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Abstract—We investigate the stability of circular point vortex arrays and their evolution
when their dynamics is governed by the generalised two-dimensional Euler’s equations and
the three-dimensional Quasi-Geostrophic equations. These sets of equations offer a family of
dynamical models depending continuously on a single parameter β which sets how fast the
velocity induced by a vortex falls away from it. In this paper, we show that the differences
between the stability properties of the classical two-dimensional point vortex arrays and the
standard quasi-geostrophic vortex arrays can be understood as a bifurcation in the family of
models. For a given β, the stability depends on the number N of vortices along the circular
array and on the possible addition of a vortex at the centre of the array. On a practical point of
view, the most important vortex arrays are the stable ones, as they are robust and long-lived.
Unstable vortex arrays can however lead to interesting and convoluted evolutions, exhibiting
quasi-periodic and chaotic motion. We briefly illustrate the evolution of a small selection of
representative unstable vortex arrays.
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1. INTRODUCTION

Circular vortex arrays are historically one of the first configurations of point vortices ever
studied in the literature. They attracted Thomson’s (Lord Kelvin, [1]) attention via the analogous
behaviour of floating magnets studied experimentally by Mayer [2]. The linear stability of planar
two-dimensional (2D) circular vortex arrays was first analysed by Thomson [3]. Arrays of N < 7
vortices are linearly stable, see [3]. For N = 7 [4, 5] showed that the array was linearly stable (but
one of the modes with a zero complex frequency). The full stability of the 7-vortex array, including
nonlinear effects, was proved by [6]. The study of circular vortex arrays was also extended to
geophysical flows, first in quasi-geostrophic shallow water, see [7]. In this study the authors also
considered the influence of an additional vortex located at the centre of the array. Numerous
additional studies have been performed on circular vortex arrays, sometimes also referred to as
vortex N -gons, see the literature reviews proposed in [8] and [9]. Other studies include (i) variations
on problem geometry such as the studies of vortex array inside and outside a circle, see [10, 11],
and on the surface of a sphere [12, 13], and (ii) variations on the physical model, such as vortices
in a Bose–Einstein condensate [14].

More recently, Reinaud [15] considered circular vortex arrays in the three-dimensional quasi-
geostrophic (3DQG) regime. Both point vortex arrays and finite-volume vortex arrays were
considered in that study. The study was recently further extended to include the influence of
the vortex height-to-width vortex ratio on the stability of finite-volume vortex arrays, see [16]. In
[15] it is showed that circular arrays of only N ≤ 5 point vortices are linearly stable in the 3DQG
regime. It should be noted that an analogous problem of arrays of negative electric charges placed
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in a uniformly electrified sphere was addressed in [17]. Additionally the problem of staggered vortex
arrays is addressed in [8] while [18] addresses the effects of an exponential density stratification.

The main difference between the dynamics of the standard 2D and 3DQG regimes is how fast
the velocity induced by a point vortex falls away from it. It falls as r−1 in 2D while it falls as
r−2 in 3DQG. Here r is the distance between the point vortex and the point where the velocity is
evaluated. The main motivation of the study is to have a deeper understanding of the similarities
and the differences between the 2D and 3DQG regimes by introducing a family of models where
the velocity induced by a vortex falls as r−(β+1), 0 ≤ β ≤ 3. For example, we show in this study
that circular arrays of N = 5 point vortices are stable for all β, while arrays of N = 6 are stable for
β < 0.9673 and unstable otherwise. For N = 7 only the standard 2D Euler circular vortex arrays,
corresponding to β = 0, are stable. We also investigate the influence of an additional central vortex
on the stability of the arrays. We show for example that for N > 5, the addition of a moderate-
strength like-signed vortex array may stabilise the array. Overall, increasing β tends to make the
arrays more unstable in most situations. Increasing β can however stabilise vortex arrays with an
intense like-signed central vortex if N ≥ 5. The evolution of unstable arrays may exhibit quasi-
periodic motion and more often chaotic motion.

The paper is organised as follows. Section 2 describes the mathematical set-up, while the more
technical details are given in an appendix. The linear stability and the evolution of circular arrays
of N vortices, 2 ≤ N ≤ 10, are presented in section 3. A similar analysis when an extra vortex is
added at the centre of the array is presented in section 4. Conclusions are presented in section 5.

