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Abstract

This thesis describes investigations into the origins of the unconventional
electrical transport of the non-magnetic delafossite metals PtCoO2 and Pd-
CoO2 and the magnetic delafossite metal PdCrO2 using focused ion beam
microstructuring techniques. These compounds are among the highest con-
ductivity materials known, with an extreme purity of up to 1 defect in 120,000
atoms. This remarkable purity, together with the hexagonal Fermi surface,
opens the possibility of studying novel regimes of mesoscopic physics.

This work is split into two parts. In the first part, I will review the key
properties of non-magnetic delafossite metals and the application of focused
ion beam microstructuring to transport measurements within low resistivity
materials. The related experimental chapter describes an investigation which
uses the high energy electron irradiation investigation to probe the effects of
a non-circular Fermi surface on the transport within bars and four-terminal,
square-shaped junctions inside the ballistic regime.

The other studies were concentrated on the magnetic delafossite metal
PdCrO2. I will describe a new method of microstructure preparation which
was created for PdCrO2 transport studies but is widely applicable to other
materials. This material obeys the Planckian bound at a wide range of
temperatures between 200 K and 500 K. The accompanying experimental
chapter details an investigation by high energy electron irradiation of the
origin of this behaviour. The new method of mounting microstructures also
allows, for the first time, the study of studying unconventional transport
regimes in PdCrO2.
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Chapter 1

Introduction

Nature provides various materials within which the different forms of the
interactions lead to a wide range of possibilities including insulators, semi-
conductors, semimetals and metals. The main aim of condensed matter
physics is to understand these interactions and the wide variety of collective
behaviour resulting from them. The microscopic interactions between the
fundamental excitations of the solids, e.g. electrons, phonons, magnons etc.,
lead to different macroscopic effects that can be observed, for example, in
transport measurements. One method of characterising the conductivity is by
the mean free path, the average distance travelled by a conduction electron
before a momentum-relaxing scattering event. In most metals, scattering
from defects ensures this length scale is very short, often only a few inter-
atomic distances. However, a small number of materials exhibit a remarkably
high conductivity. The mean free path can reach near macroscopic scales of
tens or even hundreds of microns. With care, elemental metals, such as cop-
per and gold can be prepared with extremely small defect concentrations,
leading to mean free paths in the millimetre scale at low temperature. The
electronic structure in these elements is strongly three-dimensional, allowing
some classes of physics to be accessed, but preventing study of ultraclean
materials in low dimensions where interactions are expected to have stronger
effects.
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In the late 20th century, progress in fabrication technologies allowed
the creation of semiconductor heterostructures, where a 2D electron gas
(2DEG) is formed at the interface between two semiconductors with dif-
ferent bandgaps. Initially, the 2DEG formed at the surface interface had
relatively low mobility. However, in the 1980s and 1990s, the mobility of
2DEGs within GaAs-based heterostructures increased by a factor of over 10
000 [1]. Thus, ultrapure heterostructures and other ultra conductive mate-
rials received high interest in research due to the mean free path, typically
tens of microns, achieved in such structures.

The micron-scale mean free paths were obtained in graphene by 2010,
causing intense study of its electronic transport [2, 3]. The Weyl and Dirac
semimetals recently have been developed as another class of ultrahigh mobil-
ity materials with evidence of a novel mechanism which limits backscattering
[4].

In this thesis, I dedicated myself to studying three compounds from a
class of high conductivity materials different from those described above:
the delafossite metals PtCoO2, PdCoO2 and PdCrO2. The large majority of
layered delafossite materials are insulators or wide-gap semiconductors. A
small number of them are metals with very low resistivity. For example, the
resistivity of PdCoO2 and PtCoO2 at room temperature is smaller than that
of almost every metal except gold, silver and copper. All three compounds
consist of metallic Pd or Pt layers separated by insulating spacer layers of
transition metal oxides. In PdCoO2 and PtCoO2 the Co is in its low spin
state and the spacer layers are band insulating. However, in PdCrO2 the
CrO2 layers are Mott insulating, so nearly free and Mott localised electrons
exist in alternating layers, forming natural heterostructures.

Although PtCoO2 and PdCoO2 were first synthesised almost fifty years
ago, [5], they have only been recently carefully studied. Several advanced ex-
perimental techniques are required to fully establish the fundamental phys-
ical properties of new classes of materials. For example, characterisation of
the Fermi surface is vital to establish essential quantities like the mean free
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path. In the last few decades, the resolution of characterisation techniques
has dramatically improved. Of particular relevance to the materials inves-
tigated in this thesis are the improvements to angle-resolved photoemission
spectroscopy (ARPES) that can directly characterise the Fermi surface and
dispersion relation, allowing determination of properties such as the Fermi
velocity. This technique is particularly well-suited to study of materials with
a quasi-2D electronic structure like the delafossites.

Recently, focused ion beam (FIB) scultping has created many new and
exciting opportunities for investigating materials. This comparatively young
technique has just started to transform traditional sample fabrication meth-
ods. In principle, the FIB is a unique tool that can precisely remove material
while preserving the crystalline quality of the remaining material. Lamel-
lae of any desired orientation can be cut from single crystals, a capability
that has seen widespread use in the preparation of samples for transmission
electron microscopy.

Figure 1.1: An example of the possibilities brought by FIB sculpting: An
SEM image of PtCoO2 bar with 400x200 nm corrugations cut using a FIB.

However, the potential use of FIB is not limited only to lamela cutting.
Various physical regimes can be implemented by tuning the sample dimen-
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sions across an intrinsic, characteristic length scale of the system. Therefore,
FIB becomes an indispensable tool for such studies. The example of possi-
ble microstructuring of a PtCoO2 bar to produced corrugated boundaries is
shown in fig. 1.1. Because FIB sculpting can go down to tens of nanometer
scales, once the challenges related to a material cut discussed in Chapter 3.2
are overcome, the microstructuring procedure is limited only by the set goals
and user's imagination. However, the FIB microstructuring of materials has
only been developed within the last decade. It is still a relatively new tech-
nique with many open questions and opportunities. In this respect, I will
show new ways of using microstructuring techniques in Sections 3.3 and 6.1.

Microstructured devices not only provide accurate resistivity measure-
ments but also offer the possibility of investigating mesoscopic transport
regimes, which are difficult but not impossible to achieve in many materi-
als. In the mesoscopic regime, the sample shape and dimensions become
relevant parameters for the observed behaviour as the device's size is shorter
or comparable with the mean free path. Throughout this thesis, form and
size influence will be an underlying theme when studying ballistic regimes in
non-magnetic PtCoO2, PdCoO2 (in the first part of my thesis) and magnetic
PdCrO2 (in the second part of my thesis) in various devices geometries.

The thesis consists of two parts. The first one explores non-magnetic
delafossite metals as follows:

Chapter 2 outlines the properties of non-magnetic delafossite metals
PdCoO2 and PtCoO2 and the background physics of conduction of electrons
in metals which are most relevant for understanding the studies described
within later chapters.

Chapter 3 gives a basic overview of the sample preparation procedure. I
discuss the FIB and the effects of FIB irradiation on the target material, the
'classical' and 'new' techniques used to create microstructures and methods
that we use to measure the resistivity of microstructures made from ultrapure
delafossite metals. The high energy irradiation experiment used to introduce
additional defects to the delafossite metals is also outlined.
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Chapter 4 investigates ballistic transport in PtCoO2 thin bars and within
square-shaped junctions, which were structured using the FIB to have a
device's width approximately equal to the electron mean free path, bringing
them into the ballistic regime. I studied the ballistic decay in both these
types of devices in PtCoO2, decreasing the mean free path of electrons by
high energy electron irradiation.

The second part of my thesis is dedicated to the properties of the magnetic
delafossite metal.

Chapter 5 describes the properties of magnetic delafossite metal PdCrO2

and the background physics of Planckian dissipation, which are most relevant
for understanding the studies presented in Chapter 6.

Chapter 6 describes the 'new free-standing method' of creating mi-
crostructures of PdCrO2. In this chapter, I investigate Planckian dissipation
in PdCrO2 and its dependence on elastic and inelastic scattering, the nature
of unconventional transport regimes and the influence of the exotic coupling
between conductive and magnetic layers on magnetotransport.

Chapter 7 gives conclusions and an outlook for future work.
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Chapter 2

Non-magnetic delafossite
metals: PtCoO2 and PdCoO2

The delafossite metals are a new class of ultrahigh purity metals. The com-
bination of the ultrahigh purity and simplicity of the band structure make
these metals a model system for the study of electrical transport within low
resistivity materials. I have performed some such studies, in both as-grown
crystals and crystals that I have deliberately disordered using high energy
electron beam irradiation. In this chapter I will first review the properties
of the two non-magnetic delafossite metals, PtCoO2 and PdCoO2, that I
have worked with, and introduce background physics relevant to those stud-
ies. In the second part of the chapter I will give introductions to the main
experimental techniques that I have used.

In the most general terms, delafossite materials have the generic formula
ABO2, where A is either Pt, Pd, Ag or Cu and B is a transition metal such
as Co, Cr, Rh, Fe, Sc, Ga, Al, Ga, Tl or In. Most of the delafossite materials
are insulators or semiconductors. As shown in fig. 2.1, the A sites form
triangularly coordinated planes between layers of B site octahedra, with the
A site cations linearly co-ordinated with the oxygen cations located at the
octahedra vertices [5]. Most delafossites are insulating or semiconducting and
frustrated magnetism is often present due to the triangular co-ordination of
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the B site in-plane [5].

Figure 2.1: The delafossite crystal structure.
The A-site cations are the large red spheres
and the oxygen cations are the smaller black
spheres. The grey B-site cations are within
the octahedra.

The synthesis of 18 delafossite materials was published in 1971 [6, 7, 8]
by Shannon and co-workers. In Pt and Pd based oxides, they found highly
conductive metallic behaviour with the resistivity of 2 µΩcm in PdCoO2 and
3 µΩcm in PtCoO2 at 300 K in the ab plane. The values of these remarkably
small resistivities are smaller than those for pure Pt or Pd metals. They also
noted a high anisotropy of resistivity: the ratio between the ab plane and
c-axis resistivities was over 1000 for PtCoO2 and PdCoO2. Despite these
remarkable results, the delafossite metals were not paid too much attention
for about two decades. In 1997 the first measurements of the temperature
dependence of the resistivity were reported by Tanaka et al. [9, 10]. However,
the in-plane resistance ratio (ratio of the room temperature resistivity and
in-plane resistivity at 4 K) for this work was a modest 10. In 2007 Takatsu
et al. grew new crystals of PdCoO2 with increased in-plane resistance ratios
of over 400 [11]. And then the growth of the first single crystal of the related
compound PdCrO2, with in-plane resistivity ratios of over 200, was reported
in [12].

In delafossite metals transport of the electrons occurs through the metallic
A layers, and the BO2 layers are insulators. This quasi 2D conduction makes
delafossite metals behave like natural heterostructures. However, to predict
the correct band structures and Fermi velocities, electronic correlations in

7



2.1 Resistivity and scattering in ordinary
metals

the insulating layers must be taken into account. These correlations may
play an important, but not completely understood, role in high conductive
electronic transport in delafossite metals.

2.1 Resistivity and scattering in ordinary
metals

To better understand the unusual transport properties of delafossite metals,
I have to discuss the origin of the temperature dependence of the resistivity
in ordinary metals. In a free electron gas, the simplest kinetic model assumes
that the microscopic behaviour of electrons may be treated classically. This
approach was proposed in 1900 by Paul Drude [13]. Formula (2.1) shows
the Drude conductivity definition, where τ is the relaxation time, m∗ is the
effective mass of the electrons, and n is the density of electrons.

σ =
ne2τ

m∗
(2.1)

The kinetic method determines the conductivity of Fermi gas at a specific
temperature, assuming all scattering processes being identical. The only
property that this theory considers is a probability that the particle will
make a collision in the infinitesimal time interval. I can define this theory
as a purely classical one, and Drude made incorrect assumptions about the
nature of electronic scattering. However, the basic form of eq. 2.1 can still
be used to parameterising semiclassical transport in quantum materials, and
is widely used in the modern literature. Sommerfeld applied the principles
of quantum mechanics to classical free electron theory.

According to quantum theory, specifically the Pauli principle, the free
electrons occupy different energy levels, up to the Fermi level. Electrons at
the Fermi level have the Fermi velocity vF . At the origin of wave-vector
space (k-space), electrons are sitting on sphere of radius kF . This sphere is
also known as the Fermi sphere. If we apply an electric field E along the

8



2.1 Resistivity and scattering in ordinary
metals

Figure 2.2: a) The shift of the Fermi surface in k-space under electrical field
E. b) quasiparticles as excitations model

x-direction, the Fermi surface shifts along this direction as force eE acts on
each electron (fig. 2.2a). In the Drude-like picture each state in the Fermi
sphere is displaced by h̄dk = -eEdt. However, this is an entirely wrong
picture from the quantum theory point of view.

We can consider the filled Fermi sea at T = 0 as inert, so it is like a vacuum
(fig. 2.2b). Temperature and external fields excite special particle-antiparti-
cle pairs, illustrated as small circles and holes in fig. 2.2b respectively. It is
important to note here that the energy scale of the field is low, and excita-
tions take place near the Fermi surface, i.e. dk<<kF . Compared to a quasi
electron with the same wave-vector k, the quasi-hole has opposite charge
and spin, opposite mass and therefore opposite kinetic energy, and the same
group velocity v = dε/h̄dk, where the ε-k relation is that of the plane-wave
states.

To simplify the derivation of conductivity, I will consider the 2-D case.
By applying electric field E, I excite quasi-electrons and quasi-holes from the
vacuum, and thus, the number per unit area of quasi-particles is:

nqe = nqh =
kF eEτ

h
, (2.2)

where, nqe is the number per unit area of quasi-electrons, and nqh is that of

9



2.1 Resistivity and scattering in ordinary
metals

quasi-holes.
The current from the quasi-electrons can be determined by the number

of them multiplied by the average component of their velocity along the
direction of the applied electric field:

jqe = jqh =
kF e

2Evxτ

h
(2.3)

As the charge and the average velocity of quasi-holes are opposite to that
of the quasi-electrons, the current of quasi-holes jqh is the same as the current
of quasi-electrons jqe. Thus, both types of excitations add to the total current
instead of cancelling each other out. The total conductivity can be calculated
by:

σ =
jtot
E

=
2kF e

2τvx
h

=
e2kF l

h
=

ne2τ

m
, (2.4)

using the general relation for the mean free path l = vF τ and for the free
electron ones n = k2F

2π
and vF = h̄kF

m
.

Thus, the quantum theory gives identical (2.1) to the Drude theory defi-
nition of conductivity. So purely classical theory and quantum one give the
same answer, even though one of the theories is incorrect. However, this is
only the case for a sphere. Fermi surfaces in solids are not always spherical.
In this case, the Drude-like picture is wrong, and the conductivity must be
calculated using a Fermi surface integral. After that is done, the parame-
ters are sometimes averaged across the whole Fermi surface(s) and expressed
using the form of 2.1, so it is important to know that seeing something writ-
ten in the form of 2.1 does not imply that the actual material has a simple
spherical Fermi surface.

2.1.1 Electron-phonon scattering

To bring this electron model closer to real metals, I will consider the positive
ion cores in the solid through a periodic potential. There are temperature
dependent vibrations, known as phonons.
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2.1 Resistivity and scattering in ordinary
metals

In ordinary metals, a considerable contribution to electrical resistivity
arises from the scattering of electrons by lattice vibrations and defects. At
temperatures higher than the Debye temperature, the quantisation of phonons
is irrelevant, because all the phonon modes are excited. The scattering is pro-
portional to the square of the amplitude of the fluctuations of the ions about
their equilibrium state. Thus the scattering is almost elastic. Each scattering
event consists of emitting or absorbing a phonon with a short wavelength.
In every scattering event, the momentum changes significantly. The electron
can not change energy more than ΘD, but the ionic vibration amplitude, and
hence the scattering cross-section, is proportional to temperature. Therefore,
the resistivity of the metal will be proportional to T (2.5) [14].

ρ ∼ T, T > ΘD (2.5)

Below the Debye temperature, the electron-phonon interactions play a
significant role. At low temperatures, the resistivity of metals falls very
rapidly. Taking into account an additional estimate of a Debye phonon spec-
trum, an approximate solution of the Bloch-Boltzman equation will give the
Bloch-Grüneisen formula (2.6) [14].

ρ ∼ T 5, T << ΘD (2.6)

The simple presentation of the electron-phonon scattering in fig. 2.3,
can explain the temperature dependence of the resistivity in (2.6). In the
scattering process, an electron will emit or absorb a phonon. Thus, it will
change its state with wave vector k and energy Ek to the state with wave
vector k′ and energy E ′

k. Due to energy and quasimomentum conservation,
the energy of the phonon should satisfy the following relation:

Ek = E ′
k ± h̄ω(k−k′) (2.7)

This relation limits the possible wave vectors q of the phonons capable of
participating in scattering processes:

11
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ω(q) = ±1

h̄
(Ek+q − Ek) (2.8)

When the temperature is lower than the Debye temperature h̄ω<kBT

phonons have wave vectors q an order of kBT/ch̄ or less. Thus, all the
phonons that can participate in the scattering process will be inside the
purple sphere in fig. 2.3.

Figure 2.3: a) Electron-phonon scattering. At temperatures T < ΘD

phonons, that can participate in scattering process, have wave vectors in
the sphere with diameter kBT/ch̄, where c is speed of sound in the material.
b) Umklapp electron-phonon scattering.

According to the Debye law, the total density of phonons is proportional to
T 3. Each phonon has small momentum proportional to T so that the electron
can change direction by a small angle (fig. 2.3a) at each scattering process.
If the angle is small, the scattering depends on the square of the angle. Thus,
it gives another factor of T 2. The overall effect is proportional to T 5 [14].
A smooth curve describes the temperature behaviour of resistivity between
high and low temperatures. In 1933 Grüneisen showed that the experimental
data for a wide range of metals fit this curve remarkably well [15].

The above example of scattering describes the electron-phonon process
only inside one Brillouin zone, which is also called a normal process. If a
phonon has sufficient momentum, it can transfer an electron to the Fermi
surface of the neighbouring band. In the simplest case, sketched in fig. 2.3b,
there is a minimum phonon q-vector at which Umklapp processes become
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possible. Thus, for the closed Fermi surface the activation energy for the
umklapp process is ch̄q, where c is the speed of sound in the material. With
the nearly free electron model, there is a large change in the velocity of
electron due to the umklapp scattering. Metals, free of defects, have finite
conductivity because the umklapp scattering can occur. The q-vector shown
in fig. 2.3a is a minimum wave vector of a phonon that can participate in an
umklapp process. At temperatures below those corresponding to the energy
of q-vector (kBTU = ch̄q), the contribution from umklapp scattering to the
transport of electrons should drop exponentially as the number of phonons
participating in the scattering is proportional to exp(–h̄ωmin/kBT ). Thus the
resistivity is ∼ exp(-TU/T ) [14, 16]. The exponential rise of the conductivity
at low temperatures was observed in ultra-clean alkali metals [17, 18].

2.1.2 Electron-defect scattering

Beside scattering electrons by phonons, a considerable contribution to elec-
trical resistivity arises from defects. Generally, crystalline defects mean any
region where ions' microscopic arrangement is different drastically from that
of a perfect crystal. Defects in crystals come in a seemingly endless variety.
But here, I will mention two more essential types of defects that are signifi-
cant for my experiment: vacancies and interstitials. These are the point-like
defects consisting of the absence of ion or the presence of extra ion.

Figure 2.4: A: Bravais lattice with Schottky defect. B: crystal with Frenkel--
type defects: equal number of vacancies (red) and interstitials (blue)

The simplest kind of defect is a vacancy or a Schottky defect on a monoatomic
Bravais lattice (fig. 2.4A). It occurs when a Bravais lattice site has no ion

13



2.1 Resistivity and scattering in ordinary
metals

associated with it. In general, of course, there could be many types of va-
cancies, for example, in polyatomic crystals. There is also the possibility of
an extra ion occupying a region not occupied in a perfect crystal; in other
words, an interstitial. The case of a defect consisting of one vacancy and one
interstitial atom is known as a Frenkel pair defect (fig. 2.4B) [16, 14].

The question that I would like to answer here is how electron scattering
from impurities happens in metals. Most types of defects and impurities are
ionised. In metals, the wavelength of electrons at the Fermi surface is usually
comparable to the size of the defects so that diffraction can not attenuate
the scattering processes.

Figure 2.5: The schematic of the scattering of electron by a defect with charge
Z.

To simplify the case, I will consider the scattered electrons as free ones.
Fig. 2.5 illustrates the scattering of the electron by the defect with charge Z.
Thus, the scattering power depends only on the form of a potential associated
with a defect. Because metals have conduction electrons, it is impossible to
have a bare electrostatic charge. We have to take into account screening by
these electrons. The impurity potential will fall off much more rapidly to
zero at large distances than the simple Coulomb field Ze/r emanating from
the charge of the defect Z [19]. Thus, this defect creates the potential:
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φ = −Ze
e−κr

r
, (2.9)

where κ is the inverse Debye radius, equal to:

κ = (4πe2
δn

δµ
)1/2 (2.10)

The differential cross-section per unit solid angle, which characterises the
probability of scattering through the angle θ between k and k' states is [14]:

Q = (
2mZe2

h̄2 )2(
1

(|k − k′|)2 + κ2
)2 (2.11)

Electrons screen the Coulomb potential at the Debye radius κ−1, which
can be estimated as of order the interatomic distance (κ ∼ a ∼ 10−8cm).
Thus, for describing the contribution of impurities to the resistivity, we can
consider scattering of electrons by hard spheres. In the simplest ionic picture
that I presented, the electron scattering process is elastic and isotropic in
direction. If ni is the density of impurities in metal, the electron travels
between collisions by the distance:

l ∼ (niQeff )
−1 (2.12)

where Qef f is the effective scattering cross-section. Using the Drude for-
mula 2.1 we can derive the conductivity [19]:

σ ∼ ne2τ

m∗
∼ ne2l

m∗v
∼ ne2

pniQeff

, (2.13)

where p is the electron momentum.
Thus the impurity contribution to the conductivity is independent of the

temperature. This contribution gives the minimum resistivity of the metals
at low temperatures.

The next question that comes to the mind is how the total resistivity of
a metal behaves if there are several scattering sources? If the presence of
one mechanism does not alter the other mechanism, then it is reasonable to
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postulate that the total collision rate will be given by the sum of the collision
rates due to separate mechanisms. In addition, we assume a k-independent
relaxation time for each mechanism. Since the resistivity is proportional to
1/τ , for the total resistivity we will have:

ρ =
m∗

ne2τ
=

m∗

ne2τ1
+

m∗

ne2τ2
+ ... = ρ1 + ρ2 + ... (2.14)

This proposition is known as Matthiessen's rule.

2.1.3 Electron-electron scattering

Going beyond the independent electron approximation, we should also con-
sider scattering between the electrons. The interactions between electrons
were considered first by Landau in Fermi liquid theory, which describes the
electrons in a solid as quasiparticle excitations that arise from liquid with
electron-electron interactions [16].

Figure 2.6: The distribution function for independent electrons on the left
and for Fermi liquid on the right. Z quantifies the interaction strength be-
tween the electrons

The quasiparticle states emerge continuously from the stationary inde-
pendent electron states, with a slow introduction of interactions. The quasi-
particles conserve the flavour of the fundamental electrons by preserving the
Fermi surface. The Fermi-Dirac distribution shown in fig. 2.6 evolves under
the electron-electron interactions. The value of the Z parameter charac-
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terises the interaction strength: the stronger the interaction is, the smaller
Z. The distribution function for the electron liquid has some similarities with
a thermally broadened gas distribution function, but one crucial difference
is that there is still a discontinuity of the derivative at the non-interacting
Fermi surface. Therefore, the possible number of k states for an electron to
scatter into will be smaller with lower T [14, 16]. All the complications of
the spread of occupancy caused by the interactions have disappeared, and
we have a straightforward distribution function near the Fermi surface, if we
describe the system not in terms of electrons but quasiparticles formed from
the superposition of single electron states, as the excitations determine the
properties of metals in the vicinity of EF . Thus, a fraction T/TF of electrons
around the Fermi surface (with T << TF ) participate in the transport in a
metal. This is the connection to the original system, which can be explained
by adiabatic continuity. The effect of correlation between the electrons can
be seen in the effective mass of electron me higher than the free electron
mass.

