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Abstract

Controlling energy consumption has always been a necessity in many computing
contexts as the resources that provide said energy is limited, be it a battery supplying
power to an Single Board Computer (SBC)/System-on-a-Chip (SoC), an embedded
system, a drone, a phone, or another low/limited energy device, or a large cluster
of machines that process extensive computations requiring multiple resources, such
as a Non-Uniform Memory Access (NUMA) system. The need to accurately predict
the energy consumption of such devices is crucial in many fields. Furthermore,
different types of languages, e.g. Haskell and C/C++, exhibit different behavioural
properties, such as strict vs. lazy evaluation, garbage collection vs. manual memory
management, and different parallel runtime behaviours. In addition most software
developers do not write software with energy consumption as a goal, this is mostly
due to the lack of generalised tooling to help them optimise and predict energy
consumption of their software. Therefore, the need to predict energy consumption
in a generalised way for different types of languages that do not rely on specific
program properties is needed. We construct several statistical models based on
parallel benchmarks using regression modelling such as Non-negative Least Squares
(NNLS), Random Forests, and Lasso and Elastic-Net Regularized Generalized Linear
Models (GLMNET) from two different programming paradigms, namely Haskell and
C/C++. Furthermore, the assessment of the statistical models is made over a complete
set of benchmarks that behave similarly in both Haskell and C/C++. In addition to
assessing the statistical models, we develop meta-heuristic algorithms to predict the
energy consumed in parallel benchmarks from Haskell’s Nofib and C/C++’s Princeton
Application Repository for Shared-Memory Computers (PARSEC) suites for a range
of implementations in PThreads, OpenMP and Intel’s Threading Building Blocks
(TBB). The results show that benchmarks with high scalability and performance in
parallel execution can have their energy consumption predicted and even optimised
by selecting the best configuration for the desired results. We also observe that even in
degraded performance benchmarks, high core count execution can still be predicted
to the nearest configuration to produce the lowest energy sample. Additionally, the
meta-heuristic technique can be employed using a language- and architecture-agnostic
approach to energy consumption prediction rather than requiring hand-tuned models
for specific architectures and/or benchmarks. Although meta-heuristic sampling
provided acceptable levels of accuracy, the combination of the statistical model with
the meta-heuristic algorithms proved to be challenging to optimise. Except for low



to medium accuracy levels for the Genetic algorithm, combining meta-heuristics
demonstrated limited to poor accuracy.
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Chapter 1

Introduction

This chapter introduces the challenges of energy consumption as it pertains to pro-
gramming languages. Introductory Section 1.1 provides an overview and the rationale
that makes energy consumption a relevant topic. Introductory Section 1.2 presents
background on a few relevant programming language paradigms. Introductory
Section 1.3 defines a set of questions that determines the scope of this thesis and lists
the anticipated contributions.

When considering energy in the context of software, one must also consider various
details affecting energy consumption. First, the long history of hardware evolution
and advancements in processor manufacturing has affected software and many re-
lated hardware aspects. Then comes the lower layers of hardware development, such
as the Instruction Set Architecture (ISA) and the numerous design decisions made by
ISA developers to accommodate target platforms. Then, the operating system must
be considered, as it manages the hardware and software resources. Atop these layers
resides the application software.

Given the complexity of software–hardware architectures, predicting and monit-
oring energy consumption is challenging, especially as the multitude of developers
responsible for the assemblage of software on a computer independently develop
and optimise their codebases, often adding features that have different effects on the
level of energy consumed.

1



CHAPTER 1. INTRODUCTION

1.1 Energy Consumption in Software

In software, we fundamentally program multiple ways of processing data at abstract
levels using executable code running on specific types of processing hardware, such as
Central Processing Unit (CPU)s, Graphics Processing Unit (GPU)s and more recently
Neural Processing Unit (NPU)s. These types of processors have specific methods of
computation, but the basic components remain similar across all models: they require
an electrical source to operate. Every aspect of a microprocessor, such as logic and
registers, require a direct low-voltage current to represent and transfer digital bits
of information. Every gate switch consumes energy that can be measured in joules.
Although that of a single gate operation is trivial, the billions typically found on
modern units add up.

The next-higher aspect of the system includes the low-level ISA that runs on these
processors. In essence, the ability to dynamically program a processor using specific
instructions has given developers numerous methods with which to handle various
computation scenarios via the ISA, which specifies a number of instructions that the
processor understands and can execute to carry out computations, these are designed
by CPU manufacturer like Intel, AMD, or ARM. ISAs come in different versions, but
the most common ones are x86 and ARM, the former being used in Intel and AMD
chips and the latter in ARM chips. In the past, developers used these instruction
sets to write programs that are compiled at the binary level to be executed directly
on the chips without an intermediary layer. Today, ISAs are mostly applied using
high-level compilers, such as GNU Compiler Collection (GCC) [94] for C [49] and
C++ [95] or GHC for Haskell [43]. Interpreters, such as Python [106], are also used.
Virtual machines execute bytecode, e.g. Java [3] or Erlang [2], or instructions are
simply translated from one language or Domain-specific Language (DSL) to another
using compilers.

1.2 Imperative vs. Functional

When examining most programming languages’ usage charts and statistics, they are
found to share very similar properties as most languages are imperative in nature.
The imperative programming paradigm is heavily used in industry; it was the first

2



1.3. THESIS QUESTIONS AND CONTRIBUTIONS

to exist and was adopted from the outset to deploy some of the most iconic systems
in the early days of the digital era. In the imperative style, developers use various
concepts, such as global state, mutation, looping, branching and statements, and
they apply different methods of describing the operational state as ‘flavours’. Yet,
the concepts remain the same; even if they employ a functional style, the overall
implementation remains imperative.

A key feature adopted by imperative languages is strictness, which refers to
specific ways of evaluating code before compiling it to remove potential errors that
might arise during execution [20], e.g. divide-by-zero.

Functional paradigms apply different approaches, and the main concepts revolve
around a function composition that enforces immutable rules, wherein a function
cannot change any global state or carry out any input/output by itself, i.e. functional
purity. This creates a strict rule-defined environment. Furthermore, if a function
receives an argument, it should always return the same value to that argument,
meaning that randomness must not occur. Some aspects of the imperative style exist
in functional languages, but the main concepts of maintaining program flow differ.
For example, the functional style relies on recursion instead of looping, which is
important for the efficient execution of maths, such as functors, applicatives, monads
etc. Most importantly, it differs in how a program is evaluated, there exist strictly
evaluated languages in the functional space but the most notable languages use
non-strict or lazy evaluation of program expressions.

1.3 Thesis Questions and Contributions

Modelling and analysing parallelism as it affects energy describes the heart of this
thesis. To understand how the aims of this study can be approached, we must define
a set of questions that, when answered, provides the outcome of this thesis.

Can parallel programs be statistically modelled according to energy use? An
essential point of employing parallelism in programming is to achieve energy gains
and benefit from extra hardware resources. To answer this research question, we
must determine whether parallel programs can benefit statistical energy prediction.

3



CHAPTER 1. INTRODUCTION

Can the energy consumption of parallel computations be optimised or estimated,
regardless of the implementation language (e.g. managed vs. unmanaged and
lazy vs strict)? The goal is to examine parallel energy consumption from an
execution-only perspective without considering language features. For example, a
language like C++ has a strict evaluation method compared with Haskell, which is
lazy by default. These concepts are further explained in the next chapter. A basic
approach is to consider the chip design that executes the parallel code. However,
when we look at the language features, e.g. scheduling and memory management,
the answer to such a question might require more in-depth analysis.

What impacts do CPU clock frequencies have on program energy performance?
The fact that a processor can run stably at the maximum clock frequency does not
translate to having a requirement for such performance. Thus, chip manufacturers
have create solutions, such as Dynamic Voltage and Frequency Scaling (DVFS), to
manage varying computation requirements from a hardware design perspective.

1.3.1 Contributions

1. The development of a general optimisation technique to minimise energy
consumption – (Chapter 4) Parallel programs can be demanding when optimising
for performance, especially with a variety of modern multi-core hardware. Optimising
energy consumption can be an order of magnitude more demanding because it also
factors in performance. The thesis presents a technique based on regression models
as well as a set of meta-heuristic algorithms that demonstrate stable accuracy when
optimising energy across several programming languages, namely Haskell and
C/C++.

2. Investigating energy modelling for parallel programs using multiple statistical
models – (Chapter 3) The thesis delivers an analysis of multi-type regression
models and evaluates the feasibility of using regression methods with language
runtime features. The usability of statistical modelling is also examined for energy
consumption prediction. This uses standard regression models such as Non-negative
Least Squares (NNLS), Random Forests, and GLMNET and demonstrated on a variety
of benchmarks for both Haskell and C/C++, showing its generality.

4



1.4. THESIS STRUCTURE

3. Development and formalisation of meta-heuristic algorithms to estimate and
optimise energy – (Chapter 4) Optimising and estimating energy consumption
can be complicated, even if sampling equipment is available. This thesis delivers
three methods of energy sampling and probabilistic inferences of optimal program
configurations for execution. This employs a number of standard meta-heuristic
techniques such as Genetic algorithms, Ant Colony Optimisation (ACO), and Hill
Climbing and demonstrated on a variety of benchmarks for both Haskell and C/C++
showing its generality.

4. Evaluation of energy consumption of multiple programming domains (func-
tional and imperative) – (Chapters 5 to 7) The idea that languages perform
similarly is not accurate, as languages like C might outperform many managed lan-
guages, such as Java. However, we desire to know whether their energy consumption
profiles are similar. The thesis analyses energy consumption for two programming
paradigms with different features via the extensive evaluation of standardised parallel
benchmarks.

5. Set of Haskell/C++ energy profiles for PARSEC, Nofib, and the Computer
Language Benchmarks Game – (Chapter 3) This thesis provides a complete profile
set of parallel programs from three known benchmarking suites, Nofib, PARSEC,
and the Computer Language Benchmarks Game, with energy consumption details
at multiple frequencies and different workloads/inputs that highlight the energy
patterns in each benchmark. In addition to evaluating several benchmarks that behave
equally in Haskell and C/C++.

1.4 Thesis Structure

The structure of the thesis is as follows, Chapter 2 will explain details on the used
benchmarks, types of parallelism, Haskell features, and tools used. Chapter 3 will
provide an overview of the different benchmarks samples along with constructing
statistical models and the application of given models on unseen benchmark datasets.
Chapter 4 will present a group of meta-heuristic algorithms to optimise energy
configurations in parallel programs. Chapters 5 to 7 will assess applying the meta-
heuristic algorithms previously developed on various types of parallel programs, in
addition to combining meta-heuristics with a statistical model to measure usability
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of such method. Chapter 8 will give an overview of the contributions in the literature.
Chapter 9 will iterate over the conclusions of this thesis.

1.5 Summary

In this chapter, we reviewed the different situations that make understanding energy
consumption relevant to software and programming languages. Additionally, we
identified hardware and software features and programming paradigms having
distinctive effects on energy consumption.
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Chapter 2

Background

This chapter discusses the various subjects and tools required to understand the
details of energy consumption from a programming language perspective. Section 2.2
on page 9 explains basic parallelism hierarchy with existing implementations and
examples. Section 2.4.3 on page 21 presents an overview of GHC, its internal
runtime system and Runtime System (RTS) metrics. Section 2.4.5 on page 24 presents
evaluation concepts for Haskell with examples, in addition to relevant parallelism
concepts. Section 2.1 on page 7 described the tools used for sampling energy in
Intel’s x86. Section 2.5 on page 30 explains the target testbed and the sampling
configuration.

2.1 Processor Energy and RAPL

In computer hardware design, power management is as essential, as it is for any
other electric-based device. Minimising power and energy consumption is always
paramount, as doing so improves portability and total operational costs. Notably,
power and energy are different constructs. Power is measured in Watt, i.e. 1 watt
per second, whereas energy is the total joules for a given device over time. In this
case, CPUs have various Thermal Design Power (TDP)s. Although they indicate heat
dissipation for a given chip, this can be used as a power measure for the chip. With
the complexity of static and dynamic power usage in modern chips, it is not easy to
define a specific range of power draw, as any chip’s running state is dynamic.

7



CHAPTER 2. BACKGROUND

Approaching energy consumption in software requires multiple components to
be present to effectively and practically develop energy-aware software that can be
reliably deployed. Holmbacka [41], demonstrated on a multicore ARM processor that
the equation can represent CPU energy consumption over time: Power = Static Power
+ Dynamic Power, the static power being the power needed to run the CPU while
idling, and the dynamic component refer to the frequency of the CPU cores when
a computation is being executed on the processor. Although controlling schedulers
at runtime can assist with applying a scheduling policy that aims to increase per-
formance or reduce power draw as explained in [41], the entire program could have
different stages of executions that behave differently, especially when benchmarking
settings are changed, e.g. CPU architecture, Programming Language, the existence of
a runtime component in the programming language.

Using instruction-level costs is essential to proper energy estimation, but it is
sometimes overlooked. As the cost of energy is inherently affected by performance, i.e.
the time is taken to execute a computation, as seen in Haskell’s samples, modelling
circuit switching may be the apparent answer; however, this is not the case. Morse et
al. [74] demonstrated that attempting to model such operations at the bit level is an
NP-hard problem, where the solution space is massively more significant than what
machines are capable of searching. The authors first emphasised that energy does
not directly correlate with time, despite how the energy equation is formulated. The
power variable is a variant that changes over time. For example, an average power of
6.25 watts multiplied by 8 s would result in 50 J of total energy consumed. When
examining the power sample of a processor running a computation, it would reflect a
fixed amount equal to several bits being switched on and off; the beginning of the
computation would have higher power consumption owing to transistors triggering
circuit switches, i.e. bits being switched on and off. We can view program execution
stages using the circuit-switching perspective. The authors discussed the possibility
of finding the WCEC of a given program by analysing its switching instructions to
find the combination of operands that trigger maximum energy consumption. This
method is referred to as the circuit-switching problem (CSWP). Their approach also
describes the Hamming distance effect, referring to the bits to be switched caused by
an instruction being executed. For example, an add instruction used to operate on
register, R1 = 010, would result in a Hamming distance of 1. Finally, the authors
demonstrated that the CSWP was like the maximum satisfiability problem 2 (MAXSAT2),
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which was proven to be an NP-hard problem [9].

Running Average Power Limit (RAPL) [45] is an Intel-specific tool that provides
power management for Intel-based machines; it enables sampling from registers to
calculate average energy consumption over a given interval. Its use is simple through
the Model-specific Registers (MSR), which allows access to RAPL measurements. The
MSR provides accuracy [87, 107] with minimal error, compared with electric wall
sampling power readings for systems components, e.g. GPU and DIMMs. The same
mechanism also allows energy consumption to be controlled/capped.

2.2 Parallelism Overview

Parallel execution gained attention early in computer science history. However, be-
forehand, chip manufacturers increased performance by increasing the number of
transistors. Laws like Moore’s law [73] stated that the number of transistors per chip
area doubles in number every two years, which in turn reflects on the performance
and the clock frequency of extant processors. Additionally, Dennard’s Scaling [28]
law which states that as transistor density increases, the power consumption for each
transistor decreases. These laws would have remained valid [38] if the amount of en-
ergy required to power the increasing number transistors did not change significantly.
However, power requirements turned out to be quadratic when doubling the number
of transistors, meanings that the amount of heat dissipated always corresponds to
power requirements. The emphasis on parallelism in mainstream machines was not
always as crucial until CPU frequency and single-core performance hit a physical
limit. That is, chip manufacturers were could not provide better clock performance.
Hence, the industry applied different techniques, shifting towards multi-core and
-thread architectures in which parallelism is introduced implicitly or explicitly. Im-
plicit parallelism occurs without the user’s knowledge; the machine runs specific
computations in parallel. In the latter case, the user is required to explicitly manage
threading. In all cases, the watts required to run the chips has grown. For example,
the AMD Ryzen Threadripper 3990X [1] has a TDP of 280 watts, compared with
the Intel Pentium Pro [46], which was a single-core CPU with a clock frequency of
200 MHz and a TDP of 44 watts. Even portable platforms, such as SBC and mobile
phones, have moved to multiple cores with increasing energy requirements.
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There are ways to solve specific problems when introducing parallelism [7, 12, 13,
47]; most notably, the automatic loop parallelisation in the Intel C++ compiler [72] uses
techniques, such as static analysis. In its compilation phase, the compiler determines
the sequential parts that are independent of each other, subsequently transforming
them into multi-threaded code. However, there are challenges to this tactic that
cannot be overcome without solving complicated problems. For example, not all
computations processed in such code can be parallelised owing to data dependencies.
Additionally, there are limitations to the how computations can be performed. High-
level programming languages, for example, are complex in nature, making it difficult
to match program properties to parallel execution opportunities. The data and
program structure complexity can quickly limit what automatic parallelisation tools
do. Thus, parallel libraries and tools have been deployed to help, e.g. OpenMP and
TBB. These tools allow the introduction of parallelism in ways that allow libraries
to parallelise specific parts of a program effectively without introducing unwanted
behaviours.

2.2.1 Task Parallelism

Task or functional parallelism [85] has been introduced as a result of frequent ob-
servations of patterns of execution. Specific computations can run in parallel to
compute streams of data independently from each other. In a task parallel execution,
the developer implements an algorithm to identify functions that can run independ-
ently. The functions are implemented as streams executed in parallel alongside
others, and the inner workings are abstracted. A basic structure of this type of
parallelism is displayed in Figure 2.1. As shown, parallel processing encapsulating
all tasks. The Data/Input is a series of values in a list or array that is fed to tasks
in the next stage. Then, the functions compute their results independently and in
parallel. The length of the arrows reflect the duration of each task; nevertheless, they
all compute their values in parallel. The last phase, computed output, indicates that the
parallel-processed data can be fed to another parallel stage or sequential step to save
time and combine outputs. A sample implementation of the illustration in Figure
2.1 is found in Algorithm 1. Lines 1–4 define the arrays used to store the various
computations; all arrays can store 101 elements. Line 7 defines a Parallel Region
containing a group of parallel computations. Lines 8–19 define Sections with loops in
each; the Section keyword is an indicator that the body of the section is to be executed
in parallel alongside other Sections. The for loops in each Section carry out different
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computations where the←− at the beginning of each loop designates the retrieval
of an element at a specific position in an array, which is then stored in a temporary
variable, i. The value stored in i is then modified according to the arithmetic operation
defined, e.g. i ∗ 2 or i ∗ i, which is then stored at the same position as the retrieved
value in the previous step. Each parallel Section is computed independently from
other sections and without the need to wait to block executions at certain points. A
more concrete implementation of Algorithm 1 using OpenMP is found in Appendix A.

Figure 2.1: Diagram showing basic structure of task parallelism

2.2.2 Data Parallelism

Data parallelism is achieved by applying a function over a list of data, e.g. integers,
strings, or other complex type). For example, to apply a function, f, over a sequence
of data stored in an array of a given size, [X1,X2, . . .Xn], the parallel computation can
be achieved independently by applying the function, f(X1), f(X2), . . . , f(Xn), in parallel.
Considering Figure 2.2, the Data/Input is a sequence being processed by applying
the function f over the elements of the sequence. The application of f is done in
parallel by applying f over each element independently. Its simple implementation is
demonstrated in Algorithm 2. Line 1 shows an assignment/initialisation of variable
length with a value of 1M, which is used as the loop count. Lines 2 and 3 initialise
two arrays of the same size, i.e. 1M. Finally, Line 5 defines a Parallel For indicator for
the loop iteration, causing them to be computed in parallel. The for loop at Line 6
iterates from zero to the value of length, i.e. 1M. With each iteration, the value of j
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Algorithm 1: Example of an algorithm computing tasks in parallel
1 numbers[101]
2 numbers2[101]
3 squares[101]
4 multBy2[101]
5 divisions[101]

6 for j← 0 to 100 do
7 numbers[j]←− j

8 Parallel Region:

9 Section:
10 for p← 0 to 100 do
11 i←− numbers[p]
12 squares[p]←− i ∗ i

13 Section:
14 for p′← 0 to 100 do
15 i←− numbers[p′]
16 multBy2[p′]←− i ∗ 2

17 Section:
18 for p′′← 0 to 100 do
19 i←− numbers[p′′]
20 numbers2[p′′]←− i

2

21 End Parallel Region

is assigned the value of the iteration. The body of the loop on Lines 7 and 8 begins
by storing/assigning a computed value, j + 3, to the position, array[j], followed by
the retrieval of the thread_id value and the assignment of its value to the position,
thread_num[j], in the thread array to track the thread processing the computation.
Furthermore, concrete implementation using the OpenMP library can be found in
the listing in Appendix A.

Loop parallelism: Simple parallelism patterns improve upon low-level parallelism
forms; in this case, the parallel execution of specific segments of the source code,
such as parallel processing of loops, i.e. data parallelism. The management of this
parallelisation is unlike low-level types, where the implementer must manage and
address the details of parallel execution, such as sharing memory and other resources.
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Algorithm 2: Example of Data Parallelism
1 length←− 1000000
2 array[1000000]
3 thread_num[1000000]

4 Parallel For:

5 for j← 0 to length do
6 array[j]←− j + 3
7 thread_num[j]←− thread_id

8 End Parallel For

This entails the primitives of parallelism that allow quick implementation without
referring to tasks, such as scheduling, reserving and freeing memory. Parallel mod-
els, such as OpenMP and TBB, provide the building blocks to implement parallel
segments. For example, sequential loop in Listing 1 on page 13 executes a for loop
that runs for six iterations from zero to five (Line 5) and prints the value of the
loop variable each time (line 5). It then exits the program with an integer value of
zero. indicating that no errors occurred (Line 8). To implement a similar program in
parallel using the TBB library, we use the code shown in Listing 2 on page 14, starting
with the initialisation of the task scheduler that manages the execution and threading
(Line 9). Then, instead of printing the value of the loop iterator, it instead prints the
number of the thread that executed the given iteration (Line 14) using the function
call, this_tbb_thread::get_id(), which is a TBB built-in function that retrieves the
currently executing thread, and as the body of the loop executes in parallel, the print
statement may print a different number each time. In this example, the scheduler
decides that a single thread is faster in executing the loop as the number of iterations
is small; however, if there were many loop iterations, more threads would be required.

1 #include <stdio.h>
2

3 int main(int argc, char *argv[]) {
4 int i;
5 for(i = 0; i < 6; i++)
6 printf("Iteration = %d", i);
7 return 0;
8 }

Listing 1: Simple loop for printing numbers at each iteration
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1 #include "tbb/tbb.h"
2 #include "tbb/parallel_for.h"
3 #include "tbb/task_scheduler_init.h"
4 #include <iostream>
5

6 using namespace tbb;
7

8 int main(int, char **) {
9 task_scheduler_init init;

10 parallel_for(
11 blocked_range<size_t>(0, 6),
12 [=](const blocked_range<size_t> &r) {
13 for (size_t i = r.begin(); i < r.end(); ++i)

{↪→

14 printf("Thread Id: %d\n",
this_tbb_thread::get_id());↪→

15 }
16 }
17 );
18 return 0;
19 }

Listing 2: Example of a parallel_for that runs for a fixed number of iterations, printing
the thread number from each iteration using TBB

2.2.3 Combining Parallel Skeletons

The various types of parallelism can be combined, managed and nested in many
ways. Cole [21] introduced the concept of algorithmic skeletons, which are standard
higher-order functions used to process different types of data. For example, a map-
reduce makes use of two parallel skeletons to process a list-like structure. The pipeline
skeleton typically processes task elements one after another. The primary approach
to algorithmic skeletons is natural, as the definition of high-level implicit parallelism
follows suit. Fragments of different types of parallelism can be combined to meet
specific requirements.

Chis and Vélez [18] categorised skeletons into three types: data parallelism, task
parallelism and resolution. The first two were discussed previously. The resolution
category accommodates problem-specific parallelism, such as when computing the
Fibonacci sequence in a recursive style, as shown in Figure 2.4. When invoking
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Figure 2.2: Diagram of basic data parallelism structure

the function, it begins by splitting the computation into two subsequent calls to
the same Fibonacci function while adding the results from each recursive output.
Applying a divide and conquer (DC) skeleton translates to a breakup or split stage.
The computations are split into smaller chunks, and when a condition no longer
holds, it merges or combines the results of each stage. DC skeletons can be used with
searching or sorting algorithms, binary searches and merge-sorts.

There are limitless skeleton combinations. One example is shown in Figure 2.3,
where a data-parallel stage checks whether a number is even, then a sequence of
staged parallel tasks takes place one after the other. This final stage is referred to as a
pipeline.

2.3 Parallelism Libraries: Pthreads, OpenMP and Intel

TBB

To understand the reason why parallelism is a necessary and intricate part of modern
programming and system design, we next review some parallelism libraries. In [83],
the authors introduced a hierarchy of granularity for parallel computations, some
of which are part of hardware-level parallelism; others are designed and used at
a programming language level. The following sections describe the categories of
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Figure 2.3: Example of combining types of parallelism

different parallel solutions and their granularity with examples of existing frameworks
and libraries that implement the concepts.

2.3.1 TBB

Intel’s TBB [58], released in 2006, provides a set of parallelism functions in a highly
abstracted style, in which tasks are the central concept. For example, to run a parallel
loop, a user must invoke a function call, parallel_for, with a set of parameters to
specify the loop control variable that sets the beginning and end. Other examples
of parallel task-based functions include parallel_for_each, parallel_reduce and par-

allel_pipeline. TBB allows the user to run the library regardless of the compiler
used as the library is self-contained with scheduling, memory allocation and par-
allel functions. One of the disadvantages of TBB is its dependence on C++, unlike
OpenMP, which supports multiple languages and has been implemented using many
compilers.
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Figure 2.4: Example of recursive Fibonacci sequence-call tree

2.3.2 OpenMP

OpenMP [25] is a language extension which also can be considered a programming
language in itself which was introduced by the OpenMP ARB, which released its
first version for Fortran support in 1997, followed by C/C++ support the following
year. Today, OpenMP has been adopted by many compilers, most notably the Gnu
Compiler Collection (GCC) [101] and LLVM [59]. In C/C++, OpenMP allows parallel
execution via a set of directives, functions and environment variables, which allow
users of the language to implement parallel programs. However, complexity leads
to buggy behaviour. Directives, i.e. pragmas, are used to introduce parallelism in
OpenMP. A pragma has a set of pre-defined attributes, such as parallel, for and
sections for work-sharing. It provides directives for controlling the accessibility of
specific sections, such as master, critical, atomic and ordered. It also provides the
ability to share variables and other program structures safely. For example, sharing a
variable of a given type can be specified using the shared(variable) clause; likewise,
the private(variable) clause provides the means of allocating a new copy of the vari-

17



CHAPTER 2. BACKGROUND

able to each thread.

