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Abstract. In this paper we study ergodic theory of countable Markov shifts.

These are dynamical systems defined over non-compact spaces. Our main re-

sult relates the escape of mass, the measure theoretic entropy, and the entropy
at infinity of the system. This relation has several consequences. For example

we obtain that the entropy map is upper semi-continuous and that the ergodic

measures form an entropy dense subset. Our results also provide new proofs
of results describing the existence and stability of the measure of maximal en-

tropy. We relate the entropy at infinity with the Hausdorff dimension of the

set of recurrent points that escape on average. Of independent interest, we
prove a version of Katok’s entropy formula in this non-compact setting.

1. Introduction

Many problems in ergodic theory and dynamical systems involve properties of
limits of sequences of invariant probability measures. If the phase space is compact
then the space of invariant probability measures is also compact in the the weak˚

topology, which is partly a consequence of convergence in this topology preserv-
ing mass. However, when the phase space is non-compact, the space of invariant
probability measures might also be non-compact, and thus mass, as well as other
quantities of interest, may escape in the limit. In this paper, we are principally
interested in how the entropy of sequences of measures behaves in this setting.

More specifically, we consider countable Markov shifts (CMS) pΣ, σq, which in
general are not even locally compact. We discuss the difficulties with the various
classical topologies in this context in the next section, where we also give details of
the space of invariant sub-probability measures endowed with the so-called cylinder
topology, introduced in [IV]. This topology generalises the vague topology to a non-
locally compact setting (see Section 2.2.2). If pµnqn is a sequence of σ-invariant
probability measures that converges in the cylinder topology to the measure µ
then the total mass |µ| :“ µpΣq P r0, 1s. In particular, this topology captures the
escape of mass. Moreover, µ is an invariant measure and the normalisation µ{|µ|
is an invariant probability measure (whenever µ is not the zero measure). Denote
by hνpσq the entropy of the invariant probability measure ν (see Section 2.3 for
details), and by δ8 the topological entropy at infinity of the system (see Definition
1.2). Our first main result answers one of the classical questions about sequences
of measures: how does entropy change in the limit?
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Theorem 1.1. Let pΣ, σq be a transitive CMS with finite topological entropy. Let
pµnqn be a sequence of σ-invariant probability measures converging on cylinders to
µ. Then

lim sup
nÑ8

hµnpσq ď |µ|hµ{|µ|pσq ` p1´ |µ|qδ8. (1.1)

If the sequence converges on cylinders to the zero measure then the right hand side
is understood as δ8.

Since the topological entropy at infinity plays a crucial role in this article, we
define it here, leaving details of the background to this to Section 2.6. The idea is
to measure how complicated the dynamics is near infinity. Of course, such a notion
only makes sense for dynamical systems defined on non-compact phase spaces. As in
the classical entropy theory, we will study two ways of measuring the complexity of
the system near infinity, one topological in nature and the other measure theoretic.

Definition 1.2. Let pΣ, σq be a CMS. Let M, q P N. For n P N let znpM, qq be the
number of cylinders of the form rx0, . . . , xn`1s, where x0 ď q, xn`1 ď q, and

# ti P t0, 1, . . . , n` 1u : xi ď qu ď
n` 2

M
.

Define

δ8pM, qq :“ lim sup
nÑ8

1

n
log znpM, qq,

and

δ8pqq :“ lim inf
MÑ8

δ8pM, qq.

The topological entropy at infinity of pΣ, σq is defined by δ8 :“ lim infqÑ8 δ8pqq.

The measure theoretic counterpart is given by:

Definition 1.3. Let pΣ, σq be a finite entropy CMS. The measure theoretic entropy
at infinity of pΣ, σq is defined by

h8 :“ sup
pµnqnÑ0

lim sup
nÑ8

hµnpσq, (1.2)

where pµnqn Ñ 0 means that the sequence pµnqn converges on cylinders to the zero
measure.

Other authors have considered related concepts. Most notably, Buzzi [B1, Defi-
nition 1.13] proposed a notion of entropy at infinity for CMS. His definition is given
in terms of the graph G which defines the CMS pΣ, σq:

b8 :“ inf
F

inf
λą0

sup thµpσq : µprF sq ă λu ,

where F ranges over the finite sub-graphs of G and rF s :“ tx P Σ : x0 P AF u, where
AF denotes the symbols appearing as vertex of F . It turns out that Buzzi’s notion
coincides with ours. Indeed, our next result states that all these three notions
coincide.

Theorem 1.4. Let pΣ, σq be a CMS of finite topological entropy. Then

δ8 “ h8 “ b8.
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The equality δ8 “ h8 can be understood as a variational principle at infinity.
Einsiedler, Lindenstrauss, Michel and Venkatesh [ELMV, Lemma 4.4] were the

first to obtain an inequality similar to (1.1). It appeared in their ergodic theoretic
proof of Duke’s theorem on equidistribution of closed geodesics on the modular
surface. After that, similar results in the context of homogeneous dynamics were
obtained in [EK, Theorem 1.2] and [EKP, Theorem A]. For different classes of
geodesic flows defined on non-compact manifolds of negative sectional curvature
related results were obtained in [IRV, Theorem 1.2] and [RV, Theorem 1.1]. In this
context the most general result was obtained in [Vel1, Theorems 1.4 and 1.6] where
an inequality like (1.1) was proved for the geodesic flow defined on an arbitrary
complete Riemannian manifolds with pinched negative sectional curvature. The
manifolds studied are locally compact, thus the topology considered in the space
of invariant measures is the vague topology. A more interesting and subtle point
is the quantity playing the role of the entropy at infinity. Due to the geometric
nature of the examples studied, the entropy at infinity is related to the critical
exponent of the Poincaré series associated to the non-compact parts of the space
(in the geometrically finite case this reduces to the critical exponent of the parabolic
subgroups of the fundamental group). Let us mention that the topological entropy
at infinity of the geodesic flow was also studied by Schapira and Tapie [ST] in their
work about the rate of change of the topological entropy under perturbations of
the metric.

A major difference with previous works is that in the context of CMS the be-
haviour of the orbits approaching infinity can be very complicated and that we do
not assume the phase space to be locally compact. These are major difficulties that
have to be overcome making the analysis more technical. As a general principle
we follow the method employed in [Vel1] with appropriate modifications. Loosely
speaking the entropy at infinity of the geodesic flow counts geodesics that start and
end at a given base point, but do not return near this point for intermediate times.
In our setup the entropy at infinity counts orbits that might return near a base
point many times, but the number of returns become negligible on average, which
can occur due to the lack of local compactness.

There are several interesting consequences of Theorem 1.1, some of them are
discussed in Section 8. For example, in Theorem 8.1 it is proved that the entropy
map is upper semi-continuous for every transitive finite entropy CMS. The continu-
ity properties of the entropy map have been studied for a long time. Major results
in the area are that for expansive systems defined on compact metric spaces the
entropy map is upper semi-continuous [Wa, Theorem 8.2]. Another fundamental
result is that if f is a C8 diffeomorphism defined on a smooth compact mani-
fold then again the entropy map is upper semi-continuous [N, Theorem 4.1]. As
explained in Remark 8.2, for infinite entropy CMS the entropy map is not upper
semi-continuous. In a recent article we proved [ITV, Corollary 1.2] that if pΣ, σq
is a finite entropy transitive CMS then the entropy map is upper semi-continuous
when restricted to ergodic measures. A complete solution to the problem can be
obtained as a consequence of Theorem 1.1. In Section 8 we also prove that the set of
ergodic measures is ‘entropy dense’ in the space of invariant probability measures.
This result not only provides a fine description of the structure of the space of
invariant probability measures but also provides an important tool to study Large
Deviations in this setting.
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There is a classification of transitive CMS in terms of their recurrence properties:
they can be transient, null recurrent or positive recurrent (see Definition 2.10 for
ϕ “ 0). Positive recurrent CMS are precisely those with a measure of maximal
entropy. A particularly important role is played by strongly positive recurrent CMS
(SPR); which are a sub-class of positive recurrent Markov shifts. The dynamical
properties of this class of systems are similar to that of sub-shifts of finite type.
Buzzi gave a characterisation of SPR shifts using b8 in [B1, Proposition 6.1], based
on the work of Gurevich-Zargaryan, Gurevich-Savchenko and Ruette. We note in
Proposition 2.20 that we can now restate this result as saying that pΣ, σq is SPR if
and only if δ8 ă htoppσq, where htoppσq is the Gurevich entropy of pΣ, σq (for precise
definitions see Section 2.4). In Section 8.5 we use Theorem 1.1 to obtain stability
properties of the measure of maximal entropy for SPR CMS (recovering results
from [GS]). Similar arguments are used to prove the existence of equilibrium states
for potentials in C0pΣq, the space of test functions for the cylinder topology (see
Section 8.6). To the author’s knowledge, this is the first result on the existence of
equilibrium states for CMS that goes beyond regular potentials (e.g. with summable
variations or the Walters property). Finally, in Theorem 8.16 we prove that for SPR
systems it is possible to bound the amount of mass that escapes the system in terms
of the entropy of the measures. Sequences of measures with large entropy can not
lose much mass.

The entropy at infinity has yet another important appearance in dynamics: it is
related to the Hausdorff dimension of the set of points that escape on average (see
[AAEKMU, EKP, KKLM, KP]). These are points for which the frequency of visits
to every cylinder equals to zero. In particular, no invariant measure is supported
on that set. This notion has been studied recently in contexts of homogeneous and
Teichmüller dynamics. The motivation comes from work of Dani [D] in the mid
1980s who proved that singular matrices are in one-to-one correspondence with
certain divergent orbits of one parameter diagonal groups on the space of lattices.
In Theorem 8.9 we prove that the Hausdorff dimension of the set of recurrent points
that escape on average is bounded above by δ8{ log 2, where the factor log 2 comes
from the metric in the symbolic space.

While our interest in this paper lies in the realm of Markov shifts, to provide
context we mention some applications of this theory. Symbolic methods have been
used to describe dynamical properties of a variety of systems since the 1898 work
of Hadamard on closed geodesics on surfaces of negative curvature, at the latest.
Compact Markov shifts have been used to study uniformly hyperbolic dynamical
systems defined on compact spaces, see for example the work of Bowen in [Bo3].
Many deep results can be obtained with this coding. Mostly after the work of
Sarig [S3], countable Markov partitions have been constructed for a wide range
of dynamical systems. This gives a semiconjugacy between a relevant part of the
dynamics, albeit not all of it, and a CMS. Examples of systems for which Markov
partitions have been constructed include positive entropy diffeomorphisms defined
on compact manifolds [B2, Ov, S3] and Sinai and Bunimovich billiards [LM]. Re-
markable results have been proved making use of these codings, for example in
[BCS, Main Theorem] it is shown that a positive entropy C8 diffeomorphism of a
closed surface admits at most finitely many ergodic measures of maximal entropy.
Results in this paper apply to all the symbolic codings mentioned above. However,
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due to topologies possibly not being preserved by the coding, it is not clear that
the results pass to the original systems.

In 1980 Katok [Ka, Theorem 1.1] established a formula for the entropy of an
invariant probability measure in analogy to the definition of topological entropy
of a dynamical system [Bo2, Di]. This formula is now known as Katok’s entropy
formula. An important assumption in [Ka, Theorem 1.1] is the compactness of
the phase space. In Section 3 we prove that Katok’s entropy formula holds in the
non-compact setting of CMS. We require this formula in the proof of Theorem 1.1,
but it is also of independent interest.

2. Preliminaries

2.1. Basic definitions for CMS. Let M be a Nˆ N matrix with entries 0 or 1.
The symbolic space associated to M with alphabet N is defined by

Σ :“
 

px0, x1, . . . q P NN0 : Mpxi, xi`1q “ 1 for every i P N0

(

,

where N0 :“ N Y t0u. We endow N with the discrete topology and NN0 with the
product topology. On Σ we consider the induced topology given by the natural
inclusion Σ Ă NN0 . We stress that, in general, this is a non-compact space. The
space Σ is locally compact if and only if for every i P N we have

ř

jPNMpi, jq ă 8

(see [Ki, Observation 7.2.3]).
The shift map σ : Σ Ñ Σ is defined by pσpxqqi “ xi`1, where x “ px0, x1, . . . q P

Σ. Note that σ is a continuous map. The pair pΣ, σq is called a one sided countable
Markov shift (CMS). The matrix M can be identified with a directed graph G with
no multiple edges (but allowing edges connecting a vertex to itself).

An admissible word of length N is a string w “ a0a1 . . . aN´1 of letters in the
alphabet such that Mpai, ai`1q “ 1, for every i P t0, . . . , N ´ 2u. We use bold
letters to denote admissible words. The length of an admissible word w is `pwq.

A cylinder of length N is the set

ra0, . . . , aN´1s :“ tx “ px0, x1, . . .q P Σ : xi “ ai for 0 ď i ď N ´ 1u .

If a0 . . . aN´1 is an admissible word then ra0, . . . , aN´1s ‰ H. We use the notation
Cnpxq to denote the cylinder of length n containing x. Since a cylinder can be
identified with an admissible word, we also denote the length of a cylinder C by
`pCq. Note that the topology generated by the cylinder sets coincides with that
induced by the product topology.

The space Σ is metrisable. Indeed, let d : ΣˆΣ Ñ R be the function defined by

dpx, yq :“

$

’

&

’

%

1 if x0 ‰ y0;

2´k if xi “ yi for i P t0, . . . , k ´ 1u and xk ‰ yk;

0 if x “ y.

(2.1)

The function d is a metric and it generates the same topology as that of the cylinders
sets. Moreover, the ball Bpx, 2´N q is precisely CN pxq. Given ϕ : Σ Ñ R, we define

varnpϕq :“ sup
 

|ϕpxq ´ ϕpyq| : @x, y P Σ such that dpx, yq ď 2´n
(

.

A function ϕ : Σ Ñ R is said to have summable variations if
ř

ně2 varnpϕq ă 8. A
function ϕ is called weakly Hölder if there exist θ P p0, 1q and a positive constant O P
R such that varnpϕq ď Oθn, for every n ě 2. A weakly Hölder continuous function
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is Hölder if and only if it is bounded. The C0-norm of ϕ is }ϕ}0 :“ supxPΣ |ϕpxq|.
We denote by

Snϕpxq “
n´1
ÿ

k“0

ϕpσkxq,

the Birkhoff sum of ϕ at the point x.
We say that pΣ, σq is topologically transitive if its associated directed graph G is

connected. We say that pΣ, σq is topologically mixing if for each pair a, b P N, there
exists a number Npa, bq such that for every n ě Npa, bq there is an admissible word
of length n connecting a and b. There is a particular class of CMS that will be of
interest to us,

Definition 2.1. A CMS pΣ, σq is said to satisfy the F´property if for every element
of the alphabet a and natural number n, there are only finitely many admissible
words of length n starting and ending at a.

Remark 2.2. A CMS pΣ, σq satisfies the F´property if and only if there are only
finitely many periodic orbits of length n intersecting ras, for every n P N and
for every a in the alphabet. Note that every locally compact CMS satisfies the
F´property.

Remark 2.3. Equivalent definitions and properties as those discussed in this section
can be given for two sided CMS. In this case the acting group is Z. It turns out
that, in general, thermodynamic formalism for the two sided CMS can be reduced
to the one sided case (see [S4, Section 2.3]).

