appear along each q-direction, at −5.04 and −3.92 mV along qx and at −3.92 and

−2.8 mV along qy. Increasing the field to 12 T, Figure 5.26(e), puts these peaks at −3.36 mV

along qx and at −2.24 mV along qy. The difference between the bias voltages at which the peaks

appear along each q-direction is 1.12 mV for all fields, equal to the energy difference found ex-

perimentally between the vHss above EF as shown in section 5.9.1. It thus gives an energy scale

of 1.12 meV for the C4-symmetry breaking observed at the surface of Sr2RuO4.

5.11 Discussion

The STM measurements reported in this chapter uncover the low energy electronic states in

the surface layer of Sr2RuO4 under octahedral rotation. In addition to the previously reported fea-

tures of the surface reconstruction, namely the detection of a partial gap around EF [158–160,179]

and the presence of the checkerboard modulation on the Sr lattice in STM topographies [25, 116],

here we reveal that the surface exhibits its own emergent electronic states: (1) the checkerboard

modulation is bias dependent and changes phase across the Fermi level, (2) the low energy elec-
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Figure 5.27: Sketch to explain the equivalence of checkerboard order and nematicity at the surface of
Sr2RuO4. Structure of the surface layer of Sr2RuO4 at the RuO2 plane including a checkerboard modula-
tion on the Sr positions, represented by the light and dark blue diamonds and squares. The oxygen atoms are
colored red/yellow according to the proximity to a light/dark Sr position, resulting in inequivalent hopping
between the vertical and horizontal directions illustrated by the full and dashed arrows.

tronic states break C4-symmetry at certain energies and (3) these two orders are intimately linked

to four sharp peaks found within 5 mV of EF in the g(V ) spectrum as well as to the partial gap.

5.11.1 Possible mechanisms for checkerboard charge order and nematicity

The appearance of the checkerboard charge order and nematicity cannot be explained from

the octahedral rotation alone, since the unit cell of the reconstructed surface, Figure 5.1(a), is C4-

symmetric and preserves the equivalence of adjacent Sr positions. However, checkerboard order

and nematicity become linked through the octahedral rotation: if the Sr positions are inequivalent,

the oxygen atoms along the vertical and horizontal directions become inequivalent, and vice-versa.

This equivalence is sketched in Figure 5.27, where the oxygen atoms along the [10] direction are

closer to dark Sr positions (yellow) and the oxygen atoms along the [01] direction are closer to

light Sr positions (red) as a consequence of the octahedral rotation, becoming inequivalent due to

the inequivalence of the Sr positions. As a result, there is an anisotropy in the electron hopping

between Ru atoms across yellow oxygen atoms (dashed arrow) and across red oxygen atoms (full

arrow), leading to C4-symmetry breaking, or nematicity of the low energy states.

The mechanism behind the stabilization of the checkerboard charge order and nematicity is

not trivial, nor is their equivalence via the octahedral rotation. It is not clear from the measure-

ments if one order is driving the other or if there is an additional mechanism responsible for their

stabilization. Possible origins include additional structural distortions, electron correlations, or an

underlying magnetic order.

For a typical charge density wave scenario, a considerable structural distortion is expected

[283]. Different types of lattice distortions were explored in section 5.7.2. Slab calculations with

tilting of the RuO6 octahedra along the {110} directions produce a hybridization gap between
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the dxy and dxz/dyz states, Figure 5.14(c). It results in a partial gap in the total density of states,

where the edges of the hybridization gap together with the vHs of the dxy band and the minimum

of the electron-pocket at the Γ and X points would give peak-like structures in the density of states

similar to what it is observed in the spectroscopy measurements in Figure 5.4(b). However, the

resulting nematicity does not occur along the same direction as observed experimentally and the

QPI measurements do not show evidences of a dispersion corresponding to an electron-pocket

linked to the feature at the Γ and X points. By tilting the RuO6 octahedra along the [100] direction

in a staggered fashion produces the correct direction for nematicity but no gap appears, due to the

dxy states only hybridizing with the dxz states and not the dyz states which occur in the direction

perpendicular to the tilting direction. Only one of the considered distortions shows the necessary

changes to the band structure, corresponding to the staggered vertical displacement of Sr atoms,

Figure 5.14(d), confirming the equivalence of the checkerboard order and nematicity through the

octahedral rotation, as sketched in Figure 5.27. However, this distortion is not in agreement with

the presented data because for a true physical displacement, the checkerboard should be visible

at all bias voltages, which it is not, and the upper bound for possible height difference between

adjacent Sr atoms from topographies taken at 100 mV is ∼ 130 fm, much smaller than what is

needed as input in the calculation to produce a gap of the same size. On the other hand, it is known

that in correlated materials, DFT requires significantly larger orthorhombic distortions to explain

electronic-driven orders such as nematicity, compared to what is seen experimentally [284].

In the case of nematicity driven by electron correlations, additional structural distortions would

also be expected, such as a transition from tetragonal to orthorhombic structure, similar to what is

observed in the iron pnictides [285]. In this scenario, the checkerboard order should be observed to

disappear at some temperature, however, it is still visible at room temperature [25]. Additionally,

IV/LEED measurements show spots which only agree with in-plane octahedral rotation [176], not

allowing the confirmation of any of these two scenarios.

Another possible mechanism is the presence of an underlying magnetic order, such as an

antiferromagnetic order which results in both checkerboard charge order and nematicity and would

require a much smaller structural distortion. In this case, magnetic domains are expected to be

formed, which were not observed for fields of view of lateral size > 200 nm. The experimental

data presented in this chapter lacks strong evidence against or in favor of this scenario.

Although the presented data does not favor a particular mechanism, it provides a characteristic

energy scale for each order. The checkerboard charge order is intimately linked with the peaks in

the tunneling spectrum that occur at ±3.5 mV, while the nematicity is connected with the energy
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one-atom unit cell tight-binding model with the hopping parameters of Table 5.2. The parameters for the
cLDOS calculation are the same as in Table 5.2, with θrot = 0◦. The dotted arrow indicates the missing
vector q3.

difference between the vHss found along the qx and qy directions, as well as to the field-induced

features at q = (0,1/3), (0,2/3), giving an energy scale of 1.12 meV.

5.11.2 Detailed comparison of the tight-binding model

The tight-binding model presented in section 5.8 includes the necessary ingredients to describe

the electronic structure of the surface layer of Sr2RuO4, as revealed by the STM measurements:

(1) doubling of the unit cell, (2) checkerboard charge order, and (3) C4-symmetry breaking of the

low energy states.

The effects of the doubling of the unit cell in the STM measurements are visible in the QPI

patterns. Figure 5.28 shows the Fourier transform of a cLDOS calculation using a one-atom unit

cell tight-binding model of Sr2RuO4, representative of the bulk. Comparison with the experimental

data reveals that the parallel lines along the direction of the atomic peaks (q3), which are due to

scattering between the folded dxz/dyz bands, can only be reproduced in a two-atom unit cell model.

Including the checkerboard charge order and the breaking of C4-symmetry via a staggered

bond order tbond and a nematic order parameter tnem, results in a density of states that is in ex-

cellent agreement with the experimental g(V ) spectrum. The opening of a gap on the dxy band

around EF reproduces the asymmetric shape of the partial gap, and the appearance of four vHs in

this band explains the four peaks observed in the tunneling spectrum. The C4-symmetry breaking

atomic-scale modulations observed in the differential conductance maps (Figure 5.11) are natur-

ally explained by the vHs in the kx and ky directions becoming inequivalent, resulting in them
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Figure 5.29: Possible staggered orders to describe the Sr-centered checkerboard. (a) Illustration of
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gray colors indicate the opposite sign in onsite energy. (b) Band structure for staggered onsite energy order.
The colors indicate the orbital character. (c) Illustration of staggered bond order 2, with d-wave symmetry.
(d) Band structure for bond order 2. For both calculations, tnem = 3.5 meV and tonsite = tbond2 = 3.5 meV.
The band structures were calculated for 30003 k-points along the shown path.

collapsing onto the Bragg peaks at (1,0) and (0,1) at different energies, as well as collapsing

onto (0,0) from the two different directions at different energies, giving rise to C2-symmetric

long-range QPI modulations (Figure 5.12).

Despite the excellent agreement between the model and the experimental data, there are strik-

ing differences between the calculated DOS and measured g(V ) spectrum. The right intensities

and energy difference of the vHss are not captured, while in the experiment the vHss at negative

energies are separated, in the calculations they are difficult to separate in energy and appear in the

DOS as a peak with an anisotropic shape. In the g(V ) spectrum (Figure 5.4) the vHs at −3.5 mV

is a peak, whereas in the calculation it is a step-like feature due to corresponding to a band max-

imum and not to a saddle point. The depth of the measured partial gap is considerably larger than

predicted by the calculations. Additionally, the checkerboard modulation appears more clearly on

top of the Ru sites, Figure 5.18(c) and (d), instead of on top of the Sr positions.

A staggered bond order of the form used in section 5.8 is not the only way of realising a check-

erboard modulation on top of Sr atoms. Figure 5.29 shows two alternative orders that can produce

such a modulation: staggered onsite energies (tonsite) and staggered bond order with d-wave sym-

metry (tbond2). The addition of an onsite energy with opposite signs on the dxy orbital channel of the

Ru(A) and Ru(B) results in the gapping of the dxy band, Figure 5.29(b), identical to the band struc-
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ture derived from the inclusion of the staggered bond order shown in Figure 5.17(e). These two or-

ders indeed become equivalent at the corners of the reconstructured Brillouin zone. Transforming

the Hamiltonian into k-space, the staggered bond order reduces to fbond(k) = ±tbond1/2(coskx +

cosky) which results in∓tbond at k=(0.5,0.5), becoming equivalent to the staggered onsite energy

order.

The staggered bond order 2 is illustrated in Figure 5.29(c). Here, the hopping between NNN

Ru(A) atoms in the horizontal direction has an opposite sign to the hopping in the vertical direc-

tion, whereas it is inverted for the NNN hopping between Ru(B) atoms. Due to the interwoven

blue and red lines, a true checkerboard appears at the top of the Sr atoms. The k-space formula-

tion of this order parameter is fbond2(k) = 1/2(−coskx + cosky), which is 0 at the corners of the

reconstructed Brillouin zone. As a consequence, the band structure, Figure 5.29(d), does not show

the gapping of the dxy band at the Fermi level, instead, the vHs is split due to the nematic order

parameter and a Dirac-like dispersion appears.

Neither of the three staggered orders suggested to describe the Sr-centered checkerboard seems

to be the ideal order parameter. Although both staggered onsite tonsite and bond tbond orders predict

the gapping of the dxy band and appearance of four vHs, they can only be realized in practice if the

two Ru atoms are chemically inequivalent, whether via structural distortions (e.g. tilt) or magnetic

order, for which there is no experimental evidence in Sr2RuO4. On the other hand, in staggered

bond 2 order tbond2, the two Ru atoms would still be chemically identical, and a true checkerboard

would appear centered at the Sr positions, but it does not result in the gapping of the dxy band.

Possibly, including a rotation on the staggered bond 2 directions would make the order parameter

6= 0 at (0.5,0.5), opening up the gap at the M-point.

5.11.3 Continuum LDOS calculations with gaussian-type orbitals

The cLDOS calculations from the tight-binding model described in section 5.8 and using

gaussian-type orbitals with the correct orbital symmetries for the continuum transformation of

the Green’s function allowed for a good description of the experimental data, Figure 5.18 and Fig-

ure 5.19. It correctly captures several features of the STM measurements: (1) the atomic contrast

exhibits maxima on the Sr sites, a consequence of the symmetry and vacuum tail of the atomic

wave functions since the Sr atoms are not contained in the model, (2) the chirality of the defects,

by including a rotation of the gaussian-type d-orbitals to model the octahedral rotation, (3) the

QPI patterns due to the scattering from the dxz/ dyz bands, and (4) the QPI patterns due to the dxy

band around the atomic peaks.
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While all observed q-vectors could be accounted for, the right orbital composition of q4 and

the correct intensities of the scattering patterns is not correctly captured. Although Figure 5.20(b)

clearly shows q4 on the dxy channel, cLDOS calculations using a tight-binding model and Wannier

functions from ab-initio calculations [272], show this q-vector with dxz/dyz character. It illustrates

the differences between our phenomenological model and the tight-binding model derived from

ab-initio calculations and may be a consequence of how spin-orbit coupling is implemented in

both models. The incorrect relative intensities of the QPI patterns from different orbital channels

is a consequence of the magnitude of the wavefunctions being accounted for phenomenologically

when using gaussian-type orbitals. The same happens to the lateral extent of the orbital lobes,

which is also a free parameter that enters in the calculation but can however be set by comparison

with the Wannier functions obtained from DFT calculations.

In the case of the calculations shown in this chapter, the magnitude of the dxy gaussian-type

orbital was chosen so that the features corresponding to this orbital channel were visible in Fig-

ure 5.19(b). The extend of the gaussian-type orbitals was chosen such that the resulting atomic

lattice looked like an atomic lattice, like the one probed by the STM (see Appendix C). Although

the calculations were performed with the gaussian-type orbitals rotated by 6◦ degrees to model the

octahedral rotation, their overall shape remained the same. From comparison with the ab-initio

calculated Wannier functions, this appears to be a good approximation for the dxz/dyz orbitals,

while it only seems to work partially for the dxy orbitals.

To account for all these parameters, the continuum transformation can be performed using

Wannier functions calculated from ab-initio calculations. Using such functions allows to chose

the distance above the surface where the calculations will be performed, simulating the tip-sample

distance. The correct vacuum tail of the orbitals is obtained, which shows the increase in vacuum

overlap of the dxy states [272]. The shape of the orbitals also changes slightly, going towards the

NNN, increasing its extend relative to the non-rotated surface. Since the Wannier functions are

obtained from the Wannierization of a DFT calculation, they will also include contributions from

other states, such as the O p-orbitals, which do not take part in our tight-binding model description.

5.11.4 Detection of dxy band by STM

The clear detection of the vHs of dxy character, as well as the respective energy dispersion, is

surprising due to the in-plane nature of the dxy orbitals. Since their lobes rest in the plane of the

surface, the vacuum tail of the corresponding wave functions is short, resulting in a small overlap

with the STM tip. This can be seen by comparing the total DOS for a single layer of Sr2RuO4
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Figure 5.30: Local density of states and projected-DOS for dz2 and dxy orbitals. (a) LDOS in the
vacuum 5.5Å above a single layer of Sr2RuO4 for different angles of rotation, from θ = 0◦ to θ = 8◦. The
arrows indicate the energies of the vHs. (b) Projected-DOS (PDOS) for the dz2 states of the Ru atom. (c)
PDOS of the dxy orbital of the Ru atom. The peaks correspond to the vHs in the dxy band which moves
across EF with increasing angle of rotation. The color legend is the same as in (a). Calculations were
performed on a 201×201×1 k-grid in one eighth around the BZ corner to achieve high k-point sampling
of the vHs. The energy broadening was 4.4 meV for the LDOS calculations and 8.7 meV for the PDOS
calculations.

without octahedral rotation, Figure 5.14(a), with the LDOS calculated for the same system at 5.5

Å above the surface, dark blue line in Figure 5.30(a). While in the total DOS the peak correspond-

ing to the dxyvHs is clearly visible, in the LDOS it is almost imperceptible.