2.3.3 POSIX Threads

POSIX threads, i.e. Pthreads [75], are governed by the POSIX standard, which
defines an interface-enabling portable application for different operating systems,
e.g. Linux/Unix-based systems. It was initially established by IEEE in 1988, and
another variant was released by ISO in 1990 under the name POSIX [44]. The ISO
version is the most common implementation. Its interface enables hardware and
software designers to develop standard solutions to allow portability. The initial
POSIX release did not include threading, but later, Pthreads were introduced for use
with C/C++ for parallelism. Pthreads allow the control of multiple execution contexts
through a single process with data synchronisation. It also has its own set of logical
registers, stack pointers, local variables and other features that make it uniquely
powerful. Pthreads allow several parallelism implementations, some of which were
applied internally to OpenMP and TBB. However, the POSIX standard does not
ensure safe execution, bug-handling, or parallelism synchronisation; it relies on user
design decisions. Therefore, when Pthreads are used directly, users must employ
mechanisms, such as locking, execution control and synchronisation to manage safe
execution. This is considered a low-level parallelism method, as the structure must
be defined differently for each user requirement.

2.4 The Haskell Language

2.4.1 Introduction

Haskell is a functional language having characteristics different from common pro-
gramming languages, such as C or C++. Lazy evaluation is one of its core features,
allowing it to employ more programming languages concepts than most, such as
immutability, which means that any variable/function created cannot be modified. An-
other important feature is the pure execution, wherein functions cannot modify global
values or initiate input/output communications. The language is strict, rendered as
such under the main function, which is the main entry for program execution.
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In Haskell, a program may consist of multiple functions where each can be
passed an argument or a set thereof. Consider the example in Listing 4 on page
22. The program defines three functions: main, val and branch. main is the
main entry point where the program begins execution. main on Line 8 is defined
as putStrLn $ show $ branch 1 in the body. purStrLn is a built-in function for
printing to standard output. show is another built-in function that takes a given
type and returns a printable type. Finally, branch 1 is a function call to the
function, branch, with argument 1 being an integer type. The $ symbol denotes
the sequencing operator to avoid rewriting functions in parenthetical format, e.g.
putStrLn (show (branch 1))). Lines 1–3 define a function using guarded statement-
s/clauses. branch has the signature type of branch :: Int -> [Char], which de-
scribes the type of inputs and arguments that can be passed to the function and what
it returns. In the case of branch, the function takes an integer type. In Haskell, a
function always returns a value, which in the case of branch, is [Char], which is a
list type for characters, i.e. a string. Lines 2 and 3 are guard clauses, wherein the
first one, exitCode == 0 = "Success" is equivalent to an if statement in imperative
languages. The value of the input, exitCode, is compared to integer zero, and if true,
the function returns the string, "Success". The clause on Line 3 is a general one that
compares any integer value to string "Fail".

Finally, val = "Hi" returns a value only, meaning that it does not accept any
input. Thus, when called, it will always return the value, "Hi". Note that the type
signature, -- val :: [Char] is commented-out by prefixing the signature with -- .
In Haskell, compilers can infer the type of the returning value from a function; thus,
it is not required to defining functions as types, as errors will be thrown during
compilation.

2.4.2 Evaluation Functions: seq/pseq/rseq and par/rpar

Haskell has mature and well-established parallelism Application Programming In-
terface (API)s. One essential API that is used to implement parallel constructs: the
Strategies API. To understand how a computation is evaluated using Strategies, we
must first understand its building blocks. pseq is defined as pseq :: a → b → b,
which translates to the statement ‘evaluate Weak-head Normal Form (WHNF), then
return b’, which controls the order of evaluation of a to WHNF. b, which is strict in
a, ensures that the function will follow the sequential order of its arguments. There
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is a subtle difference between seq :: a → b → b and pseq :: a → b → b. seq has
the same type as pseq, but the way in which it evaluates its arguments can differ.
In seq, the argument input is evaluated to WHNF, returning the second argument.
However, if the first argument is already in WHNF, seq will skip evaluating the first
one. On the other hand, pseq will compute using the same style, i.e. evaluating the
first argument to WHNF, except that will always re-evaluate the first one, regardless
of whether the first argument is in WHNF. Although par has the same signature as
pseq/seq, it uses a completely different method of evaluating computations. par is
an indicator of the runtime with which a given closure can be evaluated in parallel
with another function, i.e. a closure. For example, par takes arguments a and b and
allows b to be computed by the main program flow, meaning that the Spark (the
computation to be evaluated) reflects the promise to carry out the computation as
b is being computed, e.g. a is computed in parallel with b. The functions, rpar and
rseq, are basic evaluation strategies from the Strategies library. rpar is another that
displays similar behaviour as par, indicating that a computation can be evaluated in
parallel. rseq, like seq, forces an argument to WHNF.

Another example is shown in Listing 3 on page 21. An implementation of the
Fibonacci function on Line 1, fib, accompanies a guarded statement. The first guard
clause, n <= 1 = 1, is a base case that returns a value of one if the argument of
n has a value of one or less. The otherwise guard clause acts as the case for any n

values greater than one. The part on Line 2, f1 + (f2 ‘using‘ rpar), uses rpar to create
a Spark of the recursive expression in f2 on Line 5, which allows the evaluation of
the computation in parallel with f1. The where clause contains two functions that
recursively call fib. Figure-2.5 on page 21 visualises the evaluation tree. The top node
of the tree fib 8 is subsequently broken into two branches, fib 6 and fib 7, and the
recursive calls continue breaking down computations until the expression is evaluated
by the guarded clause on Line 1, n <= 1 = 1. The ellipses circling some of the nodes,
e.g. fib 6, indicates that some results can be shared as the functions computed in
the same scope will have the same results. fib 6 and fib 5 will be computed once;
therefore, the other computation is considered either fizzled or a Dud, as explained in
2.4.8 on page 26.
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1 fib n | n <= 1 = 1
2 | otherwise = f1 + (f2 `using` rpar)
3 where
4 f1 = fib (n - 1)
5 f2 = fib (n - 2)
6

7 main = putStrLn $ show $ fib 8

Listing 3: Basic parallel Fibonacci computation using the rpar evaluation strategy
from the Strategies library

Figure 2.5: Partial visualisation of a recursive Fibonacci evaluation in tree form

2.4.3 GHC and RTS Feature Overview

The GHC [67] provides a vibrant ecosystem with some of the most advanced fea-
tures in the field of programming. First, it provides several backends with which
to compile. It uses Native Code Generator (NCG) but also can generate LLVM [59]
and C [50] code. In addition to a sophisticated RTS, which contains a user-space
implementation, a scheduling tool, a byte-code interpreter, a storage manager and
Software Transactional Memory (STM), a profiling tool [37].

The runtime offers many metrics that provide insight into program execution.
Section 2.4.4 below provides an example of the results obtained from running a
Haskell program in parallel. The first five metrics correspond to initialisation, muta-
tion, garbage collection, exiting and total time. Then, it shows initialisation and total
execution time. Mutation reflects the code evaluation time. Then, it shows garbage
collection time.

In sub-subection 2.4.4, we present the output from three processes: the executed
Haskell program, RTS, and the C process that samples the overall energy consump-
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tion. The first line is the Haskell process number, and the second is the process
output. The RTS, which is part of GHC, spans Lines 3 to 28. The second part (Lines
29–37) is the output from the C program that samples energy using MSR and prints
the details collected throughout. Sub-section 2.4.4 explains the various details of
these metrics and how they are used for analysis.

1

2 branch :: Int -> [Char]
3 branch exitCode | exitCode == 0 = "Success"
4 | otherwise = "Fail"
5

6 -- val :: [Char]
7 val = "Hi"
8

9 main = putStrLn $ show $ branch 1
10

Listing 4: Basic parallel Fibonacci computation using the rpar evaluation strategy
from the Strategies library

2.4.4 Runtime (RTS) Metrics

GHC’s runtime system has many features for controlling and collecting information
about overall execution. It can provide a complete report on the time and memory
allocation required for program execution. However, as profiling performs additional
computations on top of normal program execution, this may cause inaccurate energy
readings when sampling programs. Therefore, it is excluded during data collection.

The remaining RTS results from sub-subection 2.4.4 can be summarised by the
following points [65, 99, 102]:

• Memory allocation (Lines 3–7): This represents the results of memory alloc-
ated during process execution; it shows memory used for the heap, GC, the
approximation of maximum memory during execution and maximum memory
slop, i.e. the amount of memory wasted in the memory block because of GHC’s
memory allocation.
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• Generational GC (Lines 10–13): Information provided here shows how many
times garbage collection triggered and the number of parallel collections during
each generation. For CPU time used and wall-clock time (elapsed), the lines
show the parallel garbage collection balance, theoretically 100%, implying fully
parallel GC time and 0% sequential. Based on the documentation of work balance,
this is calculated using the number of threads used by the GC.

• Tasks/Haskell Execution Context (HEC)s and Sparks (Lines 15–17): In the
context of GHC, tasks carry out the work of evaluating the Haskell code. As
a simple analogy of bound tasks, consider a thread with a corresponding OS
thread that ensures the OS executes foreign calls. A worker task is an internal
task created by the RTS, which has a specific structure and a Haskell Execution
Context (HEC) that provides a mechanism for executing and evaluating Sparks.
Sparks in the context of Haskell are the closures to be evaluated. Closures in
GHC are heap objects used to suggest to the RTS that a given computation
can be evaluated in parallel (e.g. using par/rpar, as explained in Section 2.4.2).
These are then made as separate sparks that are added to a spark pool having a
specific size. The HECs then evaluates these, and the converted sparks means
that these are evaluated all in parallel at runtime. Overflowed sparks mean that
the generated sparks exceeded the spark pool size. Duds are sparks that have
already been evaluated. GC’d sparks are those that have been created but were
never evaluated during runtime, making them redundant. Fizzled sparks are
those that were not evaluated when available in the sparking pool but were
later evaluated during normal program execution.

• Execution Summary (Lines 19–27): The metrics summarised in these lines are
divided into execution, runtime initialisation, mutation, i.e. the time taken to
evaluate expressions, garbage collection, , exiting the process and finally total
time. In each of these metrics the CPU time is stated, and the wall-clock time is
shown between brackets.

• Internal Counters (Lines 29 - 33): Lines 29–32 are referred to in the documenta-
tion as internal counters, which are related to how the GC spinlocks operate and
how thunks/closures are evaluated, these counters are subject to change in the
GHC documentation and are unspecified in some cases.

• RAPL [29] Power, Energy, Execution Time (Lines 33–37): These lines are printed
by the parent process that executes the binary to be sampled with arguments
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passed to it. It then reports the total energy consumed during the execution.
The average power is the average watts drawn during execution. Finally, the
total time taken during execution is milliseconds longer than the RTS summary
of elapsed time, given that the parent process exists after the child one.

1 cpu s i g = 406 f 0
2 ( -2574 .1846) :+ 1081.3689
3 5 ,997 ,364 ,096 bytes a l l o c a t e d in the heap
4 1 ,901 ,167 ,120 bytes copied during GC
5 3 ,016 ,448 bytes maximum re s id ency (1245 sample ( s ) )
6 268 ,888 bytes maximum s lop
7 8 MB t o t a l memory in use (0 MB l o s t due to

f ragmentat ion )
8
9 Tot time ( e l apsed ) Avg pause Max

pause
10 Gen 0 6483 c o l l s , 6483 par 2 .46 s 1 .23 s 0 .0002 s

0 .0010 s
11 Gen 1 1245 c o l l s , 1244 par 1 .40 s 0 .70 s 0 .0006 s

0 .0052 s
12
13 P a r a l l e l GC work ba lance : 40 .45% ( seria l 0%, perfect 100%)
14
15 TASKS: 4 (1 bound , 3 peak workers (3 t o t a l ) , us ing -N2)
16
17 SPARKS: 6900 (6899 converted , 0 over f lowed , 0 dud , 0 GC' d , 1 f i z z l e d )
18
19 INIT time 0 .00 s ( 0 .00 s e l apsed )
20 MUT time 32 .02 s ( 16 .01 s e l apsed )
21 GC time 3 .85 s ( 1 .93 s e l apsed )
22 EXIT time 0 .00 s ( 0 .00 s e l apsed )
23 Total time 35 .88 s ( 17 .94 s e l apsed )
24
25 Al l oc r a t e 187 ,277 ,351 bytes per MUT second
26
27 Product iv i ty 89 .3% of tota l user , 178.6% of tota l elapsed
28
29 gc_a l l o c_block_sync : 147188
30 whi teho le_sp in : 0
31 gen [ 0 ] . sync : 8
32 gen [ 1 ] . sync : 24880
33 PARENT: Child ' s e x i t code i s : 0
34
35 Total Energy : 613 .847 J
36 Average Power : 34 .0557 W
37 Time : 18 .0248 sec

Output 1: Partial RTS results from executing Haskell

2.4.5 Evaluation and Parallelism in Haskell

In GHC, the runtime system comprises many parts: memory and storage manage-
ment, scheduling, profiling and more. Most have had implementation changes that,
over the years, matured and allowed for high-performance applications. The focus on
this section is to provide an overview of how the internal threading model works in
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GHC. It also explains how the evaluation and representation is performed at runtime.

2.4.6 Lazy By Default

Haskell’s design makes heavy use of laziness. In laziness, no values are required
to be evaluated unless they are demanded, and once evaluated, they can be shared
among same-scope expressions where they are demanded. For example, in Figure
2.6 on page 26, a program defines two functions: f and main. Function f (Lines 1
and 2) takes three arguments: x, y and z. main is the main point of entry for Haskell
programs. In f’s implementation, the function has a conditional statement, namely
if x. When x is evaluated, it also evaluates w * w, where w’s definition is based
on squaring the y argument. If the Boolean value is evaluated as false, z will be
the result. In main, f is applied to values True, 2.0 and (1.2/0), then it is applied
print to f’s result. The evaluation of f will always include evaluation of expression
w * w as its first argument, and x is always True. When evaluating w * w, we only
need to evaluate w once, which is y * y, thus reducing the number of steps needed
to fully evaluate w * w. Most importantly, the arithmetic expression, (1.2/0), is
never evaluated. In strict imperative languages, e.g. Java, C/C++, an expression
containing a division by zero will cause an exception. An example is a Java-like array
with elements {1/2, 2/0, 21/3}, although the length function does not require the
evaluation of elements. The previous concept is referred to as Call-by-Value, which
is implemented in most imperative-style languages. On the contrary, Call-by-Need
is used in Haskell and does not cause errors or program halts, as the evaluation a
computation like 2/0 would only cause errors if the program demanded the value be
computed.

2.4.7 Normal Form and Weak-Head Normal Form

Haskell expressions may or may not be evaluated owing to the nature of lazy evalu-
ation, based on whether program execution requires the values of those expressions.
An unevaluated expression or one that can be reduced to a constant value, such as (x :

xs), is referred to as WHNF. Applying the Haskell operator, Cons uses (:) on x, where
the collection of xs may have a polymorphic type, e.g. [(a, String)]. For this kind
of evaluation, we only observe the top-level reducible expressions or concatenated
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Figure 2.6: Lazy evaluation tree for minimal expression

redexes. In this case, the concatenation operation is reduced to [x, x1, x2, ...]. Note
that none of the elements or expressions within were evaluated in any way; only
the top-level expression was considered. x and the remaining list elements, xs, may
have any expressions, but they are not evaluated until demanded. In this case, the
current expression is WHNF. Normal Form (NF) is only reached when an expression
cannot be further evaluated, i.e. there are no reducible expressions. Using the pre-
vious example, for NF, the expression may have the following form: [(4, "R1"), (2,

"R2"), ...]. Note that the list does not contain any reducible expression. Thus, it is NF.

2.4.8 GHC Sparks, Spark Pools and Capabilities

The notion of self-managed execution and scheduling in programming languages
is commonplace. Many apply philosophically driven implementations. Haskell
implements threads and exposes them through the following components.

Sparks and closures are explained in Section 2.4.4 on page 22. They are basic
component representing a computation [30, 65, 76, 102]. Whenever a spark is created,
it represents a computation that will be evaluated at a later time. During execution of
a Haskell process, sparks have a single state out of five. A converted Sparks means
that its computations are evaluated. Other states include Overflowed, Dud, GC’d
and Fizzled. A Spark cannot be added to the pool when the maximum capacity is
reached; therefore, an Overflow occurs. If a Spark was already evaluated, garbage
collected or GC’d before it could be evaluated is a Dud. Finally, if the current runtime
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Figure 2.7: Example of a given spark pool containing a set of closures/thunks to be
evaluated

was not the issuer of a Spark it is a fizzled. Each Spark is drawn from a Spark Pool
containing several Thunks or computations under evaluation. These are then issued
to Capabilities or HECs. This process can be envisioned as a corresponding thread
interfacing an OS thread executing on a given processor. An example is seen in Figure
2.7.

2.4.9 Haskell’s Strategies

Haskell’s GHC provides a variety of APIs to implement parallelism. This includes a
concurrency API containing STM with forkIO and mutable variables MVar, TMVar

that can also run executions in parallel. The parallel monad, monad-par, exploits
parallelism through a monadic implementation. Finally, the Strategies library [104]
implements high-level parallel constructs of parallel patterns, providing the ability to
execute various types of parallel processing with a simple, functional composition
wherein the user chooses an evaluation strategy, e.g. rpar/rdeepseq, to process data
in parallel. For example, a common parallel function used in Haskell is parList ::
Strategy a -> Strategy [a], which takes an evaluation strategy, e.g. rpar/rseq,
and evaluates all elements of a list according to the evaluation chosen. Another
common but higher-level Strategies function is parMap :: Strategy b -> (a -> b)
-> [a] -> [b], which in its internal implementation uses parList to apply a function
over elements of a list using an evaluation strategy.

To understand how the Strategies library works, we consider Quicksort: an al-
gorithm for sorting elements in a list of a given size. The sorting process traditionally
uses a pivot value that acts as a marker for comparison with other elements beginning
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with the leftmost. If a given element is smaller, the marker moves to the next index
until it finds a value greater than or equal to the pivot value. It then switches the
pivot with the greater value. Then, the rule is reversed, beginning from the rightmost
value or the end of the list. The pivot is then switched with smaller values. The
process continues until the pivot arrives at the middle, where smaller values are at its
left, and larger values are at its right. Then, the same sorting process is applied to
the left and right partitions of the list, continuing to subsequent partitions until the
full list is sorted. Listing-5 is a parallel Haskell version of Quicksort, beginning with
Lines 1–2. These are base cases of Quicksort wherein an empty list returns another
empty list, as does a single element. The function begins sorting when a list has
more than one element, e.g. Line 3. In this case, losort acts as the smaller or lower
partition to the pivot, hisort as the greater or higher partition and the pivot is chosen
to be x, which is the first element in the list (Line 4). Then, both list partitions are
concatenated. The remaining part applies a strategy with the function, using, passing
it a strategy named, strategy, in the next part, which is defined in the where clause.
The losort uses a list comprehension to produce a list that compares all tail elements
to the pivot, x, and applies quicksortS to that list (Line 6). The predicate occurs
where x is always larger; otherwise, the element is filtered. The same holds for hisort,
except that x must be either larger or equal. The parallelism part at Lines 8–11, where
the strategy is defined, uses the initial recursive call to apply composed strategies
of rdeepseq and rpar, sequentially using dot. rdeepseq allows forced evaluation of
expressions until normal form is reached. Then, it sparks the subsequent recursive
process. Finally, at Line 11, it fully evaluates res from the initial application of using.
It is worth mentioning that the example described in Listing-5 is not related to the
original Quicksort algorithm where Hoare [39] describes an in-place algorithm, which
cannot be achieved in Haskell.

Notably, other parallel models are available in the Haskell ecosystem, e.g. STM
and Control.Concurrent API. STM is one of several methods of handling concurrent/-
parallel abstractions in Haskell. Through a mutable reference, primitive constructs, such
as TVar, Mvar and other concurrency primitives, can achieve parallel/concurrent pro-
cessing. Control.Concurrent provides more granular control of threaded workloads
using functions like forkIO or forkOS, where the parallel structures of a program are
more dependent on the implementation.
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1 quicksortS [] = []
2 quicksortS [x] = [x]
3 quicksortS (x:xs) =
4 losort ++ (x:hisort) `using` strategy
5 where
6 losort = quicksortS [y | y <- xs, y < x]
7 hisort = quicksortS [y | y <- xs, y >= x]
8 strategy res = do
9 (rpar `dot` rdeepseq) losort

10 (rpar `dot` rdeepseq) hisort
11 rdeepseq res
12

Listing 5: Example of QuickSort using Haskell’s Strategies library

2.4.10 Glasgow Haskell Compiler’s (GHC) Garbage Collector

GHC has multiple Garbage Collector (GC) implementations that behave differently.
The default, which has been applied in all benchmarks used in the upcoming chapters,
is the parallel, generational, two-space, stop-the-world, garbage collector, which uses several
notions to address the memory management required by the language. The paral-
lelism in the GC system in GHC evolved over several iterations. However, the basic
concepts remain like the original parallel GC implementation. The work by Marlow
et al. [66] and Sansom et al. [91] describe the approach of the parallel GC in detail.
The parallel or multi-threaded GC operates based on execution configuration over
several cores/processors, Haskell threads, HECs or Capabilities. These terms refer to
the same component run by a pool of Operating System (OS) threads, where one
runs a capability, then another picks the work where the previous one stopped. In
essence, the thread concept differs from classical POSIX threads. Each Haskell thread
has a local heap where it can manage memory without synchronisation with other
threads, meaning it can allocate and perform garbage collection by itself. Then, there
is a global heap that is accessible by all threads. However, garbage collection in such
a space is only made when all threads synchronise. As Haskell uses immutability
in almost all cases, object allocation is performed frequently for new computations
as mutability increases the difficulty of maintaining details of given memory objects.
The approach in which HECs handle the evaluation of Sparks as described by [68], is
based on HEC’s pool that queues the Sparks assigned to itself, there is also a shared
pool/heap of Sparks that is shared among all HECs. When a HEC has more than
one Spark, it will check other HECs in the runtime and if any are idling i.e. with

29



CHAPTER 2. BACKGROUND

no Sparks in their local pool, the busy HEC will control the idling HEC to transfer
some of its Sparks to initiate the Spark evaluation by the idling HEC and reduce the
number of Sparks by its own local pool.

Another factor of GHC’s GC is its generational part. The allocated closures 1 are
immutable; they will not have any future updates after the computation completes.
They also will not point to any future heap objects. Therefore, collecting such objects
is easier and safer than traditionally mutable garbage collection techniques. This
simplification can allow for generations of live and used heap objects to be promoted
to an older generation or, in this case, to gen 1, resulting in all other objects in gen 0 to
be collected to maintain enough memory for new closures. This translates to a higher
number of heap objects allocated. However, they are quickly collected without having
to maintain and frequently lookup various pointer tables having have complex details
about each object. The final part of this algorithm is stopping the world, meaning that
there is set of rules for pausing program execution and garbage collection, e.g. minor
GC and major GC.

2.5 Target Configuration and Platform

The experimental testbed machine was a 28-core shared-memory multicore system
at the University of St Andrews, corryvreckan. The machine had two Xeon E5-2690
processors in separate packages, each with 14 physical cores (28 virtual), giving a total
of 28 physical cores (56 virtual). It had 256 GB of physical DRAM shared among all
cores. The machine ran Red Hat 4.8.5–11 with kernel version 3.10.0-514.21.2.el7.x86_64.
To improve the stability of our measurement results, we restricted it so that it could be
used only for our experimental purposes, plus standard operating system functions.
GHC version 7.6.3 was used. This was the default version of the Haskell compiler
installed on this system. All experiments were run with optimisations turned on
(-O2) and using eager black holing (-feager-blackholing) to avoid accidental duplication
of parallel work. GHC was run with the default runtime memory configuration. By
default, the system used dynamic voltage and frequency scaling to limit energy usage.
To obtain consistent and repeatable measurements that can be used to construct
rational and predictable energy usage models, the system was configured to run at

1Here, the term closure is specific to the Spineless Tagless G-machine [82] (STG-machine) where all
heap objects are referred to as closures
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several stable clock frequencies (up to 2.60 GHz) using the built-in Linux performance
governors. Having made these changes, we minimised dynamic and unpredictable
effects caused by thermal throttling, or by clock boosting drivers, such as Intel’s
P-State.

2.6 Benchmark Simulations

To provide an extensive dataset of energy profiles that simulate various types of
workloads, we required multiple types of computations with different types of
execution patterns, workloads and other algorithm-specific optimisations. A group
of the Nofib [80], PARSEC [8], and the Computer Language Benchmarks Game [100] was
used with Discrete Fourier Transformation (DFT) as an additional benchmark [79] to
the Haskell group. Additionally, the complete code of the modified implementations
used can be found in the online 2. The following sections provide an overview of all
benchmarks used in energy profiling; they are modelled in subsequent sections. The
Table 2.1 provides a summary of all parallel benchmarks used in this thesis alongside
the types of parallel constructs. In the table, the term, Unstructured Parallelism, refers
to the implementations with more of a provisional or unstructured parallelism.

2.6.1 C/C++ Benchmarks

Spectral normalisation: The spectral norm benchmark algorithm finds the largest
eigenvalue [42] of a given matrix. The algorithm comes from the Computer Language
Benchmarks Game version 22.0 [100]. The algorithm finds the product of two matrices,
one of a given size, and transposes it to find its eigenvalue by forming an equation
of the product of the previously mentioned matrices. The parallel portion of the
algorithm is based on data parallelism using OpenMP’s loop pragma, which breaks
down the matrix structure to multiply different vectors in nested loops. The C
implementation uses the Single Instruction Multiple Data (SIMD) data type, which
enables faster processing of computations via multiple chunks data, concurrently.

Binary trees: The binary tree benchmark is based on a garbage collection simulation
inspired by Boehm’s GC benchmark [10]. The algorithm has three parts, all of which

2 github https://github.com/ymg/thesis

31

https://github.com/ymg/thesis


CHAPTER 2. BACKGROUND

TBB Pthreads OpenMP GHC /
Strategies

Task
Parallel

Data
Parallel

Unstructured
Parallelism

SumEuler ✗ ✗ ✗ ✓ ✗ ✓ ✗

Nbody ✗ ✗ ✗ ✗ ✗ ✗ ✗

DFT ✗ ✗ ✗ ✓ ✗ ✓ ✗

N-Queens ✗ ✗ ✗ ✓ ✗ ✓ ✗

Ray ✗ ✗ ✗ ✓ ✗ ✓ ✗

MatMult ✗ ✗ ✗ ✓ ✗ ✓ ✗

PRSA ✗ ✗ ✗ ✓ ✗ ✓ ✗

Partree ✗ ✗ ✗ ✓ ✗ ✓ ✗

Parallel
Quicksort ✗ ✗ ✗ ✗ ✗ ✓ ✗

Spectral-
norm

✓ ✓ ✓ ✓ ✗ ✓ ✓

Prime
Decomposi-
tion

✓ ✓ ✓ ✓ ✗ ✓ ✗

Blackscholes ✓ ✓ ✓ ✗ ✗ ✓ ✓

Bodytrack ✓ ✓ ✓ ✗ ✗ ✓ ✓

Binarytrees ✓ ✓ ✓ ✓ ✗ ✓ ✗

Fasta ✓ ✓ ✓ ✓ ✗ ✓ ✓

Ferret ✓ ✓ ✗ ✗ ✗ ✗ ✓

Swaptions ✓ ✓ ✗ ✗ ✗ ✓ ✗

Table 2.1: Benchmarks sampled and their corresponding library implementations

involve binary tree data structures. The C++ version uses the Boost library [92] with
OpenMP. The benchmark starts by allocating a binary tree of a given size, followed
by an operation that stretches or adds an extra node to the tree. Next, the workload
creates a tree of the same size, which is kept in memory for the remainder of the
benchmark life-cycle. For Haskell, The parallel portion of the benchmark is when
the function parMap applies the function rnf which reduces its argument to normal
form. In C/C++ version, the parallelism is made possible by setting the maximum
and minimum depth of parallelism for which a thread will compute. For example,
OpenMP and TBB versions both use a parallel loop that starts walking the nodes of
the tree from minimum depth to maximum while processing each node of the tree
for a given number of iterations. The Pthread version on the other hand, segments
the computations between specific threads that are then executed by a single thread
each.

