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ABSTRACT

Understanding structures and evolutions of the magnetic fields and plasma in multiple
layers on the Sun is very important. A force-free magnetic field which is an accurate

approximation of the solar corona due to the low plasma β has been widely studied and
used to model the coronal magnetic structure. While the force-freeness assumption is

well satisfied in the solar corona, the lower atmosphere is not force-free given the high
plasma β. Therefore, a magnetohydrostatic (MHS) equilibrium which takes into account

plasma forces, such as pressure gradient and gravitational force, is considered to be more
appropriate to describe the lower atmosphere. This paper reviews both analytical and

numerical extrapolation methods based on the MHS assumption for calculating the
magnetic fields and plasma in the solar atmosphere from measured magnetograms.

Keywords: Sun: magnetic field, Sun: photosphere, Sun: chromosphere, Sun: corona

1. INTRODUCTION

Gaining insight into the magnetic fields and plasma in the solar atmosphere is of great importance
for studying various solar activities. So far magnetic field measurements in the photosphere are the

most reliable. The chromospheric magnetic field measurements confront with much bigger uncertain-
ties and it is difficult to determine the height of the detected magnetic field. The situation in the

corona is ever worse since the corona is optical thin and magnetic field measurements have a line of

sight integrated character. For constructing the three-dimensional magnetic field configurations in
the chromosphere and corona, one may solve a set of equilibrium equations of magnetohydrodynamic

(MHD) from given boundary data in the photosphere. This is the so-called magnetic field extrap-
olation. A popular and powerful extrapolation technique is the nonlinear force-free field (NLFFF)

extrapolation which is designed to solve the following equations:

∇×B=α(r)B, (1)

∇ ·B=0, (2)
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Figure 1. Plasma β model over various active regions. The shaded area shows possible plasma β corresponds
to a sunspot region with 2500 G and a plage region with 150 G. Reproduced with permission from Gary
(2001) Copyright 2001, Springer.

where B is the magnetic field and α(r) is the force-free factor which is constant along a given

field line. Equation (1) indicates that the electric current is parallel to the magnetic field, which
means a vanishing Lorentz force. Equation (2) is the solenoidal condition of the magnetic field.

For recent reviews on the NLFFF extrapolation we refer to Régnier (2013), Guo et al. (2017), and
Wiegelmann & Sakurai (2021).

The force-free equation (1) assumes that the plasma β, defined as the ratio between the plasma
pressure and magnetic pressure (8πp/B2), of the solar atmosphere is low and all non-magnetic forces

can be neglected. This is well justified in the most parts of the solar corona. However, it is not
the case in the photosphere and lower chromosphere where the plasma pressure is comparable with

the magnetic pressure (Gary 2001). Figure 1 shows that plasma β is about unit or larger roughly
below 1 Mm above the photosphere. Non-magnetic forces are needed in these regions to balance the

Lorentz force. Still assuming a static state, the equilibrium of the lower layers can be described by
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the magnetohydrostatic (MHS) equations:

1

4π
(∇×B)×B−∇p− ρ∇Φ=0, (3)

∇ ·B=0. (4)

In equation (3), p and ρ are the plasma pressure and density, Φ is the gravitational potential. To

close the above MHS system, we may relate pressure and density with temperature via an equation
of state and prescribe an energy-balance equation as follows:

p = ρkBT/m, (5)

∇ · (K · ∇T ) +Qrad +Qheat = 0, (6)

with T is the plasma temperature, kB the Boltzmann constant, m the mean molecular weight of
the gas, Qrad the source term accounts for heating or cooling owing to radiation, and Qheat the heat

source owing to nano-flare, wave dissipation, or other heating mechanisms. ∇ · (K · ∇T ) describes
thermal conduction, where K is the thermal conduction coefficient tensor. In particular, the cross-

field thermal conduction is much less efficient than the field aligned component. With Qrad and Qheat

being prescribed, the above set of partial differential equations (PDEs) (3)–(6) can be solved, in

principle, by imposing a set of boundary conditions (B, p, and ρ) in a finite domain. The technique
is called the MHS extrapolation. Note that there are a large number of works on the MHS equilibria

for magnetosphere and Tokamak without considering gravity (e.g. Shafranov 1958; Boozer 2004;
Hesse & Birn 1993). Here we only concentrate on the three-dimensional MHS equilibria for the solar

case, in which gravity cannot be neglected. To our knowledge no review covering this field exists.

Compared with the established NLFFF extrapolation, the MHS extrapolation is much less devel-
oped mainly due to the insufficient spatial resolution of the routinely measured vector magnetogram

in the past. For example, the spatial resolution of SDO/HMI is about 720 km (Scherrer et al. 2012)
which is roughly 1/2 of the thickness of the non-force-free layer. Therefore an extrapolation based

on the HMI data does not have sufficient spatial resolution vertically to study the thin non-force-free
layer. Furthermore, the pressure scale height on the photosphere is about 150 km, which makes

usage of HMI data in resolving this scale questionable. The situation, however, has been changed
significantly by new ground-based instruments such as Daniel K. Inouye Solar Telescope (DKIST)

which will carry out routine measurements of the magnetic fields in multiple layers with very high
spatial resolution (0.03′′ or 25 km on the solar surface at 500 nm) (Keil et al. 2011).

The aim of this review is to show both analytical and numerical extrapolation techniques which
have been developed to solve the MHS equations when the photospheric vector magnetograms are

used as the boundary input. The review is organized as follows. The analytical solutions of the
MHS equations are discussed in Sect. 2. An overview of the numerical extrapolation techniques are

given in Sect. 3. In Sect. 4, we describe the necessary boundary conditions for the MHS equilibrium

and give an introduction of a preprocessing algorithm to deal with the inconsistency between the
boundary and the MHS assumption. Finally, we summarize and discuss the challenges in the future

development of the MHS extrapolation in Sect. 5.

2. ANALYTICAL MHS SOLUTIONS IN 3D

The full set of the MHS equations (3)–(6) has two aspects of equilibrium with the force equilibrium

achieved by the magnetic fields and plasma, and thermodynamic equilibrium maintained by various
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energy processes of the plasma. The solution depends on how the two aspects of equilibrium are

coupled. An analytical and complete treatment of this problem in 3D is not tractable. Most works
has concentrated on seeking solutions of equations (3) and (4) without treating the energy equation

self-consistently. The main interest is to find states that are admissible under force equilibrium. In
spite of simplifying the equations greatly, they are by no means easy to be solved.

