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Allele distribution and
phenotypic resistance to
ciprofloxacin and gentamicin
among extended-spectrum
b-lactamase-producing
Escherichia coli isolated from
the urine, stool, animals, and
environments of patients with
presumptive urinary tract
infection in Tanzania

Adam A. Mwakyoma1,2, Benson R. Kidenya1*, Caroline A. Minja1,
Martha F. Mushi3, Alison Sandeman4, Wilber Sabiti4,
Mathew T. G. Holden4 and Stephen E. Mshana3

1Department of Biochemistry and Molecular Biology, Catholic University of Health and Allied
Sciences, Mwanza, Tanzania, 2Department of Clinical Microbiology, Kilimanjaro Christian Medical
Centre, Moshi, Tanzania, 3Department of Microbiology and Immunology, Weill Bugando School of
Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania, 4School of Medicine,
University of St Andrews, St Andrews, United Kingdom
Background: Additional antimicrobial resistance to extended-spectrum b-
lactamase (ESBL)-producing E. coli exhausts treatment options. We

investigated allele distribution and resistance to ciprofloxacin and gentamicin

among ESBL-producing E. coli isolates from the urine, stool, animals, and

environments of presumptive urinary tract infection (UTI) patients, in order to

gain a crucial insight toward devising prevention and control measures and

treatment guidelines.

Methods: Archived ESBL-producing E. coli isolates from the urine, stool, animals,

and surrounding environments of presumptive UTI patients were retrieved.

Antimicrobial susceptibility profiles for ciprofloxacin and gentamicin were done

followed by multiplex Polymerase chain reaction (PCR) for blaCTX-M, blaTEM, and

blaSHV, to determine ESBL allele distribution. Data were analyzed using STATA

version 17.

Results: A total of 472 confirmed ESBL-producing E. coli isolates from Mwanza

243 (51.5%), Kilimanjaro 143 (30.3%), and Mbeya 86 (18.2%) were analyzed. Of

these, 75 (15.9%) were from urine, 199 (42.2%) from stool, 58 (12.3%) from rectal/

cloaca swabs of animals, and 140 (29.7%) from surrounding environments. Out of

the 472 ESBL-producing E. coli, 98.9% (467) had at least one ESBL allele.
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The most frequent allele was blaCTX-M, which was detected in 88.1% (416/472)

of isolates, followed by the blaTEM allele, which was detected in 51.5%

(243/472) of isolates. A total of 40.7% (192/472) of isolates harbored dual

blaCTX-M + blaTEMalleles and only 0.2% (1/472) of isolates had dual

blaCTX-M + blaSHValleles, whereas 2.3% (11/472) of isolates had a combination

of all three alleles (blaCTX-M + blaTEM + blaSHV). None of the isolates harbored a

combination of blaTEM + blaSHVonly. Resistance to ciprofloxacin and gentamicin

was observed in 70.8% (334/472) and 46.0% (217/472) of isolates, respectively.

There was a significant difference in the distribution of resistance to ciprofloxacin

as well as gentamicin among ESBL-producing E. coli isolated from various

sources (p-value < 0.001 and 0.002, respectively).

Conclusion: Almost all ESBL-producing E. coli isolates carry blaCTX-M, blaTEM,

and blaSHV either alone or in combination, with the most common allele being

blaCTX-M.The resistance to ciprofloxacin and gentamicin, which are frontline

antibiotics for UTIs among ESBL-producing E. coli, is high. This implies the need

to continually revise the local guidelines used for optimal empirical therapy for

UTIs, and for continual research and surveillance using one health approach.
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Introduction

Escherichia coli is the main causative pathogen for urinary tract

infections (UTIs) and has the greatest potential to acquire

extended-spectrum b-lactamases (ESBLs) (Ahmed et al., 2015;

Ayoyi et al., 2017; Karikari et al., 2021). The dissemination of

ESBL-producing E. coli poses a significant public health threat, as

the antibiotic resistance associated with it limits treatment options

and challenges health systems (Jasser, 2006).