2. Mathematical setup

We consider a fluid flow whose evolution is controlled by a materially-conserved scalar field q.
The scalar field q relates to a scalar streamfunction ϕ via a modified Poisson’s equation

q = −(−∆)α ϕ. (2.1)

In both the 2D and 3D situations, the scalar q is materially conserved through the advection by a
two-dimensional (or layerwise two-dimensional) velocity field (u, v)

∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
= 0. (2.2)

In 2D, the horizontal velocity field is the full velocity field and in 3DQG, the vertical velocity is
too small to contribute to the advection of q, see [19]. In equation (2.2), the horizontal advecting
velocity field (u, v) derives from the streamfunction ϕ,

u = −∂ϕ
∂y
, v =

∂ϕ

∂x
. (2.3)

In the standard two-dimensional Euler’s equations, q is simply the vorticity, ∆ stands for the
two-dimensional Laplace’s operator and α = 1. In the standard 3DQG equations, q is the quasi-
geostrophic potential vorticity anomaly, ∆ stands for the three-dimensional Laplace’s operator and
α = 1. Another classical model covered by our family of generalised models is the Surface Quasi-
Geostrophic (SQG) model, see [20]. In this model, q is the potential temperature, ∆ stands for the
two-dimensional Laplace’s operator and α = 1/2.

Defining the positive parameter β as

β = n− 2α, for 0 < α < n/2, (2.4)

where n is the space dimension (in practice n = 2, 3 for our study), equation (2.1) can be formally
inverted in an infinite domain using the Green’s function, given in [21],

G(x;x′) = − Cn,−α
|x− x′|β (2.5)

with

Cn,−α =
Γ(n/2− α)

4αΓ(α)πn/2
, (2.6)
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Model n α β G(x;x′)

2D Euler 2 1 0 (2π)−1 ln |x− x′|
3D QG 3 1 1 (4π|x− x′|)−1

SQG 2 1/2 1 (2π|x− x′|)−1

Table 1. Parameters of the classical models in the generalised Euler’s and quasi-geostrophic models.

where Γ is the standard Gamma function.
If α = n/2,

G(x;x′) = C ′ log |x− x′|, (2.7)

where C ′ = (2π)−1 for n = 2 and (2π2)−1 for n = 3, see [21]. In the text, we will refer to these cases
as β = 0 by extension, even if, in contrast with equation (2.5), β no longer plays there the role
of a power in the Green’s function for the streamfunction. Yet, in the discussion that follows, this
allows to identify all models from the value of β alone.

The kernel that gives the velocity field is

K(x;x′) =

(
−∂G
∂y

,
∂G

∂x

)
=

C

|x− x′|β+2

 −(y − y′)
x− x′

 (2.8)

where C is the constant βCn,−α for 0 < β < n/2 or the constant C ′ for β = 0. It should indeed be
noted that the formula for K remains formally valid for β = 0. Overall we see that the velocity
induced by a point vortex falls as r−(β+1) away from the vortex. Here, r denotes the distance. The
classical 2D Euler, 3DQG and SQG models are summarised in Table 1.

In this study the scalar field q consists of an array of point vortices, i.e. singularities or Dirac
distributions. We define the strength κ′i of point vortex i the space-integrated scalar field over
vortex i scaled by Cn,−α (or by C ′ for β = 0). Hence, for an array of N point vortices located at
xi and of strength κ′i, 1 ≤ i ≤ N , the scalar field is

q(x) =
1

Cn,−α

N∑
i=1

κ′i δ(x− xi), (2.9)

where δ() is the Dirac distribution in Rn and α 6= n/2 . When α = n/2 we just replace the scaling
factor 1/Cn,−α by 1/C ′ in equation (2.9). The streamfunction induced by the N vortices then
follows from the Green’s function:

ϕ(x) = −
N∑
i=1

κ′i
|x− xi|β

, ∀x 6= xi. (2.10)