The MHS equilibrium requires some degree of symmetry in the magnetic field, which stems from
the balance between Lorentz force and plasma forces (Parker 1972). The Lorentz force is highly

anisotropic while the the plasma forces (pressure gradient and gravitational force) can be derived
from isotropic scalar potential. By eliminating pressure term in the x and y components of equation

(3) with
∂2

∂x∂y
(p+B2/8π) =

∂2

∂y∂x
(p+B2/8π), (7)

we obtain the symmetry mathematically as follows

∂

∂x
[(B · ∇)By] =

∂

∂y
[(B · ∇)Bx]. (8)

Equation (8) is also called the compatibility relation which is a necessary but not sufficient condition
for an MHS equilibrium. The compatibility relation is trivially satisfied for a system with an ignorable

coordinate. For example, consider a two-dimensional plasma with ∂
∂x

= 0, the left hand side of
equation (8) then vanishes. The right hand side of equation (8) also vanishes because (B · ∇)Bx = 0

which represents a null tension force in x-direction. The compatibility relation is also satisfied under
rotational and helical symmetries. Substantial efforts have been made to treat the MHS equations

by ignoring a coordinate (e.g. Dungey 1953; Low 1975; Hundhausen et al. 1981; Uchida & Low 1981;
Amari & Aly 1989). The symmetry introduced by the ignored coordinate render the MHS problem

tractable.

However, the real solar structures observed are highly inhomogeneous and seldom show a high
degree of geometric symmetry. On the other hand, the need of symmetry in the magnetic field does

not necessarily mean an ignorable coordinate. Works by giving up the assumption of an ignorable
coordinate have been conducted and some families of particular three-dimensional MHS solutions

have been found. Low (1982) found a family of three-dimensional MHS equilibria by assuming that
the magnetic field lines lie in parallel vertical planes. Except for this assumption, structural variation

of the system is allowed in all three dimensions. The constraint of the laminar magnetic field structure
was relaxed in Low by demanding the magnetic tension force being vertical (Low 1984):

(B · ∇)Bx = 0, (9)

(B · ∇)By = 0. (10)

With equations (9) and (10), the compatibility condition is satisfied trivially. Hu et al. (1983) built a
slightly non-axisymmetric equilibrium with a perturbation theory. In their approach, an perturbation

expansion was carried out to the originally axisymmetric magnetic flux tube.
Although these solutions are three-dimensional, they are not consistent with the measured line-

of-sight (LOS) magnetogram due to some regularity imposed through the compatibility condition.
It means that the previous solutions cannot be used to model the real Sun. This situation has

not been changed until Low (1985) (hereinafter L85) found a new class of three-dimensional MHS
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equilibria. The new equilibria which assume a horizontal electric current everywhere are capable

of cooperating with arbitrary distribution of LOS magnetic field as the boundary condition. This
characteristic makes the new solution applicable to model the real solar atmosphere, while previously

only potential field (Schmidt 1964) and linear force-free field (Chiu & Hilton 1977) had reached the
level of sophistication. After that, a number of works have been stimulated based on the assumption

made in L85. The following reviews these works.

2.1. Analytical solution with untwisted magnetic field

L85 derives a set of analytical and fully three-dimensional solutions of the MHS equations which

are applicable to extrapolate the magnetic field and plasma from the observed magnetogram. The
key assumption is to take the electric current to be everywhere perpendicular to the gravitational

force. It follows that the transverse components of equation (3) resolve into

∂Bz

∂x

∂

∂y

(

∂φ

∂z

)

−
∂Bz

∂y

∂

∂x

(

∂φ

∂z

)

= 0, (11)

where φ is defined as

B =

{

∂φ

∂x
,
∂φ

∂y
, Bz

}

. (12)

Note that equation (11) is equivalent of the compatibility relation equation (8). The general solution

of equation (11) is

Bz = Ψ

(

∂φ

∂z
, z

)

, (13)

where Ψ is an arbitrary function of its arguments. Substitute equation (13) into magnetic divergence

free equation (4), then we obtain

∂2φ

∂x2
+

∂2φ

∂y2
+

∂

∂z
Ψ

(

∂φ

∂z
, z

)

= 0. (14)

For each prescription of Ψ, equation (14) can be solved with the classical Neumann boundary condi-

tion of φ

S0 :
∂φ

∂z
= Ψ∗(Bz, 0), (15)

where S0 is the bottom boundary and Ψ∗ is the inverse of Ψ to express ∂φ

∂z
as a function of Bz and z.

Once φ is known, equation (13) determines Bz, and equation (12) yields B. For each B constructed,

we can derive p and ρ directly through integrating the MHS equation (3) at different directions.
The basic principle of the above solution is to reduce the MHS equations (3) and (4) to a single,

scalar PDE (14). The reduction is, of course, allowed by assuming a special type of electric current
which is everywhere perpendicular to gravity and distributed smoothly in space. It is worth noting

that the energy equation is omitted and the equation of state is not fixed a priori in this method.
The governing equations are thus closed by prescribing the function Ψ of its arguments ∂φ

∂z
and z.

L85 studied a particular solution with

Ψ = γ
∂φ

∂z
(16)
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where γ is a constant. They found magnetic field of the solution (γ 6= 1) can be obtained from

the corresponding potential field (γ = 1) by a uniform vertical expansion or contraction. Thus,
the particular solution has a magnetic topology identical to that of the potential field. The same

solution has also been expressed in spherical geometry with a point mass by Bogdan & Low (1986)
(hereinafter BL86).

A more general formulation of the MHS equations was presented in Low (1991) (hereinafter L91)
by using electric current represented in terms of a pair of Euler potential µ and ν:

∇×B = ∇µ×∇ν. (17)

L91 assumed ν coincides with Φ (with Φ the gravitational potential) which sets the electric current
to be perpendicular to gravity. He found µ is a function of only two independent variables B · ∇Φ

and Φ:
µ = F (B · ∇Φ,Φ). (18)

It follows

∇×B = ∇F (B · ∇Φ,Φ)×∇Φ. (19)

The formulation (19) can be easily applied to any potential Φ which represents combination of any
gravitational force and inertial force such as centrifugal force. Another advantage is to allow the

magnetic field to have net twist, which will be discussed in the following subsection.
The MHS equations have also been reduced by using Clebsch representation, which have been

presented by Osherovich (1985a,b). To obtain an analytical solution, Osherovich (1985a) also used a
special type of electric flow which is perpendicular to the gravity.

2.2. Analytical solution with twisted magnetic field

The main disadvantage of the case studied above is that the magnetic field does not have a net
twist. The only exception exists when the magnetic field lies in the surfaces of constant Φ, which is

way far from reality.
To circumvent the deficiency, L91 added a field-aligned electric current component. Then the two

current systems can be expressed, in Cartesian coordinates with Φ = gz, as

∇×B = αB+∇F (Bz, z)× ẑ, (20)

where α is a constant in space. Note that equations (19) and (20) share the same mathematic form

of the current perpendicular to the gravity. With a prescribed F , the governing equations (20) and
(4) for four unknowns are in general complete as a system.