Therefore, the scattering probability of the interacting electrons can be
treated independently, taking a similar approach to the scattering mentioned
above sources and added in parallel to derive the overall scattering probabil-
ity,

1

τ
=

1

τph
+

1

τd
+

1

τe
, (2.15)

where τph is electron-phonon scattering, τd is electron-defect scattering,
and τe is electron-electron scattering.

The electron-electron scattering process shown in fig. 2.7 can be presented
as a perturbation to a filled Fermi sea by introducing a quasiparticle with
energy E ′′ > EF . A quasiparticle with energy E ′′ above the Fermi surface
scatters off another one from the Fermi sea and drops energy E0 to create
an additional particle-hole pair. Only states within kBT around the Fermi
surface participate in the scattering. The probability of a quasiparticle decay
in a 3D case can be calculated as:
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Figure 2.7: Schematic of electron-elec-
tron scattering in a qausi-particle pic-
ture.

1

τe
= Aee

1

h̄

(kBT )
2

EF

, (2.16)

where Aee is a constant of order 1 – 100 and the ratio kBT
EF

indicates the
fraction of phase space available for the initial and final states [16].

The same approach can be extended to the 2D case. However, in a planar
geometry, the phase space available for scattering introduces an additional
factor to the decay rate. At the temperatures kBT << EF the 2D scattering
rate is given by [20],

1

τe(2D)

= − 1

2πh̄

(kBT )
2

EF

ln(
kBT

EF

) (2.17)

For the typical metal, EF is of the order of a few eV, and at room temper-
ature, kBT is of the order of 10 meV. If Aee ∼ 1, for both 2D and 3D cases
of Fermi surface τ e is of the order of 10−11 s. However, relaxation times for
other scattering processes are of the order of 10−14 s [16]. Therefore, at room
temperature, the electron-electron scattering has a negligible effect on resis-
tivity. As the scattering rate falls as 1/T 2ln(kBT/EF ) with temperature, it
has a minor impact throughout the temperature range down to the lowest
achievable temperature. At very low temperatures where the phonon contri-
bution is insignificant due to few thermal vibrations and when the impurity
scattering is significantly low, a prominent signature of e-e scattering could
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Figure 2.8: The electron-electron U-process involving two electrons with
wavevectors k1 and k2 given by k1 + k2 = k3 + k4 + G, where k4 − k2 =
k′′. The black (white) arrows illustrate the minimum (maximum) wavevector
available for a U-process.

be seen in the resistivity. For example, Sr2RuO4 has a T 2 dependence of the
resistivity up to almost 25 K [21].

Similar to the case of electron-phonon interaction, the electron-electron
scattering also possesses normal and umklapp processes. The electron-elec-
tron umklapp process, shown in fig. 2.8 and can be expressed as k1 + k2 =
k3 + k4 + G or similar to the phonon-electron umklapp shown in fig. 2.3b
as k′ = k1 + k′′+G. Only an electron in a region 2kBT can provide the
change in wave-vector k′′, therefore, the number of electrons for the umklapp
is compelled by ω(kF ) - kBT/h̄ < ω(k′′) < ω(kF ) + kBT . However, there is
a difference between the electron-electron and the electron-phonon umklapp
processes. The temperature in electron-electron U-process cannot be used
as a parameter to tune the number of available electrons as for phonons in
the electron-phonon case, as only the electrons near the Fermi surface can
participate.

The temperature dependence is contained in the same phase space ar-
gument for the normal scattering process giving a T 2 dependence. For the
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closed Fermi surface, electron-electron umklapp is possible only for kF ∼
G/2, because when kF << G/2, the electrons do not have sufficient wave
vector to scatter to the next Brillouin zone. In the case of kF > G/2, the
phase space available for the umklapp processes increases and, therefore, the
probability of electron-electron umklapp scattering is enhanced.

Contributions from different scattering mechanisms dominate the resis-
tivity of metal, depending on the measurement temperature. The Debye
temperature for typical metals is around room temperature, and hence, the
phonons have enough thermal energy for normal and umklapp processes at
room temperature. The scattering cross-section for the defect contribution
is, however, temperature-independent. The contribution of electron-electron
scattering is usually negligible compared to the phononic one at high tem-
peratures. Thus, with decreasing the temperature, either the T 5 or e−TU/T

dependence should dominate the resistivity. In a Fermi liquid, at low tem-
peratures, T << ΘD, the population of phonons is negligible, hence, T 2 dom-
inates the resistivity due to the electron-electron interactions. At sufficiently
low temperatures, only the constant contribution from impurities is observed
in resistivity as all the other scattering mechanisms are extinguished.

2.2 Electronic structure and Fermi surface of
the non-magnetic delafossite metals

Shannon and co-authors grew a single crystal of PdCoO2 and established
the unusual valence character of Pd1+Co3+O2− [8]. Pd1+ is an unusual state
that had never been observed in an oxide. In 1998 [22, 23] Tanaka et al. and
Higuchi carried out photoemission spectroscopy (PES) studies on low-purity
single crystals and determined a Pd domination of the states at the Fermi
energy. In addition, they did specific heat measurements and proposed that
the high conductivity of PdCoO2 may come from Pd 4d-5s hybridisation as
the coefficient of the T-linear term lay between the typical values for s and d

electron materials. Similarly, Higuchi et al. proposed Pt 5d-6s hybridisation
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for PtCoO2 [24].
Trying to understand the origin of the quasi 2D behaviour of PdCoO2

and PtCoO2 the electronic structure of PdCoO2 and PtCoO2 was calculated
by DFT in [25]. Eyert et al. confirmed that electrical conductivity in these
materials is based on a Pd d-orbital derived Fermi surface. In PdCoO2 and
PtCoO2, Co is in the low spin 3d6 state, meaning that CoO2 layers are non--
magnetic, in contrast to the CrO2 layer in PdCrO2, that I will discuss in
Chapter 5. Eyert et al. regarded the CoO2 insulating layer as a charge car-
rier reservoir and suggested this as a reason for the Pd-Pd interlayer coupling.
They also established that the strong anisotropy of the electric conductivity
is caused by the cylindrical Fermi surface that is shown in fig. 2.9. There-
fore, the non-magnetic delafossite metals are natural heterostructures of high
conductivity metallic layers and band insulators.

Figure 2.9: Fermi surface of PdCoO2. Reproduced from [25].

One of the most direct ways to study the electronic structure of solids
is angle-resolved photoemission spectroscopy (ARPES). Photoelectron spec-
troscopy is based on the application of the photoelectric effect observed by
Hertz and explained by Einstein, who recognised that when light is incident
on a sample, an electron can absorb a photon and escape from the material.
We can obtain information on the energy and momentum of the electrons
propagating inside a material by measuring the kinetic energy and angular
distribution of the electrons photo-emitted from a sample illuminated with
sufficiently high-energy radiation [26].
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The first ARPES measurements by Noh et al. [27] confirmed the bulk
electronic structure predicted by DFT. ARPES measurements of PtCoO2

showed the similarity of the Fermi surface to that of PdCoO2. The Fermi
surface of PtCoO2 has sharper corners and more rounded facets. Such studies
in PdCoO2 and PtCoO2 have shown their bulk Fermi surfaces to be single
band, half filled, and with a broadly hexagonal cross-section, as shown in fig.
2.10 [27, 28]

The ARPES studies also allow measurement of the dispersion of the con-
duction band, which enables the calculation of the Fermi velocity. Such
measurement of the dispersion of the conduction band for PtCoO2 is shown
in figure 2.11. It is linear, sharp and steep in both cases. The Fermi veloc-
ities are huge, in the case of PtCoO2 within 20% of the free-electron value
[28]. Thus, we can conclude the nearly free electron nature of the conduction,
which originates from the s-orbital contribution to the conduction band.

Another way to determine the Fermi surface of a material is by studying
the de Haas van Alphen effect (dHvA), is a quantum mechanical effect in
which the magnetic susceptibility of a metal oscillates as the magnetic field
is increased. In an external magnetic field, the orbits of electrons in k space
are quantised into so-called Landau levels. Because the quantisation hap-
pens in reciprocal space, the distance between these levels is proportional
to 1/B. Thus, the physical quantities, for example, magnetic susceptibility
will oscillate in the external magnetic field with period proportional 1/B.
Knowing the angular and temperature dependence of these oscillations, we
can reconstruct the Fermi surface of the metal [16]. The dHvA effect is far
better than the ARPES at establishing the Fermi area because it is a bulk
probe, and not subject to the surface charging effects that can affect ARPES.

The dHvA measurements by Hicks et al. for PdCoO2 [29] and Arnold et

al. for PtCoO2 [30] confirmed the conclusions from ARPES. They observed
in these two materials two high frequencies, corresponding to neck and belly
orbits, alongside a beating frequency. These oscillations had a 1/cos(θ) an-
gular dependence (θ is the angle of the magnetic field to the z-axis), proving
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Figure 2.10: The first published angle resolved photoemission Fermi surface
of PdCoO2. a) The Fermi surface observed by Noh et al. via ARPES before
and b) after thermal cycling to remove surface states. Reproduced from Ref.
[27]. c) Fermi surface of PtCoO2 measured by ARPES integrated. The solid
line represents the Brillouin zone. d) The dots represent the Fermi momenta
extracted from (c) by radially fitting momentum distribution curves (MDCs)
around the measured Fermi surface. Reproduced from Ref. [28]

the cylindrical nature of the Fermi surface. The dHvA effect also allows cal-
culating the effective mass by fitting so-called the Lifshitz-Kosevich formula
by the temperature dependence of the oscillation amplitudes [16]. Thus, cy-
clotron masses for PdCoO2 and PtCoO2 from dHvA measurements [29, 30]
are around 1.5 me and 1.05 me respectively, where me is the free electron

23



2.2 Electronic structure and Fermi surface of the non-magnetic
delafossite metals

Figure 2.11: Left panel: The electronic structure of PtCoO2 in the direction
Γ-K as measured by ARPES. Right panel: Dots showing the peak position of
fits to the momentum distribution curves along the Γ-K and Γ-M direction.
Linear fitting to this data allows for the calculation of the Fermi velocity.
Reproduced from Ref. [28].

mass. The PtCoO2 value is in agreement, within experimental error, with
the value from ARPES of 1.14 me for PtCoO2 [28].

However, the small electron masses confirmed experimentally contradict
the purely d-orbital picture of the conduction band shown by early DFT
calculations in PdCoO2. Pure d-bands are expected to have higher effective
masses. Eyert et al. [25] focused on determining the dominance of Pd 4d or
Pt 5d orbitals at the Fermi energy. This inconsistency proves the possible
s-d hybridisation in these materials. The DFT calculations computed by
Ong et al. [31] showed a small contribution from Pd 5s orbital located at
adjunct sites in the ab plane at the Fermi level. The hybridisation of d and
s electron physics leads to a highly faceted Fermi surface occupied by nearly
free electrons, causing the novel transport behaviour in the ballistic regime
that I will discuss in Chapter 4.
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2.3 Transport properties of the non-magnetic
delafossite metals

The measurements of resistivity in delafossite metals are challenging because
of the tiny resistance of typical samples and because of the large anisotropy
of resistivity between in-plane and c-axis transport. When the current has
top-surface injection, it penetrates the full depth of the crystal only after
an extended distance in the ab-plane due to anisotropy. The first published
PtCoO2 room temperature resistivity [7] was 3 µΩcm. In the latest research,
Nandi et al. [32], used focused ion beam microstructuring techniques to en-
sure a homogeneous current profile, and reported a record for oxide of 1.8
µΩcm room temperature resistivity. It indicates the significant impact of
this effect on the measured properties and emphasises the importance of the
careful fabrication method of the delafossite resistivity device.

Figure 2.12: The PdCoO2 temperature dependence of the resistivity a) ab
plane b) c axis with fits. Reproduced from [29].

The first careful measurements of the temperature dependence of the Pd-
CoO2 resistivity in the ab plane and along the c-axis were done by Hicks et al.
[29] (fig. 2.12). The different overall scale of the resistivity in fig. 2.12a and
b proves the quasi 2D nature of the electron transport. The c-axis resistivity
fig. 2.12b shows the features of the fermi-liquid behaviour with a + AcT

2 +
cT 5 temperature dependence, where a, Ac and c are constants.
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However, the ab plane resistivity fig. 2.12a does not show the typical
electron-phonon T 5 Bloch–Grüneisen behaviour and is well fitted with the
activated function a+be−T/T0 . Normal electron-phonon scattering relax mo-
mentum and dominates in resistivity. However, in some materials, for exam-
ple, in alkali metals [33], the phonon population is pushed out of equilibrium
by electron flow. In this situation, the electron-phonon collisions do not re-
lax momentum but only transfer it between electrons and phonons. Thus,
this scattering does not contribute to resistivity. This so-called phonon drag
effect can be one possible explanation of the activated behaviour of PdCoO2

[34, 35].
As I discussed above, momentum can be transferred to the lattice through

umklapp processes. For in-plane conduction in PdCoO2, the Fermi surface is
closed, and there is an activation energy kBTU = ch̄kU , where c is the speed
of sound in PdCoO2 and kU is the minimum wave number for umklapp pro-
cesses (illustrated in fig. 2.12a). In PdCoO2 kU = 0.5 Å. This leads to
the observed activation temperature of 165 K [29, 34]. Below this tempera-
ture, umklapp scattering is suppressed, electron-phonon scattering transfers
momentum between electrons and phonons but does not relax it, and the
temperature dependence of the resistivity is exponential.

There is a slight in-plane resistivity upturn at temperatures below 10
K fig. 2.12a. It varies between crystals and is more extended in PtCoO2.
This effect does not weaken in an external magnetic field and also there is
no sign of magnetic impurities that might contribute to a Kondo effect [34].
Therefore it is unlikely the Kondo effect [31] and has an undetermined origin.

The resistivity-derived mean free paths of PdCoO2 and PtCoO2 at low
temperatures are around 20 µm and 5 µm respectively, and therefore are ex-
tremely large for metals. However, these values are different from the Dingle
mean free path 0.6 µm and 0.3 µm, determined from the dHvA experiment
[29, 30]. This discrepancy suggests that small-angle scattering, which reduces
the Dingle mean free path but does not contribute significantly to resistiv-
ity, is more frequent than large-angle scattering. Additionally, the hexagonal
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Fermi surface limits the impact of small-angle scattering on electron trans-
port [30]. If the scattering happens between states on the same facet of the
hexagon, it does not significantly affect the resistivity as the electron trajec-
tory is not changed. But the small-angle scattering would still broaden the
Landau levels and therefore decay the quantum oscillations. I will discuss
the influence of the high symmetry Fermi surface on transport in delafossite
metals later in Chapter 4.

In Ref. [36] we studied the origin of such a long mean free path. A
key question is whether these extremely low resistivities result from strongly
suppressed backscattering due to special features of the electronic structure
or are a consequence of highly unusual levels of crystalline perfection. The
results of the irradiation experiment confirmed the second scenario. The
as-grown crystals have an extremely low number of in-plane defects of ap-
proximately 0.001%. These results demonstrate that crystalline perfection is
the crucial factor in achieving the long mean free paths and emphasises how
unusual these delafossite metals are compared to the vast majority of other
oxides and alloys. However, the irradiation experiments answer only 'how'
questions. Thus, it is still not understood 'why' as-grown delafossite metals
are so pure.
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Chapter 3

Sample preparation

Delafossite crystals PtCoO2, PdCoO2 and PdCrO2 usually grow in a hexag-
onal platelet shape with thickness typically about 1 – 6 µm for PtCoO2 and
5 – 15 µm for PdCoO2 and PdCrO2. The size of the crystals in the ab-plane
usually varies from 100 µm to 500 µm in all compounds. An example of a
PdCoO2 crystal is shown in fig. 3.1.

Figure 3.1: Example of a PtCoO2 crystal

As mentioned above, the mean free path in delafossite materials can be
as long as 20 µm, which is very large in comparison with other metals. This
property is one of the reasons why the delafossites are subject to widespread
study. But to study transport properties of these materials, the dimensions
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of the device (for example in the ballistic regime) should be the same length
scale or even smaller than mean free path of the electrons. In standard
methods of mounting crystals 'by hand', one could reach sizes around 100
– 150 µm. That is still not enough, even in delafossites, to study different
transport regimes. For that reason Focused Ion Beam (FIB) micromachining,
that will be discussed next, has become an extremely useful tool in precise
transport studies of delafossite materials.

FIB has been a vital tool for my thesis research. Therefore, I will start
with a basic introduction to the FIB and its fundamental working principles
in this chapter, followed by different techniques of creating a final device from
an as-grown crystal that we developed. I will close the chapter by describing
the range of measurement techniques that were employed to explore the
delafossite metals in my projects.

3.1 FIB

The FIB has existed since the mid-1970s. The initial uses were primarily for
the semiconductor industry [37], for cutting transmission electron microscopy
(TEM) samples [38] and for imaging in the biological sciences [39]. However,
it has begun to be used to structure modern quantum materials into bespoke
devices only in recent years.

FIB is an excellent micro-sculptor to fabricate devices suitable for ex-
ploring the mesoscopic regimes as it offers both high-resolution imaging and
flexible micro-sculpting of the samples in a single tool.

3.1.1 Basic design

In my studies, I used a dual FIB/SEM (scanning electron microscope) plat-
form (a schematic is shown in fig. 3.2) from a company manufacturing such
instruments, FEI. An SEM is typically used for high-resolution electron beam
imaging, and FIB is used for micro-structuring. The e-beam column is placed
vertically in the middle of the sample chamber, and the FIB column is set at
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52◦. Both beams can be simultaneously focused at the same point. Therefore,
the same part of a sample can be milled with the FIB while a high-resolution
image is taken simultaneously with the SEM.

The design of a FIB column is similar to an SEM one. The key features
of a FIB are a source of ions and an evacuated column with electrodes to
accelerate the ions. A schematic of the FIB column is shown in fig. 3.2. A
set of apertures defines the ion beam current, electrostatic lenses focus the
beam, and octupole plates are used for beam scanning.

The sample is placed on a 5-axis moveable stage in an evacuated chamber.
To prevent interaction between the ions and other particles, both the column
and the chamber are evacuated to low pressure, around 10−8 and 10−6 Torr,
respectively.

The ion column should provide a controlled ion beam with the smallest
possible focal spot for a given current. It can be achieved with electrostatic,
rather than magnetic, lenses due to the high ion mass. The apertures pri-
marily determine the beam current. Depending on the ion source, possible
current values are from around 1 pA to 1 µA and a typical acceleration
voltage of about 30 kV.

Most FIB systems use a liquid metal ion source (LMIS) [40, 41]. In
this source, metal is held in a reservoir above a sharp tungsten tip. The
metal is melted by a heater, which wets the tip. A very high voltage of
several thousand volts is applied between the tip anode and an apertured
cathode, namely the extractor. At a voltage greater than a threshold, the
liquid metal film at the tip becomes distorted, resulting in the formation
of a Taylor cone at the tip due to the combined effect of the electrostatic
forces, surface tension, and droplet pressure. As the voltage increases, field
ionisation causes an emission of ions, with the typical acceleration voltage of
5 - 30 keV.

Using Gallium as a source has several benefits. It has a low melting tem-
perature, around 30 ◦C, a high ion mass, low volatility, low vapour pressure,
and it is not reactive with the tungsten tip, so it has a long lifetime. How-
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Figure 3.2: A schematic of a typical dual beam FIB-SEM system.

ever, limitations of an LMIS are most significant with the increase of the
beam current as the energy spread is affected by Coulomb forces. Above
the current value of around 5 nA, the beam diameter increases rapidly due
to spherical aberration [42]. This makes the use of the LMIS impractical at
currents above around 50 nA.

The inductively coupled plasma source (ICPS) [42] can be used to go to
a higher beam current. In this source, a gas, often xenon, is used instead of
metal. This gas is inductively coupled to a coil which forms a radio frequency
antenna. A current driven through this coil ionises some atoms and creates
a plasma. A set of electrodes then accelerate the ions and emit them from
the source.

At small currents, the diameter of the beam from an ICPS is larger than
that from the LMIS, however, above the current value of around 30 nA, it
is smaller. At the highest practical current of 2 µA, the beam's spot size is
of order 1 µm. Due to the much higher currents that are achievable, our Xe
plasma FIB has a cutting rate typically 100 times higher than that of our
Ga LIMS FIB. Processes that do the 'rough cut' with the plasma FIB and
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finer work with the Ga FIB are also possible.
Several detectors are typically installed for use with both the SEM and

FIB. Two detectors are implemented for electron imaging, a through-lens
detector (TLD) and an electron multiplier. The TLD is mounted vertically
above the sample in the objective lens of the electron column. This detec-
tor detects electrons ejected of a direct collision between the e-beam and
the sample atom generated through direct interaction with the sample, and
imaging is done at a very short working distance. Therefore TLD provides a
very high resolution and achieves excellent surface information.

The Everhart-Thornley detector (ETD) is mounted on one side at a 45
degree angle. It is essentially a photomultiplier tube. A collector grid and
screen, basically a Faraday cage, are mounted on one side of the sample
stage where a scintillator is placed. Strong contrast and shadow are essential
features of the ETD.

Ion imaging is also possible in a FIB. However, users should be care-
ful with it as it damages a sample with ions. The yield of SI generation
is entirely independent of beam energy and depends rather strongly on the
surface composition of the material. The secondary ions, ionised atoms sput-
tered from the sample surface due to interaction with the beam, are used for
this imaging.

3.1.2 Milling of the sample

Particles generated due to inelastic processes are used as probes for imaging,
while elastic collisions are the primary tool in milling the sample. The colli-
sion cascade triggers momentum transfer from the ion beam to the sample,
resulting in atoms being knocked off the sample surface.

Grounding of the sample is an important step in the milling process.
Otherwise, Ga+ ions accumulated on the sample surface repulse the ion beam,
defocusing it around the pattern. The pattern ends up having indistinct
features. Therefore, insulators can be quite tricky to cut in a FIB. One way
to minimise charging artefacts is to coat an insulating sample with a layer of
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conducting material.
To mill a sample with a FIB, the machine software is used to create a

pattern which defines the area which the beam should scan over. The critical
parameters for the milling are the beam current and the total depth of the
cut. With the set parameters, the total time is automatically calculated
based on known sputter rates for materials such as silicon. Then the beam
passes multiple times over each part of the pattern until the desired depth is
achieved. There are also two options for the several milling patterns. With
serial milling, one pattern trench is milled at a time. Parallel milling makes
a single pass of ion beam over each trench. The total time for patterning
is dependent primarily on the ion beam current. Choosing larger currents
for cutting can significantly reduce the time of the milling, however, it also
increases the spot size of the beam, thereby decreasing the pattern resolution.

Some of the sputtered material is often deposited back onto the sample's
surface during the milling process. The amount and form of redeposition
vary depending on the geometry, chosen current and milling material. The
critical aspect ratio for the milling of the sample is the width of the trench
to its depth. If the width of the pattern is much smaller than its depth, the
milling of the sample is not possible. To increase the visibility of the crystal
sidewalls, which is vital for thickness measurements, the optimal ratio of the
depth of the trench to its width should be below one. Parallel milling is
preferable if pattern features overlap to prevent redeposited material into a
previously milled trench.

Redeposition of the material is a general challenge for FIB milling. How-
ever, the redeposited material has a high resistance in most cases due to
its amorphous nature. Redeposition of the ultra-pure metallic delafossites
becomes problematic as it remains highly conductive and can easily cause
significant electrical shorts, which cause issues in the form of pathways for
electrical conduction.

A vital step to remove the redeposition and prevent the small electric
shorts is sidewall polishing. The schematic of this process is shown in fig.
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Figure 3.3: A schematic of the FIB polishing process. Before polishing, the
sidewall is not straight and there is a substantial layer of redeposition. After
polishing with the beam at a glancing angle, the redeposition layer has been
removed and the side of the sample is straight. The lower panels show SEM
images of the sidewall of the device before and after polishing.