2.2. Topologies in the space of invariant measures. The space of invariant
measures can be endowed with different topologies, some of which can account for
the escape of mass phenomenon whereas others can not. In this section we not only
fix notation for later use, but we also recall definitions and properties of several
topologies in the space of measures. First note that in this article a measure is
always a countably additive non-negative Borel measure defined in the symbolic
space Σ. The mass of a measure µ is defined as |µ| :“ µpΣq.

Denote by MpΣ, σq the space of σ-invariant probability measures on Σ and by
Mď1pΣ, σq the space of σ-invariant measures on Σ with mass in r0, 1s. In other
words, Mď1pΣ, σq is the space of σ-invariant sub-probability measures on Σ. Note
that MpΣ, σq ĂMď1pΣ, σq. The set of ergodic probability measures is denoted by
EpΣ, σq.

2.2.1. The weak˚ topology. Denote by CbpΣq the space of real valued bounded con-
tinuous function on Σ. A sequence of measures pµnqn in MpΣ, σq converges to a
measure µ in the weak˚ topology if for every f P CbpΣq we have

lim
nÑ8

ż

fdµn “

ż

fdµ.

Note that since the constant function equal to one belongs to CbpΣq the measure µ
is also a probability measure. A basis for this topology is given by the collection of
sets of the form

V pf1, . . . , fk, µ, εq :“

"

ν PMpΣ, σq :

ˇ

ˇ

ˇ

ˇ

ż

fidν ´

ż

fidµ

ˇ

ˇ

ˇ

ˇ

ă ε, for i P t1, . . . , ku

*

,

(2.2)
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where µ P MpΣ, σq, pfiqi are elements from CbpΣq and ε ą 0. Note that in this
notion of convergence we can replace the set of test functions (bounded and con-
tinuous) by the space of bounded uniformly continuous functions (see [B, 8.3.1
Remark]). Convergence with respect to the weak˚ topology can be characterised
as follows, see [Bi, Theorem 2.1].

Proposition 2.4 (Portmanteau Theorem). Let pµnqn, µ be probability measures on
Σ. The following statements are equivalent.

(a) The sequence pµnqn converges to µ in the weak˚ topology.
(b) If O Ă Σ is an open set, then µpOq ď lim infnÑ8 µnpOq.
(c) If C Ă Σ is a closed set, then µpCq ě lim supnÑ8 µnpCq.
(d) If A Ă Σ has µpBAq “ 0, where BA is the boundary of A, then limnÑ8 µnpAq “

µpAq.

Note that the space MpΣ, σq is closed in the weak˚ topology ([Wa, Theorem
6.10]). If Σ is compact then so is MpΣ, σq with respect to the weak˚ topology
(see [Wa, Theorem 6.10]). If Σ is not compact then, in general (e.g., whenever the
F-property holds), MpΣ, σq is not compact with respect to the weak˚ topology. Fi-
nally, the space MpΣ, σq is a convex set whose extreme points are ergodic measures
(see [Wa, Theorem 6.10]).

2.2.2. The topology of convergence on cylinders. In this section we recall the def-
inition and properties of the topology of convergence on cylinders. This topology
was introduced and studied in [IV] as a way to compactify MpΣ, σq under suitable
assumptions on Σ.

Let pCnqn be an enumeration of the cylinders of Σ. Given µ, ν PMď1pΣ, σq we
define

ρpµ, νq “
8
ÿ

n“1

1

2n
|µpCnq ´ νpCnq|.

It follows from the outer regularity of Borel measures on metric spaces that ρpµ, νq “
0, if and only if µ “ ν. Moreover, the function ρ defines a metric on Mď1pΣ, σq. The
topology induced by this metric is called the topology of convergence on cylinders.
We say that a sequence pµnqn in Mď1pΣ, σq converges on cylinders to µ if

lim
nÑ8

µnpCq “ µpCq,

for every cylinder C Ă Σ. Of course, pµnqn converges on cylinders to µ if and
only if pµnqn converges to µ in the topology of convergence on cylinders. In the
next lemma we see that in the case that mass does not escape then weak˚ and
convergence on cylinders coincide.

Lemma 2.5. [IV, Lemma 3.17] Let pΣ, σq be a CMS, µ and pµnqn be invariant
probability measures on Σ. The following assertions are equivalent.

(a) The sequence pµnqn converges in the weak˚ topology to µ.
(b) The sequence pµnqn converges on cylinders to µ.

Let Σ be a locally compact space and pµnqn, µ in Mď1pΣ, σq. The sequence
pµnqn converges to µ in the vague topology if limnÑ8

ş

fdµn “
ş

fdµ, for every
function f continuous and of compact support (note that the set of test functions
can be replaced by the set of continuous functions vanishing at infinity). If pΣ, σq
is locally compact then the topology of convergence on cylinders coincides with the
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vague topology (see [IV, Lemma 3.18]). It is important to note that if Σ is transitive
and not locally compact then the space of continuous functions of compact support
is trivial, so the vague topology is of no use and the topology of convergence on
cylinders is a suitable generalisation (see [IV, Remark 3.13]).

If C is a cylinder of length m, denote by

Cpě nq :“

#

x P C : σmpxq P
ď

kěn

rks

+

.

For a non-empty set A Ă Σ we define

varApfq :“ sup t|fpxq ´ fpyq| : x, y P Au .

We declare varApfq “ 0 if A is the empty set.

Definition 2.6. We say that f belongs to C0pΣq if the following three conditions
hold:

(a) f is uniformly continuous.
(b) limnÑ8 supxPrns |fpxq| “ 0.

(c) limnÑ8 var
Cpěnqpfq “ 0, for every cylinder C Ă Σ.

In this case we say that f vanishes at infinity.

The set C0pΣq is the space of test functions for the cylinder topology (see [IV,
Lemma 3.19]). In other words, pµnqn is a sequence in Mď1pΣ, σq that converges
in the cylinder topology to µ P Mď1pΣ, σq if and only if limnÑ8

ş

fdµn “
ş

fdµ,
for every f P C0pΣq. Since cylinder topology generalises the vague topology for
non-locally compact CMS, the space C0pΣq is the natural substitute to the set of
continuous functions that vanish at infinity.

The following result was proved in [IV, Theorem 1.2], and is an important in-
gredient for many of our applications.

Theorem 2.7. Let pΣ, σq be a transitive CMS with the F´property. Then Mď1pΣ, σq
is a compact metrisable space with respect to the cylinder topology. Moreover,
Mď1pΣ, σq is affine homeomorphic to the Poulsen simplex.

We remark that, as shown in [IV, Proposition 4.19], Theorem 2.7 is sharp in a
strong sense: if pΣ, σq does not have the F´property, then Mď1pΣ, σq is not com-
pact. More precisely, there exists a sequence of periodic measures that converges
on cylinders to a finitely additive measure which is not countably additive.

2.3. Entropy of a measure. In this section we recall the definition of the entropy
of an invariant measure µ P MpΣ, σq (see [Wa, Chapter 4] for more details). We
take the opportunity to fix the notation that will be used in what follows. A
partition β of a probability space pΣ, µq is a countable (finite or infinite) collection
of pairwise disjoint subsets of Σ whose union has full measure. The entropy of the
partition β is defined by

Hµpβq :“ ´
ÿ

PPβ

µpP q logµpP q,

where 0 log 0 :“ 0. It is possible that Hµpβq “ 8. Given two partitions β and β1

of Σ we define the new partition

β _ β1 :“
 

P XQ : P P β,Q P β1
(

.
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Let β be a partition of Σ. We define the partition σ´1β :“
 

σ´1P : P P β
(

and for

n P N we set βn :“
Žn´1
i“0 σ

´iβ. Since the measure µ is σ-invariant, the sequence
Hµpβ

nq is sub-additive. The entropy of µ with respect to β is defined by

hµpβq :“ lim
nÑ8

1

n
Hµpβ

nq.

Finally, the entropy of µ is defined by

hµpσq :“ sup thµpβq : β a partition with Hµpβq ă 8u .

Remark 2.8. Krengel [Kr, Remark p.166] observes that since the entropy of a finite
invariant measure µ is usually defined as the entropy of the normalised measure
µ{|µ|, the linearity (in the standard sense) of the entropy map is destroyed. Fol-
lowing Krengel’s line of thought, the number |µ|hµ{|µ|pσq appearing in Theorem 1.1
can be understood, as the entropy of the finite measure µ (see also [Wa, Theorem
8.1] for example).

2.4. Thermodynamic formalism for CMS. Throughout this section we assume
that pΣ, σq is topologically transitive and that ϕ : Σ Ñ R has summable variations.
Let A Ă Σ and 1Apxq be the characteristic function of the set A. In this setting we
define,

Znpϕ, aq :“
ÿ

σnx“x

eSnϕpxq1raspxq,

where a P N. The Gurevich pressure of ϕ is defined by

PGpϕq :“ lim sup
nÑ8

1

n
logZnpϕ, aq.

This definition was introduced by Sarig [S1], based on the work of Gurevich [Gu2].
We remark that the right hand side in the definition of PGpϕq is independent of
a P N, and that if pΣ, σq is topologically mixing, then the limsup can be replaced
by a limit (see [S1, Theorem 1] and [S4, Theorem 4.3]). This definition of pressure
satisfies the variational principle (see [S1, Theorem 3] and [IJT, Theorem 2.10]) and
can be approximated by the pressure of compact invariant subsets [S1, Theorem 2
and Corollary 1]. Indeed,

PGpϕq “ sup
 

Ptoppϕ|Kq : K Ă Σ compact and σ´1K “ K
(

“ sup
µPMpΣ,σq

"

hµpσq `

ż

ϕdµ :

ż

ϕdµ ą ´8

*

,

where Ptopp¨q is the classical pressure on compact spaces [Wa, Chapter 9]. A mea-
sure µ PMpΣ, σq is an equilibrium state for ϕ if

ş

ϕdµ ą ´8 and

PGpϕq “ hµpσq `

ż

ϕdµ.

The following function will be of importance in this article.

Definition 2.9. Let A Ă Σ. Denote by RApxq :“ 1Apxq inftn ě 1 : σnx P Au the
first return time map to the set A. In the particular case in which the set A is a
cylinder ras we denote Rraspxq :“ Rapxq.

Sarig [S1, Section 4.2] introduced the following:

Z˚npϕ, aq :“
ÿ

σnpxq“x

eSnϕpxq1rRa“nspxq,
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where rRa “ ns :“ tx P Σ : Rapxq “ nu. Extending notions of Markov chains, Sarig
[S1] classified potentials according to its recurrence properties.

Definition 2.10 (Classification of potentials). Let pΣ, σq be a topologically tran-
sitive CMS and ϕ a summable variation potential with finite Gurevich pressure.
Define λ “ exp pPGpϕqq and fix a P N.

(a) If
ř

ně1 λ
´nZnpϕ, aq diverges we say that ϕ is recurrent.

(b) If
ř

ně1 λ
´nZnpϕ, aq converges we say that ϕ is transient.

(c) If ϕ is recurrent and
ř

ně1 nλ
´nZ˚npϕ, aq converges we say that ϕ is positive

recurrent.
(d) If ϕ is recurrent but

ř

ně1 nλ
´nZ˚npϕ, aq diverges we say that ϕ is null

recurrent.

Topological transitivity implies that above definitions do not depend on the
choice of the symbol a.

Remark 2.11. The classification in Definition 2.10 is invariant under the addition
of coboundaries and constants. That is, if ψ : Σ Ñ R is of summable variations
and C P R we have that: the potential ϕ is recurrent (resp. transient) if and only
if the potential ϕ ` ψ ´ ψ ˝ σ ` C is recurrent (resp. transient). Moreover, the
potential ϕ is positive recurrent (resp. null recurrent) if and only if the potential
ϕ` ψ ´ ψ ˝ σ ` C is positive recurrent (resp. null recurrent).

The following result describes existence and uniqueness of equilibrium states.
Parts (a) and (b) follow from Theorems 1.1 and Theorem 1.2 of [BS], respectively.

Theorem 2.12. Let pΣ, σq be a topologically transitive CMS and ϕ a summable
variation potential with finite Gurevich pressure. Then

(a) There exists at most one equilibrium state for ϕ.
(b) If ϕ has an equilibrium state then ϕ is positive recurrent.

In this article the potential ϕ “ 0 will play a particularly important role. The
topological entropy of pΣ, σq, that we denote by htoppσq, is defined as the Gurevich
pressure of the potential ϕ “ 0, that is

htoppσq :“ PGp0q.

We say that pΣ, σq is recurrent, transient, null recurrent or positive recurrent ac-
cording to the corresponding properties of ϕ “ 0. If pΣ, σq is positive recurrent,
then Theorem 2.12 implies that pΣ, σq admits a unique measure of maximal entropy.
This was first proved by Gurevich [Gu1].

Remark 2.13. Note that every finite entropy, transitive CMS satisfies the F´property
(see Definition 2.1).

2.5. Strongly positive recurrent CMS. Properties of CMS may be significantly
different from those of sub-shifts of finite type defined on finite alphabets. In this
section we describe a special class of CMS with properties analogous to those of
compact sub-shifts. This study is based on work of Vere-Jones [Ve1, Ve2] devel-
oped during the 1960s, where he first defined an equivalent class in the setting of
stochastic matrices. Several people have contributed to the understanding of this
class, for example, Salama [Sal], Gurevich and Savchenko [GS], Sarig [S2], Ruette
[R1], Boyle, Buzzi and Gómez [BBG] and Cyr and Sarig [CS]. In these works the
following quantities, or related ones, have been defined and studied.
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Definition 2.14. Let pΣ, σq be topologically transitive CMS and a P N. Let

∆8prasq :“ lim sup
nÑ8

1

n
logZ˚np0, aq,

and

∆8 :“ inf
aPN

∆8prasq.

Remark 2.15. The number ∆8prasq can depend on the symbol a, see [R1, Remark
2,1].

Definition 2.16 (Strongly positive recurrent CMS). Let pΣ, σq be a topologically
transitive CMS with finite topological entropy. We say that pΣ, σq is strongly posi-
tive recurrent (SPR) if ∆8 ă htoppσq.

Remark 2.17. A strongly positive recurrent CMS is positive recurrent. In particular
it admits a unique measure of maximal entropy. Moreover, with respect to this
measure the system pΣ, σq is exponentially recurrent (see [BBG, Proposition 2.3]
for precise statements). The class of strongly positive recurrent CMS was intensively
studied by Gurevich and Savchenko in [GS]. Note, however, that in [GS] these are
called stable-positive recurrent. We also remark that there exists CMS that are
positive recurrent but not strongly positive recurrent (see [R1, Example 2.9]).

Remark 2.18. Strongly positive recurrent CMS have the property that the entropy
is concentrated inside the system and not near infinity. Indeed, let pΣ, σq be a
CMS an G its associated graph. Gurevich and Zargaryan [GZ] (see also [GS])
showed that a condition equivalent to SPR is the existence of a finite connected
subgraph H Ă G such that there are more paths inside than outside H (in term
of exponential growth). See [R1, Section 3.1] for precise statements. On the other
hand, for graphs that are not strongly positive recurrent the entropy is supported
by the infinite paths that spend most of the time outside a finite subgraph (see [R1,
Proposition 3.3]).