For the case that function F is linear in Bz, e.g.,

F = f(z)Bz (21)

as suggested by L91, equation (20) can be reduced to a linear form

∇×B = αB+ f(z)∇Bz × ẑ. (22)

Fourier transforming of equation (22) with respect to (x, y) 7→ (h, k) (so B(x, y, z) 7→ B̃(h, k, z))

leads to a single, second order, and ordinary differential equation of B̃z as

d2B̃z

dz2
+
{

α2 + (h2 + k2) [f(z)− 1]
}

B̃z = 0. (23)
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Then B̃x and B̃y can be expressed in terms of B̃z as

B̃x=
i

h2 + k2

(

h
dB̃z

dz
+ kαB̃z

)

, (24)

B̃y=
i

h2 + k2

(

k
dB̃z

dz
− hαB̃z

)

. (25)

An inverse Fourier transformation is thus applied to recover B. It follows the distribution of plasma

pressure and density:

p=p0(z)−
1

8π
f(z)B2

z , (26)

ρ=−
1

g

dp0
dz

+
1

4πg

[

1

2

df

dz
B2

z + fB · ∇Bz

]

. (27)

The first terms of equations (26) and (27) describe the stratified atmosphere and the second terms

are the modifications by the non-force-free magnetic field.
Low (hereinafter L92) assumed that f(z) has the following structure

f(z) = ae−κz, (28)

where a and κ control the intensity and characteristic length of Lorentz force (Low 1992). Then the

general solution of equation (23) takes the form:

B̃z = Mh,kJs[qe
(−κz)] +Nh,kJ−s[qe

(−κz)], (29)

where B̃z represents the Fourier transformation associated with component ei(hx+ky), Js and J−s

are the Bessel functions, Mh,k and Nh,k are integration constants, q2 = 4a(h2 + k2)/κ2, and s2 =

4(h2 + k2 − α2)/κ2. In solar applications, J−s term is rejected by setting N = 0 since the magnetic
field vanishes at infinity high above photosphere. Then M can be determined using the observed

photospheric magnetogram. L92 applied the MHS solution to an artificial active region magnetogram
and showed a lot of interesting features, such as density enhancement along the neutral line at the

lower atmosphere, twisted magnetic flux rope, etc. The high density plasma above the neutral line
supported by the helical magnetic flux rope is interpreted as chromospheric filament.

With alternative structures of f(z) many families of the MHS solutions have been found. Neukirch
(1995) reduced equation (22) to a Schrödinger type equation which has been intensively studied in

quantum mechanisms. With the new tool he derived three families of the MHS solutions correspond-
ing to three choices of ξ(r) for a spherical self-gravitating body. Here

r2ξ(r) = 1−
1

η(r)
, (30)

where η(r) the counterpart of f(z) in Cartesian coordinates. Petrie & Neukirch (2000) also
studied the MHS solutions for three different choices of f(z) by the Green’s function method.

Neukirch & Wiegelmann (2019) presented a solution with

f(z) = a

[

1− b tanh

(

z − z0
△z

)]

, (31)
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where a and b control the magnitude of f, △z controls the width of a transition from non-force-free

to force-free field. The height and width of the transition being specified by the model parameters
makes the new solution more flexible, which is also important to keep the plasma pressure and density

positive.
For the case that function F is nonlinear in Bz, i.e.,

F =
Bz

4π
+ f(z)Bn

z , (32)

Neukirch (1997) presented a family of solutions which have an arcade-like magnetic field topology.

An alternative mathematical formulation for calculating the MHS equilibrium was introduced by
Neukirch & Rastätter (1999) with the magnetic field represented in terms of poloidal and toroidal

components

B = ∇×∇× (P ẑ) +∇× (T ẑ), (33)

where P and T are two scalar functions. This has an advantage that equation (20) can be reduced
to only one scalar PDE with the following form

∇2P + α2P + F (z, Bz)=0, (34)

T − αP =0. (35)

Thus P gains full knowledge of the complete magnetic field, which is very similar to the well-known

case of linear force-free magnetic field Nakagawa & Raadu (1972). Previously, however, the three
components of the magnetic field have to be computed separately. The Neukirch & Rastätter (1999)

model has been calculated efficiently with a multi-grid approach implemented by MacTaggart et al.
(2013).

Solutions of the MHS equations with more general external potentials, such as centrifugal force
in a rotating system, have been described in both spherical coordinate (Low 1991; Neukirch 2009;

Al-Salti & Neukirch 2010) and cylindrical coordinate (Al-Salti et al. 2010; Wilson & Neukirch 2018).

It is worth noting that, by taking divergence of equation (20), the two current systems are con-
served separately (Low 1993). An interesting inference from the uncoupled currents is that there

exists magnetic flux-current surface where the magnetic flux surface and the current surface overlap
(Choe & Minhwan 2013). Low (1993) showed that all MHS equilibria of symmetric system have

uncoupled electric currents with two independent coordinates. He also pointed out that the cou-
pled currents equilibria which require three independent coordinates are a distinct class of the MHS

solutions from the uncoupled one.

2.3. Determination of parameters α, a, and κ

The L91 solution has three unknowns α, a, and κ (see equations (20) and (28)). κ is the reciprocal of
the scale height above which the solution will become approximately force-free due to the low plasma

β. The scale height often refers to the typical height of chromosphere where a significant interaction
between the magnetic field and plasma takes place, leading to 1/κ = 2 Mm (Aulanier et al. 1998;

Wiegelmann et al. 2015, 2017). The remaining parameters α and a characterize field-aligned current
system and horizontal current system, respectively. They may be varied to best fit observations.

Figure 2 illustrates how the magnetic structure changes with various choices of α and a. Note that
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α = a = 0 recovers potential field, while only a = 0 recovers linear force-free field. If only α = 0 we

recover L85 and BL86 model.
In the presence of vector magnetogram of an active region, α can be constrained by horizontal

photospheric magnetic field vector. Wiegelmann et al. (2017) used SUNRISE/IMaX vector magne-
tograms (Solanki et al. 2017) to compute α following an approach developed by Hagino & Sakurai

(2004) for linear force-free fields:

α =

∑

(

∂By

∂x
− ∂Bx

∂y

)

sign(Bz)
∑

|Bz|
, (36)

where the summation is taken over pixels of the magnetogram. In the absence of the vector magne-

togram or the inaccurate measurements of the vector magnetic field due to poor signal-to-noise-ratio
such as in the quiet regions, α is a free parameter to some extent. An additional restriction on α, as

discussed by Aulanier & Demoulin (1998) and Aulanier et al. (1998), is that α has a maximum value
of αmax = 2π/L, where L is the horizontal length of the computational box. L91 and L92 also showed

that all modes with wavenumbers h and k in the domain s2 = 4(h2 + k2 − α2)/κ2 < 0 (see general
solution (29)) oscillate with a nonvanishing amplitude as z → ∞, and thus these modes should be

rejected. To allow the solution to be applied to an arbitrary magnetogram, all wavenumbers should
be included. This is ensured by α < 2π/L since a periodic computational box with horizontal length

L has a minimum wavenumber 2π/L. The property encountered here in the linear MHS solution has
also been encountered previously in the study of linear force-free field. It is not accidental that the

two models share the property because the linear MHS field becomes the linear force-free field in the
limit of κz ≫ 1.