The flow evolution is obtained by following the vortices as they are advected by the velocity they
induce on each other. Their trajectories is thus determined by integrating in time(

dxi
dt
,
dyi
dt

)
= (ui, vi) =

N∑
j=1,j 6=i

κj
|xi − xj |β+2

(−yi + yj , xi − xj), (2.11)

where κi = βκ′i for β 6= 0 or κi = κ′i for β = 0 is vortex i’s rescaled strength. In this study we only
consider generalised 2D Euler vortex arrays or generalised 3DQG vortex arrays where all vortices
lie on the same horizontal plane. This means that the distances |xi − xj | in equation (2.11) are
always horizontal distances, and there is no formal difference between the 2D and 3D dynamical
models, for the same value of the parameter β. It should be however kept in mind that the value of
the parameter β for a given value of α in equation (2.1) depends on the dimension of space n. We
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consider n = 2 or 3 in this study, and 0 < α ≤ n/2 ≤ 1.5. Therefore, the full range of the parameter
β is [0, 3). Only the range [0, 2) is applicable to the generalised 2D Euler models while the range
[2, 3) is only relevant to the generalised 3DQG models.

The equations for the linear stability analysis are obtained by explicitly linearising equation
(2.11) with respect to perturbations to the vortex locations, about their location at equilibrium,
written in the frame uniformly moving (rotating) with the equilibrium. The equations are detailed
in the appendix. They result in an eigenvalue problem, where the real part σr of the complex
eigenvalues σ = σr + iσi gives the mode’s growth rate, while σi is the mode’s frequency.

It should be noted that, for completeness, the stability analysis of a configuration under a
Hamiltonian dynamics could be complemented by an analysis of the nonlinear stability, [22–24]
as, for example, done in [6, 10, 11, 25] where it is shown that some linearly stable arrays may be
sensitive to nonlinear instabilities.

3. N -VORTEX ARRAYS

We first consider circular vortex arrays of N identical point vortices lying equally-spaced along
a circle of radius R. Without loss of generality we set R = 1. All vortices have a rescaled strength
κi = κp, 1 ≤ i ≤ N and we set κp = 1 without loss of generality. The vortices are initially located
at an azimuthal angle θi = 2π(i− 1)/N , hence vortex 1 lies on the semi-axis x > 0 at t = 0. By
symmetry, such a circular N -vortex array is a relative equilibrium, steadily rotating at an angular
velocity Ω.

We first analyse the linear stability of the circular vortex arrays by solving the eigenvalue problem
described in the appendix. The analysis first shows that all circular vortex arrays with 2 ≤ N ≤ 5
are linearly stable for all β ∈ [0, 3). The first instability occurs for N = 6. The 6-vortex arrays are
stable if β less than a threshold βc and unstable for β > βc, with βc ' 0.9673. The maximum growth
rates σmr for N = 6 is shown vs β in figure 1. It should be noted that σ = −σmr is also an eigenvalue,
hence there is a stable mode (σr < 0 not shown) associated with the unstable mode. The curve
σmr (β) shows a bifurcation at β = βc, with 0 < βc < 1. Hence, the bifurcation occurs at a value of
β between the value corresponding to the 2D Euler’s dynamics and the one corresponding to the
3DQG dynamics. Hence the difference between the stability of the classical 2D Euler vortex arrays
(β = 0) and the standard 3DQG (β = 1) can be understood from a bifurcation in the continuous
family of generalised dynamical models parametrised by β.

For N = 7, we recover that the array is linearly stable for β = 0, corresponding to the classical
planar 2D vortex array. However, all 7-vortex arrays are unstable for β > 0, with σmr /κp increasing
with β as shown in panel (a) of figure 1. For N > 7, the circular vortex arrays are linearly unstable
as shown in panel (b) of figure 1 for N = 8, 9, 10. Again, σmr /κp increases with β in these cases.

We next illustrate the evolution of unstable circular N -vortex arrays. We start with four cases
of unstable 6-vortex arrays and β = 1.2, 1.5, 2 and 2.5. Recall that the latter two cases with β ≥ 2
assume that the fluid domain is three-dimensional, n = 3. In all cases the array is perturbed at
t = 0 by moving vortex 1 from its equilibrium location (x1, y1, z1) = (1, 0, 0) to (1 + ε, 0, 0), with
ε = 10−3. Equation (2.11) is integrated in time using a fourth-order Runge-Kutta scheme with an
adaptive time-step set to dt = 0.01/umax, where umax is maximum vortex displacement velocity at
time t. This choice simply controls the maximum distance travelled by a vortex within one time
step to 1% of the array’s radius R = 1.