Fast DNA sequencing (fasta): The fasta algorithm generates a set of random DNA
sequences, implementing a linear congruential generator (LCG), which produces a
pseudorandom float. The algorithm builds a set of these pseudorandom numbers
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that are then used to construct parts of the DNA, i.e. nucleotides, based on a specific
length, which in this case is 60 per block. The parallelism implementation exploits a
map style of data parallelism that maps process chunks independently as the data
do not have dependencies. Similarly, both TBB and POSIX thread versions process
the computation, but with different internal mechanisms for handling parallelism,
initialisation etc.

Prime decomposition: This benchmark finds the largest minimal prime factor, which
requires prime decomposition computations made in parallel. The types of computa-
tions can be processed independently from each other, meaning that the execution
can be split among available threads without defining a reduction step. The algorithm
finds the largest prime factors of a given (non-prime) integer in a list, which requires
finding primes having the product of given numbers followed by checking for their
factors in the given list. In C/C++ versions, this requires a single step that allows
variable sharing between threads, which then assesses the factors produced in a loop.
If such factor are larger than the shared variable, it overwrites it with the new value.

Black Scholes model (blackscholes): The Black Scholes benchmark is based on
a financial model that helps with option trading decision using approximated asset
values. The blackscholes formula is solved by a series of floating point computations.
The PARSEC implementation uses x86’s SSE intrinsic functions for fast arithmetic.
The computation is achieved via parallelism of data using SIMD, where the number
of concurrent options processed is set to a given value, i.e. four. The implementation
applies three forms of parallelism, OpenMP, TBB and POSIX, threads with equivalent
implementations by allocating the number of threads and applying the blackscholes
solver function in a parallel for-loop.

Bodytrack: Bodytrack simulates a computer vision workload wherein a human
object walks in a scene. The simulation uses multiple angles to capture motion using
annealed particle filters, where the edges of the human shape are tracked using multiple
simulated annealing steps to reduce the number of particles required for tracking.
The parallelism takes a similar approach in all three implementations: TBB uses a
pipeline of parallel loops to implement the frame processing sequences; OpenMP uses
a similar structure in which parallel loops are achieved through a set of functions
calls with parallel for pragma is embedded in each function; the POSIX threading
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example uses a different parallelism style wherein a specific implementation of a
worker/thread pool is initialised and assigned work as required.

Ferret: The Ferret benchmark simulates a non-textual similarity search process
based on image type where a set of images in a database are compared to a given one.
Both TBB and POSIX threads are pipelined through different stages, from loading
images in parallel to extracting properties, such as Hue, Saturation and Value (HSV).
Segments are then constructed, followed by a vector similarity procedure and ranked
result production.

Swaptions: The swaptions algorithm computes swap options that allow an investor
to enter a swap contract. Because it is an option, this offers the investor the chance
to trade without obligation until both parties agree on the swap. Therefore, an
assessment is required by the investor offered the swap. The algorithm uses the
Heath–Jarrow–Morton framework (HJM) simulation to compute future interest rates
using various factors, e.g. volatility, then deciding whether a swap is good. The
implementation of TBB and POSIX threading uses for loops that process the list of
swaptions in parallel. TBB uses a loop with grainsize of one, referring to when the
processor needs to split the load between available cores/processing elements, where
the range will be processed from zero to the number of swaptions provided as input.

2.6.2 Haskell Benchmarks

Minimax: The minimax algorithm aims to solve a board game where n-players
are competing to win. The turn-based game generates a fixed 4× 4 tic-tac-toe board
where every two players must form a line of three symbols to win. The algorithm
finds best moves to form diagonal, horizontal, or vertical lines to win. Parallelism is
introduced as a recursive alternate function that returns a sequence of moves as a list.
The parallelism uses parList, wherein each element is a computation that identifies
possible moves and chooses the best.

N-Queens: This benchmark solves the n-queens problem, where the requirement
is to place an N number of queens on a chess board without any queen piece being
able to attack another. Originally, the size of the board is 8× 8. However, when
increasing the number of queens by N, the board size also increases by N × N.
The pargen generates a list of map computations that are then evaluated in parallel
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using Strategies’ parList function. Each computation is a recursive call to pargen

that applies a safe function over a list comprehension of gen, which generates the
placement of a queen using a nested list.

Parallel Fibonacci (ParFib): In parallel Fibonacci, the algorithm works in a Divide
and Conquer (D & C) pattern to recursively produce Fibonacci numbers. Parallelism
is introduced by generating a set of sparks on one part of the computation to force
a specific order for the remaining computations, e.g. a binary tree of thunks to be
evaluated.

N-Body: N-Body is a simulation that demonstrates the gravitational effects of celes-
tial bodies in a solar system. Each body has attributes that dictate object movements,
such as gravitational force, velocity, mass and position. Such attributes affect how
a given body interacts with others in the system. The N-Body algorithm simulates
these effects with multiple steps, beginning with the creation of celestial bodies and
ending with the assignments of specific attributes to the different components of
the system. The parallelism in this benchmark uses a various techniques to avoid
excessive allocations and makes use of unboxed values alongside explicit uses of
arrays. It also uses a fork/join pattern to control the parallelism, wherein each chunk
of elements in an array is evaluated by a specific HEC or capability. Following the
creation of celestial bodies, a monadic for-loop is used to evaluate all necessary bodies
and to map the join function to ensure that the evaluation is completed.

Parallel tree mapping (Partree): Partree handles the mapping of a function over
a tree. The function applies a set of arithmetic operations where the final result
is produced as a single integer. Parallelism is made possible by introducing a set
of sparks recursively for both right and left leaves in the tree. sparks are created
recursively using a basic computation over the leaves of the tree nodes.

Parallel QuickSort: This benchmark implements the well-known Quicksort al-
gorithm to generate a list of randomised numbers that are then sorted by dividing the
list into two parts: left and right. Then, the sorting procedure continues to divide the
lists recursively down to a certain depth, i.e. eight elements per chunk. The parallel
aspect of sorting takes place when the sparks are generated using par. The algorithm
has a D & C skeleton, but it does not use an API.
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Euler summation (SumEuler): In this benchmark, the computation relies on the
Euler totient function, which uses a parallel strategy in which all chunks are split at
given number, and each chunk is evaluated until WHNF is reached. For example,
when using a chunking size of 100, and the size of the list is 1000, the evaluation runs
10 chunks in parallel, wherein each is evaluated by applying the Euler function to
each number in the chunk, followed by summing all elements together.

Matrix multiplication (MatMult): This implementation of matrix multiplication
uses a simple form of computing the product of two matrices. Strategies consist
of line, block and column processing. Control is managed by program inputs. For
example, in the column processing style, the program uses parListChunk, which
split the input list to chunks of a given number, usually provided as an input to the
program. It then applies a transpose transformation for the second matrix followed by
list comprehension, which is a set of vectors multiplied according to the column-based
strategy.

Ray tracing (Ray): Ray tracing works on stream of rays to render a scene containing
a number of objects at a given resolution. In this algorithm, a scene is generated
based on program input, followed by the application of a function for generating
the required rays. The outputs of both are then used as input to a third function,
findImpacts, which applies parallelism using parBuffer, which evaluates a list of
elements using a specified buffer size. The buffer is used to control the lazy evaluation
in parallel. Unlike a normal parallel list evaluation, parBuffer creates a set of sparks
based on the buffer, which are evaluated and examined by another set. This method
avoids consuming linear, as parList does.

Parallel RSA (PRSA): In the parallel RSA benchmark, the algorithm performs a
long sequence of encryption computations. The encrypt function applies asymmetric
encryption using public and private keys that remain the same throughout execution.
The data include an encrypted, replicated string consisting of the letter ’x’. The goal
is to run all encryption computations in parallel. The process begins by creating
chunks based on the first key, followed by a parallel parBuffer application that maps
a set of functions over the produced chunks.

Discrete Fourier transformation (DFT): The DFT benchmark is based on an al-
gorithm that employs the Fourier transformation over a set of complex numbers,
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given a stream of frequencies generated as a random sequence. The algorithm uses a
strategies function, parMap, in two different steps. First, a parMap applies a lambda
function, which applies another map over a list of numbers to generate twiddle factors.
Using rpar, the parMap generates sparks and prepares them for evaluation. parMap

uses rdeepseq to fully evaluate all computations to NF.

2.7 Summary

This chapter discussed the different tools and technologies that are essential to
understanding and evaluating the problem of energy consumption in programming
languages. The chapter also presented an overview of basic GHC and Haskell features
and the way in which evaluation is possible using the language. The chapter also
discussed the different hierarchies of parallelism and parallel libraries using examples
from functional and imperative languages. Finally, the chapter described the testbed
configuration alongside the tools and versions used.
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Chapter 3

Energy Modelling and Prediction

In this chapter, we examine the benchmarks selected to evaluate Haskell and C/C++
energy consumption. Then, we present a statistical approach to predicting energy
consumption using multiple models. Section 3.1 introduces the metadata collection
setting. Section 3.2 presents the profiling method of the different datasets sampled.
Section 3.3 presents the types of models used with the appropriate metrics needed to
evaluate each model. Section 3.4 presents the evaluation of the predictability of each
model on a new dataset with equivalent implementations in Haskell and C/C++.
Section 3.5 highlights the energy effects using various CPU clock frequencies.

3.1 Modelling for Energy

When sampling any benchmark, it is essential to collect information about execution
energy profiles and associated information. The more data collected, the greater
the chance that it will be possible to understand energy consumption. Benchmark
information can then be used to build regression models for predictive capability.
To understand energy consumption based on languages used, we chose several
benchmarks, as identified in Chapter 2 on page 7.

This chapter explains the sources of data collected and what they represent,
followed by exploring candidate regression models and an overview of the results.
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3.1.1 Data Collection

The benchmarks identified in Chapter 2 have multiple implementations, and some
have equivalent implementations in both Haskell and C/C++. A crucial aspect of
evaluating language models and benchmark predictive capabilities is to use programs
with comparable behaviours. Generally, both Haskell and C++ compilers apply
transformations to particular programs in similar and understood ways. Therefore,
we expect to see differences in overall execution time and, consequently, power and
energy. To compare Haskell and C/C++ performance, we must split the benchmarks
introduced in Chapter 2 into three categories.

The first category is for C/C++, which comprises PARSEC benchmarks with the
largest inputs/workloads available. PARSEC benchmarks take inputs of varying sizes.
However, they may entail extensive datasets or complex scenes, as with Bodytrack.
The types of input pose limitations to sampling as the benchmarks have small-to-
medium input sizes that may not help with building an extensive energy profile or
a single large input size. Using the largest input ensures that a program spends
enough time executing so that we can identify computational patterns. The C/C++
benchmarks used for modelling include blackscholes (i.e. OpenMP, TBB, Pthreads),
Bodytrack (i.e. OpenMP, TBB, Pthreads), Ferret (i.e. Pthreads, TBB) and Swaptions (i.e.
Pthreads, TBB).

The second category includes Haskell benchmarks from the Nofib suite. Unlike
PARSEC, Nofib benchmarks take simple inputs, e.g. a number, as an argument, which
allows sampling at more frequent intervals and workloads. The benchmarks used
for constructing the parallel Haskell models include DFT, Nbody, Minimax, MatMult,
Partree, Quicksort, Parfib, Sumeuler, Ray, NQueens and PRSA.

The third category includes the modelling assessment benchmarks, consisting of
all programs implemented in both Haskell and C/C++. These benchmarks also take
simple inputs consisting of single or multiple numbers, which allow for sampling at
more frequent intervals. These benchmarks include Spectral-norm, Binarytrees, Fasta
and Prime Decomposition.

Program data were collected from different sources using multiple tools, and each
source provides details that contribute to explaining program behaviour. Benchmark
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sampling is treated equally in this study, meaning that all are sampled using the
same tools multiple times to avoid anomalies that could affect outcomes. The energy
sampling population is assumed to be infinite. In statistical sampling and choosing
the correct sample size [27], the required sample size to have a margin error of
±5% is a minimum of 385, which in our case is achieved by increasing the number
of samples to 1000 per input per benchmark. The reason for choosing an infinite
population is that we assume that possible CPUs and configurations can affect how
energy consumption happens for the benchmarks in this thesis. The data that we
collect are acquired via the sampling benchmarks using the following tools:

• RAPL: a CPU-specific power draw interface that allows reading power values
through special CPU registers. RAPL sampling is provided by [24].

• Perf: a Linux performance analysis tool that details process execution.

• Intel Software Development Emulator (SDE) [97]: a process emulation tool that
emulates process execution with real input and provides breakdown information
on instruction counts.

A more detailed RAPL explanation is provided in Chapter 2. In the following
sections, we describe the types of data derived from Perf and Intel SDEs.

3.1.2 Perf

Perf [71] is a tool that enables collecting different metrics from a Linux operating sys-
tem. For example, it can count system events, e.g. system calls, while providing ways
to record and report such information. Perf also performs process and system-wide
event collection. However, the counters we collect are program-specific, including
collecting process-specific triggers lacking interference from events triggered by other
processes.

Perf is used to sample the benchmarks identified in Chapter 2. The metrics
collected will vary by process execution and computation type. For example, when
using Perf to profile system calls of the Fasta benchmark on the exact core count
and input size, the Haskell parallel program reports Linux epoll interface system
calls, such as sys_enter_epoll_create. However, the same system calls will not exist
in the equivalent C/C++ implementation. Language-specific implementations of
memory management and, for Haskell, runtime components produce heterogenous
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program metadata, which makes sense as the programming languages differ, and the
benchmarks use instructions differently, although the behaviours are the same.

Perf provides insightful data from the operating system’s user space and the kernel
side of Linux-based operating systems. It also provides an overview of hardware
events, such as cache misses and CPU cycle counts, while also providing details on
tracepoint events, such as system calls and operating system scheduling. It is possible
to mix data types for capture by specifying event names when executing Perf on a
given process. We sample benchmarks for the following events:

• syscalls: a complete list of all tracepoints making a system call to the operating
system.

• cycles or CPU cycles: a complete count of all CPU cycles used during program
execution.

• instructions: total count of instructions executed for a given process.

• cache-references: total count of cache accesses.

• cache-misses: total count of cache misses resulting in main memory fetches.

• bus-cycles: total count of CPU bus cycles as they vary among CPU cycles.

• branch-instructions: total count of branching or program changes of flow events.

The above events are only the second metadata type to be collected for the bench-
marks to be sampled. It is essential to understand that these events can use different
counts, depending on the hardware used when running Perf. Additionally, the
configuration used for such hardware, e.g. clock frequency boosting or having lower-
/higher clock frequency, can affect the number of CPU cycles. Additionally, the CPU
architecture affects the levels of cache, and their sizes affect cache miss ratios and
references. Therefore, the profiling step is essential to understanding the advantages
or disadvantages modelling energy consumption using such metadata.

3.1.3 Intel Software Development Emulator (SDE)

Intel SDE [97] is an emulation tool with many features used to examine and un-
derstand Intel CPU instruction sets. It is possible to execute a program on an Intel
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Broadwell or Haswell CPU instruction set while the underlying CPU has a different
Intel architecture. Emulating these environments can produce metadata to help debug
programs without having physical access to specific CPU instruction sets. Owing
to the power of Intel SDE, a complete count of instructions and extensions can be
produced to understand program behaviours at the lowest levels. Intel SDE uses
another tool for dynamic execution, Pin [4], which drives the execution of a given
program. SDE’s ability to provide a dynamic count of all instructions executed and a
breakdown of all instructions for each function produces high granularity metadata
regarding program execution. To obtain a complete mix of functions, we only need
to run a binary of a given benchmark using the -mix flag, and Intel SDE provides
a complete list of instructions counts and each instruction categories (emulated). If
an ISA flag is not specified, Intel SDE defaults to the ISA emulation of the available
CPU. In this case, it is the NUMA nodes of Xeon E5-2690.

The instructions reported after emulating a program may differ by architecture,
and even the counts may differ by a small margin, e.g. an addition operation with
carrying. An (ADC) instruction can be executed in the first sample 20.5M times
globally, but in another sample, it may require 21M. Although the instruction count
discrepancy between samples can be significant when examining numbers alone, the
count varies considerably when running a program with different inputs or core
counts. For example, ADC instructions for Binarytrees with inputs of tree depth
21 and 22 that are emulated at 22 cores. The count differences between the two
samples are three executions for input size (depth) 22. however, the ADD instruction
executions for Binarytrees for 21 and 22 inputs for the precise core count are 40 and 90
billion. Therefore, it is expected that we will notice relative changes and differences
in instruction types whenever the core count changes or when program inputs vary.

As x86 assembly is backwards compatible, assembly instructions continue to grow
in number. As Intel’s SDE emulates instructions using x86 assembly language, the
number of instructions available to report can be significant. It would be unfeasible
to apply a fixed number of features or restrict a subset, as certain features may be
incompatible with one architecture but compatible with another.
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3.2 Benchmark Energy Profiling

3.2.1 Cache misses and Cache references

Cache miss and cache reference are two concepts that are tightly coupled in current
software execution. If a given computation needed to operate on a given data of any
shape, it will need to access that based on local-memory or cache, which is referred to
as a cache reference operation. When the data demanded is not available already in
the cache memory, the cache controller would need to fetch that specific data into the
cache to allow the computation to continue, this operation is referred to as cache miss.

Some computations are heavily reliant on the type of data they operate on, which
is why cache misses might increase in some software compared to others. When
assessing the cache misses of a group of selected benchmarks from the modelling
datasets like MatMult, we observe little to no effect of how the cache behaviour affects
energy consumption. For example for MatMult with input 2000, the sequential or
single core sample used energy of 2728.55 J with cache misses of 40477778, compared
to the 27-core sample which consumed 394.069 J and had cache misses of 110202575.
A similar case for MatMult 1500, where the single core sample had the lowest cache
miss count of 20409460 had energy consumption of 1238.54 J, similarly we see increase
in cache misses as we increase the number of cores used where the 27-core sample
results in cache misses of 62302263 and energy consumption of 174.157 J. As it seems
that PARSEC and Haskell’s Nofib models indeed did not include any of the cache-
miss/cache-reference in the final statistical models constructed which indicates the
lesser importance of these features.

3.2.2 Haskell Benchmarks

Results from the baseline energy results are visualised in Figures 3.1 3.7. The graphs
show speedups over the sequential execution times vs. total energy consumed in joules.
The black lines in the middle of each figure show the 28th core, and points after the
lines indicate the use of virtual and physical cores.

Parfib For Parfib (Figure 3.1), we set intervals to range from 50 to 56, providing
sequential execution times from 61.8 to 2018.3 s. We obtained near-linear speedups
when we used 28 physical cores (27x speedup for n = 56, and 26× speedup for n
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Figure 3.1: Parfib – Energy vs. speedup for Fibonacci numbers ranging from 50 to 56

= 50). The energy usage was tightly correlated with execution time and indirectly
with the speedup. When using virtual cores (beyond 28), although we still observed
increasing speedups, they were no longer linear; however, energy usage continued
to decline. When we reached 56 virtual cores, we observed maximum speedups
of 32.64× for n = 56 and 30.8× for n = 50. As we increased core count, we clearly
saw corresponding reductions in energy usage from a maximum of 66759.39 J on
one core to a minimum of 5453.28 J on 56 cores at n = 56, and from a maximum of
3831.94 J on one core to a minimum of 315.99 J on 56 cores at n = 50. This represents
just over a 12× reduction in energy usage when the complete machine was in use
in all cases. We thus effectively improved both performance and energy usage. The
reason for this counter-intuitive result is that energy usage is strongly correlated
with time: each active package consumed energy, even when no cores were running.
However, increasing the number of cores in use did increase the instantaneous power
consumption, and the corresponding increase in energy usage was greater than that
compensated for by the effect of the reduced execution time. Thus, the net result was
lower energy usage.
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Figure 3.2: SumEuler – Energy vs. speedup for intervals from 75K to 90K; chunk size
400

Sumeuler For Sumeuler (Figure 3.2), we set the intervals to range from 75K to 90K
with a chunk size of 400, providing sequential execution times from 17.8 to 595 s.
We once again obtained near linear speedups when we used the 28 physical cores
(22.45× for n = 90K and 22.01× for n = 75K), and we obtained speedup improvements
for virtual cores. With 56 virtual cores, we observed maximum speedups of 32.46×
for n = 90K and 30.95× for n = 75K. As before, as we increased the core count, there
were corresponding reductions in energy usage. Although the observed speedups
became slightly erratic as we used larger numbers of cores, energy usage decreased
consistently with the number of cores, from a maximum of 16084.77 J on one core
to a minimum of 1656.38 J on 56 cores at n = 90K, and from a maximum of 10964.95
J on one core to a minimum of 1159.46 J on 56 cores at n = 75K. This represents
an improvement in total energy usage of between 9.45× at n = 75K and 9.71× at
n = 90K. The differences between Parfib and Sumeuler suggest that energy usage
depends not just on execution times but also on application characteristics. Although
Parfib is essentially a pure integer calculation, Sumeuler also makes heavy use of data
structures, which incurs memory traffic costs.
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Figure 3.3: Nbody – Energy vs. speedup for numbers of bodies from 50K to 150K

Nbody For Nbody (Figure 3.3), we set the number of particles to range from 50K to
150K, providing sequential execution times from 12.15 to 389.4 s. We obtained good
speedups when we used 28 physical cores, although speedup was lower for smaller
problem sizes (22.39× for n = 150K and 16.64× for n = 50K). Speedups continued to
improve slightly when using virtual cores, but they were occasionally erratic. When
we reached 56 virtual cores, we observed maximum speedups of 24.77× for n =
150K and 14.98× for n = 50K. As we increased the core count, we also clearly saw
corresponding reductions in energy usage, from a maximum of 11385.90 J on one
core to a minimum of 1759.25 J on 56 cores at n = 150K (6.47× improvement), and
from a maximum of 1274.95 J on one core to a minimum of 272.72 J on 56 cores at n
= 50K (4.67× improvement). Nbody represents a class of problems that includes the
processing of large data structures and complex arithmetic. It is both larger and far
less regular than the previous two benchmarks. As before, energy usage reduced
consistently with core count for a given problem size.

DFT For DFT (Figure 3.4), we set the intervals to range from 2K to 6K with a seed
of 2, providing sequential execution times from 652 to 35.30 s. We observed good
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Figure 3.4: DFT – Energy vs. speedup for numbers of samples from 2K to 6K

speedups when we used 28 physical cores (19.31× for n = 6K and 21.30× for n =
2K). In contrast to the previous examples, speedups were lower for some problem
sizes, especially n = 4K, and we obtained our best speedups at n = 2K. We do not
have a good explanation for the speedup anomaly on 20 cores when n = 4K. This
is a problem for future study. Apart from the two smaller problem sizes, speedups
degraded when using virtual cores, and even for the smallest sizes, we observed
decreases in speedups when using the maximum number of cores. At 56 virtual cores,
we observed maximum speedups of 18.30× for n = 6K and 21.75× for n = 2K. Energy
usage decreased from a maximum of 18593 J on one core to 2946 J on 56 cores at n =
6K (6.31× improvement), and from a maximum of 700.38 J on one core to 76.16 J on
56 cores at n = 2K (9.19× improvement). Although there was a good correlation with
speedup for each problem size, in this case, energy usage flattened or even increased
as we increased core count. This reflects the reduction in speedup that we observed.

NQueens For NQueens (Figure 3.5), we set the number of queens to range from 13
to 16, providing sequential execution times from 573.1 to 55.5 s. Speedup followed a
curve, reaching 10.07× for n = 16 and 4.61 for n = 13 on 28 physical cores. Beyond
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Figure 3.5: NQueens – Energy vs. speedup for numbers of queens from 13 to 16

28 cores, we observed only minor improvements, or even degradations in speedup
(11.22× for n = 16 and 3.74× for n = 13 on 56 cores), and performance became erratic.
Energy usage reduced from a maximum of 17318.85 J on one core to 4948.31 J on 56
cores for 16 queens, and from a maximum of 45.01 J on one core to 34.23 J on 56 cores
for 13 queens. In the case of queens, energy usage increased with the use of virtual
cores, reflecting the fact that we were using more cores. Thus, there was increased
energy use; however, we did not obtain a performance advantage as execution time
increases.

Matmult For Matmult (Figure 3.6), we set the intervals to range from 1500 to 3K
with block-based processing and 10 blocks per cycle, providing sequential execution
times from 304.8 to 14.8 s. We obtained good speedups on the 28 physical cores
(18.74× for n = 3K and 12.9× for n = 1500). Speedup improvements did not directly
correlate with increased problem size, however. We observed better speedups for n
= 2K than for n = 2500. Virtual cores gave some speedup improvements (20.5x for
n = 3K and 11.30× for n = 1500 on 56 cores), but there was a clear sawtooth effect,
which may have been due to problem decomposition and mapping onto cores. As we
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Figure 3.6: MatMult – Energy vs. speedup for matrix sizes from 1500 to 3000

increased the core count, we clearly saw corresponding reductions in energy usage,
from a maximum of 9771.1 J on one core to 1312.5 J on 56 cores at n = 3K (7.44×
improvement) and from a maximum of 1100.5 J on one core to 225.5 J on 56 cores at
n = 1500. (4.88× improvement). For this benchmark, energy usage was much more
erratic than with the previous examples. Unlike NQueens, although energy usage
improvements declined as the core count increases, there was no worsening in energy
usage with larger core counts.

Minimax For Minimax (Figure 3.7), we set solution intervals to range from 6 to 12
with a depth size of 4. This application quickly saturated the cores, reaching a peak
9.04× speedup on 16 cores for n = 8, levelling off to an 8.4× speedup for n = 12
and a 8.5× speedup for n = 6 on 28 physical cores. Then, it declined with increased
numbers of virtual cores, apart from the very last results on 56 cores, where we saw
an expected performance improvement. Energy usage reduced from a maximum
of 24648.2 J on one core to a minimum of 5263.8 J on 15 cores for n = 12, and from
a maximum of 223.4 J on one core to a minimum of 38.96 J on 14 cores (5.73×
improvement) at n = 6, before increasing to about 54 cores and finally declining
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Figure 3.7: Minimax – Energy vs. speedup for numbers of solutions from 6 to 12 with
depth of 4

slightly. There was once again a correlation with the speedup results obtained.

Ray The other two benchmarks, Ray (Figure 3.8) and Partree (Figure 3.9), showed
different results. For Ray (Figure 3.8), we set the detail/resolution to range from 1300
to 1600. Although we observed some speedups on 3–6 cores in all cases (up to
1.69× the sequential case), performance degraded thereafter to a real slowdown, and
there was a curious reduction in performance when we used two cores; there was a
discontinuity at 10 cores. As we increased the core count, we clearly saw the opposite
effect of the former examples: energy usage increased rather than decreased as the
number of cores increased. Ultimately, it reached a maximum of 9535.86 J for 1600
details on 55 cores. Investigation of our samples shows that this benchmark had
significant levels of garbage collection. This behaviour reveals additional factors that
may impact energy consumption.