For larger octahedral rotation angles, the peak corresponding to the vHs in the LDOS becomes

increasingly more pronounced as it moves below EF, Figure 5.30(a), showing that the tunneling

between dxy states and the STM tip is promoted by the octahedral rotation. The projected DOS

(PDOS) onto the dz2 and dxy orbitals of the Ru atoms are shown in Figure 5.30(b) and (c). While

for θ = 0 no dz2 weight is observed and the vHs is only visible in the PDOS of the dxy orbitals, as

the angle of rotation increases, a peak appears in the dz2 PDOS, at the same energy as the peak in

the dxy PDOS, following the movement of the vHs with rotation angle.

The PDOS calculations together with the LDOS in the vacuum with increasing angle of ro-

tation show that the admixture of dz2 orbital character at the van Hove singularity promotes the

vacuum overlap with the STM tip, allowing for the detection of these states.

5.11.5 Origin of partial gap

The tight-binding model introduced in section 5.8 reproduces the four peaks due to the vHss,

and the partial gap width and asymmetric shape around the Fermi level as seen in the g(V ) spec-

trum. However, the gapping of the dxy band only accounts for 16% of the density of states re-

duction from the partial gap, while experimentally the partial gap represents a 40% reduction in
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differential conductance in relation to the background differential conductance at 8 mV. The cL-

DOS calculations taking into account the vacuum tail of Wannier functions [272] also encounter

the same problem, suggesting that the larger depth of the gap in the experiments is not just an

effect of tunneling matrix elements.

The evolution of the g(V ) spectra across line defects, Figure 5.7, can give hints about the origin

of the partial gap. It shows that not only does the gap width decrease, but its depth reduces from

∼ 35% at 8 nm away from the edge of the line to 16% at the center of the defect, suggesting the

gapping of an additional band at the clean surface, which is not gapped at the center of the defects.

The origin of these defects is not known, but plausible scenarios include missing rows of Sr atoms,

line cracks caused by the release of local strain due to the octahedral rotation, or a combination

of both. For the first scenario, the STM simulated image from the DFT calculations on a slab

with a missing row of Sr atoms seems consistent with the topographic characteristics of the line

defects. In this case, the suppression of the partial gap at the line defects is related to the Sr atoms.

One possibility is that if one assumes that the checkerboard is linked to the displacement of the

Sr atoms, and the checkerboard causes the opening of the partial gap than the partial gap would

be suppressed once the Sr atoms are removed. Another possibility is that part of the partial gap is

linked to the hybridization between Sr states with the p-orbitals of the apical oxygens [5]. In the

second scenario, due to the strain release, the rotation of the octahedra would decrease gradually

towards the edge of the defect and the decrease in gap width would be correlated with the rotation

of the RuO6 octahedra. In this picture, the gap should disappear at the center of the line defect

and the vHs should be seen to merge together. However, at the center of the defect, the gap has

a depth similar to what is predicted by the calculations, suggesting that another band is gapped at

the clean surface which ceases to be gapped out at the line defects. A possible interpretation could

be that the dxy/dyz band is partially gapped at the clean surface and its gap disappears at the linear

defect.

Another evidence in the data that suggests that another band is gapped out is that in Fig-

ure 5.22(b), (c), the measured energies for the position of the vHss are lower than the peaks at

positive energies identified in Figure 5.4(b), suggesting that the higher energy peak corresponds

to another band. However, no clear evidence has been found in our QPI maps that corroborate the

gapping of another band.
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5.11.6 Absence of Superconducting gap

As shown in section 5.3, no superconducting gap was observed at temperatures well below

the superconducting transition temperature of the samples, although the energy resolution of the

instrument is sufficiently high to detect it. In agreement with previous reports [158–160], this

observation suggests that the SrO-terminated surface with octahedral rotation suppresses super-

conductivity. Previous STM measurements that successfully detected a superconducting gap and

were able to verify the assignment from temperature and magnetic-field dependence consistent

with bulk Sr2RuO4 were obtained on surfaces cleaved in air [163, 164] or on a different surface

reconstruction [162]. The common factor between these studies is the absence or suppression of

the octahedral rotation at the surface, emphasizing the role of the surface reconstruction. Recently,

a study [165] reported the detection of a gap attributed to superconductivity on a SrO-terminated

surface, however, it is not clear what the difference is between their experimental setup and the one

used here. Thus, it seems that to be able to reliably probe the superconducting gap of Sr2RuO4,

new ways of suppressing the surface reconstruction have to be explored, such as controlled cover-

age of the surface with adsorbate layers [117, 286].

The absence of a superconducting gap at the reconstructed SrO-terminated surface indicates

that the emergent phases detected in this study are crucial in the suppression of superconductiv-

ity, since both checkerboard and nematicity are detected at the surface at temperatures below and

above the Tc of the Sr2RuO4 samples. In analogy to other strongly correlated materials [38,287], it

seems plausible that the checkerboard charge order and nematicity compete with superconductiv-

ity. Whether it is the gapping of the dxy band at the Fermi level or freezing out of the phonon mode

associated with the in-plane octahedral rotation that plays a crucial role in the superconducting

pairing remains an open question.

5.11.7 Towards quantum criticality

In this work, I have established that the surface layer of Sr2RuO4 has vHss in the proximity of

the Fermi level and that one of them clearly splits under magnetic field with one branch moving

towards EF. The extrapolated data indicates that it will reach the Fermi level at 32 T, where the

system will undergo a Lifshitz transition. This study shows that if it could be reached, it would be

possible to measure the whole evolution of the vHs as it crosses the Fermi level, which will allow

us to determine the role of quantum fluctuations in such a phase transition.

The surface layer of Sr2RuO4 has many similarities with the bilayer compound Sr3Ru2O7.

Both have in-plane octahedral rotations with similar angle of rotation (∼ 6◦ for the surface of
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Sr2RuO4 [25] and ∼ 8◦ for Sr3Ru2O7 [28]) and the energy of the dominant vHs observed in the

g(V ) spectrum in the surface layer of Sr2RuO4 is close to −4 meV, the energy at which the vHs

of Sr3Ru2O7 is found in ARPES measurements [183]. The Wilson ratio, RW = 7.3, of Sr3Ru2O7

is larger than the value we found for the surface layer of Sr2RuO4, RW = 1.5, evidencing stronger

ferromagnetic correlations in the bilayer compound [110]. Due to the higher Wilson ratio in

Sr3Ru2O7, the vHs can be tuned to the Fermi level with a magnetic field of 8 T, whereas at the

surface layer of Sr2RuO4 it only reaches EF at 32 T.

In Sr3Ru2O7, a metamagnetic transition is associated with a quantum critical end point (QCEP)

[16] at magnetic fields applied parallel to the c-axis. For sufficiently pure samples [17], an ordered

phase appears before the system reaches the QCEP, which is associated with electron nematic

behavior [18, 190, 288]. The presence of nematicity in the surface layer of Sr2RuO4 provides an

opportunity to study the influence of the symmetry breaking on what would otherwise have been

a multicritical Lifshitz point in the same class as that of Sr3Ru2O7 and which has been invoked to

explain the power law behaviors of thermodynamic quantities for Sr3Ru2O7 [95]. In addition, the

surface layer of Sr2RuO4 is a two-dimensional system, whereas in Sr3Ru2O7 the Fermi surface has

a certain degree of three-dimensionality [186], which puts the criticality of the Lifshitz transition

in these systems into different universality classes. It thus raises the questions: Is it possible to

tune it to a QCEP or will an ordered phase be induced? What kind of ordered phase will it be?

Since Sr2RuO4 is a very clean system, where very pure samples can be grown, the surface

layer of Sr2RuO4 provides a clean system where a clear Zeeman-driven Lifshitz transition can

be studied. It has been shown previously that the vHs in bulk Sr2RuO4 can be tuned across the

Fermi energy by uniaxial strain [7], suggesting that at the surface it would become possible to

tune the vHs in a strained sample across the Fermi energy at magnetic fields currently available

in low temperature STM. This would allow to map out the surface electronic structure across the

expected metamagnetic phase transition.

5.12 Conclusion

The measurements presented in this chapter show that the surface layer of Sr2RuO4 provides

a two-dimensional model system to study the effects of structural distortions on the physical prop-

erties of strongly correlated electron systems. We establish the presence of checkerboard order

intertwined with nematicity and find that the surface reconstruction leads to the appearance of

four vHs within 5 mV of the Fermi level. The absence of a superconducting gap in the g(V ) spec-
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trum suggests a competition between these emergent orders and superconductivity. The Zeeman-

splitting of a vHs under an applied magnetic field provides a textbook example of tuning towards a

magnetic field-driven Lifshitz transition. This opens up the possibility to study, under sufficiently

high magnetic fields, the effects of a vHs approaching EF to establish the role of quantum fluc-

tuations across a field-tuned Lifshitz transition. Our results reveal new opportunities for tailoring

correlated electronic phases in two dimensions through the sensitivity of the electronic structure

of ruthenates to tiny structural distortions.
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Chapter 6

Imaging magnetism and nematicity at

the surface layer of Sr3Ru2O7

In the previous chapter, I have established that a small in-plane rotation of the RuO6 octahedra

in the surface layer of Sr2RuO4 induces new emergent orders, charge modulation and nematicity,

seemingly suppressing the superconducting state of the bulk. The bilayer compound, Sr3Ru2O7,

already has in-plane octahedral rotations and, instead of superconductivity, it exhibits a series

of metamagnetic transitions around a magnetic-field of 8 T, which have been associated with

quantum criticality and nematic behavior [15–18]. The surface layer of the bilayer compound

Sr3Ru2O7 is also known to be more distorted than the bulk, with a larger in-plane rotation angle

and maybe tilt [28], however, it is not known whether it stabilizes a new ground state. Distorting

the RuO6 octahedra in Sr3Ru2O7 either enhances the metamagnetic and nematic behavior by in-

plane uniaxial strain [30], or suppresses them by the stabilization of different magnetic orders

as seen with doping [19, 29, 213] or out-of-plane uniaxial strain [22]. The aim of this chapter

is to determine the low-energy electronic structure of the surface layer of high-purity samples of

Sr3Ru2O7 and to establish from quasiparticle interference imaging how it evolves with magnetic-

field.

STM/STS measurements of the surface layer of Sr3Ru2O7 were performed in the temperature

range from 80 mK to 9 K and in magnetic fields up to 14 T. The QPI measurements are compared

with ARPES measurements [183, 185] and DFT calculations of a free-standing bilayer. Possible

interpretations will be discussed, as well as a comparison with the surface layer of Sr2RuO4. The

experimental data shown in this chapter was collected together with Luke C. Rhodes.
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6.1 Surface crystal structure and Brillouin zone

The surface layer of Sr3Ru2O7 is a bilayer of RuO2, with the RuO6 octahedra joined by one

apical oxygen, Figure 6.1(a). In the bulk, the RuO6 octahedra are rotated in-plane with opposite

directions on adjacent lattice sites, as indicated by the arrows in Figure 6.1(a). At the surface, the

in-plane rotation of the octahedra is enhanced, from ∼ 8◦ in the bulk to ∼ 12◦ at the surface, as

detected by IV/LEED [28].

Due to the octahedral rotation, the two-dimensional unit cell that describes both the bulk and

the surface contains two Ru atoms, equivalent to the one used to describe the surface layer of

Sr2RuO4 (see Figure 5.1). In addition, IV/LEED measurements have found additional diffraction

peaks suggesting a small tilt (∼ 2.5◦) of the surface RuO6 octahedra [28] towards the Sr atoms,

in a staggered fashion between adjacent lattice sites, Figure 6.1(b). This tilting preserves the two-

dimensional two-atom unit cell. It is not clear whether the larger distortion at the surface layer of

Sr3Ru2O7 changes the electronic structure dramatically. ARPES measurements [183,185] show a

Fermi surface and band dispersions consistent with DFT calculations of the bulk Sr3Ru2O7, and no

additional bands are observed, contrary to Sr2RuO4 where clear surface bands are detected [24].

To maintain consistency throughout this work and allow easy comparison with the measure-

ments on the surface layer of Sr2RuO4 (chapter 5), the measurements discussed in this chapter will

be displayed in relation to the tetragonal unit cell of Sr2RuO4, that is, within the Brillouin zone of

the two-dimensional one-atom unit cell, black square in Figure 6.1(c). In real space, the features

in topographies and differential conductance maps will be given relative to the crystallographic

axes [10] and [01], as indicated in Figure 6.1(b). All values corresponding to the reciprocal space

will be given in units of 2π/a.

(c)(b)(a)

Γ M

Xaa
b

c

[10]

[01]

Figure 6.1: Crystal structure of the surface layer of Sr3Ru2O7 and Brillouin zone. (a) Surface layer of
Sr3Ru2O7, composed of a bilayer of strontium ruthenate. The arrows indicate the direction of octahedral
rotation within the bi-layer. The axes a, b and c correspond to the tetragonal unit cell. (b) Top view of
the surface layer of Sr3Ru2O7, with the RuO6 octahedra of the bottom layer of the bilayer shown with
transparency. The yellow arrows indicate the directions of tilt as measured by IV/LEED. The blue square
indicates the unit cell in two dimensions. The lattice constant of the Sr lattice is a = 3.89 Å. The axes
indicate the crystallographic directions of a one-atom unit cell square lattice. (c) Sketch of the Brillouin
zone corresponding to the one- (black) and two-atom (dotted blue) unit cells.
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Figure 6.2: Topography of the surface of Sr3Ru2O7. (a) Typical topography of a SrO-terminated surface
of Sr3Ru2O7 imaged at T = 80 mK ( Vset= 22 mV, Iset= 91 pA). The arrows indicate the crystallographic
directions relative to the square unit cell. (b) Fourier transformation of (a). The circles indicate the atomic
peaks corresponding to the Sr square lattice (black) and to the checkerboard modulation (red). Units of
2π/a, with a = 3.89 Å.

6.2 Topography of the surface of Sr3Ru2O7

Single crystals of Sr3Ru2O7 cleaved in-situ provide surfaces with large and atomically flat

terraces, with occasional step edges visible within fields of view larger than 500 nm in lateral size.

A typical topography taken at the surface of Sr3Ru2O7 is shown in Figure 6.2(a), where a SrO-

terminated surface is visible, consistent with a cleave between SrO layers along the [001] plane

and in agreement with EBSD measurements (chapter 3 Figure 3.13). The Sr square lattice can be

observed. This is confirmed by simulated STM topographic image from DFT calculations on a

free-standing bilayer, where the high-intensity spots in the simulated topography correspond to the

position of the Sr atoms, shown in Appendix A in Figure A.1. The Sr lattice is superimposed with

a bias dependent checkerboard modulation visually identical to the one observed in Sr2RuO4 and

in agreement with the literature [210,212]. This is easily seen in the Fourier transformation of the

topography, Figure 6.2(b), where two sets of peaks are observed, at (0,±1), (±1,0) due to the Sr

square lattice and at (±0.5,±0.5), (±0.5,∓0.5) corresponding to the checkerboard modulation.

Figure 6.2(a) shows the presence of defects. The number of defects constitutes a concentration

of ∼ 0.08% deduced from the investigation of large area topographies (> 200 nm). These defects

are at the Ru site and show two distinct orientations, in agreement with the rotation of the octahedra

in Sr3Ru2O7. The FT, Figure 6.2(b), shows clear QPI patterns due to scattering at these defects.