ESBLs comprise many plasmid-mediated derivatives such as

blaTEM, blaOXA, blaSHV, and blaCTX-M (Nicolas-Chanoine et al., 2008;

Peirano and Pitout, 2010). However, blaCTX-M has been the

predominant ESBL allele worldwide (Cantón and Coque, 2006),

including in Tanzania (Mshana et al., 2016; Seni et al., 2016). This

group of ESBLs is associated with an extensive pattern of antimicrobial

resistance to many antibiotics, including b-lactam agents such as

penicillins, cephalosporins, monobactams, and carbapenems

(Paterson and Bonomo, 2005; Rogers et al., 2011; Accogli et al.,

2014; Cai et al., 2014; Johnson et al., 2015). In addition, over the last

two decades ESBL-producing E. coli isolates have demonstrated an

increased level of dual resistance to other frontline antibiotics such as

aminoglycosides and fluoroquinolones (Meier et al., 2011; Mshana

et al., 2011; Rogers et al., 2011). Several surveillance studies across

Europe, North America, and South America have reported resistance

to these antibiotics, ranging from 20% to 45% among uropathogenic E.

coli isolates (Foxaman, 2010; Croxall et al., 2011). As most of these

antibiotics are used to treat uncomplicated UTIs and complicated

UTIs, which are the leading cause of increased UTI-related hospital

visits, this increasing level of antimicrobial resistance of ESBL-

producing E. coli to frontline antibiotics is of great concern. It
02
threatens health systems by limiting the therapeutic choices used for

treating UTIs and highlights the growing threat of the emergence of

pan-drug resistance in ESBL-producing E. coli (Meier et al., 2011). At

the time of writing treatment of UTIs is frequently initiated empirically

(based on the standard treatment guideline), of which ciprofloxacin

and gentamicin are recommended in (The United Republic of

Tanzania Ministry of Health and Social Welfare, 2021). Having prior

information regarding antimicrobial susceptibility profiles to frontline

antimicrobial drugs for common causative pathogens, such as ESBL-

producing E. coli in a particular setting, is essential to achieving the

most effective empirical therapy as it will provide clinicians with the

information required to facilitate the effective treatment and

management of UTI patients (Dias Neto et al., 2003; Farajnia

et al., 2009).

UTIs are among the most common bacterial infections acquired

in community and hospital settings (Foxaman, 2010; Murray et al.,

2022), and they are a main cause of hospital admissions that are

associated with high morbidity, mortality, and economic costs

(Gonzalez and Schaeffer, 1999; Foxman, 2002; Cove Smith and

Almond, 2007; Murray et al., 2022). Pathogens causing UTIs can be

acquired either endogenously or exogenously (Ayoyi et al., 2017),

with about 87.0% of UTIs being endogenously acquired (Nielsen

et al., 2014; Tandogdu and Wagenlehner, 2016). In addition, E. coli

colonizing the gastrointestinal tract of humans and animals is

described as being the main source of UTIs (Monstein et al.,

2007; Jakobsen et al., 2012; Nielsen et al., 2014). Previous studies

done in Tanzania reported the prevalence of ESBL-producing E. coli

colonizing the gastrointestinal tracts of the adult population and

animals in the community to be 16.5% and 20.8%, respectively

(Mshana et al., 2016; Seni et al., 2016). Furthermore, in Tanzania,
frontiersin.org
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the evidence of ESBL-producing E. coli contaminating household

latrines has been reported to be at 8.7% (Erb et al., 2018). It is also

known that the distribution of ESBL alleles and their antibiotic

susceptibility profiles, particularly to non b-lactam antibiotics, differ

regionally (Mathai et al., 2001; Farrell et al., 2003). With this note,

evaluation of common local ESBL allele distribution of E. coli strains

circulating in the community among patients, their domesticated

and farm animals, and surrounding environments is crucial in

devising strategies to curb the spread of ESBL-producing E. coli.

Therefore, this study investigated the allele distribution and

antimicrobial resistance patterns of ciprofloxacin and gentamicin

among ESBL-producing E. coli isolates from the urine and stool of

presumptive UTI patients, their domesticated and farm animals,

and their surrounding environments.
Materials and methods

Study design, period, and population

This was a laboratory-based cross-sectional study that utilized a

total of 472 ESBL-producing E. coli isolates, which were selected

from Gram-negative bacteria archived during the implementation

of the Holistic Approach To Unravel Antibacterial resistance

(HATUA) project. The HATUA project was conducted in three

countries—Kenya, Tanzania, and Uganda—for the period of

February 2019 to September 2020 (Asiimwe et al., 2021). In

Tanzania, the HATUA project enrolled presumptive UTI patients

selected from 10 health facilities in three regions (Mwanza, Mbeya,

and Kilimanjaro). The health facilities included Kilimanjaro

Christian Medical Center (KCMC), Kibosho District Designated

Hospital, and Majengo Health Center for the Kilimanjaro region;