3.3. Normally the FIB beam is rotated to a glancing angle of 1 – 2◦ to the
side of the sample. Typically for the polishing, the beam current is chosen to
be lower than that for the milling. The beam is then swept in several linear
passes, reaching the set depth in each pass to the final intended sidewall
position. The SEM image of the example of the sample before and after
polishing is shown in fig. 3.3. This process also ensures that the side walls
are vertical, which is important for accurate resistivity measurements.

The FIB can damage the sample quite substantially in the process of
milling. The damage layer is primarily formed when the collision cascades
overlap, creating a sustainable layer on top. The ion-solid interaction can be
simulated by a program called SRIM (Stopping Range of Ions in Matter),
with input parameters: ion energy, weight and incident angle and the sample
depth and material. Using this simulation, it is possible to predict the in-
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duced damage of the material from the ions. In the delafossites the damage
layer is tens of nm, so insignificant in devices with minimum dimension of
order 1 µm.

3.1.3 Deposition of materials using FIB

The FIB can also be used to deposit materials in a process known as ion-as-
sisted chemical vapour deposition (IA-CVD) [43]. The main limitation of
this process is the availability of the required precursor gases. For example,
in our instruments at the present time, it is possible to deposit only Pt, W,
SiO2, and C for which the precursor gases are readily available.

In the IA-CVD process shown in fig. 3.4, a retractable needle is placed
in the vicinity of the area of interest to provide a local flow of the desired
organometallic gas. This gas adsorbs onto the surfaces, and the ion beam
scans over the desired deposition area. The ion current, acceleration volt-
age and precursor should be carefully chosen, because, imbalance in either
can provoke inefficient deposition or milling away sample material in the
worst case. The process of IA-CVD removes only the highly volatile organic
materials, leaving the desired material deposited on the surface.

Figure 3.4: A schematic of the IA-CVD process

Unfortunately, FIB deposited metals are far from pure. The composition
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of the deposition is an amorphous mix of different materials. Studies in Ref.
[44] showed that FIB deposited Pt was around 73% C, 10% Ga and only 17%
Pt. Thus the resistivity of the deposited materials is a factor of 50 larger than
that of pure Pt, and W [45]. Application of a high voltage in-situ to cause
annealing can improve the resistivity of deposited W. However, no method
to lower resistivity of deposited Pt was reported so far. Therefore, in the
absence of techniques for high conductivity materials, I used the deposited
material only as a platform for clean metal, for example, gold, to be sputtered
on top of it.

3.2 'Classical' sample mounting

Producing a delafossite metal device for resistivity measurements brings sev-
eral challenges even at the first steps. Before starting fabricating a device out
of delafossite metal, we should consider the homogeneity of current distribu-
tion throughout the sample thickness in highly anisotropic materials using
top-injection current contacts. For the accurate resistivity measurements in
ab plane, the current should flow perpendicular to the c-axis and should pen-
etrate the whole depth of the sample. However, if the current path in the
device is too small for homogenisation through the whole sample depth to
occur, the conduction will only happen at the top of the crystal, producing a
higher resistance. A straightforward solution to this problem is to extend the
current path before the voltage contacts are reached. This can be achieved
via a meander, a long snake-shaped path that we sculpt using the FIB in
both current contacts.

In addition, the handling of delafossite metal crystals requires meticulous
care. The crystals are incredibly fragile. Therefore, movement via tweezers
is not possible in work with these crystals. Another safe alternative method
is to use electrostatic forces. The MiTiGen polymer MicroTools or tips made
from PTFE tape on the end of a toothpick can be used as a tool.

The schematic steps to create a final device from the delafossite crystals
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3.2 'Classical' sample mounting

Figure 3.5: Schematic four main steps of structuring a device

are shown in fig. 3.5. As-grown crystals are mounted on a drop of two-com-
ponent glue on a pre-cleaned sapphire substrate. Crystals are mounted in
the glue by hand with help from kapton micro-tools. Then, 200 nm of gold
with a 5 nm sticking Ti layer is sputtered on the substrate with the crystal.
The 2-component glue creates very smooth contacts to the delafossite crys-
tal. After sputtering gold, the crystal is structured into the required shape
and the contact configuration is established by selectively removing the gold,
with both steps performed using either the Ga-FIB or the Xe-FIB. Using
the Ga-FIB, feature sizes of 200 nm are achievable. After structuring the
crystals and cutting the gold pads, silver wires are glued to the gold contacts
using silver epoxy and the whole substrate is stuck onto a chip carrier.

With the help of the FIB, it is possible to go to very small dimensions (in
comparison with the mean free path of the electrons) of the devices. Also,
the accuracy of electronic transport experiments is increased by precisely
defining the geometry of the device in FIB, and measuring its dimensions
with an accuracy of several tens of nm.
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Figure 3.6: SEM image of the final device device

3.3 Epoxy-free method

For certain experiments (for example electron irradiation, that I will discuss
below) the above method of mounting samples is not suitable because of the
presence of the epoxy. For that reason, we developed an epoxy-free method
of mounting samples. This method is based mainly on the FIB Pt deposition
tool.

Figure 3.7: Left: Scheme of the epoxy-free method of mounting samples,
right: SEM image of the sample mounted in epoxy-free way. Pt contacts are
coloured in blue. Purple is the 'effective part' of the device, yellow - voltage
contacts with meanders (part of the crystal).

As it is shown in fig. 3.7 left, the first step is to place the crystal on a thin
layer of acetone or isopropanol on a pre-cleaned substrate. The solvent will
evaporate and create static forces which will hold the crystal on a substrate
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without movement during the next steps. The substrate with the crystal on
it is covered by a 200 nm layer of sputtered gold with a 5 nm sticking Ti
layer. Then, several Pt layers are deposited in a FIB creating the 'step' on
the edge of the sample. Deposited Pt 'steps' create not only electrical but
also mechanical contact. This geometry can help to increase the stiffness of
the Pt contact, stick the edge of the sample to the substrate and keep it in
place. FIB-deposited Pt does not have very good conductivity, so to decrease
contact resistance a second sputtered layer of gold is required. After this, the
sample can be structured in the FIB. An example of the sample mounted in
this way is shown in fig. 3.7 right panel. Pt contacts are coloured in blue, the
device is coloured in purple, the voltage contacts with meanders are yellow.
Here, meanders of the voltage contacts are structured only for mechanical
purposes. Current contact meanders (also shown in purple in the figure) are
made for current homogeneity.

Usually, substrates are made of insulating material, for example, sapphire.
Because the crystal is stuck to a substrate that has low thermal expansion or
contraction, stiff Pt contacts create mechanical stresses in the sample during
cool down. Making meanders in all contacts of the crystal is an effective way
to decrease such stresses.

3.4 Measurement of low resistivity materials

Because of the high conductivity of delafossite metals, resistivity measure-
ments are quite challenging. The first difficulty that comes with these resis-
tivity measurements is the common-mode voltage. A common-mode signal
is a voltage common to both input terminals of an electrical device. These
issues occur when the sample resistance is small compared to the resistance
of the contacts and wires.

Typically in such resistivity measurements, ac currents are created by
using the shunt resistor and ac voltage supplied by a lock-in amplifier (fig.
3.8a). In this case, the common-mode voltage (VCM) will begin to affect
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lock-in amplifier measurements of the voltage difference.
Usually, a low-temperature resistance for the delafossite sample is RS ∼

10 µΩ, and the contact resistance is Rc ∼ 5 Ω. Thus, in this configuration
(fig. 3.8a) with a measurement current of 5 mA the common-mode voltage is
VCM = V1+V2

2
∼ 25 mV. The sample voltage difference is ∆V ∼ 50 nV, 5*105

times smaller than the common-mode voltage.
Most lock-in amplifiers, for example, the Stanford Instruments SR830,

can reject common-mode voltage up to around 100 dB, which means the
common-mode rejection ratio should be below 105. However, above this
ratio, the common-mode signal starts to influence the measured voltage. For
the delafossite sample, the contribution is a 25*10−3/105 ∼ 250 nV signal
before amplification, much bigger than the experimental signal.

Figure 3.8: Resistivity measurement schematics for a) the standard method
of producing a current for an ac measurement, with a shunt resistor. There
is a large common-mode voltage. b) A measurement with the CMR source.
The common-mode contribution to the signal has been eliminated.

To solve this problem, a bespoke dual-sided current source was designed
by Mark Barber, and Alexander Steppke [46]. This current source with
common-mode rejection (CMR source), as shown in fig. 3.8b sources current
from both sides of the sample with an opposite sign, ensuring that the ground
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Figure 3.9: Images of the lowest part of the custom PPMS insert the LCC
socket at the end of the insert.

is effectively in the middle of the sample. This CMR source has an active
feedback mechanism to sense offset voltage at the sample. It, therefore,
senses the voltage at the sample via the voltage contacts (Vsen in fig. 3.8b)
and adjusts the current input accordingly to ensure the ground is precisely
at the midpoint of the two voltage contacts. In this measurement, V1 = −V2

and the common-mode voltage is near zero.
For the low-temperature measurements, I used a Quantum Design Phys-

ical Property Measurement System (PPMS) with 9 T or 14 T magnets that
provide measurement capability down to at least 1.8 K within a magnetic
field. The advantage of using PPMS instead of another type of cryostat is the
ability for rapid sample changes. However, the in-built resistivity measure-
ment system does not provide the required noise level limiting the signal size
to 20 nV and allows only five simultaneous voltage measurements. There-
fore, I used a bespoke PPMS insert, previously designed and constructed
by Nabhanila Nandi [47]. The insert, shown in fig. 3.9, has 12 twisted
pairs of measurement wires leading to a small breakout box in the lower sec-
tion. The mini-breakout box allows reconfiguration of the wiring between
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the twisted pairs and the pins on the chip carrier, offering flexibility in volt-
age wiring. The sample is usually mounted on 28-pin leadless Kyocera chip
carriers (LCCs), which are inserted into the LCC socket at the bottom of
the PPMS insert. The same chip carriers are used in the high energy elec-
tron irradiation, will be discussed in section 3.5, which facilitates the device
characterisation before and after the irradiation beamtime.

Thermometry, provided by a Cernox temperature sensor, placed close
to the sample, ensures the careful reading of the sample temperature. An
additional heater of the sample is also available for PID control of the tem-
perature.

I used a Synktek MCL1-540 lock-in amplifier for the voltage measure-
ments. This amplifier is capable of measuring up to 10 voltage channels
simultaneously. The noise level is around 1.8 nV/

√
Hz.

3.5 High energy electron irradiation

In previous sections, I discussed the importance and influence of defects on
transport properties. Often, scientists want to achieve the best quality of the
samples, i.e. make them as pure as possible. I hope to show that defects can
become a powerful tool in studying the physical properties of materials. But
for systematic studies, it is crucial to know the type and number of defects
in a material. It is even better if one can introduce a certain type of defects
into the material.

Irradiation by high-energy electrons (1 - 10 MeV) is the ideal technique to
introduce point-like defects in a controlled way. Electrons of these energies
can transmit enough energy to an atom to displace it from the lattice site.
But these energies are not enough for the substituted atom to create a sig-
nificant number of additional defects. Therefore individual Frenkel pairs are
created. For my purposes, other types of irradiation are not suitable. For
example, in ion irradiation, the incoming particles' larger mass turns every
collision into a collision cascade, making larger columnar defects.
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3.5 High energy electron irradiation

Figure 3.10: A sketch of electron irradiation experiment. The yellow area
indicates the range in which the electron beam is swept, rather than repre-
senting the beam cross-section

I performed the irradiation experiment with electrons with a kinetic en-
ergy of 2.5MeV at the SIRIUS Pelletron linear accelerator operated by the
Laboratoire des Solides Irradi ́es (LSI) at the Ecole Polytechnique in Palaiseau,
France. A sketch of the experimental set-up is shown in fig. 3.10. During the
irradiation, to ensure that the introduced defects are not mobile, the sample
was placed in a bath of liquid hydrogen at a temperature of approximately 22
K. The accelerator beam passed a current of 1.5 - 2.5 µm through a circular
diaphragm with an aperture of 5 mm diameter before reaching the sample.
The current passing through the diaphragm was experimentally determined
using a calibration metallic sample. The beam was swept horizontally and
vertically at two incommensurate frequencies, ensuring the homogeneous ir-
radiation of the sample. During the calibration procedure, a thin metallic
test sample is placed in the cryostat, with the accelerator current at a set
value. The accumulated charge on this sample is recorded and the irradia-
tion current calculated. Then this process is repeated for another value of
accelerator current. Thus, the current on a calibration sample, IS, is known
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as a function of the accelerator current, IA. To calculate the total irradiation
dose, the charge accumulated at the Faraday cage, QFC , is divided by the
average of the current incident on the Faraday cage, IFC . With all these
parameters known, it is possible to calculate the final dose D in units of
C/cm2:

D =
1

0.2

QFC

IFC

IA
∆IS
∆IA

, (3.1)

where, ∆IS/∆IA is the gradient of the calibration sample, and 0.2 cm2 is
the cross-sectional area of the beam.

The penetration range of electrons with energies of 2.5 MeV is estimated
to be ∼ 1.8 mm in the investigated delafossite metals. Such an extended
penetration depth guarantees homogeneous irradiation through the sample
thickness, which is typically two or three orders of magnitude shorter than
the estimated penetration range of electrons. These two facts further ensure
that the majority of electrons could be measured using a Faraday cage behind
the sample stage. It also allows monitoring the current fluctuations during
a measurement. The unique set-up at the Laboratoire des Solides Irradi
́es (LSI) additionally provides an opportunity to perform in-situ four-point

resistivity measurement. Thus we could monitor the change of the resis-
tivity during irradiation as a function of electron dose. The irradiation is
paused at regular intervals, to perform the in-situ resistance measurement.
Measuring resistivity of crystals as conductive and as small as delafossites
in those demanding conditions presents additional challenges. We addressed
these challenges by developing the dedicated sample preparation method,
described above in Section 3.3.

3.6 Conclusions

This chapter described the key aspects of applying focused ion beam mi-
crostructuring, low noise resistance measurement techniques, and external
facility techniques to transport studies of delafossite metal samples. The
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FIB is a highly flexible tool that enables the rapid creation of bespoke struc-
tures. The design of the microstructures could be chosen to either enhance
the resistance, therefore improve the signal to noise ratio, or provide the
unconventional transport regime in the material, which I will illustrate in
Chapter 4 to examine the ballistic regime in delafossite metals. In addition,
the ability of the FIB to deposit certain materials is vital to the epoxy-free
methods of sample mounting, which will be used in Section 4.4 for electron
irradiation studies.

The high energy electron irradiation facility becomes a unique technique to
study delafossite metals. Previously, this experiment helped us to understand
the origin of extremely high conductivity [36]. However, in Section 4.4 I will
show the new application of the high energy electron irradiation experiment.
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Chapter 4

Ballistic transport in PtCoO2

In section 2.1 I discussed the scattering processes that affect the resistivity
in ordinary metals. However, this typical textbook picture changes when
the mean free path (lMR) of the electron (the average distance between col-
lisions that relax the electron momentum) becomes significant compared to
the dimensions of the device, such that the boundary scattering starts to
measurably influence the electron transport. Delafossite metals, as described
in Chapter 2, are a unique model system for the investigation of unconven-
tional transport regimes in an ultrapure material with a non-circular Fermi
surface and quasi-2D electrical transport. In this chapter, I will discuss the
essential aspects of this regime in the delafossite metals. The experiment
that I performed in square junctions of PtCoO2 studying the ballistic regime
in delafossite metals shows the advantages of studying the ballistic regime in
a novel model system and gives a new example in which high energy electron
irradiation helps to uncover intrinsic physics.

4.1 Unconventional transport regimes

The majority of metals have much lower purity than the delafossite metals.
This increases the number of momentum-relaxing collisions with defects and
ensures that the mean free path of electrons is much smaller than the typical
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device size. In this Ohmic (sometimes also referred to as 'diffusive') regime
the scattering in the bulk crystal rather than the boundary scattering affects
the resistivity (fig. 4.1). However, if the mean free path of sample becomes
larger than its width, then the device is in a ballistic regime. The behaviour
becomes nonlocal, therefore, it is impossible to define the direct relation-
ship between current density and electric field, i.e. the Ohmic relations for
resistivity are no longer valid.

Figure 4.1: Diagrams of diffusive (Ohmic) and ballistic regime transport in
a channel

In the ballistic regime, the size of the Fermi wavelength (λF= 2π/kF )
also becomes vital as it determines if the boundary scattering is specular or
diffusive and is also relevant to the conditions required to achieve a quantum
point contact. When the boundary roughness s is smaller than the Fermi
wavelength λF , then the scattering is specular, and the momentum parallel
to the boundary is conserved. The parameter p describes the fraction of
specular scattering, with p = 1 corresponding to fully specular scattering. In
the opposite case, the scattering is diffusive, the direction after scattering is
randomised, and p=0.

The restricted geometrical length scales also allow coherent quantum me-
chanical effects to occur if the phase breaking length lφ is longer than the
device's geometry. This length lφ is mainly limited by the inelastic processes
of electron-phonon or electron-electron scattering.

The early studies of the ballistic regime were primarily performed in ul-
tra-pure metals. The simplest theoretical model by Nordheim [48] applies
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Matthiessen's rule for the combination of the resistivity in a wide channel
ρbulk and an extra resistivity coming from the boundary scattering ρbound:

ρ

ρbulk
=

ρbulk + ρbound
ρbulk

= 1 +
1

w
, (4.1)

where ρ is a total resistivity and w is the width of the channel. This
model assumes only fully diffusive boundary scattering, with p=0. Within
the early theoretical studies, the boundary scattering conditions were a chal-
lenge. A later theoretical model by Fuchs [49] was more sophisticated and
based on the Boltzmann equation, also including the possibility of non-dif-
fuse boundary scattering. However, the exact method of preparation of the
ballistic device influenced the agreement with theoretical calculations due to
the poor control of the boundary roughness. Even within the same material,
the wide range of possible values for the specularity of the boundary scat-
tering impairs the accuracy of comparison experiments and theory. Another
significant challenge in a more general understanding of transport behaviour
in ultrapure materials also became the electronic structure and 3D Fermi
surface of these metals.

The emergence of semiconductor heterostructures allowed the fabrication
of a much more comprehensive range of devices. The high mobility 2DEGs
and new microstructuring techniques allowed more careful control over the
device geometry and the specularity of the boundary scattering than was
possible with elemental materials. Electrostatic gating also allows for varying
the boundary scattering specularity. Thus, the resistivity in a GaAs-based
heterostructure was enhanced over the value for a wide channel [48, 49].
Because specular boundary scattering does not change the resistivity, it is
possible to observe such an effect only if the boundaries are partly diffusive.

The Nordheim equation (4.1) could be adjusted by application of
Matthiessen's rule but also considering the possibility of specular scatter-
ing p. Thus, the resistivity at zero magnetic field in a narrow channel can be
determined in terms of the value in an infinitely wide channel, ρbulk as [50]:
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ρ = ρbulk[
1

lMR

+
1− p

w
] (4.2)

It is important to note here that boundaries in FIB structures can be
regarded as diffusive, as FIB sculpting can damage the sample quite sub-
stantially in the process of milling and introduces many point defects in this
damage layer because of the implanted ions. The damage level for each
material is different and can be calculated as discussed in Section 3.1.2.

As shown in fig. 4.2 the magnetoresistance in narrow semiconductor chan-
nels is initially positive in a transverse magnetic field. In a zero magnetic
field, electrons have trajectories mainly parallel to the channel axis. As we
turn on the magnetic field, the trajectory of the electrons diverts toward the
boundaries increasing the resistivity. It reaches the maximum at w/rC∼0.55
in GaAs-based heterostructures, where w is the width of the channel and rC

is cyclotron radius. In graphene, this value is around 0.9 [51]. With a fur-
ther increase of the magnetic field, the cyclotron radius decreases, reducing
the frequency of contact of the electrons with boundaries and, therefore, the
resistivity decreases. When w/rC>2, the electrons cyclotron orbits become
tiny, therefore the resistivity becomes equal to the bulk value.

Figure 4.2: The magnetoresistance at 4 K of 12 µm long 2DEG GaAs-AlGaAs
wires with width as indicated, reproduced from [49]. Inset: low magnetic field
data for a wire defined electrostatically at four gate voltages.
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It is vital to note that the models described above assumed a spherical
(circular in 2D) Fermi surface and that any scattering was isotropic, with an
equal relaxation time around the Fermi surface.

4.2 Directional ballistic effects

The original motivation for the project I have undertaken so far was to study
the ballistic transport regime in delafossites to improve understanding of the
hydrodynamic flow regime. But the results that we obtained have revealed
interesting and unique properties of delafossite metals.

Reaching the ballistic regime, with w < lMR, is challenging on two fronts.
Firstly the material has to be pure enough to have a long mean free path. The
second challenge is microfabrication techniques. They should define devices
on length scales, which, even in the purest materials, are typically below 50
µm. Thus, the combination of the delafossites' extremely purity and the FIB
technologies discussed in chapter 3.2 gives the unique opportunity to study
the ballistic regime in these materials.

4.2.1 Anisotropic or isotropic?

The low-temperature resistivity behaviour in an initial set of measurements
in a narrow channel did not agree with the Ohmic regime prediction. The
resistivity data reported in Ref. [52] showed deviation from the prediction of
a standard Boltzmann theory for circular Fermi surface including boundary
scattering but neglecting momentum-conserving collisions.

In a typical metal majority of collisions (impurity, normal electron-phonon,
Umklapp electron-electron, and Umklapp electron-phonon) relax momen-
tum, taking the electrons far from the hydrodynamic limit. Moll et al.
performed accurate resistivity studies varying the PdCoO2 channel width
to investigate if the electronic viscosity plays a role in determining electri-
cal resistance. PdCoO2 has several remarkable and unique properties that
make it a candidate for searching for the hydrodynamic regime. Firstly the
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electrical conductivity of PdCoO2 is remarkably low. At room temperature,
it has a resistivity of just 2.6 µΩcm, 30% lower per carrier than that of
elemental copper. The resistivity below 15 K is essentially independent of
temperature and reaches a value of several nΩcm. Secondly, there is evidence
of the existence of phonon drag, in which the phonons follow the electrons
into an out-of-equilibrium distribution [29]. The shear viscosity effects take
over in resistivity due to momentum conserving scattering, such as electron--
electron scattering. However, in special circumstances like the phonon drag,
the electron-phonon scattering becomes momentum conserving. The unusual
behaviour of PdCoO2 was explained by including a the hydrodynamic cor-
rection to the ballistic Boltzmann theory for the circular Fermi surface.

However, the transverse focusing experiment in PdCoO2 [53] showed strong
directional behaviour, that contradicts the viscous theory and is assumed to
have ballistic origin.

In the ballistic regime, the electrons injected from a nozzle do not scatter
in bulk and follow trajectories determined by the field along the rectangular
boundaries (fig. 4.3). When the cyclotron diameter is equal to the distance
between two contacts, most electrons are focused into the second contact
and give a peak in the voltage measurement. If we increase the magnetic
field, further geometric resonances occur at integer multiples of the original
focusing field, resulting in a series of peaks in the voltage [54].

Bachmann et al. [53] observed several focusing peaks over scales of up
to tens of microns in PdCoO2 device length, verifying the existence of an
extremely long mean free path [55]. Intriguingly, the form of the focusing
peaks depended on the orientation of the Fermi surface relative to the de-
vice. Usually, the symmetry of the unit cell constrains the properties of the
material in an ideal crystal. However, within the Ohmic regime, for delafos-
site metals, with a triangular underlying lattice, in each Pd or Pt plane, the
in-plane electrical transport is expected to be isotropic even though this is
perhaps not obvious at first sight.

For a triangular lattice, such as shown in figure 4.4, there are a number
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4.2 Directional ballistic effects

Figure 4.3: Sketch of the focusing device a) electron trajectories with zero
magnetic field and b) in a magnetic field

of symmetries expected in the conductivity matrix: symmetry in reflection
about two perpendicular in-plane axes and also rotations of modulus 60◦

about the z-axis.

Figure 4.4: Schematic of a triangular lattice.