To constrain a is a more challenging task. The dimensionless parameter a controls the horizontal

current which includes both magnetic field aligned and perpendicular components. The latter com-
ponent gives rise to Lorentz force. Recall that the Lorentz force can be calculated by integrating

Maxwell stress tenser T over the entire surface over the computational volume (Molodensky 1969,
1974). In the solar applications, a normalized parameter ǫ has been suggested by Wiegelmann et al.

(2006) to check force-freeness of the magnetogram. ǫ is defined as

ǫ =
|
∑

BxBz|+ |
∑

ByBz|+ |
∑

(B2
x +B2

y −B2
z )|

∑

(B2
x +B2

y +B2
z)

, (37)

where the summation is taken over pixels of the magnetogram, each term in numerator represents
Lorentz force in each direction. Thus both a and ǫ relate to the Lorentz force. Wiegelmann et al.

(2017) suggested a linear relationship between them, empirically, as

a = 2ǫ. (38)

By using equation (38), a can be specified in the presence of vector magnetogram. In the absence of

vetor magnetogram, Aulanier et al. (1998) pointed out that a has a maximum value amax to make
the solution physical. To see this, the MHS solution (29) is reduced by rejecting J−s term in solar

applications:
B̃z = Mh,kJs[qe

(−κz)]. (39)

Js changes its sign as its argument increases, which implies an oscillation behavior of the magnetic
field amplitude. Aulanier et al. (1998) took this behavior unphysical. They further found a reaches

its maximum when z = 0 and, under the extreme case, determined amax = 1.
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Figure 2. Influence of α and a on the magnetic structure of the global corona. α and a are normalized
by 1/r0 and r0, respectively, where r0 is the radius of the Sun. It is worth to stress that definition of the
parameter a (see equation (1) in Zhao et al. (2000)) used in this figure is slightly different than dimensionless
a defined in equation (28). However, they both characterize the horizontal electric current system. The
magnetic field line expands as a increases, and it becomes twisted as α increases. Reproduced with permission
from Zhao et al. (2000) Copyright 2000, AAS.
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2.4. Boundary conditions

As input the analytical MHS models require normal magnetic field Bn measured at the photo-
sphere. In the presence of high-quality vector magnetogram, α, as a constant, can be constrained

meaningfully. For a more general MHS case with

B · ∇α = 0 (40)

rather than α being a constant everywhere, Low (2005) found that the closed contours of constant α

at the boundary must come in pairs of equal total enclosed boundary flux. The topological property
relating α and Bn through “hyperbolic” equation (40) was first pointed out by Aly (1989) for force-

free fields and is still applicable for the MHS case with two-current system. Then Low (2005) derived
a complete set of boundary conditions which contain the arbitrarily prescribed Bn and a restricted

α distribution. α needs to satisfy

α(x, y, 0) = G(g(x, y, 0)), (41)

where G is an even function and g(x, y, 0) takes the values of equal and opposite total boundary flux

enclosed by each of α contour.

2.5. Applications of the analytical MHS solutions to measured magnetograms

Despite the limitations of the transverse current assumption, the analytical solutions have been
used to study solar MHS equilibria in various situations. Since only the linear solution has been

applied so far, the analytical MHS solution is often named the linear MHS solution in practice.

Some studies have focused on the lower atmosphere. Aulanier et al. (1998) modeled the magnetic
field configuration of an Hα flare by using L91 solution. They found the presence of dense plasma in

regions of dipped field lines, which is in agreement with dark elongated features in Hα. The model
also revealed that the flare kernels are located at separatrices correlated to “bald patches” (BPs)

where field lines are tangential to the photosphere. The extrapolated BPs by the analytical MHS
solutions have also been found associated with arch filament system and surge in chromosphere and

transition region brightening (Fletcher et al. 2001; Mandrini et al. 2002). Comparisons between the
analytical MHS solution and linear force-free solution have showed that the plasma effect helps to

improve the magnetic configuration with a better correspondence with observation (Aulanier et al.
1999; Dud́ık et al. 2008). Wiegelmann et al. (2015) and Wiegelmann et al. (2017), using L91 solution

with magnetograms measured by the magnetograph IMaX (Mart́ınez Pillet et al. 2011) on board
SUNRISE (Solanki et al. 2010, 2017), modeled the magnetic field as well as plasma of a quiet region

and an active region, respectively. Thanks to the high resolution of the magnetogram (∼ 100 km),
the modeling resolves the thin non-force-free layer (typically less than 2000 km) with tens of grid

points. Using the extrapolation data by Wiegelmann et al. (2017), Jafarzadeh et al. (2017) found

the majority of slender Ca II H fibrils saw in SUNRISE/SuFI instrument overlap magnetic field lines
at a height of around 700-1000 km. These field lines show a canopy-like dome over quiet areas.

Other studies have concentrated on global modeling of the solar corona (see review by
Mackay & Yeates 2012). The most widely used method to model the corona globally is the po-

tential field source surface (PFSS) model which assumes a free current between the photosphere
and the source surface. However, the current-free assumption is oversimplified because we have

routinely observed large scale plasma structures, such as helmet streamers and coronal loop arcades,
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in multiple wavelengths which show appreciable interaction between magnetic field and plasma.

Bagenal & Gibson (1991), Gibson & Bagenal (1995) and Gibson et al. (1996) showed that the BL86
solution may account for the large-scale non-sphericity of the corona. The authors also found it

necessary to include current sheets at equator and around the helmet streamer in the model to
match white light observation of the corona during solar minimum. Zhao & Hoeksema (1993, 1994,

1995) developed a global model to map the observed photospheric magnetic field into the corona
and interplanetary space. A spherical “cusp surface” was defined at which all helmet streamer cusp

points located identically. Below the cusp surface (or inner corona), the authors built an MHS
atmosphere with BL86 solution. Then they extended the BL86 solution to larger radii with current

sheets model developed by Schatten (1971). Their model better reproduces corona streamers and
helmet structures as well as observed interplanetary magnetic field near the Earth’s orbit. The BL86

solution have also been applied to recover the coronal fine structures observed during total solar
eclipse (Ambrož et al. 2009; Yeates et al. 2018). The more general solution based on BL86 by adding

field-aligned current component (Neukirch 1995) has also been used for corona modeling globally

(Zhao et al. 2000; Rudenko 2001; Ruan et al. 2008). Zhao et al. (2000) found the magnetic arcade
computed with α = 0 agrees best with the well-developed polar crown soft X-ray arcade, which

suggests that the well-developed soft X-ray arcade has no field-aligned currents. Ruan et al. (2008),
using the Neukirch (1995) model, found the large structure of the magnetic field configuration is

described reasonably well.