6.2.1 Chiral defects at the Ru sites

Similarly to the defects found in Sr2RuO4, the Ru-centered defects in the surface layer of

Sr3Ru2O7 also exhibit two distinct orientations, confirming the presence of the octahedral rota-
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tion. Each orientation can be assigned to one of the Ru sites in the unit cell, Ru(A) and Ru(B).

Figures 6.3(a) and (b) show two images of defects of type d1 with opposite orientations, d1
Ru(A)

and d1
Ru(B), respectively, while Figures 6.3(c) and (d) show the same but for defects of type d2,

d2
Ru(A) and d2

Ru(B). The Fourier transformations (FTs) of the images, Figures 6.3(e-f) for d1 and

(g-h) for d2, show clear chirality of the intensity of the QPI patterns surrounding these defects,

highlighted by the red lines. The different chirality between defects of the same type at different

lattice sites is evident by subtracting the FT of their topographies, as shown in Figure 6.3(i) for

defects of type d1 and Figure 6.3(j) for defects of type d2, where the red follows the chirality of a

defect at Ru(A) and blue at Ru(B).

The difference between the FTs of defects with opposite chirality, Figures 6.3(i) and (j), show

that the chirality of the defects is stronger around the axis that runs along the [11] direction. It
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Figure 6.3: Chiral defects at the Ru sites. (a) and (b) topographies centered at defects of type d1 with dif-
ferent orientations, corresponding to sites Ru(A) and Ru(B), respectively. (c) and (d) topographies centered
at defects of type d2 at Ru(A) and Ru(B) sites, respectively (Vset= 35 mV, Iset= 200 pA). The scanning
distortion of the topographies was corrected via the lock-in algorithm (Appendix D). (e) and (f) show the
absolute value of the Fourier transformations of (a) and (b). (g) and (h) show the absolute value of the
Fourier transformations of (c) and (d).The intensity of the QPI patterns follows the chirality of each defect,
evidenced by the red lines. (i-j) Difference between FT of topographies of defects of type d1 and type d2

with opposite chirality, respectively.

114



reflects the anisotropy of the scattering patterns observed in real space surrounding the defects in

Figures 6.3(a-d). In addition, the axis of dominant QPI is 45◦ rotated relative to the axis observed

at the surface of Sr2RuO4, Figure 5.3, where the axis of dominant QPI was [10], despite both

systems being described by the same two-atom unit cell.

6.3 Spectroscopy

A typical tunneling spectrum g(V ) is shown in Figure 6.4(a), taken at T = 80 mK. It shows a

partial gap of width 20 mV (outer arrows) that represents a drop in DOS of ∼ 37% relative to the

value at 95 mV. The decrease in DOS is similar to that observed in Sr2RuO4, however, the partial

gap is four times wider. ARPES measurements [183, 185] do not show evidence for the opening

of such a gap and previous theoretical studies of this material [186] do not show such a partial gap

around the Fermi level.

Around EF, two sharp peaks are observed (inner arrows), one at positive and the other at

negative bias voltages. A high-resolution tunneling spectrum, Figure 6.4(b), reveals the structure

of these peaks. Two peaks can be resolved at positive bias voltages, at 2.3 mV and 4.3 mV, and

one peak at negative bias voltages at −3.5 mV (blue arrows).
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Figure 6.4: Tunneling spectroscopy at the surface of Sr3Ru2O7. (a) Typical g(V ) spectrum measured at
T = 80mK at the surface of Sr3Ru2O7 (Vset = 100 mV, Iset = 265 pA, VL = 1.90 mV). (b) High resolution
g(V ) spectrum around EF. This was obtained by taking the average spectrum over an area of (1.48 nm)2 on
a 16×16 grid (Vset = 8 mV, Iset = 500 pA, VL = 160 µV, T = 80 mK).
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Figure 6.5: Temperature dependence of the tunneling spectrum. (a) Differential conductance spectra
with increasing temperatures. The curves are the result of the average over an area of (1.48 nm)2 on a 16×
16 grid (Vset = 8 mV, Iset = 500 pA, VL = 160 µV). The spectra at 7.3 K and 9 K show the peak at negative
energies with lower intensity than those at the other temperatures because of a tip change (atomically sharp
tips show the peaks at positive and negative energies with similar intensity, less sharp tips show the peak
at negative energies with lower intensity). (b) Simulation of thermal broadening at different temperatures,
obtained by convoluting a point spectrum taken at 76 mK with the derivative of the Fermi function at each
temperature using Eq. (5.1).

6.3.1 Temperature dependence

The evolution of the tunneling spectrum with temperature was studied in the range between

80 mK to 9 K. The measurements at each temperature are shown in Figure 6.5(a), where the peaks

are observed at all temperatures, becoming broader with increasing temperature. To compare this

broadening to what is expected from the broadening of the Fermi edge in the tip, the g(V ) spectrum

at 76 mK was convoluted with the derivative of the Fermi function for temperatures up to 10 K,

using Eq. (5.1). The result of the convolution is shown in Figure 6.5(b). The peaks become broad,

with the peak at negative energies decreasing more in intensity. It confirms that the changes in the

spectra shown in Figure 6.5(a) are consistent with the effects of thermal broadening. This suggests

that the characteristic energy scales of the phenomena associated with these peaks are significantly

larger than 9 K and that they are not due to many-body effects such as the Kondo effect.

6.4 Checkerboard order

The topographies of the surface of Sr3Ru2O7 show a checkerboard intensity modulation centered

on the Sr lattice, visually identical to the one observed at the surface of Sr2RuO4. In Sr3Ru2O7,

this modulation is also highly dependent on the setpoint bias. Figure 6.6(a) shows two topogra-

phies taken at two different bias voltages, but with the same tunneling resistance. The top image
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is a topography taken at Vset= 50 mV, where the Sr square lattice is resolved. The checkerboard is

not easily discernible in the real space image, yet, there is a faint peak at (0.5,0.5) (top inset). The

bottom image shows a topography taken at Vset= −4 mV, where a strong checkerboard is clearly

visible, reflected in a strong increase in the (0.5,0.5) peak intensity in the FT (lower inset).

The strength of the checkerboard as a function of energy can be followed by tracking the

intensity of the (0.5,0.5) peak in the Fourier transform as a function of setpoint bias, as introduced

in chapter 5. Figure 6.6(b) shows the (0.5,0.5) peak intensity as a function of bias for three

different temperatures. At 80 mK, a sharp asymmetric peak is observed close to the Fermi level.

A two-peak Lorentzian fit reveals a strong peak centered at −4.0 mV with a full width at half

maximum of 17.9 mV, and a lower peak at 15.6 mV, with a width of 17.4 mV. Their intensity

decreases with increasing temperature, consistent with thermal broadening, and it is still visible at

10 K.

To investigate this checkerboard modulation further, and to understand the similarities with

the checkerboard found at the surface of Sr2RuO4, differential conductance maps were acquired

to study the phase-referenced Fourier transform of the (±0.5,0.5) peaks, using Eq. (5.3). Fig-

ure 6.7(a) shows the PR-FT in an energy range from −20 to 40 mV, taken from a map with 57 nm

of lateral size. The phase at each energy was referenced at the phase of the energy layer with the

strongest modulation, which in this case was at−2.6 mV. As a consequence, a sharp positive peak
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Figure 6.6: Bias dependence of topographies. (a) Topographies taken with Vset= 50 mV (top) and Vset=
−4 mV (bottom), measured at 80 mK with the same junction resistance (Iset= 909 pA and Iset= 72.7 pA,
respectively), in the same area. The insets show a quarter of the Fourier transformation at each energy.
The scanning distortion was corrected by the Lock-in algorithm (Appendix D) and the images were aligned
via a translation transformation estimated using the phase correlation between the two images, from the
Registration Estimator of the image processing toolbox in Matlab. (b) Intensity of the (0.5,0.5) peak in
the Fourier transformation as a function of setpoint bias, for measurements taken at constant resistance,
R = 55 MΩ, and at three different temperatures.
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Figure 6.7: Energy dependence of checkerboard modulation at two energy scales. (a) Phase-referenced
FT, Re

[
g̃R(q,V )

]
, as a function of energy at the (0.5,0.5) and (−0.5,0.5) peaks in the Fourier transform.

The phase at each energy was referenced to the phase at −2.6 mV. The plot at the bottom shows the g(V )
spectra at each Sr site (Vset= 40 mV, Iset= 800 pA, T = 80 mK). The inset shows an atomically resolved
g(V ) image at −2.6 mV (vused= 40 mV, Iset= 450 pA, T = 2 K). (b) PR-FT between ±8 mV, with the
phase at each energy referenced by the phase at −3.3 mV. The bottom plot shows the g(V ) spectra at the
two inequivalent Sr sites (Vset= 8 mV, Iset= 700 pA, T = 80 mK).

is observed centered at this energy, and it corresponds to a peak in the g(V ) spectrum (see Fig-

ure 6.7(a) bottom plot), whose intensity modulates between adjacent Sr sites (Sr1 and Sr2 shown

on the inset). A lower intensity peak is observed at positive energies close to EF. The PR-FT

intensity becomes negative for bias lower than −10 mV and bias higher than 15 mV. It shows

negative peaks at −17 and 23 mV. This phase reversal is an indication of the setpoint effect (see

chapter 3). The PR-FT of a higher energy resolution map at the (0.5,0.5) peaks (Figure 6.7(b))

reveals two peaks with the same phase, corresponding to the modulation of the peak at −3.5 mV

and the peak at 2.3 mV in the g(V ) spectrum between adjacent Sr atoms. Following the discussion

in chapter 6 and the identification of a vHs as a peak appearing in the PR-FT, the presence of these

two peaks in the PR-FT of Sr3Ru2O7 indicates the presence of at least two vHs corresponding to

the peaks in the g(V ) spectrum at −3.5 mV and 2.30 mV.

6.5 DFT calculations of a bilayer

In Sr3Ru2O7, each bilayer, Figure 6.1(a), is well decoupled from its neighbors along the c-

axis, demonstrated by highly anisotropic resistivity ρc/ρab ∼ 300 [110], and so, the electronic

structure of the bulk can be considered quasi-2D. A DFT calculation on a bilayer using LCAO

and LDA, neglecting spin-orbit coupling, produces the Fermi surface and band structure shown

in Figure 6.8. The overall shape of the Fermi surface, Figure 6.8(a), is consistent with ARPES
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Figure 6.8: DFT calculation of a free-standing bilayer of Sr3Ru2O7. (a) Fermi surface of a free-standing
bilayer, for the supercell shown in Figure 6.1(a). The DFT calculations were performed using GPAW,
with LCAO and within LDA. A quarter of the Fermi surface in the two-atom unit cell was calculated on a
41× 41× 1 k-grid. (b) Corresponding band structure along the path shown in (a). The calculations were
performed over 101 points along the path. The energy of the bands was renormalized by a factor of 4.2 so
that the vHs at the M-point right below EF is at −4 meV, as measured by ARPES [183]. The middle panel
shows the total DOS, calculated with an energy broadening of 3.6 meV, where the x-axis goes from 8.6 to
15 eV−1. The panel on the right shows the projected DOS onto the t2g orbitals of the Ru atoms, calculated
around the M-point over the shaded area in (a) and with an energy broadening of 4.7 meV. The x-axis goes
from 0 to 4 eV−1.

measurements and previous LDA calculations [183, 185]. The δ pocket appears split. while the

α1 and α2 pockets centered at the Γ-point are well reproduced. The β pocket appears split and the

γ1 pocket has a slightly different shape, as previously reported [95,183], while the γ2 band appears

at a shorter kF . Inclusion of spin-orbit coupling would lead to hybridization between the dxz/ dyz

and dxy states, resulting in clover-leaf-shaped pockets on the γ2 band.

The calculated band structure, Figure 6.8(b), taken along the path indicated in red in Fig-

ure 6.8(a), captures the energy dispersions around the M-point well, reproducing a vHs a few

meV below EF (highlighted in green). In order for the vHs to appear at the experimentally meas-

ured value of −4 meV, all bands were normalized by a factor of 4.2. After renormalization, the

Fermi velocities around the M-point are consistent with ARPES [185], but as we move towards

the Γ-point the agreement decreases, with the bandwidth of the δ electron-like band highly over-

estimated. This is consistent with previous reports of band-dependent renormalization [187]. In

addition to the above mentioned vHs, the M-point shows at least three more vHs, two at higher

energy and one at more negative energies (highlighted in red). The total DOS, middle panel of

Figure 6.8(b), shows a complex structure with multiple peaks due to the variety of vHs present in

the band structure.

To get an idea of the orbital character of the different vHs at the M-point, the orbitally-

projected DOS (PDOS) for the t2g states of the Ru atoms was calculated around the M-point,

using a k-point grid with high density in the shaded area in Figure 6.8(a). The result is shown on

the right panel of Figure 6.8(b). The PDOS of the dxy states shows two intense peaks correspond-
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Figure 6.9: Spin-polarized DFT calculations on a bilayer. (a) Spin-polarized band structure of a bilayer
using plane-waves as basis functions and LDA. The obtained total magnetic moment is +6.25 µB/atom
and the magnetic moment of the Ru atoms converged to 1.06µB/Ru. (b) Spin-polarized band structure of
a bilayer calculated using plane-waves as basis functions and PBE. The obtained total magnetic moment is
+7.99 µB/atom and the magnetic moment of the Ru atoms converged to 1.39 µB/Ru. Red and blue indicate
the spin-up and spin down bands, respectively. The black arrows indicate the exchange splitting for each
calculation. The calculations were performed over a 4× 4× 1 k-grid, including a vacuum layer of 20Å .
The magnetic moments of the Ru atoms were initialized as 0.1 µB/Ru aligned with the c-axis. The energy
of the bands was renormalized by a factor of 4.2. Both band structures were calculated over 101 k-points
along the path shown in Figure 6.8(a).

ing to the vHss highlighted in green in Figure 6.8(b). On the other hand, the PDOS of the dxz/

dyz states shows that these states are responsible for the higher energy vHs, highlighted in red in

Figure 6.8(b).

Sr3Ru2O7 is known to be close to a ferromagnetic instability [110]. To compare the ground

state energies of the paramagnetic and ferromagnetic cases and to get an estimate of the exchange

splitting on a bilayer, DFT calculations were performed using plane-waves as basis functions

and two different exchange-correlation functionals, LDA and PBE. Both calculations were per-

formed on a 4× 4× 1 k-grid, including a vacuum layer of 20 Å, with the magnetic moments

of the Ru atoms initialized at 0.10 µB/Ru. The total magnetic moment obtained from LDA

was +6.25 µB/unit cell with +1.06 µB/Ru atom, and from PBE was +7.99 µB/unit cell with

+1.39 µB/Ru atom. Both calculations show a small magnetic moment appearing on the oxy-

gen atoms on the RuO2 plane, as well as on the middle SrO layer, of magnitudes +0.11 µB/atom

and +0.10 µB/atom for LDA, and +0.13 µB/atom and +0.17 µB/atom for PBE, respectively. The

total energy of these calculations is lower than the corresponding non-magnetic calculation, by

0.24 eV for LDA and 0.55 eV for PBE. These energy differences are significant and suggest that a

ferromagnetic ground state is more stable than a non-magnetic one for a free-standing bilayer, in

agreement with previous reports for the bulk of Sr3Ru2O7 [186].