For the in-plane resistivity, I will neglect the z-dimension. Thus, in 2D,
the generic conductivity matrix, σ, can be written as:

σ =

!
σxx σxy

σyx σyy

"
(4.3)

where σij are the components of the conductivity tensor.
Reflection of the conductivity matrix about the x-axis can be obtained by
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a reflection matrix, A,

σ = AσAT =

!
1 0

0 −1

"!
σxx σxy

σyx σyy

"!
1 0

0 −1

"
=

!
σxx −σxy

−σyx σyy

"
(4.4)

so from symmetry σxy = σyx = 0.
A rotation matrix, R, for 60 degrees will give the following result:

σ = RσRT =

!
cos60◦ −sin60◦

sin60◦ cos60◦

"!
σxx 0

0 σyy

"!
cos60◦ sin60◦

−sin60◦ cos60◦

"
(4.5)

=

!
1
4
σxx +

3
4
σyy

√
3
4
(σxx − σyy)

√
3
4
(σxx − σyy)

3
4
σxx +

1
4
σyy

"
(4.6)

which leads to σxx=σyy.
Thus, there is no in-plane conductivity anisotropy expected in a material

with a triangular lattice in the Ohmic regime. However, the results in Ref.
[53] do not obey this conclusion of in-plane isotropy.

The resistivity anisotropy is often used as a probe of the broken symme-
try. One of the drivers of spontaneously broken symmetry can be so-called
electron nematicity. It is a unidirectional self-organised state that breaks
the rotational symmetry of the underlying lattice. The electrons enter the
nematic state as a phase transition, as the temperature drops below some crit-
ical value. Like some forms of unconventional superconductivity, nematicity
can be ascribed to strong and anisotropic electron correlations [56, 57]. Is this
low-temperature anisotropy in ab plane resistivity evidence of the unexpected
exotic physics in PdCoO2 and PtCoO2 that was not observed before?

4.2.2 Directional ballistic effects in channels

During her PhD studies Maja Bachmann did a directional ballistic study on
PdCoO2 [55]. I decided to do it on PtCoO2 both to check that the basic
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picture is consistent with that of PdCoO2 and also to assess whether small
differences in Fermi surface shape makes a difference. Thus, I created a
microstructure of PtCoO2 with four channels which is shown in fig. 4.6.
The hexagonal Fermi surface is the key feature that differentiates PtCoO2

and PdCoO2 from the ballistic structures of 2DEG. In the case of the circular
Fermi surface electrons are injected in all directions (fig. 4.5). However, if the
metal has a hexagonal Fermi surface, there are only six preferable directions
for the electrons. Thus, I made the four microstructure channels aligned at
different angles according to the Fermi surface. When the bar is aligned at
0◦, electrons have two preferable directions; at 30◦, there are three directions
for electrons, 10◦ and 20◦ are intermediate states. The width of all the four
channels of this microstructure is around 3.6 µm, which is smaller than the
typical mean free path of PtCoO2. The length of the channels is between
150 and 160 µm.

At high temperatures, when the mean free path is relatively small, the re-
sistivity value of each channel is identical (fig. 4.7A) as the triangular lattice
has an isotropic conduction tensor in the diffusive regime. However, within
the ballistic regime, at low temperatures, we can observe the induced resis-
tivity anisotropy. The magnitude of the low-temperature resistivity depends
upon the orientation of the channels. The minimum resistivity occurs in the
channel oriented at 30◦. When the Fermi surface is rotated, the resistivity
values increase and reach their maximum at 0◦ rotation.

The magnetoresistance shown in fig. 4.7B is normalised by the high field
resistivity values and plotted against the ratio of the width of the sample
to the cyclotron radius (w/rC ∼ B). The magnetoresistance behaviour has
the same qualitative structure as seen in the experiments in semiconductor
heterostructures and graphene discussed above. However, the peak shape at a
finite field depends on the orientation as the magnetic field forces trajectories
parallel to the axis towards the boundary. When the cyclotron diameter
matches the width of the channel (w/rC ∼ 2), the electron orbits become
small, therefore, there is no distinction between orientations.
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4.2 Directional ballistic effects

Figure 4.5: A schematic showing the range of the typical directions of the
Fermi velocity for both a circular Fermi surface and the PtCoO2 Fermi sur-
face.

Figure 4.6: SEM image of the PtCoO2 device with four channels
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Figure 4.7: A: Temperature dependence of the resistivity of PtCoO2 sample
with four channels with width around 3.6 µm each rotated according to the
Fermi surface orientation respectively. B: magnetoresistance at 5 K for these
four channels normalised by high magnetic field values.

The experimental results suggest, that the above conclusion of in-plane
isotropy does not remain the same in the ballistic regime. The intrusion of
boundaries at distances equal to or less than the mean free path eliminates
the translation symmetry and assumption of an infinite crystal implicitly
required in the above derivation. Therefore, anisotropies in the electrical
transport in the narrow PdCoO2 channels become possible and are dependent
upon the Fermi surface orientation and dimensions of the device rather than
breaking the bulk symmetries of the underlying lattice.

4.2.3 From ballistic to diffusive

The critical parameter in the ballistic regime is the ratio of the device's
dimensions to the mean free path of the electrons. Technically it is not easy to
vary the dimensions of the device. Certainly, FIB broadens these boundaries.
However, going accurately from diffusive to ballistic regime step by step using
the FIB (i.e. decreasing the device's dimensions) can be challenging. This
approach also adds more experimental uncertainties as the geometry of the
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sample is changing.
The high electron irradiation experiment becomes a unique tool in study-

ing ballistic regime in delafossite metals. Introducing point-like defects in
a controlled way allows going backwards from the ballistic to the diffusive
regime by decreasing the momentum-relaxing mean free path with the same
geometry of the device and the same contact configuration.

Figure 4.8: A: SEM image of the PtCoO2 device with two channels aligned
according to the Fermi surface orientation: red is 'hard' blue is 'easy'. B:
magnetoresistance of the two channels before irradiation (red is 'hard' di-
rection, blue is 'easy' direction), C: magnetoresistance of two channels after
different doses of irradiation up to 3800 µC and D up to 8800 µC

To study the ballistic-diffusive cross-over, I made the microstructure of
PtCoO2 shown in fig. 4.8A. It is similar to that shown in fig. 4.6 but with
only two extreme alignments of channels according to the Fermi surface. In
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this device, 0◦ is the 'hard' direction and coloured red in the figure and
30◦ is the 'easy' direction and coloured blue. I used the epoxy-free method
described in section 3.3 to create this microstructure. The magnetoresistance
of these two channels, shown in fig. 4.8B at 5 K in the pure sample (before
irradiation) exhibits similar behaviour to that shown in fig. 4.7.

However, as I start affecting the device by high electron irradiation (fig.
4.8C), the difference between two extreme orientations of Fermi surface in
magnetoresistance at small fields becomes smaller every single irradiation
step, eventually, at the dose of 8800 µC in units of charge (fig. 4.8D), the
difference between these two channels disappears, and resistivity becomes
isotropic as expected in a diffusive regime. Thus, we also estimated an ap-
proximate dose of electron irradiation for almost eliminating ballistic effect
in PtCoO2, which is important for the experiment that I will discuss below.

This work shows that in clean metals, the symmetry lowering by the
sample shape itself can induce such an anisotropic response. The irradiation
experiment proves that the induced anisotropy in resistivity is a consequence
of the lowering symmetry by the device's geometry and symmetry of the
Fermi surface.

4.3 Geometry of the square devices

Because boundary scattering determines electron transport, in the ballistic
regime, the geometry of the devices becomes a key feature in these studies.
Thus, as well as the narrow channels, other experimental geometries were
widely measured in other ultrapure materials and confirmed to be a specially
sensitive probe of the ballistic regime. These were four-terminal junctions,
where the size of the junction is approximately equal to or smaller than the
mean free path. Inspired by the novel phenomena observed in the narrow
channels of PtCoO2 and PdCoO2, we proposed investigating whether these
novel phenomena could be observed in square-shaped four-terminal junctions.
Another question that we were interested in these studies was the influence
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of the six-fold symmetry of the Fermi surface on ballistic effects. In this
section, I will describe the basic features and transport behaviour of these
junctions.

4.3.1 Van der Pauw method

The four-terminal junctions are typically either cross or square-shaped, as
shown in fig. 4.9. In these configurations it is possible to perform two types of
resistance measurement. The first one is the bend resistance R12,34=V3-V4/I12,
where the voltage difference is measured between contacts 3 and 4 with cur-
rent flow from contact 1 to contact 2. Such measurements are so named as
the current must flow around a bend in the cross junction geometry, but
the terminology has also been extended to squares. This configuration has
a partner resistivity measurement R23,14 where the voltage is measured be-
tween contacts 2 and 3 and current flows from contact 1 to 4, respectively (fig.
4.9 left panel). The second measurement configurations are Hall resistance
measurements, such as the R42,13 configuration, where voltage is measured
between contacts 4 and 2 and current flows from contact 1 to 3 and the
partner R13,42. Both are shown in the right panel of figure 4.9.

In the Ohmic regime, where the mean free path is much smaller than
the device size and the conductivity is isotropic, a device with an arbitrary
shape can be used to determine the resistivity tensor using the Van der Pauw
method [58]. With this method, multiple components of the resistivity tensor
can be measured using a single set of contacts. The Van der Pauw method,
therefore, allows performing the resistivity measurement of the material with
a lamella device independent of its shape and geometry: only the thickness
of the sample requires accurate measurement.

However, the most straightforward geometry for this kind of study is a
square-shaped device with a small contact size. In the diffusive (Ohmic)
regime, a series of resistance measurements Rab,cd are made with different
configurations. Van der Pauw showed [58] that the measured resistances and
the resistivity ρ obey the Van der Pauw equation:
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Figure 4.9: Left panel: A cross junction with two bend resistance measure-
ment configurations. Right panel: A square junction with a Hall resistance
measurement configuration.

e−
πtR12,43

ρ + e−
πtR23,14

ρ = 1 (4.7)

where t is the sample thickness.
In the specific case of isotropic transport, when R12,43 = R23,14 = R,

Equation (4.7) reduces to:

ρ =
πt

ln2
R. (4.8)

In the ohmic regime and when a device has a square geometry, this resis-
tivity is always positive and independent of the square's size. The magne-
toresistance shows the typical behaviour of the properties of the material.

The Montgomery method is used for resistivity measurements for materi-
als with anisotropic conductivities, such as those with orthorhombic lattices
[59].
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4.3.2 Early studies

When the mean free path becomes larger than the characteristic dimensions
of a square or cross junction, the devices enter the ballistic regime. The
behaviour of the Hall and Bend voltages becomes dramatically different to
that in the Ohmic regime. This regime was first achieved in the 1980s in
semiconductor 2DEGs at cryogenic temperatures but has since been extended
to various materials.

Some of the initial studies were measurements of bend voltage R12,43 and
R23,14, as shown in the left panel of fig. 4.9. Timp et al. carried the first
bend voltage measurements within the mesoscopic regime in a GaAs-AlGaAs
heterostructure [60]. Similar studies were performed in other ultrapure ma-
terials: InSb [61], HgTe [62] and graphene [63].

Figure 4.10: a) Schematic of a square shaped device with side length W
and contact width c, adapted from [64]. b) b Bend voltage in magnetic field
at 1.5 K for different values of W and c for a 2DEG in an AlGaAs-GaAs
heterostructure, adapted from [64].

The bend voltage was qualitatively similar in both square and cross junc-
tions and all the materials. However, the bend resistance behaviour notably
deviates from the Ohmic one. In the case of a GaAs-AlGaAs square of side
length W and contact size c (sketched in figure 4.10a), the measured volt-
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age at zero field is negative (figure 4.10b). At a medium magnetic field, the
magnetoresistance rises to a size-dependent peak and returns to zero at a
high magnetic field [64]. However, a positive zero-field voltage and negligible
magnetoresistance in the Ohmic regime would be expected for this material.
The estimated mean free path, derived from the mobility, was 69 µm. An
unusual trend was also observed. With the decrease of the device size, the
magnitude of the negative peak increases and the peaks occur at a higher
magnetic field.

Several quantum mechanical origins were proposed to explain this effect.
However, it was eventually confirmed to be semiclassical. At zero field, the
electrons emitted from the negative current contact pass predominantly along
the square diagonal to the positive voltage terminal instead of the positive
current contact, making the measured voltage negative. In the magnetic field,
when the square side length becomes an integer multiple of the cyclotron di-
ameter, a large number of the electron trajectories are focussed into the next
contact. This picture is similar to the transverse electron focusing geometry
discussed above. It leads to a series of voltage peaks at multiples of the fo-
cusing field BF = 2h̄kF/eW , where W is the width of the square. Above this
field, the cyclotron radius becomes smaller, and electrons travel along the
side of the square to a contact adjacent to the injection contact, regardless
of the magnetic field. Therefore, the voltage is nearly independent of the
magnetic field.

In this ballistic regime in square devices with circular Fermi surfaces, the
difference between the two bend resistance measurements is possible only due
to fabrication induced geometrical asymmetries. All measurements reported
within the literature showed the characteristic signals of ballistic transport in
four-terminal junctions: a dip and a negative voltage at zero magnetic field
and an increase in the voltage at higher fields.
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4.3.3 Square junctions of PtCoO2

The previous studies of the ballistic regime in the four-terminal junctions
have mostly been within materials with circular Fermi surfaces. However, the
effect of lower symmetry Fermi surfaces is unknown. The previous studies
in the long channels of PtCoO2 and PdCoO2, discussed in section 4.2, imply
that the hexagonal Fermi surface of these materials may have a significant
impact on the ballistic transport and perhaps lead to novel phenomena.

Therefore, inspired by the Montgomery method, we developed a similar
approach to establish the influence of the hexagonal Fermi surface of PtCoO2

on the electrical transport in the ballistic regime and study in more details
the nature of the anisotropy effect in transport, discussed in section 4.2. Cre-
ating the micron-scale square devices was possible by the development of the
FIB techniques for ultrapure materials described in section 3.2. The criti-
cal parameter in the ballistic regime is the ratio of the momentum-relaxing
mean free path to the width of the square. The high energy electron irradia-
tion, discussed in section 3.5, also allows us to perform a unique experiment.
By introducing point-like defects in a controlled way, we can change the
momentum-relaxing mean free path of the electron without changing con-
tact configuration, the device's geometry, and initial sample quality, which
dramatically decreases experimental uncertainties.

To facilitate the study in delafossite metals, I fabricated a series of square
PtCoO2 junctions with a side length, W , typically about 15 µm and contact
size c of around 5 µm. Figure 4.11 shows an electron image of the 15 µm
PtCoO2 square device prepared using an epoxy-free method of mounting,
discussed in section 3.3. All four contacts of the square have meanders for
current homogeneity. As irradiation experiments can decrease the mean free
path, the square device should initially show a strong ballistic behaviour. In
our previous studies [65, 66], the square device with the 15 µm side length
showed strong ballistic behaviour, despite that this being larger than the
typical mean free path of PtCoO2 of approximately 4 µm.

Unlike with the circular Fermi surface shown in figure 4.12, we should also
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Figure 4.11: An SEM image of a PtCoO2 square microstructure mounted by
epoxy-free method.

Figure 4.12: A schematic of the Fermi surface orientation relative to the
square geometry for a circular Fermi surface and the enhanced and dimin-
ished orientations in PtCoO2.

consider the orientation of the hexagonal PtCoO2 Fermi surface relative to
the square. For these studies, we used two different Fermi surface orientations
shown in fig. 4.12. The orientation of the Fermi surface was chosen to vary
the ease of transmission along the diagonal: the enhanced orientation should
increase this transmission and the diminished one should decrease it. Figure
4.12 demonstrates that the enhanced orientation has one of the six primary
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Figure 4.13: Temperature dependence of the bend resistance below 100K: A
Enhanced orientation and B diminished orientation.

electrons directions orientated along the diagonal, whereas the diminished
orientation has one of the electron directions along the side of the square.
The orientation of the Fermi surface can be determined by visible hexagonal
growth terraces or crystal edges. In PtCoO2 and PdCoO2 the Brillouin zone
is parallel to these edges, with the Fermi surface orientation determined by
a 90◦ rotation.

Within the Ohmic regime both measurements: Bend 1, VB1 = V12,43 =
V4−V3 when the current flows from contact 1 to contact 2 and Bend 2, VB2 =
V23,41 should be identical. There is no fundamental reason why in the ballistic
regime, anisotropy should arise between the R12,43 and R23,14 measurements
in a square junction. However, all the measurements of these junctions in the
ballistic regime have been made in materials with a circular Fermi surface,
which would not be expected to lead to anisotropy.

Repeating those measurements on PtCoO2 brings a surprise. The results
presented in Ref. [65] show the anisotropy between the R12,43 and R23,14 com-
ing from the low symmetry of the Fermi surface. Although I co-performed
those experiments, I will only summarise them here, because the work pre-
ceded the irradiation experiment and has been comprehensively described in
[65] and [66]. In these studies, we varied the ratio of the size of the square to
the electron mean free path by decreasing the size of the squares by FIB. At
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temperatures above 80 K (fig. 4.13), there is little dependence of the voltage
on the size of the square, the orientation of the Fermi surface or the choice
of bend measurement, as expected within the Ohmic regime. At low tem-
peratures, however, we observed a huge anisotropy in diminished orientation
between two bend voltages, though the enhanced orientation did not exhibit
this effect. Other surprising results that we observed were ballistic effects
at a square size almost twenty times larger than the mean free path. The
existence of a strongly faceted Fermi surface in PtCoO2 leads to phenomena
not previously observed in any system, opening the possibility of new regimes
of mesoscopic physics.

4.3.4 Landauer-Büttiker theory

The novel behaviour observed in delafossite square junction motivated a new
theoretical understanding of the ballistic phenomena. With the intrinsic
non-locality of the ballistic regime, Ohmic methods of calculating the resis-
tivity were no longer appropriate. Thus, we required a new approach.

We obtained further insight into the symmetries and the physics underly-
ing the data shown in fig. 4.13 by performing a Landauer-Büttiker analysis
of the square junctions in Ref. [65]. Landauer [67] had developed an alterna-
tive framework in which he considered the current and voltage terminals to
be reservoirs of electrons with specific chemical potential. If all the chemical
potentials are equal, there is no current. Electrons can flow between termi-
nals by biasing the chemical potentials with respect to one another. Thus,
the two-terminal measurement conductance, G, is determined by the proba-
bility, T , that an electron at the Fermi energy is transmitted to the second
terminal rather than reflected into the first.

Büttiker [68] extended the Landauer formula to include additional termi-
nals. The Büttiker multiprobe formula states that the net current, Ii, out of
contact i at zero temperature is:
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Ii =
2e2

h
[(Ni −NiRi)µi −

#

j,j ∕=i

NiTijµFµj], (4.9)

where µj is the chemical potential at contact j, Nj is the number of modes
at the Fermi level in contact j, Tij is the probability of an electron at the
Fermi energy to be emitted from contact j and transmitted to contact i and
Ri is the probability of an electron to be emitted from contact i and reflected
back into the same contact. An important note is that N = kF c/π ∼ 12,000
with a typical contact width c = 4 µm in PtCoO2 squares, which is very
different to the few modes in the 2DEG devices. Despite this, strongly bal-
listic behaviour is still observed. Landauer-Büttiker analyses of the bend and
Hall voltages within four-terminal junctions are standard [69], but all assume
fourfold symmetry between the contacts. We therefore had to perform an
analysis specific to our experimental situation.

Figure 4.14: The transmission coefficients from each of the contacts in a
square device. The measurement configuration for bend voltage in an en-
hanced orientation device is likely to enhance T13 and T31 and in a diminished
orientation device is likely to enhance T23 and T41.

The transmission, Tij, and reflection, Rj, coefficients are normalised such
that an electron emitted from a contact is either transmitted to another
contact or reflected back into the emission contact: Rj+

$
i,j ∕=i

Ti,j = 1. In

combination with the geometry of the square with transmission coefficients
shown in fig. 4.14 the relevant form of Equation (4.9) for each of the four
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contacts can be rewritten in the form a matrix equation,
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(4.10)

where the normalisation ensures T1 = 1 – R1 and equivalent expressions
for T2, T3, T4 for contacts 2 to 4.

As can be seen in fig. 4.14 in both of the experimental orientations in
PtCoO2, contacts 1 and 3 and, separately, contacts 2 and 4 are equivalent
in terms of their orientation relative to the hexagonal Fermi surface, which
leads to the reduction of the transmission coefficients in the Equation (4.10):
T1 = T3, T2 = T4, T21 = T43, T41 = T23, T32 = T14, T34 = T12, T31 = T13,
T42 = T24. In addition to the symmetries of the transmission coefficients
due to the geometry, there are also constraints due to current conservation,
which ensures each row and column sums to the same value, and time reversal
symmetry, which leads to Tij(B) = Tji(−B) in the magnetic field for all values
of i and j.

Equation (4.10) describes a set of four linear equations which must be
solved for each of the experimental measurement configurations. This calcu-
lation determines the voltage in a single 2D layer. However, in a delafossite
metal, there are effectively multiple 2D layers in parallel, with the number
equal to NL = t/(d/3) where t is the sample thickness and d is the c-axis
lattice constant. In combination with time-reversal symmetry and current
conservation for the electronic transport in this lower-symmetry case it gives
the following bend resistances:

RB1 =
VB1(B)

I
=

d

3t

h

2Ne2
T41T32 − T31T42

D(T41 + T21)
(4.11)

RB2 =
VB2(B)

I
=

d

3t

h

2Ne2
T34T21 − T31T42

D(T41 + T21)
, (4.12)
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where D is a positive-definite collection of transmission coefficients that
is symmetric in the field and equal to T41T34 + T21T32 + T34T31 + T32T31 +
T41T42 + T21T42 + 2T31T42.

In materials with a circular Fermi surface, a collimated beam of elec-
trons is directed along the square diagonal. The enhanced orientation for
our hexagonal Fermi surface has the same geometry (fig. 4.14). Therefore,
transmission coefficients T31T42 become larger than the first numerator term
in Equations (4.11) and (4.12), and the bend voltage is negative in the ballis-
tic regime. In the limit that horizontal and vertical transmission are equally
likely, T41T32 = T34T21 and the Bend 1 and Bend 2 voltages are equal.

However, the diminished orientation has another symmetry configuration
(fig. 4.14). In this case, a beam of electrons is aligned to the vertical direction,
and there are no corresponding horizontal or diagonal beams. Therefore, ver-
tical transmission is significantly more probable than horizontal or diagonal
transmission at zero magnetic field in the ballistic regime. Thus, the T41T32

term dominates and the bend 1 resistance is positive. At the same time,
T34T21 is smaller than T31T42, which leads to the negative bend 2 resistance.

The Landauer-Büttiker analysis, therefore, shows that anisotropy in the
probability of transmission of electrons between contacts originated from the
hexagonal Fermi surface can explain the novel anisotropy observed in the
ballistic regime junctions. As discussed in more detail in [65], the scale of
the observed sheet resistance per Pd layer is also well captured using N =
12,000.

4.4 Irradiation results and discussion

One of the conclusions that we drew in Ref. [65] was that the key parameter
controlling the anisotropic ballistic effects described above is the dimension-
less ratio l/w. In that project we varied w by keeping l constant. To fully
test our hypothesis of l/w scaling, I wanted to do the complementary mea-
surement of varying l in squares of constant w. For this, I made use of the
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high energy electron radiation capabilities introduced in Section 3.5.
A simple initial measurement is to compare the temperature dependence

of the two bend voltages and magnetoresistance before the irradiation ex-
periment. The results of such measurements are presented in figure 4.15 for
a diminished orientation PtCoO2 square. The behaviour of the two bend
voltages of an enhanced orientation square is similar to the circular Fermi
surface one. Therefore, I concentrated my attention on high energy electron
irradiation experiments on the diminished orientation squares.

Figure 4.15: A: Cool down of bend 1 and bend 2 measurements of the square
I2 with diminished orientation of the Fermi surface B: Magnetoresistance
of the bend 1 and bend 2 measurements of the square I2 with diminished
orientation of the Fermi surface.