In all cases measured, we obtained non-linear performance decreases when we
used 28 physical cores (0.102 for n = 1600 and 0.108 for n = 1300). When using virtual
cores, however, the speedups continued to decrease quickly as the number of cores
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Figure 3.8: Ray – Energy vs. speedup for numbers of solutions from 1300 to 1600

increased. When we reached 56 virtual cores, we observed a maximum slowdown of
0.060 for n = 1600 and 0.062 for n = 1300). As we increased the core count, we also
clearly saw the opposite effect of the former examples where energy usage increased
with the number of cores.

Partree For Partree (Figure 3.9), we set the number of tree nodes to range from 600
to 800 with the number of workers per node set to 350. Although the performance
continued to improve as we added physical cores (up to a maximum of 4.47×
speedup for 28 cores for 650 tree nodes), the speedups decreased as more virtual
cores were added. Although the energy usage initially decreased as we added cores
(from 9285.73 J on one core for 800 tree nodes), beyond six cores, the energy usage
plateaued before increasing beyond 12 cores. The energy usage was particularly
unstable when virtual cores were used.

PRSA In parallel RSA (Figure 3.10), we saw a similar pattern to that which Minimax
demonstrated. The inputs from n = 2M to n = 9M kept improving performance;
consequently, energy consumption improved. From sequential execution forward, the
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Figure 3.9: Minimax – Energy vs. speedup for numbers of solutions from 600 to 800
with chunk size of 350

benchmark improved energy consumption for all inputs with peak speedups ranging
from 11.77× for n = 2M up to 12.97× for n = 9M. The lowest energy consumption
was achieved by n = 2M at 82.91 J on 24 cores, which is understandable as other
inputs were relatively more significant, such as n = 6M at 244.22 J on 17 cores, n =
8M at 325.10 J on 21 cores, and n = 9M at 364.45 J on 18 cores. In the case of virtual
cores, all input sizes underperformed after 28 cores; this effect was noticeable as the
speedups declined after virtual cores were used.

QuickSort Parallel Quicksort (Figure 3.11) demonstrated a similar pattern to Ray
Tracing. The performance gains were made early in the low core count at four-to-five
cores for the inputs used. On average, the energy readings were lower for sequential
execution at 28 cores, e.g. where n = 500K was 48.88 J, n = 1M at 123.10 J, n = 3M at
457.9 J, and n = 6M at 994 J. The energy readings improved as the speedup gains were
made. The peak speedup was 1.47× for n = 500K at five cores, followed by a 1.29×–
1.41× speedup on four cores for the remaining inputs. Again a noticeable pattern
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Figure 3.10: PRSA – Energy vs. speedup for numbers of Parallel RSA from 2 to 9M

was demonstrated after the number of cores grew such that the energy consumption
only increased, peaking at 13659.09 J for n = 6M on 49 cores.

3.2.3 C/C++ Benchmarks

Blackscholes Blackscholes (Figure 3.12) provides typical performance characteristics
for a well-tuned and optimised parallel program. The different implementations of
Pthreads, OpenMP and TBB improved energy consumption of 28 cores with minimal
differences, with TBB at 1095 J, Pthreads at 1047 J and OpenMP at 1086.1 J. The same
occurred at the lowest energy consumption point for all libraries at 55 cores. In all
implementations, the speedups were consistent, where OpenMP achieved the best
speedup at 6.34× on 56 cores, TBB achieved 6.14× on 56 cores and Pthreads achieved
6.30× on 55 cores.

Bodytrack The different implementations in Bodytrack (Figure 3.13) demonstrated
improved performance with varying speedup gains. On 28 cores, TBB consumed
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Figure 3.11: Quicksort – Energy vs. speedup for numbers of Quicksort from 500K to
6M

5555.54 J, Pthreads consumed 5770.04 J and OpenMP 5877.93 J. Until the 28th core,
all parallel implementations had a near-linear improvement in speedup gains until
virtual cores were employed. Then, both TBB and Pthreads had lower performance
gains, with Pthreads having stagnant performance throughout, achieving 17.10× on
49 cores, which is the lowest energy consumption point at an average of 5711.71 J.
TBB saw the best improvements on 54 cores with speedups peaking at 18.65× and
energy consumption at 5361.30 J. Unusual behaviour was seen with OpenMP, where
the speedups dropped sharply at 29 cores (28 physical, 1 virtual). The sharp drop
was also reflected by a rise in energy consumption on core 29. Nevertheless, OpenMP
continued to benefit from the virtual cores, peaking its speedup at 20.80× on 56 cores
and consuming 5526.93 J.

Swaptions Although Swaptions (Figure 3.14) proved to be performer, its perform-
ance dropped at first when using the virtual cores. When considering speedups, the
gains were made sequentially to a peak speedup at 26 cores at 16.23× with an energy
consumption of 436.2 J using Pthreads. Its speedup was 16.22× at 27 cores with an
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Figure 3.12: Blackscholes – Energy vs. speedup for Blackscholes for largest dataset on
Pthreads, OpenMP and TBB
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Figure 3.13: Bodytrack – Energy vs. speedup for Bodytrack for largest scene using
Pthreads, OpenMP and TBB
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Figure 3.14: Swaptions – Energy vs. speedup for Swaptions for largest dataset using
Pthreads and TBB
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Figure 3.15: Ferret – Energy vs. speedup for Ferret for largest dataset using Pthreads
and TBB
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energy consumption of 430.13 J using TBB. The improvement in energy and speedups
did not continue, though, as both parallel libraries had degraded performance after
the introduction of virtual cores. Pthreads had unusually poor speedups with virtual
cores, resulting in higher energy readings, e.g. at 56 cores, 619.04 J, speedup declining
to 10x.

Ferret With Ferret (Figure 3.15), we observed a consistent and improved perform-
ance as the number of cores increased. Energy consumption and speedups both
showed steady improvement. However, the improvements appeared to plateau at
19 and 18 cores for Pthreads and TBB, respectively. The lowest energy consumption
varied between those two, where TBB achieved the least energy consumed at 13
cores with 345.06 J and 9.20× speedup, whereas Pthreads could not reach its lowest
energy until 17 cores, consuming 356.94 J with 9.33× speedup. Virtual cores had
minimal effect on speedups with minor drops, e.g. 56 cores consuming 365.75 J with
a speedup of 9.08× for Pthreads.

Summary of results: Although all benchmarks showed reductions in energy with
the use of increased core counts, there were some significant differences in behaviour.
As discussed, it is clear that there was a tight connection between speedup/execution
time and energy usage (i.e. energy ∝ speedup in all cases measured). Different
applications may have characteristics that impact energy usage, but there is not
necessarily a direct correlation with increasing problem sizes within applications.

3.2.4 Effect of Core Affinity

To study the effects of scheduling consistency, we tested the impact of using GHC’s
core affinity flag, -qa, on each benchmarks. This flag pins parallel threads to specific
cores. We anticipated that using core affinity may improve energy usage by avoiding
costly cache flushes and context switches. However, we observed speedups and
energy consumptions that were broadly similar, with and without affinity. Moreover,
both performance and energy usage exhibited irregular behaviours and were more
erratic when core affinity was enabled. For example, although Nbody demonstrated
lower energy on average when sampled with core affinity, the total speedup gains
were much lower compared with the sample without core affinity. Apart from
NQueens, the single-core/sequential execution had a lower energy consumption than
the sample without core affinity, which may have been related to anomalies in the
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sample causing the lower average. The complete plots for the core affinity samples
can be found in Appendix C.

Although it seems counter-intuitive, we concluded that there was no overall
energy advantage to using core affinity settings for the benchmarks. We conjecture
that the negative effect on scheduling performance outweighs the benefits of reduced
cache flushes and context switches. Therefore, the use of core affinity was avoided in
upcoming experiments.

3.3 Energy Models Construction

In the benchmark sampling phase, the samples collected contained a relatively large
number of features, and most were shared. However, several were dynamically
generated and were benchmark-specific. For example, one benchmark triggered
a set of Intel Advanced Vector Extensions 512-bit (AVX-512) instructions, whereas
in another sample program, only one of the streaming SIMD extensions (SSE) in-
struction sets was used. Another example occurred when a program used a system
call specific to an input/output task where other programs do not need such calls.
The dynamic nature of program features made it challenging to understand shared
features, especially when considering that certain features are specific to the ISA of a
given CPU.

When identifying the essential features, we must consider the context in which we
would plan to construct the model. For example, a model cannot have a negative en-
ergy prediction, as it is meaningless. Therefore, controlling model coefficients to retain
positive weight values will ensure that new samples do not make negative predictions.

In classical multiple regression, the goal is to construct a model that minimises
the error of fitted or predicted values, i.e. samples of new unseen programs. In
minimising the error, we need a model that is as accurate as possible. Although
multiple regression can provide the means of constructing a model with a large set
of variables, the overall model is set to predict samples without bounds, i.e. the
values can take any number from the range (-infinity–infinity). It is possible, however,
to avoid unwanted effects with certain regression transformations, e.g. logarithmic
functions. When multiple regression was applied to the dataset collected from the
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Haskell and PARSEC modelling sets, the model failed to deliver acceptable accuracy.
When examining the ability of a linear model to provide predictions, we construct a
linear model using the complete set of features from the modelling sets of PARSEC
and Haskell, even when using the complete set of features in the model. The results of
all samples from the prediction set (TBB, OpenMP, Pthread) and Haskell have shown
a substantial inability for such models to provide any helpful energy estimations, as
can be seen in all the plots in Appendix F. With a few exceptions, such as GHC’s
Prime Decomposition and Spectralnorm 8.5k, the provided energy estimates were
off by high margins and, in most cases, illogical, as in the case of negative energy
consumption. We use several metrics to assess multiple regression models, but the
most essential is R2 (Equation 3.3). The sum squared regression (SSR) refers to the
sum of squared difference between estimated or fitted values, ŷi and the observed
values of the response across the sample yi. The total sum of squares (SST) is the sum
of squared differences between the observed values of yi and the mean or average
across ȳ. When dividing both SSR and SST, we obtain a percentage of R2, which
helps explain the goodness of fit of a model, i.e. how much of the response variation
can be explained by the features. After multiple regressions, we had R2 = 14% in the
C/C++ set and R2 = 11% for the Haskell set, suggesting that multiple regression
could not infer the relationship between the response, y, and the features or variables,
x. Another metric to consider regression is RMSE, defined as the root mean-squared
error ,and described by (Equation 3.1). RMSE is the square of all fitted or predicted
values, ŷ, subtracted by observations, y, and divided by the total points in the sample,
which are then summed and square-rooted. RMSE provides a good measure of
prediction errors between the model and the observations (actual data points). In
the multiple regression model, the RMSE value of the C/C++ dataset was 648570290,
whereas that of the Haskell dataset was 5412.67. The total number of variables used
in constructing the multiple regression model was 280 with 280 observations for the
C/C++ dataset and 264 with 1092 observations for the Haskell dataset. The entire set
of features used to construct the various models are available in the online appendix 1.

Other algorithms, e.g. non-negative least squares, can achieve beta coefficient
control while minimising model errors. The following sections provide an overview
of regression models that demonstrated a robust and consistent behaviour with
multiple parallel programs from the benchmarks explored in Chapter 2. The models

1 github https://github.com/ymg/thesis
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will be constructed using the caret package [57] in the R language.

RMSE =

√√√√ n

∑
i=1

(
ŷi – yi

)2

n
(3.1)

R2 = 1 –
sum squared regression (SSR)

total sum of squares (SST)
, (3.2)

= 1 –
∑(yi – ŷi)

2

∑(yi – ȳ)2 . (3.3)

3.3.1 Non-Negative Least Squares (NNLS)

NNLS [60] is a regression model belonging to the family of least squares. The NNLS
model minimises the error values of fitted samples while having only positive β coef-
ficients in the regression model 3.4. X refers to a matrix of variables and observations,
β is the coefficient value and β̂ is a vector of coefficients with a constraint of β̂≥ 0.
y a vector of response values. ∥.∥2 is the L2 or Euclidean norm of a matrix. We
applied NNLS on the datasets collected from Haskell and C/C++ benchmarks. We
used 280 variables and 280 observations for the C/C++ modelling dataset and 264
for 1092 observations for Haskell’s modelling dataset. NNLS produced a sufficiently
accurate model with an R2 of 97.3% and an RMSE of 561.28 using the Haskell dataset.
The C/C++ dataset had an NNLS R2 of 96.3% and an RMSE of 942.15. The most
significant values varied between datasets, but many of the provided variables did
help improve the models. Therefore, the majority were set to zero by the NNLS
algorithm. When considering the remaining variables for each dataset, we saw only
a few influencing the models. In Table 3.1 on page 3.1, we see the results from the
Haskell NNLS model. Most variables with any weight were from the Intel SDE.
Therefore, the system calls did not affect the overall model construction. The most
significant variable in the model was the execution time or Total.Time. This provides
a clear correlation as the longer the program executes, the longer it consumes en-
ergy. Other variables, such as MOVHPD and MOVLPD, are instructions for moving
high/low packed double-precision floating-point values, which are part of the Streaming
SIMD Extensions 2 (SSE2) instruction extension; these were more important than
other variables.
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In contrast to Haskell, the C/C++ NNLS model (Table 3.2 on page 3.2) contained
more variables that predicted the overall energy consumption. Along with Total.Time,
the MMAP system call had a higher correlation with lower energy and other system
calls, such as Fast Userspace Mutex (futex) and read. MMAP is a system call that
maps files or devices to a memory address associated with an Input/Output (I/O)
operation. Futex is one way to apply a user space locking mechanism, which is
related to parallel programs accessing a single resource. Read is a system call that
reads bytes from a file descriptor, which is a method of reading from a file in a
Linux-based system. It is also worth mentioning that SYSCALL is an aggregate count
of all system calls made by the program, unlike the specific count of Perf where
system calls are broken down into specific types e.g. syscalls.sys_enter_futex. Since
Perf and Intel SDE are two different tools, it may be difficult to cluster exact features
from both tools without looking at specific sampling process, and even then each
tool serves a specific purpose like Perf providing system calls during execution while
Intel SDE is an emulation tool that provides x86 instruction counts.

β̂ = argmin∥y – Xβ∥2
2 (3.4)

3.3.2 Elastic-Net Regularised Generalised Linear Model
(GLMNET)

The Elastic-Net [111] regression model is one that applies a penalty to model features
that cannot help improving model accuracy. It combines two forms of regression mod-
els, the first being the least absolute shrinkage and selection operator (LASSO) [103],
also referred to as L1 regularisation. LASSO minimises the effect of coefficients
that provide low contributions to a model (near zero or zero). LASSO does this by
minimising the sum of the absolute values of the coefficients in a model. Ridge [40]
(also known as L2 regularisation) also performs regression with a shrinkage effect
on the coefficients, which penalises the sum of squares caused by regression (SSR)
(Equation 3.5) where ŷi is the fitted/predicted value for a given sample and the mean
of the response, ȳ. Elastic-Net balances LASSO and Ridge using λ (penalty factor)
and an α (alpha factor) to control when coefficients are set to have no effect in a
model while controlling the absolute value of the coefficients.
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Haskell
Variable Weight
Total.Time 3.103042 · 10+01

X.iprel.write 3.247744 · 10–06

X.mem.write.16 1.875508 · 10–06

X.isa.ext.SSE 1.103624 · 10–09

X.isa.set.SSE42 1.319413 · 10–10

X.category.LOGICAL_FP 1.144457 · 10–08

X.nop.ilen.9 2.875137 · 10–06

X.nop.ilen.10 2.477468 · 10–07

X.elements_i8_16 7.994750 · 10–10

X.dataxfer_fp_double_1 1.607577 · 10–09

CMOVNS 3.940728 · 10–06

CPUID 1.407745 · 10–11

IMUL 3.011265 · 10–09

INC_LOCK 4.148062 · 10–09

JS 1.915928 · 10–09

MOVAPS 6.849389 · 10–10

MOVDQU 6.865262 · 10–10

MOVHPD 1.662180 · 10–05

MOVLPD 7.002552 · 10–05

MOVSD_XMM 1.305229 · 10–09

PCMPEQB 6.943468 · 10–05

PSUBB 1.218494 · 10–08

SETNLE 1.884485 · 10–06

XGETBV 6.586630 · 10–09

XSAVEC 2.910658 · 10–09

Table 3.1: Haskell variable weights using NNLS, 24 out of 264 variables
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C/C++
Variable Weight
Total.Time 3.110768 · 10+01

syscalls.sys_enter_read 2.885613 · 10–04

syscalls.sys_enter_futex 2.459005 · 10–05

syscalls.sys_enter_rt_sigprocmask 8.933374 · 10–07

syscalls.sys_enter_mmap 2.866033 · 10–02

cycles 5.791863 · 10–11

cache.misses 6.013455 · 10–12

bus.cycles 9.499066 · 10–12

X.mem.write.56 1.210414 · 10+00

X.isa.ext.X87 1.619357 · 10–06

X.nop.ilen.6 7.189445 · 10–08

CQO 1.285586 · 10–09

INC 4.910007 · 10–08

JNB 6.016429 · 10–10

NEG 8.978607 · 10–09

RDTSC 1.949810 · 10–09

SBB 5.984788 · 10–09

SETNB 2.954172 · 10–08

SYSCALL 1.618947 · 10–09

VSUBSD 1.995836 · 10–09

XGETBV 1.745517 · 10–09

Table 3.2: C/C++ variable weights using NNLS, 20 variables out of 280

In Tables 3.3 and 3.4 on pages 65 and 66, the variable weights present a different
story to NNLS. GLMNET shows fewer features being used for the C/C++ model,
where no Perf metadata improve the model, i.e. the system calls were of no value,
unlike NNLS. Haskell offered a different story as the model features were comparable
to those of NNLS, where some instruction extensions were chosen in both: NNLS
and GLMNET. When considering the model assessment metrics, i.e. RMSE and R2,
GLMNET provided a set of lambda and alpha factors to improve the model over
several iterations. For C/C++, the best-tuned λ value was 394.29 with an α of 0.55,
which provided an RMSE of 564.30 and an R2 of 99.7%. The Haskell GLMNET model
had a λ value of 68.31 and 0.55 for an α factor, resulting in an RMSE of 803.88 and an
R2 of 93.9%.
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n

∑
i=1

(
ŷi – ȳ

)2 . (3.5)

C/C++
Variable Weight
Total.Time 2.893062 · 10+01

X.mem.read.1 2.572043 · 10–09

X.mem.read.4 1.271286 · 10–10

X.mem.read.16 2.667536 · 10–08

X.mem.write.4 1.292971 · 10–09

X.mem.read 1.367228 · 10–10

X.mem.write 8.471186 · 10–10

X.mem 1.367868 · 10–10

X.isa.ext.BASE 2.267633 · 10–11

X.isa.ext.LONGMODE 3.259578 · 10–10

X.isa.set.FAT_NOP 5.609084 · 10–09

X.category.LOGICAL 7.900707 · 10–11

X.ilen.5 1.426185 · 10–10

X.one.memops 2.407249 · 10–11

X.scale_1 8.105242 · 10–11

Table 3.3: C/C++ variable weights using GLMNET, 14 variables out of 280

3.3.3 Parallel Random Forest (parRF)

Random forest [11] is a machine learning algorithm that can be applied to regression
and classification problems. The algorithm handles high variation in response vari-
ables, where some samples may have unexpected estimates of y values given a set
of input. The algorithm creates smaller subsets from all data points in the dataset,
followed by constructing decision trees using the subset data points. For example, the
variables/predictors form several trees consisting of nodes, with each representing
a variable with a condition on the value of the given variable. The algorithm then
generates a given number of trees, with each having an output corresponding to
the response variable or y. When applied to regression, the output of all the trees is
averaged. The algorithm has two parameters with which to optimise results: mtry

and ntree. The mtry splits the number of variables in a dataset, ntree represents the
number of trees generated to construct a model. The Haskell model had an R2 of
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Haskell
Variable Weight
Total.Time 3.069262 · 10+01

X.iprel.write 3.202282 · 10–06

X.mem.read.8 8.816581 · 10–11

X.mem.write.16 6.910736 · 10–06

X.mem.read 4.858719 · 10–10

X.isa.set.SSE 9.329616 · 10–10

X.category.LOGICAL 3.242863 · 10–10

X.category.POP 1.371262 · 10–10

X.ilen.6 6.738369 · 10–11

X.nop.ilen.5 –6.963154 · 10–07

X.nop.ilen.9 3.263356 · 10–06

X.scalar.simd 3.873391 · 10–12

X.legacy.prefixes.3 1.734396 · 10–10

X.disp_only 1.584069 · 10–10

X.dataxfer_fp_single_1 8.987955 · 10–13

X.dataxfer_fp_single_4 –2.301403 · 10–06

DIVSD –1.567484 · 10–06

INC –3.445704 · 10–08

JB –8.148723 · 10–11

LEAVE –1.746571 · 10–12

MOV –7.946631 · 10–11

MOVLPD 2.224406 · 10–05

NEG –2.272617 · 10–08

PSUBB 1.853427 · 10–08

RET_NEAR 2.033985 · 10–09

TEST –3.138661 · 10–09

XGETBV 3.132138 · 10–09

XSAVEC 3.394814 · 10–10

Table 3.4: Haskell variable weights using GLMNET, 27 variables out of 264
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87.7% with an RMSE of 1389.03 for a mtry 133. The C/C++ model had an R2 of 96.0%
and an RMSE of 1378.56 for the best tune, which was mtry 280.

Random forests provide an importance metric to help users understand the signi-
ficance of predictors in a dataset. The Importance values of the predictors/variables
for each dataset were far from similar. The C/C++ dataset showed that Total.Time

was the highest among predictors, followed by X.legacy.prefixes.1, an instruction ex-
tension for prefixes for a group of instructions. For the Haskell model, X.mem.read.1

was the most crucial predictor, whereas Total.Time came in second.

3.4 Model Predictions

During the prediction phase, we used benchmarks of the third category, which have
an equivalent implementation in both languages, enabling the comparison of predict-
ive abilities in Haskell and C/C++ model construction.

C/C++ sampling was performed for all parallel frameworks: TBB, OpenMP and
Pthreads. Benchmark sampling was done in a single pass for energy, Intel SDE
instruction count and Perf’s system calls. During the sampling process, we sampled
energy at different CPU frequency levels: 1.2, 1.4, 1.8, 2.1 and 2.6 GHz. In all samples,
we predicted energy consumption for cores 1st–28th. Virtual cores theoretically cannot
draw more power than the CPU design specification suggests, which translates to
energy consumption. We used mean absolute percentage error (MAPE) to assess
the prediction results and the plots showing the predictions for each input and
benchmark. MAPE in (Equation 3.6) is the sum of absolute values of individual
energy points minus yi from the predicted/fitted energy values, ŷi, divided by actual
observation, yi, and converted to a percentage based on sample size. The complete
energy heatmap profiles can be found in Appendix D.

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi – ŷi
yi

∣∣∣∣ . (3.6)

3.4.1 Haskell

In the Haskell sample, we observed a variation at all levels when applying the pre-
dictive models. In Table 3.5 on page 75, we see MAPE accuracy levels for NNLS at
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the lowest point among all other models. Although some benchmarks showed irreg-
ularity in energy consumption, e.g. Binarytrees and Prime Decomposition, NNLS
predictions were near the actual consumption for some benchmarks, such as Spectral
norm. GLMNET and Parallel Random Forest showed similar prediction patterns to
NNLS in some benchmarks, such as Prime Decomposition and Binarytrees. However,
in Fasta, NNLS clearly provided more realistic predictions, although the energy
consumption numbers were low. In Spectral-norm, GLMNET failed to provide any
valuable predictions. The model produced negative energy consumption, which may
have been caused by the negative coefficients having a higher model impact.

When we consider the prediction figures with MAPE values, especially those with
values higher than 100%, we see that the difference is insignificant. For example, in all
Fasta samples in Figures 3.20 to 3.23 pages 71 to 72, the predictions were off by several
tens of joules, indicating a considerable error. Nonetheless, when we consider that
the actual energy consumption was near 50 J, both NNLS and GLMNET were able
to predict the energy consumption curve, suggesting it may be possible to improve
the model. Another issue is related to the peculiar spikes, as in Binarytrees, with
input size of 22 in Figure 3.18 Page 70, which showed inconsistent energy prediction
at point 24. The sharp rise caused an error that may have contributed to the overall
MAPE increase.

3.4.2 C/C++ (OpenMP, TBB and Pthreads)

The C/C++ sample demonstrated varying levels of accuracy across parallel libraries.
In Table 3.8 Page 85, except for Spectral norm, the POSIX thread implementations
demonstrated the most durable ability to minimise mean error. Pthread MAPE values,
compared with TBB and OpenMP, had overall lower error averages (Tables 3.6 and 3.7
Pages 83 and 84). For example, random forest demonstrated high error values in
all three implementations; however, Pthreads was lowest apart from Binarytrees in
OpenMP. Notably, in all predictions, there was difficulty in predicting low-energy
consumption cases. Other internal library implementations, e.g. OpenMP and TBB,
may have scheduling and additional parallelism capabilities whose controls affect the
total instruction counts, resulting in inaccurate predictions.

The Figures 3.38 to 3.41 pages 81 to 86 show various levels of accuracy. The
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Figure 3.16: Binarytrees – Energy consumption for input 20 for models NNLS, parRF
and GLMNET
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Figure 3.17: Binarytrees – Energy consumption for input 21 for models NNLS, parRF
and GLMNET
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Figure 3.18: Binarytrees – Energy consumption for input 22 for models NNLS, parRF
and GLMNET
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Figure 3.19: Binarytrees – Energy consumption for input 23 for models NNLS, parRF
and GLMNET
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Figure 3.20: Fasta – Energy consumption for input 900K for models NNLS, parRF and
GLMNET
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Figure 3.21: Fasta – Energy consumption for input 1M for models NNLS, parRF and
GLMNET
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Figure 3.22: Fasta – Energy consumption for input 1.1M for models NNLS, parRF and
GLMNET
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Figure 3.23: Fasta – Energy consumption for input 1.2M for models NNLS, parRF and
GLMNET
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Figure 3.24: Prime Decomposition – Energy consumption for multiple inputs for models
NNLS, parRF and GLMNET
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Figure 3.25: Spectral-norm – Energy consumption for input 8.5K for models NNLS and
parRF
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Figure 3.26: Spectral-norm – Energy consumption for input 9.5K for models NNLS and
parRF
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Figure 3.27: Spectral-norm – Energy consumption for input 10.5K for models NNLS
and parRF
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NNLS
Benchmark Input Size MAPE

Binarytrees

20 11.52%
21 17.93%
22 19.27%
23 18.22%

Fasta

900k 18.66%
1M 13.83%

1.1M 11.07%
1.2M 12.73%

Prime Decompos-
ition Multi 30.52%

Spectral-norm

8.5k 9.20%
9.5k 10.18%

10.5k 11.71%
11.5k 10.59%

GLMNET
Benchmark Input Size MAPE

Binarytrees

20 40.25%
21 16.42%
22 16.38%
23 17.46%

Fasta

900k 349.93%
1M 314.36%

1.1M 277.92%
1.2M 269.81%

Prime Decom-
position Multi 14.18%

Spectral-norm

8.5k 2347.55%
9.5k 2350.41%

10.5k 2315.16%
11.5k 2309.59%

Random Forest
Benchmark Input Size MAPE

Binarytrees

20 29.46%
21 13.79%
22 15.80%
23 10.44%

Fasta

900k 590.12%
1M 522.37%

1.1M 448.90%
1.2M 424.20%

Prime Decom-
position Multi 15.76%

Spectral-norm

8.5k 28.35%
9.5k 18.72%

10.5k 13.20%
11.5k 7.65%

Table 3.5: MAPE percentages for NNLS, GLMNET and parRF for Haskell sample
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Figure 3.28: Spectral-norm – Energy consumption for input 11.5K for models NNLS
and parRF

exceptionally accurate levels of NNLS exemplify the model’s ability to accurately
predict total energy consumed over a sequence of cores. However, this was an
OpenMP-specific case, as both TBB and Pthreads had error margins larger than
OpenMP. NNLS also showed close energy predictions in small energy consumption
cases, e.g. OpenMP’s version of Fasta, where the total energy consumed was around
1.2–3.9 J. Although random forest predicted the energy curve to some extent, the
error margins were vast, and the energy consumption difference was up to 1400 J.