Bugando Medical Center, Sekou-Toure Regional Hospital,

Nyamagana District Hospital, Sengerema Designated District

Hospital, and Makongoro Health Center for the Mwanza region;

and Mbeya Regional Referral Hospital and Ifisi Designated District

Hospital for the Mbeya region. Out of 472 isolates, 75 were from

urine and 199 from stools of these presumptive patients, 58 were

from rectal/cloaca swabs of their domesticated and farm animals

(dogs, chickens, goats, cows, pigs, ducks, cats, and rabbits), and 140

were from the surrounding environments (bathrooms, toilets, and

waste bins or dumping pits) of these presumptive UTI patients.
Data collection

The information related to ESBL-producing E. coli isolates from

study participants was retrieved from the pre-existing database of

the HATUA project.
Laboratory procedures and methods

Isolates recovery
The isolates were taken from cryovials, containing brain–heart

infusion broth with 20% glycerol, stored in –80°C freezers. The
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isolates were then subcultured on sheep blood agar and incubated

aerobically at 37°C for 18 to 24 h.

Antibiotic susceptibility testing
The resistance phenotypes for ESBL-producing E. coli from urine,

stool, rectal swabs of animals, and environments were captured from

the existing database of the HATUA project. Ciprofloxacin and

gentamicin were tested using an agar dilution method for ESBL-

producing E. coli originating from the environment and animals

only. The agar dilution methods were determined according to

established standard operating protocols based on methodology from

the (Clinical and Laboratory Standards Institute, 2019). For

gentamicin, the stock solution concentration of 40 mg/mL (40 µL)

was incorporated into 1,000 mL of Mueller–Hinton media to make a

final concentration of 8 µg/mL, while 10 mg/mL (50 µl) of stock

solution of ciprofloxacin was incorporated into 1,000 mL of Mueller–

Hintonmedia to make a final concentration of 0.5 µg/mL. The samples

were inoculated onto media containing antibiotics and finally

incubated at 37°C for 18 to 24 h.
DNA extraction
The boil lysate technique was used to extract bacterial DNA, as

previously reported with a slight modification (Minja et al., 2021).

Briefly, two colonies of overnight growth of bacteria from Mueller–

Hinton agar were suspended into DNAse-free water, and, thereafter,

mixed by vortexing and then boiled at 100°C in a water bath for

15 min. Tubes were centrifuged at 12,000 rpm for 10 min. The quality

of DNA was determined using gel electrophoresis, whereas quantity

was determined using Qubit®. Thereafter, 100 µL of the supernatant

(DNA rich) was aliquoted into Eppendorf tubes for storage at –20°C

for further PCR amplification and detection of ESBL alleles (blaCTX-M,

blaTEM, and blaSHV).
Multiplex PCR amplification for detection of
extended-spectrum b-lactamase alleles

A multiplex PCR was performed on a thermal cycler machine

(T100™; Bio-Rad, Singapore) to amplify ESBL alleles (blaCTX-M,

blaTEM, and blaSHV) using specific primers, as previous reported

(Monstein et al., 2007) (Table 1). Briefly, 2 µL (≈ 30 ng) of DNA

samples was added into PCR plates containing 12.5 µL of readily

reconstituted master-mix (New England Biolabs) with 0.5 µL

(500 µg) of each primer and then PCR water was added to make

a final volume of 25 µL for the reaction mixture. Amplification

conditions included an initial denaturation at 95°C for 15 min

followed by 30 cycles of denaturation at 94°C for 30 s, annealing at

60°C for 40 s, and elongation at 72°C for 2 min. Then, a final

elongation at 72°C for 10 min completed the process (Monstein

et al., 2007).