Squares I1, I2 and I3, mounted specifically for high energy electron irradi-
ation experiment using the epoxy-free method described in Section 3.3, have
the diminished orientation of the Fermi surface. The length of the square
side of I1 and I2 samples is around 15 µm and for I3 is 10 µm, suggesting
from our previous results, that all the squares will show ballistic behaviour.
This is confirmed by the example data shown in Fig. 4.15 for square I2. The
magnetoresistance of this sample shows a strong ballistic anisotropy effect
(fig. 4.15B). At zero field, the Bend 2 measurement is qualitatively similar
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to those in the enhanced orientation. The Bend 1 measurement, however,
has a peak at zero field. At larger magnetic field, the behaviour of both bend
voltages becomes nearly identical.

4.4.1 In-situ measurements

The SIRIUS Pelletron linear accelerator allows to perform four-point in situ
resistance measurements, and therefore monitor the increase of resistivity as
a function of electron dose. However, it is possible to complete the mea-
surement only of one voltage pair during irradiation. Thus, in diminished
squares, I measured during the irradiation the bend 1 voltage pair.

The increase of the resistivity of the bulk PtCoO2 S1 sample, as a function
of electron dose, is shown in fig. 4.16. The dependence of resistivity on dose
is linear. Our detailed defect studies of the bulk PtCoO2 in Ref. [36] prove
that the resistivity increase during irradiation is dominated by the defects in
the conductive Pt/Pd planes, as expected in such two-dimensional systems.

However, the diminished squares I1 and I3 are in ballistic regime, and the
resistivity increment of the bend 1 measurement shown in fig 4.16 are sur-
prising. The data of the sample I3 is normalised between several irradiation
steps due to the annealing. At low doses, when the defect concentration is
still small, the resistivity increment of both square samples I1 and I3 is neg-
ative, i.e. as we introduce defects in the system, the resistance drops down!
The resistivity increment is much lower in the I3 sample, probably due to
the different initial purity of the samples.

Even though these results could seem at first glance counterintuitive, it
proves the above assumption that the induced anisotropy is a result of the
symmetry lowering by the sample shape and symmetry of the Fermi surface.
Introduced point-like defects decrease the mean free path of electrons, and
therefore, we can observe the ballistic-diffusive crossover. The drop in resis-
tivity at low doses comes because the bend 1 resistance was enhanced over
the bulk value due to ballistic physics that the irradiation suppresses. With
the increase of the defect concentration, the resistivity increment increases,
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4.4 Irradiation results and discussion

Figure 4.16: Resistivity increment of the bulk PtCoO2 S1 sample with linear
fit and bend 1 of two squares with diminished Fermi surface orientation
during irradiation. The total dose is calculated using expression (3.1). The
data of the sample I3 is normalised between several irradiation steps due to
the annealing

and at higher electron doses, it becomes linear with the slope close to that
of the bulk sample. Thus, the characteristic peak and a trough in bend 1
and bend 2 voltages at zero magnetic field shown in fig. 4.15B should shift
closer during irradiation and become isotropic at the dose when the resistivity
increment is the same as that of bulk material.

4.4.2 Elimination of anisotropy

I performed several magnetoresistance measurements at different electron
doses to estimate the ballistic-diffusive crossover more quantitatively and
qualitatively. The bend 1 and bend 2 resistances of the square I2 in the
magnetic field normalised by the values before irradiation are shown in fig.
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4.17. In each case, the quantity plotted is VB1,B2t/I where I is the measure-
ment current, and t is the square thickness, to compare the irradiation data
to that of the previous experiment on squares with variable width [65]. The
thickness of the sample I2 is 1.3 µm. The magnetic field is applied along the
c-axis.

Figure 4.17: The magnetic field dependence of VB1,B2t/I at 5 K for I2 square
with diminished orientation of the Fermi surface for several irradiation steps.
Dose is in charge units.

In the pure square bend 1 and bend 2 resistivities exhibit strong ballistic
behaviour. The bend 1 measurement has a peak at zero magnetic field, and
bend 2 resistance has a trough. At a small dose of electron irradiation, the
bend 1 resistivity changes significantly, but the bend 2 measurement does
not undergo significant changes. The trough in bend 2 resistance measure-
ments becomes smaller as the introduced defect number increases. The bend
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1 resistance changes its behaviour dramatically with the rise of the electron
dose, and at zero magnetic field also has a trough. However, there is still
a difference between the two bend measurements. At high doses of electron
irradiation, the trough in the bend 2 measurement becomes wider in a mag-
netic field and has a form of magnetic field dependence closer to that of bulk
material. At the final dose of electron irradiation of 7100 µC, which equals a
Frenkel pair concentration around 0.02% [36], the two bend voltages are not
the same, even though both resistivities have similar dependence in magnetic
field. At large magnetic field values, above around w/rc = 2, the behaviour
of both bend voltages becomes nearly identical. This suggests that electrons
have tiny cyclotron orbits in comparison to the device size and transport
becomes diffusive.

4.4.3 Determination of mean free path

An essential limit in any ballistic regime is how an effect decays as the various
length scales are changed. In previous studies [65] of the ballistic effects in
PtCoO2 squares, we examined this decay by changing the square size. In the
irradiation experiment, I change the mean free path of the sample, leaving
the geometry of the square untouched. It is essential to accurately determine
the mean free path to compare the geometric and electronic transport length
scales between different squares.

In the Ohmic regime, for material with resistivity ρ, the transport mean
free path, l, which is an average around the Fermi surface, can be calculated
from the Drude formula (2.1):

l =
m∗vF
ne2ρ

, (4.13)

where m∗ is the effective mass of the transport electrons, vF is the Fermi
velocity, e is the electronic charge, and n is the density of carriers.

The derivation of this equation relies upon the existence of a local rela-
tionship between the current density and the electric field. However, that
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4.4 Irradiation results and discussion

does not exist in the ballistic regime, and the resistivity is undefined due to
this intrinsic non-locality.

The desired mean free path is the value in a bulk device when the bound-
ary scattering does not significantly contribute to the overall resistance, and
the transport behaviour is diffusive. This property is nontrivial to determine
when due to the design of the experiment, the initial size of the square is 15
µm. Another challenge is to determine the mean free path during irradiation,
as it is changing.

The resistivity of the bulk crystal changes during irradiation from ρ0 by
∆ρ as follows:

ρ = ρ0 +∆ρ,∆ρ ∝ Dose (4.14)

thus,
l =

C

ρ
=

C

ρ0 +∆ρ
, (4.15)

where C is some constant.
However, the value that we are interested in is the ratio of the width of

the sample to the mean free path. It depends on the irradiation dose in a
following way:

w

l
=

w(ρ0 +∆ρ)

C
=

w ∗Dose

C2

+
w ∗ ρ0
C

, (4.16)

where C and C2 are different constants.
To apply this method, the value w/l should be linear in the dose so that

we can scale the dose axes to the non-irradiation results.
However, there is also the second possibility of mean free path determi-

nation. At high fields, as it is seen from the magnetoresistance data in fig.
4.17 many of the ballistic effects are suppressed. There is no clear depen-
dence on the square size or mean free path, Fermi surface orientation or bend
measurement configuration, suggesting that the behaviour is approximately
diffusive.

Suppose the behaviour at high field values is assumed to be diffusive. In
that case, the high field resistance and bulk sample magnetoresistance can
be used to estimate the Ohmic contribution to the resistance of a square at
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zero field. This would be the zero-field resistance for the bulk sample as if
ballistic effects are negligible. Expressions from the diffusive regime can then
be used with this value to determine the mean free path. This is supported
by the fact that the cyclotron radius above 4 T is below 1.3 µm, much less
than half of the irradiation square contacts' width, thus suggesting that the
electrons are less able to sense the experimental geometry.

Therefore, to estimate the mean free path of the square during irradia-
tion, I measured the resistance of two bend contacts at the magnetic field of
4 T. At this magnetic field, both bend resistances are almost the same, en-
suring the elimination of the ballistic effect by the magnetic field. I used the
magnetoresistance of the bulk PtCoO2, known from a previous study [32] to
estimate the Ohmic resistance contribution at zero field for the sample before
irradiation. However, this approach to calculating the mean free path suffers
complications as we irradiate the sample, because the value of magnetore-
sistance also changes during irradiation. Previous high energy irradiation
studies of bulk PtCoO2 [66] helped to estimate the diffusive resistance con-
tribution at zero field for the square device during irradiation. The resistivity
of the square was calculated via the Van der Pauw equation (4.8), and the
mean free path was then estimated using the Ohmic expression (4.13). The
mean free path of the samples I2 and I3 estimated by this method is shown
in a table 4.1 below.

Table 4.1: Estimated mean free path
Total dose, µC mfp of I2, µm

0 5.6
700 4.3

1100 3.7
1800 3
2800 2.3
5000 1.7
7100 1.3

Total dose, µC mfp of I3, µm
0 7.4

400 6.0
800 5.1

1200 4.2
2800 2.7
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4.4.4 Decay of ballistic anisotropy

The limits of this ballistic behaviour can be better characterised by quan-
tifying how the anisotropy decays as a function of the mean free path. In
previous studies, the depth of the dip in the magnetoresistance was used as
a scale of the strength of the ballistic effects. A negative bend resistance
observed in CVD-grown graphene was interpreted as demonstrating ballistic
transport over at least 28 µm [70].

The form of the decay of the ballistic effect was studied in semiconductor
heterostructures [71, 72, 49] The resistance, ∆V /I, is usually shown to decay
exponentially as:

∆V

I
∝ e

− w
lB , (4.17)

where w is a characteristic length scale of the ballistic device, lB is a fitted
ballistic mean free path.

Figure 4.18: A: Magnetic field dependence of the resistance at different length
L and a sketch of the device. B: The dependence of the junction resistance
R (the size at zero field) on the length L for channels of two different widths
W in a GaAs-AlGaAs 2DEG, reproduced from [71]

Sakamoto et al. [71] carefully studied the decay of the ballistic effects by
measuring the transfer resistance of the device with the geometry shown in
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fig. 4.18A. In the limit with L = 0, these junctions are typical cross junctions
with width W . In the diffusive limit, when L > W , the voltage should be
approximately zero as the voltage contacts are separated from the current
path. However, in the ballistic regime, the picture is different. Electron
trajectories along the axis of the device led to a non-zero voltage response at
zero field shown in fig. 4.18A, as in the bend resistance. Fig. 4.18B shows the
decay of this feature as a function of the length L. If the width of the junction
is small enough, exponential decay with two different regimes occurs [72, 49].
The rapid decay at small L is attributed to boundary scattering within the
junction and the slow decay at larger values of L to scattering within the bulk.
The rapid decay is more sensitive to the boundary scattering specularity,
while the slow decay length is more sensitive to impurity scattering in bulk.

In ballistic studies, the depth of the dip in the magnetoresistance at zero
field serves as an indicator of the size of the ballistic effects. In a similar vein,
I used the difference of resistance value ∆V t/I between two bend voltages
in the diminished orientation of the squares at zero field at 5 K. An example
of the data before irradiation with method for determining the resistance is
shown in fig. 4.19A. In the diffusive regime, this difference is zero. However,
this is not the case for the trough alone, as it remains finite in the diffusive
regime if the material has a bulk magnetoresistance. Thus, such an approach
has more advantages for the delafossite materials as it allows the separation
of the ballistic contribution from the Ohmic, ensuring the ∆V is a highly
sensitive parameter for estimating the size of the ballistic signal.

Figure 4.19B shows the variation of ∆V t/I with the ratio, w/l, of the
square side w, to the mean free path l calculated in the previous section, for
the two irradiated squares I2 and I3. The rate is similar between these two
squares. However, there are two distinct regimes. At the small values of w/l,
the decay is more rapid. When w/l ∼ 5, the decay becomes slower. The
decay exhibits the slow rate to at least w/l ∼ 13, far beyond the traditional
limits of the ballistic regime of w/l ∼ 1.

There is also a good agreement between irradiation data and exponential
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Figure 4.19: The decay of the difference between the peak and trough, ∆V t/I
as a function of the ratio of square size and mean free path for two irradiated
diminished squares

decay (4.17) with two fitting constants:

∆V t

I
= Ae−

b∗w
l , (4.18)

where A is a constant and b has two different constant values: bS and bF

as the decay has two distinct regimes: when w/l < 5 and w/l > 5.
The comparison of the ballistic decay between the irradiated squares and

our previous studies [65] is shown in fig. 4.20. The magnitude of ∆V t/I

in squares D1 to D4 is measured in the same way as in fig. 4.19A. The
orientation of the Fermi surface of squares D1 - D4 is the same as in I2 and
I3 squares. The only difference between the D squares and two I squares
is the method of changing the value of w/l. In D-squares, the mean free
path was constant, and we changed the w of the square using FIB. Despite
the completely different experimental methods, the ballistic decay is similar
between D-squares and irradiated squares. The slopes of the two distinct
regimes are also close to each other. And at the value of w/l ∼ 5, the decay
changes its behaviour.

For the rapid decay, when w/l < 5, the fitting constants bF of (4.17)
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Figure 4.20: The decay of ∆V t/I, where ∆V = VB1 - VB2 at zero field,
as a function of the ratio of the square side w to the mean free path l for
four diminished orientation non-irradiated squares, D1 to D4, and irradiation
results of I2 and I3 squares. Data courtesy of P. H. McGuinness

for irradiated squares I2 and I3 are 0.65 and 0.7 correspondently, which is
in good agreement with the result from the non-irradiated D-sqaures, bF =
0.65 [65]. At w/l > 5, the decay is a factor of three slower, with bS = 0.23
for irradiated I2 square and bS = 0.21 for D-squares.

On a qualitative level, this double decay agrees with the peak measured
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within the transfer junction geometries in fig. 4.18. However, its origin is
uncertain. It is important to note that the previously reported decay lengths
were always smaller than the mean free path l. However, in PtCoO2, the
characteristic decay length, l/b, is around 1.5l for the rapid decay and 4.8l
for the slow decay.

Figure 4.21: Resistance in the magnetic field before and after high dose of
irradiation of the I1 diminished square. Upper graph has a large offset.

A possible reason for the long range of ballistic effects in PtCoO2 is the
non-circular Fermi surface. The transfer junction studies reported before
have been performed on materials with circular Fermi surfaces. If an electron
with a circular Fermi surface scatters on a defect in the bulk of the device,
there is a vanishing chance that the direction of motion stays the same.
However, in a hexagonal Fermi surface, there are only six primary electron
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directions. Thus, the chance of the direction of motion after scattering not
changing significantly increases.

During this irradiation experiment, I decreased the mean free path of the
I2 square almost by a factor of four. However, as seen in fig. 4.17 this irra-
diation dose did not eliminate the ballistic effect completely. Thus, square
I1 received a total dose of high energy electron irradiation of approximately
140mC, almost twenty times higher than the total irradiation dose of square
I2. Before irradiation, the magnetoresistance shown in fig. 4.21 exhibits
strong ballistic behaviour similar to all of the diminished squares. However,
both bend 1 and bend 2 measurements are identical after irradiation, indi-
cating that the higher dose of irradiation eliminated the anisotropic ballistic
effect. This reaffirms that observed anisotropy originates from lowering sym-
metry by the device's geometry and the symmetry of the Fermi surface.

4.5 Conclusions

In conclusion, in this chapter, I explored the behaviour of micro-scale PtCoO2

square-shaped junctions and bar-shaped ballistic devices. These devices have
shown strongly ballistic behaviour but have also demonstrated a novel resis-
tance anisotropy not observed before in other materials.

I performed a high energy electron irradiation experiment to study the
origin of this induced anisotropy. The experimental data proves that this
anisotropy in the ballistic regime stems from the non-circular Fermi surface
of PtCoO2 and symmetry lowering by device shape.

The level of anisotropy can be controlled by the length of the mean free
path and the orientation of the Fermi surface. The scale of the anisotropy
is a sensitive parameter for the size of the ballistic effects. In the square
devices, this parameter decays with the rate that depends only upon the
ratio of the mean free path to the square size length. The size of this ratio
distinguishes two distinct decay regimes. These studies show, for the first
time, that ballistic behaviour in the delafossite metals persists far outside
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the typical definition of the ballistic regime, when the mean free path and
square size are equal, possibly due to the non-circular Fermi surface.

The observed behaviour highlights the importance of carefully consider-
ing the Fermi surface symmetry when studying transport within ultra-pure
materials. These studies emphasize the significance of including an accurate
representation of the Fermi surface in theoretical modelling of ultrapure ma-
terials and considering the possible unconventional and long-range nature of
any observed ballistic effects.
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Chapter 5

The magnetic delafossite metal
PdCrO2

In the previous chapters, I have discussed the physics of the ultrapure metals,
that belong to the delafossite family. In the whole group of delafossite ma-
terials, PtCoO2 and PdCoO2 exhibit exceptional properties because they are
extremely pure as grown. In this chapter, I will discuss the physical proper-
ties of another exciting compound that belongs to this group. As I will show
later, PdCrO2 has a structure similar to that of PdCoO2. The similar ionic
picture of these two compounds influences the conformity of several physical
properties. However, PdCrO2 brings an essential peculiarity to the discussed
PdCoO2 heterostructure. Without changing the unique layered structure, it
appends magnetism into it. These gifts of nature provide a unique opportu-
nity to gain insight into the underlying physics by comparing two materials
that are sufficiently similar that their differences can clearly be distinguished.

One such comparison concerns the transport properties of PdCrO2. Di-
rect comparison with those of the non-magnetic sister compound PdCoO2

reveals significant extra scattering, which seems to originate in coupling to
the antiferromagnetic-insulating layer. Intriguingly, at high temperatures,
the scattering rate per kelvin is well approximated by the ratio of the Boltz-
mann constant to the Planck constant divided by 2π. The same behaviour
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exists across many material classes including heavy fermion compounds and
high temperature superconductors [73]. Since there is not yet a full under-
standing of this quasi-universality, PdCrO2 might serve as a test-bed with
which to compare the results of calculations aiming to address the issue.
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5.1 Magnetic structure of PdCrO2

In Chapter 2, I described the sister compound to PdCrO2, PdCoO2. The
structure of these two compounds is similar: triangular coordinated ions of
A+ are situated between BO−2 octahedra (fig. 5.1) [74]. As in PdCoO2, cor-
relations are weak in the Pd1+ conductive layers. Unlike the non-magnetic
3d6 configuration of Co3+ in PdCoO2, Cr in the CrO2 layer has the configura-
tion 3d3. First-principles calculations of the electronic band structure, Fermi
surface and density-of-states (DOS) of PdCrO2 show that two bands cross
the Fermi level. Simple electron counting in the absence of correlation would
say that the Fermi level should now sit in narrow Cr-derived bands [75, 76].
However, the ionic picture says that Cr3+ should be in a spin-3/2 state due
to on-site correlation, and a large local moment, in real PdCrO2 CrO2 layers
should be correlated electron insulators [5]. Thus, calculations in [75] were
also performed for the non-collinear antiferromagnetic phase. The mostly
Cr d-electron Fermi surface sheet becomes fully gapped at the Fermi level
because of the magnetic ordering. Only one band crosses the Fermi level,
which is then folded into the smaller magnetic Brillouin zone. At the Fermi
level, the character of this band is mostly that of Pd d-states.

Figure 5.1: Crystal structure of PdCrO2

The nearly octahedral crystal field splits the degenerate 3d electrons into
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Figure 5.2: Example of the spin localisation in a frustrated system

t2g and eg orbitals [76]. In fig. 5.1 electrons of Cr site are placed in the
t2g level. Because Cr3+ has 3 electrons, the t2g level is half-filled with ex-
pected sizable local Coulomb interaction. Strong Hund's rule coupling aligns
the spins on each Cr site, giving a total spin of nearly 3/2, in this way we
can say that the CrO2 sheet is a Mott insulator [76, 77]. In the work [77],
Frank Lechermann called this material a ' hidden Mott insulator' due to its
real-space-selective insulating regime and good metallic system.

Mekata et al. confirmed the hypothesis of antiferromagnetism with the
Neel temperature about 38 K by a neutron scattering experiment [78]. Local
spins of the CrO2 layer in a triangular lattice are unable to select a con-
ventional antiferromagnetic configuration. The structure in the fig. 5.2 is
said to be 'frustrated'. When the system is frustrated, it cannot minimise its
total classical energy by reducing the interaction energy between each pair
of interacting degrees of freedom, pair by pair. To relieve the frustration,
the spins form commensurate states, rotating by 120◦, to create an ordered
magnetic state. Geometric magnetic frustration, where the exchange interac-
tions between spins cannot be simultaneously satisfied, is interesting because
it can lead to novel ground states and unusual excitations. It is vital to un-
derstand the mechanisms by which magnetic order condenses on frustrated
lattices.

The Cr site spins start to arrange themselves into short-range, 120◦ an-
tiferromagnetic order at 200 – 300 K [78, 76, 5]. However, the interlayer
coupling is frustrated because Cr sites in each layer are centred between
the Cr sites in adjacent layers. As the temperature decreases towards the
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Neel temperature, the in-plane correlation length grows to 20 lattice spac-
ings without interplane coherence. Then the layers lock together and form
long-range order.

The authors in [79] proposed two possible scenarios of how magnetic order
in PdCrO2 is formed. The first one is called non-coplanar magnetic structure.
It is originally referred to as a geometrical concept. In this proposed structure
spins in each triangular ab layers lie in a vertical plane and change orientation
from layer to layer. It exchanges clockwise and anticlockwise rotation in
different Cr layers. The second possible structure of the system is coplanar.
Unfortunately, it is very similar to a non-coplanar one, and they could barely
be distinguished from each other by neutron scattering data.

To resolve this puzzle, Sun et al. in [80] performed neutron scattering
measurements under applied uniaxial stress and applied magnetic field. They
showed that the magnetic order of PdCrO2 releases interlayer frustration by
spontaneously lifting the three-fold rotational symmetry of the nonmagnetic
lattice. Their experimental data proves that in an unstrained structure the
rotational symmetry breaking appears in two aspects: the spins lie in the
yz plane, and from plane to plane the magnetic order shifts along the y

axis. The authors also presented resistivity measurement of the single crystal
under applied uniaxial stress. The resistivity measurements, however, can
not detect this rotational symmetry breaking. Electronic transport data
indicates the presence of low-energy spin-wave modes when the lattice is
close to triangularly symmetric.

5.2 Electronic structure of PdCrO2

Another evidence that the CrO2 layer is an insulator is the similarity of the
Fermi surfaces of PdCoO2 and PdCrO2 above the Neel transition (fig. 5.3).
The first experiment on studying the PdCrO2 Fermi surface was reported by
Sobota et al. [81]. They successfully distinguished surface and bulk states
and showed that the bulk Fermi surface of PdCrO2 at 50 K is almost identical
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to that of nonmagnetic PdCoO2. The bulk FS consists of a single hexagonal
electron pocket attributed to one Pd 4d conduction electron per unit cell.
This electronic structure shows a strong correspondence to that of PdCoO2,
consisting of a single hexagonal electron pocket from its Pd 4d electrons [27].
There is no scenario of how that can happen without CrO2 being an insulator
[5, 82]. However, the significant differences between the behaviour of PdCrO2

and PdCoO2 are expected below the antiferromagnetic transition. If it is true,
and coupling between the conductive and magnetic layers is strong, then the
Pd conduction can be used as a probe of the magnetic order.

Figure 5.3: Photoemission spectra at 100 K in the paramagnetic state of
PdCrO2 show a single hexagonal Fermi surface (bottom), while those at 20
K show extra band folding (top). Figure from Noh et [83].

Sobota et al. [81] performed a number of band structure calculations. In
these calculations, they computed the bulk band structure with antiferro-
magnetic spin configuration. The calculated Fermi surface was originating
from a single hexagonal pocket and then folded into the antiferromagnetic
Brillouin zone. This result of the first calculations proves that antiferromag-
netic CrO2 layer affects the Pd conduction. Unfortunately, in this work, they
did not get an ARPES experimental results proving the calculations.
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Figure 5.4: A two-dimensional model of the reconstruction. Top: the Pd-
CoO2 Fermi surface in the 2D nonmagnetic zone, and magnetic zone arising.
Bottom: reconstruction into the magnetic zone. The fully reconstructed or-
bits α and γ are illustrated in the left-hand panel, and the breakdown orbits
β and δ in the right-hand panel. Figure from Hicks et [76].