Along the lines of the observations made in Remark 2.18, in the next section (see
Proposition 2.20) we characterise SPR for CMS as those having entropy at infinity
strictly smaller than the topological entropy.

Sarig [S2] generalised the notion of strong positive recurrence to potentials ϕ.
Using his definition, we recover the topological notion in Definition 2.16 for the
potential ϕ ” 0, i.e., this potential is strongly positive recurrent if and only if
pΣ, σq is SPR (see [R1, Remark 2.11]). For Sarig’s class of potentials the associated
thermodynamic formalism enjoys most of the properties of the thermodynamics for
Hölder potentials on sub-shifts of finite type. In particular, the transfer operator
corresponding to a strongly positive recurrent potential has a spectral gap (see [CS,
Theorem 2.1]). This readily implies that the pressure function is analytic and there
exist formulas for its derivatives ([S2, Theorem 3 and 4] and [CS, Theorem 1.1]),
there exists a unique equilibrium state and it has exponential decay of correlations
and satisfies the Central Limit Theorem ([CS, Theorem 1.1]). Moreover, in the
space of potentials strongly positive recurrence is a robust property. Indeed, it
was proved by Cyr and Sarig [CS, Theorem 2.2] that the space of strongly positive
recurrent potentials is open and dense (with respect to the uniform metric) in the
space of weakly Hölder potentials with finite pressure.
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2.6. Entropy at infinity. A fundamental consequence of Theorem 1.1 is that a
great deal of dynamical information of the system is captured by its complexity at
infinity. As discussed in the introduction, we have defined two different ways of
quantifying this complexity. Namely, the topological entropy at infinity (Definition
1.2) and the measure theoretic one (Definition 1.3). In this section we will elaborate
on these notions and put our results into context.

We first discuss the topological entropy at infinity of pΣ, σq, given in Definition
1.2. Observe that if M1 ăM2, then znpM2, qq ď znpM1, qq, for every n, q P N, so

δ8pqq “ inf
M
δ8pM, qq “ lim

MÑ8
δ8pM, qq.

If pΣ, σq is a transitive CMS then for every a, b P N,

δ8pM, qq “ lim sup
nÑ8

1

n
log znpM, q, a, bq, (2.3)

where znpM, q, a, bq is the number of cylinders of the form rx0, . . . , xn`1s, where
x0 “ a, xn`1 “ b, and

# ti P t0, . . . , n` 1u : xi ď qu ď
n` 2

M
.

Note that q ă q1 implies the inequality znpM, q1, a, bq ď znpM, q, a, bq. In particular
pδ8pM, qqqq is decreasing in q. We conclude that

δ8 “ inf
q
δ8pqq “ inf

M,q
δ8pM, qq. (2.4)

Since in our results we will usually assume that the symbolic space is transitive,
we can consider (2.4) as the definition of the topological entropy at infinity.

We now consider the measure theoretic entropy at infinity, defined for finite
entropy CMS as

h8 :“ sup
pµnqnÑ0

lim sup
nÑ8

hµnpσq,

where pµnqn Ñ 0 means that the sequence pµnqn converges on cylinders to the
zero measure. Note that the finite entropy assumption, and more generally the
F´property, ensures the existence of sequences of measures converging on cylinders
to the zero measure (see [IV, Lemma 4.16]). In particular, h8 is well defined. In
[IV, Example 4.17], an example of a CMS made of infinitely many loops of length
two based at a common vertex is considered. The entropy is infinite and there are
no sequences of measures converging to zero. Every measure gives weight at least
1{2 to the base cylinder.

In Section 7 we will prove that both, the topological and the measure theoretic
entropies at infinity coincide. This has several consequences, in particular we obtain
that Theorem 1.1 is sharp. Indeed, δ8 is the smallest number for which inequality
(1.1) holds.

In the context of CMS the entropy at infinity was already investigated by Gure-
vich and Zargaryan [GZ], Ruette [R1] and Buzzi [B1]. It is important to mention
that they also had two flavours of entropy at infinity, a topological and a measure
theoretic version. It is proven by Ruette [R1] that both notions coincide (for a pre-
cise statement see [B1, Proposition 6.1]). It turned out that the notions of entropy
at infinity presented in this work coincide with theirs. Recall that if G is the graph
which determines pΣ, σq, then

b8 “ inf
F

inf
λą0

sup thµpσq : µprF sq ă λu ,
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where F ranges over the finite sub-graphs of G and rF s :“ tx P Σ : x0 P AF u,
where AF denotes the symbols appearing as vertex of F . We first show the relation
between h8 and b8.

Lemma 2.19. For a sequence pµnqn in MpΣ, σq, the following are equivalent:

(a) for any collection of cylinders C1, . . . , CN , and ε ą 0, there is n0 P N such

that µnp
ŤN
i“1 C

iq ă ε for all n ě n0;
(b) for any finite subgraph F of G and any ε ą 0, there is n1 P N such that

µnprF sq ă ε for all n ě n1.

An easy consequence of the lemma is that convergence on cylinders in this setting
corresponds to the type of limits featuring in the definition of b8 and thus b8 “ h8.

Proof of Lemma 2.19. Since (b) concerns 1-cylinders, the fact that (a) implies (b) is
clear. To prove the reverse implication, we observe that if C1, . . . , CN is a collection
of cylinders then we can take the subgraph defined by the first coordinate of each
Ci as our subgraph. �

As previously mentioned, in Section 7 we will prove that h8 “ δ8. This implies
that the entropy at infinity defined in this section coincides with the previously de-
fined one. One consequence is that, since [B1, Proposition 6.1] implies b8 ă htoppσq
is a characterisation of SPR, we thus have the following alternative characterisation:

Proposition 2.20. A topologically transitive CMS pΣ, σq is SPR if and only if
h8 ă htoppσq if and only if δ8 ă htoppσq.

This result is consistent with the comments in Remark 2.18. Indeed, SPR sys-
tems are those for which the entropy is not concentrated at infinity; the inequality
δ8 ă htoppσq has a wealth of dynamical consequences (see Remark 2.17).

From a slightly different point of view, it was not realised until recently that the
entropy at infinity has a particularly important role in the regularity of the entropy
map. In the context of homogeneous dynamics, for the diagonal action on G{Γ,
where G is a R-rank 1 semisimple Lie group with finite centre and Γ ď G a lattice,
a formula like Theorem 1.1 was obtained in [EKP]. In that context the constant
playing the role of the entropy at infinity is half the topological entropy of the
flow. It was later proved in [KP] that half the topological entropy is in fact sharp
and equal to the measure theoretic entropy at infinity in that setup. The method
employed in [EKP] was used in [RV] to prove that a similar result holds for the
geodesic flow on a geometrically finite manifold. Unfortunately, an obstruction to
run the method from [EKP] is the existence of periodic orbits that escape to infinity.
This issue was overcome in [Vel1], where the results in [RV] where generalised to
all complete negatively curved manifolds. For CMS the existence of periodic orbits
that escape phase space is quite common so our approach is similar to the one in
[Vel1]. Additional complications arise from the possible lack of locally compactness
of Σ. In Section 5 and Section 6 we will address these issues and prove Theorem
1.1.

The entropy at infinity has further applications to suspension flows, entropy
density, the dimension of points which escape on average, existence of equilibrium
states and bounds on mass escape, all of which we give in Section 8.
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3. Katok’s entropy formula

In the early 1970s Bowen [Bo2] and Dinaburg [Di] provided a new definition of
topological entropy of a dynamical system. Inspired by these results, Katok [Ka]
established a formula for the measure theoretic entropy in analogy to the definition
of topological entropy by Bowen and Dinaburg. We now recall his result in a
particular context.

Let pΣ, σq be a CMS and let d be the metric on Σ defined in (2.1). The dynamical
metric dn is defined by the formula

dnpx, yq :“ max
kPt0,...,n´1u

dpσkx, σkyq.

The open ball of radius r centred at x with respect to the metric dn is denoted by
Bnpx, rq. By the definition of the metric d we know that Bnpx, 2

´N q “ Cn`N pxq.
A ball of the form Bnpx, rq is called a pn, rq-dynamical ball. The following result is
a particular case of a theorem proved in [Ka, Theorem 1.1].

Theorem 3.1. Let pΣ, σq be a sub-shift of finite type defined on a finite alphabet
and µ an ergodic σ-invariant probability measure. Then

hµpσq “ lim
εÑ0

lim inf
nÑ8

1

n
logNµpn, ε, δq, (3.1)

where Nµpn, ε, δq is the minimum number of pn, εq-dynamical balls needed to cover
a set of µ-measure strictly bigger than 1´ δ. In particular the limit above does not
depend on δ P p0, 1q.

The relation established in (3.1) is known as Katok’s entropy formula. It turns
out that Katok’s proof is rather flexible. It was observed by Gurevich and S. Katok
[GK, Section 4] and also by Riquelme [Ri, Theorem 2.6] that the proof in [Ka,
Theorem 1.1] yields that if pX, dq is a metric space (not necessarily compact) and
T : X Ñ X a continuous map then

hµpT q ď lim
εÑ0

lim inf
nÑ8

logNµpn, ε, δq

n
.

The compactness assumption on X is used in the proof of the other inequality. It
is routine to check that compactness assumption can be replaced by the existence
of a totally bounded metric.

This section is devoted to proving that formula (3.1) holds for CMS of finite
topological entropy. Moreover, we will prove the limit is independent of ε. We
prove:

Theorem 3.2. Let pΣ, σq be a CMS and µ an ergodic σ-invariant probability mea-
sure. Then for every δ P p0, 1q we have

hµpσq ď lim
nÑ8

1

n
logNµpn, 1, δq.

If pΣ, σq has finite topological entropy, then

hµpσq “ lim
nÑ8

1

n
logNµpn, 1, δq.

Define the following collection of sets: for every m P N let

Km :“ ΣX
m
ď

s“1

rss. (3.2)
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Note that if Σ is locally compact, then Km is compact for every m P N. To every
sequence of natural numbers paiq

8
i“0 we associate the set

Kppaiqiq “ ΣX
ź

iě0

t1, . . . , aiu. (3.3)

Observe that Kppaiqiq is the intersection of a closed set with a compact set and is
thus a compact subset of Σ. Moreover, every compact set K Ă Σ is contained in a
set of the form Kppaiqiq. The following lemma follows directly from [P, Theorem
3.2]. For concreteness we provide a simple proof of this general fact.

Lemma 3.3. Let µ a Borel measure on Σ. For every ε ą 0, there exists a sequence
of natural numbers paiqi such that µpKppaiqiqq ą 1´ ε.

Proof. Fix a sequence pbiqi satisfying

´

1´
ε

2

¯

8
ź

i“1

bi ą 1´ ε,

where bi P p0, 1q for every i P N. We will construct the sequence paiqi inductively.
Choose a0 such that µp

Ťa0
i“1risq ą 1´ ε

2 . For every i P t1, . . . , a0u we choose cpiq P N
such that

µ

¨

˝

cpiq
ď

k“1

riks

˛

‚ě µprisqb1.

Let a1 :“ maxiPt1,...,a0u cpiq. For pi1, i2q P
ś1
i“0t1, . . . , aiu we define cpi1, i2q such

that

µ

¨

˝

cpi1,i2q
ď

k“1

ri1i2ks

˛

‚ě µpri1i2sqb2.

Define a2 “ maxpi,jqP
ś1
i“0t1,...,aiu

cpi, jq. We continue this procedure inductively. It

follows from the construction that

µpKppaiqiqq “ µ

˜

8
ź

i“0

t1, . . . , aiu

¸

ě

´

1´
ε

2

¯

8
ź

i“1

bi ą 1´ ε,

as desired. �

Remark 3.4. Katok proved [Ka, Theorem 1.1] that if P is any finite partition of Σ
satisfying µpBPq “ 0, then for any δ P p0, 1q

hµpPq ď lim
rÑ0

lim inf
nÑ8

1

n
logNµpn, r, δq.

For a CMS it is easy to check that the partitions

Pn “

#

r1s, . . . , rns,
ď

sąn

rss

+

are such that BPn “ H, and limnÑ8 hµpσ,Pnq “ hµpσq. From this we conclude
that

hµpσq ď lim
rÑ0

lim inf
nÑ8

1

n
logNµpn, r, δq.

Our next result is inspired by the proof of [Ri, Theorem 2.10 and Theorem 2.11].
In our context we do not have local compactness of Σ: the finite entropy assumption
is important in overcoming this issue.
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Lemma 3.5. Let pΣ, σq be a CMS with finite topological entropy. If µ is an ergodic
σ-invariant probability measure, then for every δ P p0, 1q we have

hµpσq “ lim
NÑ8

lim inf
nÑ8

1

n
logNµpn, 2

´N , δq.

Proof. As observed in Remark 3.4 the inequality

hµpσq ď lim
NÑ8

lim inf
nÑ8

1

n
logNµpn, 2

´N , δq

is known to hold. For the converse inequality it suffices to prove that for every
` P N there exists a partition P “ Pp`q of Σ and a subset K Ă Σ satisfying:

(a) The partition Pp`q has finite entropy with respect to µ.
(b) µpKq ą 1´ δ

6 .

(c) For every x P K X σ´nK we have Pnpxq Ă Bnpx, 2
´`q.

In this situation a slight modification of the first part of the proof in [Ka, Theorem
1.1] yields the desired inequality, as we show here. Suppose that the partition
P “ Pp`q has been constructed. Let ε ą 0. Since the measure µ is ergodic by the
Shannon-McMillan-Breiman theorem there exists N0 P N such that the set

Aε,N0
:“ tx P Σ : µpPnpxqq ě expp´nphµpPq ` εqq, for all n ě N0u .

satisfies µpAε,N0q ą 1 ´ δ
6 . Let n ě N0 and Bn :“ Aε,N0 X K X σ´nK. Observe

that µpBnq ě 1 ´ δ
2 and that if x P Bn then x P K X σ´nK, and therefore

Pnpxq Ă Bnpx, 2
´`q. The set Aε,N0

requires at most exppnphµpPq ` εqq elements
of the partition Pn to cover it. Therefore, Bn requires at most exppnphµpPq ` εqq

pn, 2´`q-dynamical balls to cover it, where µpBnq ą 1´ δ
2 . We conclude that

lim sup
nÑ8

1

n
logNµpn, 2

´`, δq ď hµpPq ` ε ď hµpσq ` ε.

Since ε ą 0 was arbitrary we obtain

lim
`Ñ8

lim sup
nÑ8

1

n
logNµpn, 2

´`, δq ď hµpσq,

concluding the proof of the lemma.
We now prove the existence of such a partition P “ Pp`q. By Lemma 3.3

there exists a sequence paiqi such that the compact set K0 :“ Kppaiqiq satisfies
µpK0q ě 1 ´ δ

6 . Denote by S the set of points in Σ that enter K0 infinitely many
times under iterates of σ. It is a consequence of Birkhoff’s Ergodic Theorem that
µpSq “ 1. Define K :“ K0 X S, and observe that µpKq ě 1´ δ

6 . For every k ě 1,
let

RKpxq :“ inf
 

k ě 1 : σkpxq P K0

(

for x P K, and Ak :“ tx P K : RKpxq “ ku .