Apart from Binarytrees, the TBB versions of the benchmarks had small energy
footprints, making energy predictions less accurate. In Binarytrees, we observed
that most models underpredicted energy consumption, suggesting that the trained
models may benefit from more extensive training that would include missing features,
such as those used by TBB. Pthreads also showed similar cases to TBB, regarding
low energy consumptions in Fasta, Prime Decomposition and Spectral norm. For
Binarytrees, we observed that all inputs fluctuated in terms of energy consumption,
which differs from other benchmarks, where energy consumption was reduced with
an increasing number of cores. The remaining predictions and actual comparison is
available in Appendix E.
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Figure 3.29: Binarytrees – Energy consumption for input 20 for models NNLS, parRF
and GLMNET
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Figure 3.30: Binarytrees – Energy consumption for input 21 for models NNLS, parRF
and GLMNET
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Figure 3.31: Binarytrees – Energy consumption for input 22 for models NNLS, parRF
and GLMNET
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Figure 3.32: Binarytrees – Energy consumption for input 23 for models NNLS, parRF
and GLMNET
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Figure 3.33: Fasta – Energy consumption for input 900K for models NNLS, parRF and
GLMNET
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Figure 3.34: Fasta – Energy consumption for input 1M for models NNLS, parRF and
GLMNET
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Figure 3.35: Fasta – Energy consumption for input 1.1M for models NNLS, parRF and
GLMNET
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Figure 3.36: Fasta – Energy consumption for input 1.2M for models NNLS, parRF and
GLMNET
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Figure 3.37: Prime Decomposition – Energy consumption for multiple inputs for models
NNLS, parRF and GLMNET
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Figure 3.38: Spectral-norm – Energy consumption for input 8.5K for models NNLS and
parRF
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Figure 3.39: Spectral-norm – Energy consumption for input 9.5K for models NNLS and
parRF
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Figure 3.40: Spectral-norm – Energy consumption for input 10.5K for models NNLS
and parRF
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NNLS
Benchmark Input Size MAPE

Binarytrees

20 402.90%
21 198.53%
22 75.20%
23 28.65%

Fasta

900k 1589.53%
1M 1483.55%

1.1M 1443.98%
1.2M 1315.13%

Prime Decom-
position Multi 1743.52%

Spectral-norm

8.5k 3.94%
9.5k 6.30%
10.5k 12.03%
11.5k 17.59%

GLMNET
Benchmark Input Size MAPE

Binarytrees

20 673.37%
21 343.34%
22 144.87%
23 69.45%

Fasta

900k 10034.59%
1M 9389.18%

1.1M 9115.23%
1.2M 8352.95%

Prime Decom-
position Multi 13008.28%

Spectral-norm

8.5k 569.39%
9.5k 513.63%

10.5k 480.09%
11.5k 443.75%

Random Forest
Benchmark Input Size MAPE

Binarytrees

20 4239.52%
21 2125.67%
22 876.16%
23 392.83%

Fasta

900k 66416.37%
1M 62184.39%

1.1M 60369.89%
1.2M 55366.48%

Prime Decom-
position Multi 86089.05%

Spectral-norm

8.5k 1904.51%
9.5k 1517.65%
10.5k 1252.97%
11.5k 1023.13%

Table 3.6: MAPE percentages for NNLS, GLMNET and parRF for OpenMP sample

83



CHAPTER 3. ENERGY MODELLING AND PREDICTION

NNLS
Benchmark Input Size MAPE

Binarytrees

20 20.18%
21 28.01%
22 30.09%
23 29.02%

Fasta

900k 572.26%
1M 505.67%

1.1M 408.19%
1.2M 366.74%

Prime Decom-
position Multi 4162.56%

Spectral-norm

8.5k 337.66%
9.5k 335.87%
10.5k 330.78%
11.5k 339.06%

GLMNET
Benchmark Input Size MAPE

Binarytrees

20 10.06%
21 17.79%
22 18.83%
23 17.00%

Fasta

900k 771.73%
1M 697.06%

1.1M 590.09%
1.2M 537.01%

Prime Decom-
position Multi 6674.32%

Spectral-norm

8.5k 363.68%
9.5k 361.69%

10.5k 357.66%
11.5k 363.82%

Random Forest
Benchmark Input Size MAPE

Binarytrees

20 128.13%
21 36.57%
22 12.51%
23 13.61%

Fasta

900k 5268.52%
1M 4780.16%

1.1M 4094.90%
1.2M 3747.51%

Prime Decom-
position Multi 44370.97%

Spectral-norm

8.5k 2491.51%
9.5k 2480.45%
10.5k 2455.45%
11.5k 2492.14%

Table 3.7: MAPE percentages for NNLS, GLMNET and parRF for TBB sample
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NNLS
Benchmark Input Size MAPE

Binarytrees

20 21.49%
21 24.63%
22 28.86%
23 29.11%

Fasta

900k 1431.25%
1M 1368.91%

1.1M 1276.31%
1.2M 1173.77%

Prime Decom-
position Multi 1672.44%

Spectral-norm

8.5k 2164.73%
9.5k 2176.45%
10.5k 2158.48%
11.5k 2125.39%

GLMNET
Benchmark Input Size MAPE

Binarytrees

20 24.55%
21 1.50%
22 11.11%
23 15.03%

Fasta

900k 10717.09%
1M 10269.88%

1.1M 9619.40%
1.2M 8881.68%

Prime Decom-
position Multi 4325.13%

Spectral-norm

8.5k 4106.57%
9.5k 4131.76%

10.5k 4093.77%
11.5k 4032.63%

Random Forest
Benchmark Input Size MAPE

Binarytrees

20 150.84%
21 166.56%
22 76.93%
23 5.97%

Fasta

900k 33975.54%
1M 32604.81%

1.1M 30425.34%
1.2M 28106.69%

Prime Decom-
position Multi 28945.50%

Spectral-norm

8.5k 27405.06%
9.5k 27579.39%
10.5k 27330.07%
11.5k 26920.53%

Table 3.8: MAPE percentages for NNLS, GLMNET and parRF for Pthreads sample
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Figure 3.41: Spectral-norm – Energy consumption for input 11.5K for models NNLS
and parRF
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3.5. EFFECT OF REDUCING CLOCK FREQUENCY ON ENERGY CONSUMPTION

3.5 Effect of Reducing Clock Frequency on Energy

Consumption

In the experiments performed thus far, we used the maximum clock frequency avail-
able to our system, a stable 2.6 GHz, for Haskell and PARSEC modelling benchmarks.
However, the power drawn by a CPU is proportional to the cube of its clock frequency;
thus, we anticipate that we can further reduce energy usage for each benchmark by
simply reducing the clock speed. Rather than purchasing additional testbed machines,
we used the Linux governor to set the clock frequency for all cores to one of several
fixed values: 1.2 (the minimum), 1.4, 1.8 and 2.1 GHz. The results obtained for the
benchmarks from 1.8–2.6 GHz are provided in Appendix B. Notably, they provide
a consistent picture. Each graph of lower clock frequency has a similar shape to
that of the benchmarks at 2.6 GHz, showing remarkable consistency. However, we
observed that the energy usage increased when we used some lower clock frequencies. For
example, for SumEuler, the maximum energy usage was 18708 J at 2.6 GHz, but it
was 22457 J at 1.2 GHz. The total energy usage was only lower at 2.1 GHz. A similar
story holds for the other benchmarks. Although in some cases, e.g. MatMult and
NQueens, we saw that the least energy was used at 2.6 GHz. As with our previous
scalability experiments, we concluded that the effect of increasing the execution time
outweighed the benefits of reducing clock frequency. For the architecture that is
in focus, of the frequencies considered, 2.1 GHz is the best choice for most bench-
marks, given its least total energy usage. We presume that the processor has been
optimised to run at this or a similar frequency; higher clock frequencies may, for
example, generate additional heat losses. We conclude that the clock frequency is
a significant factor in determining energy usage, though not precisely in the way
that we anticipated. Significant further experimentation is needed to determine the
optimal clock frequency and to provide measurements that include it as part of our
overall energy model. Nevertheless, the consistency of each graph suggests that the
clock frequency is an essential scaling factor that does not affect model construction
fundamentally. When adjusting the frequency of 2×NUMA nodes, a common energy
consumption pattern appears in our test environment. Presumably, the lower the
frequency, the more energy consumed by the application, as it executes for longer
time. However, in one case, this does not hold. We still found the same pattern
of higher energy consumption, beginning from the sequential execution onwards,
except when running 56 cores at 2.1 GHz, where the general theme appeared to be
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lower energy consumption by several thousand joules. Additionally, the fact that
we saw scalability patterns maintained in all frequencies supports that performance
improvements can enhance energy consumption, regardless of CPU frequency.

A similar case to Haskell’s frequency effect was observed in C/C++ benchmarks.
The multiple frequency values impacted the overall energy consumption with lower
frequency values increasing the total time, thus increasing the energy consumed.
The tradeoff effect between energy consumption and time was not always consistent,
as we observed specific benchmarks providing larger energy reductions when the
execution time was only slightly increased.

For example, Blackscholes in all implementations showed that parallel speedups
were maintained between 5× and 6× when comparing 2.1 and 2.6 GHz. The energy
and execution time effect was different, however. In Blackscholes, we observed a con-
sistent 20 to 25% increase in time where all implementations showed execution times
increasing by 24 to 30 s. When considering the energy differences of Blackscholes,
the decreases were 21% at 2.1 GHz, where the energy values were reduced from an
average of 983 to 771 J across all implementations. Another example is Bodytrack,
with which the average execution time increased from 24 to 38%, and the execution
time varied between 66 to 81 s for 2.6 GHz and 83 to 112 s for 2.1 GHz. The Bodytrack
energy reductions ranged from 19 to 21%, where total energy consumed varied
between 5361 and 5711 J for 2.6 GHz and 4268 to 4503 J. The frequency effect on
both Ferret and Swaptions had a poor ratio of energy reductions to execution time
increase, as both benchmarks had short execution times.

In some instances, the increase in execution time can be harmful when running
code. However, in a scenario where energy control supersedes execution time, it may
be essential to find minimal energy consumption at the cost of other factors, such as
a minor increase in execution time.

3.6 Summary

This chapter investigated the energy usage for parallel Haskell and C/C++ bench-
marks. We used three sets of benchmarks, with one having equivalent implementation
in both Haskell and C/C++.
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We found a strong correlation between energy usage and execution time for the
benchmarks studied. We also found that using more processor cores can improve
energy usage. In the Haskell dataset, power and CPU utilisation (GHC productivity)
can significantly impact energy usage. Benchmarks with insignificant average power
and productivity levels can have poor energy usage. Thus, increased performance
may be beneficial for energy usage and execution time.

Based on our experimental results, we used NNLS, GLMNET and random forest
to construct language-specific and generic energy models that can predict an applica-
tion’s energy usage on our experimental system for varying input sizes. Although
we obtained good results with NNLS, some benchmarks challenged GLMNET and
random forest models. Finally, we investigated the effects of core affinity on the
Haskell dataset by pinning threads to specific cores and varying overall clock fre-
quencies on energy usage. We determined that core affinity slightly affected our
result consistency and have therefore avoided using it. Our investigation of clock
frequencies showed that lowering the clock frequency for each core can increase or
decrease total energy usage while also impacting execution times at varying levels.
Moreover, improved time performance implies improved energy usage because there
is a significant baseline energy cost incurred simply from using each processor pack-
age. However, it was determined that the maximum clock frequency did not yield
the best overall energy usage, specifically when considering the context in which a
small tradeoff in execution time can increase and energy consumption can be lowered,
which may be more substantial than reducing execution time by a small percentage.
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Chapter 4

Meta-Heuristic Analysis

In this chapter, we discuss the second approach to making energy consumption
estimates. Section 4.1 explains the problem to be solved and provides examples from
the experiments described in earlier chapters. Section 4.2 explains the meaning of
search space optimisation. Section 4.3 addresses the different meta-heuristic algorithms
and their strengths and weaknesses. Section 4.4 defines the probabilistic algorithms
used. Sections 4.5, 4.6 and 4.7 then formally define the meta-heuristic algorithms for
determining the energy consumption of Hill Climbing, ACO and Genetic Algorithm
computations, respectively.

4.1 Introduction

In Chapter 3, we reviewed an approach to predicting energy consumption for Haskell
programs. It used statistical modelling in which a model was constructed based
on data collected from program execution and hardware power draw. Practically,
however, the method is suboptimal because when input sizes differ, workload and
total energy consumption differs, resulting in inconsistent predictions.

For parallel multi-core applications, there are limited ways to predict energy con-
sumption. For example, we could attempt to estimate all possible energy outcomes
based on the available methods available for a program execution, e.g. every core,
input and frequency combination. However, this would be completely unreasonable.
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There are also statistical methods, such as the ones explored in Chapter 3, where we
collected an extensive sample from a specific machine using particular builds, i.e.
GHC version 7 or 8 with known compiled code versions. The process then involved
building a regression set that we tried specialising and generalising; however, we
ran into significant limitations resulting in inadequate predictions over multiple cases.

As implied by this chapter title, there are also meta-heuristic methods by which
we can draw solutions from a sizeable search space designed around a problem
model. Doing so would allow us to approach the problem as one of optimising the
output of a function in a given problem space using an objective function. Then,
we determine whether the given output is an optimal solution to the problem at hand.

Supposing we wish to design wheel rims for cars, as depicted in Figure 4.1 on
page 93. Instead of creating an infinite number of moulds to accommodate an infinite
number of designs, then testing each production rim for all possible car requirements,
we create a function that would account for the effects of each design feature. For

example, a hypothetical function like f(x) = (0.6x)2

2 + 2x, where f is the function that
we wish to optimise, and x is the feature value that, when optimised, would lead to
the desired result. Meta-heuristically, an algorithm would maximise or minimise the
function’s output.

Energy consumption can be irregular. That is, some programs may have improved
energy consumption when using more cores, meaning that energy efficiency improves
with increased parallelism. Other programs may waste more energy with more cores,
etc. This irregularity can be exacerbated by different architectures, whose instruction
sets handle data and operations differently. This effect impacts the number of Instruc-
tions Per Cycle (IPC)s as some processors perform better than others. Moreover, the
physical environment can impact hardware performance, e.g. temperature controls.
When considering the vast number of variables affecting energy consumption, meta-
heuristics may offer the only viable solution to reducing the amount of time needed
to assess the impact of many feature variables. Weise [108] surveyed and classified
most meta-heuristic algorithms at the time.

Section 4.2 explains the problem to be optimised from generic viewpoint, and
Section 4.3 examines general meta-heuristic examples used to solve the complex
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problem of this thesis. The complete implementations of the algorithms in this
chapter are available in the online appendix 1.

Figure 4.1: Example of different rim designs

4.2 Optimisation Problem

A Search Space requires a function, e.g. f(x) = 2x2, that we aim to optimise by
substituting x with feature values. We desire to reduce the number of trade-offs
as much as possible so that our solution has a high accuracy. Regarding energy
consumption, we consider a sequential program, which is compiled using a given
ISA, and it is then executed on a computer architecture. To estimate a program’s
energy consumption, we consider the following steps:

• Create an extensive dataset of program code feature values without modifying
the source, i.e. one optimisation per specific configuration.

• Derive a function of possible problem sizes and inputs for the program that will
allow precise direct or extrapolated energy measurements within the narrowest
upper and lower bounds. For example, knowing that a program executes
for a certain amount of time for a given input, it is essential to understand
how increasing the number of cores would affect the execution, resulting in a
function of time vs. core count.

• Provide an environment supporting consistent hardware performance, to the
extent that the smallest changes are controlled.

• Avoid altering the given clock frequency to eliminate unpredictable spikes in
power draw. For example, with Intel’s P-State driver, the chip can boost clock
frequency for limited periods for various benefits.

1 github https://github.com/ymg/thesis
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• Sample the program in question using multiple iterations to avoid inconsistent
measurements caused by outlying factors, e.g. hardware, OS and processes.

Although these steps will help narrow results in terms of predicted behaviours,
excluding unintended ones, it does not yet account for the complexities of multi-core
execution. For example, a single NUMA system with multiple packages would use
schedulers and kernel processes to manage threads in parallel. Hence, substantial
layers of complexity would complicate determining the best configuration for execut-
ing a given process. Additionally, if a given configuration can be reasoned about
for future versions of the same code executed in the same environment. Moreover,
changing clock frequencies add additional dimensions to the problem. All these
factors add up.

To understand the complexity of the search space, consider Equation 4.1 on page
95. In our tested examples in Chapter 3, we used five clock frequencies (F) in addition
to sampling each input (I) on each set of cores (C), which in the case of the testbed
used, was 56. If were to exhaust all configurations in the search space, this process
would take (C = 56) × (F = 5), resulting in 280 different combinations to explore.
Figure 4.2 on page 102 provides a heatmap representing the comparison of a set
of inputs, I = 4. The y-axis shows the number of cores used [2–28], and the x-axis
shows the problem sizes when sampling total energy for a Ray Tracing execution.
The bar at the right of the figure shows the scale of total energy consumed in every
case, and the colours correspond to the cells in the figure. We notice a pattern of low
energy consumption with cores of 10, 11 and 12 for all problem sizes sampled. As
the number of cores increased, energy consumption increases until the maximum
28 cores, translating to worst performance. Recall that our objective is to minimise
total energy consumed. Thus, to optimise the process and to ensure the lowest
energy consumption while ensuring the best performance, the use of parallelism is
out of the question (see previous chapters). Consider the Ray Tracing heatmap in
Figure 4.2. Then, Figure 4.5 on page 105 shows that Ray Tracing performance worsens
before it improves at around 11 cores, where we achieve lowest energy consumption
and lowest execution time. Then, it returns to poor performance onward until the
maximum number of cores. This behaviour is also seen in the Minimax in Figure 4.4
on page 104, where the large problem sizes (12 and 10) have peak performances for
energy between problem sizes 14 and 15; however, we also notice that execution time
plateaus around 16 cores with slight improvements in the case of problem size 12
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and an increase in the case of problem size 10.

For example, if we wanted to determine the optimal input for Ray Tracing to
save energy, we would first multiply 56 × 5 × 4 = 1120; this number represents all
possible search space combinations for Ray Tracing. Hence, to exhaust all possible
combinations, it would require 1120 × unit of time (milliseconds, seconds, minutes
and so on). Thus, if n-body took 1.5 min to finish, 28 h would be needed to search all
points in the space. If we were to use a more capable machine with multiple cores at
multiple clock frequencies, we could search a bigger space. Considering that modern
CPU architectures can have more than 100 cores on a single die (Ampere’s Altra Max
128-core), the exploration space quickly becomes massive.

Throughout the sampling process, the average power consumed by the bench-
marks fell far short of the maximum power draw. From Figure 4.3 on page 103, a
whisker plot of various frequencies and the base and max power draw of processors
are shown. The averages do not vary significantly at the lower end. However, after
testing for the highest power draw possible using workloads crafted specifically to
induce high power consumption. For example, using a special set of instruction set ex-
tensions such as AVX512 where the use of such extensions would induce non-typical
energy consumption. Using these workloads, we see notable variations between clock
frequencies. This fact turns out to be an essential aspect in determining optimal
solutions while maintaining parallelism.

C× F× I (4.1)

4.3 Deterministic Meta-Heuristics

Weise [108] presented an extensive and detailed survey of the general algorithms used
in meta-heuristic problem-solving. The primary classification described in his book
breaks meta-heuristics into two major categories, one being the set of deterministic
algorithms, some of which are described as follows:

State-space search :

• This problem is represented as a graph, G, and the states are nodes/vertices in
the graph. Edges between the vertices can have a specific direction with which
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to transition from one vertex to another.

• Edges can have paths, e.g. single direction, as shown in the blue rectangle in
Figure 4.6, where multiple vertices can be reached from different paths; however
no state can be reversed, e.g. tic-tac-toe. Alternatively, a multi-directional move
among multiple vertices is possible, as in the case of the graph shown in the red
rectangle in Figure 4.6, e.g. Travel Salesman problem or chess-piece movement.

• Searches always start from a start node and continues until a goal state is
reached using the lowest cost for the given problem.

In the previous algorithms, the nature of determinism does not always yield easy
or useful results. For example, branch and bound routines could grow exponentially,
wherein it would cease to provide answers in a suitable period. For such problems,
deterministic algorithms lack the flexibility of probabilistic algorithms, where a set
of general algorithms can provide optimal solutions in polynomial time. The next
section provides an overview of these algorithms.

4.4 Probabilistic Algorithms

There are many probabilistic algorithms with many implementations, i.e. generic and
specific, for a given problem or a set of problems [98]. Interestingly, guaranteeing an
optimal solution for a given problem is not the primary goal, unlike when exhausting
a feature value search space. A tic-tac-toe simulation is a good example. After the
first round, a probabilistic algorithm can tell us with a certain probability how to find
the winning position, i.e., the optimal solution.

Probabilistic algorithms range from broad to specific in the way they help solve
optimisation problems. A classical category is Monte Carlo. In its most basic version,
the algorithm uses randomised choice to explore points in a search space, enabling the
inferencing of a distribution of a given function. Sampling is performed several times,
and the probability for a given input is output. There are several implementations
of Monte Carlo, but the fundamental concepts remain the same. A generic Monte
Carlo algorithm uses a tree search [14, 16]. The Monte Carlo tree search (MCTS) tree
has n-depth, where a simulation walks a number of steps into its structure. Using
a function, an optimal node is selected from the root, and this is repeated until a
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non-terminal node is reached. Then, the search is expanded from the non-terminal
node until the final node is reached. Then, the states of all nodes are back-propagated
to the root, narrowing the search space. MCTS and variants simulate problems in
which different steps help steer the result, but there should be sizeable depth to
the problem to reap the benefits, such as with a chess problem, in which the tree
operation with back-propagation changes after each move. When exploring the
different feature values of CPUs, e.g. clock speed and number of cores, the problem
space can be scaled, depending on the testbed. However, the depth of the problem
space is not multidimensional; thus, it cannot be executed in a simulated step-by-step
style. For example, if a given combination of cores and clock frequencies turns out
to be energy-efficient, it does not imply that this could be fine-tuned by tweaking
the clock frequency. Therefore, additional algorithms are required to complete the
overview of optimisation solutions to measure and reduce energy consumption. To
understand how to appropriately construct these algorithms, the following definitions
are provided:

Definition 1 (Solution). In a search space, a solution produced by an objective function
solves a defined goal for a given problem. Thus, a search space contains a set of solutions, S =
{s1, s2, . . . , sn}.

Definition 2 (Optimum/Optimised Solution). In a search space, an optimised solution
produced by an objective function maximises or minimises a defined goal for a given problem.

Definition 3 (Solution Variables). In each set of solutions, S, each solution is characterised
by the values of a number of variables where X = {x1, x2, . . . , xm} ∈ si. Where a solution S is
an m tuple that is two dimensional.

Definition 4 (Objective Function). An objective function, F, is used to evaluate solutions
in an optimisation algorithm to maximise or minimise the output of a given function.

4.5 Hill Climbing

Hill Climbing [90] is a well-known heuristic search algorithm that evaluates the fitness
of set of solutions in a given search space of a given size. The generic Hill Climbing al-
gorithm, 3, generates an initial solution S′ using the function, Select_Initial_State(S),
the initial solution to be improved. The Select_Initial_State(S) as described in Al-
gorithm 4 uses a pseudorandom number generator to choose from a set of frequencies
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and cores. For Hill Climbing, the function behaves the same. Having chosen a starting
point/solution, the iterations approach the best solution possible, and the process is
terminated based on a given rule, τ, e.g. a fixed number of iterations or a threshold.
The returned result is the best solution, S⋆.

Hill Climbing in its simplest form can solve many problems with excellent ef-
ficiency [32, 109, 110] and high accuracy within short periods. However, there are
pitfalls that usually require refining the general implementation to meet specific
requirements. Some of these were explored in [108]. For example, the Hill-Climbing
algorithm can sometimes get stuck in the local maximum, not allowing it to proceed
to additional points. Considering the function plot in Figure 4.7, the global maximum
highlighted in green is not obtainable, owing to the gap between it and the global
maximum. Some proposed solutions include a random restart during execution.

Definition 5 (Hill Climbing). Given a set of solutions S in a problem space Pspace, we can
derive a solution using the following search properties with the algorithm defined in Algorithm
3

Algorithm 3: Hill Climbing Algorithm
Input : Termination predicate, τ
Data : Solution set, S

Data : Objective function, F
Output : Final best solution, S⋆

// select an initial state
1 S′ ← Select_Initial_State(S)
2 while not τ do

/* generate a new state using S′ features (frequency and number of cores) */
3 S′′ ← Select_New_State(S’)

/* compare states based on one or set of variables – X */
4 if F(S′′) > F(S′) then
5 S′ ←S”

6 S⋆ ←S’
7 return S⋆

To implement the simple Hill Climbing algorithm to search for the lowest energy
consumption point, we apply the perturbation function described in Algorithm 5 and
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Algorithm 4: Selecting Initial State in Hill Climbing
1 function Select_Initial_State:

/* Full samples stored in a dictionary */
2 samples←− dict[benchmark][frequencies][number of cores]

/* Using a pseudo-random generator function, Choice, we select an initial state */
3 return samples[benchmark][Choice(1.2,1.4,...)][Choice(2,3,4,...)]