Figure 6.9 shows the band structures obtained from the LDA (a) and PBE (b) calculations, after

renormalization by a factor of 4.2. The exchange splitting obtained from LDA is 0.17 eV. It is such

that the top vHs of dxz/ dyz character at the M-point from the majority spin species is pushed down
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in energy close to but below EF, while the bottom dxz/ dyz vHs from the minority spin species is

pushed up closer to the Fermi level. In addition, the Γ-point shows a band top slightly above the

Fermi level, from the majority spin species, and a heavy band from the minority spin species just

below EF. In contrast, PBE calculations give a larger exchange splitting of 0.24 eV, pushing the

vHs at the M-point apart in energy, and putting the top of the band at the Γ-point almost at EF.

These calculations show that, by including ferromagnetism, it is possible to push different vHs to

a few meV around the Fermi level, producing peaks in the DOS just above and below EF. As a

consequence, the exchange splitting energy could be introduced in a phenomenological model as

a fitting parameter to get a better agreement with the measured tunneling spectrum.

6.6 Quasiparticle interference

Differential conductance maps reveal the presence of strong QPI. Figure 6.10 (a-j) shows a

sequence of real-space g(V ) layers of an area of (90.8 nm)2 at bias voltages between 6.3 and−4.5

mV, where both long- and short-range modulations are observed surrounding the defects. The

inset images show a close up of a defect with clear C2-symmetric patterns aligned with the [−11]

direction (dotted line). The FT of each image is shown in Figure 6.10 A-J, after anti-aliasing (see

Appendix E), drift correction and alignement of the atomic peaks at (1,0) and (0,1) with the x and

y axis. To avoid confusion between the aliased and anti-aliased atomic peaks, the FT images are

shown in the q-range ±0.7 (in units of 2π/a). Overall, the FT shows: (1) a prominent four-lobe

shaped hole-like scattering vector (orange arrow) with suppressed intensity along the four 〈11〉

directions; (2) an electron-like q-vector (red arrow); (3) replicas of these two q-vectors around the

(0.5,0.5) peaks; (4) flat patterns that cross the qx = ±0.5 and the qy = ±0.5 lines (blue arrows

in Figure 6.10D) and (5) well-defined q-vectors along the [−11] direction that are absent along

the [11] direction (light and dark blue and green arrows). While there are QPI features clearly

breaking C4-symmetry, the FT shows that not all scattering vectors break this symmetry.

To study the energy dispersion of the different q-vectors, energy-momentum line cuts were

taken along the six directions shown in Figure 6.11(a). Figure 6.11(b) shows a line cut along qx.

Three dispersions are observed, two above and one below EF, with the dispersions reaching q = 0

at the energies where peaks are observed in the tunneling spectrum (Figure 6.4(b)), indicated by

the colored circles. The top-most hole-like dispersion, q1, comes from the four-lobe shaped pattern

seen in Figure 6.10. It is followed by a second hole-like dispersion with a similar q-vector, q2. An

electron-like dispersion appears below the Fermi level, q3, which has the same Fermi qF -vector
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Figure 6.10: Quasiparticle interference energy layers. (a)-(j) Real-space g(V ) layers at energies within
7 mV of EF. The insets show the close up of a defect, where clear C2-symmetric modulations are observed
along the [−11] direction (indicated by the dotted white line in the inset of (a)). A-J Fourier transforms
of (a)-(j), respectively, after anti-aliasing and drift correction (Vset= 8 mV, Iset= 700 pA, VL= 0.6 mV, T =
80 mK). The colored arrows indicate the position of different scattering patterns. The edges of the images
go from −0.7 to 0.7 in units of 2π/a, so that the reconstruction peaks and the QPI patterns surrounding
them are visible, but the atomic peaks (and the aliased/anti-aliased replicas) are not shown.

as q2. The cut along the perpendicular direction, Figure 6.11(c), shows q2 and q3 with opposite

dispersions than before: q2 appears electron-like, and q3 hole-like. In addition, another dispersion

is visible, q4 with electron-like behavior, which appears faint along qy.

The cut across qy = 0.5, Figure 6.11(d), shows both q1 and q3 dispersions replicated around

the (0.5,0.5) peaks (orange and red arrows). The dispersion associated with q2 is not observed

along this direction. The blue arrows indicate the dispersion of the flat patterns seen in Figure 6.10,

which show an hourglass shape, joining together at −2.1 mV. On the other hand, the cut across

qx = 0.5, Figure 6.11(e), in addition to the q1 dispersion, shows a short electron-like dispersion

that ends at the same energy as the edge of q2 (yellow arrows) and a hole-like dispersion at a
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Figure 6.11: QPI energy dispersions. (a) Illustration of the directions of the energy cuts shown in panels
(b-g). Red circles indicate the positions of the reconstruction peaks. The arrows on top of panels (b-g) make
the correspondence with the directions shown in (a). (b) Energy cut across q = (0,0) along qx. The circles
indicate the peak positions from fitting Lorentzian functions to the high resolution spectrum (Figure 6.4(b)).
Three main q-vectors are identified, q1 (orange), q2 (yellow) and q3 (red). (c) Energy cut across q = (0,0)
along qy. An additional q-vector is identified, q4. (d) Energy cut at qy = (0.5,0.5). Replicas from q1 and q3
are observed around (±0.5,0.5). An hourglass shaped feature, qhg, is observed around qx = 0, indicated by
the blue arrows. (e) Energy cut through qx = 0.5. (f) Energy cut along the [−11] direction. Four q-vectors
are identified, q5, q6, q7 and q8. (g) Energy cut along [11]. None of the q-vectors q5 to q8 are observed.
The color intensity in (d) and (e) are 3.2 times lower than the one of panels (b), (c), (f) and (g).

negative bias (red arrow) that terminates at the same energy as q3. The hourglass shaped patterns

follow the same trend as along the perpendicular direction.

The energy cuts along the [−11] and [11] directions are shown in Figure 6.11(f) and (g), re-

spectively. While along [−11] there are four clear hole-like dispersions, q5 to q8, these are not

visible along [11], clearly showing the high anisotropy of the electronic structure along these dir-

ections.

To prove that the dispersions seen around (0.5,0.5) are replicas of the dispersions seen around

q = (0,0), the energy line profiles were fitted with Lorentzian functions. On the left of Fig-

ure 6.12(a), the peak positions obtained from fitting the line profiles parallel to qX are shown,

taken across both qy = 0 (circles) and qy = 0.5 (triangles). The dispersions around q = (0.5,0.5)

fall on top of the dispersions of q1 and q3, demonstrating that they are replicas of these scattering

vectors.

In Figure 6.11(a-d), both q2 and q3 are observed to change behavior between the qx and qy
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Figure 6.12: Identification of vHs around the Fermi level. (a) Peak positions from Lorentzian fits to
the line profiles of the energy cuts shown in Figure 6.11. Full circles correspond to fitting features around
q = (0,0) and empty triangles to features around q = (±0.5,0.5). The left corresponds to fitting the energy
cuts along qx and the right to cuts along qy. The size of the symbols is larger than the map resolution. (b)
Intensity at (−0.5,0.5) and (0.5,0.5) in the Fourier transform. The arrows indicate the energies of the vHs
observed in the energy dispersions taken from the fits.

directions. On the right of Figure 6.12(a), the peak positions from Lorentzian fits to the line profiles

along qx = 0.5 are shown. While q1 retains a hole-like dispersion, q2 shows a short electron-like

trend close to q = 0, which is easier to fit around q = (0.5,0.5) (triangles) than along q = (0,0)

(full circles) where it also shows a hole-like behavior. However, q3 shows a clear change from

hole-like along qx to electron-like along qy. This change in behavior is characteristic of a two-fold

saddle point in the band structure, resulting in a vHs and a peak in the density of states. Knowing

that in this system vHss are expected at the M-point of the BZ and that in chapter 5 we observed

signatures of vHss in the intensity of both atomic and reconstruction peaks (see Figures 5.10 and

5.22), the energy at which these vHss occur should appear as peaks in the intensity of the (0.5,0.5)

peaks. Figure 6.12(b) shows the absolute value of the intensity of the FT at the (−0.5,0.5) and

(0.5,0.5) peaks. Two peaks are observed (arrows), corresponding to the energies at which q2

and q3 are seen to collapse onto q = (0,0) and to the peaks seen in the tunneling spectra. This

identifies the presence of two vHs due to saddle points at the surface of Sr3Ru2O7, one at 2.3 mV

and another below the Fermi level at −3.5 mV. The QPI shows that we have two vHss which are

two-fold symmetric: the one corresponding to q2 is hole-like along qx and electron-like along qy,

and the one corresponding to q3 is electron-like along qx and hole-like along qy.

Assuming intraband scattering, the Fermi velocity, vF , the effective mass of the quasiparticles,

m∗, and the band edge, Eb, can be estimated by fitting a quadratic function to the energy dispersions
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obtained from the Lorentzian fits. Table 6.1 shows the values obtained from such fits, for the

scattering vectors identified along the qx/qy directions, q1 to q4 and qhg, and along the [−11]

direction, q5 to q8. It shows that there are two sets of heavy bands: one set with m∗ < 10 me ( q2,

q3 and q5) and another with m∗ > 14 me (q1,q4, qhg and q6 to q8). However, all dispersions have

low Fermi velocity, vF < 0.15 eVÅ, besides q4 that has h̄vF ∼ 0.2 eVÅ.

kF (Å−1) h̄vF (eVÅ) m∗ (me) Eb (meV)

Along qx/qy

q1 0.13±0.01 −0.07±0.01 −14.4±0.6 4.8±0.3

q2 0.08±0.01 −0.08±0.01 −7.6±0.6 3.5±0.4

q3 0.09±0.01 0.10±0.02 6.6±1.3 (−24.8±2.2) −4.1±1.0

q4 0.56±0.09 0.21±0.06 20.6±4.8 −56.9±19.0

qhg
∗ 0.19±0.13 −0.08±0.02 −17.4±4.4 -

Along [−11]

q5 0.15±0.01 −0.12±0.01 −9.5±0.7 9.3±1.0

q6 0.22±0.02 −0.07±0.01 −22.9±2.7 8.3±1.5

q7 0.31±0.04 −0.07±0.02 −33.3±5.7 11.2±2.9

q8 0.39±0.02 −0.10±0.01 −31.2±1.9 18.4±1.5

Table 6.1: Fermi wavevector, Fermi velocity and effective masses extracted from the QPI energy dispersions
assuming all features originate from intra-band scattering. The values were obtained from a parabolic fit
to the data around the Fermi level. The value in the parenthesis on the effective mass of q3 corresponds to
a parabolic fit to the hole-like dispersion along the qy direction. ∗ Values extracted from a linear fit to the
points.

6.7 Magnetic-field dependence

In the above sections, I established the presence of two C2-symmetric vHs within ∼ 4 meV of

the Fermi level, one above and one below. Since Sr3Ru2O7 has a high Wilson Ratio, RW > 10,

the application of a magnetic field is expected to have a large influence on the electronic structure

by shifting/splitting bands. Moreover, in Sr3Ru2O7, many of the microscopic theories [205–208]

developed to describe the metamagnetic phase transitions propose that the mechanism involves a

series of vHss crossing the Fermi level with magnetic field, but there is no consensus about which

vHss do this. Spectroscopic measurements with micro-volt resolution and in high magnetic fields

provide an opportunity to identify the correct microscopic theory or at least provide important

benchmark results against which to test them. In this section, the measurements under magnetic
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Figure 6.13: Field-induced stripe pattern. (a) Topographies taken at 0 T (left) and 13.5 T (right) on
the same area (Vset = −5mV, Iset = 91pA, T = 80 mK). The piezo drift was corrected using the Lock-in
algorithm (Appendix D) and the images were aligned, see section 3.1.5. (b) Line profile along the [10]
direction on the atom row indicated by the dashed white lines in (a) at both fields. (c) Line profiles along
the [11] direction on top of a row of bright (solid) and dark (dotted) Sr atoms at 0 T (top) and at 13.5 T
(bottom).

field will be presented.

6.7.1 Magnetic field-induced stripes

One of the most unexpected results of this study is a magnetic-field induced charge order in the

surface layer of Sr3Ru2O7. On the application of a magnetic field aligned with the crystallographic

c-axis of the sample, the topographies show a field-induced stripe order. Figure 6.13(a) shows the

comparison between topographies of the same area taken at 0 T and 13.5 T, with a bias of −5 mV.

At 0 T, only the checkboard charge order is visible, whereas at 13.5 T, a stripe order aligned with

the [11] direction is observed. The line profile along the [10] direction, Figure 6.13(b), shows a

shift of the positions of the dark Sr stoms towards the bright atoms by ∼ 0.08 nm. This is clearly

reflected by comparing the line profiles taken along [11] on top of a row of bright and a row of

dark Sr atoms, Figure 6.13(c) at each field. While at 0 T the rows of dark Sr atoms have a phase

shift of π in relation to the row of bright atoms, as expected for the square lattice, at 13.5 T the

phase shift between the rows is smaller, close to π/2.

The appearance of the stripe order with magnetic field is reflected in the intensity of the

(−0.5,0.5) and (0.5,0.5) peaks, which become highly inequivalent. Figure 6.14(a) shows the

Fourier transform of a topography taken in a magnetic field of 11.8 T, with Vset= −5 mV. The

intensity of the (0.5,0.5) peak is enhanced, whereas the (−0.5,0.5) peak seems to be suppressed.

The intensities of these two peaks have strong bias dependence as in the case of the checkerboard

at 0 T (see Figure 6.6(b)). At 5.5 T, Figure 6.14(b), the intensity at both (−0.5,0.5) and (0.5,0.5)

show a peak at−5 mV, with the intensity of the (0.5,0.5) peak strongly enhanced. With increasing

126



(0,1)
(1,0)

-100 1000
Bias (mV)

In
te
ns
ity

x1036

5

4

3

B=5.5 T

(0,1)
(1,0)

-100 1000
Bias (mV)

In
te
ns
ity

x1036

5

4

3

B=11.8 T

(-0.5,0.5)
(0.5,0.5)

(-0.5,0.5)
(0.5,0.5)

(b)

(a)

(c)

(d) (e)

-100 1000
Bias (mV)

In
te
ns
ity

x1035.0

2.5

0

B=5.5 T

-100 1000
Bias (mV)

In
te
ns
ity

x10310

5

0

B=11.8 T

(0.5,0.5)(-0.5,0.5)

B=11.8 T

Figure 6.14: Bias dependence of (±0.5,0.5) peaks at increasing magnetic fields.(a) Fourier transform-
ation of a topography taken with Vset= −5 mV under a magnetic field of 11.8 T. The positions of the
(−0.5,0.5) and (0.5,0.5) peaks are indicated by circles. (b) and (c) show the bias dependence of the in-
tensity of the (−0.5,0.5) and (0.5,0.5) peaks at 5.5 T and 11.8 T. (d) and (e) show the bias dependence of
the atomic peaks at 5.5 T and 11.8 T.

bias voltage, the difference in the intensity of the two peaks decreases becoming almost the same

at 100 mV, such that the Sr square lattice is recovered and no stripes are observed. With increasing

magnetic field, the inequivalence of the intensity between (−0.5,0.5) and (0.5,0.5) increases. Fig-

ure 6.14(c) shows the bias dependence at 11.8 T, where the intensity of the (0.5,0.5) peak doubles

in relation to its value at 5.5 T. The intensity of the (−0.5,0.5) peak does not show a peak at −5

mV and it is suppressed relative to its value at 5.5 T. At 100 mV, the inequivalence between the

two peaks is still present, and the stripes are observed in topographies up to higher bias voltages

than at lower fields. The bias dependence of the atomic peaks, Figure 6.14(d) and (e), show a

slight anisotropy of the intensity between the two spatial directions, however, the intensities at the

two different fields show the same trend, following the shape of the spectrum.