Gel electrophoresis
The PCR products were visualized under UV illumination via

gel electrophoresis using 1.5% ultrapure agarose gel (Thermo Fisher

Scientific, UK) with a Tri-acetate-EDTA (TAE) buffer. Staining

of the DNA fragments was carried out using Safe-Red dye

(Safeview™Classic). The gels were run at 80 V for approximately
frontiersin.org

https://doi.org/10.3389/frabi.2023.1164016
https://www.frontiersin.org/journals/antibiotics
https://www.frontiersin.org


Mwakyoma et al. 10.3389/frabi.2023.1164016
45 min. Standard DNA molecular weight markers were used: a 100-

bp ladder. The ladder was visualized under UV light.
Quality control

Klebsiella pneumonia ATCC 700603, E. coli ATCC 35218,

and a clinical isolate of non-ESBL-producing E. coli were used as

control strains. These control strains were used to check the

performance of used media and antibiotic discs, as well as

multiplex PCR experiments for the amplification and detection of

ESBL alleles.
Data management and statistical analysis

Data from isolates, such as identification number, isolate name,

source of isolation, antimicrobial resistance pattern, and ESBL allele

after PCR, were recorded in the logbook and then entered into the

computer using Microsoft Excel® 2018 (Microsoft Corporation,

Redmond, WA, USA). Data were imported into STATA software

version 17 (StataCorp, College Station, TX, USA) for analysis.

Categorical variables were summarized using frequency and

proportion (percent). To compare the difference in the proportion

of distribution of resistance with ciprofloxacin and gentamicin we

used a one-tailed two-sample proportion test. To determine the

significance of the difference in the distribution of ciprofloxacin

resistance as well as gentamicin resistance across various ESBL

alleles and sources of E. coli isolation, we used Pearson’s chi-

squared test or Fisher’s exact test where appropriate. In all analyses,

the significance level was set at a p-value < 0.05.
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Ethics clearance

The study received ethics approval from the University of St

Andrews, St Andrews, UK (No. MD14548, 10/09/19); the National

Institute for Medical Research, Tanzania (No. 2831, updated 26/07/

19); the Mbeya Medical Research and Ethics Committee (No.

SZEC-2439/R.A/V.1/30); the Kilimanjaro Christian Medical

College, Tanzania (No. 2293, updated 14/08/19); and the

CUHAS/BMC Research Ethics and Review Committee (No.

CREC/266/2018, updated on 02/2019).
Results

Isolates distribution

A total of 472 confirmed ESBL-producing E. coli isolates were

retrieved for this study. These isolates were from Mwanza [243

(51.5%)], Kilimanjaro [143 (30.3%)], and Mbeya [86 (18.2%)]. Of

these 472 isolates, 75 (15.9%) were from the urine of presumptive UTI

patients, 199 (42.2%) were from the stool of these patients, 140 (29.7%)

were from the surrounding environments, and 58 (12.3%) were from

the domesticated and farm animals of these patients (Table 2).
Distribution of extended-spectrum
b-lactamase alleles among extended-
spectrum b-lactamase-producing E. coli

Of the 472 phenotypically confirmed ESBL-producing E. coli,

98.9% (467) had at least one ESBL allele, and only five (1.1%) were
TABLE 1 The details of PCR primer sequences and amplicon sizes.

Gene targets Primer name Primer sequences Product size

SHV SHV_F
SHV_R

5′-ATGCGTTATATTCGCCTGTG-3′
5′-TGCTTTGTTATTCGGGCCAA-3′ 747 bp

TEM TEM_F
TEM_R

5 ′-TCGCCGCATACACTATTCTCAGAATGA-3′
5 ′-ACGCTCACCGGCTCCAGATTTAT-3’

445 bp

CTX-M CTX-M_U_F
CTX-M_U_R

5′-ATGTGCAGYACCAGTAARGTKATGGC-3′
5′-TGGGTRAARTARGTSACCAGAAYCAGCGG-3′

593 bp
TABLE 2 Distribution of 472 extended-spectrum b-lactamase (ESBL)-producing Escherichia coli isolates, by region and source.

Region
Urine Stool Environment Animal Total

n (%) n (%) n (%) n (%) N (%)

Mwanza 27 (36.0) 116 (58.3) 80 (57.1) 19 (32.8) 243 (51.5)

Kilimanjaro 21 (28.0) 38 (19.1) 49 (35.0) 35 (60.3) 14 (30.3)

Mbeya 27 (36.0) 45 (22.6) 11 (7.9) 4 (6.9) 86 (18.2)

Total 75 (15.9) 199 (42.2) 140 (29.7) 58 (12.3) 472 (100)
fro
GIT, gastrointestinal tract.
The bolded values indicates the row sum and column sum.
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negative for the tested ESBL alleles (blaCTX-M, blaTEM, and blaSHV).