The early trajectories of the vortices are shown in figure 2 for 0 < t < 1000. They are plotted in
the reference frame steadily rotating at the equilibrium angular velocity Ω. If the array was stable,
the vortices would appear still in this reference frame. The trajectories show that the vortices
oscillate radially from their equilibrium location. The oscillations modify the rotation of the array,
hence we see the vortices moving in the azimuthal direction. The radial oscillations appear less
regular as β increases. To further examine these oscillations we plot the evolution of the radial
position r1 = |x1| of vortex 1 in figure 3. We observe near regular oscillations of the radial location
r1 indicating that the early evolution of the unstable 6-vortex arrays is quasi-periodic. This is not
unlike the motion of the 6-vortex array for β = 1 shown in [15]. The oscillations are however less
regular as β increases, including hints of doubling of the oscillations frequencies (see in particular
panel (b) of figure 3 for β = 1.5). To further illustrate the long term evolution of the vortices, we
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Fig. 1. Largest growth rate σr vs β for circular N -vortex arrays with (a) N = 6 (black), 7 (red), and (b)
N = 8 (black), 9 (red) and 10 (blue).

perform a second numerical simulation using a fixed time step for simplicity, dt = 2× 10−3. The
value of dt is set to be less than the minimum time step used in the previous simulation with an
adaptive time step. We run the simulation up to t = 100000, saving the location of vortex 1 in the
reference frame steadily rotating at the angular velocity Ω, every time interval ∆t = 1. This allows
to produce a stroboscopic view on the location of vortex 1 shown in figure 4. It should be noted
that the system is sensitive to the change in time step, due to the high sensitivity of the dynamical
systems to perturbations, hence to numerical noise. Nonetheless the qualitative behaviour of the
vortex array remains the same. Panel (a) of figure 4 shows that for β = 1.5 vortex 1 mostly oscillates
within an annulus about the equilibrium radius R = 1. To better understand the distribution of the
location of vortex 1, we measure of probably density function (pdf) of both the radial and azimuthal
location of vortex 1 measured every ∆t = 1. We analyse the position until tmax = 100000, hence
the vortex 1 locations sample has a size ns = 100000. We discretise the range of radial locations
[0, 2.025) into nb = 41 bins of width δr = 0.05 and we count the number nri of times vortex 1 had

a radial location r1 ∈ [(i− 1)δr/2, iδr/2), 1 ≤ i ≤ nb. Similarly we count the number nθi of times
vortex 1 has an azimuthal angle θ ∈ [(i− 1)δθ/2, iδθ/2), where δθ = 2π/nb. We define the pdf for
the radius r and azimuth θ as

pdf(r) δr = nri /ns, pdf(θ) δθ = nθi /ns (3.1)

Results are shown in panel (a) of figure 5 for β = 1.5. The pdf of r1 is strongly peaked at r = R = 1,
and is non-zero only in a narrow region around R = 1, confirming that vortex 1 mostly oscillates
within a narrow annulus. The pdf of θ exhibits a couple of peaks for small θ, which is a trace of
the early evolution where vortex 1 remains close to its initial equilibrium location.

For β = 2.5 the long-term evolution of vortex 1 is more complex. Not only the width of the
annulus about r = R = 1 expands, but vortex 1 can also be found in the central region of the
array, as seen from panel (b) of figure 4. The long-term evolution is chaotic in this case. We also
notice that the distribution of locations appears (on average) uniform in the azimuthal direction.
To understand why the vortex 1 is predominantly found in an annulus about R = 1 or in the central
region, we may first notice that the centre of the array is a region of low velocity. Hence in the
chaotic dynamics, if a vortex moves towards the centre, it is likely to slow down and remains in the
central region for some time. Since the angular impulse

J =
1

2

N∑
i=1

(x2i + y2i )κi (3.2)
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Fig. 2. Trajectories of the 6 vortices of unstable circular 6-vortex arrays in the reference frame steadily
rotating at the equilibrium angular velocity Ω for (a): β = 1.2 and 0 ≤ t ≤ 996, (b): β = 1.5 and 0 ≤ t ≤ 959,
(c): β = 2, 0 ≤ t ≤ 955 and (d): β = 2.5, 0 ≤ t ≤ 973.