Having identified the setpoint bias at which the stripes appear strongest as −5 mV, the intens-

ities of the (−0.5,0.5) and (0.5,0.5) peaks can be followed as a function of magnetic field from

0 T to 13.5 T, from topographies taken over the same area and under the same conditions, in par-

ticular using the same tip, Figure 6.15(a) blue markers. The two peaks appear with approximately

the same intensity up to fields of 3 T, after which their intensity splits. The intensity at (0.5,0.5)
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Figure 6.15: Intensity of FT peaks as a function of magnetic field at two bias voltages. (a) Intensity
of the reconstruction peaks from the FT of topographies at Vset= 35 mV and Vset= −5 mV as a function
of magnetic field. (b) Intensity of the atomic peaks from the same FT of topographies with increasing
magnetic field, at Vset= 35 mV and Vset=−5 mV.

keeps increasing with increasing field, whereas the intensity of the (−0.5,0.5) peak is seen to be

slightly suppressed. For comparison, the same experiment was performed using a setpoint bias

of 35 mV, black markers, where the intensity of the (−0.5,0.5) and (0.5,0.5) peaks also splits,

but as expected from Figure 6.14, their overall intensities are much lower than the ones observed

at −5 mV. To confirm that it is not a tip effect, the intensity of the atomic peaks as a function of

magnetic field is plotted in Figure 6.15(b). For both bias voltages, the intensity of these peaks

remains approximately constant as a function of field, showing that the stripes are not an artifact

due to the tip shape. The fact that the (−0.5,0.5) and (0.5,0.5) peaks intensities have a strong

bias dependence under field, with the stripes disappearing at high bias voltages recovering the

undistorted Sr square lattice goes against a structural distortion under magnetic field and in favour

of an electronic phenonemon.

6.7.2 Spectroscopy as a function of magnetic field

To follow the changes in the LDOS under magnetic field at the surface of Sr3Ru2O7, across

the bulk quantum critical end point, we have measured the tunneling spectra up to 13.5 T at a

temperature of 80 mK. Figure 6.16(a) shows a color plot of a sequence of g(V ) spectra taken over

the energy range of ±8 mV with increasing magnetic field, measured with an energy resolution

of 160 µV. With increasing magnetic field, spectral weight is transferred from the peak at 4.3 mV

towards low energies, reaching the peak at 2.2 mV at 8 T. Some spectral weight is left behind

at 4.3 mV, whose intensity decreases with increasing field. Above 8 T, spectral weight continues

to be transferred to lower energies, crossing the Fermi level at ∼ 10.5 T and reaching −1.2 mV

above 13 T. As it crosses EF, the states at EF keep filling in for higher fields. The peak at 2.2 mV
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remains at the same energy position, continuously losing intensity at higher fields. In addition,

a small amount of spectral weight is also transferred from the peak at −3.5 mV towards −1.2

mV. The peak at −3.5 mV shifts slightly to higher energies and its intensity is enhanced. These

observations are in agreement with the report by Iwaya et al. [212].

Looking at the individual g(V ) spectra at different fields, Figure 6.16(b), it is possible to

follow this trend. Comparing the g(V ) spectrum at 0 and 3 T, it appears that the peaks at −3.5

and 4.3 mV are split at 3 T. While the split peaks seem to keep moving towards the Fermi level

finally converging at −1.2 mV above 13 T, they leave behind features at 4.3 mV and −3.5 mV.

Figure 6.16(b), shows how the intensity of the peak at 4.3 mV decreases with field, changing from

a peak-shaped feature to a shoulder, whereas, the peak at −3.5 shifts by ∼ 0.3 mV at 13.5 T and

its intensity keeps increasing with increasing field. The intensity of the peak at 2.2 mV reaches a

maximum at 8 T, decreasing for higher fields.

Although some changes in the spectral weight seem to be connected to 8 T, where the quantum

critical end point of bulk Sr3Ru2O7 is expected to occur, namely a maximum in the intensity of

the peak at 2.2 mV, there is no obvious change at the Fermi level across this particular magnitude

of the magnetic field that can be attributed to the metamagnetic phase transitions or the expected

quantum critical end point. To investigate if there was a characteristic change to the tunneling

spectrum across the magnetic field range of the quantum critical end point of bulk Sr3Ru2O7 that

could have been missed in the previous data set, we measured the tunneling spectra between 7.5 T

and 8.1 T in steps of 0.1 T, Figure 6.17. Besides a small decrease in spectral weight at −2.5 mV,
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Figure 6.16: Magnetic field dependence of differential conductance. (a) Evolution of the g(V ) spectrum
as a function of magnetic field. The dotted black line indicates 8 T, the field of the quantum critical end
point in the bulk, and the dotted white line indicates 10.5 T, the field at which we observe a peak crossing
the Fermi level. Each row corresponds to the average spectrum of a 16× 16 grid over a (1.48nm)2 area
(Vset= 8 mV, Iset= 500 pm, VL= 160 µV, T = 80 mK). (b) g(V ) spectrum at the fields indicated by the
colored arrows in (a) at 0 T, 3 T, 8 T and 13.5 T.
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Figure 6.17: Tunneling spectra across the quantum critical point of bulk Sr3Ru2O7. Tunneling spectra
between 7.5 T and 8.1 T in steps of 0.1 T, across the magnetic field range where the quantum critical point
and metamagnetic phase transitions of bulk Sr3Ru2O7 occur. Each spectrum is the average from a 16×16
pixel grid over a (1.48nm)2 area (Vset= 8 mV, Iset= 500 pm, VL= 160 µV, T = 80 mK).

and a slight increase in intensity right above EF, there is no drastic change to the LDOS, suggesting

that the surface layer does not undergo the same kind of transition as the bulk crystal.

6.7.3 Quasiparticle interference under magnetic field

In Section 6.6 two vHss were identified from quasiparticle interference measurements. The

analysis of tunneling spectra under magnetic field, Figure 6.16, suggests that a peak is moving

across EF towards negative energies. To confirm this and identify which vHs is most affected by

the magnetic field, we measured quasiparticle interference at 8 T and 13 T.

Figure 6.18 shows the Fourier transformations of constant energy QPI layers at 0 T, 8 T and

13 T, at four different energies: (a) at 3.9 mV below the top of the q1 dispersion, (b) at 1.5 mV

just below the top vHs, q2; (c) at −0.9 mV just below EF; and (d) at −2.7 mV just before the

bottom vHs, q3, according to the energy dispersions at 0 T (Figure 6.11). Clear differences in

the scattering patterns are observed between the three applied fields. While at 0 T there is strong

spectral weight at q = (0,0) at 1.5 mV, corresponding to the q2 vHs, it decreases at 8 T and it is

absent from this energy at 13 T. On the other hand, at −0.9 mV, both the maps obtained at 0 T

and 8 T show a clear pocket around q = (0,0), corresponding to q3, whereas at 13 T, there is an

increase in spectral weight consistent with the proximity to a vHs. The QPI layer at −0.9 mV

at 13 T looks similar to the QPI layers at −2.7 mV at 0 T and 8 T, suggesting a band shift with

magnetic field.

To determine the scattering vectors that are most affected by the magnetic field, energy cuts

were taken along the qx and qy directions, across both q = (0,0) and q = (±0.5,0.5). Fig-

ure 6.19(a) reproduces the line cuts along qx across q = (0,0) (left) and q = (0.5,0.5) (right)
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Figure 6.18: Quasiparticle interference energy layers at different magnetic fields. (a-c) QPI at 0 T, 8 T
and 13 T, respectively, at energies 3.9 mV, 1.5 mV, −0.9 mV and −2.7 mV (Vset= 8 mV, Iset= 700 pA,
VL= 0.6 mV, T = 80 mK). The arrows in the first panel of (a) show the directions of the energy cuts shown
in Figure 6.19.

at 0 T. The arrows indicate the positions of the q2 vHs (yellow) and the q3 vHs (red), making the

correspondence between the dispersions around q = (0,0) and q = (0.5,0.5), as before. Along

this direction, the q2 vHs has a hole-like dispersion and the q3 vHs has an electron-like dispersion.

Along the perpendicular direction, qy, Figure 6.19(b), the q2 vHs has an electron-like dispersion

and the q3 vHs has a hole-like behavior. Here, the top of the q1 hole-like dispersion is well defined

along both directions and the spectral weight of the q2 scattering around q = (0,0) is broad in en-

ergy (∼ 2 mV).

Increasing the magnetic field to 8 T, Figure 6.19(c) and (d), shows a decrease of spectral

weight around q = (0,0) at the top of the q1 hole-like dispersion along both directions. In ad-

dition, although on average the q2 vHs is at the same energy, the spectral weight seems to have

collapsed onto q = (0,0), with the hole-like dispersion along qx appearing slightly heavier than

before (Figure 6.19(c)). Along qy, a clear electron-like dispersion of q2 is observed, consistent

with the interpretation that this is a vHs. Focusing on q3, around both (0.5,0.5) (Figure 6.19(c),

right) and (−0.5,0.5) (Figure 6.19(d), right), the dispersion of q3 vHs collapses onto these peaks
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Figure 6.19: QPI energy dispersion under magnetic field along qx and qy. (a-b) Energy line cuts along
qx and qy at 0 T. The colored circles indicate the positions of the peaks in the g(V ) spectrum at 0 T. (c-d)
Same at 8 T. (e-f) Same at 13 T. The white circles indicate the positions of the peaks in the g(V ) spectrum
at 8 T and 13 T. The yellow and red arrows indicate the position of the top and bottom vHs, respectively,
at each field. (Vset= 8 mV, Iset= 700 pA, VL= 0.6 mV, T = 80 mK). The arrows on top of each panel make
the correspondence with the directions indicated in the first panel of Figure 6.18(a). (g) Intensity of the
(0.5,0.5) peak in the FT at each field. (h) Intensity of the (−0.5,0.5) peak in the FT at each field. The
yellow arrow indicates the energy of the q2 vHs at 13 T.

(and onto q = (0,0)) at the same energy as at 0 T.

At 13 T, Figure 6.19(e) and (f), spectral weight is absent from the top of the q1 dispersion,

along both directions, with the dispersion becoming straight where the top used to be. There is

also no spectral weight at the energy of the vHs associated with q2. However, an electron-like

dispersion is observed with a minimum at −1 meV, connected with a heavier hole-like dispersion

(yellow arrow). The cuts across q = (0.5,0.5) (Figure 6.19(e), right) and q = (−0.5,0.5) (Fig-

ure 6.19(f), right) show the q3 vHs at the same energy as at 0 T. Therefore, the vHs observed at

−1 meV at 13 T corresponds to the q2 vHs being shifted by the magnetic field.

The intensities of the (0.5,0.5) and (−0.5,0.5) peaks are shown in Figure 6.19(g) and (h),

respectively. Due to the formation of the stripe order with increasing magnetic field along the

[−11] direction, the intensity of the (0.5,0.5) peak becomes more featureless at higher fields. On

the other hand, the intensity of the (−0.5,0.5) peak, Figure 6.19(h), shows a peak at 2.3 mV at 0

T and 8 T, corresponding to the energy of the q2 vHs, while at 13 T, no peak is observed at that
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Figure 6.20: Peak fits to the vHss dispersions under magnetic field. (a) Sketch of the directions along
which the fits were taken. The symbols next to the arrows correspond to the symbols in (b-d), making the
assignment to the direction of each fit. (b-d) Peak positions from Lorentzian fits to the line profiles of the
energy cuts shown in Figure 6.19 at each field for q1 (b), q2 (c) and q3 (d). The size of the symbols is larger
than the map q-resolution.

energy. Instead, there is a peak at∼−1 mV, confirming the shift of this vHs across the Fermi level

under high magnetic fields.

To directly compare the evolution of the q-dispersions q1, q2 and q3 with magnetic field, the

peak positions extracted from Lorentzian fits to the energy line cuts for the maps taken at 0 T, 8 T

and 13 T are shown in Figure 6.20, along the qx and qy directions. Figure 6.20(a) shows the peaks

extracted for the q1 dispersion around q = (0,0) (circles) and around q = (0.5,0.5) (triangles),

for all fields. It shows that the dispersion is unaffected by the magnetic field at low energies,

however the top of the dispersion becomes straight at 13 T, possibly due to a band hybridization.

Figure 6.20(b) shows the peak positions for the q2 dispersion, obtained along qx (left) and along qy

(right), clearly showing that this vHs moves from 2.3 mV across EF towards −1 mV at 13 T. This

shift occurs together with a broadening of the hole-like dispersion of the band, as evidenced by

the parabolic fits. The q2 dispersion at 13 T along the qy direction (Figure 6.19(f)) is not shown in

Figure 6.20(b) because it was not possible to properly fit Lorentzian functions to the line profiles.

Figure 6.20(c) shows the peaks from the q3 dispersion, obtained across q = (0,0) (circles) and

across q = (0.5,0.5) along both qx (triangles) and qy (diamonds) directions. It shows that this vHs

is unaffected by the application of a magnetic field.

Although clear differences are observed along the qx and qy directions of maps taken at diffe-

rent magnetic fields, the energy linecuts taken along the [−11] and [11] directions seem largely

unaffected. This can be seen in Figure 6.21. While the spectral weight at q = (0,0) reflects

the changes observed along qx and qy, the C2-symmetric scattering vectors remain with the same

dispersion at all fields. Figure 6.21(h) shows the peak positions extracted from Lorentzian fits to

the dispersions of q6 and q7 for all fields, showing that they all fall onto the same dispersion.
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Figure 6.21: QPI dispersion in magnetic field along q[−11] and q[11]. (a-b) Energy-momentum line cuts
along q[−11] and q[11] at 0 T. (c-d) Same at 8 T. (e-f) Same at 13 T (Vset= 8 mV, Iset= 700 pA, VL= 0.6 mV,
T = 80 mK). (h) Peak positions from Lorentzian fits to the line profiles at 0 T, 8 T and 13 T for q6 and q7.

The observations from the QPI measurements are consistent with the evolution of the tunneling

spectra with increasing magnetic field, Figure 6.16. The spectral weight transfer from 4.3 mV to

2.3 mV at 8 T can be explained by the transfer of spectral weight from the top of the q1 dispersion

towards lower energies, reaching the energy of the q2 vHs at 8 T. In addition, the movement of a

peak across EF, reaching −1.2 mV above 13 T is naturally explained by the shift of the q2 vHs

across EF, between 8 T and 13 T.

In these measurements, no bands are observed to Zeeman-split with increasing magnetic field.

It suggests that the surface layer of Sr3Ru2O7 already has a magnetic ground state at 0 T.

6.8 Discussion

Using STM and tunneling spectroscopy, the measurements described in this chapter unveil the

low-energy electronic structure at the surface of high-purity single crystals of Sr3Ru2O7 and its

evolution under high magnetic fields. These measurements reveal: (1) direct observation of three

vHss, two above and one below EF at 0 T; (2) bias dependent checkerboard order related to the
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vHs at−4 mV; (3) magnetic field applied along the c-axis does not split bands, but pushes the vHs

in the unoccupied states across EF; (4) the electronic structure breaks C4-symmetry in two ways,

via two-fold symmetric vHss along [10] and anisotropic QPI along the [−11] direction; (5) Stripe-

order induced by magnetic field with a wave vector q = (0.5,0.5), with the same characteristic

energy as the checkerboard seen at 0 T.