Hicks et al. [76] reported qualitatively identical dHvA data to those of Ok
et al [84] and performed an extended analysis. They showed how the PdCrO2

Fermi surface could be reproduced by reconstructing the (nonmagnetic) Pd-
CoO2 Fermi surface into a reduced zone corresponding to a magnetic cell
containing six Cr sites. They reported frequencies and effective masses for
four quasiparticle orbits (fig. 5.4): α and γ - fully reconstructed orbits, β
and δ - orbits coming from the breakdown effect. The effective mass and
frequency of the δ orbit are very similar to the equivalent orbit in PdCoO2.
The β and δ orbits appear because the energy gap in the reconstructed band
structure is no longer larger than h̄ωc (ωc is a cyclotron frequency). In other
words, electrons approaching the gap can tunnel through and jump to the
other orbit [85].

Hicks et al.'s Fermi surface reconstruction can be understood in the fol-
lowing way. When electrons feel an additional periodic potential, due to
magnetic order, the band structure is reconstructed. We can reconstruct the
Fermi surface of the PdCrO2 from the PdCoO2 one by translating the non-
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magnetic Fermi surface sections by combinations of reciprocal lattice vectors
of the reduced zone until all portions of the original surface are within the
reduced zone [76].

However, this standard picture could not explain the experimental obser-
vations of PdCrO2 ARPES results reported by Sunko et al. in Ref. [82]. They
discovered that replica features of PdCrO2 Fermi surface need a different ex-
planation: Mott insulator - free-electron coupling. Sunko and co-authors
proved that the coupling allows the Pd electrons to feel the periodic poten-
tial due to the antiferromagnetic order, that this effect is far too weak to give
a full replica band. However, when in the ARPES experiment, they removed
an electron from the Mott-insulator layer, an electron from the conductive
Pd layers hop to the magnetic layer. They deduced a PdCrO2 Hamiltonian
in which Kondo coupling is an interlayer effect. This Hamiltonian (5.1),
with three hopping terms, describes the coupling between conductive and
Mott-insulting layers in this material.

Heff = −tp

n.n.#

ijσ

p+iσpjσ +
4t2c
U

n.n.#

<ij>

SiSj +
4

U

n.n.#

ijkσσ′

gijgklp
+
iσ(Sjσσσ′ )pkσ′ (5.1)

Here the first term denotes the hopping between Pd sites, the second term
describes the effective spin-spin exchange in the Mott layer, and the last term
describes a Kondo coupling between the localised Cr spin and Pd electrons
on the neighbouring sites. The simple fig. 5.5 shows the hopping between
sites with the proposed coupling.

This work [82] experimentally proved and described the special coupling
that exists in PdCrO2. PdCrO2 therefore is a benchmark system for studies
of the triangular lattice Hubbard model and Mott insulator-free electron
coupling.
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Figure 5.5: Hopping within (tp, tc) and between (g) the layers, and the on-site
Coulomb repulsion on the Cr sites (U).

5.3 Transport properties of PdCrO2

In previous sections, I described the magnetic and electronic structure of
PdCrO2 and discussed strong coupling between Mott insulating and conduc-
tive layers. The main question that I would like to discuss in this section is
how this coupling affects electronic transport in PdCrO2? As in PdCoO2,
the conduction of electrons happens in the Pd layer. But unlike PdCoO2,
the CrO2 layer introduced antiferromagnetism in the system [5]. Thus, the
transport properties of PdCrO2 become of considerable interest.

In the work [76] Hicks et al. measured not only the dHvA effect in Pd-
CrO2 but also resistivity up to 500 K. They compared the resistivity of the
PdCrO2 with the non magnetic analog PdCoO2 (fig. 5.6). Detailed mea-
surements and analysis of the magnetisation and resistivity along the c-axis
and in the ab plane were performed in work [12]. In both these works, the
reported room-temperature resistivity of the PdCrO2 is around 8.2 µΩcm

and anisotropy ratio ρc/ρab > 150.
In fig. 5.6 there is a sharp cusp in the PdCrO2 resistivity at TN . Above

the Neel temperature, the magnetic component of the resistivity remains
well below its saturation value due to short-range correlation. In contrast to
PdCoO2, the PdCrO2 resistivity is essentially linear from ∼ 200 to at least 500
K. We can estimate the magnetic component of the resistivity by subtracting
the resistivity of PdCoO2 from that of PdCrO2. This magnetic component
continues to increase at temperatures well above room temperature, i.e.,
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Figure 5.6: The resistivity of PdCrO2 against temperature, for two sam-
ples and temperature dependence of the PdCoO2 resistivity. Bottom panel:
δρ/δT for sample A. Figure from Hicks et [76].

it continues to evolve to temperatures an order of magnitude greater than
TN due to short-range correlation. The increase and eventual saturation
of the magnetic component as the temperature increases leads to a convex
temperature dependence of the resistivity [76, 12]. The Weiss temperature
of PdCrO2 is around - 500 K [86]. So we expect the correlations between the
Cr spins to persist to high temperatures.

The temperature derivative of the resistivity exhibits a clear peak at the
Neel temperature (fig. 5.6). As temperature decreases, the magnetic com-
ponent of the resistivity starts to decrease from temperatures well above the
Neel temperature and suddenly drops at the Neel temperature. This happens
because of the reduction of the randomness of the magnetic spins, associated
with developing short-range spin correlation above the Neel temperature and
long-range antiferromagnetic order at the Neel temperature [12, 78]. Such
a temperature dependence of the resistivity indicates that the frustrated Cr
spins affect the motion of the conduction electrons in the Pd layer.

In Ref. [87] Daou et al. performed a transport calculation for PdCrO2.
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At temperatures higher than the Neel temperature, the band structure of
PdCrO2 is very similar to that of the non-magnetic analogue PdCoO2. They
also extended the model to include magnetic scattering. The effect of inco-
herent magnetic scattering, when collisions randomise the electron direction,
can only change dependence of the relaxation time on wave vector k. In turn,
coherent magnetic scattering does not randomise the electron velocity, but
it links two points on the Fermi surface via the magnetic wave vector. When
the temperature reaches the Neel temperature, this leads to the opening of
gaps at these points and reconstruction of the Fermi surface. The opening
of gaps also heads to a loss of incoherent magnetic scattering from these re-
gions. So, there is a small drop in resistivity at the Neel temperature in a
zero field. As I discussed above, magnetic fluctuations exist on short length
scales above the Neel temperature. They can cause scattering of both types
without reconstructing the Fermi surface [87].

Conducting magnets display extraordinarily large anomalous Hall effects
(AHE). One year after discovering the Hall effect, Hall reported that his
effect was ten times larger in ferromagnetic iron [88]. This strong effect that
he discovered in magnetic conductors is called the anomalous Hall effect.
The anomalous characteristics of the Hall effect in ferromagnets and strong
paramagnets was first explained theoretically by Karplus and Luttinder in
[89]. They showed that electrons have an additional contribution to the group
velocity in the external electric field applied to the solid due to the spin-orbit
coupling. In the ferromagnetic conductor, the sum of these velocities over
all band states can be non-zero and contributes to the Hall conductivity.
Because this theory depends only on the band structure and does not contain
impurity scattering, it is an intrinsic contribution to the AHE. Empirically,
we can write the contribution to the Hall effect as:

ρH(H, T ) = R0(T )B + 4πRs(T )M, (5.2)

where R0 is the ordinary Hall coefficient, and Rs is the anomalous Hall
coefficient that characterises an additional contribution and M is magneti-
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sation. The first term of this formula comes from the Lorenz force acting
on conductive electrons. The second term represents the anomalous effect
contribution due to spontaneous magnetisation. R0 depends mainly on the
densities of carriers. However, Rs depends on the variety of material specific
parameters [90]. From this formula, we can see that ρxy should increase lin-
early with the magnetic field as expected from the Lorentz force. However,
in ferromagnets, typically ρxy initially increases steeply in weak magnetic
fields and saturates at large values. Thus, the spontaneous magnetisation in
ferromagnets affects the hall resistivity.

Antiferromagnets, unlike ferromagnets, possess a non-spontaneous q =
0 magnetisation as in a zero magnetic field, the total spin is compensated.
Thus, according to the equation (5.2) we do not expect the AHE in anti-
ferromagnets. However, experiments prove that it is possible to have an
anomalous Hall effect in a noncollinear antiferromagnet with zero magneti-
sation.

In frustrated spin systems, we can observe the unconventional anomalous
Hall effect (UAHE) which cannot be accounted for by conventional AHE
mechanisms based on spin-orbit interaction to magnetisation M .

However, the observation of UAHE has been limited to only bulk mate-
rials with the three-dimensional analogue to the triangular lattice [91]. The
UAHE has not been experimentally reported nor theoretically expected in a
two-dimensional triangular lattice [92]. In this way, PdCrO2 becomes a mate-
rial of high interest and in the same way extremely challenging. Takatsu et al

in Ref. [92] reported observation of what they interpreted as an unexpected
UAHE in PdCrO2 from a transport study of single crystals. They observed
that ρxy deviates from the field–linear dependence and even changes its sign,
although M increases linearly with H (fig. 5.7). This behaviour sharply
contrasts with the empirical behaviour expressed by equation (5.2). They
also compared the PdCrO2 with non-magnetic PdCoO2 in order to extract
the effects of the frustrated spins. Figures 5.7 (a) and (b) represent the
field dependence of Hall resistivity of PdCrO2 and PdCoO2. Above the Neel
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temperature, both these compounds exhibit a linear field dependence of the
Hall resistivity with a negative slope. Such behaviour of the Hall resistiv-
ity indicates the dominance of electron-like carriers. However, the most re-
markable difference between these compounds should appear below the Neel
temperature. As we can see from the data of Takatsu et al, with decreasing
temperature below the Neel temperature, the slope rapidly changes. This
unusual non-linear field dependence has a hump around 10–30 kOe emerges
at temperatures below 20 K.

Figure 5.7: Field dependence of the Hall resistivity ρxy for (a) PdCrO2 (TN

= 37.5 K) and for (b) non-magnetic PdCoO2. (c) Field dependence of the
magnetisation M for PdCrO2. Figure from Takatsu et [92].

The theoretical understanding of UAHE in PdCrO2 is a complicated prob-
lem. On the one hand, the conductivity is predominantly attributable to the
Pd 4d9 electrons. However, at the same time, the field from Cr affects the Pd
sites. The experimental data in [92] would be consistent with a non-coplanar
magnetic structure of the Cr spins which would allow a finite scalar spin
chirality in the presence of a magnetic field [93]. Whether one exists or not
is still an open question.

All the experimental data discussed above were obtained in bulk single
crystals. The geometrical uncertainty in an electronic transport experiment
leads to more significant errors. Such issues could be crucial for the experi-
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ment in extremely conductive materials. The microstructure procedure that
I used in PdCoO2 and PtCoO2 (Section 3.2) can not only increase the accu-
racy of measurements. Restricting the crystal size (e.g. less than mean free
path) can open new effects that we can not observe in bulk crystals. So far,
no one has studied microstructures of PdCrO2.

5.4 Is linear in temperature resistivity
fundamental or strange?

As mentioned above in connection with Fig. 5.6, the resistivity of PdCrO2

is remarkably linear in temperature between approximately 200 and 500 K.
This raises further interesting questions about the physics of PdCrO2.

The theory of conductivity, discussed in Section 2.1, was placed on a
solid ground more than 60 years ago for the common metals. However,
there are many materials whose transport properties are beyond the con-
ventional paradigm. A well-known failure of text-books is 'strange metals'
which have linear in temperature resistivity dependence well below the De-
bye temperature. In many compounds with linear in temperature resistivity,
electrons seem to dissipate the energy as quickly as possible, as though they
are bumping up against a fundamental quantum speed limit. In classical
physics, there is no restriction concept of a time interval; it can be as short
as you like. However, in quantum mechanics, there is an intrinsic time scale
given by the temperature. The scattering rate per Kelvin in some systems is
proportional to the ratio of two fundamental constants: the Planckian and
Boltzmann constants (5.3). Intriguing indications for a minimum scattering
time, or equivalently a maximum attainable scattering rate, are observed in
systems diverse as laser-cooled atoms at 10−6 K and the quark-gluon plasma
at 1012 K [94, 95]. Sitting near the middle of this range, strongly interact-
ing electrons in solids can also be used to examine the concept of Planckian
dissipation.
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1

τP
∼ kBT

h̄
(5.3)

One finds the temperature dependence of the resistivity in 'strange metals'
[73]:

ρ ∼ m

ne

kBT

h̄
(5.4)

The linear in temperature contribution to resistivity is consistent with the
Drude formula (2.1) if the scattering rate is (5.3).

Remarkably, in many materials such as copper oxides, ruthenium oxides,
iron pnictides, organic metals, and heavy-fermion compounds, the electrical
resistivity is proportional to temperature precisely at a quantum critical point
[96].

Figure 5.8: A wide range of metals in which the resistivity varies linearly with
temperature have similar scattering rates per kelvin.Conventional metals for
which T -linear resistivity is seen at high temperatures (blue symbols). The
line marked α = 1 corresponds to equation 5.3.Figure from Bruin et al [73]
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Commonly quantum criticality is associated with the depression of energy
scales toward zero temperature. Thus, the temperature becomes the only
relevant energy scale. The natural question posed by this observation is
whether linear in temperature behaviour is exclusive to quantum critical
systems. Bruin et al. answered this question in Ref. [73]. They analysed
the scattering rate per Kelvin in a wide variety of materials and summarised
it in fig. 5.8. In addition to quantum critical systems, a different class of
materials with linear in temperature resistivity shows the same dependence
of the scattering rate (5.3).

5.4.1 Planckian scattering in conventional metals

Although the study of 'strange' metals associated with quantum criticality
caused the current interest in Planckian dissipation, actually, it has a much
longer history than that. In 1934 Peierls [97] noted that conventional metals
such as Ag, Au, Cu, etc., have Planckian electrons at room temperature.

I showed in 2.1 that in materials in which phonon scattering dominates,
electron-phonon processes in the high-temperature limit have a T-linear scat-
tering rate that is conventionally expressed as equation 5.3. At high tempera-
tures, phonon modes have a large wave vector q and relax electron momentum
more effectively. The scattering of electrons, in this case, can be presented
semiclassically as [98]:

1

l
∼ nA ∼ 1

a3
< ∆x2 >∼ 1

a3
kBT

K
, (5.5)

where n is a density of scatters (phonons), A is a scattering cross section,
∆x is the displacement of atom from equilibrium, a is lattice spacing and K

is the atomic spring constant characterising energy that 'holds together' the
crystal. For a large Fermi surface, kF ∼ 1/a, the inverse electronic lifetime,
1/τ=vF/l, will be of order

1

τ
∼ D2

Ka2 ∗ EF

kBT

h̄
, (5.6)
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here D is the deformation potential, Ka2 is the atomic binding energy.
All lattice energy scales are eventually rooted in the electronic dynamics that
hold the atoms together, thus, the deformation potential can be estimated D

∼ Ka2 ∼ EF , and it leads to the Planckian lifetime (5.3). It is important to
note here that despite the short lifetime τP , the mean free path l is long: l =
vF τ ∼ aEF/h̄ * h̄/kBT = a ∗ EF/kBT >> a. This happens because the Fermi
velocity is large. The electrons encounter many collisions per time because
they move quickly. This is a difference with unconventional Planckian metals
discussed in Ref. [73] with short mean free path and small velocities [99].

The above estimates suggest Planckian transport due to electron-phonon
scattering above the system-dependent characteristic temperature, the De-
bye temperature. In contrast, quantum criticality has links with Planck-
ian transport below this temperature. Even a low Debye temperature can
not explain observed T -linear scattering down to zero temperature [100].
Therefore, it is possible that in unconventional metals, both mechanisms are
present in different ranges of temperatures [101]. The fact that several dif-
ferent mechanisms lead to the Planckian dissipation in different temperature
ranges highlights a potential universality that transcends microscopic detail.

5.4.2 Planckian bound and uncertainty principle

In the Boltzmann theory, the electrons are treated semiclassically. An elec-
tron is assumed to move with a wave vector k between scattering by phonons,
electrons, defects, or some other disorder. For a Boltzmann description of
transport, superposition of the single-particle Bloch states should form lo-
calised wavepackets. To get an electron quasiparticle with mean free path l

and wavevector kF the superposition should be formed with uncertainties in
position ∆x ≤ l and wavevector ∆k ≤ kF . Thus, according to the uncertainty
principle, l ≥ 1/kF . This expression is one version of the Mott-Ioffe-Regel
limit. The Mott-Ioffe-Regel limit describes a minimum metallic conductivity
compatible with a minimum mean free path, l, which equals the interatomic
spacing a. In a semiclassical picture, it is natural that l cannot be much
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smaller than interatomic space, a, since at that point, the concept of quasi-
particle motion vanishes. However, a semiclassical theory itself breaks down
when l ∼ a because the uncertainty in the k vector of an electron is compa-
rable to the size of the Brillouin zone ∆k ≤ 1/a, which leads to l ≥ a, so it
is not clear whether this condition is one that dictates physical observation
or the range of validity of a particular type of theory [102, 98].

As I showed in Section 2.1 the finite quasiparticle lifetime due to elastic
scattering from the disorder at T = 0 is responsible for the residual resis-
tivity of metals. However, it certainly violates the Planckian bound because
1/τp → 0 as T → 0. Thus, it is reasonable to suggest that the Planckian
bound is intrinsically associated with an inelastic scattering that is capable
of redistributing energy between particles and thermalising the system.

Inelastic scattering transfers energy between the single-particle eigenstates
given by superpositions of Bloch states on some inelastic timescale τin. How-
ever, this scattering leads to a width ∆E in the single-particle energy. With
the scattering rate 1/τ in ≥ kBT/h̄ the uncertainty principle gives ∆E ≥ kBT

[98]. Therefore, the uncertainty in the single-particle energy is greater than
the width of the Fermi-Dirac distribution. Thus, a Boltzmann description
in terms of single-particle states requires τin ≤ τP . Seen from this point of
view, the Planckian bound is about the ability of quasiparticles to retain
their existence in the face of inelastic many-body scattering [99].

5.4.3 Universal theory?

An experimental fact that an analysis procedure applied to an extensive range
of materials in [73] consistently reveals a Planckian scattering rate suggests
that this averaged timescale might actually have an intrinsic meaning [103].
The T -linear resistivity is observed in tuned quantum critical systems at
low temperatures, in some cases down to below 100 mK. However, the same
behaviour is seen up to almost 1000 K in conventional metals and some
cuprates, implying that the linear law and quasi-universal scattering rate are
independent of the microscopic details of the scattering.
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To estimate a timescale using the Drude approach (2.1), we require mea-
surements of the resistivity ρ, effective mass m∗ and density n. The com-
plicated parameter is the effective mass as it can vary around the Fermi
surface and between different sheets. The resistivity measurements could be
challenging, however, in principle, relatively straightforward. Density can be
estimated from the quantum oscillations as the frequency of the oscillations
depends on the cross-sectional area of the Fermi surface [104]. The hall co-
efficient also can be used to determine the density, however, it is sensitive
details of the scattering around the Fermi surface, and therefore a less reliable
than quantum oscillations [105].

There are two commonly used ways to estimate the effective mass: quan-
tum oscillations and the specific heat measurements. The specific heat also
depends on the density of states at the Fermi surface. The amplitude of
quantum oscillations depends on the cyclotron mass [104]. Quantum oscil-
lations can separate the contributions from different Fermi sheets. This is
important if the carriers in the heavy sheet do not contribute significantly to
transport but can dominate the specific heat. In this case, the estimation of
the effective mass for use in the Drude expression by specific heat is incor-
rect. Thus, the effective mass m∗i and densities ni of each sheet of the Fermi
surface can be determined by and used to define a timescale [73]:

1

τ
=

e2

σ

# ni

m∗i
, (5.7)

where σ is the conductivity. The heavy sheets of the Fermi surface in this
expression give the suppressed contribution to the scattering rate.

However, the amplitude of quantum oscillations decays exponentially with
temperature and with the effective mass [104]. Therefore, the values of the
mass and density used in the Drude analysis in Ref. [73] are deduced from
a low-temperature Fermi liquid-like regime where resistivity has T 2 depen-
dence. The Dynamical Mean Field Theory (DMFT) studies of correlated
Hubbard model-like systems also showed a strong temperature dependence
of the effective mass in the T -linear region [106, 107]. This theory implies
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the origin of the linear in T behaviour at low temperatures to be the elec-
tron-electron inelastic scattering.

The nature of the charge transport in the T -linear regime and the meaning
of timescales extracted from resistivity should be understood better, as there
are unusual temperature dependences of many quantities.

Thus, the Planckian dissipation problem brings up two main questions:
why is it observed in a wide range of materials with different microscopies,
and why does in the same material the Planckian rate exist in a wide tem-
perature range. If the origin of the Planckian rate at low temperatures is
electron-electron scattering according to the MFL theory and phonon scat-
tering at high temperatures, the traditional transport theory discussed in
Section 2.1 does not give the same gradient of the linear dependence. The
fact that the same gradient is seen suggests the existence of a minimal equi-
libration time in the system. If this statement is correct, Matthiessen's rule
discussed in Section 2.1 should be obeyed in the T-linear region. However, it
is difficult to test in a controlled way, and the question has not been fully set-
tled based on comparison of many different compounds. Preferably, a very
precise experiment is required during which the residual resistivity of the
material is increased in a controlled manner, and the results of the Planckian
dissipation are compared before and after. One of the experimental targets
of my research on PdCrO2 was to perform such an experiment.
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Chapter 6

Experimental results of the
magnetic delafossite metal
PdCrO2 and discussion

As described in the review of its physical properties in Chapter 5, there is
considerable motivation to perform transport measurements on well-defined
structures and microstructures of PdCrO2. Creating the devices on which to
perform the experiments proved to be much more difficult than for PdCoO2

and PtCoO2, and became one of the main technical challenges that I had to
overcome, as described in section 6.1. In the remainder of the chapter I will
describe the transport and magneto-transport experiments that successful
fabrication of working microstructures enabled.
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6.1 New method of fabricating free-standing
microstructures

Our group's standard procedures for making microstructures are not appli-
cable for crystals with massive thermal expansion or contraction because of
the substantial mechanical coupling between the insulating substrate and
the metallic crystal. Because of this, microstructured crystals of PdCrO2

mounted as described above break during cool down, when the temperature
approaches the Neel temperature. Thus I developed a new free-standing
microstructure method.

Figure 6.1: Schematic main steps of structuring a free-standing device

This method is mainly based on the Pt deposition FIB tool. A sketch
of the following steps is shown in fig. 6.1. The first step in this method
is the same as in Chapter 3. As-grown crystals are mounted on a drop of
two-component glue on a pre-cleaned sapphire substrate. (In the irradiation
experiment, to decrease the thickness of the substrate, we used cleaved mica
as a substrate) Crystals are mounted in the glue by hand with the help of
kapton micro-tools. Then, 200 nm of gold with a 5 nm sticking Ti layer is
sputtered on the substrate with the crystal. The 2-component glue creates
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Figure 6.2: Electron image of free-standing microstructure of PdCrO2 sam-
ple. Pt contacts are blue, green is the device.

very smooth contacts to the delafossite crystal. To decouple the crystal from
the sapphire substrate is necessary to create a 'bridge' that will hold the
crystal. Pt leads deposited by FIB on top of the glue will play the role of the
'bridge'. These leads should connect the crystal surface with the substrate.
The thickness of Pt should be the same as or higher than the thickness of
the crystal. We then sputter the second layer of gold to decrease the contact
resistance of the device. Then the gold layer from the top of the glue drop
should be removed using the FIB. The next step is to remove the glue drop
using the oxygen plasma cleaner. The crystal, held by the deposited Pt leads,
will remain. After these steps, the sample can be sculpted in a final device by
the FIB. To further reduce the mechanical stress, it is also possible to make
meanders on the Pt contacts. This geometry decouples the crystal from a
substrate, and the sample is floating and held by the Pt leads. An example of
one of my free-standing microstructures, made using this method, is shown
in fig. 6.2. The Pt contacts with the meanders are shown in blue in this
figure. The 'effective part' of the device is coloured in green.
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6.2 Investigation of the Planckian dissipation
in PdCrO2 by high energy electron irra-
diation

The T -linear resistivity dependence of PdCrO2 is experimentally observed in
the temperature range 200 – 500 K, with the upper limit that of the mea-
surement that was performed, not necessarily that of the T -linear behaviour
[76]. The Debye temperature is approximately 340 K, as deduced from heat
capacity measurements [11]. The textbook theory discussed in 2.1 suggests
that resistivity should drop with temperature as T 5 far below the Debye
temperature. From now on, I will analyse the temperature ranges lower than
300 K for technical experimental reasons - the fabrication of the microstruc-
tures means that it is dangerous to heat them to substantially above room
temperature. The in-plane resistivity of PdCoO2 is substantially nonlinear
between 100 and 300 K (fig. 6.3), a feature attributed to prominent opti-
cal phonons. The magnetic component of the resistivity can be found by
subtracting the resistivity of PdCoO2 from that of PdCrO2. The magnetic
contribution to resistivity is expected to saturate when the Cr spins become
completely uncorrelated. Fig. 6.3 shows the difference in temperature be-
haviours of PdCoO2 and PdCrO2. The magnetic component of resistivity
increases at temperatures an order of magnitude greater than the Neel tem-
perature.