The most predominant allele was blaCTX-M, which was detected in

88.1% (416/472) of isolates, followed by blaTEM and blaSHV alleles,

which were detected in 51.5% (243/472) and 4.9% (23/472) of

isolates, respectively. A total of 55.7% (263/472) of isolates (212 with

blaCTX-M, 40 with blaTEM, and 11 with blaSHV) harbored only one

allele. A total of 40.7% (192/472) of isolates harbored blaCTX-

M + blaTEMalleles, and only one (0.2%) isolate harbored blaCTX-

M + blaSHValleles, whereas 2.3% (11/472) of isolates harbored a

combination of al l three al leles investigated (blaCTX-

M + blaTEM + blaSHV). Of note, none of the isolates harbored a

dual combination of blaTEM + blaSHV (Figure 1 and Table 3). All the

positive ESBL alleles investigated showed a band on the gel

electrophoresis following multiplex PCR amplification for the

detection of ESBL alleles (blaCTX-M, blaTEM, and blaSHV) (Figure 2).
Phenotypic antimicrobial resistance to
ciprofloxacin and gentamicin

Out of 472 ESBL-producing E. coli, resistance to ciprofloxacin

and gentamicin was observed in 70.8% (334) and 46.0% (217) of

isolates, respectively. The resistance to ciprofloxacin was

significantly higher than that of gentamicin (p-value < 0.001; two-

sample proportion test). Of note, 37.5% (177) of isolates were

resistant to both antibiotics, whereas 20.8% (98) were sensitive to

both drugs. Resistance to ciprofloxacin and gentamicin was highest

for the isolates from urine, that is, 89.3% (67/75) and 56.0% (42/75),

respectively. This was followed by the isolates originating from stool

(fecal carriage), with 84.4% (168/199) for ciprofloxacin, and 55.0%
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(77/140) for isolates from the surrounding environments for

gentamicin. There was a significant difference in the distribution

of resistance to ciprofloxacin as well as to gentamicin across various

sources of ESBL-producing E. coli (p-value < 0.001 and 0.002,

respectively; Pearson’s chi-squared test). The lowest resistance to

ciprofloxacin was observed in ESBL-producing E. coli originating

from animals [31.0% (18/58)], whereas the lowest resistance to

gentamicin was observed in isolates originating from stool samples

[73/199 (36.7%)]. There was no significant difference in the

distribution of ciprofloxacin and gentamicin resistance between

various ESBL alleles (p-values 0.062 and 0.962, respectively; Fisher’s

exact test) (Tables 4, 5). Of note is that more than half [53.3% (40/

75)] of isolates from the urine of presumptive UTI patients had dual

resistance to ciprofloxacin and gentamicin, and this was

significantly more than from other sources (p-value 0.003;

Pearson’s chi-squared test) (Table 6).
Discussion

The findings from this study reveal that almost all studied

ESBL-producing E. coli from the urine and stool (fecal carriage) of

presumptive UTI patients, their domesticated and farm animals,

and their surrounding environments possess blaCTX-M, blaTEM, and

blaSHV either alone or in combination, with the most common allele

being blaCTX-M and the most predominant dual combination of

alleles being blaCTX-M + blaTEM. Furthermore, the resistance of

ESBL-producing E. coli to frontline antibiotics, ciprofloxacin, and

gentamicin, which are currently used to treat UTIs, was high. This

emphasizes the need to continually revise the local guidelines used
FIGURE 1

A Venn diagram showing the distribution of extended-spectrum b-lactamase (ESBL) alleles among ESBL-producing E. coli. Isolates with only one
ESBL allele: 212 with blaCTX-M, 40 with blaTEM, and 11 with blaSHV. Isolates with dual ESBL alleles: 192 with blaCTX-M + blaTEM, and one with blaCTX-
M + blaSHV. There were 11 isolates that had all three alleles (blaCTX-M + blaTEM + blaSHV). None of the isolates harbored a dual combination of
blaTEM + blaSHV alleles. Five isolates did not harbor any of the tested ESBL alleles.
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for optimal empirical therapy for UTIs, for proper control methods,

and for further research to combat antibiotic resistance.

The findings from this study show that 98.9% of all ESBL-

producing E. coli investigated had at least one ESBL allele tested

(blaCTX-M, blaTEM, or blaSHV), either as one allele or in a

combination of two or three of these ESBL alleles. Only 1.1% of

the isolates were negative for the ESBL alleles investigated. These

isolates could be more likely harboring other ESBL alleles, such as

blaOXA, which was not tested in this study but has been reported

elsewhere around the world including Tanzania. Nonetheless, it has

been reported to have a very low prevalence in our settings

(Marando et al., 2018; Abrar et al., 2019; Onduru et al., 2021).