Algorithm 5: Hill Climbing Perturbation Function
1 function Select_New_State:

2 new_state←− [ ]

/* Randomly choosing a set of the values of Frequencies or Cores */
3 feature←− Choice(Frequencies,Cores)

/* Selecting a point/state from the feature that was chosen in the previous line */
4 selection←− Choice(feature)

/* Selecting the next and previous values of the feature with regards to the incumbent */
5 points←− Fetch_Previous_Or_Next_State(selection)

6 if Frequency was selected then
7 new_state←− Choice(points)

8 if Core was selected then
9 new_state←− Choice(points)

10 return new_state

Definition 5. The properties of the current best solution, S′, are used as a reference
point. There are random factors affecting the features used; however, the main goal of
the perturbation function is to optimise either the frequency or the number of cores
of the most recent solution. In Algorithm 5, Line 2 defines a new variable to hold
the new state to be chosen, Line 3 is a pseudorandom choice function that randomly
chooses between optimising frequencies or cores, Line 4 is another pseudorandom
step that optimises the chosen feature from the previous step and Line 5 selects the
next and previous states. For example, if the most recent solution, S′, was at 2.1 GHz
and 28 cores, the function on Line 5 would offer either 2.6 GHz and 1.8 GHz or 29
and 27 cores. Lines 6–9 determines whether cores or frequencies work better and
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makes another random choice based on the available points provided by function
Fetch_Previous_And_Next_State.

When applying this algorithm to the programs sampled in Chapter 3, we notice
a pattern in how the fluctuations in energy/performance affect the overall accuracy
of finding the optimal solution, i.e. lowest or near-lowest energy consumption.
Table 4.1 show a segment of Nbody results from Hill Climbing, i.e. optimal solution
accuracy, energy mean, lowest and highest energy values and average optimal solution
convergence rate to within 5% of the lowest energy measured. These metrics were
collected from 1000 Hill Climbing samples. In the case where the executed code may
not have sufficient variations in energy consumption based on core count, we find
that Hill Climbing has a slight disadvantage compared with methods. On the other
hand, Hill Climbing performed exceptionally well when applied to programs that
scaled well as the core count increased, e.g. SumEuler in Table 4.3 across all input
sizes and with DFT in Table 4.2.

Hill Climbing

Metric Highest
Energy

Lowest
Energy

Mean
Energy Accuracy Convergence

Rate Avg.
Sample and input
nbody – 50k 144.77 126.69 139.32 12.80% 4.414
nbody – 80k 349.53 293.91 309.09 62.50% 20.13
nbody – 100k 521.87 483.00 489.40 98.10% 32.113
nbody – 150k 1064.54 996.21 1005.26 99.10% 31.151

Table 4.1: Table showing Hill Climbing results nbody for four different problem sizes
using 30% search space or 84 points out of 280

4.6 Ant Colony Optimisation

The ACO algorithm was inspired by the natural activity of ants. When they search
for food resources, they apply a multipath search. At first, their search follows no
particular criteria. When a promising path is identified, the discoverer ant returns to
the source releasing a pheromone along the way. The remaining ants quickly dispatch
along that path, and the process repeats. Dorigo [31] developed an artificial form of
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Hill Climbing

Metric Highest
Energy

Lowest
Energy

Mean
Energy Accuracy Convergence

Rate Avg.
Sample and input
DFT – 2k 121.34 67.13 68.40 91.70% 39.47
DFT – 3k 371.12 256.49 262.41 91.10% 39.61
DFT – 4k 861.02 816.90 824.78 99.70% 34.11
DFT – 6k 2704.66 2566.94 2591.08 94.20% 37.45

Table 4.2: Table showing Hill Climbing results DFT for four different problem sizes
using 30% search space or 84 points out of 280

Hill Climbing

Metric Highest
Energy

Lowest
Energy

Mean
Energy Accuracy Convergence

Rate Avg.
Sample and input
sumeuler – 75k 887.23 815.72 820.27 99.90% 36.54
sumeuler – 80k 1021.12 909.23 916.87 99.60% 37.05
sumeuler – 85k 1126.34 1037.34 1043.65 99.60% 37.99
sumeuler – 90k 1281.82 1141.92 1147.49 99.00% 36.55

Table 4.3: Table showing Hill Climbing results SumEuler for four different problem
sizes using 30% search space or 84 points out of 280

this algorithm, and it became a well-known swarm-based intelligent search.

Considering the previously described scenario, an initial population is used to set
the number of solutions in the problem space, as shown in Figure 4.8 on page 109.
The objective is then to locate the quickest path to the optimisation goal, see the
two paths shown in the first step of Figure 4.8. As we are not aware which one is
the shortest, we explore them equally paths (see step two of Figure 4.8) until the
optimal solution is found. Hence, the ‘pheromone’ levels along that path lead to a
new optimisation focus, i.e. Figure 4.9 on page 110. To formally define this algorithm,
we use Definition 6 and Algorithm 6 on page 107:
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Figure 4.2: Heatmap demonstrating how low-core count impacts energy consumption
in Ray Tracing
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Figure 4.6: Example of graph containing edges and vertices with examples of direc-
tional edges
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Algorithm 6: Ant Colony Optimisation Algorithm
Data : {Tsize | Tsize > 1}

Input : Population, P

Input : Bias initial value, ∆
Output : Solution, s

// number of nodes representing ant population
1 Popl←Create_Population(P)

// a value between 0 and 1
2 Delta←∆

// temporary variable pointing to current solution found
3 current_solution←−Nil

4 foreach p ∈ Popl do

/* function selecting a path based on ∆ */
5 foreach 1 to N do

6 new_solution← Explore_Path(p,T)
7 new_delta←− Random Between 0 and 1

8 if new_solution resulted in better energy cost then

9 current_solution←− new_solution

// lower delta value indicates better path
10 Delta←− Delta – new_delta

11 else if Delta ≥Acceptedthreshold then
// accepting another state based on delta value

12 current_solution←− new_solution

// Increase delta value provides better chance of finding new solutions
13 Delta←− Delta + new_delta

14 end
15 end

16 s←− current_solution
17 return s

18

ACO’s algorithm for finding the lowest energy consumption point can be achieved
as demonstrated in Algorithm 6. As previously shown in the pseudo-algorithm, ACO
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Algorithm 7: Explore Path Process in Ant Colony Optimisation

1 function Explore_Path:

2 random_core←− Choice(core_list)
3 random_frequency←− Choice(frequency_list)

4 next_solution←− Fetch_State(random_core, random_frequency)

5 return next_solution

operates using a population of a given size; in this case, we assume that a population
was created prior to entering the foreach loop at Line 4, followed by generating a
random selection for a set of cores and clock frequencies, setting the initial δ to
between zero and one. Then, at Line 3, a variable is used as a placeholder for the
solutions found during the loop. In the foreach loop, we iterate over all members
of the population, p, as shown in Line 4. At Line 5, another foreach loop is used to
explore the various paths for a fixed number of iterations, N, that acts as means of
controlling how much of the solution space is searched. In the path exploration loop,
we explore a path given a member of the population, p, followed by the generation
of a new ∆, which is later used to assess whether we can accept a non-optimal
solution to reach better states. The function, Explore_Path(p,T), generates solutions
using Algorithm 7, which selects a state randomly from a fixed set of cores and
frequencies. In Lines 8–15 of Algorithm 6, the energy values of the newly selected
state are assessed, as shown on Line 8. If true, the overall ∆ would decrease to avoid
accepting new unwanted states to set the new solution. The second case of the if

statement accepts the new solutions only if the ∆ factor allows it.

Making the initial ACO path selection can be challenging, as it affects the outcome
and how quickly the optimal solution can be reached. Additionally, the pheromone
trail from a randomly selected starting point could easily lead to a local optimum,
where the search gets stuck. Multiple starting paths could be used to mitigate this
issue, but it requires more energy consumption at first.

Definition 6 (Ant Colony Optimisation). Given a tree structure of n-depth Tsize and
a population, P, of n size, such that n ∈ N and a bias variable ∆, we can derive a set of
population of solution, s, where s ∈ Tsize using Algorithm 6.
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1 Example multi-path problem that simulates ants searching for food

2

2 Different individuals from available population exploring different paths

Figure 4.8: First two stages of Ant Colony Optimisation

4.7 Evolutionary Algorithm

Evolutionary algorithms have been applied to many disparate problems. Considering
that they use population-based optimisation, the Genetic Algorithm is a famous ex-
emplar. These algorithms build a population of a given size wherein individuals are
generated based on features representing a seed function to solve a problem. Once
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3

1 Ant successful exploration increases pheromone layers

4

2 Other individuals in the swarm (ants) following the preferred path based on increased
pheromone

Figure 4.9: Continuous process in discovering paths in Ant Colony Optimisation
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activated, the seeded population is used to generate more members that are then
evaluated for fitness. Predicates are then applied to cull the unfit members. The
process repeats for several generations before producing a final population that can
solve the problem well. Variants apply more complex definitions and seeds, and the
predicates used can be widely varied.

4.7.1 Genetic Mode

Algorithm 8 randomly generates a population representing frequency and number
of cores. It is evaluated using a simulation wherein only the fittest may pass their
genetic information to the next generation. The process produces edge cases that
must be handled after each iteration, e.g. having most or all of the population pass
the fitness test, etc. These scenarios are handled case-by-case as not all samples are
the same. The process continues by generating a new generation using the previous
subset of fit members. To reach completion, the final population indeed minimises
energy consumption based on frequency and number-of-core fitness.

More specifically, in Algorithm 8, Line 1 is a partial application function assigned
to a variable that is used in the next loop. Its first argument is assigned a value within
the lowest 35% energy value. The choice for the 35% was made because of the prior
experiments with the algorithm made the population deplete without a chance of
finding new members for the population. The second argument, Execute_sim, is the
solution to be generated. Line 2 sets an initial random population based on properties
of frequency and number of cores. Line 5 creates the new offspring generation, as
depicted in Algorithm 10. There, Line 2 chooses between cores or features to decide
which parent’s features are past, the If statement (Lines 3–9) handle the case when
Cores a set of specific features are extracted from each parent and if Frequency is
selected the operation is swapped. The process of Algorithm 9 creates edge cases,
which are handled in a case-by-case basis. Line 6 reconstructs the population based
on fitness thresholds. Algorithm 11 is used for reconstruction when needed. There,
Line 2 measures the sizes of current and past populations to assess the number of
removed and added members. In the Genetic algorithm, Line 3 checks to see if we
have fewer than 10 members. Line 4 takes two arguments: prior population and
number of low members (integer) selected. Lines 5–8 represent the case where no
low members exist from the prior population; thus, we generate a new random
population.
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Definition 7 (Genetic Algorithm). Given a search space of n size and a fitness function, f,
and using a population, P, of n size such that n ∈N, we derive a population of n > 1.

Algorithm 8: Genetic Algorithm Minimising Energy Consumption

/* prepare a curried function for GA simulation that accepts only the lowest 35% energy
from the actual lowest */

1 Partial_Simulation←− Execute_sim(lowest_35percent)

/* create a population of n-size consisting of randomly selected combinations of cores and
frequencies from the full dataset */

2 Popl←− Create_Population(P)

3 while not τ do

/* apply the fitness function on all members of Popl */
4 Popl←− Partial_Simulation(Popl)

/* use the remaining fit members to generate new ones */
5 Popl←−Generate_New_Members(Popl)

/* rebuild the population size back to the defined size if some/all members were not
fit to be part of the new population and/or if the remaining parents have not
generated enough children */

6 Popl←− Rebuild_popl(Popl)
7 end

/* return final population after terminating */
8 return Popl
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Algorithm 9: GA Fitness Function / Partial_Simulation
Input : Single member from the population, M

Input : Acceptance threshold, Th

1 function Partial_Simulation:

/* Randomly choosing a set of the values of Frequencies or Cores */
2 feature←− Choice(Frequencies,Cores)

/* Selecting a point/state from the feature that was chosen in the previous line */
3 selection←− Choice(feature)

/* Selecting the next and previous values of the feature with regards to the incumbent */
4 points←− Fetch_Previous_And_Next_States(selection, M)

5 if Frequency was selected then
6 new_state←− Choice(points)
7 end

8 if Core was selected then
9 new_state←− Choice(points)

10 end

/* the case where a member is not fit, accepted would be returned as Nil, i.e. removing
inefficient solutions */

11 if new_state ≤Th then
12 accepted←− new_state
13 end

14 return accepted
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Algorithm 10: Genetic Algorithm Generating New Members/Children
Input : Parent One, P1
Input : Parent Two, P2

1 new_child←−Nil

/* Generate a value representing a choice between selecting cores from P1 and frequency
from P2 or the opposite way */

2 feature_random←− Choice(Frequency, Cores)

3 if feature_random = Cores then
4 new_child.core←− P1.core
5 new_child.frequency←− P2.frequency
6 else
7 new_child.core←− P2.core
8 new_child.frequency←− P1.frequency
9 end

/* retrieving the new state based on new_child selected features from P1 and P2 */
10 new_child←− Fetch_State(new_child)

11 return new_child

Algorithm 11: GA Rebuild Population
Input : Old Population, P

Input : New Children, Cp

1 function Rebuild_Population:

2 adjusted_population←− length(P) + length(Cp)

3 if adjusted_population < 10 then
/* Attempt to seed Cp from the lowest members from P */

4 Lowest_P_members←− Get_Lowest_N_Energy(P,1)

5 if Lowest_P_members contains no members then

6 new_gen←− Generate_N_Random_Members(n=10)

7 adjusted_population←− new_gen

8 end

9 end

10 return adjusted_population
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4.8 Summary

This chapter introduced the scope of optimisation problem, including the search space
of clock frequencies and number of cores. Four algorithms were formulised, covering
four types of meta-heuristic processes. Finally, we described the optimisation goals
of this thesis.
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Chapter 5

Meta-Heuristic – Haskell Results

This chapter presents the Haskell benchmark analysis using the dataset from Chapter 3.
Sections 6.1, 5.3, 5.4 and 5.5 respectively explain the sampling processes and metrics
used to evaluate the Hill Climbing, ACO and Genetic algorithm sampling processes
and discuss the results.

We have noted that statistical modelling has drawbacks when predicting energy
consumption, especially considering programs with marginal consumption and input
sizes that introduce high variations in energy consumed. We therefore turned to
meta-heuristics to find other methods. Modelling circuit switching alone has been
classified by some as an NP-hard problem as it will be explained in Section 8.2 of
Chapter 8. Hence, predicting energy consumption with any guaranty of accuracy is
going to be difficult. Thus, given that extensive datasets present pitfalls when used
in conjunction with statistical modelling, we shall use a probabilistic sampling of
code. In the next sections, we explain how meta-heuristics works in practice using
the algorithms presented in Chapter 4.

5.1 Sampling and Algorithm Structure

Consistency is essential to ensuring that we can reasonably compare one approach to
another. As we sampled Haskell parallel nofib programs in Section 3, we can use the
same dataset to evaluate the new simulations. Because real-time execution varies in
duration, we benefit from using extant execution configurations for the new scenarios.
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Section 3 included a combined average of 10 samples per design, i.e. each point with
specific input was sampled ten times. The mean of each set of 10 points was used
in each run. Additionally, as the meta-heuristic algorithms simulates sampling and
reporting results of different points in the search space, we collect 1000 results per
algorithm to ensure reasonable accuracy and consistency, as they are probabilistic in
nature. The meta-heuristic algorithms reviewed in Chapter 4 also vary in the way
they report results. Some output single solutions; others output groups of solutions
as a population. We report the results based on how they are output.

5.2 Tabu Search

In order to compare the performance of the meta-heuristic algorithms introduced
in Chapter 4, we use Tabu search [55], a type of local-search algorithm with similar
characteristics to Hill Climbing.

Tabu search can be described as an algorithm that improves solutions in a given
search space by exploring neighbouring solutions. While Hill Climbing uses a similar
approach, Tabu search has different traits that make it unique. The following points
highlight Tabu search characteristics:

• Tabu list: The most crucial part of the Tabu search is using a Tabu list or
memoisation of visited states/solutions. The Tabu list optimises all the iterations
in the search algorithm to find unseen/unvisited solutions that could improve
the overall process. In this process, the algorithm keeps a list of all the visited
solutions so the algorithm can proceed to find unvisited solutions. There are
different ways of using a Tabu list, like keeping separate sets of solutions based
on quality, frequency, and partial solution properties. However, one typical
approach is to have a Tabu list of all the visited solutions, which would have a
given size.

• Aspiration criteria: The aspiration criteria control the number of solutions that
have been visited/seen in the Tabu list, and when a specific criterion is met, a
solution from the Tabu list is removed from the list to allow the algorithm to
use it. The Aspiration criteria serve as means of avoiding stagnant states where
no solutions can improve a state.
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The Tabu search algorithm is one of many local-search algorithms that aim to
search a solution space to find optimal or near-optimal solutions. The Tabu search
algorithm used to sample the dataset collected from the previous chapters is slightly
modified to handle the cases of optimising the frequency/cores search space, which
is one approach to how energy costs can be managed and improved. The complete
version of the modified code is part of the online appendix.

5.2.1 Tabu Search Result

Although the algorithms have close similarities, the difference in the overall results is
unexpected. The first Tabu search sampling was made for 30% of the space, as seen
in Table 5.4.

The benchmarks had varying results. However, it can be seen that most of the
benchmarks were hindered from reaching an equivalent level of accuracy, similar to
Hill Climbing. For example, the highest accuracy achieved was Ray’s 1500, where
the accuracy reached was 70.20% which is a significant improvement compared to
Hill Climbing’s version of 37.60%. Nevertheless, upon examining the rest of the
benchmarks, we observe that most accuracy levels rarely reach anything above 30%.
When a result like Ray’s 70% is produced, the result is only achieved for a single
input size, unlike Hill Climbing, where consistent patterns can be identified from
one benchmark to another. It is unclear why the Tabu algorithm struggles to reach a
similar accuracy to Hill Climbing.

5.3 Hill Climbing

In Hill Climbing, we sampled a dictionary of input sizes categorised by the number
of cores and clock frequencies. In each cycle, we simulated a state selection con-
taining metadata of pre-sampled benchmarks, and we used those describing energy
consumption as the result of a single run. This approach used the following steps:

• For each Hill Climbing sample, we ran the algorithm for a specific percentage
of a search space of 280 items so that we could obtain appropriate accuracy
measurements. We sampled at 5, 10 and 30%, translating to 14, 28 and 84 steps
out of 280, respectively.
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• In each Hill Climbing run, we aimed to optimise solutions within 5% of the
actual lowest value across all cores for a given problem size and within an upper
bound of ±5%.

• Hill Climbing simulates sampling program execution using the CSV dataset
produced in Chapter 3. This facilitated selection comparisons of energy readings,
as they did not differ much from one sample to another, i.e. from 5 to 10%.

• Hill Climbing results were sampled 1000 times per program/problem size to
avoid anomalies.

• In each sample, we measured accuracy using the reference point defined earlier:
within 5% of the lowest energy point. This provided metrics on the sampled
dataset as CSV data for each program/problem size.

Analysis in this section is based on three Hill Climbing tables: Table 5.1 on page
127, Table 5.2 on page 129 and Table 5.3 on page 131. All data referenced in the text
are presented in the tables.

5.3.1 First Category: Model Scalability

For this category, we grouped the benchmark results according to improved scalability
with the increase of core count. We also examined raw values differently than that
which was presented in Chapter 3, where energy was plotted against speedup. We
instead looked at execution time and energy consumed.

Parfib: Parallel Fibonacci is an ideal scalable parallelism case. However, we provide
a new perspective, as shown in Figure 5.1, where Parfib showed near-perfect improve-
ments. The overall Hill Climbing performance was exceptional . At a 5% search space
(14 steps), Parfib performed well for a problem size of 50, achieving 93.60% accuracy.
However, the small search space was a limiting factor, scoring 34.50, 38.00 and 37.20%
accuracies for problem sizes 52, 54 and 56 steps, respectively. The average rate of
convergence showed improvements in problem sizes larger than 50 steps, capped
at around 2.4 steps compared with 50, where the optimal solution was improved
over an average of 5.1 steps. This limitation abated in the next two levels. At a 10%
search space, the number of search steps increased to 28, and we witnessed significant
improvements for the 50-step size, resulting in an accuracy of 96.90%. There were
considerable gains for the remaining problem sizes of 52, 54 and 56 steps, which
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achieved accuracy results in the 73rd percentile, as shown in Table 5.2. The final level
for a 30% search space required 84 steps of 280, resulting in near-perfect results for
all problem sizes. 50 steps resulted in 100% accuracy, meaning that we found the
optimal solution within 5% of the actual, followed by 99.80% for 56 steps, 99.40% for
52 steps and 98% for 54 steps. An important optimising factor was observed in the
convergence rate where most samples stopped improving beyond 38 steps. This may
indicate that the percentage of the search space to consider can be reduced to about
14% of the search space, or a total of 38 steps.
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Figure 5.1: Plot showing energy and speedup vs. cores for Parfib with four different
problem sizes sampled at 2.6 GHz

SumEuler: The Euler summation showed a similar pattern to that of Parfib. Starting
with a 5% search space, we saw a near-duplicate pattern in which the smallest problem
size had the highest frequency. 75K steps resulted in 77% accuracy , followed by 85K
steps with a 42.90% accuracy. 80K steps had a 41.30% accuracy and 90K had 34.40%.
The 10% search space continued to improve the overall accuracy, with 75K steps
achieving the highest at 86.80%. The others achieved accuracies in the 70th percentile.
Finally, the 30% search space showed a result similar to Parfib, in which all problem
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sizes demonstrated accuracies within the 90th percentile. 75K steps achieved 99.90%
accuracy, followed by 80K and 85K, both at 99.60%. Finally, for the largest problem
size the accuracy metric reached 99.0%. In addition to the case of improved accuracy,
we noticed that the average convergence rate was similar to that of Parfib, in that
most cases achieved the optimal solution at around 36 or 37 steps.

DFT: With DFT, we observed a similar case of increasing steps enhancing accur-
acy. However, DFT started with a low accuracy compared with the two previous
benchmarks. With 5% of the search space, we observed an unexplained similarity in
accuracies, wherein the first 2K steps resulted in 41.70% accuracy. 4K steps achieved
a 43.90% accuracy, 6K achieved 20.80% and 3K achieved 20.20%. The problem sizes
were interestingly divided between accuracy percentiles: 2K and 4K steps produced
similar results as the other two inputs. When extending the search space to 10%,
we observed a different pattern, where 4K steps achieved an 83.70% accuracy, 6K
achieved 57.40%, 3K achieved 41.60% and 2K achieved 41.30%. In this case, the
operation at 4K steps well-outperformed the other problem sizes. This result may
have been affected by having apparently used a smaller standard deviation. We also
saw a similar standard deviation value for 2K steps. Nevertheless, accuracies lower
than that achieved with 4K steps and energy values smaller than that achieved with
2K steps may explain this, especially at higher core counts where the mean energy of
the complete dataset was not substantial enough for optimisation. When adjusting
for the final 30% search space, we saw high accuracies for all programs. 4K steps
again produced the best accuracy at 99.70%, followed by 6K at 94.20%, 2K at 91.70%
and finally 3K at 91.10%. After examining the average convergence rates, we found
that DFT pushed towards 14% of the search space, apart from 4K steps, where the
average convergence rate was around 35.

Minimax: Minimax also started with low accuracy, ranging from 22.10 to 49.50%
for the four problem sizes sampled. We saw moderate accuracies with a 5% search
space. With a 10% search space, we saw significant improvements for all problem
sizes apart from 6M steps, where the low energy readings may have affected progress.
Finally, the results of the 30% search space demonstrated top accuracies for 8, 10 and
12 within the 90th percentile, whereas 6M steps remained in the mid-60th percentile.

PRSA: In the case of Parallel RSA, we witnessed a slightly different accuracy
pattern. Starting with the first level at a 5% search space, the lowest accuracy was
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achieved at 2M steps at 9.90%, followed by 9M at 26.70%, 8M at 76.60% and 6M
at 77.60%. For the 2M-step problem size, we found that the convergence rate was
already low at 0.699, as reflected by the low accuracy result. Next, with a 10% search
space, we observed a substantial increase in accuracy, which was obvious with 6M
and 8M steps, which produced 95.60 and 95.90% accuracies, respectively, followed
by 9M steps at 57% and 2M at 27.20%. Finally, as seen with other results, PRSA
reached the highest accuracy values at 30%, where 6M and 8M steps both achieved
100% accuracy, followed by 9M at 75.50% and 2M at 50.70%. For the 2M-step case,
the results appeared to have been affected by small number energy readings, as the
optimal solution was marked at 60.942 J relative to the lowest level at 58.04 J. As the
mean of the algorithm dataset was 61.47 J, this value appears to have affected the
result.

Nbody: with Nbody, at 5%, we observed accuracy values ranging from 5 to 63.70%.
Larger problem sizes performed better, affected by low-energy readings and small
standard deviations. The 10% level demonstrated an improvement over the previous
one, where the two largest problem sizes achieved accuracies in the 90th percentile.
80K steps showed modest progress, followed by 50K, which had mediocre perform-
ance. Finally, 30% demonstrated the best performance for the largest two problem
sizes of 150K and 100K steps. The rest followed the same pattern of 80K steps having
modest gains and 50K steps lacking beneficial accuracy improvements.

5.3.2 Second Category: Irregular Patterns

In this category, we targeted programs having unpredictable or irregular results
affected by overall execution performance and scaling, where energy readings and
standard deviations may have affected finding the optimal solutions.

Queens: Although Parallel Queens has shown progress in scaling over an increasing
core count, it remains limited by other factors, such as the unpredictable performance
of some clock frequencies where energy readings alternate in some cores. With a 5%
search space, all problem sizes failed to achieve accuracies greater than 50%. The
highest was 21.10% for a problem size of 16 steps. Moving to the next search space
level, we witnessed slight improvements across all problem sizes, but there were no
changes in the pattern as 14 and 15 steps produced the lowest accuracies, and 13 and
16 steps had the highest. With a 30% search space, the same thing occurred, except
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that 16 steps achieved an significant accuracy increase from 35 to 75%; the remaining
problem sizes produced modest results.

Partree: Partree is considered inefficient, as it spends a considerable amount of
time performing garbage collection. With a 5% search space, Partree produced low
accuracy levels, but it performed better than matmult. For example, its RMSE values
were among the highest of all datasets. At a 10% search space, slight improvements
were seen apart from the 700 input, which nearly doubled its accuracy to 63%. The
last level at a 30% search space achieved considerable progress with inputs of 700
and 800 steps, whereas those of 600 and 650 steps showed moderate improvements.

Matmult: Matrix multiplication showed increasing variations in energy readings
across all clock frequencies and all problem sizes. However, we found a pattern
of cores oscillating between high and low readings. At a 5% search space, no
problem size achieved an accuracy close to 10%. At the 10% search-space level, we
observed small gains in accuracy ranging between 14.90 and 32.70%. This increase
was affected by the increase of the search space. However, there was still a problem
with identifying appropriate accuracy levels. At a 30% search space, the pattern of
irregular energy readings continued, possibly caused by the marginal execution time
increasing or decreasing alongside other factors, e.g. standard deviation.

QuickSort: Quicksort is an amplified case of Partree, where the initial accuracy
results showed that 500K was unable produce a single solution, whereas others
ranged between 5 and 10% accuracy. The 10% search-space level was similar, with
500K steps remaining at 0% accuracy and others having small increases. Lastly, at
a 30% search space, 500K were unable to produce solutions, as evidenced by the
smallest value found in the dataset, 33.86 J, where the 5% margin was 30.55 J, which
may explain why the solution remained stuck in the local optima. A feature that
seems to correlate with problem sizes achieving moderate accuracy is their higher
standard deviations.