PdCrO2 brings further surprises in transport measurements. I calculated
the scattering rate from the resistivity between 200 K and 300 K using the
formula 2.1. The Fermi surface, effective mass and density of electrons are
well known for PdCrO2 [82, 76, 5]. Above the Neel temperature, the Fermi
surface of PdCrO2 is almost identical to that of nonmagnetic PdCoO2. The
bulk Fermi surface consists of a single hexagonal electron pocket attributed to
one Pd 4d conduction electron per unit cell. However, for resistivity calcula-
tions, we can approximate the shape of the Fermi surface quite well to a circle
because vF and kF are very weakly varying. The scattering rate per kelvin
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Figure 6.3: Left: Temperature dependence of the resistivity of PdCrO2 green,
and PdCoO2 purple. Right: A) SEM image of PdCrO2 microstructure, B)
SEM image of PdCoO2 microstructure

for PdCrO2 in the temperature range 200 – 300 K can therefore be estimated
with confidence and, surprisingly, it satisfies equation (5.3). Some unusual
mechanism should exist in PdCrO2 that changes the resistivity behaviour
from PdCoO2 one and forces electrons to have the Planckian scattering rate.
Finding and understanding the physics of this mechanism in PdCrO2 will
be a small step towards resolving the Planckian dissipation problem. One
of the ways to it is studying the scattering mechanisms that are varying
significantly between the different Planckian materials. Understanding the
microscopic scattering will answer the critical question: whether Planckian
dissipation is associated with thermalisation, which demands the microscopic
scattering to be inelastic. Thus, it motivates a study of Matthiessen's rule:
is it obeyed in a Planckian compound? The easy experiment, which comes to
mind first, is comparing the scattering rates in crystals of different qualities.
However, the scattering centres might have a completely different nature in
crystals for which the reason for the difference in quality is unknown, i.e. it
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is then impossible to tell for sure if the scattering is inelastic and if it can
be considered independent from the elastic one. The ideal method of study-
ing Matthiessen's rule is introducing point-like defects into a compound in
a controlled way. The irradiation by high energy electrons (Section 3.5)
can provide a unique opportunity for this experiment. The light accelerated
electrons have energy just enough for displacing one atom without creating
a cascade reaction, thereby creating a vacancy and interstitial, i.e. a Frenkel
pair. Thus, the temperature dependence of resistivity before and after high
energy electron irradiation shows if Matthiessen's rule is obeyed. For this
purpose, I performed a high energy 2.5 MeV electron irradiation experiment
in PdCrO2.

The irradiation by electrons with a maximum kinetic energy of 2.5 MeV
was performed at the SIRIUS Pelletron linear accelerator operated by the
Laboratoire des Solides Irradi´es (LSI) at the Ecole Polytechnique in Palaiseau,
France (Section 3.5). The single crystals of PdCrO2 were mounted using the
free-standing microstructure method (Section 6.1).

Figure 6.4: Left: Increase of resistivity as a function of electron dose for two
delafossite metals: PdCoO2, PdCrO2, measured in situ at a temperature of
22 K. Right: Temperature dependence of PdCrO2 resistivity with linear fir
between 200 and 300 K for different doses.
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The increase of the resistivity of PdCoO2, and PdCrO2 as a function of
electron dose is shown in the left panel of fig. 6.4. Because the resistivity
increases as a function of electron dose, I can conclude that electron irradi-
ation introduces defects and that those defects contribute to resistivity. In
these two compounds, the dependence of resistivity on dose is linear and has
the same slope in the investigated range. Changing Pd to Pt in PtCoO2

also results in a linear increase of resistivity, but with a higher gradient [36].
Taken together the observations indicate that the resistivity is dominated by
defects in the conductive Pd or Pt planes, as expected in such two-dimen-
sional systems. A high energy electron displaces a Pd atom in a conducting
layer creating an interstitial and a vacancy, i.e. a Frenkel pair. The more
rapid increase of resistivity with dose in PtCoO2 is naturally explained by it
presenting a higher scattering cross-section to the incoming electrons due to
its higher atomic number. A given dose therefore creates more defects.

Calculations show that the most stable interstitial structure is for the
interstitial atom (Pd) to bond to two O in the layer above, resulting in sig-
nificant in-plane displacements of two Pd atoms. The bond lengths between
the interstitial and the two oxygen atoms are not equal, while one of the
nearby Pd is more displaced from its original site than the other. The bond
lengths between the displaced Pd and the nearest two Pd atoms are simi-
lar. I can interpret it as a structure finding the balance by attempting to
form equilibrium length bonds with the two O atoms above and the two Pd
atoms below. Both the vacancy and the interstitial therefore present highly
localised scattering centers to the conduction electrons.

It is often implicitly assumed that the various contributions to resistivity
are additive, obeying Matthiessen rule 2.1. As emphasised above, in this
case it was important not to accept that assumption, but to test it in a con-
trolled manner. Measuring the transport properties of a single sample before
and after electron irradiation offers a unique opportunity to do this. How-
ever, measurements of the sample before and after irradiation can become
challenging. First of all, as we warm up the sample from the irradiation
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temperature of 22 K, the defects become more mobile and may recombine,
eliminating any added resistivity. Fortunately, in PdCrO2 recombination
probability is substantially less than 1. The added resistivity does decrease
during the initial warm-up to room temperature but only to approximately
65% of its original value.

In the right panel of fig. 6.4 I show the temperature dependence of the
resistivity of the PdCrO2 with different electron doses. It is essential to
specify that before and after electron irradiation experimental data was ob-
tained from the same microstructure. Thus, I reduced the uncertainty of
the experiment associated with different contact configuration and different
original quality of the samples. The temperature dependence of resistivity
remains nearly unchanged, with the defects adding an approximately tem-
perature-independent offset, indicating a good agreement with Matthiessen's
rule between 200 K and 300 K. The linear fit between 200 K and 300 K for
all the doses has the same gradient within experimental error, proving that
adding elastic scattering centres into the material does not change the scat-
tering rate per Kelvin. Thus, I can conclude that, as Matthiessen's rule is
obeyed in this range of temperatures, the inelastic scattering can indeed be
considered independent from the elastic scattering, as postulated in equation
2.14. As Matthiessen's rule is obeyed, it adds to the evidence that inelastic
processes are the key thing in Planckian dissipation.

6.3 Irradiation and the Hall effect signal

Even though creating defects in CrO2 does not influence the temperature de-
pendence of the in-plane transport properties in zero applied magnetic field,
I was interested in investigating whether it would have an effect on the Hall
voltage, particularly on the aspect of the behaviour previously attributed to
the unconventional anomalous Hall effect (UAHE) reported in ref. [92] and
reviewed in Section 5.3 above. Electron irradiation results might influence
the UAHE from two sides: creating disorder in the conductive layer and in
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the magnetic structure. To investigate it, I also performed magnetisation
measurements of the PdCrO2 single crystal before and after electron irra-
diation. This crystal was passively irradiated (no electrical contacts) and
received a total dose of electron irradiation of around 0.7 C/cm2. Thus,
I can compare the magnetisation and Hall effect before and after electron
irradiation in two crystals irradiated to the same electron dose.

Figure 6.5: Left panel: the influence of electron irradiation on the field de-
pendence of ρxy in PdCrO2 at 5 K. Right panel: magnetisation of PdCrO2

before and after electron irradiation at 2 K

In the left panel of fig. 6.5 the field dependence of ρxy at 5 K before
and after electron irradiation is presented.The shape of the ρxy curve before
irradiation is very similar to that reported for bulk single crystals in Ref.
[92]. Surprisingly, the Hall data post-irradiation are very strongly altered,
and this large change is not correlated with a similar change in magnetisation.
As shown in the right panel of fig. 6.5, the magnetisation remains linear in
field and is not changed dramatically. In a collaboration with Veronika Sunko
and Philippa McGuinness, our combination of data on PtCoO2, PdCoO2 and
PdCrO2 was used, in combination with measurements at varying accelerator
voltage, to calculate the absolute cross-section for the Pd in PdCrO2 under
electron irradiation. I therefore know that the defect density in these samples
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after heating to room temperature is around 0.16%.
The magnetic structure of PdCrO2 hardly can be changed by introducing

such a small number of defects; however, this amount of disorder changes the
behaviour of ρxy. The most remarkable feature of the proposed UAHE in
PdCrO2, changing the sign of the ρxy at around 3 T , disappears after electron
irradiation. The overall behaviour of ρxy becomes more linear Thus, I can as-
sume that the origin of the UAHE behaviour lies not only in the non-collinear
antiferromagnetic layer. This unique experiment is only the first small step
towards understanding the UAHE problem in PdCrO2, which requires further
experimental and theoretical development. Moreover, high energy electron
irradiation can provide a novel opportunity for this experiment.

6.4 Ballistic or hydrodynamic in PdCrO2?

6.4.1 Can we apply hydrodynamic theory to metals?

There has been considerable progress in understanding unconventional elec-
tron transport in micro-scale systems in the last two decades. The Fermi
liquid theory provides a framework that introduces an electron fluid by con-
sidering the interactions between the electrons. Then the following question
is can we apply a classical hydrodynamic description to the electrons in met-
als?

A classical hydrodynamic theory is only precise at length scales much
larger than the inter-particle separation. In a fluid, the hydrodynamic the-
ory exists on a scale where conservation laws can be applied to derive the
equations of motion and define macroscopic observables. If one considers vis-
cosity, the conserved quantity is momentum. However, electron transport is
conventionally determined by the momentum-relaxing scattering processes
and the hydrodynamic observables, therefore, are mostly irrelevant to the
electron transport in a solid.

Electron transport is conventionally determined by the momentum-relax-
ing scattering of electrons and described semiclassically. If the momentum-re-
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laxing mean free path is much smaller than any of the other characteristic
lengths of the system, it is in the regime in which Ohm's law holds. Elec-
tron-defect scattering degrades momentum, and electron-phonon scattering
degrades both the energy and momentum of the electron fluid, and therefore,
neither energy nor momentum is a long-lived conserved quantity for electron
transport. Transport resembles the viscous behaviour when the mean free
path of collisions that do not transfer momentum to the lattice, i.e. the
momentum conserving mean free path, lMC , is smaller than the momentum
relaxing mean free path, lMR (e.g. with static defects and phonons) [108].

In most cases, the momentum conserving scattering is assumed to be
electron-electron with τMC = τ ee (lMC = lee) [109, 108, 110]. Impurities and
phonons in a metal play the environment's role, providing unwanted scat-
tering from the point of view of hydrodynamics. Momentum relaxation in
metals happens through electron-defect scattering, both normal and umk-
lapp electron-phonon scattering and umklapp electron-electron scattering.
However, the probability of electron-phonon umklapp scattering decreases
with decreasing the temperature, slowing momentum relaxation. On the
other hand, with decreasing temperature, the rate of conserving momentum
electron-electron normal collisions drops as the ratio T 2/TF as described by
Fermi liquid theory in Section 2.1.

Under the special circumstances of phonon drag, however, electron-phonon
normal scattering conserves momentum. In the normal electron-phonon scat-
tering process, the phonon distribution is assumed to be in local equilibrium.
An applied electric field or temperature gradient can drive the phonon distri-
bution out of equilibrium in a real metal. In this situation, a current carrying
electron will drag the phonons along, and hence, no overall momentum re-
laxation is caused by the normal electron-phonon collisions [111].

In metals, the electron-phonon umklapp processes discussed in Section
2.1 exhibit an exponential suppression e−TU/T with decreasing the temper-
ature. Normal processes can be substantial enough to outweigh the rate of
losing momentum to the lattice with a very low impurity concentration at
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sufficiently low temperatures. Thus, the existence of phonon drag, where the
phonons are dragged out of the equilibrium by current carrying electrons,
can in principle support a momentum-conserving electron-phonon fluid if
impurity scattering can be ignored [111]. Therefore, it is essential to have a
low impurity concentration as a benchmark of the host material to observe
hydrodynamic electron flow.

6.4.2 PdCrO2 results

A long-standing question in the physics of solids is whether this regime in
which the viscosity of the electron fluid has an observable effect on the mea-
sured resistivity is experimentally accessible or not.

There are theoretical proposals of phonon drag in PdCrO2 below the Neel
temperature [112]. Having very similar properties to that of PdCoO2, Pd-
CrO2 is a therefore candidate for searching for the hydrodynamic regime.
However, it introduces several complications to the unconventional trans-
port problem. The first one is a strong coupling between the magnetic and
conductive layers. The second one is that unlike PdCoO2, PdCrO2 has mul-
tiple Fermi surfaces below the Neel temperature.

My experimental studies in PtCoO2 and PdCoO2 (Chapter 4) show the
significance of understanding ballistic effects in these systems. Unfortunately,
we can not tune the transport regimes here to be purely ballistic or purely
hydrodynamic. Thus, to understand the whole picture of unconventional
transport, it is necessary firstly to investigate the ballistic-diffusive crossover.
To perform a thorough comparison between the transport properties of the
two materials, I performed systematic thinning down studies in a PdCrO2

microstructure.
The ballistic experiment in PtCoO2 (Section 4.2) showed that the orienta-

tion of the device according to the Fermi surface is vital in such experiments.
Thus, I created two PdCrO2 microstructures using the free-standing method
(6.1) shown in fig. 6.6. I aligned the first bar (fig. 6.6 A and B) according to
the high temperature Fermi surface, as shown in the picture. The two sides
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Figure 6.6: SEM images of the PdCrO2 devices. A: initial bar oriented
as 'hard' according to the high temperature Fermi surface. Its measured
width is 22 µm. B: final size of the bar after several thinning down steps.
Its measured width is 1 µm. C: initial bar oriented as 'easy' to the high
temperature Fermi surface. Its measured width is 28 µm. D: final size of the
bar after several thinning down steps. Its measured width is 1.4 µm

of the Fermi surface are parallel to the sides of the bar. This arrangement is
called the 'hard' direction, as electrons have two priority directions towards
the sample's edges. The second configuration is called 'easy', and it is 90 de-
grees rotated with respect to the 'hard' direction. Electrons have a priority
direction along the bar (fig. 6.6 C and D).

The initial width of the 'hard' bar was 22 µm. The average low-temper-
ature transport mean free path in the crystals I have studied of PdCrO2,
derived from the resistivity at 3 K, is around 2 µm. Because the initial
width of the device is more than ten times larger than the expected mean
free path, it seems reasonable to assume that electronic transport is ohmic
at all temperatures. However, the value varies between each crystal due to
differences in the concentration and form of growth defects and impurities.
In the Ohmic regime, for material with resistivity ρ, the transport mean free
path (l) for 2D metal can be calculated using the standard 2D expression:

ρ−1 =
e2

hd
kF l, (6.1)
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where h is Planck's constant, e the electronic charge and d the interlayer
spacing.

Figure 6.7: Temperature dependence of the resistivity of PdCrO2 for several
widths of the bars in two different orientations of the resistivity bar accord-
ing to the Fermi surface: left figure - 'hard' direction, right figure - 'easy'
direction.

The mean free path of the electrons in a 'hard' direction device at the
temperature 3 K calculated using this method is around 1.7 µm and for 'easy'
direction this value is around 2 µm. The mean free path is the value that
would occur in the same crystal but within a bulk device, defined as when
the boundary scattering does not significantly contribute to the resistance
and the transport behaviour within the Ohmic regime. I performed these
measurements for the following widths of the 'hard' channel: 22 µm, 18 µm,
14 µm, 10 µm, 7 µm, 5 µm, 3 µm, 2 µm and 1 µm. The channel oriented in
the 'easy' direction had 28 µm, 20 µm, 15 µm, 10 µm, 7 µm, 5 µm, 3 µm,
2 µm, 1.4 µm widths.

The temperature dependence of the resistivity for all the widths of the
'hard' direction channel is shown in the left panel of the fig. 6.7. The value
of the resistivity at high temperatures, where the mean free path is relatively
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small, is close for all the channels. The influence of the boundaries becomes
significant at low temperatures the mean free path becomes longer, boundary
scattering plays an important role, and the as resistivity increases. I observed
a similar qualitative behaviour of the resistivity in the channel oriented in
the 'easy' direction, the right panel in the fig. 6.7.

Figure 6.8: The increase of the resistivity normalised by the bulk resistivity
against the ratio of the momentum relaxing mean free path to the width of
the channel, left panel: at 3 K, right panel: at 40 K.

To analyse the influence of the boundaries and the effect of the mean free
path, I plotted the increase of the resistivity at 3 K in 'easy' and 'hard' ori-
entations of the channels normalised by their ohmic values against the ratio
of the momentum relaxing mean free path to the width of the channel in the
left panel of fig. 6.8. As in PdCoO2, the influence of the boundary scattering
becomes significant when the mean free path of the electrons becomes com-
parable with the width of the channel. As seen in the left panel of fig. 6.8
the resistivity increases strongly as a function of decreasing width for both
orientations of the Fermi surface. The orientation of the channel according
to the Fermi surface influences this dependence. There is a big difference in
the resistivity behaviour in 'easy' and 'hard' channels. Unfortunately, the
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relatively small mean free path of PdCrO2 does not allow us to investigate
the influence of the width of the channel on resistivity for values of lMR/w
much higher than one. However, the quadratic fit of the obtained data pre-
dicts a continued rise of the difference between 'easy' and 'hard' directions
with increase of the lMR/w value.

The simplest theoretical model that explains constricted geometries and
boundary scattering, by Nordheim [48] assumes that Matthiessen's rule is
valid for the combination of the resistivity in a wide channel ρbulk and the
extra resistivity due to the boundary scattering in a narrow wire ρbound,
leading to a total resistivity ρ:

ρ

ρbulk
= 1 +

l

w
, (6.2)

where l is the mean free path in a wide sample where boundary scattering
is unimportant and w is the diameter of the wire. However, this model
assumes fully diffuse boundary scattering. A more complicated model by
Fuchs [49], was based on the Boltzmann equation and also accounted for
possibilities of non-diffuse boundary scattering. The models described above
assumed a circular Fermi surface in the 2D approximation appropriate to
PdCrO2 and that any scattering was isotropic, with an equal relaxation time
around the Fermi surface. However, in Ref. [113] Bachmann et al. showed
the influence of directional ballistic effects on transport properties of PdCoO2.
They also performed the kinetic calculations for a perfectly hexagonal Fermi
surface that explained the experimental results.

In the Gurzhi regime of Ref. [108] with a circular Fermi surface, the
low-temperature channel resistance increases monotonically as the inverse
square of the channel width and should be direction independent. However,
in Ref. [114] Cook et al. found via numerical solutions of the Boltzmann
equation with a polygonal Fermi surface a substantial modification of the
Gurzhi effect. According to their model the low-temperature resistivity be-
haviour in PdCrO2 is closer to the hydrodynamic behaviour because of the
quadratic contributions seen in the data of Fig. 6.8. However, this interpre-
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tation has to be treated with considerable care, because the quadratic be-
haviour is seen at such low temperatures. The Fermi temperature of PdCrO2

is around 27000 K. The inelastic Coulomb lifetime τ ee of 2D a quasiparticle
near to the Fermi surface:

1

τee
= −kB

h
TF (

T

TF

)2ln(
T

TF

), (6.3)

As the hydrodynamic regime is reached when electron-electron scatter-
ing events dominate momentum relaxing scattering events, at temperatures
of 5 K in PdCrO2, electron-electron scattering should be negligible, even in
a polygonal Fermi liquid. If phonon drag were the source of momentum--
conserving scattering, a strong T−5 dependence of the channel resistance is
predicted at low temperatures, due to the temperature dependence of the vis-
cosity [115, 116], I observe no sign of such a rise. It is therefore unlikely that
this unconventional w scaling of the conductance results from a standard,
temperature-dependent viscosity.

The data also give direct evidence that the fragmentation of the large
Fermi surface into many small ones below the Neel temperature does not
have a strong influence on the orientation dependence of the data, as expected
since the gaps are very small and hence have very little effect on the unfolded
Fermi surface. As is seen in the right panel of Fig. 6.8, the data above the
Neel transition show the same qualitative trends as those at 3.5 K).

The above discussion shows that although the quadratic dependence of
the resistivity is often considered the character of the viscous contribution of
electron flow into the electron transport, it is premature to definitely conclude
that there is a large hydrodynamic contribution in the case of delafossite
metals. It will be important, however, to find an alternative explanation
for the quadratic width dependence of the channel resistance that I have
observed. Even if it is due to ballistic physics, that ballistic behaviour in
PdCrO2 persists far outside the point where the mean free path and width
of the channel are equal, possibly due to the non-circular Fermi surface.

One of the methods used to identify viscous effects in graphene and in
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semiconductors to investigate the influence of the viscosity of electrons and its
relationship to ballistic effects is to measure the dependence of the resistivity
on the number density of electrons and compare the results with theory
[117, 118, 119, 120]. Unfortunately, in the case of delafossite metals, it is
impossible to tune the system by changing the number of density of electrons
because they are high carrier density metals in which gating could make only
tiny relative changes to the carrier concentration.

The experiment on PdCrO2 discussed in this section shows the impor-
tance of understanding ballistic effects and the difficulty in distinguishing
the hydrodynamic effects from ballistic ones. The evidence suggests that the
viscous effects do not play a major role in causing the observed behaviour.
Although the unconventional electronic transport in PdCrO2 may not be a
result of hydrodynamics, the effect that anisotropy of the Fermi surface has
on a ballistic-diffusive crossover is highlighted as an open issue. My exper-
imental data set therefore provides an outstanding opportunity for further
theoretical investigation of unconventional transport in the magnetic delafos-
site metal.

6.5 Magnetoresistance of the magnetic
delafossite metal

The initial goal of my project was to study Planckian dissipation and the
ballistic-diffusive cross-over in PdCrO2. The successful creation of the novel
method of free-standing microstructures broadens the experimental oppor-
tunities of studying electron transport in PdCrO2. PdCrO2 gives a novel
opportunity to study the natural heterostructure of two completely different
limiting states of electrons: free-electrons and Mott-insulator. Thus, it is
crucial to study the influence of the Mott-insulator on the conductive layer
in a magnetic field. I therefore set out to perform a systematic set of magne-
totransport measurements on PdCrO2, to form a dataset suitable for direct
comparisons with those non-magnetic PdCoO2, in which the CoO2 layers
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can be thought of as band insulators.
The magnetoresistance ∆ρab(H)/ρ0(ρ0 =ρab(H = 0)) of a microstructure

of PdCoO2 for temperatures from 5 K to 300 K is shown in the right panel of
fig. 6.9. At all temperatures, the scale of the MR is small, never exceeding
30% at 9 T. In the framework of the nearly free electron model, (PdCoO2 has
a single band FS with an effective mass close to the free electron mass) at
low fields such that ωcτ << 1, the MR varies as the lowest even power of the
magnetic field, B2, owing to its symmetry under magnetic field reversal. At
very high fields where ωcτ >> 1, in a closed FS, the electrons tend to make
many revolutions around the FS before getting scattered by impurities or a
phonon, and the magnetoresistance is predicted to saturate. However, the
saturation of PdCoO2 magnetoresistivity at high field is not observed up to
the highest field, where ωcτ is around 30. The behaviour of magnetoresistance
at 5 K is noticeably different from that reported in ref. [32] due to long-range
ballistic effects discussed in Section 4.4 and [65, 66]. The width of the device is
around 90 µm, which with a mean free path of 20 µm can cause the ballistic
behaviour at low temperatures. The PdCoO2 device studied in Ref. [32]
was 155 µm wide, so any residual ballistic effects were smaller. PdCoO2 is a
single band metal, and thus within the Drude theory of a single-band material
with only one microscopic length scale, the magnetoresistance should vanish.
As discussed in Ref. [32] two distinct scales can explain the presence of
magnetoresistance in PdCoO2, the magnetoresistance is non-zero and related
to their difference, while the resistivity in the zero field will depend on some
weighted average of the two. In metals with low rates of momentum relaxing
scattering, more exotic contributions beyond standard Boltzmann transport
in the relaxation time approximation can play a role in transport properties
[32]. In PdCoO2, however, these effects are all quite small, and there is little
in the overall pattern of the magnetoresistance that is strongly different from
the expectations for a high purity single-band metal.