Partition Ak using cylinders of length k```1 and denote such partition by Qk. It is
important to observe that #Qk is finite for all k. This follows from the definition of
K0 and the finite topological entropy of pΣ, σq. Indeed, if x “ px0, x1, . . . , xk . . . q P

Ak, then x0, xk P t1, . . . , a0u. Moreover, there are at most C “
ś`
i“0 ai cylinders

of the form ry0y1 . . . yls intersecting K, so for k large enough,

#Qk ď Cekphtoppσq`1q.
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Finally, consider the partition of Σ defined by P “ Q Y
`
Ť8

k“1 Qk

˘

, where

Q :“ Σz
Ť8

k“1 Qk. We claim that this countable partition satisfies the remaining
required properties, that is:

(a) The partition P “ Pp`q has finite entropy with respect to µ.
(b) For every x P K X σ´nK we have Pnpxq Ă Bnpx, 2

´`q.

The second property follows from the construction of P. Indeed, let z P Pnpxq,
where x, σnpxq P K. We claim that z P Bnpx, 2

´`q. For simplicity we will assume
that x has its first return to K at time n (the general case is just an iteration of the
argument in this setting). Since x P An we have that Ppxq is a cylinder of length
n` `` 1, which readily implies that z P Bnpx, 2

´`q.
We now verify that HµpPq ă 8. For r sufficiently large,

HµpPq `R “
ÿ

kěr

ÿ

PPQk

´µpP q logµpP q

“
ÿ

kěr

µpAkq

˜

ÿ

PPQk

´
µpP q

µpAkq
log

µpP q

µpAkq
´

µpP q

µpAkq
logµpAkq

¸

ď
ÿ

kěr

µpAkq logp|Qk|q ´
ÿ

kěr

µpAkq logµpAkq

ď
ÿ

kěr

kµpAkq log
´

ehtoppσq`1C1{k
¯

´
ÿ

kěr

µpAkq logµpAkq

ď C 1
ÿ

kěr

kµpAkq ´
ÿ

kěr

µpAkq logµpAkq,

where R “ µpQq logµpQq `
řr´1
k“1

ř

PPQk µpP q logµpP q P R. It follows from Kac’s

lemma that
ř

kµpAkq “ 1. This and the inequality

´
ÿ

kěr

µpAkq logµpAkq ď
ÿ

kěr

kµpAkq ` 2e´1
ÿ

kěr

e´k{2,

see [M, Lemma 1], imply the finiteness of HµpPq. This concludes the proof. �

Lemma 3.6. Let pΣ, σq be a CMS and µ an ergodic σ-invariant probability measure.
Then for any δ P p0, 1q, we have

hµpσq ď lim inf
nÑ8

1

n
logNµpn, 1, δq.

Proof. Let A Ă Σ be a set such that µpAq ě 1´δ. Denote by aµpn, δq the minimum
number of cylinders of length n that cover a A. Observe that

Nµpn, 2
´t, δq “ aµpn` t, δq,

and that

lim inf
nÑ8

1

n
log aµpn, δq “ lim inf

nÑ8

1

n
log aµpn` t, δq,
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for every t P N. In particular we have that lim infnÑ8
1
n logNµpn, 2

´`, δq is inde-
pendent of `. From Remark 3.4 we conclude that

hµpσq ď lim
tÑ8

lim inf
nÑ8

1

n
logNµpn, 2

´t, δq

“ lim
tÑ8

lim inf
nÑ8

1

n
log aµpn` t, δq

“ lim inf
nÑ8

1

n
log aµpn, δq.

�

Proof of Theorem 3.2. The proof follows combining Lemma 3.5 and Lemma 3.6.
�

We now prove a result related to Lemma 3.6. We say that two points x, y P Σ
are pn, rq-separated if dnpx, yq ě r. In particular x and y are pn, 1q-separated if
they do not belong to the same cylinder of length n.

Lemma 3.7. Let X be a σ-invariant compact subset of Σ. Then

htoppσ|Xq “ lim sup
nÑ8

1

n
logNpX,nq,

where NpX,nq is the maximal number of pn, 1q-separated points in X, and htoppσ|Xq
is the topological entropy of pX,σq.

Proof. By definition of the topological entropy of a compact metric space we know
that

htoppσ|Xq “ lim
kÑ8

lim sup
nÑ8

1

n
logNpX,n, kq,

where NpX,n, kq is the maximal number of pn, 2´kq-separated points in X. Observe
that being pn, 2´kq-separated is the same as being pn`k, 1q-separated. This implies
that NpX,n, kq “ NpX,n` kq. Note that

lim sup
nÑ8

1

n
logNpX,n, kq “ lim sup

nÑ8

1

n
logNpX,n` kq “ lim sup

nÑ8

1

n
logNpX,nq.

Therefore

htoppσ|Xq “ lim
kÑ8

lim sup
nÑ8

1

n
logNpX,n, kq “ lim sup

nÑ8

1

n
logNpX,nq,

as desired. �

4. Weak entropy density

In this section we describe the inclusion EpΣ, σq ĂMpΣ, σq, where EpΣ, σq is the
subset of ergodic measures. It is well known that, even in this non-compact setting,
the set EpΣ, σq is dense in MpΣ, σq with respect to the weak* topology (see [CSc,
Section 6]). We prove that any finite entropy measure can be approximated by an
ergodic measure with entropy sufficiently large, see Proposition 4.1. This result
can be thought of as a weak form of entropy density. In Section 8.3 we will make
use of this result to prove that any invariant measure µ can be approximated by
ergodic measures with entropy converging to hµpσq (see Theorem 8.7). Moreover,
Proposition 4.1 will be used in the proof of our main result (see Theorem 1.1).
Both the statement and the proof of Proposition 4.1 closely follow that of [EKW,
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Theorem B], but modifications are required to deal with the non-compactness of
the space Σ.

Proposition 4.1. Let pΣ, σq be a transitive CMS. Then for every µ P MpΣ, σq
with hµpσq ă 8, ε ą 0, η ą 0, and f1, . . . , fl P CbpΣq, there exists an ergodic
measure µe P V pf1, . . . , fl, µ, εq (see equation (2.2)) such that hµepσq ą hµpσq ´ η.
We can moreover assume that supppµeq is compact.

Analogously to the proof of [EKW, Theorem B] we will use the following fact.

Lemma 4.2. Let µ P EpΣ, σq, α ą 0, β ą 0, f1, . . . , f` P CbpΣq, and a set K Ă Σ
satisfying µpKq ą 3{4. Assume that hµpσq ă 8. Then there exists n0 P N such that
for all n ě n0 there is a finite set G “ Gpnq Ă Σ satisfying the following properties:

(a) G Ă K X σ´nK
(b) dpx, yq ą 2´n, for every pair of distinct points x, y P G.
(c) #G ě exppnphµpσq ´ αqq.

(d) | 1n
řn´1
k“0 fjpσ

kxq ´
ş

fjdµ| ă β, for all x P G and j P t1, . . . , `u.

Proof. Let

Ak,β :“

#

x P Σ :

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

i“0

fjpσ
ixq ´

ż

fjdµ

ˇ

ˇ

ˇ

ˇ

ˇ

ă β,@j P t1, . . . , `u and n ě k

+

.

By Birkhoff’s Ergodic Theorem there exists s0 P N such that µpAs0,βq ą 3{4. From
Lemma 3.6 we have that

hµpσq ď lim inf
nÑ8

1

n
logNµpn, 1, 1{4q.

There exists s1 P N such that if n ě s1, then

exppnphµpσq ´ αqq ď Nµpn, 1, 1{4q.

Let Bn :“ K X σ´nK X As0,β and observe that µpBnq ą 1{4. In what follows
we assume that n ě n0 :“ maxts0, s1u. From the definition of Nµpn, 1, 1{4q the
minimal number of cylinders of length n needed to cover Bn is at least Nµpn, 1, 1{4q.
More precisely, let pCiqiPI be a minimal collection of cylinders of length n covering
Bn. In particular for every i P I we have Ci X Bn ‰ H. For every i P I choose a
point xi P CiXBn. We claim that the set pxiqiPI satisfies the properties required on
G. Conditions (a) and (d) follow from the definition of Bn. Condition (b) follows
from the fact that if i ‰ j, then xi and xj are in different cylinders of length n.
Condition (c) follows from the inequality

#I ě Nµpn, 1, 1{4q ě exppnphµpσq ´ αqq.

�

Proof of Proposition 4.1. Recall that we want to prove that given µ P MpΣ, σq,
ε ą 0, η ą 0, and f1, . . . , fl P CbpΣq, there exists an ergodic measure µe P
V pf1, . . . , f`, µ, εq such that hµepσq ą hµpσq ´ η. In the following remarks we
observe that this general situation can be simplified.

As observed in Section 2.2.1 or in [B, 8.3.1 Remark] it suffices to consider the case
in which the functions pfiqi in Proposition 4.1 are uniformly continuous. Therefore,
under this assumption, there exists A “ Apf1, . . . , f`q P N, such that if dpx, yq ă
2´A, then |fipxq ´ fipyq| ă

ε
4 . Also define W “ maxiPt1,...,`u |fi|0.
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Since periodic measures are dense in MpΣ, σq, see [CSc, Section 6], we will
assume that hµpσq´η ą 0, otherwise we can approximate µ by a periodic measure.
By the affinity of the entropy map [Wa, Theorem 8.1] and [IV, Lemma 6.13] we

can reduce the problem to the case in which µ “ 1
N

řN
i“1 µi, where tµiu

N
i“1 is a

collection of ergodic measures.
Let m P N be such that the set K “ Km, defined as in (3.2), satisfies µipKq ą 3{4

for every i P t1, . . . , Nu. Since pΣ, σq is transitive, there exists a constant L “ Lpmq
such that for each pair pa, bq P t1, . . . ,mu2, there exists an admissible word arb,
where `prq ď L. It follows from Lemma 4.2, setting β “ ε{4 and α “ η{2, that there
exists n1 P N such that for every n ą n1 and every measure µi, with i P t1, . . . , Nu,
there exists pn, 1q-separated sets Gi Ă K X σ´nK satisfying properties (a), (b), (c)
and (d) of Lemma 4.2.

Denote by apxq the word defined concatenating the first pn ` 1q´coordinates

of x P Σ. Given x̂ “ px1, x2, . . . , xMN q P p
śN
i“1 GiqM , we define an admissible

word w0px̂q “ apx1qr1apx2qr2 . . .apx
MN qrMNapx1q, where rks are words chosen so

that w0px̂q is an admissible word and `prkq ď L (note that this is possible since
papxiqq0 and papxiqqn are in t1, . . . ,mu by definition of Gi). The word w0px̂q defines
a periodic point in Σ that we denote by wpx̂q. We have that

wpx̂q “ apx1qr1apx2qr2 . . .apxMN qrMN.

Let G :“
ś

Mě1p
śN
i“1 GiqM . Following the same procedure of concatenation

described above, for every x̂ P G we define a point wpx̂q P Σ. Define

Ψ “
ď

x̂PG
Opwpx̂qq,

where Opwpx̂qq is the orbit of wpx̂q and define Ψ0 to be the topological closure of
Ψ.

Note that the space Ψ0 is a compact σ-invariant subset of Σ. By definition the
set Ψ is closed and invariant. Observe that the number of symbols appearing in
elements belonging to Ψ is finite: there are finitely many admissible words apxiq
(recall that each Gi is a finite set) and we could use finitely many connecting words
ri. Therefore there exists J P N such that Ψ Ă t1, . . . , JuN. Thus, Ψ0 is a closed
subset of a compact set.

By property (d) of Lemma 4.2, and assuming that n1, which also depends on A,
W and L, is sufficiently large,

Ψ Ă

"

x P Σ :

ˇ

ˇ

ˇ

ˇ

1

n
Snfjpxq ´

ż

fjdµ

ˇ

ˇ

ˇ

ˇ

ď ε,@j P t1, . . . , `u

*

. (4.1)

Since the set in right hand side of (4.1) is closed, the same inclusion holds if Ψ is
replaced by Ψ0. Also, since Ψ0 is σ-invariant we have

Ψ0 Ă

"

x P Σ :

ˇ

ˇ

ˇ

ˇ

1

n
Snfjpσ

sxq ´

ż

fjdµ

ˇ

ˇ

ˇ

ˇ

ď ε,@j P t1, . . . , `u and s ě 0

*

Ă

"

x P Σ :

ˇ

ˇ

ˇ

ˇ

1

nk
Snkfjpxq ´

ż

fjdµ

ˇ

ˇ

ˇ

ˇ

ď ε,@j P t1, . . . , `u and k P N
*

.

This implies that every ergodic measure supported in Ψ0 belongs to V pf1, . . . , fl, µ, εq.
Indeed, consider a generic point for the ergodic measure and use the inclusion above.
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By construction, if x, y P
´

śN
i“1 Gi

¯M

and x ‰ y, then

dNMpn`1`Lqpwpxq, wpyqq “ 1.

In other words Ψ0 contains a pNMpn ` 1 ` Lq, 1q-separated set of cardinality at
least

exp

˜

nNM

˜

1

N

N
ÿ

k“1

hµkpσq ´
η

2

¸¸

.

Here we used property (c) of Lemma 4.2 for our sets Gi. It follows from Lemma 3.7
that

htoppΨ0q ě lim sup
MÑ8

nNMphµpσq ´
η
2 q

NMpn` 1` Lq
“
nphµpσq ´

η
2 q

pn` 1` Lq
ą hµpσq ´ η.

Finally, let µe be an ergodic measure supported in Ψ0 with entropy at least
hµpσq´η (which exists by the standard variational principle in the compact setting),
since we already proved that µe P V pf1, . . . , fl, µ, εq this finishes the proof. �

5. Main entropy inequality

This section is devoted to the proof of the main entropy inequality. This is stated
in Theorem 5.1 and relates the entropy of a sequence of ergodic measures with the
amount of mass lost and the topological entropy at infinity.

Recall that, as explained in (3.3), to every sequence of natural numbers paiqi we
assign a compact set K “ Kppaiqiq Ă Σ. The definition of K implies that if x P Kc,
then xi ą ai, for some i P N0. For x P Kc we define i : Kc Ñ N0 by

ipxq :“ min tn P N0 : xn ą anu . (5.1)

For n P N we define

TnpKq :“ Ka0 X σ
´1Kc X ¨ ¨ ¨ X σ´nKc X σ´pn`1qKa0 , (5.2)

where Ka0 “
Ťa0
i“1ris (as defined in (3.2)). Let

pTnpKq :“
 

x P TnpKq : ipσkpxqq ď n´ k, for every k P t1, . . . , nu
(

. (5.3)

Let ẑnpKq be the minimal number of cylinders of length pn ` 2q needed to cover
pTnpKq and define

δ̂8pKq :“ lim sup
nÑ8

1

n
log ẑnpKq. (5.4)

The reason why we define δ̂8pKq covering the sets pTnpKq, and not TnpKq, is to

ensure Lemma 6.2. This allows us to relate δ̂8pKq with the topological entropy at
infinity of pΣ, σq.

Our next result is fundamental in this paper.