is conserved, the migration of any vortex near the centre must be compensated by an increase of
the average radial distance between the other vortices and the centre. It is therefore unlikely though
not impossible, that more than one vortex at any given time would migrate towards the centre.
Since there is no reason why any given vortex should remain in the central region for longer period
of times than any other, each of the N vortices is likely to spend a small amount of time near the
centre. This explains why the probably density function of the radius r of vortex 1 exhibit a strong
peak about the initial radius r = 1, and a much smaller secondary peak at small r, indicating the
transient times the vortex spends in the central region as confirmed in figure 5. On the other hand
the pdf of θ is nearly flat and equal to a uniform azimuthal distribution (2π)−1.

We next consider unstable circular 7-vortex arrays. Figure 6 shows the evolution of unstable 7-
vortex arrays for β = 0.5, 1, 2 and 2.5. In all cases the early vortex trajectories appear chaotic.
As for N = 6, we consider the long-term chaotic evolution of the arrays. Figure 7 shows the
stroboscopic view of the location of vortex 1 for β = 2.5 with a sampling time period ∆t = 1 for
0 ≤ t ≤ 100000. Compared to the cases with N = 6 the location distribution appears more diffuse,
while still exhibiting a higher location density in an annular region around r = R = 1 and in the
central region. This is confirmed by the pdf of r shown in figure 8 where we recover the two peaks,
one near r = R = 1 and the other one for small r. The distribution is indeed more diffuse and the
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Fig. 3. Evolution of the radial position r1 of vortex 1 for the unstable circular 6-vortex array with (a): β = 1.2
and 0 ≤ t ≤ 996, (b): β = 1.5 for 0 < t < 959, (c): β = 2 and 0 ≤ t ≤ 400 and (d): β = 2.5 and 0 ≤ t ≤ 400.

Fig. 4. Stroboscopic view of the location of vortex 1 in an unstable circular 6-vortex array in the reference
frame steadily rotating at the equilibrium angular velocity Ω. A point is shown every ∆t = 1 for 0 ≤ t ≤ 100000
and for β = 1.5 (a) and 2.5 (b).

main peak near r = R = 1 less pronounced than for N = 6 and the same value of β = 2.5. Again,
the pdf of azimuthal location of vortex 1 is nearly uniform and close to (2π)−1.

4. N + 1-VORTEX ARRAYS

We next consider the influence of an additional vortex lying on the same horizontal plane as
the circular N -vortex array and located at the centre of the array. Such arrays are known in the
literature as N + 1-vortex arrays. We call the N vortices lying on the circle of radius R = 1 the
peripheral vortices and we label them by their index i = 1, .., N as in the previous section. The
additional vortex is simply called the central vortex and is labelled as vortex 0. All peripheral
vortices have the same rescaled strength κi = κp = 1, 1 ≤ i ≤ N . The central vortex has a strength
κ0 = κc which can have the same sign as or the opposite sign to κp.
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Fig. 5. Probability density function (p.d.f) vs r of (a) the radial location and (b) the azimuthal location of
vortex 1 in a circular 6-vortex array. The location is sampled every ∆t = 1 for 0 ≤ t ≤ 100000 and for β = 1.5
(black) and β = 2.5 (red). The solid green line in (b) correspond to (2π)−1 corresponding to an uniform
azimuthal distribution.

We plot the largest growth rate σmr in the plane (κc, β) for the N + 1-vortex arrays for β ∈ [0, 3),
and −4 ≤ κc ≤ 4, and for N = 2, 3, 4 and 5 in figure 9, and N = 5, 7, 8 and 9 in figure 10 and
finally N = 10 in figure 11. For N = 2, the vortex arrays are stable provided κc is less than a
threshold typically less than −κp and which depends on β. The 2 + 1-vortex arrays are unstable
otherwise. We notice that the 2 + 1-vortex arrays are more unstable as β increases: the largest
growth rate σmr is larger and the region of the parameter space where the equilibria are unstable
is larger. We should also note that the 2 + 1-vortex array with κc = 0 are unstable. It may seem
to contradict the results obtained for the 2-vortex arrays. These were found to be linearly stable.
There is in fact no contradiction. The mode of instability captured by the linear stability analysis
for κc = 0 only affects the (passive) central vortex which is located at a hyperbolic critical point of
the flow field generated at the two (active) peripheral vortices, as already discussed in [15]. During
the evolution of the unstable 2 + 1-vortex array, the passive central vortex moves away from its
initial, equilibrium location without affecting the peripheral vortices. For unstable 2 + 1-vortex
arrays with κc 6= 0 any motion of the central vortex however breaks the problem’s symmetry and
affects the peripheral vortices.