6.8.1 Comparison with bulk properties

A direct comparison of the electronic properties found in our measurements of the surface

layer with the bulk properties of Sr3Ru2O7 demonstrates that the surface layer forms a distinct

system with its own exciting properties.

A bulk crystal of Sr3Ru2O7 shows a large jump in magnetostriction along the c-axis at the

metamagnetic phase transition, with three consecutive jumps within the range of fields between 7

and 9 T [194]. In STM, although the tip is only sensitive to the electronic properties at the surface

layer, if the bulk crystal is expanding/contracting along the z-direction with increasing applied

magnetic field, this will be reflected on the z-position of the tip, since the piezo scanner will

have to contract/expand to keep the tunneling current constant. Therefore, it is possible to detect

changes in the c-axis of the sample, allowing for a direct measurement of its magnetostriction

[289]. Figure 6.22 shows the change in average z height of the tip in tunneling conditions Vset=

8 mV and Iset= 500 pA. Since to apply each value of magnetic field it was necessary to retract

the tip, to guarantee that the measurements were consistent with each other and taken with the

same conditions, the z average was obtained by averaging sets of ∼ 30 topographies of lateral size

1.48 nm and sampled at 16×16 pixels, taken over the same area within ±1 nm of uncertainty. A

large increase in the z-height of the tip is observed at 7.5 T, confirming that the measured sample

undergoes the expected phase transition of bulk Sr3Ru2O7. The inset of Figure 6.22 shows the

values for the field range of 7.5 to 8.1 T, where the dotted lines indicate the fields at which the

magnetostriction measurements from ref. [194] see step increases, however this substructure due

to the metamagnetic phases is not observed in our magnetostriction data, likely because of the

sample purity (ρres > 1 µΩcm).

A key signature of the quantum critical end point in bulk Sr3Ru2O7 is a sharp increase in the

electronic contribution to the specific heat on approaching the critical magnetic field at constant

temperature [197,198]. The electronic contribution to the specific heat is determined by the density

of states in the vicinity of the Fermi energy. The differential conductance is proportional to the

density of states n(ε) from Eq. (3.7), thus, we can use the tunneling spectra from Figure 6.4(a) to
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Figure 6.22: Estimate of magnetostriction and electronic specific heat as a function of magnetic field
from STM measurements. Average tip z-height as a function of magnetic field (black and red circles).
Each point is the z average of∼ 30 consecutive topographies taken over an area of 1.48 nm. The data points
in red indicate measurements with a different tip and at a different position on the sample. In order for the
red points to be compared with the black points, the red data points were multiplied by 0.75 so that the
points at 8T from each data set fall onto the same z-average (Vset= 8 mV, Iset= 500 pA, T = 80 mK). The
blue points are the electronic specific heat calculated from Eq. (6.1), plotted relative to the value at 0 T,
using the quantity g(V )/(I(Vset)− I(−Vset)) as an estimation of the density of states n(ε).

estimate the electronic contribution to the specific heat as a function of magnetic field, using the

expression

Cel

T
=

1
T

∂

∂T

∫
εn(ε) f (ε,T )dε, (6.1)

where f (ε,T ) is the Fermi function. When doing so close to a Lifshitz transition, the setpoint

effect due to a van Hove singularity crossing the Fermi energy needs to be accounted for. We do

this by normalizing the differential conductance g(V ) by the integral of the differential conduct-

ance over the whole spectrum,
∫ Vset
−Vset

g(V )dV = I(Vset)− I(−Vset). In this ratio, the setpoint effect

cancels out, providing a more realistic estimate for how the density of states varies with magnetic

field. The estimated electronic contribution to the specific heat is plotted in Figure 6.22 as blue

circles. Contrary to what is observed for the bulk [197, 198], the specific heat estimated from our

tunneling spectra does not diverge at the critical field of ∼ 8 T. It rather shows a sharp increase

at ∼ 11 T, corresponding to the field where the g(V ) at 0 mV is seen to increase, that is, the field

at which the vHs crosses EF. This direct comparison between a bulk property (magnetostriction)

and a surface property (Cel/T ) measured with the same instrument under the same conditions on

the same sample demonstrates that the surface layer does not undergo a metamagnetic transition

at ∼ 8 T, having a distinct phase diagram from the bulk crystal.

The STM measurements presented in this chapter reveal even more differences between sur-

face and bulk. Both transport [18] and neutron scattering [190] measurements indicate that the
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principal axis for the C2 susceptibility in the metamagnetic phase is along the 〈100〉 directions of

the tetragonal unit cell. An in-plane field along the crystallographic a and b axis induces strong

resistive anisotropy between [100] and [010] directions, but a field aligned with the [110] direction

produces almost no [110]/[−110] anisotropy. In contrast, the QPI measurements shown in Fig-

ure 6.10 show clear C2-symmetric electronic states along the [−11] direction, where the spectral

weight is completely absent from [11], whereas the C4-symmetry breaking between the [10] and

[01] directions stems from the presence of two vHS (q2 and q3), leaving the rest of the bands with

four-fold symmetry.

6.8.2 QPI dispersions versus known electronic structure

Comparing the QPI dispersions with the DFT band structure of a free-standing bilayer, Fig-

ure 6.8(b), shows similarity between the two providing that the bands are highly renormalized and

some bands are shifted. Figure 6.23(a) shows the DFT band structure of Figure 6.8(b) along the

path Γ−M, superimposed with the dispersions obtained from QPI. The q3 dispersion seems to be

in good agreement with the dxy vHs at ∼−4 meV. The q4 dispersion seems to be consistent with

the dispersions of dxz/ dyz character across the Brillouin zone boundary. However, neither q1, q2

or qhg fall on top of bands, unless the renormalization factor is increased. Figure 6.23(b) shows

the DFT band structure renormalized by a factor of 20 and then shifted so that the dxyvHs is at

−4 meV. Here, the q1 dispersion follows the dispersion of the vHs with dxz/ dyz orbital character

around the M-point and qhg falls on top of the dispersion of α2. The need for different renor-

malization factors for different bands to have good agreement between experiments and DFT has

previously been discussed in the comparison of ARPES data with DFT calculations and reflects

the strongly correlated nature of the electronic states in Sr3Ru2O7 [187].

The field dependence of the QPI shows a vHs shifting in energy with increasing magnetic

field, but no splitting of bands. This suggests that the surface layer of Sr3Ru2O7 has a magnetic

ground state already in zero field. The magnetic configuration which is most stable according to

DFT is a ferromagnetic ground state [290, 291] with out-of-plane magnetic moment, confirmed

by the lower energies of the calculations shown in Figure 6.9 compared with their paramagnetic

counterparts. However, the comparison with the QPI dispersions shows poor agreement between

the two, even with large band renormalizations (> 20). It suggests that the bilayer system does

not become ferromagnetic. In addition, no signs of ferromagnetism are observed from the ARPES

measurements [183, 185], which should be able to detect evidence for the exchange splitting.

ARPES is sensitive to both bulk and surface bands. In the case of Sr2RuO4, the distinction
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Figure 6.23: QPI versus DFT calculations with different renormalizations. (a) Band structure from
DFT calculations on a free-standing bilayer, superimposed with the dispersions from QPI for q1, q2, q3,
q4 and qhg. Here the bands were renormalized by a factor of 4.2. (b) Same as in (a), but the bands were
renormalized by a factor of 20, and shifted so that the vHs below EF is at −4 meV.

from bulk and surface bands is clear due to the surface reconstruction that doubles the unit cell,

doubling the number of bands that appear at the Fermi surface [24]. The comparison between

the QPI q-vector dispersion corresponding to the β -band and the ARPES energy dispersion of the

surface β -band are in excellent agreement with each other [117], where the Fermi velocity and

kF measured in chapter 5 from QPI agree with the ones reported in ref. [27]. In Sr3Ru2O7, the

surface relaxation consists of an increase in octahedral rotation angle and potentially a tiny tilt of

the RuO6 octahedra [28], see Figure 6.1(b). These distortions preserve the unit cell of the bulk

and are not expected to have such a drastic effect on the band structure, according to DFT and

assuming a paramagnetic ground state [292]. This could imply that the bands from both bulk and

surface are not discernible in current ARPES measurements, where the effect of the surface bands

might appear as a larger apparent broadening of the bulk bands. In addition, surface degradation

can not be excluded, which suppresses the surface bands.

Figure 6.24(a) shows the QPI layer at −0.3 mV from the differential conductance map in

Figure 6.10, with the extracted contours shown as open circles for some of the scattering vectors

identified in section 6.6, namely q1, q4, q6, q7 and qhg. The q-vectors q2 and q3 are not shown

because they have the same magnitude at this energy and are too close to q1, and both q5 and q8
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Figure 6.24: Comparison of QPI with ARPES measurements. (a) QPI layer at −0.3 mV from the map
shown in Figure 6.10. The extracted QPI contours are shown for the features identified as q1 (orange), q4
(red), q6 (dark blue), q7 (green) and qhg (blue). (b) ARPES fermi surface, reproduced with permission from
A. Tamai et al. [183]. The QPI patterns extracted from the map layer in (a) are superimposed on the image.
Both q1 and q4 are shown centered around the M-point, and the features corresponding to qhg were shifted
by 1/4. (c-d) ARPES energy cuts along the Γ−M direction, measured with photon energies of hν = 21
eV and hν = 50, respectively. The q1, q2, q3, q4 and qhg dispersions are shown on top of the ARPES data.
(f) ARPES energy line cut along the Γ−X direction. The q-dispersions of q6 and q7 are superimposed.
ARPES data in panels (d-f) are reproduced from M. P. Allan et al. [185].

are neglected because they have magnitudes close to q6 and q7, respectively. Figure 6.24(b) shows

the ARPES Fermi surface reproduced from A. Tamai et al. [183], with the scattering patterns cor-

responding to q1, q4, q6, q7 and qhg superimposed, extracted from the QPI layer in Figure 6.24(a).

The first obvious difference is that the Fermi surface from ARPES is C4-symmetric, whereas there

are clearly C2-symmetric QPI patterns. The symmetry breaking scattering vectors, q6 and q7 fall

on top of the intersection between the α1 and α2 pockets. When plotted centered around the M-

point, q4 falls on top of the edges of the α1 pocket, corresponding to inter-BZ scattering. The

scattering vector corresponding to the hourglass patterns of Figure 6.11(d-e), qhg, corresponds to

inter-BZ scattering between the flat edges of the α2 pocket. The scattering vector q1, being identi-
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fied as a vHs of dxz/ dyz orbital character around the M-point from the comparison with DFT, falls

close to the edge of the γ2 pocket.

Figure 6.24(c) and (d) show the ARPES energy cuts along Γ−M, across the vHs, reproduced

from Allan et al. [185]. Superimposing the dispersions of q1 to q4 around the M-point shows quite

a good agreement between our QPI and ARPES. The q3 dispersion is in very good agreement with

the vHs found at −4 meV in ARPES. The dispersions of q1 and q2 finish right below the Fermi

level, and so are difficult to compare. The q4 dispersion seems to agree with the α1 dispersion and

the qhg dispersion, after shifting by 1/4, falls on top of the dispersion of the α2 pocket.

Along the Γ−X direction, Figure 6.24(e), there is also good agreement between the disper-

sions of q6 and q7 with the α1 and α2 bands, respectively, although the effective masses estimated

from the parabolic fits to the QPI data give effective masses an order of magnitude larger than the

cyclotron masses extracted from the ARPES.

Overall, the measured QPI is in agreement with the ARPES band structure. The most signifi-

cant difference is the C4-symmetry breaking of the QPI patterns, which is clearly not reflected in

the ARPES Fermi surface. A model of the surface electronic structure has to be able to reproduce

the C4-symmetry breaking while keeping good agreement with ARPES measurements. The above

comparison suggests that the α1 and α2 pockets are C2-symmetric at the surface along the Γ−X

direction.

Better agreement between ARPES, DFT and QPI can be obtained by energy- and moment-

dependent band renormalizations. If the Fermi level is in the middle of a band, it is trivial to

assume that the renormalization factor of that band will be the same at all energies. However,

if the Fermi level is close to a vHs, the effects of strong electronic correlations could result in a

larger renormalization close to the vHs-point than at energies far away from it. In Sr3Ru2O7, since

there is a plethora of vHs at the M-point, it is conceivable that all these are subjected to strong

renormalizations due to strong correlations, resulting in a larger normalization factor at positive

energies, which pushes the dxz/ dyz vHs down in energy to ∼ 4 meV above EF, originating the

scattering vector q1.

For a tetragonal unit cell, the dxy vHs in Sr3Ru2O7 at −4 meV is four-fold at the M-point,

however, due to the orthorhombic distortion, even though almost negligible, this vHs is expected

to be slightly split into two vHss with two-fold symmetry [211]. The QPI data suggests that

the vHss corresponding to q2 and q3 could be two-fold vHss due to the splitting of a four-fold

vHs, since they are observed to have opposite behavior to each other: while q2 has a hole-like

dispersion along qx and an electron-like dispersion along qy, q3 has an electron-like dispersion
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Figure 6.25: Quasiparticle interference at T = 4 K. Fourier transform of a differential conductance map
at −1 mV, taken at T = 4 K (Vset= 15 mV, Iset= 800 pA, VL= 1 mV).

along qx and a hole-like dispersion along qy. They are split by ∼ 6 meV, suggesting that the effect

of the orthorhombic distortion on the band structure is amplified by correlation effects. In addition,

it is difficult to explain the C2-symmetric states along [−11] solely based on the orthorhombicity,

which seem to correspond to highly distorted α1 and α2 bands. At the surface, the increased

structural distortions, namely a larger octahedral rotation and possibility of tilt [28], together with

strong electronic correlations could result in such a large splitting of the vHss, moving one of the

vHs above the Fermi level, and could be responsible for the strong C4-symmetry breaking of the

α1 and α2 bands.

The QPI measurements reported in this thesis show striking differences from previous QPI

measurements on Ti-doped Sr3Ru2O7 crystals (1% doping) by Lee et al. [210], measured at 4 K.

While we observe clear C4-symmetry breaking QPI patterns along the [−11] direction, the QPI

patterns observed by Lee et al. are four-fold symmetric. To check if it was due to the temperature,

we took QPI maps at 4 K. Figure 6.25 shows the Fourier transform of a differential conductance

map taken at 4 K at an energy of −1 meV. The QPI patterns remain C2-symmetric. The difference

might be attributed to the Ti-doping, which is known to change the electronic structure, potentially

restoring C4-symmetry. In addition, the model to describe the observed QPI by coming only from

scattering from the α2 band is not consistent with our data, where we observe more diversity of

q-vectors that can be explained by scattering between other bands, namely the different vHs at

the M-point of the Brillouin zone. The QPI simulations from Lee et al. [209] also do not reflect

our measurements, showing patterns closer to the ones observed at the surface of Sr2RuO4. The

dominant C2-symmetry in our measurements is in a different direction than the one expected from

transport measurements, and so the nematic order parameter introduced in ref. [209] is not the
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correct one to describe the QPI at the surface of Sr3Ru2O7. As suggested, STM measurements

should be able to distinguish which band is responsible for the nematic order, where the prediction

is that if the dxy band is the dominant band for the nematic phase then the QPI pattern should

be C4-symmetric. We observe both cases, C4-symmetry breaking from the dxz/dyz states, along

[−11], and two vHs with two-fold symmetry along [10], one above and one below EF, implying

that the nematic order parameter at the surface of Sr3Ru2O7 is not trivial. It is also discussed that

the contribution of the dxy states is largely suppressed, however, we observe clear signatures from

the dxy vHs in our QPI. This does not come as a surprise after the conclusions of chapter 5, where

I showed that the octahedral rotations promote the mixture of the dxy and dz2 states at the M-point

of the Brillouin zone resulting in stronger coupling to the tip, which also happens in Sr3Ru2O7.