3. NUMERICAL APPROACHES FOR THE MHS EXTRAPOLATION

Applying a linear MHS solution of equations (3) and (4) to model the sun has its limitation. The
limitation has to do with the constant α and a over the computational region, which makes the

model fail to recover magnetic configurations with strong electric current concentration in part of
the domain. A similar restriction occurs in the linear force-free modeling with globally constant α.

The linear MHS model also encounters a problem of negative plasma pressure in applications to
solar quiet region. To circumvent these deficiencies, some numerical approaches have been developed

recently to solve the MHS equation.
In the following, we briefly describe three different numerical approaches for computing solar

MHS equilibria from photospheric vector magnetograms. The optimization method for MHS model-
ing was proposed by Wiegelmann & Neukirch (2006) and further developed by Zhu & Wiegelmann

(2018, 2019). The MHD relaxation method for MHS modeling was developed by Zhu et al.
(2013) and Miyoshi et al. (2020). The Grad-Rubin method for MHS modeling was proposed by

Gilchrist & Wheatland (2013) and Gilchrist et al. (2016). Both optimization method and MHD re-
laxation method use three components of vector magnetogram as magnetic boundary conditions,

while the Grad-Rubin method uses vertical magnetic field and vertical electric current density as the

boundary condition from observation. Every method requires the potential field as their very initial
guess of the magnetic field.

3.1. Optimization method

We rewrite equation (3) with a constant gravitational acceleration as follows:

(∇×B)×B−∇p− ρẑ = 0. (42)
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To display most clearly the mathematical structure of the equation, we have set relevant physical

constants to unity. The optimization method for the MHS modeling is to find solution of the MHS
equations (42) and (4) by minimizing functional

L(B, p, ρ) =

∫

V

B2(Ω2
a + Ω2

b)dV, (43)

where

Ωa=B−2[(∇×B)×B−∇p− ρẑ], (44)

Ωb=B−2[(∇ ·B)B]. (45)

It is obvious that L ≥ 0. If the minimization process reaches L = 0 then the MHS equations
are fulfilled. Taking the functional derivative of the functional (43) with respect to the iteration

parameter t we have:

1

2

dL

dt
= −

∫

V

(

∂B

∂t
· F−

∂p

∂t
∇ · Ωa +

∂ρ

∂t
Ωa · ẑ

)

dV −

∮

S

(

∂B

∂t
·G+

∂p

∂t
Ωa

)

· dS, (46)

where

F=∇× (Ωa ×B)− Ωa × (∇×B) +∇(Ωb ·B)− Ωb(∇ ·B) + (Ω2
a + Ω2

b)B, (47)

G= n̂× (Ωa ×B)− n̂(Ωb ·B). (48)

Given a fixed boundary condition the surface term vanishes. Then the gradient descent method is
used to iterate B, p, and ρ by

∂B

∂t
=µ1F, (49)

∂p

∂t
=−µ2∇ · Ωa, (50)

∂ρ

∂t
=µ3Ωa · ẑ. (51)

With positive constants µ1, µ2, and µ3, L decreases monotonically.
The optimization method was first proposed by Wheatland et al. (2000) to calculate the NLFFF.

Wiegelmann & Neukirch (2006) extended the method by introducing plasma pressure in Cartesian
geometry. They tested the code with an analytical MHS equilibrium (without gravity) similar to

the force-free Low & Lou (1990) solution and found the reconstructed solution agrees well with the
reference model. They also found the computing time of the MHS optimization is about 1000 times

larger than the corresponding force-free optimization. The reason for the slow convergence is because

plasma pressure in the reference model has a huge difference with 25 orders of magnitude.
Wiegelmann et al. (2007) further extended the method by including gravitational forces in spherical

geometry to calculate the global solar corona. The test of the code with a linear MHS solution by
Neukirch (1995) showed the method works well and converges to the reference solution. However, the

poles of the spherical geometry requires a sufficiently small time-step, which further slows down the
optimization process. They suggested to use the Yin-Yang grid (Kageyama & Sato 2004) to address

the problem.
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Minimizing functional (43) subjects to constraints on plasma pressure and mass density which

must be positive. However, it is not guaranteed by the previous methods. Zhu & Wiegelmann
(2018) eliminated the constraints by using the variable transformation

p=Q2, (52)

ρ=R2. (53)

Then the constrained problem is simplified to an unconstrained one

minimize L(B, Q,R) =

∫

V

B2(Ω2
a + Ω2

b)dV, (54)

where

Ωa=
(∇×B)×B−∇Q2 − R2ẑ

B2 +Q2
, (55)

Ωb=
(∇ ·B)B

B2 +Q2
. (56)

Note that the denominators (B2 + Q2) in equations (55) and (56) are different than denominators

B2 in the previous method. Without plasma pressure in the denominator, L will be dominated by

regions with extremely weak magnetic field (Zhu & Wiegelmann 2019). The minimization problem
(54) then leads to

∂B

∂t
=µ1F, (57)

∂Q

∂t
=µ2Q

[

λ(Ω2
a + Ω2

b)−∇ · (λΩa)
]

, (58)

∂R

∂t
=µ3RλΩa · ẑ, (59)

where

F=∇× (λΩa ×B)− λΩa × (∇×B) +∇(λΩb ·B)− λΩb(∇ ·B) + (1− 2λ)(Ω2
a + Ω2

b)B, (60)

λ=
B2

B2 +Q2
. (61)

The computational implementation involves the following steps.

1. Calculate NLFFF (Wiegelmann 2004) using vector magnetogram preprocessed with force-free
criteria (Wiegelmann et al. 2006).

2. Determine plasma pressure in the photosphere with formula p = pquiet − B2
z/2 with pquiet the

plasma pressure in the quiet region. Distribute plasma along the magnetic field line by assuming

gravitational stratification with a one-dimensional temperature profile.

3. Iterate for B, Q and R by equations (57)-(59). This step is repeated until L reaches its mini-

mum.



15

Note that the bottom boundary condition of the plasma pressure (p + B2
z/2 = pquiet) is simply

the force balance condition of a hypothetically vertical magnetic flux tube. The rationality of the
boundary setting can also be explained that the plasma pressure is related only with the vertical

magnetic field in the linear MHS case. We take it as the lowest-order approximation in the nonlinear
case.

The optimization code in the implementation of Zhu & Wiegelmann (2018) has recently been ex-
tended toward injecting the vector magnetogram slowly. By slow injection the initial magnetic field at

the bottom boundary adjusted continuously by the gradient descent method over the total iterations
of the calculation. The idea is to deal with measurement errors in photospheric vector magnetograms

in particular in the transverse field. The slow injection approach is found to be capable of improv-
ing reconstructed magnetic field in both NLFFF and MHS calculations (Wiegelmann et al. 2012;

Zhu & Wiegelmann 2019).
Zhu & Wiegelmann (2018, 2019) have tested the performance of the code applied to an analytical

MHS solution (L91) and RMHD numerical simulation (Cheung et al. 2019). It has been investigated

how the unknown lateral and top boundaries, unknown bottom plasma boundary, initial conditions,
and noise of magnetogram influence the solution. The code has also been applied to model the solar

atmosphere with the high-resolution SUNRISE/IMaX vector magnetograms as well as moderate-
resolution SDO/HMI vector magnetograms (Zhu et al. 2020; Hou et al. 2021; Jafarzadeh et al. 2021).