The situation is similar for N = 3 where the 3 + 1-vortex arrays are also unstable for large
κc. The main difference with N = 2 is that the threshold separating the regions of stability and
instability is positive and marginally larger than κp. The situation changes for N = 4. In this case,
the presence of a negative central vortex tends to destabilise the array. Again the largest growth
rate σrm increases with β. The 4 + 1-vortex arrays are stable for low negative strength and moderate
positive strength central vortices. We shall comment further on the effect of a central vortex with
a large positive strength in the next paragraph. As we further increase N from N = 5 the vortex
arrays become increasingly unstable: the typical value of the largest growth rate σmr increases and
the region of the parameter space where the vortex arrays are unstable increases in size in the
interval κc ∈ [−4, 4] as β increases. Moreover, the threshold in κc separating the region of stable
and unstable vortex arrays moves towards larger values as N increases.

As seen in figure 10 for N = 4, the 4−vortex arrays are unstable for large positive κc. We
therefore extend the previous linear stability analysis to κc > 4 for N ≥ 4. Results are presented
in figure 12. For N = 4, the largest growth rate σmr increases with both κc and β. The situation
changes drastically for N > 4. Although there is also a second region of instability for large positive
κc, it appears first for small β as κc increases, see results in figure 12 for 5 ≤ N ≤ 9. The threshold
in κc which delimits the second region of instability corresponds to increasing values of κc as N
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Fig. 6. Trajectories of the 7 vortices of unstable circular 7-vortex arrays in the reference frame steadily
rotating at the equilibrium angular velocity Ω for (a): β = 0.5 and 0 ≤ t ≤ 9.77, (b): β = 1.0 and 0 ≤ t ≤ 9.85,
(c): β = 2, 0 ≤ t ≤ 9.72 and (d): β = 2.5, 0 ≤ t ≤ 9.75.

increases. On the other hand increasing β stabilises the array more efficiently as N increases: the
region of instability occupies as increasingly narrow region near β = 0 as N increases. It should also
be noted that for large N , the secondary region of instability corresponds to arrays with a central
vortex much more intense than the individual peripheral vortices. Hence, overall, we conclude that
for N ≥ 4, a moderate like-signed vortex stabilises the vortex array, as observed for β = 1 in [15].

We next examine the nonlinear evolution of a selection of three unstable 10 + 1-vortex arrays
with κc = κp. We consider β = 0.5, β = 1.5 and β = 2.5. The early vortex trajectories are shown
in figure 13. The vortex trajectories show a chaotic vortex motion in all three cases. This is generic
of unstable vortex arrays with a large number of like-signed vortices. The central vortex is seen to
be able to move away from the centre towards the peripheral region r ' R = 1. At later times, a
peripheral vortex may move temporarily towards the central region, as it was already the case for
the N -vortex arrays.

Figure 14 shows a stroboscopic view of the location of vortex 1 with a sampling period of ∆t = 1
and for 0 ≤ t ≤ 100000 for the three cases. The distribution of location is qualitatively similar for
the all three values of β, and also qualitatively similar to one obtained for the circular 7-vortex
array with β = 2.5 described in section 3. The distribution of location appears on average uniform
in the azimuthal direction. In the radial direction, there is a higher density of points in an annular
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Fig. 7. Stroboscopic view of the location of vortex 1 in an unstable circular 7-vortex array in the reference
frame steadily rotating at the equilibrium angular velocity Ω. A point is shown every ∆t = 1 for 0 ≤ t ≤ 100000
and for β = 2.5.
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Fig. 8. p.d.f of radial and azimuthal location of vortex 1 in a circular 7-vortex array. The location is sampled
every ∆t = 1 for 0 ≤ t ≤ 100000 and for β = 2.5 . The solid green line in (b) correspond to (2π)−1 corresponding
to an uniform azimuthal distribution.

region around the initial radius r = R = 1 and in the central region. As β increases, the distribution
appears more diffuse. This is confirmed by the pdf of r presented in figure 15. The main peak of
the pdf of r, which remains about r = R = 1 for all three cases, decreases as β increases. Its base
also broadens. Moreover the pdf of r in the intermediate region between the central region and the
main peak increases as β increases. This is an indication that the motion becomes more chaotic.
Similarly to the other cases, the azimuthal distribution is nearly uniform with pdf(θ) ' (2π)−1.