Theorem 5.1. Let pΣ, σq be a finite entropy CMS. Let pµnqn be a sequence of
ergodic probability measures converging on cylinders to an invariant measure µ.
Let paiqi be an increasing sequence of natural numbers such that the corresponding
compact set K “ Kppaiqiq satisfies that µnpKq ą 0, for all n P N. Then

lim sup
nÑ8

hµnpσq ď |µ|hµ{|µ|pσq ` p1´ µpY qqδ̂8pKq,

where Y “
Ť8

s“0 σ
´sK.
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The proof of this theorem requires some propositions and lemmas, which we will
prove first before completing the proof of the theorem at the end of this section.

The fact that K Ă σpKq, which follows since paiqi is an increasing sequence, will
be used several times here. Let Ak :“ tx P K : RKpxq “ ku, where RKpxq is the
first return time function to the set K (see Definition 2.9). For x P Y we define the
following:

n1pxq :“ min tn P N0 : there exists y P K such that σnpyq “ xu ,

n2pxq :“ min tn P N0 : σnx P Ku .

We emphasise that the function n1pxq is well defined. Indeed, observe that if
x P Y then σn2pxqx P K. Let r P N be such that r ą n2pxq ´ 1. Since the
sequence paiqi is increasing we have that ar ě max tai : i P t0, . . . , n2pxq ´ 1uu.
Since x P σrpKq “

ś8

k“rt1, . . . , aku X Σ we have that n1pxq is finite for every
x P Y . Let

npxq :“

#

n1pxq ` n2pxq if x P Y,

8 if x P ΣzY.

For n P N0 Y t8u define

Cn :“ tx P Σ : npxq “ nu.

Note that C0 “ K and C1 “ H. For n ě 2 observe that x P Cn if it belongs
to the orbit of a point in An. More precisely, for every n ě 2 we have that
Cn Ă

Ťn´1
k“1 σ

kpAnq. We define the following sets,

αďN :“

˜

N
ď

n“2

Cn

¸

, αN,M :“

˜

M
ď

nąN

Cn

¸

and αąM :“

˜

ď

nąM

Cn

¸

Y C8.

Remark 5.2. The set αďM can be covered with finitely many cylinders of length L.
Indeed, observe that for every n ě 2 we have

Cn Ă
n´1
ď

s“1

σspAnq Ă
n´1
ď

s“1

σspKq Ă σn´1pKq.

Therefore,

αďM “

M
ď

n“2

Cn Ă σM´1pKq “
8
ź

s“M´1

t1, . . . , asu X Σ.

Since the set
ś8

s“M´1t1, . . . , asu X Σ can be covered with at most
śM´2`L
s“M´1 as

cylinders of length L, the same holds for αďM .

Observe that it follows directly from the definition of δ̂8pKq (see (5.4)) that for
every ε ą 0, there exists N0 “ N0pεq P N such that for every n ě N0 we have

ẑnpKq ď enpδ̂8pKq`εq.

At this point we fix ε ą 0 and k,N P N large enough so that kN ě N0pεq: these
will appear explicitly in the proof of Theorem 5.1.

Given A Ă Σ and t P N we define

UtpAq :“
 

x P Σ : dpx,Aq ď 2´t
(

.
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Now let

Kpk,Nq :“ UkN`2pKq,

γďN :“ Upk`1qN`2pαďN qzKpk,Nq,

Gk,N :“ Kpk,Nq Y γďN ,

and

γN,kN :“ U2pk`1qN`2pαN,kN qzGk,N ,

γąkN :“ ΣzpGk,N Y γN,kN q,

Bk,N :“ γN,kN Y γąkN .

Denote by Q1pk,Nq the minimal cover of Kpk,Nq with cylinders of length kN ` 2.
Similarly, denote by Q12pk,Nq the minimal cover of αďN with cylinders of length
pk ` 1qN ` 2. Observe that every element in Q12pk,Nq is disjoint or contained in
an element of Q1pk,Nq. In particular γďN is a finite union of cylinders of length
pk ` 1qN ` 2; this collection of cylinders is denoted by Q2pk,Nq. Define

β1k,N :“ Q1pk,Nq YQ2pk,Nq (5.5)

and observe that β1k,N is a partition of the set Gk,N . Define the following partition
of Σ,

βk,N :“ tγąkN , γN,kNu Y β
1
k,N . (5.6)

Recall that the refinement βnk,N follows as in Section 2.3.

Notation: We use the following notation for an interval of integers ra, bq :“ tn P
N : a ď n ă bu and |ra, bq| “ b´ a.

Definition 5.3. Let Q P βnk,N be such that pQ Y σn´1Qq Ă Gk,N . An interval

rr, sq Ă r0, nq is called an excursion of Q into γąkN (resp. Bk,N ) if σtQ Ă γąkN
(resp. σtQ Ă Bk,N ) for every t P rr, sq and pσr´1QY σsQq Ă Gk,N .

An excursion rr, sq of Q into Bk,N is said to enter γąkN if there exists i P rr, sq
such that σiQ Ă γąkN .

The next three lemmas are preparation for the proof of Proposition 5.8. These
give us control on the return times to Kpk,Nq and the length of excursions into
Bk,N

Lemma 5.4. If rr, r` sq is an excursion of Q into Bk,N that does not enter γąkN
then s ă kN .

Proof. Since the excursion does not enter γąkN we have that σrQ Ă γN,kN . Fix
x P σrQ. By the definition of γN,kN there exists x0 P αN,kN such that dpx, x0q ď

2´p2pk`1qN`2q. Since x0 P αN,kN we have that npx0q ď kN and therefore n2px0q ă

kN . In particular σtpx0q P αďN , for some t P r0, kNq. Observe that

dpσtpxq, σtpx0qq ď 2´p2pk`1qN`2q`t ď 2´ppk`1qN`2q.

This readily implies that σtpxq P Upk`1qN`2pαďN q Ă Gk,N . We conclude that

σr`tQ Ă Gk,N , and therefore s ă kN . �

Lemma 5.5. If Q Ă Gk,N then there exists t P r0, Nq such that σtQ Ă Kpk,Nq.
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Proof. If Q Ă Kpk,Nq there is nothing to prove. Assume that Q Ă γďN . Let
x P Q and y P αďN such that dpx, yq ď 2´ppk`1qN`2q. Since y P αďN we have that
σtpyq P K, for some t ă N . Observe that

dpσtpxq, σtpyqq ď 2´ppk`1qN`2q2t ă 2´pkN`2q.

We conclude that there exists t P r0, Nq such that σtpxq P UkN`2pKq “ Kpk,Nq.
This implies that for some t ă N we have σtQ Ă Kpk,Nq. �

Lemma 5.6. If rr, r ` sq is an excursion of Q into γąkN such that s ě N then
σr´1Q Ă Kpk,Nq.

Proof. From the definition of an excursion, the set Q0 :“ σr´1Q must lie in Gk,N ,
so to derive a contradiction we will assume that Q0 Ă γďN . Let x P Q0. By the
construction of γďN there exists y P αďN such that dpx, yq ď 2´ppk`1qN`2q. Since
y P αďN there exists t ď N such that σtpyq P K. Therefore

dpσtpxq, σtpyqq ď 2´ppk`1qN`2q`t ď 2´pkN`2q.

We conclude that σtpxq P UkN`2pKq “ Kpk,Nq. This contradicts the fact the
length of the excursion is larger than N . �

Definition 5.7. Denote by mn,k,N pQq the number of excursions of length greater
or equal to kN into Bk,N that enter γąkN and let

En,k,N :“ #
 

i P r0, nq : σiQ Ă Bk,N
(

.

The following result shows that an atom Q P βnk,N such that Q Ă Kpk,Nq X

σ´pn´1qKpk,Nq can be covered by cylinders of length n in a controlled way. This is
an estimate closely related to [EKP, Lemma 7.4] (see also [Vel1, Proposition 4.5]).

The constant δ̂8pKq naturally appears when we try to control the time spent in
the ‘bad’ part Bk,N .

Proposition 5.8. Let βk,N be the partition defined in (5.6). Then an atom Q P

βnk,N such that Q Ă Kpk,Nq X σ´pn´1qKpk,Nq, can be covered by at most

eEn,k,N pQqpδ̂8pKq`εqemn,k,N pQqNpδ̂8pKq`εq

cylinders of length n.

Proof. To simplify notation we drop the sub-indices N and k. The proof of Propo-
sition 5.8 is by induction on n. First decompose r0, n´ 1s into

r0, n´ 1s “W1 Y V1 YW2 Y ¨ ¨ ¨ Y Vs YWs`1,

according to the excursions into Bk,N that contain at least one excursion into
γąkN . More precisely, let Vi “ rmi,mi`hiq and Wi “ rli, li`Liq with li`Li “ mi

and mi ` hi “ li`1. The segment Vi denotes an excursion into Bk,N that con-

tains an excursion into γąkN . Given i P N define Ji :“
ři
j“1 |Vj |1rkN,8qp|Vj |q,

where 1rkN,8q is the characteristic function of the interval rkN,8q. Similarly de-

fine Hi :“
ři
j“1 1rkN,8qp|Vj |q. Observe that Q Ă Kpk,Nq implies that Q is already

contained in a cylinder of length kN ` 2.

Step 1: Assume that Q has been covered with ci cylinders of length li, where

ci ď eJipδ̂8pKq`εqeNHipδ̂8pKq`εq.
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(As mentioned above, the set Q is covered by one cylinder of length 1, there-
fore take c1 “ 1.) We claim that the same number of cylinders of length pli ` Liq
cover Q. Observe that by hypothesis σliQ is contained in an element of β1, there-
fore diampσliQq ď 2´pkN`2q. Since the elements of β1 all have diameter smaller
than 2´pkN`2q, the same holds if Q spends some extra time in β1. By Lemma
5.4, if Q has an excursion into Bk,N that does not enter γąkN , then it must
come back to β1 before kN iterates. In particular if the excursion into Bk,N is

rpi, pi ` qiq, then qi ă kN . Observe that diampσpi´1Qq ď 2´pkN`2q, implies
that diampσpi`tQq ď 2´2, for every t P r0, kNq. In particular the same holds
for t P r0, qis. Repeating this process we conclude that diampσtQq ď 2´2, for every
t P rli, li ` Liq. This immediately implies that σliQ is contained in a cylinder of
length Li, which implies our claim. We go next to Step 2.

Step 2: Assume we have covered Q with ci cylinders of length mi, where

ci ď eJipδ̂8pKq`εqeNHipδ̂8pKq`εq.

We want to estimate the number of cylinders of length pmi ` hiq needed to cover
Q. Define Qi :“ σmi´1Q. If we are able to cover Qi with R cylinders of length
phi`1q, then we will be able to cover Q with Rci cylinders of length pmi`hiq. We
will separate into two cases:
Case 1 : hi ă kN .
Observe that Qi Ă Gk,N and is therefore contained in an element of β1, which

implies diampQiq ď 2´pkN`2q. This implies that Qi is contained in a cylinder of
length pkN ` 2q. Since hi ă kN , this implies that Qi can be covered with one
cylinder of length phi ` 1q. We conclude that

ci`1 “ ci ď eJipδ̂8pKq`εqeNHipδ̂8pKq`εq “ eJi`1pδ̂8pKq`εqeNHi`1pδ̂8pKq`εq.

Case 2 : hi ě kN .
By Lemma 5.6, Qi “ σmi´1Q Ă Kpk,Nq. Observe that by assumption σhi`1Qi Ă
γďN . By Lemma 5.5 there exists 0 ď ti ă N, such that σhi`1`tiQi Ă Kpk,Nq (we
assume ti is the smallest such number). We conclude that every x P Qi satisfies
x P Ka0 , σhi`1`tipxq P Ka0 , and σsx P Kc, for every s P t1, . . . , hi ` tiu. In other

words Qi Ă Thi`tipKq. We now claim that Qi Ă pThi`tipKq. Observe that if x P Qi,
then σhi`ti`1pxq P Kpk,Nq, and σkpxq P Kpk,Nqc, for every k P t1, . . . , hi ` tiu.
We argue by contradiction and suppose that ipσkpxqq ą phi ` tiq ´ k for some
k P t1, . . . , hi ` tiu. This implies that pσkpxqqj ď aj , for j P t0, . . . , hi ` ti ´ ku.
Observe that pσkpxqqhi`ti´k`j`1 “ pσhi`ti`1pxqqj , and for j P t0, . . . , kN ` 1u
we have pσhi`ti`1pxqqj ď aj . We conclude that pσkpxqqhi`ti´k`j`1 ď aj , for
j P t0, . . . , kNu. In particular we have that pσkpxqqj ď aj , for every j P t0, . . . , kN`
1u, which contradicts that σkpxq P Kpk,Nqc, completing the proof of our claim.

This implies, from the definition of δ̂8pKq, that Qi can be covered by at most

ephi`tiqpδ̂8pKq`εq cylinders of length phi ` 1` tiq; and by at most ephi`Nqpδ̂8pKq`εq

cylinders of length phi ` 1q. We conclude that Q can be covered by at most ci`1

cylinders of length pni ` hiq, where

ci`1 ďe
phi`Nqpδ̂8pKq`εqpeJipδ̂8pKq`εqeNHipδ̂8pKq`εqq

“ eJi`1pδ̂8pKq`εqeNHi`1pδ̂8pKq`εq.
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Adding these steps together and noting that Js “ En,k,N pQq and Hs “ mn,k,N pQq
completes the proof of the proposition. �

The idea now is to use Proposition 5.8 to compare the entropy of a measure
with the corresponding entropy of our partition βk,N . This is a natural idea: the
map µ ÞÑ hµpβk,N q is typically better behaved under sequences of measures; at this
point we crucially use that the partition βk,N is finite.

Proposition 5.9. Let βk,N be the partition defined in (5.6) and µ an ergodic σ-
invariant probability measure satisfying µpKpk,Nqq ą 0. Then

hµpσq ď hµpβk,N q `

ˆ

µpBk,N q `
1

k

˙

pδ̂8pKq ` εq.

Proof. To simplify notation we denote the partition βk,N by β. We will apply
Theorem 3.2, so the main task is to estimate Nµpn, 1, δq for some δ P p0, 1q. Since
µ is an ergodic measure such that µpKpk,Nqq ą 0 there exists δ1 ą 0 and an
increasing sequence pniqi satisfying

µpKpk,Nq X σ´niKpk,Nqq ą δ1,

for every i P N. Given ε1 ą 0, by the Shannon-McMillan-Breiman theorem the set

Dε1,N “ tx P X : @n ě N,µpβnpxqq ě expp´nphµpβq ` ε1qqu ,

satisfies

lim
NÑ8

µ pDε1,N q “ 1.

By Birkhoff’s Ergodic Theorem there exists a set Wε1 Ă Σ satisfying µpWε1q ą

1´ δ1
4 and npε1q P N such that for every x PWε1 and n ě npε1q,

1

n

n´1
ÿ

i“0

1Bk,N pσ
nxq ă µpBk,N q ` ε1.

Define

Xi :“Wε1 XDε1,ni XKpk,Nq X σ´niKpk,Nq.
So for sufficiently large values of i P N, by construction we have that µpXiq ą

δ1
2 .

In what follows we will assume that i P N is large enough that it satisfies this
condition.

By definition of Dε1,ni the set Xi can be covered by exppniphµpβq ` ε1qq many
elements of βni . We will make use of Proposition 5.8 to efficiently cover each of
those atoms by cylinders. Let Q P βni be an atom intersecting Xi. In particular
Q P K X σ´pn´1qK. It follows from the definition of Wε1 that

Eni,k,N pQq ă pµpBk,N q ` ε1qni.