3.2. MHD relaxation method

The MHD relaxation method uses time-dependent MHD equations to compute static equilibria. It

has been widely applied to construct NLFFFs (Mikic et al. 1988; Roumeliotis 1996; McClymont et al.
1997; Valori et al. 2005; Jiang & Feng 2012; Guo et al. 2016). Recently, the method has been ex-

tended to construct MHS equilibria. The main idea is to solve either full or simplified MHD equations
with plasma forces (e.g., pressure gradient and gravitational force) by using a friction term to relax

the system into a quasi-static equilibrium.
Zhu et al. (2013) developed an MHD relaxation method by solving the full compressive MHD

equations which are given as follows:

∂ρ

∂t
=−∇ · (ρv), (62)

ρ

(

∂v

∂t
+ v · ∇v

)

=
1

4π
(∇×B)×B−∇p+ ρg− µρv, (63)

∂e

∂t
=−p∇ · v− µρv2, (64)

∂B

∂t
=∇× (v×B), (65)

where −µρv is the friction term with coefficient µ represents the reciprocal of timescale of velocity
damping. The initial condition is a potential magnetic field determined by the vertical component of

the magnetogram, together with a gravity-stratified atmosphere including changes from the photo-
sphere to the corona. Then the measured transverse magnetic fields are injected slowly at the bottom

boundary (Roumeliotis 1996), while other physical quantities are fixed to their initial values. Devi-
ation from equilibrium leads to plasma movements. Then the velocity is dissipated due to friction

and finally a high-β and non-force-free equilibrium is established in the lower atmosphere.
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Zhu et al. (2013) also performed a test of the code on a numerical simulation of an active region

emergence. Quantitative comparisons show that the method works well in extrapolating the non-
force-free magnetic field. However, the distribution of plasma temperature is not well recovered.

The code has also been applied to study solar activities in the lower atmosphere such as Hα fib-
rils (Zhu et al. 2016), small-scale filament (Wang et al. 2016), ultraviolet burst (Zhao et al. 2017;

Tian et al. 2018; Chen et al. 2019), and blowout jet (Zhu et al. 2017). Other applications focus on
large-scale structures of the magnetic fields in the corona also show the robustness of the method

(Song et al. 2018; Miao et al. 2018; Joshi et al. 2019; Song et al. 2020; Fu et al. 2020).
Recently, Miyoshi et al. (2020) developed an MHD relaxation method to reconstruct the non-force-

free equilibrium by solving a set of simplified MHD equations given as follows:

∂v

∂t
=(∇×B)×B−∇p̃−

p̃

H0(z)
ẑ− µv, (66)

∂B

∂t
=∇× (v×B− η∇×B), (67)

∂p̃

∂t
=−a2∇ · v, (68)

where −µν is the friction term,

p̃ = p− p0(z) (69)

is the pressure deviation from hydrostatic p0(z) of the background, and H0(z) is the pressure scale
height defined by

H0(z) ≡
T0(z)

g
. (70)

They assumed that both atmosphere and background atmosphere share the same temperature profile

T0(z) which depends on z only. Hence, the density deviation is given by

ρ̃ =
p̃

T0(z)
, (71)

which removes ρ̃ in equation (66). Note that both p̃ and ρ̃ can be negative. The initial condition is

the same with that of Zhu et al. (2013). Pressure deviation at the boundary during the relaxation
process is extrapolated from the values in the computational area. The code has been tested in

two-dimensional problem, but it is implemented in three dimensions.

3.3. Grad-Rubin method

The Grad-Rubin method was first proposed for fusion plasma by Grad & Rubin (1958). Applica-

tions to NLFFFs can be found in Sakurai (1981), Amari et al. (1999), and Wheatland (2007). The

idea of the Grad-Rubin method is to replace the nonlinear equations to be solved by a system of
linear equations, and then solve the linear equations iteratively until a fixed point is reached.

The first MHS implementation of the Grad-Rubin method was developed by Gilchrist et al. with
g = 0 (Gilchrist & Wheatland 2013). Gilchrist et al. extended the method to solve the MHS

equations with g 6= 0 (Gilchrist et al. 2016). In their approach, p and ρ are not independent since
scale height H(r) is prescribed everywhere. To avoid instabilities due to spurious electric currents in

weak-field regions, p and ρ are split into background (p0 and ρ0) and deviation (p̃ and ρ̃) components
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and each is computed separately. Then the MHS force-balance equation is reformulated in terms of

p̃ as

J×B−∇p̃−

[

p0(z) + p̃

H(r)
−

p0(z)

H0(z)

]

ẑ = 0. (72)

The boundary condition on J, B, and p̃ are specified as follows:

B · n̂|∂V =Bn, (73)

J · n̂|±∂V =Jn, (74)

p̃|±∂V = p̃bnd, (75)

where ±∂V is either +∂V where Bn > 0 or −∂V where Bn < 0. This means normal component of
B is prescribed over ∂V , while p̃ and normal component of J are prescribed at only one polarity, not

both.
The Grad-Rubin method decomposes the MHS equations (72) and (4) into two hyperbolic parts

for evolving p̃ and σ (see definition below) along the magnetic field lines plus an elliptic equation
to update the magnetic field by solving Ampère’s law. For iteration number k one has to solve

iteratively with the following steps:

1. Calculate p̃[k+1] by solving

∇p̃[k+1] ·B[k] =

[

p0(z)

H0(z)
−

p0(z) + p̃[k+1]

H(r)

]

B[k]
z (76)

with the p̃ boundary condition (75).

2. Calculate J[k+1] = J
[k+1]
⊥ + J

[k+1]
‖ , where

J⊥
[k+1]=B[k] ×

∇p̃[k+1] +
[

p0(z)+p̃

H(r)
− p0(z)

H0(z)

]

ẑ

‖ B[k] ‖2
, (77)

J‖
[k+1]=σ[k+1]B[k]. (78)

Here σ(r)[k+1], which is the counterpart of the force-free factor α in the force-free field, is a

scalar function varies along the magnetic field line according to

∇σ[k+1] ·B[k] = −∇ · J
[k+1]
⊥ , (79)

which subject to boundary condition (73), (74), and

σ[k+1]

∣

∣

∣

∣

±∂V

=
J
[k+1]
⊥ · n̂− Jn

Bn

∣

∣

∣

∣

±∂V

. (80)

3. Calculate B[k+1] by solving Ampère’s law and solenoidal condition

∇×B[k+1]=J[k+1], (81)

∇ ·B[k+1]=0, (82)

with boundary condition (73).
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It is worth noting that all the above equations are linear in variables at step k + 1 since variables at

step k are known. The iteration is initiated with a potential magnetic field embedded in a gravity-
stratified atmosphere with a prescribed 1D temperature profile. To calculate B[k+1] in the third

step, Gilchrist et al. (2016) uses a vector potential representation of the magnetic field. It turns out
that the vector potential (in the Coulomb gauge) is a solution of Poisson’s equation, which is solved

effectively by multigrid scheme.
The code has been applied to a known analytical solution of the MHS sunspot model of Low (1980).