6.8.3 Magnetic-field induced Lifshitz transition

Our results demonstrate a magnetic-field induced Lifshitz transition at the surface of Sr3Ru2O7.

The QPI measurements under magnetic field show a vHs at positive energies at 0 T and 8 T, which

moves below the Fermi level to ∼−1 meV at 13 T. The shift of the vHs across the Fermi level na-

turally explains the observed evolution of the tunneling spectra with increasing field, Figure 6.16,

where a spectral weight shift is detected from positive to negative energies consistent with a peak

moving across EF. In a Fermi liquid picture, the spectroscopic signature of a vHs approaching

the Fermi level should be a peak getting sharper as EF is approached, due to infinite lifetime and

increased coherence of the quasiparticles. However, this is not observed in our measurements,

instead, the observed changes to the tunneling spectra under magnetic field seem more consistent

with a peak that becomes incoherent as it approaches EF, which could be a signature of quantum

fluctuations becoming dominant. This is similar to what has been observed in twisted bilayer

graphene, in which as the vHs is pushed across EF, tuned by gate voltage, its peak in the tunneling

spectra appears to lose coherence before emerging on the other side of EF [293]. Our observa-

tions are in agreement with the report by Iwaya et al. [212], however here, by being able to go to

magnetic fields beyond 11 T, we could demonstrate that the surface layer of Sr3Ru2O7 undergoes

a Lifshitz transition at higher fields than the bulk, with a critical field of ∼ 11 T, as illustrated

by the behavior of the electronic specific heat as a function of magnetic field calculated from the

tunneling spectra, Figure 6.22.

The QPI measurements show the vHs moving down in energy with magnetic field without a

spin-split partner. In addition, the rest of the bands seem not to be affected by the magnetic field,

with the most noticeable change being the loss of spectral weight of the top of the q1 hole-like
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band. It suggests that the surface layer of Sr3Ru2O7 is already in a magnetic ground state at 0 T.

The topographies show a magnetic field-induced stripe order aligned with the [−11] direction,

parallel to the direction of the C2-symmetric QPI patterns. Its strength is reflected in the intensity

of the (0.5,0.5) peak in the Fourier transformations of the topographies, which increases with

magnetic field at a higher rate than the decrease in the intensity of the (−0.5,0.5) peak. The

intensity of the (0.5,0.5) peak retains a bias dependence similar to the checkerboard at 0 T, with

a peak at −5 mV, demonstrating an electronic origin. The appearance of such a stripe order is

intimately linked with the C2-symmetric states and the movement of the vHs towards negative

energies, but the exact mechanism behind its formation is not known. A similar stripe order has

been observed in La-doped Sr3Ir2O7 at zero field [294], which was ascribed to be a consequence

of the electronic density wave present in this material together with the octahedral tilt, identical to

the one illustrated in Figure 6.1(b).

The field-induced stripe order could in principle result in anisotropic transport behavior, as

it is observed around the quantum critical end point of bulk Sr3Ru2O7 [18]. However, it occurs

in a different direction. While the stripe order and C2-symmetric QPI occur between the [−11]

and [11] directions, the anisotropic transport behavior and the spin density wave order found in

neutron scattering measurements occur along the [10] and [01] directions of the tetragonal unit

cell [18, 190, 295].

6.8.4 Possible mechanisms

From our STM/STS measurements and the above discussion, a model of the surface layer of

Sr3Ru2O7 has to: (1) have bands that break C4-symmetry between the [−11] and [11] directions;

(2) be consistent with the ARPES band structure; (3) have a four-fold vHs split at the M-point and

(4) have a magnetic ground state. The comparison with ARPES measurements in section 6.8.2,

suggests that both α1 and α2 bands become highly C2-symmetric at the surface. The fact that we

do not observe signal along [11], shows that the symmetry breaking cannot be accounted for by

considering a small perturbative term. Possible scenarios include the formation of magnetic order,

Fermi surface reconstruction due to strong spin-orbit coupling effects, a combination of the two

or spin-fluctuations.

A magnetic order consistent with our measurements has to be able to explain the anisotropy

along the 〈11〉 directions and the field-induced stripes. DFT calculations, using both LDA and PBE

exchange-correlation functionals, show that different magnetic orders give lower energies than

the paramagnetic case, with the ferromagnetic ground state being the lowest energy state [290].

143



A ferromagnetic order does not seem to be consistent with our data and ARPES measurements

because one would expect all bands to be exchange split, as shown by the band structure of a

ferromagnetic free-standing bilayer in Figure 6.9. The order with the second-lowest energy, with

only a small energy difference from the ferromagnetic case, is an E-type antiferromagnetic ground

state [291], illustrated in Figure 2.16(b). In Sr3Ru2O7, this magnetic order is observed upon doping

with small amounts of Mn [20], Fe [21] and Ti [296]. This order has a characteristic wave vector

q = (0.25,0.25), in the same direction as we observe the C2-symmetry. For out-of-plane spins,

the application of the magnetic field parallel to the c-axis should push the spin up bands down in

energy, increasing its density of states. As a result, since the STM topographies are proportional

to the integrated DOS, the positions of spin-up should appear with high intensity, resulting in a

stripe order with characteristic wavevector q = (0.25,0.25), inconsistent with our observations,

where the stripe order appears with q = (0.5,0.5). One way to obtain the q = (0.5,0.5) stripe

order would be if the spins were oriented in-plane, and the out-of-plane magnetic field, together

with spin-orbit coupling, would introduce out-of-plane canting to the spins. In this way, both spin

directions would appear with the same intensity in the STM topographies. However, the Fermi

surface from this ground state is significantly different from the one observed here, with a lower

number of bands crossing the Fermi level [292], which is not consistent with the observation that

our measurements are in good agreement with the ARPES band structure and that obtained from

a paramagnetic DFT calculation.

The microscopic theories proposed to describe the metamagnetic transitions in Sr3Ru2O7 need

a vHs which is split and crosses the Fermi level, either of dxz/dyz or of dxy orbital character, where

the region where the bands are split results in an increase in magnetization [205, 208]. The in-

creased octahedral rotation at the surface together with high susceptibility towards magnetic or-

dering and strong correlations in Sr3Ru2O7, could result in the splitting of a vHs with one of

the split partners moving above EF, locking the surface layer in a state with high polarization.

Our QPI measurements show two vHs that seem consistent with the dxy vHs split at the surface of

Sr3Ru2O7, and since we do not see bands splitting under magnetic field, it suggests that the surface

layer is already in a high polarization state. This high polarization state together with spin-orbit

coupling [205, 208] could result in the observed anisotropy of the electronic states and would be

expected to follow the orientation of the magnetic field. Another possibility that cannot be ex-

cluded from our measurements is the formation of an additional spin density wave on top of the

itinerant electron system, as was found for the bulk from neutron scattering measurements [190].
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6.8.5 Comparison with the surface of Sr2RuO4

The surface layer of Sr3Ru2O7 is essentially two surface layers of Sr2RuO4 on top of each other

coupled together via the apical oxygen, with an opposite orientation of the octahedral rotation

between the layers. Apart from this bilayer coupling, their electronic structure is very similar, as

evidenced by comparing the ARPES Fermi surfaces of both systems (Figure 2.12 and Figure 2.14)

and the presence of vHs within 5 meV of the Fermi level. It is thus relevant to compare our

observations on both systems.

Tunneling spectra at both the surface layer of Sr2RuO4 and of Sr3Ru2O7 show a partial gap

around the Fermi level, which represents a suppression of the density of states of about 35%

relative to the value at bias voltages outside of the gap (20 mV in the case of Sr2RuO4 and 95 mV

in the case of Sr3Ru2O7). While the width of the partial gap in Sr2RuO4 is ∼ 5 meV, in Sr3Ru2O7

it is four times larger. In Sr2RuO4, some of the partial gap can be accounted for by the gapping

of the dxy band at the M-point of the Brillouin zone, when a checkerboard charge and nematic

order parameters are introduced phenomenologically into a tight-binding model. In the case of

Sr3Ru2O7, a gapping of the dxy band would not be sufficient to produce a partial gap with a width

of 20 mV, and it is inconsistent with our measurements that suggest that the dxy vHs is split by

significantly less than would be necessary to explain this gap. The fact that we do not observe QPI

patterns corresponding to scattering from the β and γ1 bands in Sr3Ru2O7 might be an indication

that these are gapped out at the surface layer, however, our measurements cannot definitively

confirm or refute this possibility. Nevertheless, it is the presence of such partial gaps that allow us

to detect the vHs peaks in the tunneling spectrum so clearly and to follow their movement under

magnetic field.

The low energy tunneling spectra in both systems show multiple vHs within 5 mV of the Fermi

level. In Sr2RuO4, four vHss are detected, two above and two below EF, whereas in Sr3Ru2O7,

two vHss are observed above EF and one below. In both cases, a visually identical checkerboard

charge modulation is observed in the topographies, which is pinned to the energy of the vHss at

−4 mV in each system, at 0 T. In the case of Sr2RuO4, the phase-referenced Fourier transformation

reveals two peaks at±3.5 mV with opposite phase, consistent with a charge density wave, whereas

in Sr3Ru2O7, the PR-FT shows a strong peak at −3.5 mV and a second peak with the same

phase at 2.3 mV, corresponding to the position of the vHss. As a consequence, the range of bias

voltages over which the checkerboard is visible is wider than in Sr2RuO4. Upon the application

of magnetic field, the vHs in Sr2RuO4 is observed to Zeeman-split, with one of the branches

expected to reach the Fermi level at ∼ 32 T, whereas in Sr3Ru2O7 no splitting of the bands is
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observed, and the measurements are consistent with a vHs crossing the Fermi level at ∼ 11 T. In

differential conductance maps, the checkerboard in Sr2RuO4 follows the Zeeman-split vHs under

magnetic field, whereas in Sr3Ru2O7 a stripe order appears in field, whose strength increases with

the magnitude of the magnetic field.

The QPI measurements show C4-symmetry breaking in both systems. In Sr2RuO4, both short-

range atomic-scale modulations and long-range QPI modulations break C4-symmetry along the

[10] and [01] directions of the tetragonal unit cell. This C2-symmetry is naturally explained by the

dxy vHss becoming anisotropic along the [10] and [01] directions. The remaining QPI patterns,

corresponding to the dxz/dyzstates, remain C4-symmetric. In Sr3Ru2O7, we observe two vHss

which are C2-symmetric along the [10] and [01] directions of the tetragonal unit cell, but the strong

anisotropy in the QPI measurements is seen between the [−11] and [11] directions , together with

the appearance of the stripe order along the [−11] direction under magnetic field. In contrast to

Sr2RuO4, a perturbative nematic order parameter is not sufficient to explain the C2-symmetric

bands observed in Sr3Ru2O7.

The comparison between the two systems highlights how seemingly tiny structural differences

result in dramatically different ground states. It suggests that both increased octahedral rotation

expected of Sr3Ru2O7 and possible tilt and bilayer coupling are necessary to understand the dif-

ferences between the two systems.

6.9 Conclusion

The results presented in this chapter establish the surface layer of Sr3Ru2O7 as a distinct sys-

tem from the bulk. We find that the surface layer undergoes a Lifshitz transition at ∼ 11 T, from

the tunneling spectra and the QPI measurements, which is higher than the field at which the meta-

magnetic transition of the bulk is observed. The evolution of the tunneling spectra in increasing

magnetic field further suggests that the vHs becomes incoherent as it crosses the Fermi energy,

pointing towards the importance of quantum fluctuations in the Lifshitz transition. The QPI meas-

urements at 0 T reveal the presence of three vHs within 5 meV of the Fermi level, two above and

one below EF, as well as states that strongly break C4-symmetry. Applying a magnetic field pushes

one of the vHs across the Fermi level, from positive to negative energies, making the system go

through a Lifshitz transition. No splitting of the bands is observed, suggesting that the surface

already has a magnetic ground state at zero field. Most surprisingly, we find a striped order de-

veloping with magnetic field, whose strength increased with the magnitude of the applied field,

146



which is intimately related with the C4-symmetry breaking states and the movement of the vHs

to lower energies. These results show, for the first time, atomic-scale real space images of mag-

netic field induced nematic states, promising key insights into the microscopic mechanism of the

field-induced nematicity and metamagnetic quantum critical end point in Sr3Ru2O7 and provide

an opportunity to validate the theories aimed at describing the physics close to a metamagnetic

quantum critical end point.
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Chapter 7

Conclusion and outlook

The STM/STS measurements presented in this thesis reveal the rich physics of the ruthenate

systems by unveiling the low-energy electronic states at the surface of Sr2RuO4 and Sr3Ru2O7,

where I have found emergent ordered phases that are distinct from the bulk. This work has implic-

ations on the mechanism for unconventional superconductivity in Sr2RuO4 and the physics behind

the quantum critical end point and nematicity in Sr3Ru2O7, as well as on the interplay between

structural and electronic degrees of freedom in these materials. It demonstrates how the surface of

Sr2RuO4 and Sr3Ru2O7 provide ideal platforms for testing microscopic theories aimed at describ-

ing the effect of strong electron correlations on the electronic structure in general, and specifically

the role of quantum fluctuations in magnetic-field driven Lifshitz transitions.

At the surface of Sr2RuO4, I found that the surface reconstruction, involving octahedral ro-

tations, results in a dramatically different ground state from that of the bulk, stabilizing a check-

erboard charge order intertwined with nematicity. The tunneling spectrum shows a partial gap

of width ∼ 5 meV around the Fermi level, which encloses four van Hove singularities. We find

that both the checkerboard charge order and the nematicity are intimately linked to these van

Hove singularities. Including a weak intraband hybridization and a nematic order parameter phe-

nomenologically into a tight-binding model, we achieved excellent agreement with experiment.

Continuum LDOS calculations using this tight-binding model qualitatively reproduce the experi-

mental quasiparticle interference measurements. By applying a magnetic field along the c-axis, we

observed one of the van Hove singularities to Zeeman-split, with one of the spin branches moving

towards the Fermi level. Extrapolating our data predicts that the van Hove singularity will reach

the Fermi level at 32 T. Our results demonstrate that the surface layer of Sr2RuO4 is a clean two-

dimensional system that provides a textbook example of tuning towards a magnetic field-driven

Lifshitz transition.
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To determine the effects of quantum fluctuations on a Zeeman-driven Lifshitz transition, and

ascertain if it leads to a quantum phase transition, it is necessary to have the van Hove singularity

closer to the Fermi level. Uniaxial strain on single crystals of Sr2RuO4 has been shown to push

the vHs in the direction normal to the applied strain across the Fermi level [7]. Therefore, it is

expected that by applying uniaxial strain to the surface layer of Sr2RuO4, one of the vHs will be

pushed closer to the Fermi energy, so that an applied magnetic field of accessible magnitude in the

laboratory (∼ 22 T) would be sufficient to push one of the Zeeman-split partners across the Fermi

level, allowing to track the shape of the peak in the local density of states associated with the

vHs as it crosses the Fermi level. If quantum fluctuations become important, the peak is expected

to broaden significantly when approaching the Fermi energy, potentially providing direct insights

into their importance when traversing the Lifshitz transition.