Our finding tallies with the findings from a similar study that

reported that 3.4% of ESBL-producing isolates investigated were

negative for these ESBL alleles (blaCTX-M, blaTEM, and blaSHV)

(Mirkalantari et al., 2020). We investigated three ESBL alleles

(blaCTX-M, blaTEM, and blaSHV), as they are the most common

ESBL alleles circulating in community and hospital settings in

Eastern, Central, and Southern African countries (Onduru et al.,

2021). Our findings are in line with previous studies that

showed that almost all of the ESBL-producing E. coli is driven by
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the blaCTX-M, blaTEM, and blaSHValleles (Mshana et al., 2011;

Mshana et al., 2016; Moremi et al., 2017; Marando et al., 2018;

Mirkalantari et al., 2020; Kimera et al., 2021; Onduru et al., 2021).

Our finding that blaCTX-Mis the most common allele followed by

blaTEM is supported by many previous and recent studies conducted

among isolates from environments, animals, patients, and human

carriers, which report the predominance of the blaCTX-Mallele to

range from 76.5% to 100% (Moremi et al., 2017; Marando et al.,

2018; Abrar et al., 2019; Mirkalantari et al., 2020; Kimera et al.,

2021; Onduru et al., 2021). This predominance can be explained by

the fact that the conjugative plasmid-carrying blaCTX-Mallele is

highly effective at being transferred and has been reported as the

most frequently and successfully transferred allele through

horizontal gene transfer (Cantón and Coque, 2006; Mshana et al.,

2009; Minja et al., 2021). The spread of blaCTX-Mallele is causing

rapid, important, and unpredictable changes in the epidemiology of

antibiotic resistance.

The most common combination of two alleles was blaCTX-

M + blaTEM at 40.7%; the next most common combination was

blaCTX-M + blaSHV, with a distant 0.2%. Similarly, the occurrence of

dual ESBL alleles in the genes was common elsewhere, with the
TABLE 3 Distribution of extended-spectrum b-lactamase (ESBL) alleles, by source of isolation, among 472 study Escherichia coli isolates.

ESBL allele Sample source
Total, N (%)

Urine, n (%) Stool, n (%) Environment, n (%) Animal, n (%)

blaCTX-M 42 82 48 40 212 (44.9)

blaTEM 5 13 16 6 40 (8.5)

blaSHV 0 10 1 0 11 (2.3)

blaCTX-M + blaTEM 27 86 69 10 192 (40.7)

blaCTX-M + blaSHV 0 0 1 0 1 (0.2)

blaCTX-M + blaTEM + blaSHV 1 6 2 2 11 (2.3)

Not detected 0 2 3 0 5 (1.1)

Total 75 199 140 58 472 (100.0)
The bolded values indicates the row sum and column sum.
FIGURE 2

Gel image for the detection of genes encoding blaCTX-M, blaTEM, and blaSHV following multiplex PCR. Lane L: ladder 100 bp (New England Biolabs).
Lane 2: the 445-bp PCR product of blaTEM. Lanes 3, 6, 7, and 10: the 445-bp and 593-bp PCR product of blaTEM and blaCTX-M, respectively. Lanes 4
and 9: the 445-bp, 593-bp, and 747-bp PCR products of blaTEM, blaCTX-M, and blaSHV, respectively. Lane 1: positive control blaTEM (E. coli ATCC
35218). Lane 11: negative control (E. coli clinical isolate non-ESBL).
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TABLE 5 Distribution of gentamicin resistance among various sources of isolation and extended-spectrum b-lactamase (ESBL) alleles.

Isolate characteristic Gentamicin Total, N (%) Pearson’s chi-squared (df) p-value

Resistant Sensitive

n (%) n (%)

Source of isolation

Animal 25 (43.1) 33 (56.9) 58 14.7352 (3) 0.002

Environment 77 (55.0) 63 (45.0) 140

Stool 73 (36.7) 126 (63.3) 199

Urine 42 (56.0) 33 (44.0) 75

Total 332 135 472

ESBL allele

blaCTX-M 96 (45.3) 116 (54.7) 212 –* 0.962

blaTEM 21 (52.5) 19 (47.5) 40

blaSHV 5 (45.5) 6 (54.6) 11

blaCTX-M + blaTEM 88 (45.8) 104 (54.2) 192

blaCTX-M + blaSHV 0 (0.0) 1 (100.0) 1

blaCTX-M + blaTEM + blaSHV 5 (45.5) 6 (54.6) 11

Total 332 135 472
F
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*p-value was calculated using Fisher’s Exact test.
df, degrees of freedom.
TABLE 4 Distribution of ciprofloxacin resistance among various sources of isolation and extended-spectrum b-lactamase (ESBL) alleles.