Results show that the code converges quickly to a solution that closely matches the analytical solution
and the discrepancy between the two solutions decreases with higher resolution. The run time has

∼ N4 scaling with N the grid points size in each dimension, which is consistent with force-free codes
of the Grad-Rubin type (Wheatland 2006). The Grad-Rubin code for MHS modeling is also found

to be significantly slower than its counterpart for NLFFF. The main reason is that the MHS case
has two field line tracing steps for σ[k+1] and p[k+1] while the NLFFF case only has one for α[k+1].

3.4. Other methods

We also note a few other numerical methods that are being developed to solve the MHS equations.
The MHS equations with magnetic fields represented in terms of Euler potentials (Stern 1970, 1976)

B = ∇α×∇β (83)

can be solved iteratively with Newton method (Zwingmann et al. 1985; Zwingmann 1987; Platt & Neukirch
1994; Romeou & Neukirch 1999, 2002). Since α and β determine connectivity of the magnetic fields,

this approach is very useful for studying evolution of the magnetic structures due to the photospheric
plasma flow. However, for 3D problems there is no guarantee mathematically for a pair of Euler

potentials to exist that can describe the magnetic field in the complete domain if the magnetic topol-
ogy is complex, e.g. with magnetic null points and domains with different magnetic connectivity

(Stern 1970; Schindler 2006). Moreover, the Dirichlet boundary conditions for α and β required
in this approach are not possible to be derived from observation. Therefore, it would be difficult

to use this method to calculate realistic MHS equilibria that could be used for solar magnetic field
extrapolation.

Very recently, Mathews et al. (2021) proposed a novel numerical MHS model that solves directly
for the force balanced magnetic field in the solar corona. This model is constructed with Radial Basis

Function Finite Differences with 3D polyharmonic splines plus polynomials as the core discretization.

It has been applied to reconstruct accurately the Gibson & Low (1998) magnetic field configuration
with proper boundary conditions and full information about the plasma forcing.

4. HOW TO DEAL WITH NON-MHS BOUNDARIES?

In the force-free case, several integral relations of the magnetic field at the boundary, called Aly’s
criteria, have to be fulfilled (Molodensky 1969, 1974; Aly 1984, 1989). However, studies have shown

that these conditions are not always satisfied with the measured magnetic field in the photosphere
(Metcalf et al. 1995; Moon et al. 2002; Tiwari 2012; Liu et al. 2013). As a consequence, the non-

force-free photospheric magnetogram has a negative impact on the extrapolation of the force-free
field (Metcalf et al. 2008). Wiegelmann et al. (2006) has developed a preprocessing algorithm to use

the Aly’s criteria to derive a suitable boundary condition for the NLFFF extrapolation.



19

The same situation applies to the MHS case. In the following we will discuss the consistency check

of the vector magnetogram for the MHS equilibrium and what we can do if the measured magnetic
field is not compatible with the MHS assumption.

4.1. Criteria for MHS Boundary

The a priori constraint is, when taking an isolated active region as the field of view (FOV), the

magnetic field in the photosphere has to be flux-balanced

∫

S

Bz(x, y, 0)dxdy = 0 (84)

due to the solenoidal condition. Here S is the photospheric surface.

Zhu et al. (2020) used the virial theorem to obtain a set of surface integrals as necessary criteria
for an MHS equilibrium. Integrating equation (42) over an entire active region, note that the lateral

and top surface integrals with magnetic terms approach zero as r → ∞, we get net Lorentz force

Fx =
1

4π

∫

S

BxBzdxdy = 0, (85)

Fy =
1

4π

∫

S

ByBzdxdy = 0, (86)

Fz =
1

8π

∫

S

(Bz
2 − Bx

2 − By
2)dxdy

=

∫

S

pdxdy − g

∫

V

ρdV.

(87)

Equation (87) implies that, in the MHS case, a non-zero Fz is allowed. This is different from the
force-free case in which each component of the net Lorentz force has to be zero. By a similar way

with the cross product of equation (42) and r, we obtain restrictions on the net torque of Lorentz
force

Tx =
1

8π

∫

S

y(Bx
2 +By

2 − Bz
2)dxdy

= −

∫

S

ypdxdy − g

∫

V

ρydV,

(88)

Ty =
1

8π

∫

S

x(Bx
2 +By

2 − Bz
2)dxdy

= −

∫

S

xpdxdy − g

∫

V

ρxdV,

(89)

Tz =
1

4π

∫

S

(yBzBx − xBzBy)dxdy = 0. (90)

We see from equations (88) and (89) that the plasma may bring rotational moments in transverse
directions. To summary, equations (85) (86) (90) are the necessary conditions which have to be

fulfilled by the magnetogram in order to be suitable boundary for the MHS equilibrium.
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Note that the restrictions on the boundary for the MHS equilibrium are fewer than those for the

force-free field as, in the former case, non-vanishing Fz, Tx, and Ty are allowed. Statistical studies
have shown that there are considerable amount of magnetograms that do not satisfy Aly’s criteria,

which means these magnetograms are not suitable for the force-free field extrapolation. The statistics
also reveal that it is Fz that contributes most to the force in the magnetogram. Fortunately, Fz has

nothing to do with the constraints on the MHS boundary. Therefore, most of the non-force-free
magnetograms can still be used for the MHS extrapolation directly. For the rest magnetograms

which are not consistent even with the MHS equilibrium conditions, Zhu et al. (2020) proposed a
preprocessing procedure to drive the measured data toward suitable boundary conditions.

4.2. Preprocessing

Zhu et al. (2020) proposed a preprocessing procedure by using integrals (85) (86) (90) to derive

a more suitable boundary for the MHS extrapolation. The algorithm extended the preprocessing
method that was developed by Wiegelmann et al. for the NLFFF extrapolation (Wiegelmann et al.