Ray: The Ray Tracing samples produced a distinct pattern in which energy and
execution time spiked at certain stages. Both improved when total energy consumed
and execution time reduced before increasing again. This pattern reflects Ray’s
unique behaviour with regards to specific problem sizes. A 5% search space showed
similar results as the other benchmarks, where two inputs had lower percentages,
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and the other two had slightly higher ones. Specific problem sizes affected overall
execution times, resulting in energy differences per input. With a 10% search space,
the gap between 1300 and 1600 and 1400 and 1500 steps increased, and the highest
two accuracies had rapid improvements, compared with the other two. A 30% search
space behaved the same way.
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CHAPTER 5. META-HEURISTIC – HASKELL RESULTS
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CHAPTER 5. META-HEURISTIC – HASKELL RESULTS

5.4 Ant Colony

Swarm-based optimisation algorithms are in a different class than single-solution
stochastic ones. They generate new solutions by incorporating a randomness factor,
which can be a double-edged sword, wherein it can improve or worsen results. For
example, different perturbation functions had different effects on Hill Climbing. Gen-
erally, in swarm-based optimisation, a population of a given size is used to simulate
a particular process. The classical process consists of individual objects simulating
pathfinding, whereas members are controlled using a delta value. As energy-finding
and -generating solutions are not path-like problems with which we find the shortest
path or optimal solution, we instead search for the solution that reduces energy
the most by creating populations with specific program configurations that hold
information about cores and clock frequencies.

When sampling ACO, we require a population of a given size, and each member
uses the perturbation function to find their own solution. In this case, the search
space is divided into two parts: population size and number of steps. To remain
comparable with other algorithms, we use a factor pairing search-space percentage,
i.e. 84 steps or a 30% search space in Hill Climbing equates to 21×4, 2×42 or 3×28
pairs. Factor pair selection means that if the simulation steps are low, we would
not be able to improve the solution, and if the population is low, then no variety in
the population exists. Additionally, these factors may have negative or positive effects.

We began with a population of 21 with 4 simulations, which immediately showed
an interesting effect with regards to how accuracy progresses. After sampling with
28×3 and 21×4, we did not see any significant discrepancies in how the change in
population or simulation steps affected the results. There were some slight gains and
losses in accuracy, but the majority had remarkable similarities between versions. We
compared the equivalent 30% search space of ACO to that of Hill Climbing. With
ACO, we did not have an average convergence rate; instead, we had an optimised
population upon algorithm completion.

In Table 5.5 on page 137, we notice the difference made by ACO. Most samples
showed similar accuracy levels to other algorithms. However, the significant differ-
ence was the balance achieved by ACO. Beginning with Parfib, most results had
accuracies compared to that of Hill Climbing. However, all ACO’s accuracies were
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5.4. ANT COLONY

above 90%. ACO really demonstrated its superior ability with Queens, as it seems to
have balanced Hill Climbing’s search space efficiency.

ACO also did well with Minimax, achieving accuracy levels close to that of Hill
Climbing with six steps. It outperformed both with input sizes of 10 and 12. Accuracy
levels similar to DFT were found, where most were closer to Hill Climbing. PRSA
showed that ACO is advantageous for accuracy, but it had moderate gains in some
problem sizes while maintaining high accuracy in others. Interestingly, Quicksort
was challenging for ACO as an optimal solution could not be found for 500K inputs
across all algorithms. Ray Tracing showed results similar to other cases, with some
problem sizes, e.g. 1500 steps, having higher accuracy levels while other problem sizes
presented an accuracy closer to Hill Climbing. ACO showed modest performance
for N-body, apart from the 50K problem size, where ACO produced results within
the 990-J range. Partree had moderate performance, where ACO showed balanced
accuracy nearing Hill Climbing. With SumEuler, ACO produced results that were
less accurate than those of Hill Climbing while maintaining higher levels than those
of Tabu Search.
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CHAPTER 5. META-HEURISTIC – HASKELL RESULTS

5.5 Genetic Algorithm

The Genetic algorithm presented in the previous chapter differs from ACO, which
leverages a fixed population that cannot be dissolved or regenerated. We used a
population of 10 solutions for the Genetic algorithm sample, each representing a
solution of clock frequency and the number of cores for a given program input.
To maintain a similar search space to the other algorithms presented in the other
chapters, we set the number of generations (iterations) of the algorithm to 8, so the
algorithm can explore a similar space size to 30%, i.e. 84 solutions in total. The
population evolved using eight cycles to reach an optimised solution. The sampling
is made using PyGAD [33], a generic library that provides an API for using different
meta-heuristic algorithms. Although PyGAD is fundamentally the same as described
in Chapter 4, it offers multiple configurations of how the genetic algorithm would
behave, e.g. the API allows controlling the cross-over, the pairing of the parents
and the mutation randomness. Several configurations might work better for some
instances, but due to the scope of this thesis, it would not be possible to explore all
combinations for such configurations. Therefore, we set the configuration to default
values for all the sampling procedures.

The Genetic algorithm performed similarly to ACO and with a more balanced
approach than single-solution stochastic algorithms. With Parfib, the Genetic al-
gorithm achieved accuracies ranging from 80.10% up to 98.30% for an input size of 50.
Regarding Parfib’s 50 scores, the reason may be that input size 50 has 24 solutions in
the space that are within the 5% margin of the absolute lowest energy consumption.
In contrast, the other instances have between 8 and 9 solutions in the space within the
5% threshold. With Queens, it had moderate-to-low accuracies suggesting a similar
issue to Parfib, where Queens had a small number of solutions ranging from 2 to 4
per input size within the accepted threshold. Matrix multiplication presented average
performance, where the inputs 2K and 2.5K provided the best accuracy while 3k was
not far behind 2.5k and 1.5k was the lowest.

In Minimax, the results observed were exceptionally better based on the number
of solutions in the search space. Most problem sizes performed well, primarily as
the solutions within the threshold increased from 4 to 12/16 for problem sizes 6
to 12, achieving results in the 80th-plus percentile. As for DFT, we notice varying
accuracy levels across all problem sizes ranging from 61% up to 96.30%, where the
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5.5. GENETIC ALGORITHM

high accuracy levels in 6k and 4k may be attributed to the high number of solutions
available within the threshold ranging from 91 to 92 solutions—followed by 84.10%
accuracy for 2k despite having only 41 solutions available in the search space. Unlike
DFT’s 2k, the 3k input had difficulty scaling the accuracy levels similarly, even with
the 31 solutions in the search space. With PRSA, we see that both 9mil and 2mil
have low accuracy, which is reflected by the number of existing solutions lying in the
search space where both 6 and 3 solutions, respectively, for the accuracy levels were
different as the number of solutions in the search space exceeded 25 for 6mil and 8mil.

Quicksort showed accuracy levels like those of ACO with 500k again being at 0%
since only one solution instance is within the threshold and the best solutions the
algorithm found are only available within the 25% threshold. However, Hill Climbing
had the best performance of all algorithms. Ray Tracing results resembled those of
ACO, but they both had lower accuracy with specific inputs. With Nbody, it produced
a wide range of accuracy levels from 19.70% up to 97.20% accuracy, which again may
be attributed to the number of solutions available in each space, e.g. 80k having five
solutions and 26 for 150k. Partree results were near those of ACO, displaying average
accuracy, apart from a problem size of 700 inputs. SumEuler had above average and
consistent performance, demonstrating accuracy levels of 80% and above; however, it
remained lower than ACO.

Name Raw Dataset Genetic Algorithm

Highest Energy Lowest Energy Mean Energy Accuracy
Parfib 50 4164.59 236.05 502.39 98.30%
Parfib 52 10882.10 595.55 1307.79 81.90%
Parfib 54 27720.10 1540.42 3425.92 80.10%
Parfib 56 72365.80 4014.32 8938.22 86.10%

Queens 13 67.97 8.61 14.86 41.10%
Queens 14 440.15 50.92 87.37 29.30%
Queens 15 3163.03 354.66 628.09 35.70%
Queens 16 22008.80 2910.77 4855.65 51.60%

Matmult 1.5k 1238.54 128.25 264.87 31.40%
Matmult 2k 3536.63 286.88 620.39 58.60%

Matmult 2.5k 5615.74 549.19 1197.87 46.50%
Matmult 3k 14183.10 932.49 2073.52 44.60%
Minimax 6 289.66 30.00 58.68 52.70%
Minimax 8 3388.07 443.91 834.34 86.70%

Minimax 10 18606.70 2673.08 4901.15 92.20%
Minimax 12 27269.70 4094.10 7511.70 97.40%

DFT 2k 1248.80 65.29 122.81 84.10%
DFT 3k 2626.52 256.49 421.19 61.00%
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DFT 4k 6731.86 810.06 1135.40 96.30%
DFT 6k 21885.10 2514.16 3512.12 94.90%

PRSA 2M 505.41 58.04 108.80 47.00%
PRSA 6M 1524.60 190.81 324.17 99.50%
PRSA 8M 2039.98 254.53 428.22 98.40%
PRSA 9M 2325.16 274.08 485.49 77.40%

Quicksort 500k 706.92 29.16 264.93 0.00%
Quicksort 1M 1882.37 73.52 699.90 29.10%
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Highest Energy Lowest Energy Mean Energy Accuracy

Quicksort 3M 8195.00 289.17 2945.35 43.90%
Quicksort 6M 17104.40 655.49 7074.05 22.30%

Ray 1300 660.36 47.99 197.61 47.20%
Ray 1400 785.25 52.50 228.70 27.60%
Ray 1500 891.90 63.41 262.71 39.20%
Ray 1600 1125.44 73.62 298.49 61.20%

Nbody 50k 1808.52 126.69 254.78 19.70%
Nbody 80k 4629.35 293.91 629.65 58.60%

Nbody 100k 6711.05 483.00 952.77 92.40%
Nbody 150k 15903.00 996.21 2084.97 97.20%
Partree 600 23139.10 635.06 4137.45 48.10%
Partree 650 33083.30 791.78 5039.03 61.70%
Partree 700 57015.10 940.72 6244.34 84.20%
Partree 800 92496.00 1218.31 8685.94 71.20%

SumEuler 75k 16477.30 815.72 1888.40 95.60%
SumEuler 80k 17794.00 909.23 2171.43 85.60%
SumEuler 85k 21015.70 1037.34 2442.17 88.00%
SumEuler 90k 22457.00 1141.92 2766.56 85.40%

Table 5.6: Results of sampling ≈30% (10 members and 8 generations) of the search
space using Genetic Algorithm over the raw benchmark dataset

5.6 Summary

When evaluating meta-heuristic algorithms, we observed varying performances
based on the search space size and the algorithm used. Hill Climbing demonstrated
good performance with Parfib, which had exceptional scalability. Hill Climbing’s
limitations were obvious when examining Queens and MatMult problems, wherein
the general performance varied from one configuration to another. Each set of cores
affected either the parallelism performance or the GHC runtime overall effect on
the execution. Hill Climbing’s accuracy formed a continuous pattern as the search
space increased, until the final 30%, showing that other factors may affect accuracy.
The standard deviation did not appear to affect this result. Notably, a result with
the ±5% energy margin does not exist; therefore, the algorithm is hindered until it
finds the available optimal state. With Tabu Search, lower accuracy existed across
the search space, which failed to achieve reasonable accuracy levels compared to the
other algorithms. However, its performance resembled that of Hill Climbing with
scalable benchmarks, producing similar accuracy levels apart from some examples,

141



CHAPTER 5. META-HEURISTIC – HASKELL RESULTS

e.g. Partree. ACO displayed a new behaviour, providing more robust performance
with regard to accuracy and demonstrating good optimisation in cases where Hill
Climbing had difficulty. The genetic algorithm provided the final and most balanced
results, which showed improved accuracy for some benchmarks at better levels than
all previous algorithms. It also had moderately balanced accuracy levels, whereas
some algorithms did well, e.g. Hill Climbing and Nbody. One non-trivial observation
from all the sampling results is that some optimisations of specific benchmarks, e.g.
Minimax and Quicksort. Several benchmarks showed improved accuracy levels as
the workload increased, that might have resulted in more extended execution periods
with which to complete computations.
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Chapter 6

Meta-Heuristic – PARSEC Results

This chapter presents the analysis and details of simulating PARSEC benchmarks
sampling a dataset collected using the same method used for the Haskell benchmarks
in Chapter 3. Sections 6.2, 6.3 and 6.4 respectively discuss the Hill Climbing,
ACO and Genetic algorithm results for the PARSEC’s examples with equivalent
implementations.

6.1 Sampling Structure

The PARSEC [8] benchmarking suite has parallel benchmarks with multiple equivalent
implementations using different parallelism libraries, e.g. OpenMP and TBB. The
suite offers parallelism workloads that assist with evaluating various multiprocessing
and parallel problems. Its equivalent implementations of benchmarking programs
highlight hardware performance changes with different workloads. As in the case of
Haskell’s results, the Tabu Search results are provided for comparative reasons only.

6.2 Hill Climbing

The present Hill Climbing sample follows the same method used with Haskell. The
benchmarks were sampled for 1000 executions, and the final results represent the
numbers over all those samples. The RMSE represents the error value between the
selected solution and the absolute lowest, and the standard deviation shows the

143



CHAPTER 6. META-HEURISTIC – PARSEC RESULTS

spread of values across all sample. Values of high, low and mean represent values
from both the raw dataset and the collected sample. The discussion refers to the data
in Tables 6.1, 6.2 and 6.3.

Blackscholes: The sample from the three libraries collected from running the Hill
Climbing algorithm on the raw CSV data showed similarities in performance, with
slight advantages for Pthreads and TBB over OpenMP. TBB outperformed the three
samples with accuracy results of 49.80%. Pthreads and OpenMP had accuracies of
38.40 and 23.10%, respectively. The standard deviation was similar for Pthreads and
TBB, but it dropped slightly with OpenMP. In the 10% search space, Pthreads and
TBB were similar in accuracy, outperforming OpenMP by a considerable margin. At a
30% search space, all three libraries did well, TBB at 98.50%, Pthreads at 91.20% and
OpenMP at 83.00% accuracies. Moreover, the accuracy of OpenMP doubled, which
may be related to the lack of sufficient steps for finding optimal solutions.

Bodytrack: Bodytrack performance was similar to that of Blackscholes, where
OpenMP lagged behind other libraries. The other two libraries had high accuracy
results. At a 5% search space, Pthreads and TBB had accuracies above the 90th
percentile. OpenMP lagged behind at 47.70%. The highest and lowest energy
consumption values between libraries were similar, with the only difference being
the mean of OpenMP being above average. The 10% search space resulted in a 100%
accuracy for Pthreads, 99.80% for TBB and 82.10% for OpenMP, whose standard
deviation was again considerably higher those of the other libraries. A 30% search
space resulted in Pthreads and TBB accuracies of 100%; OpenMP performed at
99.40%.

Ferret: with Ferret, we observed a similar contrast in performance for Pthreads and
TBB. The 5% search space resulted in TBB having a 99.30% accuracy. Pthreads had
77%. At a 10% search space, TBB achieved 100% accuracy and Pthreads achieved
95.30%. The 30% search space allowed both libraries to find optimal solutions within
+5% of the actual lowest energy consumption.

Swaptions: In Swaptions, we observed opposite results than those of Pthreads
and TBB. At a 5% search space, Pthreads achieved 61.40% accuracy, whereas TBB
achieved 51.90%. Notably, TBB’s standard deviation was higher than that of Pthreads
by several points. The 10% search space provided Pthreads with an accuracy of
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6.2. HILL CLIMBING

84.10% and TBB at 80.10%. A similar increase in the overall standard deviation was
seen with TBB. Finally, at a 30% search space, both libraries had high accuracy, but
TBB slightly lower. TBB’s increase in standard deviation still existed, but the larger
search space narrowed the gap between standard deviations for both libraries.
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CHAPTER 6. META-HEURISTIC – PARSEC RESULTS

6.3 Ant Colony

ACO sampling was performed using the same approach as Haskell’s, where the
sampling made at a 30% search space used a combination of population size and the
number of steps for each individual in the population. The population was set to
21, and the number of simulations was set to four per member. The results shown
in Table 6.5 reveal that ACO’s accuracy performed similar to Hill Climbing. The
overall results were highly accurate, apart from OpenMP in Blackscholes, where
the performance was 68.80% accuracy. Initially, at a 5% search space, the results
appeared similar to the previously reviewed algorithms; ACO had 70% accuracy,
which is closer to an upper result in Hill Climbing. The remaining results differed
little from the algorithms seen before; Ferret achieved maximum accuracy. The other
benchmarks produced results very close to the other algorithms.
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CHAPTER 6. META-HEURISTIC – PARSEC RESULTS

6.4 Genetic Algorithm

The Genetic algorithm (PyGAD) yielded results like those of ACO and Hill Climbing.
In Table 6.6, we see that the genetic algorithm struck a balance between all algorithms
reviewed earlier. The first, the OpenMP version of Blackscholes, achieved an accur-
acy of 62.20%, not far behind ACO’s 70%, following results for Pthreads and TBB
resembled those of OpenMP, where the differences were the same in Pthreads and
fractional in TBB. The Bodytrack benchmark produced results in the 90th percentile,
with only TBB outperforming at 98.20%. Ferret and Swaptions performed decently.
Nevertheless, the performance was not on par with ACO, for example. Ferret had
perfect accuracy results achieved in ACO. In , the results lacked for Pthreads achiev-
ing only 93.60% and 99% for TBB. Swaptions achieved an accuracy lower than those
of ACO and Hill Climbing, managing only to get 90th percentile results for both
Pthreads and TBB.

Name Raw Dataset Genetic Algorithm

Highest Energy Lowest Energy Mean Energy Accuracy
Blackscholes – OpenMP 5253.32 742.42 1133.42 62.20%
Blackscholes – Pthreads 5287.08 739.52 1121.83 81.30%

Blackscholes – TBB 5319.99 758.00 1152.05 91.40%
Bodytrack – OpenMP 48829.46 4196.83 7119.01 91.90%
Bodytrack – Pthreads 44933.52 4428.96 6800.69 98.20%

Bodytrack – TBB 49043.34 4008.37 6591.74 92.80%
Ferret – Pthreads 1708.75 269.59 352.54 93.60%

Ferret – TBB 1614.36 270.82 344.59 99.90%
Swaptions – Pthreads 3539.72 338.57 570.78 90.10%

Swaptions – TBB 3580.35 334.75 568.40 90.20%

Table 6.6: Results of sampling ≈30% (10 solutions per population, 8 generations) of
the search space using PyGAD genetic algorithm over the raw benchmark dataset

6.5 Tabu Search

For the PARSEC dataset, the results are more or less similar to those of Haskell’s
dataset Tabu search. The overall results do not appear to be improving nor presenting
any reliable accuracy to assess. When comparing the Tabu and Hill Climbing results,
we see that Tabu is significantly lower compared to Hill Climbing even though they
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are both sampling 30% of the search space.

Blackscholes different implementations (TBB, OpenMP, Pthreads) have all presented
results in the 80th to 91st percentile, but in Tabu, we notice that the results have
stagnated at around the 2-3 percentile. Following the results from Bodytrack, Hill
Climbing reached a perfect score in TBB and Pthreads implementations and a near-
perfect result for OpenMP, nonetheless Tabu could not come anywhere near those
numbers resulting in OpenMP scoring 3% while TBB and Pthreads having 16.50% and
35.40% respectively. Similarly, Ferret and Swaptions have presented higher accuracy
levels compared to their Tabu counterpart.

6.6 Summary

PARSEC presented new ways to evaluate algorithm efficiency and applicability
for energy optimisation programs. Considering Hill Climbing’s performance, all
benchmarks using multiple libraries inferred optimal solutions early, especially at the
lowest search space level of 5%, specifically with Ferret and Bodytrack benchmarks. At
the highest search space level, the results were mostly in the 90th percentile, indicating
that different libraries and implementations were not affected the outcome. This is
the case for Ferret and Bodytrack, where the results were very similar. The average
convergence rate was relatively low owing to additional Hill Climbing iterations
needed to improve the search space. Tabu Search delivered subpar results compared
to Hill Climbing. The final search-space level (30%) showed similar performance for
limited cases owing to the random nature of the perturbation function. Furthermore,
both algorithms inferred optimal solutions at a near 16% search space, meaning
that a large portion of the 30% search space was not required. ACO showed similar
performance as most of PARSEC’s benchmarks were scalable. This led to ACO
showing similar accuracy levels to that of Hill Climbing, but with a lower accuracy
than Blackscholes. The energy optimisation of the Genetic algorithm was better than
that of ACO and close to Hill Climbing.
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Chapter 7

Meta-Heuristic – Model Predictions

In this chapter we provide an overview of the results from applying the NNLS model
on the prediction datasets of Haskell and C/C++. Section 7.3 provides a discussion
on the results of applying meta-heuristics on the Haskell dataset. Section 7.4 provides
a discussion on the results of applying meta-heuristics on the Haskell dataset.

7.1 Tabu Search

Since Tabu Search failed to achieve any practical results in the past meta-heuristic
results, it would not be unexpected to observe a similar case with the statistical
models used in this chapter.

As we see from all the Tables 7.1, 7.5, 7.9 and 7.13, the results struggled to deliver
any results that can be considered accurate. With a few exceptions like Binarytrees in
Table 7.13, the rest of the results provided low to none accuracy levels that would be
practical for finding energy values.

7.2 Sampling Structure

The previous assessment where meta-heuristics were applied to the modelling data-
sets for both languages, C/C++ and Haskell, provided insight into using the different
optimisation algorithms in various cases. However, to prove usability and provide
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CHAPTER 7. META-HEURISTIC – MODEL PREDICTIONS

realistic use-cases, it would be essential to assess the energy search space using the
statistical models introduced in Chapter 3.

Since the modelling datasets for both C/C++ and Haskell were used to construct
the predictive models, we would not be able to apply the meta-heuristic prediction us-
ing those models on the same dataset. Therefore, we can use the statistical prediction
on the prediction dataset, which contains multiple implementations for Haskell and
C/C++ with various parallel C/C++ implementations: TBB, Pthreads, and OpenMP.

Also, to provide a comprehensive approach, the prediction sample will be sampled
for the same frequencies: 1.2, 1.4, 1.8, 2.1, and 2.6 GHz to have a complete energy
profile for all the benchmarks. Additionally, the different instruction counts (apart
from certain anomalies and the number of cycles) remained consistent when assessing
Intel SDE and Perf with different frequencies. For example, when we compare Intel
SDE and Perf counts for 1.4 GHz against 2.6 GHz (except for a few anomalies such
as Fasta) using the NNLS features in Chapter 3, we observe an average decrease of
0.41% to 0.097% in instruction counts for all benchmarks for SDE–suggesting that
changing the frequency factor did not affect the overall emulation. Moreover, Perf
also demonstrated a similar case to the Intel SDE sample, where the overall count of
the metrics collected had an average change ranging from 0.6% to 1.84%. Perf change
ratio suggests that the 1.4 GHz frequency increased the count of syscalls and other
features; however, it did not change drastically.

Similar to the meta-heuristics results of C/C++ and Haskell, the Tabu Search
results in the following sections will be used for comparison purposes to assess the
algorithms sampled. In the sampling of this section, we use a smaller search space
consisting of only 28 cores and five frequencies, the purpose of this configuration is
to reduce the time taken to estimate points using the R models. In addition to the
previously mentioned configuration, the sampling of the benchmarks will use NNLS
as it had the lowest average of MAPE, and from observing the graph, the NNLS
appeared to follow the actual sample pattern. Since we are assessing the capabilities
of a predictive model, we will not need to cap the size of the search space or evaluate
the search at different intervals. The search space will be capped at ≈60% for all
algorithms using the full space of 140 points/solutions.
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7.3 Haskell

The sections below will discuss the results for the Haskell prediction dataset. The
results represent a sample of 1000 execution using each algorithm from Chapter 4.
The sampling used NNLS estimates to optimise the parallel configuration for the
benchmarks, meaning each state’s energy values are derived from the NNLS model
and used to drive the optimisation process. In all the instances, the accuracy referred
is in the 95% range or how frequent the solutions found are within 5% of the lowest
energy consumption. For the result discussion below, we will be referring to the
Tables 7.1 to 7.4 pages 157 to 160. The lowest instances column provides the number
of all the energy solutions from the raw dataset, which are within 5% of the energy
consumption of the actual lowest.

Fasta The Fasta sample showed early signs of a continuous pattern for the rest
of the dataset. The different input sizes had 0% accuracy meaning that none of
the algorithms could optimise the state within 5% of the lowest energy value. The
exception for Fasta is the 900k input achieving some accuracy levels, which could
be attributed to the number of instances in the 5% range available. Also, when
considering the Hill Climbing results, the 900k achieved 83%, suggesting that Hill
Climbing could reach better accuracy by using NNLS estimated energy only. The
Genetic algorithm managed to achieve only 20.90% accuracy for input size 900k but
failed to improve any other inputs, this case can be seen in ACO and Hill Climbing.
It is unclear what makes this accuracy discrepancy happens for a single input.

Binarytrees Binarytrees is another case of low accuracy levels. Since all Binarytrees
inputs have one or two solutions within the 5% of the lowest energy consumption,
finding a solution may be complex whether to use a predictive model or search by
collecting actual samples. All algorithms find it challenging to find a single solution
with appropriate energy consumption except for some low accuracy levels achieved
by PyGAD where Binarytrees showed some accuracy between 8.70% and 13.00%.

Spectral-norm In the case of Spectral-norm, we observe another case of low accur-
acy even though more solutions are available than Binarytrees, for example. In all
the sampled algorithms except for the Genetic algorithm sample, we observe low
accuracy that does not change with more solutions available in the search space. The
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genetic algorithm sample shows that the more solutions available with the different
inputs, the more accurate the sample becomes.

Prime Decomposition Prime Decomposition demonstrated another case of low ac-
curacy levels. The few solutions available in the search space proved to be challenging
for all four algorithms. The inconsistency in finding solutions for Prime Decomposi-
tion may be because model estimates cannot drive the optimisation correctly.
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7.4. C/C++ (PTHREADS, TBB, OPENMP)

7.4 C/C++ (Pthreads, TBB, OpenMP)

The C/C++ samples were made using the equivalent benchmarks to those of Haskell.
All parallel libraries have been sampled separately using each algorithm for a thou-
sand samples to ensure more consistent results. The discussion in the following
sections will evaluate the separate algorithms based on Tables 7.5 to 7.16 pages 163
to 171.

Hill Climbing The Hill Climbing performance varied between the different bench-
marks and their inputs. Beginning with Fasta, the algorithm achieves varying accuracy
levels ranging from 0% up to the 90th percentile levels, as shown in the OpenMP case.
It is difficult to attribute the low energy ranges to the low accuracy as Hill Climbing
proved to achieve acceptable accuracy for the OpenMP sample. Binarytrees is another
case of Hill Climbing’s algorithm’s inability to achieve accuracy within the 5% of
the lowest energy range, even with the number of optimal instances growing with
different inputs. Similar to Binarytrees, Spectral-norm proved challenging for Hill
Climbing to optimise energy levels. All samples except for Pthreads demonstrated
low to non-existent even though more solutions were available in the search space.
The case of 8.5k and 11.5k from the Pthreads sample seem to achieve accuracy; how-
ever, it is unknown what may be contributing to the sudden increase in the accuracy
levels. Although Prime Decomposition in some samples had 18 solutions in the
search space, the Hill-Climbing algorithm struggled to achieve any accuracy in all
the different benchmark implementations.