Moreover,

mni,k,N pQq ď
1

kN
ni.

Indeed, each of the excursions counted in mni,k,N has length at least kN , which
implies that the number of excursions can not be larger than 1

kN ni. Therefore
Proposition 5.8 implies that

Nµ

ˆ

ni, 1, 1´
δ1
2

˙

ď eniphµpβq`ε1qenipδ̂8pKq`εqpµpBk,N q`ε1qe
1
kN niNpδ̂8pKq`εq.
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It now follows from Katok’s entropy formula (see Theorem 3.2) that

hµpσq ď hµpβk,N q ` ε1 ` pδ̂8pKq ` εqpµpBk,N q ` ε1q `
1

k
pδ̂8pKq ` εq.

Since ε1 ą 0 was arbitrary the proof is complete. �

As in Proposition 5.9 we denote the partition βk,N by β. We may assume,
possibly after refining the partition, that

β “ tC1, . . . , Cq, Ru,

where each Ci is a cylinder for the original partition and R “ γąkN is the comple-
ment of a finite collection of cylinders. For simplicity we still denote this partition
by β. We emphasise that Proposition 5.9 still holds for this new partition.

Define, for large m, Fm :“
Şm´1
i“0 σ´iR. We will require the following continuity

result.

Proposition 5.10. Suppose that pµnqn is a sequence of ergodic probability measures
converging on cylinders to an invariant measure µ, where µpΣq ą 0. For every
P P βmztFmu, we have

lim
nÑ8

µnpP q “ µpP q.

Proof. In order to prove the proposition we will need the following fact.

Claim 1. Let pHiqi be a collection of cylinders and ppiqi a sequence of natural
numbers. Then H0Xσ

´p1H1X¨ ¨ ¨Xσ
´pkHk, is either a finite collection of cylinders,

or the empty set.

Proof. We begin with the case k “ 2, in other words, we will prove that if C and
D are cylinders, then for every p P N the set C X σ´pD is a finite collection of
cylinders or the empty set. If the length of C is larger than or equal to p then
C X σ´pD is empty or a cylinder. If p is larger than the length of C, then we use
that there are only finitely many admissible words of given length connecting two
fixed symbols. More precisely, if C “ rx0, . . . , xh´1s and D “ ry0, . . . , yt´1s, then
there are finitely many admissible words of length p ´ h ` 2 connecting xh´1 and
y0. We conclude that C X σ´pD is a finite collection of cylinder or the empty set.
The same argument gives us the proof of the claim for arbitrary k. �

Let P “ S0Xσ
´1S1X¨ ¨ ¨Xσ

´pm´1qSm´1, where Si P β and Pk :“
Şm´1
i“k σ´pi´kqSi.

Define B “ BpP q :“ ti P t0, . . . ,m´ 1u : Si “ Ru, G “ GpP q :“ t0, . . . ,m´ 1uzB,
and k “ kpP q :“ pminGq ´ 1. By assumption we know that G ‰ H. Let

Q0 “ Q0pP q :“
Ťk
i“0 σ

´iR, Q1 “ Q1pP q :“
Ş

iPG σ
´iSi, and Q2 “ Q2pP q :“

Ş

iPBXpk,8q σ
´iSi. We will first consider the case k “ ´1, where Q0 “ H.

Claim 2. Let P “
Şm´1
i“0 σ´iSi, where S0 P tC

1, . . . , Cqu. Then

lim
nÑ8

µnpP q “ µpP q.

Proof. Since Q1 is the disjoint union of P “ pQ1 X Q2q and pQ1 X Qc2q, for every
n P N we obtain that

µnpP q “ µnpQ1q ´ µnpQ1 XQ
c
2q.
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Observe that

Q1 XQ
c
2 “

˜

č

jPG

σ´jSj

¸

X

˜

ď

iPB

σ´iRc

¸

“
ď

iPB

˜

σ´iRc X
č

jPG

σ´jSj

¸

.

From Claim 1 we conclude that for every i P B the setsQ1 and pσ´iRcX
Ş

jPG σ
´jSjq

are a finite union of cylinders or the empty set. Therefore, Q1 and Q1 XQc2 are a
finite union of cylinders, or the empty set. From this we immediately obtain that

lim
nÑ8

µnpP q “ lim
nÑ8

µnpQ1q ´ lim
nÑ8

µnpQ1 XQ
c
2q “ µpQ1q ´ µpQ1 XQ

c
2q “ µpP q,

which proves the claim. �

We now explain how to reduce the case k ě 0 to Claim 2. Observe that P “ RX
σ´1P1, therefore σ´1P1 is the disjoint union between P and S1 :“ pRcX σ´1P1q “
Ťq
i“1pC

i X σ´1P1q. Thus,

µnpP q “ µnpσ
´1P1q ´ µnpR

c X σ´1P1q “ µnpP1q ´

q
ÿ

i“1

µnpC
i X σ´1P1q.

By Claim 2 we know that limnÑ8 µnpC
i X σ´1P1q “ µpCi X σ´1P1q. Therefore

it suffices to prove that limnÑ8 µnpP1q “ µpP1q. Applying the above argument k
times we obtain that the original problem is reduced to limnÑ8 µnpPk`1q “ µpPk`1q

Since Pk`1 “ Sk`1 X σ´1Pk`2, where Sk`1 P tC
1, . . . , Cqu, we conclude the proof

of the proposition by applying Claim 2. �

Proof of Theorem 5.1. We first consider the case in which not all the mass escapes,
that is, we assume that µpΣq ą 0. Let ε0 ą 0. Choose m P N sufficiently large such
that

h µ
|µ|
pσq ` ε0 ą

1

m
H µ
|µ|
pβmq , 2

e´1

m
ă
ε0

2
and ´

ˆ

1

m

˙

log |µ| ă ε0.

Then

h µ
|µ|
pσq ` ε0 ą

1

|µ|

1

m

˜

log |µ| ´
ÿ

PPβm

µpP q logµpP q

¸

and hence

|µ|h µ
|µ|
pσq ` 2ε0 ą ´

1

m

ÿ

PPβm

µpP q logµpP q.

It follows from Proposition 5.10 that

lim
nÑ8

ÿ

QPβmztFmu

µnpQq logµnpQq “
ÿ

QPβmztFmu

µpQq logµpQq.

For sufficiently large n P N we have the inequality

|µ|h µ
|µ|
pσq ` 3ε0 ě

1

m
Hµnpβ

mq.

By Proposition 5.9, we have that

|µ|h µ
|µ|
pσq ` 3ε0 ě

1

m
Hµnpβ

mq ě hµnpσ, βq

ěhµnpσq ´ pδ̂8pKq ` εqµnpBk,N q ´
1

k
pδ̂8pKq ` εq.
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Since ε0 ą 0 is arbitrary we get

lim sup
nÑ8

hµnpσq ď |µ|h µ
|µ|
pσq ` pδ̂8pKq ` εqp1´ µpGk,N qq `

1

k
pδ̂8pKq ` εq. (5.7)

We stress that Proposition 5.9 can be applied for arbitrary k,N P N since K Ă

supppµnq and therefore µnpKpk,Nqq ą 0. Finally, letting k Ñ 8 and ε Ñ 0 we
obtain the inequality

lim sup
nÑ8

hµnpσq ď |µ|hµ{|µ|pσq `

˜

1´ sup
k,N

µpGk,N q

¸

δ̂8pKq.

Observe that Y Ă
Ť

k,N Gk,N , therefore µpY q ď µ
´

Ť

k,N Gk,N

¯

“ supk,N µpGk,N q.

We conclude that

lim sup
nÑ8

hµnpσq ď |µ|hµ{|µ|pσq ` p1´ µpY qqδ̂8pKq.

The case µpΣq “ 0 follows directly from Proposition 5.9 since hµnpσ, βq Ñ 0 and
µnpBk,N q Ñ 1 as nÑ8. �

6. Proof of Theorem 1.1

In this section we prove our main result. We start with a simple result we will
need later.

Lemma 6.1. Let pajqj and pbjqj be sequences of natural numbers such that for

every i P N0 we have a0 “ b0 and aj ď bj. Then δ̂8pKppbjqjqq ď δ̂8pKppajqjqq.

Proof. Denote by K1 :“ Kppajqjq and K2 :“ Kppbjqjq. Recall that associated
to each compact set defined in this way there is a function i (see (5.1) for the
definition). Denote the function i associated to K1 (resp. K2) by i1 (resp. i2). It
follows from the hypothesis that K1 Ă K2. In particular we have that Kc

2 Ă Kc
1

and therefore TnpK2q Ă TnpK1q (see (5.2) for the definition of T ). Moreover, we
have that

pTnpK2q Ă pTnpK1q,

(see (5.3) for the definition of pT ). Indeed, let x P pTnpK2q, we have that i2pσ
kpxqq ď

n´ k. In particular

pσkpxqqi2pσkpxqq ą bi2pσkpxqq ě ai2pσkpxqq.

We conclude that i1pσ
kpxqq ď i2pσ

kpxqq ď n ´ k, and therefore x P pTnpK1q. Thus
pTnpK2q Ă pTnpK1q, which readily implies that for every n P N we have ẑnpK2q ď

ẑnpK1q. �

In the next lemma we establish a relation between the quantities δ̂8pKq and
δ8pqq, which in turn is necessary to relate Theorem 5.1 with Theorem 1.1. As

mentioned before, in the definition of δ̂8pKq we covered the sets pTnpKq (and not
TnpKq which may seem more natural) in order to ensure this result.

Lemma 6.2. Let pΣ, σq be a CMS satisfying the F´property, and M, q P N. Then
there exists a sequence of natural numbers paiqi such that a0 “ q, and

δ̂8pKq ď δ8pM, qq,

where K “ Kppaiqiq
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Proof. Let i P N. Since Σ satisfies the F´property, there are finitely many cylinders
of the form rx0, . . . , xns, where x0 ď q, xn ď q, and n ď iM . Thus, only a finite
collection of symbols from the alphabet are used in this collection of cylinders.
Denote by ri P N the largest of this collection of symbols. Inductively define
paiqi Ă N so that:

ai`1 ą ai and ai ą ri.

We now prove that the set K “ Kppaiqiq is such that ẑnpKq ď δ8pM, qqpnq, for
every n P N. Recall that ẑnpKq is the minimal number of cylinders of length pn`2q

needed to cover pTn. Let x “ px0, x1, . . . q P pTn,

E :“ tk P t0, . . . , n` 1u : xk ď a0u ,

and B :“ t0, . . . , n` 1uzE. For k P E we define pk :“ ipσkpxqq. We emphasise that
since k P E then xk ď a0, thus pk “ ipσkpxqq ě 1. Let r P E and observe that
xpr`r “ pσ

rpxqqpr ą apr , where pr ď n´r. Because of the choice of apr , there is no
admissible word of length less or equal to prM connecting xpr`r and a symbol in the
set t0, 1 . . . , qu. Since xn`1 ď q, this means that we must have pr`r`pprMq ď n`1.
Moreover, for every 0 ď m ă prM we have that pr ` r `m P B. In other words,
the interval rr, r` pr` prMq has at least prM elements in B, equivalently, at most
pr elements in E. Since this argument holds for every r P E we conclude that
M#E ď n` 2 and therefore

#E ď
n` 2

M
. (6.1)

From (6.1) it follows that every x P pTn belongs to a cylinder of the form rx0, . . . , xn`1s,
where x0 ď q, xn`1 ď q and

#ti P t0, 1, . . . , n` 1u : xi ď qu ď
n` 2

M
.

This implies that ẑnpKq ď znpM, qq, for every n P N. Therefore δ̂8pKq ď δ8pM, qq.
�

Define δ̂8pqq :“ infpaiqi:a0“q δ̂8pKppaiqiq.

Corollary 6.3. For every q P N we have δ̂8pqq ď δ8pqq.

Proof. Combine Lemma 6.1 with Lemma 6.2. �

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let paiqi be a sequence of non-negative integers and K :“
Kppaiqiq the corresponding compact set. We assume K large enough so that there
exists a periodic measure µp with µppKq ą 0. We will prove that

lim sup
nÑ8

hµnpσq ď |µ|hµ{|µ|pσq ` p1´ µpKqqδ̂8pKq. (6.2)

Let µ1n :“ p1 ´ 1
n qµn `

1
nµp. Observe that for every n P N we have µ1npKq ą 0.

It follows from Proposition 4.1 that there exists an ergodic measure νn arbitrarily
close in the weak˚ topology to µ1n such that hνnpσq ą hµ1npσq ´

1
n . In particular,

we can assume that νnpKpn, nqq ą 0 and that pνnqn converges on cylinders to µ.
Let k,N P N. If n ą maxtk,Nu thenKpn, nq Ă Kpk,Nq, therefore νnpKpk,Nqq ą

0. It now follows from (5.7) that

lim sup
nÑ8

hνnpσq ď |µ|h µ
|µ|
pσq ` pδ̂8pKq ` εqp1´ µpGk,N qq `

1

k
pδ̂8pKq ` εq.
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Letting k tend to infinity and ε to zero we obtain

lim sup
nÑ8

hνnpσq ď |µ|h µ
|µ|
pσq ` p1´ µpKqqδ̂8pKq.

Since hνnpσq ą hµ1npσq ´
1
n “ p1´

1
n qhµn ´

1
n , then

lim sup
nÑ8

hµnpσq ď lim sup
nÑ8

hνnpσq,

from which (6.2) follows.
The argument above also holds for every set K 1 “ Kppbiqiq, where a0 “ b0 and

ai ď bi. Observe that suppbiqi:b0“a0 µpKppbiqiqq “ µpKa0q. Thus, it is a consequence
of Corollary 6.3 that

lim sup
nÑ8

hµnpσq ď |µ|hµ{|µ|pσq ` p1´ µpKa0qqδ̂8pa0q

ď |µ|hµ{|µ|pσq ` p1´ µpKa0qqδ8pa0q.

Letting a0 tend to infinity concludes the proof of Theorem 1.1. �

7. Variational principle for the entropies at infinity

In this section we prove Theorem 1.4. That is, we prove a variational principle
at infinity: the measure theoretic entropy at infinity coincides with its topological
counterpart.

For each pair pi, jq P N2 choose a non-empty cylinder wpi, jq of length `pi, jq ` 1
such that

wpi, jq :“ ri, . . . , js “ rpwpi, jq0, . . . , wpi, jq`pi,jqs.

Let ϕ : Σ Ñ R be a potential and define

Znpϕ, a, bq :“
ÿ

x:σn``pb,aqpxq“x

exp
`

Sn``pb,aqϕpxq
˘

1rasXσ´nwpb,aqpxq.

In the following lemma we show that the Gurevich pressure can be computed by
means of the partition function Znpϕ, a, bq; this will be used in Lemma 7.3.

Lemma 7.1. Let pΣ, σq be a transitive CMS and ϕ : Σ Ñ R a bounded potential
with summable variations. Then for every pair pa, bq P N2 we have that

PGpϕq “ lim sup
nÑ8

1

n
logZnpϕ, a, bq.