Due to the splitting of the vHs under magnetic field, the system becomes spin-polarized, and

when the vHs approaches the Fermi energy, it might be expected that the system forms a spin-

density wave with a possible quantum phase transition. In addition, our results show the ap-

pearance of a field-induced feature at (0,1/3) in differential conductance maps, Figure 5.26. To

determine if there is an underlying magnetic order, spin-polarized STM measurements would be

needed. These measurements would also allow us to investigate if the checkerboard pinned to the

split vHs becomes magnetically ordered. By doing in-plane magnetic field measurements in a vec-

tor magnet, it would be possible to determine if these orders have an in-plane easy axis anisotropy

due to spin-orbit coupling, where if so, they should follow the in-plane component of the magnetic

field.

One of the remaining questions is the absence of the superconducting gap in the tunneling

spectra measured below 100 mK. Our results suggest that the octahedral rotation at the surface

and stabilization of the checkerboard charge and nematic orders suppress the superconducting state

present in the bulk of the sample. For phonon-mediated superconductivity, and if the dominant

phonon is linked to the rotational mode of the octahedra, superconductivity might be expected to

be suppressed once the rotational mode freezes out as happens in the surface layer of Sr2RuO4.

Whether superconductivity is suppressed because the rotational mode is frozen at the surface or

because the checkerboard charge order and nematicity compete with the superconducting order

parameter is an open question. The seemingly contradictory reports in the literature [158,159,165],

call for a more controlled way to observe the superconducting gap since if it was possible to

reliably detect it, STM would be the ideal technique to aid in the quest of identifying the symmetry

of the superconducting order parameter of Sr2RuO4. Possibilities include measuring on a room-

149



temperature cleave, remove a flake of the surface with the tip at low temperatures or covering

the surface with different adatoms [286], in an attempt to suppress the octahedral rotation of the

surface layer.

The measurements at the surface of Sr3Ru2O7 reveal the presence of a partial gap 4 times

wider than the one found at the surface of Sr2RuO4, and three vHs within 5 meV of the Fermi

level, two above and one below, plus a checkerboard charge order reminiscent of that in Sr2RuO4.

Quasiparticle interference measurements reveal strong anisotropy of the scattering patterns, with

C4 symmetry breaking between the [−11] and [11] directions of the tetragonal unit cell, as well

as two van Hove singularities that are two-fold along the [10] and [01] directions. The tunneling

spectra in magnetic field along the c-axis show spectral weight shifting from the unoccupied states

to the occupied states, crossing the Fermi level at a field of∼ 11 T. Field-dependent QPI measure-

ments show that this shift of spectral weight is connected with a vHs crossing the Fermi energy,

associated with a Lifshitz transition of the surface layer. No splitting of the bands was observed,

suggesting that the ground state of the surface layer of Sr3Ru2O7 is already magnetic. The changes

to the tunneling spectra as the vHs is pushed across EF are distinct from the ones expected from a

vHs shift in a Fermi liquid picture, suggesting that quantum fluctuations play a role in this trans-

ition. Our measurements establish the surface layer of Sr3Ru2O7 as having a distinct ground state

from the bulk, undergoing a Lifshitz transition at a higher critical field than the bulk of ∼ 11 T.

To determine if the strong C2 symmetry observed in the QPI along the [−11] direction is

related to spin-orbit coupling, measurements with an in-plane magnetic field are necessary. In

analogy to theories proposed for the field-induced nematicity for bulk Sr3Ru2O7 [205, 208], spin-

orbit coupling in a polarized state can explain the C2 symmetric features. In this case, the C2

symmetric features should follow the direction of the in-plane component of the magnetic field.

The quantum critical end point in an out-of-plane magnetic field appears due to the suppression

of the temperature of a critical end point of the metamagnetic transition observed with an in-plane

magnetic field [15]. By doing a series of measurements with increasing out-of-plane component

it might be possible to track the suppression of a critical end point and determine the onset of

quantum fluctuations for the surface layer of Sr3Ru2O7. To further investigate the magnetic ground

state found at the surface layer of Sr3Ru2O7 and the field-induced stripe order, spin-polarized STM

measurements are necessary. Such measurements will allow us to distinguish between different

possible magnetic ground states such as the E-type antiferromagnetic order and ferromagnetism.

The measurements discussed in this thesis on both the surfaces of Sr2RuO4 and Sr3Ru2O7

show that instabilities present in the bulk are stabilized at the surface layer: checkerboard charge
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order and nematicity in Sr2RuO4 and a magnetic ground state in Sr3Ru2O7. Studies on single

crystals of Sr2RuO4 with increasing Ca doping show that the surface layer usually has an increased

structural distortion compared to the bulk [254, 297], hindering the access to the bulk ground

state with STM. However, by acquiring the distortions of the next doping concentration, it seems

that by studying the low-energy electronic structure of the surface layer it is possible to probe

the ground state of the next doped compound, allowing access to the ordered phases stabilized

with that structural distortion. The implication is that by measuring the surface of, for example,

Ca1.5Sr0.5RuO4, it is possible to study the glassy magnetic metallic phase found in the bulk of

Ca1.7Sr0.3RuO4, which would otherwise be hidden by the increased distortion of its surface layer.

Another example would be the evolution of the ground state with Ca doping in Sr3Ru2O7, where

one could find a concentration of Ca at which the surface layer would stabilize the ground state of

Ca3Ru2O7.

In a wider context, performing both high-resolution tunneling spectroscopy and QPI meas-

urements at temperatures below 100 mK while tuning the magnetic field across the metamag-

netic transitions of other strongly correlated electron materials, such as CeRu2Si2 [103, 298] and

YbRh2Si2 [105, 299, 300], would help to disentangle the underlying changes to their electronic

structures as a quantum critical point is traversed. This will give insight into the mechanisms

behind such transitions with the determination of the role of quantum fluctuations and Kondo-

breakdown in driving them. Due to the high diversity of phases found in strongly correlated

electron materials and their sensitivity to external stimuli, studying their surfaces opens up the

opportunity to find new emergent ordered states and study the materials in parameter regimes not

accessible in the bulk, as we found at the surfaces of Sr2RuO4 and Sr3Ru2O7.
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Appendix A

STM simulated images from DFT

calculations

The ASE package implemented in GPAW includes a module for generating STM topographies

using the Tersoff-Hamann formulation (Eq. (3.6)), with the explicit formula

I =
∫ EF+eV

EF
∑
kn

wk|Ψkn(r)|2δ (ε− εkn)dε, (A.1)

where wk is the k-point weight, Ψkn(r) the wave function and V the bias voltage. The STM

topographs in Figure A.1 were calculated using this module, for constant current 2D scan. The

simulated STM images of the surface of Sr2RuO4, Figure A.1 (a), and Sr3Ru2O7, Figure A.1

(b), show that the high intensity of the charge density at 5 Å above the surface occurs at the Sr

positions. It confirms that the lattice imaged in the STM measurements is the Sr lattice, Figure 5.2

(a) and Figure 6.2 (and all the topographies shown in this work).
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Figure A.1: STM simulated images from DFT calculations of Sr2RuO4 and Sr3Ru2O7. (a) Simulated
STM topographic image at 200 meV, taken 5 Å above the surface of a single layer of Sr2RuO4, with 6◦ of
octahedral rotation. (b) Simulated STM topographic image at 200 meV, taken 5 Å above the surface of a
single layer of Sr3Ru2O7, with the octahedral distortions of the bulk crystal structure. For both cases, the
ground state was calculated within LDA and using LCAO as the basis fucntions, for a slab composed of
a single layer of Sr2RuO4/Sr3Ru2O7 , on a 40× 40× 1 k-grid, with 20 Å of vacuum. The blue and white
circles indicate the position of the Sr and Ru atoms, respectively, in the unit cell.
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Appendix B

Sr vertical corrugation

A structural distortion on a surface, such as a step edge, appears in STM topographies with

a height change that is essentially bias independent. If the checkerboard modulation discussed in

section 6.4 is due to a structural reconstruction of the Sr atoms, with a staggered vertical displace-

ment of the Sr atoms, the checkerboard should be visible at all bias voltages. Figure B.1 shows the

height difference between adjacent Sr atoms, hSr1− hSr2, as a function of bias voltage, extracted

from the unit cell averaged image of each topography taken with each bias voltage. It shows a

sharp peak at −5 mV and it becomes largely bias independent for bias voltages of |V | > 20 mV.

The bias independent part of Figure B.1 will be most representative of a possible atomic displace-

ment, giving an upper bound of ∼ 130 fm for the vertical displacement of the Sr atoms.

Figure B.1: Sr lattice corugation as a function of bias voltage. Height difference between Sr1 and
Sr2 from topographies taken at bias voltages between ±100 mV. The height difference was extracted after
performing an unit cell average of the topographies. The blue and black lines indicate the difference between
Sr1 and Sr2 on two Sr rows on the unit cell.
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Appendix C

Gaussian-type orbitals

To calculate the continuum LDOS in section 5.8.2 using the tight-binding model described in

section 5.8, gaussian-type orbitals were used to perform the continuum transformation. Figure C.1

shows gaussian-type orbitals with the symmetries of the dxz, dyz and dxy orbitals, centered on Ru

positions A (top) and B (bottom). The gaussian-type orbitals show staggered rotation between

positions A and B with an angle of θrot = 6◦ to simulate the octahedral rotation at the surface layer

of Sr2RuO4.

dAdxz dAdyz dAdxy

dBdxz dBdyz dBdxy

Figure C.1: Gaussian-type orbitals used in cLDOS calculations. Intensity plots of the gaussian-type
orbitals used in the continuum transformation in section 5.8.2, with the symmetries of the dxz (left),
dyz (middle) and dxy (right) orbitals, for an angle of rotation of θrot = 6◦ and a spread of φ = 2. The
top and bottom rows show the gaussian-type orbitals centered on Ru positions A and B in the unit cell,
respectively. The lines are the edges of the unit cells considered for the summation.

The spread of the gaussian-type orbitals is a free parameter that is set phenomenologically.
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Figure C.2 shows cLDOS calculations using gaussian-type orbitals with spreads of φ = 1, 2 and

4. Using φ = 2 results in a well-resolved atomic lattice with maxima between the Ru positions.

With φ = 1, the lateral extent of the gaussian-type orbitals is too large to show a well-resolved

atomic lattice, and with φ = 4 it becomes too small, making the rotation of the gaussian-type

orbitals visible.

ɸ=1 ɸ=2 ɸ=4

Figure C.2: Homogeneous cLDOS calculations with different gaussian spreads φ . Calculations per-
formed with the same parameters as Table 5.3, but with npixel = 24 and Vimp = 0, for different spreads φ

of the gaussian-type orbitals, at an energy of −10 meV. Purple and black circles indicate the Sr and Ru
positions.
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Appendix D

Implementation of the Lock-in

algorithm

A typical differential conductance map of 256 pixels over an area of 20 nm takes about three

days to complete, for a spectrum with several dozens of layers. During this time, as a result of

the fast and slow scanning directions, piezo creep and thermal fluctuations, the images will have

picometer size distortions, which render the imaged lattice non-perfect. Let us take the example

of a square lattice. The consequences are more obvious in the Fourier transform: the two sets of

equivalent Bragg peaks are not in an 90◦ angle from each other, and the distance between them

and the center is not the same. Due to the picometer change, these Bragg peaks will not show

up as delta-functions, they will have an intrinsic width due to variations of the periodicity along

the image. These artifacts can be corrected so that the Bragg peaks occupy only one pixel in the

Fourier transform. To this end, we need to apply a transformation to our image that makes our

lattice perfect. This can be done by implementing the Lawler-Fujita algorithm [301], also called

the Lock-in algorithm.

Here, we will implement a ’lock-in method’ to obtain the map phase between the imaged

lattice and a perfect lattice. The perfect lattice is given by

T (r) = cos(qbr1.r+φ)+ cos(qbr2.r+φ) (D.1)

where qbr1 and qbr2 are the q-vectors corresponding to the Bragg peaks (2π/asr, where asr is

the lattice contant of the Sr square lattice), and φ is just a phase. For simplicity, we can consider

qbr1 and qbr2 to be aligned with the x and y directions. For this, we rotate our image in order for

one of the Bragg peaks to be aligned with the y-axis. We take φ as being the phase of the Bragg
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peak taken from the FFT of the topography of the map. We now implement the lock-in method:

we implement two phase-sensitive detections for each spatial direction. The modulation due to

the drift has a characteristic length which is larger than the atomic modulation (there is, it has

a smaller q-vector than the Bragg peaks). Thus, to extract this slow variation, we implement a

low-pass filter with width in Fourier space Λu ≤ 0.5qbr. By doing this, we now have the quantities

X1 and Y 1 (for the other direction X2 and Y 2) which can be seen as the real and imaginary part of

a complex number. Thus, we can extract the slow varying phase by computing the quantity

Θi(r) = arctan2(Yi,Xi) (D.2)

with i = 1,2, the phase along each spatial direction. These phase maps will have jumps of

order 2π , each time it matches a lattice constant. We need to eliminate those jumps from the

images, to make the phasemap single-valued. This is done by implementing a cycle that runs from

the center of the image towards the egdes, and each time it finds a jump it adds 2π .

The last step is to obtain the distortion displacement field. This phase is equal to

Θi(r) = qbri.u(r) (D.3)

and thus, the displacement field can be obtained. Here, the qbri corresponds to the q-vectors

of the perfect lattice. This allows to map the distorted lattice of the map to the perfect lattice.
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Appendix E

Anti-aliasing

When a differential conductance map is taken on a grid with a number of pixels lower than

the necessary to resolve the atomic lattice, the atomic peaks will appear aliased in the Fourier

transform, that is, at a lower q-vector, Figure E.1(a). To recover the q-vector at which they would

appear if the map had been taken with enough pixels to resolve the atomic lattice, the image of

the Fourier transform is unfolded as shown in Figure E.1(b) so that the aliased atomic peaks are

mapped onto their original positions. To correct for the drift distortion, a geometrical transforma-

tion is used to map the anti-aliased atomic peaks onto a perfect square lattice Figure E.1(c). The

aliased maps were used in section 5.9 in Figure 5.19(a), section 6.6 in Figures 6.10 and 6.11, and

in section 6.7.3 in Figures 6.18, 6.19 and 6.21.

90°

Aliased
(a) (b)

Anti-Aliased Undistorted
(c)

Figure E.1: QPI data processing of aliased maps. (a) Fourier transform of a differential conductance map
layer taken on a grid of pixels smaller than the necessary to resolve the atomic lattice. The atomic peaks
(dashed blue circles) are aliased and thus appear at a lower q-vector. The number of pixels used was enough
to resolve the checkerboard so that the reconstruction peaks at (0.5,0.5) (red circles) appear in their correct
positions. (b) Anti-aliased version of (a), where the atomic peaks (dashed blue circles) were unfolded to
their original positions. (c) After the distortion correction algorithm, where a geometrical transformation is
used to map the anti-aliased atomic peaks (blue circles) onto the positions expected from a square lattice.
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