The magnetoresistivity of PdCrO2 ∆ρab(H)/ρ0(ρ0 =ρab(H = 0)) , in con-
trast to that of PdCoO2, exhibits a very strong field dependence below the
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Figure 6.9: Left panel: Magnetic field dependence of the in-plane resistivity
of PdCrO2 in the temperature range from 2 K to 50 K in the field up to B =
14 T perpendicular to the ab-plane. Right panel: Magnetic field dependence
of the in-plane resistivity of PdCoO2 in the temperature range from 5 K to
300 K in the field up to B = 9 T perpendicular to the ab-plane.

Neel temperature (left panel in fig. 6.9). At the temperature 2 K the mag-
netoresistance reaches 2000% under 14 T magnetic field for the transverse
geometry (H⊥I). Large magnetoresistance for a transverse geometry can of-
ten be attributed to a large Lorenz force due to multiple conduction bands.
However, this large contribution from the Lorentz force should be suppressed
for the longitudinal geometry when H ‖ I [121]. Thus, in a non-magnetic sys-
tem, the magnetoresistance in transverse and longitudinal geometries should
drastically differ, and the maximum longitudinal magnetoresistance is ex-
pected to be less than 100% [122]. In Ref. [84] Ok et al. measured both
longitudinal and transverse magnetoresistance of PdCrO2. The large lon-
gitudinal magnetoresistance is comparable with the transverse one, which
indicates coupling between itinerant electrons and the Cr spins.

In this experiment, I obtained the value of magnetoresistance under a 14
T magnetic field almost five times larger than was ever reported [84, 123].
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This extremely high value of magnetoresistance indicates the high purity of
the single crystal of PdCrO2 and also the significance of microstructures in
the resistivity measurements.

Figure 6.10: Left panel: Magnetic field dependence of the in-plane resistivity
of PdCrO2 in the temperature range from 100 K to 300 K in the field up
to B = 14 T perpendicular to the ab-plane. Right panel: Magnetic field
dependence of the in-plane resistivity of PdCoO2 in the temperature range
from 100 K to 300 K in the field up to B = 9 T perpendicular to the ab-plane.

Above the Neel temperature, the Fermi surfaces of PdCrO2 and PdCoO2

are similar. However, the resistivity of PdCrO2 in the magnetic field is higher
than that of PdCoO2, presumably due to the magnetic scattering. To com-
pare the behaviour of these two compounds in magnetic fields, I plotted the
magnetoresistivity of the PdCrO2 at temperatures 100, 150, 200, 300 K in the
left panel of fig. 6.10 and that of the PdCoO2 at 100, 200, 300 K in the right
panel of fig. 6.10. Both compounds have the magnetoresistivity value much
lower at these temperatures. However, the absolute value of magnetoresis-
tivity of PdCoO2 is larger than that of PdCrO2 at the same temperatures.
This high temperature magnetoresistance looks conventional in form in both
compoounds, and the smaller scale in PdCrO2 is qualitatively consistent with
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its shorter mean free path.

Figure 6.11: Temperature dependence of the magnetoresistance of PdCrO2

under 5 T, 10 T and 14 T magnetic field

This discussion suggests that the very large magnetoresistance in PdCrO2

may be associated with the development of magnetic order. However, the
relationship is not trivial. One of the surprises that PdCrO2 brings in these
studies is the temperature dependence of the magnetoresistance shown in
fig. 6.11. It shows a rather strong drop in value that onsets at temperatures
higher than 10 K, far below the Neel temperature.

The unusual behaviour of magnetoresistance occurs at low temperatures.
The value of magnetoresistance in the magnetic field of 14 T reaches its max-
imum around 4 K. The same behaviour is observed at 10 T. With decreasing
magnetic field, this effect weakens. At a magnetic field of 5 T, the value of
magnetoresistance is almost constant between 2 K and 5 K.

Below the Neel temperature, electrons in a conductive Pd layer feel an
additional periodic potential of the CrO2 layer, due to magnetic order, and
the band structure is reconstructed [76, 82]. The gaps (εg) opened at the
antiferromagnetic Brillouin zone boundary are small, on the order of 40 meV
[84]. For the reconstructed Fermi surface (fig. 5.4), the coexistence of the

125



6.5 Magnetoresistance of the magnetic
delafossite metal

electron-like γ and the hole-like α pockets should induce a strong magnetic
field dependence of the resistivity. However, in a larger magnetic field, there
is a probability for the electrons to tunnel through the gap (εg) in k space
from one part of the Fermi surface to another with sufficient cyclotron energy
[104]. This can occur at high magnetic fields, known as magnetic breakdown.
The criterion for magnetic break down is that the separation (h̄ωc, where ωc

is a cyclotron frequency) between Landau levels should become comparable
to or greater than the energy gap (εg):

h̄ωc ≥
ε2g
EF

, (6.4)

The probability for the magnetic breakdown is described by:

p = exp(B0/B), (6.5)

where B0 is the breakdown field.
For the PdCrO2 energy gap of 40 meV the breakdown field B0 is around 6.9

T. As the magnetic breakdown occurs above this value, a contribution from
the nonmagnetic Fermi surface (δ in fig. 5.4) becomes more dominant, which
should cause the saturation of the magnetoresistance. However, the expected
behaviour is not observed in the experiment. In addition, the existence of the
temperature dependence of the breakdown probability p and energy gap εg

can not explain the unusual temperature behaviour of the magnetoresistance
shown in fig. 6.11.

This is all consistent with the above discussion about longitudinal magne-
toresistance: there is no evidence that the very large low temperature mag-
netoresistance of PdCrO2 has an origin in conventional orbital effects. The
data therefore provide another opportunity for in-depth theoretical work.
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6.5.1 Magnetoresistance of the magnetic delafossite
metal in a restricted geometry

In the mesoscopic regime, the transport in delafossites is no longer isotropic
in the ab-plane, unlike in the bulk where the triangular in-plane lattice has
high enough symmetry that isotropy is enforced in the transport. In zero
magnetic field in both PdCrO2 and PdCoO2 in the mesoscopic regime, the
boundary scattering and low symmetry of the Fermi surface play a significant
role in electron transport. However, the experiment discussed above (Section
6.5) showed that PdCrO2 has dramatically different behaviour in magnetic
field from that of PdCoO2 due to the exotic coupling happening between
Mott-insulating layers and conducting layers. The main issue I will discuss
in this section is how the boundary scattering in the mesoscopic regime in-
fluences the unusual magnetotransport in PdCrO2.

The magnetoresistance of PdCoO2 in the mesoscopic regime was well mea-
sured and discussed in [47]. For the accurate comparison of two mesoscopic
regimes under a magnetic field of the Mott-insulator and band-insulator het-
erostructures, I performed magnetotransport measurements for the two Pd-
CrO2 samples, with 'easy' and 'hard' Fermi surface orientations according to
the channel, discussed in the Section 6.4.

At mesoscopic widths in PdCoO2, a peak in the MR is observed in fig. 6.12
A. A precursor of the ballistic peak starts appearing in the magnetoresistance
at a width three times larger than the mean free path, which with decreasing
channel width dramatically increases. However, the ballistic behaviour is not
observed in the magnetoresistance of PdCrO2 (fig. 6.12 C and E).

In PdCoO2 at 2 K, the peak in ρxx/ρbulk in fig. 6.12B appears at the exact
value of w/rc around 1 for every channel width, which is a clear manifestation
of ballistic behaviour that is dictated solely by boundary scattering. However,
ρxx/ρbulk in PdCrO2 in fig. 6.12 D and F does not have the ballistic peak even
for the lowest w/lMR value. At the same time, at zero magnetic fields, the
resistivity of the PdCrO2 increases with decreasing the width of the channel,
apparently due to the boundary scattering. And when w/rc reaches 1 the
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Figure 6.12: A: PdCoO2 magnetoresistance at 2 K against the ration of the
mean free path to rc. Reproduced from [47]. B: bulk normalised resistivity
as a function of the ration of the width to the cyclotron radius at different
values of w/lMR. Reproduced from [47]. C: magnetoresistivity measured
in PdCrO2 at 3 K for the 'easy' orientation of the Fermi surface. D: the
dependence of the ratio of ρab/ρbulk of PdCrO2 at 3 K for 'easy' direction of
the Fermi surface orientation on w/rc for several values of w/lMR, E and F:
the same for the 'hard' orientation of the Fermi surface
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ρxx/ρbulk actually drops below the diffusive limit (fig. 6.12 D and F).
My experimental data shows the unexpected behaviour of PdCrO2 in the

ballistic regime in the magnetic field. The direct comparison of band insulator
and Mott-insulator heterostructures proves that the exotic interlayer coupling
in PdCrO2 causes unexpected physics. However, the origin of this is not
clear so far. My experimental results provide a unique data set for future
theoretical developments.

6.5.2 SdH effect in the magnetic delafossite metal

On close examination, I noticed the oscillations of magnetoresistance ob-
tained from the bulk free-standing microstructure of PdCrO2 (fig. 6.9A),
which is presumably the Shubnikov-de Haas effect. Shubnikov and de Haas
first observed oscillations in the field dependence of the electrical resistivity
in 1930 [104]. This discovery led to the discovery of the de Haas-van Alphen
oscillations in magnetic properties. Magnetic quantum oscillations became a
powerful tool for studying electronic dispersion and Fermi surface geometry.

In an external magnetic field H, the only permitted states of an electron
in k-space are so-called Landau levels (fig. 6.13 A). In a simple case of the
free electron gas with spherical Fermi surface, the Landau levels are circu-
lar cylinders with a common axis in the direction of the magnetic field H.
As the magnetic field is increased, the tube expands and varnishes infinitely
rapidly when the tube reaches the size of the Fermi surface. The passing and
vanishing of smaller tubes through the Fermi surface happens at equal inter-
vals of 1/H. Thus, the degeneracy and even (at constant chemical potential)
particle number oscillate with period 1/H which depends on the size of the
underlying Fermi surface:

∆
1

H
=

2πe

h̄A
, (6.6)

where A is extremal cross-section of the Fermi surface in the plane perpen-
dicular to the applied magnetic field.
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Figure 6.13: A: Schematic sketches of Landau tubes for a circular Fermi
surface B: Spikes represent the Landau-quantised quasiparticle density of
states

This oscillation transfers to the density of states (fig. 6.13B), so it also
affects electrical transport. However, the theory of the SdH effect is more
complicated than that of the dHvA effect, as it involves the problem of
electron scattering in a magnetic field. In 1965 Pippard showed that the
probability of scattering is proportional to the number of states into which
the electron can be scattered. This probability determines the relaxation time
and the resistivity of a metal oscillates with the oscillation of the electron
density of states at the Fermi energy. However, the SdH effect is not easy to
observe.

At finite temperatures thermal broadening of the Fermi function means
that Landau levels no longer depopulate individually in the way sketched in
fig. 6.13B. The thermal damping factor RT has the form:

RT =
X

sinhX
, (6.7)

with X:

X =
2π2rm∗kBT

eh̄B
, (6.8)

Here, m∗ is the ‘cyclotron effective mass’. Thus, studying the temperature
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dependence of the oscillation amplitude gives information about the effective
mass of the electrons. This construction is called a Lifshitz-Kosevich formula.

In the presence of disorder, the spikes in the density of states in fig. 6.13 B
will be washed out in accordance with the uncertainty principle. The impu-
rity damping factor RD is conventionally expressed in terms of an 'equivalent
impurity temperature' the Dingle temperature TD, as defined the expression:

RD = exp(
−2π2rm∗kBTD

eh̄B
), (6.9)

Here r is the order of the harmonics, TD is the Dingle temperature and
m∗ is cyclotron effective mass from the analysis of the RT damping factor.

Thus, the total damping will be a combination of disorder and temper-
ature [104]. However, as discussed above, delafossite metals are extremely
pure systems. Thus, the observation of the SdH effect is possible in these
metals.

The second derivative of the magnetoresistance of PdCrO2 for different
temperatures shown in fig. 6.14 exhibits oscillatory behaviour periodic in
1/H. For a more detailed analysis of the quantum oscillations of the resis-
tivity, I performed a fast Fourier transform (FFT) presented in fig. 6.15 A
and B for the two field regions: 3 – 6 T and 7 – 10 T. This analysis gives
two frequencies of the quantum oscillation: around 102 T and 830 T. Four
dHvA frequencies were measured in [76]: 0.83 kT for the α pocket, 3.45 kT
for the β (breakdown orbit), 10.52 kT for the γ pocket and 27.40 kT for
the δ pocket (breakdown orbit) (see fig. 5.4). The frequency of 810 T that
I observed in magnetoresistivity is close to the 0.83 kT frequency of the α

pocket. However, in the dHvA experiment, the frequency of 102 T was not
observed.

The Fermi surface of layered metals is a warped cylinder. Such a Fermi
surface can have two close extremal cross-section areas A1 and A2 by the
planes in k-space perpendicular to magnetic field H, which give two rela-
tive quantum oscillations frequencies according to the equation (6.6). The
observed magnetic quantum oscillations are given by the sum of oscillations
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6.5 Magnetoresistance of the magnetic
delafossite metal

Figure 6.14: A: the second derivative of magnetoresistivity of PdCrO2 in
the temperature range from 2 K to 10 K. B: the first type of oscillations at
the second derivative of magnetoresistivity of PdCrO2 at temperature range
from 2 K to 10 K, magnetic fields from 2 T to 5 T. C: the second type
of oscillations at the second derivative of magnetoresistivity of PdCrO2 at
temperature range from 2 K to 10 K, magnetic fields from 11 T to 14 T.

with these two frequencies, which gives the beats of an amplitude, typical to
quasi-two-dimensional metals with the frequency of ∆F = F1 - F2. Another
feature of electron transport in magnetic field in quasi 2D metals is the so--
called slow oscillations which come from the mixing of two close frequencies
F1 and F2 and have the frequency equal to the doubled beat frequency [124].

However, PdCrO2 does not give two close enough frequencies to cause the
oscillations with frequency of 102 T. Furthermore, these quantum oscilla-
tions exist at low fields below ∼ 6 T. To try to understand the origin of these
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6.5 Magnetoresistance of the magnetic
delafossite metal

Figure 6.15: A: FFT of the second derivative of PdCrO2 magnetoresistivity
from 3 T to 6 T. B: FFT of the second derivative of PdCrO2 magnetore-
sistivity from 7 T to 10 T. C: temperatures dependence of the FFT peak
amplitude with 102 T frequency. D: temperatures dependence of the FFT
peak amplitude with 810 T frequency.

quantum oscillations, I performed measurements at different temperatures
from 2 to 10 K, to calculate the effective mass according to the Lifshitz-Ko-
sevich formula (6.7). The temperature dependence of the amplitude of both
oscillations shown in fig. 6.15 C and D is the second surprise that PdCrO2

brings in these measurements. The temperature dependences have apparent
peaks at ∼ 4 K. According to the Lifshitz-Kosevich formula, the amplitude
of the quantum oscillations should decrease with increasing the temperature.
Thus, the calculation of the effective mass from the SdH effect is question-
able. In contrast to my SdH data, the amplitudes of dHvA measurements
in [76] are well fitted using the LK expression and the anomalous behaviour
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6.6 Conclusions

is only seen in SdH measurements. This may suggest that the strange be-
haviour of PdCrO2 arises only from specific conduction channels, which do
not significantly contribute to the dHvA measurements.

The deviation between SdH and dHvA can arise due to the difficulty in
disentangling the contributions to the conductivity from the different Fermi
surface sheets. The explanation of the SdH effect is based on the assumption
that δρ/ρ is proportional to the density of states. Thus, the temperature
dependence is well described by the Lifshitz-Kosevich formula. However,
for multiband systems, the situation can be more complicated due to the
different contributions to the conductivity from each band, and this effect
will not influence the dHvA results [104].

In some charge transfer salts [125, 126] anomalous quantum oscillations,
whose SdH amplitudes deviated from conventional behaviour, were explained
by metallic edge states. These systems have highly conducting quasi-two-di-
mensional planes. The deviation between SdH and dHvA in these materials
is explained within a simple model based on spin damping effects due to the
interaction of the conduction electrons with the weak magnetic moments in
the sample and the presence of the strong correlation between the induced
average magnetisation and an anomalous behaviour of the quantum oscilla-
tions of the resistivity and magnetisation.

However, PdCrO2 has a complex, layered structure. Thus, unfortunately,
it is difficult unequivocally to explain the anomalous behaviour of quantum
oscillations that I observed in PdCrO2. However, the magnetoresistance
already hints at some unconventional physics, so it will be interesting to see
if a unified picture can be developed in which the quantum oscillations are
also explained.

6.6 Conclusions

In conclusion, in this chapter, I explored the transport properties of the
magnetic delafossite metal PdCrO2. To overcome the technical challenges, I
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6.6 Conclusions

developed a new method of fabricating microstructures discussed in Section
6.1 and successfully implemented it in PdCrO2 microstructures.

PdCrO2 obeys Planckian scattering in a wide range of temperatures be-
tween 200 - 500 K, whilst this behaviour is not observed in the sister com-
pound PdCoO2. To understand the origin of this behaviour, I performed a
high energy irradiation experiment in PdCrO2. The results of this experi-
ment discussed in Section 6.2 prove that Planckian dissipation depends only
on inelastic scattering events, which also agrees with theoretical discussion
in Section 5.4.

During this high energy electron experiment, I also studied the influence
of the point-like defects on unconventional anomalous Hall effect (UAHE)
in PdCrO2. This is the first measurement of the influence of the defects on
UAHE shown in Section 6.3. The change of the UAHE with adding point-like
defects is dramatic.

The new method of microstructure fabrication also allowed to study un-
conventional transport regimes in PdCrO2. This material was a suitable
candidate for searching a hydrodynamic transport alongside with PdCoO2,
however, the thinning down experiment that I performed in the PdCrO2 mi-
crostructure devices discussed in Section 6.4 indicates that the increase of
the resistivity originates from ballistic behaviour rather than hydrodynamic
behaviour. However, the behaviour of the PdCrO2 thinned down microstruc-
tures in the magnetic field is significantly different from that of PdCoO2.
Thus, it is premature to conclude the purely ballistic effects as the origin of
unconventional behaviour of PdCrO2.

The magnetoresistance measurements of PdCrO2 microstructures showed
unexpected results. The Shubnikov de Haas effect (SdH) observed in Sec-
tion 6.5.2 exhibits an unusual temperature dependence that does not obey
the Lifshitz-Kosevich expression. Unfortunately, it is impossible to explain
the anomalous behaviour of PdCrO2 due to its complex, layered structure.
However, my experimental results provide a foundation for future theoretical
developments.
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Chapter 7

Conclusions and outlook

In conclusion, in the first part of my thesis, I explored the electronic transport
of non-magnetic delafossite metals PtCoO2 and PdCoO2 on the scale of the
mean free path. These materials have metallic carrier densities, quasi-2D
transport and a hexagonal Fermi surface. This is unique set of properties
within ultrapure materials, making them ideal for testing many assumptions
regarding transport within ultraclean materials.

I have explored transport in non-magnetic delafossite materials within the
ballistic regime when the device geometry is on the scale of the mean free
path. Measuring the transport within square-shaped junctions and long bars
of PtCoO2 demonstrated a novel resistance anisotropy, which only exists
within the ballistic regime and is attributable to the non-circular Fermi sur-
face. I explored the origin of this anisotropy by a defect introduction study
performed using high energy electron irradiation. The impact of these defects
on transport in unconventional regimes proved that the observed transport
anisotropy stems from the non-circular Fermi surface of PtCoO2 and symme-
try lowering by device shape. Our studies of non-irradiated PtCoO2 junctions
have shown that ballistic effects remain present at a square size over 15 times
larger than the mean free path. The high energy electron irradiation exper-
iment, which changed the electron mean free path, confirmed two distinct
decay regimes. For the first time, these studies show that ballistic behaviour
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in the delafossite metals persists far outside the typical definition, perhaps
due to the non-circular Fermi surface.

Therefore, this study has demonstrated that the shape of the Fermi surface
can have profound effects on the phenomena observed within the unconven-
tional regimes. It is crucial to consider the shape of the Fermi surface within
any model of such systems. In particular, the scales over which ballistic ef-
fects are observed may be enhanced by the symmetry of the Fermi surface,
indicating that the Fermi surface should be carefully considered in interpret-
ing possible signals of other unconventional transport effects, such as those
of electron hydrodynamics.

In the second part of the thesis, I studied electron transport in the mag-
netic delafossite metal PdCrO2, in which nearly free and Mott-localised elec-
trons exist in alternating layers, forming a natural heterostructure that is
of high interest for the study of electron transport. However, studying mi-
crostructured devices of PdCrO2 is technically quite challenging. A new
method of fabricating 'free standing' microstructures overcame this challenge
and enabled me to explore this new experimental area.

PdCrO2 exhibits a Planckian bound in a wide range of temperatures from
200 K to 500 K. The high energy electron irradiation experiment performed in
PdCrO2 proved the theoretical suggestion that the Planckian bound is intrin-
sically associated with an inelastic scattering. It provides a novel perspective
to the search for a universal law to account for Planckian dissipation.

The new method of device fabrication also allowed studying unconven-
tional transport regimes in PdCrO2. The observed resistivity behaviour at
first sight implies a hydrodynamic regime, however, the detailed analysis and
careful comparison with non-magnetic delafossite metals demonstrates the
importance of considering the influence of ballistic physics on the observed
properties.

The careful comparison of PdCrO2 magnetotransport with that of the
non-magnetic sister compound PdCoO2 showed the strong impact of the cou-
pling between conductive and magnetic layers on the transport. The SdH
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oscillations observed in PdCrO2 exhibit completely different results to the
dHvA effect examined previously [76]. It gives an unexpected frequency not
seen in the dHvA effect and also does not obey the temperature Lifshitz-Ko-
sevich dependence.

The exotic coupling between conductive and magnetic layers in PdCrO2

has been discovered in Ref. [82]. However, its influence on both magnetic and
conductive properties is not completely understood. The magnetic structure
of PdCrO2 is rather complex and was studied in detail using powder and
single-crystal neutron diffraction. However, all previous inelastic neutron
scattering measurements were limited to powder samples [93]. The observed
spectrum had additional broadening, which the linear spin-wave calculations
could not reproduce and may be due to Kondo or magnon-phonon interac-
tions. Details of the low-energy spectrum are also not known. Moreover, de-
termining the weak out-of-plane interactions is also difficult using the powder
data and requires Q-resolved single-crystal measurements. For this reason it
is very important to carry out single crystal inelastic neutron scattering on
PdCrO2.

Figure 7.1: Part of the mosaic consists of Pd-
CrO2 single crystals on the Al sample holder
for inelastic neutron scattering experiment.

However, this will not be easy, because the experiment will require 0.3 g
of PdCrO2. As PdCrO2 grows in tiny single crystals with a typical weight
of around 0.01 g, preparing samples for this experiment is a big challenge.
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Thus, the final sample for the scattering experiment is a mosaic consisting
of around thirty coaligned single crystals. Part of this mosaic structure on
an Al plate is shown in fig. 7.1.

The experiment has been held up by the temporary closure of the NIST
reactor in the USA, but it is in my opinion the most important piece of future
work that needs to be performed on PdCrO2. It can determine the exchange
interactions and give further insight into the coupling between the conduction
electrons and the Mott layer, by studying the way that it influences the spin
dynamics. This should in turn help understand the unusual features in the
transport data that I have reported in this thesis.
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