Proof. Let C “ }ϕ}0 and D “
ř8

k“2 varkpϕq. It follows from the definition of
Znpϕ, a, bq that

Zn``pb,aqpϕ, aq “
ÿ

x:σn``pb,aqpxq“x

exppSn``pb,aqϕpxqq1raspxq ě Znpϕ, a, bq.

In particular we obtain that

PGpϕq “ lim sup
nÑ8

1

n
logZnpϕ, aq ě lim sup

nÑ8

1

n
logZnpϕ, a, bq.
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Let Pn :“ wpa, bq X σ´nwpb, aq. Note that

Znpϕ, a, bq ě
ÿ

x:σn``pb,aqpxq“x

exp
`

Sn``pb,aqϕpxq
˘

1Pnpxq

ě e´p`pa,bq``pb,aqqC
ÿ

x:σn``pb,aqpxq“x

exp
´

Sn´`pb,aqϕpσ
`pa,bqxq

¯

1Pnpxq.

Observe that if x “ px0, x1, . . . q P Pn, then x`pb,aq “ xn “ b. Define the periodic
point ypxq :“ x`pb,aq . . . xn´1. The function y establishes a one-to-one correspon-

dence between points in x P Pn such that σn``pb,aqpxq “ x, and periodic points of
length n´ `pb, aq in rbs. Moreover, note that if x P Pn, then

ˇ

ˇ

ˇ
Sn´`pb,aq

´

ϕpσ`pa,bqxq
¯

´ Sn´`pb,aq pϕpypxqqq
ˇ

ˇ

ˇ
ď D.

We conclude that
ÿ

x:σn``pb,aqpxq“x

exp
´

Sn´`pb,aqϕpσ
`pa,bqxq

¯

1Pnpxq ě

e´D
ÿ

x:σn´`pb,aqpyq“y

exp
`

Sn´`pb,aqϕpyq
˘

1rbspxq.

That is Znpϕ, a, bq ě e´p`pa,bq``pb,aqqC´DZn´`pb,aqpϕ, bq and therefore

lim sup
nÑ8

1

n
logZnpϕ, a, bq ě PGpϕq.

�

Remark 7.2. Note that in Lemma 7.1 the assumption }ϕ}0 ă 8 is too strong for
what is required: it suffices to assume that for every n P N we have supxPrns |ϕpxq| ă
8.

We say that a point x P Σ belongs to the set Perpq,M, nq if the following
properties hold:

(a) σnpxq “ x.
(b) If x P rx0, . . . , xn´1s, then x0 ď q, and #tk P t0, . . . , n´ 1u : xk ď qu ď n

M .

The following lemma is important in our proof of Theorem 1.4 as it will allow
us to find a sequence of invariant probability measures which converges to the zero
measure and entropies approach the topological entropy at infinity.

Lemma 7.3. Let ϕ : Σ Ñ R be a bounded potential of summable variations such
that

lim
nÑ8

sup
xPrns

|ϕpxq| “ 0.

Then PGpϕq ě δ8.

Proof. For every ε ą 0 there exists N0 “ N0pεq P N such that supxPrns |ϕpxq| ď ε,
for every n ě N0. By Lemma 7.1, for sufficiently large values of n P N, since
Znpa, nqpϕq ď exppnPGpϕq ` εq there exists N 1 “ N 1pN0q P N such that

N 1 exp pnPGpϕq ` εq ě
ÿ

pa,bqPt1,...,N0u2

Znpϕ, a, bq.
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That is,

PGpϕq ě lim sup
nÑ8

1

n
log

ÿ

pa,bqPt1,...,N0u2

Znpϕ, a, bq.

Define

Tnpa, bq :“
ÿ

xPPerpN0,M,n``pb,aqq

exp
`

Sn``pb,aqϕpxq
˘

1rasXσ´nwpb,aqpxq,

and observe that Znpϕ, a, bq ě Tnpa, bq. Recall that x P PerpN0,M, n ` `pb, aqq
implies that

# tk P t0, . . . , n` `pb, aq ´ 1u : xk ď N0u ď
n` `pb, aq

M
.

It follows from the choice of N0 that

Sn``pb,aqϕpxq ě ´pn` `pb, aqqε´
}ϕ}0
M

pn` `pb, aqq.

In particular

Tnpa, bq ě #
 

PerpN0,M, n` `pb, aqq X ras X σ´nwpb, aq
(

e´pn``pb,aqqpε`
}ϕ}0
M q.

Denote by Wnpa, b,N0,Mq the collection of cylinders of the form rx0, . . . , xns, where
x0 “ a, xn “ b, and #tk P t0, . . . , nu : xk ď N0u ď

n`1
2M . In order to esti-

mate the number of these using periodic points, to each cylinder rx0, . . . , xns P
Wnpa, b,N0,Mq we associate the cylinder

D “ ry0, . . . , yn``pb,aqs “ rx0, . . . , xn, pwpb, aqq1, . . . , wpb, aq`pb,aqs.

Observe that y0 “ a, yn``pb,aq “ a, and

#tk P t0, . . . , n` `pb, aqu : yk ď N0u ď
n` 1

2M
` `pb, aq.

For n P N sufficiently large we can assume that n`1
2M ` `pb, aq ď n``pb,aq

M . In partic-
ular the periodic point associated to D belongs to PerpN0,M, n ` `pb, aqq X ras X
σ´nwpb, aq. We conclude that

#Wnpa, b,N0,Mq ď #
 

PerpN0,M, n` `pb, aqq X ras X σ´nwpb, aq
(

.

Observe that
ř

pa,bqPt1,...,N0u2
#Wnpa, b,N0,Mq “ zn´1p2M,N0q, which implies

zn´1p2M,N0q ď
ÿ

pa,bqPt1,...,N0u2

#
 

PerpN0,M, n` `pb, aqq X ras X σ´nwpb, aq
(

.

Hence, writing `N0 :“ maxpa,bqPt1,...,N0u2 `pb, aqq, we obtain that

ÿ

pa,bqPt1,...,N0u2

Znpϕ, a, bq ě
ÿ

pa,bqPt1,...,N0u2

Tnpa, bq ě zn´1p2M,N0qe
´pn``N0

qpε`
}ϕ}0
M q,

and therefore

PGpϕq ě lim sup
nÑ8

1

n
log

ÿ

pa,bqPt1,...,N0u2

Znpϕ, a, bq ě δ8p2M,N0q ´ ε´
}ϕ}0
M

.

Letting M Ñ8 we obtain that P pϕq ě δ8pN0q ´ ε. Choosing N0 sufficiently large
we can make ε arbitrarily small, to conclude that PGpϕq ě δ8. �
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Recall that the measure theoretic entropy at infinity of a transitive CMS of finite
entropy pΣ, σq is defined by

h8 :“ sup
pµnqnÑ0

lim sup
nÑ8

hµnpσq,

where the supremum is taken over all sequences of invariant probability measures
converging on cylinders to the zero measure. An immediate consequence of Theorem
1.1 is the following upper bound for the measure theoretic entropy at infinity of
pΣ, σq:

h8 ď δ8 (7.1)

We will now prove that in fact equality holds. This is equivalent to the sharpness
of the inequality in Theorem 1.1.

Proof of Theorem 1.4. As observed in (7.1), it suffices to prove the inequality δ8 ď
h8. Let ϕ : Σ Ñ R be a bounded, strictly negative locally constant potential
depending only on the first coordinate such that

lim
nÑ8

sup
xPrns

|ϕpxq| “ 0.

By Lemma 7.3, for every t P R we have P ptϕq ě δ8. Now consider a sequence of
measures pµnqn such that

hµnpσq ` n

ż

ϕ dµn ą P pnϕq ´
1

n
.

The existence of such a sequence of invariant probability measures is guaranteed
by the variational principle. Then

hµnpσq ` n

ż

ϕ dµn ą δ8 ´
1

n
.

Since the potential ϕ is strictly negativity and bounded we conclude that the se-
quence pµnqn converges on cylinders to the zero measure. Since hµnpσq ě δ8 ´

1
n ,

lim sup
nÑ8

hµnpσq ě δ8.

In particular, δ8 ď h8. �

8. Applications

In this section we discuss several consequences of Theorem 1.1. Among the
consequences we obtain the upper semi-continuity of the entropy map, the entropy
density of the space of ergodic measures, the stability of the measure of maximal
entropy in the SPR case, existence of equilibrium states for potentials in C0pΣq, a
relationship between the entropy at infinity and the dimension of the set of recurrent
points that escape on average and a bound on the amount of mass that can escape
for measures with large entropy.
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8.1. Upper semi-continuity of the entropy map. Starting in the early 1970s
with the work of Bowen [Bo1] many results describing the continuity properties of
the entropy map have been obtained. More precisely, given a dynamical system
T : X Ñ X, the map µ ÞÑ hµpT q defined on the space MpX,T q endowed with
the weak˚ topology is called entropy map. In general it is not continuous [Wa,
p.184]. However, it was soon realised that that if X is compact and T expansive
then the entropy map is upper-semi continuous [Wa, Theorem 8.2]. This result
has been extended to a wide range of dynamical systems exhibiting weak forms of
expansion or hyperbolicity, but always assuming the compactness of X. Indeed,
there exist examples of expansive maps T defined on non-compact spaces for which
the entropy map is not upper semi-continuous. We discuss some of them in this
section (see Remark 8.2). We recently proved in [ITV, Corollary 1.2] that if pΣ, σq
is a finite entropy transitive CMS then the entropy map is upper semi-continuous
when restricted to ergodic measures. The method of proof used in [ITV] does not
seem to generalise to handle the non-ergodic case. However, the general case can
be obtained directly as a corollary of Theorem 1.1.

Theorem 8.1. Let pΣ, σq be a transitive CMS of finite topological entropy and
pµnqn a sequence of σ-invariant probability measures converging weak˚ to µ. Then

lim sup
nÑ8

hµnpσq ď hµpσq.

That is, the entropy map is upper semicontinuous.

The proof follows immediately from Theorem 1.1, the fact that |µ| “ 1 and
Lemma 2.5.

Remark 8.2. We now describe the situation in the infinite entropy case.

(a) Without the finite entropy assumption, Theorem 8.1 is false, as we demon-
strate here. If pΣ, σq is a a topologically transitive infinite entropy CMS
then there exists a sequence pνnqn and µ in MpΣ, σq such that hµpσq ă 8,
and limnÑ8 hνnpσq “ 8. Let pµnqn be the sequence of invariant probability
measures defined by

µn :“

˜

1´
1

a

hνnpσq

¸

µ`
1

a

hνnpσq
νn.

Notice µn is well defined for large enough n. Then pµnqn converges weak˚

to µ and
hµpσq ă lim

nÑ8
hµnpσq “ 8.

Therefore, the entropy map is not upper semi-continuous at any finite en-
tropy measure.

(b) Examples of sequences of ergodic measures with finite entropy uniformly
bounded above converging weak˚ to an ergodic measure (with finite en-
tropy) in the full-shift on a countable alphabet, for which the entropy map
is not upper-semi continuous can be found in [JMU, p.774] and [ITV, Re-
mark 3.11].

(c) The entropy map is trivially upper semi-continuous at any measure of infi-
nite entropy.

We conclude this subsection with a consequence of Theorem 1.1 and Remark
8.2.
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Proposition 8.3. Let pΣ, σq be a transitive CMS. Then htoppσq is finite if and
only if δ8 is finite.

Proof. We only need to prove that if δ8 is finite, then htoppσq is finite; the other
direction follows directly from the inequality δ8 ď htoppσq.

First assume that pΣ, σq does not satisfy the F´property. It follows directly
from the definition of δ8 that in this situation we have δ8 “ 8. As mentioned
above there is nothing to prove in this case.

Now assume that pΣ, σq satisfies the F´property. In the proof of Theorem 1.1 we
did not use the fact that the topological entropy of pΣ, σq is finite, we only used that
our CMS has the F´property and that δ8 is finite–those follow trivially under the
finite entropy assumption. The F´property is crucially used in Proposition 5.10
and Lemma 6.2. If δ8 is finite, then Theorem 1.1 implies that the entropy map
is upper semi-continuous, which would contradict Remark 8.2 if htoppσq is infinite.
We conclude that the topological entropy of pΣ, σq is finite. �

8.2. Suspension flows. Let pΣ, σq be a transitive, finite entropy CMS and τ :
Σ Ñ R` a potential bounded away from zero. Let

Y :“ tpx, tq P Σˆ R : 0 ď t ď τpxqu ,

with the points px, τpxqq and pσpxq, 0q identified for each x P Σ. The suspension
flow over Σ with roof function τ is the semi-flow Φ “ pϕtqtPRě0

on Y defined by
ϕtpx, sq “ px, s ` tq whenever s ` t P r0, τpxqs. Denote by MpY,Φq the space of
flow invariant probability measures. In this section we prove that in this continuous
time, non-compact setting again the entropy map is upper semi-continuous. This
generalises [ITV, Proposition 5.2] in which upper semi-continuity of the entropy
map was proven for ergodic measures. Let

Mσpτq :“

"

µ PMσ :

ż

τ dµ ă 8

*

. (8.1)

A result by Ambrose and Kakutani [AK] implies that the map M : Mσ Ñ MΦ,
defined by

Mpµq “
pµˆ Lebq|Y
pµˆ LebqpY q

,

where Leb is the one-dimensional Lebesgue measure, is a bijection. The following
result proved in [ITV, Lemma 5.1] describes the relation between weak˚ convergence
in MpY,Φq with that in MpΣ, σq.

Lemma 8.4. Let pνnq, ν P MpY,Φq be flow invariant probability measures such
that

νn “
µn ˆ Leb
ş

τ dµn
and ν “

µˆ Leb
ş

τ dµ

where pµnqn, µ PMpΣ, σq. If the sequence pνnqn converges weak˚ to ν then pµnqn
converges weak˚ to µ and limnÑ8

ş

τ dµn “
ş

τ dµ.

Proposition 8.5. Let pΣ, σq be a transitive CMS of finite topological entropy. Let
τ be a potential bounded away from zero and pY,Φq the suspension flow of pΣ, σq
with roof function τ . Then the entropy map of pY,Φq is upper semi-continuous.

The proof directly follows from Abramov’s formula [Ab], Lemma 8.4 and Theo-
rem 1.1. Because of the similarities between the geodesic flow and the suspension
flow over a Markov shift it is reasonable to expect that, under suitable assumptions
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on the roof function τ , the suspension flow also satisfies an entropy inequality like
Theorem 1.1. This is in fact the case and will be discussed in [Vel2]. The space of
invariant measures for the suspension flow was already investigated and described
in [IV, Section 6].

8.3. Entropy density of ergodic measures. The structure of the space of in-
variant measures for finite entropy (non-compact) CMS was studied in [IV]. In
this non-compact setting it is well known that the space of ergodic measures is still
dense in MpΣ, σq (see [CSc, Section 6]). A natural question is whether the approx-
imation by ergodic measures can be arranged so that the corresponding entropies
also converge. If this is the case we say that the set of ergodic measures is entropy
dense. More precisely,

Definition 8.6. A subset L Ă MpΣ, σq is entropy dense if for every measure
µ PMpΣ, σq there exists a sequence pµnqn in L such that

(a) pµnqn converges to µ in the weak˚ topology.
(b) limnÑ8 hµnpσq “ hµpσq.