Isolate characteristic Ciprofloxacin Total, N (%) Pearson’s chi-squared (df) p-value

Resistant Sensitive

n (%) n (%)

Source of isolation

Animal 18 (31.0) 40 (69.0) 58 85.9656 (3) < 0.001

Environment 81 (57.9) 59 (42.1) 140

Stool 168 (84.4) 31 (15.6) 199

Urine 67 (89.3) 8 (10.7) 75

Total 332 135 472

ESBL allele

blaCTX-M 144 (67.9) 68 (32.1) 212 –* 0.062

blaTEM 26 (65.0) 14 (35.0) 40

blaSHV 10 (90.9) 1 (9.1) 11

blaCTX-M + blaTEM 146 (76.0) 46 (24.0) 192

blaCTX-M + blaSHV 0 (0.0) 1 (100.0) 1

blaCTX-M + blaTEM + blaSHV 6 (54.6) 5 (45.5) 11

Total 332 135 472
*p-value was calculated using Fisher’s Exact test.
df, degrees of freedom.
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combination of blaCTX-M + blaTEM alleles being the most common

(Sah et al., 2021; Silago et al., 2021). These genes are often present in

large plasmids and are capable of conferring resistance to the

organisms (Lee et al., 2012). Acquisition and transferability of

ESBL genes are of particular importance, as these ESBL-encoding

genes are often located in promiscuous plasmids (van Duijkeren

et al., 2018). This property of ESBL genes enables their exchange

between bacteria, and favors transmission between animals and

humans (Brolund and Sandegren, 2016). For this reason, the

distribution for all combinations of ESBL alleles was expected.

Surprisingly, in our study there was no ESBL-producing E. coli

with a combination of blaTEM + blaSHV. Furthermore, we observed

only 2.3% of the ESBL-producing E. coli isolates with all three alleles

(blaCTX-M, blaTEM, and blaSHV). These findings raise the thought of a

genetic preponderance of order and dynamics in the combination,

transmission, and acquisition of these genes for ESBL production.

Further genome-wide studies are warranted to unravel the

plausibility of this hypothesis.

Ciprofloxacin and gentamicin are frontline antimicrobials used

to treat UTIs. Extra resistance to frontline non-b-lactam antibiotics,

such as ciprofloxacin and gentamicin, to ESBL-producing E. coli,

limits the therapeutic options to treat UTIs. Our findings that 70.8%

and 46.0% of ESBL-producing E. coli are resistant to ciprofloxacin

and gentamicin, respectively, are alarming. This result is similar to

studies done among animals, street children, and patients in Dar es

Salaam and Mwanza in Tanzania (Seni et al., 2016; Manyahi et al.,

2017; Moremi et al., 2017; Kimera et al., 2021). This high prevalence

is explained by the fact that these antibiotics are used as frontliners

to treat uncomplicated and complicated UTIs, complicated UTIs

being the leading causes of UTI-related increases in hospital visits.

This increasing level of antimicrobial resistance of ESBL-producing

E. coli to frontline antibiotics is of great concern as it highlights the

growing threat of the emergence of pan-drug resistance in ESBL-

producing E. coli (Meier et al., 2011).

Furthermore, the prevalence of ciprofloxacin and gentamicin

resistance among ESBL E. coli is higher than the reported

prevalence of ciprofloxacin and gentamicin reported in non-ESBL

E. coli in our setting, which ranges from 48.6% to 62.7% and from

14.4% to 17% for ciprofloxacin and gentamicin, respectively
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(Msanga et al., 2022; Mtemisika et al., 2022). This relatively high

resistance rate to fluroquinolones and aminoglycosides to ESBL-

producing bacteria compared with non-ESBL-producing bacteria

might be due to the co-existence of the ESBL genes with those

conferring resistance to fluroquinolones and aminoglycosides in the

same large plasmid (Lee et al., 2012). In this study, more than one-

third of the isolates were resistant to both ciprofloxacin and

gentamicin; this is worrisome as it limits treatment options in the

case of acute pyelonephritis and urosepsis, as per standard

treatment guidelines in the study setting. This could be due to the

presence of the plasmid-mediated genes such as aac (6′)-Ib-cr,

which encodes aminoglycoside acetyltransferase that induces

resistance against aminoglycosides and fluoroquinolones

simultaneously (Rasoulinasab et al., 2021).