2006). To do so, we minimize the functional defined as follows:

L = µ1L1 + µ2L2 + µ3L3 + µ4L4, (91)

L1 =

(

∑

p

BxBz

)2

+

(

∑

p

ByBz

)2

+

(

a0 −
∑

p

(Bz
2 − Bx

2 −By
2)

)2

, (92)

L2 =

(

a1 −
∑

p

y(Bz
2 − Bx

2 − By
2)

)2

+

(

a2 −
∑

p

x(Bz
2 −Bx

2 − By
2)

)2

+

(

∑

p

(yBxBz − xByBz)

)2

,

(93)

L3 =
∑

p

(Bx −Bxobs)
2 +

∑

p

(By − Byobs)
2 +

∑

p

(Bz − Bzobs)
2, (94)

L4 =
∑

p

(

(△Bx)
2 + (△By)

2 + (△Bz)
2
)

, (95)

where

a0=
∑

p

(Bzobs
2 − Bxobs

2 − Byobs
2), (96)

a1=
∑

p

y(Bzobs
2 − Bxobs

2 − Byobs
2), (97)

a2=
∑

p

x(Bzobs
2 − Bxobs

2 − Byobs
2), (98)

are Fz, Tx, and Ty of the original magnetogram, respectively. L1 and L2 correspond to the net force

and net torque constraints. L3 measures the deviation between the measured and preprocessed data.
L4 controls the smoothing, which is necessary for an optimization to obtain a good solution. Note

that the introduction of ai=0,1,2 differs from the MHS preprocessing from the NLFFF one by ensuring
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that the former procedure hardly changes Fz, Tx, and Ty. The aim of the preprocessing is to minimize

L in order to make all Ln small. Then the boundary becomes suitable for MHS extrapolation and is
as close as possible to the measured data at the same time. A method to specify the undetermined

parameters µn has also been developed by Zhu et al. (2020).

5. SUMMARY AND OUTLOOK

In this review, we tried to give an overview of many different MHS extrapolation methods to model
the solar atmosphere both analytically and numerically.

The analytical MHS models have the advantage of leading to linear equations, which are compu-
tationally very cheap. However, one has to make a number of assumptions to derive the analytical

solution, which limit the applicability of this kind of the MHS models to some extent. The nu-
merical MHS models basically make no assumptions (except assuming a static state), and therefore

are capable of modeling strong current concentrations locally which naturally leads to a nonlinear
mathematical problem. However, the numerical MHS models are found to be really computation-

ally expensive. Gilchrist et al. (2016) pointed out that more tracing steps (two in MHS case while
only one in NLFFF case) and more stages involved in a single iteration slow down the MHS code

significantly compared with the Grad-Rubin NLFFF code. The problem seems even worse in the op-

timization MHS code, which is 50 times slower than the optimization NLFFF code. The main reason
is because there is a big difference in magnitude of the plasma parameters (e.g., pressure) through

out the computational box and the code converges slowly. Recently, to reduce computational time,
Zhu & Wiegelmann (2022) restricted the MHS extrapolation box to the non-force-free layer and then

used the chromospheric vector magnetogram deduced from the MHS extrapolation to perform the
NLFFF extrapolation. The combined approach reaches the accuracy of the MHS extrapolation and

is moderately more efficient (still 7 times slower than the optimization NLFFF code).
The MHS models require high spatial resolution boundary conditions as input to resolve the fine

structures in the solar lower atmosphere. While the spatial resolution of the observation is very high,
the FOV usually limits to part of the observed active region (e.g., SUNRISE/IMaX covers a region

of 37×37 Mm with a pixel spacing of 40 km). To make the vector magnetogram to cover the entire
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Figure 3. Selected field lines for test case in Zhu & Wiegelmann (2019). The start points marked with
rhombus are the same in each panel. Circles in each panel mark end points of the referenced field lines.
Magnetogram of the NLFFF model is smoother than other two panels due to force-free preprocessing pro-
cedure (Wiegelmann et al. 2006). (a) Reference model (Cheung et al. 2019), (b) MHS model implemented
by Zhu & Wiegelmann (2018, 2019), (c) NLFFF model implemented by Wiegelmann (2004)

.
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active region which is necessary for a successful extrapolation by including more electric currents

(De Rosa et al. 2009), one has to either embed the high-resolution magnetogram into the lower one
(Wiegelmann et al. 2017; Zhu et al. 2020) or perform mosaic observations (Vissers et al. 2021). The

combined magnetogram usually has a large number of grid points (e.g., up to 2000×2000 even for a
moderate active region with a FOV of 80×80 Mm) which is also an challenge for extrapolations in

terms of computing time and usage of computational resources. Implementation of MHS codes on
massive parallel computer is needed currently or, at least, in the near future.

It is also worth noting that extrapolations with multiple observational data sets could improve the
result dramatically. Methods that take advantage of combining magnetograms and EUV images have

also been developed by Malanushenko et al. (2009, 2012) using a Quasi-Grad-Rubin method (QGR),
Aschwanden (2013, 2016) based on vertical-current-approximation (VCA-NLFFF), and Chifu et al.

(2015, 2017) based on the optimization method (S-NLFFF). An issue that should be kept in mind
when using multiple data sets is that providing all observations might overdetermines the boundary

condition, and no solution can be obtained. Both QGR and VCA-NLFFF use normal component of

the photospheric magnetic field, which rely on a well-posed boundary value problem. S-NLFFF uses
full magnetic vector as boundary condition, which is overdetermined. However, S-NLFFF specifies

measurement errors and, as a result, the optimal solution is allowed to deviate from observation within
the errors. In the case of the MHS extrapolation, using multiple observations is also a promising way

to get improved results. Vissers et al. (2021) investigated the similarity between the chromospheric
magnetic fields inferred from direct inversion and the MHS extrapolation. They found the latter

underestimates the transverse field strength as well as the amount of structure in the chromosphere.
Therefore, more constraints (e.g., chromospheric magnetic field inversion at reliable sites) may be

included in the MHS extrapolation in future developments, and it seems not too difficult for the
optimization approach to do so by just adding additional terms in the functional to be minimized.

In numerical MHS models, the Grad-Rubin method uses well-defined boundary conditions made
of Bn in both polarities and p and Jn in one, which will not violate the “hyperbolic” transport

properties of p and field-aligned component of the current. However, both optimization method and
MHD relaxation method require the full magnetic vector and p in both polarities as input. They

obviously overspecify boundary conditions if a T (r) distribution everywhere in the computational

box is prescribed. However, the boundary issue can be somewhat relieved by allowing deviation of
the boundary conditions from observation within measurement error.

So far, most of the efforts made regarding the MHS extrapolation concentrate on the model de-
velopments including testing and validating of the method with known reference models. Results,

with these tests, have shown that the MHS extrapolation is capable of reconstructing field lines with
higher accuracy (see figure 3). However, applications of the MHS extrapolation to the observational

data, from which we could learn new physics, are not as commonly seen as those of the NLFFF
extrapolation. One of the reasons is that there are still some problems to be solved to make the MHS

extrapolation as reliable as the NLFFF extrapolation in applying to solar data routinely. Another
reason is that we do not have sufficient photospheric magnetic field measurements with sufficiently

high spatial resolution (≤ 100 km). However, high-resolution measurements (e.g. with DKIST) are
improving rapidly, which offer great opportunities to develop the MHS extrapolation. The MHS

equilibrium also serves as a better initial condition than the NLFFF for the time-dependent MHD
simulations.
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