Results proving that certain classes of measures are entropy dense have been
obtained for different dynamical systems defined on compact spaces by Katok [Ka],
Orey [Or], Föllmer and Orey [FO], Eizenberg, Kifer and Weiss [EKW] and by
Gorodetski and Pesin [GP] among others. In this section we prove, for the non-
compact setting of finite entropy CMS, that the set of ergodic measures EpΣ, σq is
entropy dense.

Theorem 8.7. Let pΣ, σq be a finite entropy, transitive CMS and µ P MpΣ, σq.
Then there exists a sequence pµnqn of ergodic measures such that pµnqn converges
to µ in the weak˚ topology and limnÑ8 hµnpσq “ hµpσq, i.e., EpΣ, σq is entropy
dense. Moreover, it is possible to choose the sequence so that each µn has compact
support.

The proof of this result directly follows combining Theorem 8.1, where the upper
semi-continuity of the entropy map is proved, and Proposition 4.1, where we proved
a weak form of entropy density of the set of ergodic measures. Note that the entropy
density property of ergodic measures is an important tool in proving large deviations
principles via the orbit-gluing technique (see, for example, [EKW] and [FO]).

8.4. Points that escape on average. In this section we relate the Hausdorff
dimension of the set of recurrent points that escape on average with the entropy at
infinity of pΣ, σq. Recall we have fixed an identification of the alphabet of pΣ, σq
with N.

Definition 8.8. Let pΣ, σq be a CMS, the set of points that escape on average is
defined by

E :“

#

x P Σ : lim
nÑ8

1

n

n´1
ÿ

i“0

1raspσ
ixq “ 0, for every a P N

+

.

We say that x P Σ is a recurrent point if there exists an increasing sequence pnkqk
such that limkÑ8 σ

nkpxq “ x. The set of recurrent points is denoted by R.

A version of the set E has been considered in the context of homogeneous dynam-
ics. Interest in that set stems from work of Dani [D] in the mid 1980s who proved
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that singular matrices are in one-to-one correspondence with certain divergent or-
bits of one parameter diagonal groups on the space of lattices. For example, Ein-
siedler and Kadyrov [EK, Corollary 1.7] computed the Hausdorff dimension of that
set in the setting of SL3pZqzSL3pRq. In the context of unimodular pn`mq´lattices
an upper bound for the Hausdorff dimension of the set of points that escape on aver-
age has been obtained in [KKLM, Theorem 1.1]. More recently, for the Teichmüller
geodesic flow, in [AAEKMU, Theorem 1.8] the authors prove an upper bound for
the Hausdorff dimension of directions in which Teichmüller geodesics escape on av-
erage in a stratum. In all the above mentioned work, either explicitly or not, the
bounds are related to the entropy at infinity of the system. Our next result estab-
lishes an analogous result for CMS. In this case the upper bound is the entropy at
infinity divided by log 2. This latter constant comes from the metric we consider
in the space (see (2.1)) and can be thought of as the Lyapunov exponent of the
system.

Theorem 8.9. Let pΣ, σq be a finite entropy transitive CMS. Then

dimHpE XRq ď δ8
log 2

where dimH denotes the Hausdorff dimension with respect to the metric (2.1).

Before initiating the proof of Theorem 8.9 let us set up some notation. Given
natural numbers a, b, q,m and N we define Sqa,bpN,mq as the collection of cylinders

of the form rx0, ..., xL´1s, where L ě Nm, x0 “ a, xL´1 “ b, and the number of
indices i P t0, ..., L ´ 1u such that xi ď q is exactly N . It will be convenient to
define

Hq
a,bpn,mq :“

ď

Něn

Sqa,bpN,mq.

Finally define

Lb :“ tx P Σ : Dpnkqk strictly increasing such that σnkpxq P rbs,@k P Nu,

and L “
Ť

bPN Lb.

Remark 8.10. Let a, b, q and m be natural numbers. Assume that q ě b. Note that
if x P pE X Lb X rasq, then there exists s0 P N such that

# ti P t0, ..., s´ 1u : xi ď qu ď
s

m
,

for every s ě s0. Moreover, there exists an increasing sequence pnkqk such that
xnk “ b. Define Tkpxq “ #ti P t0, ..., nk ´ 1u : xi ď qu. Since q ě b we get that
Tkpxq ě k. Observe that if nk ě s0, then

mTkpxq “ m#ti P t0, ..., nk ´ 1u : xi ď qu ď nk.

We conclude that

rx0, ..., xnk´1s P S
q
a,bpTkpxq,mq Ă

ď

pěk

Sqa,bpp,mq “ Hq
a,bpk,mq.

This gives us the inclusion

pE X Lb X rasq Ă
ď

CPHqa,bpk,mq

C, (8.2)

for every k P N.



ESCAPE OF ENTROPY FOR COUNTABLE MARKOV SHIFTS 39

Proof of Theorem 8.9. First observe that pE XRq Ă
Ť

bPN pE X Lb X rbsq. In par-
ticular it suffices to prove that dimHpE X Lb X rasq ď δ8{ log 2 , for every pair of
natural numbers a and b. Fix t ą δ8{ log 2. Recall that δ8 “ infm,q δ8pm, qq (see
equation (2.4)). Choose m and q large enough so that t ą δ8pq,mq{ log 2, and that
q ě maxta, bu. Observe that we are now in the same setup as in Remark 8.10.

In order to estimate the Hausdorff dimension of E X Lb X ras we will use the
covering given by (8.2). Thus, it is enough to bound

ř

CPHqa,bpk,mq
diampCqt. First

observe that since q ě maxta, bu, a cylinder C P Hq
a,bpk,mq has length `pCq ě k.

Recall that diampCq ď 2´`pCq “ e´plog 2q`pCq. Therefore, as k P N increases the
diameter of the covering given by (8.2) converges to zero. Now observe that

ÿ

CPHqa,bpk,mq

diampCqt ď
ÿ

CPHqa,bpk,mq

e´tplog 2q`pCq

“
ÿ

lěk

e´tplog 2ql#tC : C P Hq
a,bpk,mq and `pCq “ `u

ď
ÿ

lěk

e´tplog 2qlzl´2pm, qq.

In the last inequality we used that

#tC P Hq
a,bpk,mq and `pCq “ lu ď zl´2pm, qq.

Indeed, if C P Hq
a,bpk,mq and `pCq “ `, then C is a cylinder of the form rx0, ..., x`´1s

where x0 “ a, xl´1 “ b, and

#ti P t0, ..., `´ 1u : xi ď qu “ k ď
`

m
.

Since maxta, bu ď q we conclude that C is one of the cylinders counted in the
definition of z`´2pm, qq (see Definition 1.2).

By the definition of δ8pm, qq the series Zpsq :“
ř8

`“2 e
´s`zl´2pm, qq is convergent

for s ą δ8pm, qq. In particular since t log 2 ą δ8pm, qq we have that Zpt log 2q is
finite. This implies that the tail of Zpt log 2q converges to zero. We conclude that
ř

CPHqa,bpk,mq
diampCqt goes to zero as k Ñ 8. This implies that dimHpE X Lb X

rasq ď t, but t was an arbitrary number larger than δ8{ log 2. �

Remark 8.11. It is proved in [I, Theorem 3.1] that if pΣ, σq is a transitive CMS with
finite topological entropy, then dimHpRq “ htoppσq{ log 2. In particular if pΣ, σq is
SPR, then dimHpE XRq ă dimHpRq.

8.5. Measures of maximal entropy. An invariant measure µ PMpΣ, σq is called
a measure of maximal entropy if hµpσq “ htoppσq. It follows from work by Gurevich
[Gu1, Gu2] that if htoppσq ă 8 then there exists at most one measure of maximal
entropy. Note that a direct consequence of the variational principle (see [Gu2]
or Theorem 2.3) is that there exists a sequence of invariant probability measures
pµnqn such that limnÑ8 hµnpσq “ htoppσq. Moreover, if the sequence has a weak˚

accumulation point µ then it follows from the upper semi-continuity of the entropy
map, see Theorem 8.1, that hµpσq “ htoppσq. Since the space MpΣ, σq is not
compact there are cases in which the sequence pµnqn does not have an accumulation
point. In fact, there exist transitive finite entropy CMS that do not have measures
of maximal entropy (see [R2] for a wealth of explicit examples). Our next result
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follows directly from Theorem 1.1 and Theorem 2.7. Recall that pΣ, σq is SPR if
and only if δ8 ă htoppσq (see Proposition 2.20).

Theorem 8.12. Let pΣ, σq be a SPR CMS and pµnqn a sequence of σ-invariant
probability measures such that

lim
nÑ8

hµnpσq “ htoppσq.

Then the sequence pµnqn converges in the weak˚ topology to the unique measure of
maximal entropy.

Proof. Note that the inequality δ8 ă htoppσq immediately implies that pΣ, σq has
finite topological entropy (see Proposition 8.3). Since Mď1pΣ, σq is compact (see
Theorem 2.7) there exists a subsequence pµnkqk which converges on cylinders to
µ PMď1pΣ, σq. It follows directly from Theorem 1.1 that

htoppσq “ lim sup
kÑ8

hµnk pσq ď |µ|hµ{|µ|pσq ` p1´ |µ|qδ8.

Recall that δ8 ă htoppσq. If |µ| ă 1 then the right hand side of the equation is a
convex combination of numbers, one of which is strictly smaller than htoppσq. Since
this is not possible we have that |µ| “ 1. In particular

htoppσq ď hµpσq.

That is, µ is a measure of maximal entropy. We conclude that pΣ, σq has a measure
of maximal entropy. The same argument holds for every subsequence of pµnqn,
this implies that the entire sequence pµnqn converges in the weak˚ topology to the
unique measure of maximal entropy. �

In fact Theorem 1.1 also gives a complete description of non strongly positive
recurrence, as follows. Some of these results were originally proved in [GS, Theorem
6.3] by different methods.

Theorem 8.13. Let pΣ, σq be a transitive CMS of finite entropy.

(a) Suppose pΣ, σq does not admit a measure of maximal entropy. Let pµnqn be
a sequence of σ-invariant probability measures such that limnÑ8 hµnpσq “
htoppσq. Then pµnqn converges on cylinders to the zero measure and δ8 “
htoppσq.

(b) Suppose that pΣ, σq is positive recurrent, but htoppσq “ δ8. Let pµnqn be
a sequence of σ-invariant probability measures such that limnÑ8 hµnpσq “
htoppσq. Then the accumulation points of pµnqn lie in the set tλµmax : λ P
r0, 1su, where µmax is the measure of maximal entropy. Moreover, every
measure in tλµmax : t P r0, 1su can be realised as such limit.

Proof. Note that part paq directly follows from Theorem 1.1. Indeed, if a se-
quence pµnqn with limnÑ8 hµnpσq “ htoppσq converges in cylinder to a measure
µ P Mď1pΣ, σq different from the zero measure then µ{|µ| would be a measure
of maximal entropy. This argument also gives us the first part of pbq, that is,
the accumulation points of pµnqn lie in tλµmax : λ P r0, 1su. As for the sec-
ond part of pbq, by Theorem 1.4 there exists a sequence pµnqn in MpΣ, σq with
limnÑ8 hµnpσq “ htoppσq such that that pµnqn converges on cylinders to the zero
measure. Since there exist a measure of maximal entropy ν we have that for every
λ P r0, 1s the sequence ρn :“ λν ` p1 ´ λqµn converges on cylinders to λν and
limnÑ8 hρnpσq “ htoppσq. �
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8.6. Existence of equilibrium states. In this section we will always assume
that pΣ, σq is a transitive CMS with finite entropy. In Section 2.4 we described the
thermodynamic formalism developed by Sarig in the setting of CMS and functions
(potentials) of summable variations. It turns out that the same methods can be
extended and thermodynamic formalism can be developed for functions with weaker
regularity assumptions (for example functions satisfying the Walters condition [S4]).
However, these methods can not be extended much further. In this section we
propose an alternative definition of pressure that generalises the Gurevich pressure
to the space of functions C0pΣq (see Definition 2.6). We stress that these functions
are just uniformly continuous. Making use of Theorem 1.1 we can ensure the
existence of equilibrium states.

The following result is a direct consequence of Theorem 1.1 and the continuity
of the map µ ÞÑ

ş

Fdµ, when F P C0pΣq and µ ranges in Mď1pΣ, σq endowed with
the cylinder topology.

Theorem 8.14. Let pΣ, σq be a transitive CMS with finite entropy and F P C0pΣq.
Let pµnqn be a sequence in MpΣ, σq converging on cylinders to λµ, where λ P r0, 1s
and µ PMpΣ, σq. Then

lim sup
nÑ8

ˆ

hµnpσq `

ż

Fdµn

˙

ď λ

ˆ

hµpσq `

ż

Fdµ

˙

` p1´ λqδ8.

For a continuous, bounded potential F define the (variational) pressure of F by

PvarpF q :“ sup
µPMpΣ,σq

ˆ

hµpσq `

ż

Fdµ

˙

.

A measure µ is an equilibrium state for F if PvarpF q “ hµpσq `
ş

Fdµ. Recall that
since F needs not to be of summable variations then the classifications of potentials
(see Definition 2.10) and the uniqueness of equilibrium states (Theorem 2.12) do
not necessarily hold.

Note that if F P C0pΣq, then PvarpF q ě δ8. Indeed, let pµnqn be a sequence
of measures in MpΣ, σq converging on cylinders to the zero measure and such that
limnÑ8 hµnpσq “ δ8. Since F P C0pΣq, then limnÑ8

ş

Fdµn “ 0. We conclude
that

PvarpF q ě lim sup
nÑ8

ˆ

hµnpσq `

ż

Fdµn

˙

“ δ8.

Our next result follows directly from Theorem 8.14 and Theorem 2.7, as Theorem
8.12 follows from Theorem 1.1 and Theorem 2.7.

Theorem 8.15. Let pΣ, σq be a transitive CMS with finite entropy and F P C0pΣq.
Assume that PvarpF q ą δ8. Then there exists an equilibrium state for F . Moreover,
if pµnqn is a sequence in MpΣ, σq such that

lim
nÑ8

ˆ

hµnpσq `

ż

Fdµn

˙

“ PvarpF q,

then every limiting measure of pµnqn is an equilibrium state of F .

In Theorem 8.15, if we further assume that F has summable variations, then the
sequence pµnqn converges in the weak˚ topology to the unique equilibrium state of
F . For the description of the pressure map t ÞÑ PvarptF q we refer the reader to
[RV, Theorem 5.7].
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8.7. Entropy and escape of mass. In this subsection we show that for a SPR
CMS pΣ, σq it is possible to bound the escape of mass of sequences of measures with
sufficiently large entropy. In the setting of homogenous flows an analogous result
was proven in [EKP, Corollary of Theorem A].

Theorem 8.16. Let pΣ, σq be a SPR CMS. Let pµnqn be a sequence in MpΣ, σq
such that hµnpσq ě c, for every n P N, and c P pδ8, htoppσqq. Then every limiting
measure µ of pµnqn with respect to the cylinder topology satisfies

µpΣq ě
c´ δ8

htoppσq ´ δ8
.

Proof. From Theorem 1.1 we have that

c ď lim sup
nÑ8

hµnpσq ď µpΣqhµ{|µ|pσq ` p1´ µpΣqqδ8 ď µpΣqphtoppσq ´ δ8q ` δ8.

The result then follows. �
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