The observed levels of high resistance to ciprofloxacin

compared with gentamicin could be attributed to the fact that

ciprofloxacin is an orally administered antibiotic and is among the

more easily obtained over-the-counter antibiotics, whereas

gentamicin is administered via injection, which therefore prevents

it from being misused by non-health personnel. The treatment of

UTIs is frequently initiated empirically; if a patient has ESBL-

producing E. coli, ciprofloxacin and gentamicin will be more likely

to end up with treatment failure. Further studies to assess other

non-beta lactam antibiotics to treat ESBL-producing E. coli are

warranted in achieving the most effective empirical therapy, as they

will provide clinicians with the information required to facilitate the

effective treatment and management of UTI patients (Dias Neto

et al., 2003; Farajnia et al., 2009).

We found significant differences in the distribution of

ciprofloxacin resistance across various sources of isolation of the

ESBL-producing E. coli. The highest resistance to ciprofloxacin was

observed from ESBL-producing E. coli isolated from the urine and

stool of presumptive UTI patients, as well as from isolates from the

environment as compared with the isolates from the animals. Our

finding tallies with other studies in Africa that reported

ciprofloxacin resistance among ESBL-producing isolates from

humans to range from 46.3% to 85.5% (Moyo et al., 2010; Meier

et al., 2011; Mirkalantari et al., 2020). This finding could be

attributed to the fact that ciprofloxacin is more commonly used
TABLE 6 Distribution of extended-spectrum b-lactamase (ESBL) isolates with dual resistance to ciprofloxacin and gentamicin by source of isolation.

Isolate characteristic Dual Resistance to ciprofloxacin and gentamicin Total, N (%) Pearson’s chi-squared (df) p-value

Yes No

n (%) n (%)

Source of isolation

Animal 15 (25.9) 43 (74.1) 58 13.9774 (3) 0.003

Environment 57 (40.7) 83 (59.3) 140

Stool 65 (32.7) 134 (67.3) 199

Urine 40 (53.3) 35 (46.7) 75

Total 177 338 472
fron
df, degrees of freedom.
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as the frontline drug to treat UTIs in humans than in animals. In

addition, these presumptive UTI patients could have a reckless habit

of contaminating their environment via their urine and stools. On

the other hand, we found a significant difference in the distribution

of gentamicin resistance across various sources of isolates of ESBL-

producing E. coli. The highest level of resistance to gentamicin was

observed from ESBL-producing E. coli isolated from the urine of

presumptive UTI patients followed by those isolates from the

environment, as compared with the isolates from the stool of

patients with presumptive UTI (fecal carriage). Studies that

compare the significance of the difference in the distribution of

gentamicin as well as ciprofloxacin resistance among ESBL-

producing E. coli in Africa are limited. However, our prevalence

of gentamicin resistance for ESBL-producing E. coli from urine is

similar to a study done in Dar Es Salaam, Tanzania (Manyahi et al.,

2017). This finding could be attributed to the fact that gentamicin is

mainly used for the treatment of UTIs and urosepsis and its use for

domesticated and farm animals is less than that for humans; hence,

resistance to isolates from stool is minimal.

In conclusion, almost all ESBL-producing E. coli isolates from urine

and stool of presumptive patients of UTI, their animals, and their

environment harbor blaCTX-M, blaTEM, and blaSHV either alone or in

combination, with the most common allele being blaCTX-M. The most

common allele combination was blaCTX-M + blaTEM. Higher resistance

of ESBL-producing E. coli to current frontline antibiotics (ciprofloxacin

and gentamicin) to treat UTIs than in non-ESBL-producing isolates

emphasizes the need to continually revise the local guidelines used for

optimal empirical therapy for UTIs and it calls for coordinated efforts

to address the growing ESBL predicament. Further genome-wide

studies are warranted to unravel the genetic dynamics and interplay

in the transmission and acquisition of ESBL genes.
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