Ant-Colony Similar to Hill Climbing, ACO underperformed in all three parallel
samples. The accuracy demonstrated by the algorithm appears to struggle to optimise
particular benchmarks such as Binarytrees, Spectral-norm, and Prime Decomposition,
which all had accuracy levels at zero or near zero except for a few cases where
Spectral-norm’s 11.5k achieved 12.90% for example. The previously mentioned
benchmarks had more solutions than Fasta did not contribute to or help improve the
accuracy levels. On the other hand, Fasta demonstrated somewhat below average
accuracy for Pthreads and OpenMP; however, it failed to achieve any accuracy for
the TBB sample. Even though Fasta had a low number of solutions available in the
search space, the ACO algorithm optimised for the lowest energy solution at least in
2 samples.
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Genetic Algorithm The first notable characteristic of this algorithm is the difficulty
in finding any accurate solutions, which may be due to the need for more solutions
in the space or even the model’s inability to drive the accuracy levels correctly to
match the actual energy measurements from the sample. Alternatively, both reasons
can be present in some cases, contributing to a nearly impossible optimisation. In the
case of the Genetic algorithm optimisation, the accuracy levels appear stagnant when
trying to find solutions in the search space, even in the cases where the NNLS model
has improved accuracy in estimating energy values. Even when the chosen statistical
model might not have high error margins, it could not achieve accuracies above 10%
across all parallel implementations.
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7.4. C/C++ (PTHREADS, TBB, OPENMP)
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7.4. C/C++ (PTHREADS, TBB, OPENMP)
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7.4. C/C++ (PTHREADS, TBB, OPENMP)
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CHAPTER 7. META-HEURISTIC – MODEL PREDICTIONS

7.5 Summary

Although the use of a statistical model in combination with meta-heuristics provided
limited accuracy, the application of which in the Genetic algorithm showed that there
are improvements possible in this area. The increase in available solutions in the
search space shows that the Genetic algorithm was able to improve accuracy in certain
cases even with tight energy ranges.
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Chapter 8

Related Work

This chapter provides a review of the literature related to the topic. Section 8.1
focuses on efforts with embedded devices and chip design. Section 8.2 discusses low-
level modelling of energy using compilers and compiler optimisations. Section 2.2.3
reviews structured parallelism.

Despite the increasing importance of energy usage in multicore and low-power
settings, the energy analysis of software is relatively understudied, particularly with
parallel software applications at the language level. Work to date has mostly focused
on simple program-level measurements of energy using ISA analysis with CPU
frequency sampling. Other techniques rely on compiler phases and instruction-level
representations, often without considering high-level language features, e.g. looping,
data dependencies and common micro-architectural features, e.g. pipelines.

8.1 Embedded Systems, Portable Devices and Chip

Design

In [6], the hardware-directed analysis of energy/power costs and different methods
of scaling and reducing energy was performed. For scheduling and core-task alloc-
ation, the authors used a pre-selected voltage and clock frequency. By providing a
multi-objective NSGA-II [26] algorithm with two goals, i.e. energy consumption and
execution time minimisation, they derived several optimal states that prioritise energy
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and execution time. Their approach did not eliminate the use of DVFS, a system
that manages power and clock frequency, but it supported the use of such features.
The authors applied their approach to an XMOS board with a MIPS-based pro-
cessor running at 400 MHz, obtaining an average 76% optimal allocation/scheduling
at loose bounds of execution time and energy; they achieved 70% with stricter bounds.

At the design level, the work of Marowka [69] proposed a processing-based solu-
tion using an analytical model of each processing technique. The author reviewed
data processing from a chip organisation perspective, that is, how the different pro-
cessing elements can be organised to handle different computations in parallel. The
categories discussed were symmetric, asymmetric and simultaneous asymmetric, and
each design was evaluated for scalability and performance per watt. In symmetric
processing, a general-purpose multicore processor based on Gustafson–Barsis’ Law
was used for scaled speedup, where performance per watt was moderate, compared
with other chip designs. The asymmetric configuration consisted of a single-dye
CPU–GPU. The overall performance was much-improved over symmetric processing,
considering joule consumption. The final configuration was simultaneous asymmet-
ric, wherein the same asymmetric design was utilised. However, GPU and CPU
processing overlapped; the performance per joule for this configuration was not
compared with the author’s asymmetric configuration.

Although low-power devices, such as mobile phones and microcontrollers, have
inherently low energy consumption by design, they still benefit greatly from lower
energy consumption. The refactoring approach suggested in [23] analysed Android
open-source codebases and identified several energy-intensive Android code-bases.
The code was refactored to a more energy-efficient mode using a static analysis tool,
i.e. Leafactor. Out of the 140 apps analysed, 45 improved energy consumption by up
to 40%. Another noteworthy study [89] built a dataset of Android application energy
consumption values using an experimental approach to collecting measurements
from open-source projects. The applications tested were installed on an Android
device with specific settings fixed at the lowest values, e.g. screen brightness, to
ensure that no application energy readings interfered with measurements.

An OpenMP solution used to evaluate and minimise fork–join-based task paral-
lelism was reviewed in [84]. The authors described how an energy model based on
frequency scaling can be derived for this purpose. The method is based on OpenMP
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scheduling, and optimisations mostly focused on performance without considering
energy. The authors derived a model that describes the dynamic power consumed
during switching in addition to leakage or base consumption. The dynamic power
consumption is based on switching probability, load capacitance, the square of voltage
(β × frequency) and a frequency result of the scale factor, s–1, multiplied by the
frequency. The authors assumed that static power consumption was a constant in
the final equation. The scheduling algorithm handling execution considered energy
minimisation and performance based on different scheduling cases, e.g. having
sufficient processors and evaluating methods and optimal scalability for single tasks.
The evaluation of the energy-aware scheduling algorithm corresponds to the energy
model integrated into the algorithm.

8.2 Compilers, Scheduling and Systems

When considering software energy analyses of programming language code bases,
approaching the problem from a compiler view might be viable. In [88], the authors
presented a compiler-based solution for estimating energy consumed by code blocks,
given that a CPU energy model is available. The solution used a performance estimate
technique based on a C compiler with a worst-case execution time-aware (WCET-aware)
extension, i.e. WCC, used to estimate and minimise the execution time cost of the
compiled codebase. The WCC parses an extensible markup language (XML) file con-
taining particular low-level instructions with energy costs based on predefined cases
to handle energy estimations, given a code structure. The compiler then correlates
the weights in the parsed XML tree containing the branching weights for energy.

Kerrison [51, 52] estimated energy usage based on the ISA of an XMOS XS1-L
xCORE embedded processor with one core and eight threads. Energy consumption
for imperative languages was estimated by considering instruction-level costs. The
XS1-L processor, having a MIPS-based architecture, has features that differ from x86
and other high-performance processors. For example, hardware-managed context
switching and thread management take place at the hardware level, and the processor
switches threads at every cycle, allowing up to eight to execute at once. The model is
based on the XS1-L instruction set, where the main components are derived from base,
thread, instruction and inter-instruction power costs and execution statistics. The total
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execution time, thread active time as a ratio of total time and number of operands
used in each instruction sampled are also considered. The model equation factors
all previous components and presents the total energy consumed by the program.
The authors presented a solution and tested it using a set of known benchmarks, e.g.
matrix multiplication, SHA-2 hashing function and audio mixing.

A more advanced approach of energy analysis can be found in [78], where worst-
case energy consumption (WCEC) was estimated by considering the operand bit values
or the data-dependent instruction set. The authors used two candidate processors:
32-bit XS1-L and 8-bit AVR. The first runs on an XMOS board, and the second runs
on an Atmel board. Both are embedded processors. Predicting worst-case energy
costs for a given program structure involves careful attention to the data operated on
by the instruction. The work discussed the fact that circuit switching individual bits
in a processor’s registers involves calculating a set of operands that trigger power
draws like real data used in normal program execution. For example, the authors
stated that the number of bits needed to explore a 20× 20 matrix in an 8-bit AVR
processor resulted in 3200 bits to understand energy consumed. Extending this to
full program operations quickly becomes impractical. The authors proposed using
three techniques to generate and collect energy consumption data that would be
utilised to model energy consumption. The first method randomly generated data for
operands, and the second method generated operand data using genetic algorithms.
The third method manually generates operand data using a system to generate a
distribution of possible energy values for an instruction sequence. The model uses a
specific structure of sequenced instruction costs, but the cost is not represented by the
base cost of the instruction being executed. Rather, it is represented by the cost of a
sequence of instructions commonly used together, such as a mov, followed by an add

or a sub instruction. Using the described model, the authors propose the use of an
implicit path enumeration technique (IPET) [15] to calculate the individual cost of a given
code block using the described model. They achieved predictive results; however,
using a small subset of instructions did not simulate a real use case. Pallister [77]
further expanded the work to highlight the compiler effects when optimising for
performance vs. energy.

Georgiou et al. applied energy consumption static analysis (ECSA) to map the
intermediate representations (IRs) of LLVM to a low-level assembly language [35].
Doing so allowed the analysis of software energy consumption on an embedded
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system with a cache-less ARM processor, achieving accurate energy usage predictions.
However, this method was not generic; it was tightly coupled to the LLVM compiler
infrastructure and cannot link execution costs to high-level program constructs. For
example, although the GHC Haskell compiler can generate code from the Cmm inter-
mediate language via LLVM, this is not the default code generation option. Moreover,
it is unsuitable for most Haskell applications or for general use. Moreover, the work
in question was tied to sequential execution models and did not consider high-level
parallelism or threading.

At the macro level, Marathe et al. [64] measured energy consumption on Intel
CPU architectures. They studied CPU variations and uncore functionality1 energy
consumption over a set of benchmarks from NASA’s NAS Parallel Benchmarks [5].
Their analysis revealed varying performance and energy consumption in newer archi-
tectures. They attributed their findings to several factors, such as the quality of chip
production. However, they did not attempt to relate this to source-level characteristics.

Chowdury et al. [19] measured the overall energy consumption of several indus-
trial software systems and constructed a system-level model. Their approach used
system calls (syscalls) to model the energy usage for a large set of examples. However,
the approach failed with applications that did not make regular system calls and
those involving significant amounts of computation or memory access between calls.

Pereira et al. [81] evaluated execution time, DRAM energy and package energy us-
age for 28 programming languages using the Computer Language Benchmarks Game [22].
They concluded that overall execution time was necessarily directly correlated to
energy consumption but that average power usage could introduce significant vari-
ations. Although languages, such as C, Pascal, Fortran, Go and C++ demonstrated
better overall energy efficiency, modern languages, such as Haskell, OCaml, Racket
and Python are more consistent in terms of overall energy consumption. Georgiou et
al. [36] similarly evaluated the energy consumption of 13 programming languages
using different execution methods, i.e. compiled, interpreted and virtual-machine,
considering several small sequential tasks in semantically equivalent programs from
Rosetta Code’s [86] repository. The authors suggested that compiled programs showed
the most energy savings, among all others. However, their work did not consider

1Intel uses the term ‘uncore’ or ‘system agent’ to refer to functionality outside a microprocessor
core. However, it is closely connected to the core to ensure good performance.
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parallelism, nor did it attempt to relate energy usage to source programs.

Using a more theoretical approach, van Eekelen et al. presented an abstract
high-level static analysis on energy-aware components (ECAlogic) with states [93],
using a Hoare-like rule-based system that used energy-aware state components. They
described a dependent-type system that uses finite-state machine models of a given
single-processor system [34]. However, unlike our work, their work did not provide
concrete energy predictions, nor did they consider parallel execution.

Very little of this work considers high-level programming languages or the rela-
tionship between source-level constructs and energy usage, especially for parallel
computations. In a Haskell setting, Lima et al. [63] investigated energy consumption
patterns over several data structures taken from the Edison library of purely functional
data structures. They presented results showing how to minimise energy consump-
tion when switching between alternative mutable primitives, i.e. TMVar and MVar,
and reported non-trivial improvements to the energy consumption of particular data
structures when specific operations are used. Melfe et al. [70] extended this work to
consider common operations, such as seeking, adding or removing elements from data
structures in the Edison library, deducing that overall energy consumption is also
reduced by GHC’s standard performance optimisations.

[96] reported additional details about energy consumption in processing com-
ponents. Considering the increasing number of machine learning applications and
the types of computations required in the learning process, increasing energy con-
sumption is required. The authors provided an overview of the training of a natural
language processor model using a NUMA system with two GPUs. The energy details
were aggregated and applied to an equation that outputs the total power. The authors
then demonstrated, using a comparative example, the amount of carbon emissions
generated.

Kessler [53, 54] extended crown scheduling to manage task scheduling and task
fusion as a single entity on a parallel system that is DVFS enabled. Kessler used
integer linear programming (ILP) to resolve mapping cores and tasks while deciding on
the appropriate DVFS configuration for each task. The authors tested the technique
on an ARM big.LITTLE processor 2700× using a set of synthetic benchmarks. The
results showed that using task fusion improves energy consumption when tuned for
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specific goals.

Further work based on exploring performance and hardware in relation to vary-
ing GPU program implementations, the work of Li [61] proposed using an adaptive
pruning algorithm in combination with a heuristic-based algorithm referred to as
’heuristic convexity assumption’ to select particular samples for training. The authors
show that it is possible to achieve up to 100% prediction accuracy using a small search
space. Additionally, Li [62] demonstrated the use of MeterPU, a generic portable
measurement framework for multicore CPU and multi-GPU systems, that has allowed
the collection of time and energy related measurements which enabled the repur-
posing of algorithmeic skeleton optimisation tools for energy. Furthermore, Jia [48]
also proposed a framework to explore GPU-based configurations using stepwise
regression modelling for performance optimisation. The STAtistical Regression-based
GPU Architecture analyser (Stargazer) system derives GPU design related parameters
by sampling a small design space producing application-specific performance models
that have accurate estimates of program runtime.

179





Chapter 9

Conclusions

The goals defined at the beginning of this thesis were approached using a variety of
different methods, including regression and statistical modelling of parallel bench-
marks, meta-heuristic optimisation algorithms and the evaluation approach, which
tested the generalisability of the solutions. Here, we summarise the various aspects
of the work presented and report the contributions with regard to the defined goals.

9.1 Contributions

The thesis aimed to answer several questions regarding parallel execution, energy
prediction and the effects and behaviours of both on the functional language, Haskell.
The work was extended to include an imperative programming language, i.e. C/C++,
using well-known parallelism libraries. Next, we summarise the details and steps
taken to answer the aims noted earlier.

1. The development of a general optimisation technique to minimise energy
consumption: In the case of programs executing in different ways, i.e. smaller or
larger reserved caches, with varying types of processors, different architectures
and the availability of multiple clock frequencies, the situation quickly becomes
complex. As seen in the modelling of statistical data samples in Chapter 3,
the models offered some accuracy. However, when the inputs had different
workload factors, the total energy consumed dropped or increased, and the
energy prediction results were often inaccurate, sometimes by a large margin.
As introduced in Chapter 4 and later evaluated in Chapters 5 and 6, the generic
approach overcame the weaknesses of statically modelled energy consump-
tion. Even in cases where energy consumption was low, the meta-heuristic

181



CHAPTER 9. CONCLUSIONS

process successfully captured optimal states for programs with low energy
consumption of the benchmarks. In other instances, programs with irregular
performances, where energy spikes occurred with different sets of cores, the
group of algorithms still produced reasonably accurate levels.

In the literature, efforts to create predictive models and provide safe bounds
of energy consumption in programming languages were made. In some cases,
the aim was the sequential execution of software. In others, the models were
too specific for a unique processor or a complete system, such as building
a model for a cacheless SoC with a graphics processor or other processing
units. Otherwise, they required complicated steps that would be impossible
to implement with an ISA. After examining the work in Chapters 3 and 4, it
became apparent that meta-heuristic algorithms provide a preferable approach
to prediction inferencing using a statistical model. The ability to derive optimal
and near-actual lowest-energy consumption translates to better parallelism
optimisation.

2. Investigating energy modelling for parallel programs using multiple statist-
ical models: In Chapter 3, the statistical modelling was approached by building
a dataset collected from a sample of benchmarks from different programming
paradigms and different algorithms that were explicitly designed to run in envir-
onments that support parallelism. The sampling was performed with multiple
processor clock frequencies and several inputs. The modelling was performed
using three approaches, NNLS, parRF, and GLMNET, and the models had their
advantages and disadvantages assessed against an unseen set of benchmarks.
Certain models performed better than others such as NNLS being more robust
with low error margins while others have shown some accuracy.

3. Energy consumption patterns with regard to execution time and parallel
speedup: With the extensive sampling performed in Chapters 3, despite having
scalable and high-performing parallel implementations, increasing parallelism
did not yield additional speedup gains. However, it may have had a significant
impact on the energy consumed. This was seen in both sets of benchmarks:
PARSEC and Nofib. Another observation was made using the benchmarks
from Nofib, when samples with different frequencies showed significant energy
reductions, and performance had a marginal increase in execution time.

4. Development and formalisation of meta-heuristic algorithms to estimate
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and optimise energy: In Chapter 4, several variations of meta-heuristic al-
gorithms have been developed to further explore the generalisation of energy
consumption optimisation. The results presented in Chapters 5 to 7 showed that
optimising energy over small set of configurations can be achieved even with
negligible accuracy loss. Applying statistical modelling in combination with
meta-heuristic demonstrated limitations with regards to accuracy, however.

5. Evaluation of energy consumption of multiple programming domains (func-
tional and imperative): The Chapter 3 presented a list of energy assessment for
a range of benchmarks for Haskell and C/C++. The process of modelling data-
sets for both programming languages demonstrated different types of feature
importance e.g. C/C++ giving weights to system calls instead of relying only
on instruction counts.

6. Set of Haskell/C++ energy profiles for PARSEC, Nofib, and the Computer
Language Benchmarks Game: The energy and program metadata such as
instruction counts and system calls shown in Chapter 3 provided an overview
of language/multi-core behaviour with regards to energy consumption.

9.2 Future Work

Although this thesis explored new domains of optimising and predicting energy,
more experiments and ideas remain on tuning the methods discussed in this paper.
Here, we review a few of these to help expand the field.

1. Meta-heuristic Optimisation Algorithms for Multiple Objectives: The ex-
periments and data discussed in Chapters 5 and 6 provided a glimpse of the
improvements possible when using specialised and generalised algorithms
for energy analysis. Initial algorithm designs were based on optimising the
execution setup, and this activity was worthy of deep examination. The next
step should optimise all four algorithms to support more objectives, such as
optimising energy consumption while maintaining a speedup of 4× or keeping
memory usage below a particular size. There are multiple ways of implement-
ing the base algorithms for multiple-objective goals in the literature [17, 56,
105].
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2. Energy-aware Runtime System: CPUs, GPUs and memory can be equally
demanding when it comes to power requirements. As languages, such as
Haskell, are managed using a runtime system, understanding how each part
of the language consumes energy would benefit the language as a whole.
Evaluating runtime algorithms would improve the ability to control energy
consumption and performance. Because RTS has many roles in managing
program execution, memory management and scheduling, some features could
benefit from modelling the general algorithms employed.

3. Optimisation Extensibility: We implemented optimisation algorithms that
focused on classical x86 architectures with symmetrical processing designs.
It would be beneficial to broaden the scope to other processor designs and
architectures. For example, asymmetric multicore processors (AMPs), such as those
used in mobile phones, have a variety of multicore processing units, where
the types of computations and energy consumption activities may have unique
behaviours.

4. Parallel Skeleton Energy Estimates: The black-box energy consumption may
need a better understanding of specific program structures, for example, ad-
dressing specific parallel skeletons concerning energy estimates without the
need to sample the functions running in such parallel structures. Meaning
that a framework of sampling simple sequential functions with inputs of some
domain can help estimate if a given parallel skeleton would be advantageous
compared to other skeletons when it comes to energy consumption.
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Appendix A

Parallel Example Implementations

A.1 Data Parallel Implementation Example

A simple implementation of that can be demonstrated in the Listing–6, Line 4 defines
a simple function to add the integer 3 to an argument x and return it to the callee,
the Lines 7-8 define a set two constants used in configuring the parallelism, Lines
9-10 define two arrays one used to store the result from applying add3 and another
array threadArr to store the thread id that executed that particular iteration, the
OpenMP directive definition on Line 12 defines that a for loop would run in parallel

and that the scheduling is done dynamically where an internal queue would be used
to distribute a set of chunks of the computation between threads. Lastly, the Lines
17-18 print a set of values of the index 400 to show the result and the number of
thread that executed the iteration that produced it.
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APPENDIX A. PARALLEL EXAMPLE IMPLEMENTATIONS

1 #include <stdio.h>
2 #include <omp.h>
3

4 int add3(int x) { return x + 3; }
5

6 int main() {
7 const int length = 1000000;
8 const int chunk = 1000;
9 int arr[1000001];

10 int threadArr[1000001];
11

12 #pragma omp parallel for schedule(dynamic, chunk)
13 for (int i = 0; i < length; i++) {
14 arr[i] = add3(i);
15 threadArr[i] = omp_get_thread_num();
16 }
17 printf("N-th element: %d\n", arr[400]);
18 printf("N-th element was generated by thread: %d",

threadArr[400]);↪→

19 return 0;
20 }

Listing 6: Example showing an implemented version of the diagram in Figure–2.2
using OpenMP
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A.2. TASK PARALLEL IMPLEMENTATION EXAMPLE

A.2 Task Parallel Implementation Example

An example implementation of the last figure can seen in Listing–7, Lines 4-6 define
functions that do basic computations over integers and floats, line 9 declare an int

variable to be used later in a loop, Lines 11-14 declare a set of arrays of the same size
for the purpose of the execution, Lines 18-19 uses a loop to populate the numbers

array with a set of integers from 0 to 100, Line 23 is an OpenMP directive that defines
a set of parallel sections each section would run in parallel to others, the shared

clause states that arguments passed will be shared among threads executing in the
sections region, the num_threads is a clause to specify the number of threads in a
thread team to be used in scheduling work between the different sections. The section

directive is a structured block that is defined to run in parallel, in the case of the
current example, each section containing a loop with a fixed size to apply a single
function over the elements of the numbers array then storing the result in a new
array, in this case squares, the printing the thread id that performed the execution of
that iteration, a similar set of operations happen in the other sections with a small
difference of computations and arrays used to store the results, finally after the omp

sections complete executing the set of print commands Lines 44-46 print random
indexes from the arrays containing the results.
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APPENDIX A. PARALLEL EXAMPLE IMPLEMENTATIONS

1 #include <stdio.h>
2 #include <omp.h>
3
4 int square(int x) { return x * x; }
5 int multiply(int y) { return y * 2; }
6 float divide(float z) { return z / 2; }
7
8 int main() {
9 int i;

10
11 int numbers[101];
12 int squares[101];
13 int multipliers[101];
14 float divisions[101];
15
16 /* create a sequence of integers from 0 to 100 and save them in
17 * array numbers */
18 for (i = 0; i <= 100; i++) {
19 numbers[i] = i;
20 }
21
22
23 #pragma omp parallel sections shared(numbers,squares,multipliers,divisions)

num_threads(6)↪→
24 {
25 #pragma omp section
26 for (int p = 0; p <= 100; p++) {
27 squares[p] = square(numbers[p]);
28 printf("Squares Thread id: %d\n", omp_get_thread_num());
29 }
30
31 #pragma omp section
32 for (int p_ = 0; p_ <= 100; p_++) {
33 multipliers[p_] = multiply(numbers[p_]);
34 printf("Mult Thread id: %d\n", omp_get_thread_num());
35 }
36
37 #pragma omp section
38 for (int p__ = 0; p__ <= 100; p__++) {
39 divisions[p__] = divide((float) numbers[p__]);
40 printf("Div Thread id: %d\n", omp_get_thread_num());
41 }
42 }
43
44 printf("Squares Array value 50: %d\n", squares[90]);
45 printf("Mult Array value 50: %d\n", multipliers[92]);
46 printf("Divs Array value 50: %.3f\n", divisions[100]);
47
48 return 0;
49 }

Listing 7: Example showing an implemented version of the diagram in Figure–2.1
using OpenMP
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Appendix B

Multiple Frequency Samples
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Figure B.1: Effect on energy usage of varying clock frequencies for: 1.2GHz, 1.4GHz,
1.8GHz, 2.1GHz, 2.6GHz for DFT
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Figure B.2: Effect on energy usage of varying clock frequencies for: 1.2GHz, 1.4GHz,
1.8GHz, 2.1GHz, 2.6GHz for MatMult
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Figure B.3: Effect on energy usage of varying clock frequencies for: 1.2GHz, 1.4GHz,
1.8GHz, 2.1GHz, 2.6GHz for SumEuler
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Figure B.4: Effect on energy usage of varying clock frequencies for: 1.2GHz, 1.4GHz,
1.8GHz, 2.1GHz, 2.6GHz for PRSA
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Figure B.5: Effect on energy usage of varying clock frequencies for: 1.2GHz, 1.4GHz,
1.8GHz, 2.1GHz, 2.6GHz for Partree
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Figure B.6: Effect on energy usage of varying clock frequencies for: 1.2GHz, 1.4GHz,
1.8GHz, 2.1GHz, 2.6GHz for Parfib
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Figure B.7: Effect on energy usage of varying clock frequencies for: 1.2GHz, 1.4GHz,
1.8GHz, 2.1GHz, 2.6GHz for Quicksort
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Figure B.8: Effect on energy usage of varying clock frequencies for: 1.2GHz, 1.4GHz,
1.8GHz, 2.1GHz, 2.6GHz for Ray Tracing
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Figure B.9: Effect on energy usage of varying clock frequencies for: 1.2GHz, 1.4GHz,
1.8GHz, 2.1GHz, 2.6GHz for Queens
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Figure B.10: Effect on energy usage of varying clock frequencies for: 1.2GHz, 1.4GHz,
1.8GHz, 2.1GHz, 2.6GHz for Nbody
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Figure B.11: Effect on energy usage of varying clock frequencies for: 1.2GHz, 1.4GHz,
1.8GHz, 2.1GHz, 2.6GHz for Minimax
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Appendix E

TBB and Pthreads Model Plots

E.1 Pthread Fitted vs. Actual Energy Consumption

Figures below provide predictions for POSIX threads sample of the prediction dataset.
The figures show predictions for NNLS, parRF, and GLMNET against the actual
sample energy consumption at highest frequency.
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E.2 TBB Fitted vs. Actual Energy Consumption

Figures below provide predictions for TBB sample of the prediction dataset. The
figures show predictions for NNLS, parRF, and GLMNET against the actual sample
energy consumption at highest frequency.
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Appendix F

Examples: OpenMP and GHC Linear
Model Prediction

F.1 GHC Prediction Dataset – Actual vs. Linear Model

Energy

The following plots present the predicted values of benchmarks from Haskell’s
prediction dataset against a linear model constructed using the entire dataset’s
features.
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F.2 C/C++ Prediction Dataset – Actual vs. Linear

Model Energy

The following plots present the predicted values of benchmarks from C/C++’s
prediction dataset against a linear model constructed using the entire dataset’s
features.
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