In the previous examples, the vortices remain confined within a disk centred at the origin. This
is a consequence of the invariance of the angular impulse J for the like-signed vortices. In the case
of a negative central vortex, the constraint on J can be less restrictive. An example of evolution of
an unstable 10 + 1-vortex array with κc = −κp and β = 2 is shown in figure 16. As in the previous
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Fig. 9. Largest growth rate σm
r /κp in the (κc, β)-plane for a circular N + 1-vortex array with N = 2 (top

left), 3 (top right), 4 (bottom left) and 5 (bottom right).

case, the vortices first exhibit a chaotic motion. Eventually the central vortex pairs with one of
the peripheral vortex to create a vortex dipole of zero net strength. The pairing is due to the two
vortices getting first close together and induce onto each other a large velocity which makes the
pair move away rapidly from the other vortices. The influence of the other vortices on the dipolar
pair therefore weakens and the dipolar pair continues to self-propagate. Since the dipolar pair has
zero net strength, it contributes very little to the net angular impulse of the flow. The dipolar pair
can therefore move very far away from the centre of the domain while the angular impulse remains
conserved. Overall, the addition of an opposite-signed central vortex allows some of the peripheral
vortices to move further away from the domain centre.

Of potential interest are the N + 1-vortex arrays where the central vortex has strength κc =
−Nκp such that the total strength of the array is zero. For N = 2 and N = 3, the arrays are stable
(σmr = 0), see the first two panels of figure 9. Figure 17 shows the maximum growth rate vs β for
N ≥ 4. In all cases the arrays are linearly unstable for all β.

The array’s rotation velocity Ω vs β is given in figure 18 for the N -vortex arrays and 2 ≤ N ≤ 10.
As seen from equation (A.2) in the appendix, adding a central vortex of strength κ0 modifies Ω by

adding the constant term κ0/R
β+2. Since we set R = 1 without loss of generality, the N + 1-vortex

array may change its global rotation direction provided a negative vortex is located at the centre
of the arrays with strength κ0 = κc less than minus the rotation velocity of the arrays of the N
peripheral positive vortices.

5. CONCLUSIONS

We have investigated the stability of vortex arrays in the generalised 2D Euler’s and 3D quasi-
geostrophic models. We have shown that the stability of the vortex arrays depends on how fast
the velocity induced by the vortices falls away from them (u ∼ r−(β+1)). This in turns affects the
velocity shear and strain in their vicinity which conditions their stability. In the absence of a central
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Fig. 10. Largest growth rate σm
r /κp in the (κc, β)-plane for a circular N + 1-vortex array with N = 6 (top

left), 7 (top right), 8 (bottom left) and 9 (bottom right).
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Fig. 11. Largest growth rate σm
r /κp in the (κc, β)-plane for a circular 10 + 1-vortex array.

vortex, the circular N -vortex arrays are more unstable as the parameter β is increased. The addition
of a central vortex affects the stability of the vortex arrays in a non-trivial manner. For arrays with
only 2 or 3 peripheral vortices a like-signed central vortex typically destabilises the array. The
effect is enhanced as β increases. On the other hand, the presence of a moderate like-signed vortex
stabilises N + 1-vortex arrays with N ≥ 4. Intense like-signed central vortex can destabilise N + 1
vortex arrays for N > 5 for small β. In such cases, increasing β stabilises the arrays.

Overall, for all β there are stable vortex arrays. These arrays are arguably the important ones
in practice as they are the only ones that can form and persist in time in the flow. Other arrays
can only exist as transient states, if they can exist at all, in an otherwise chaotic dynamics. These
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Fig. 13. Trajectories of the 11 vortices of unstable 10 + 1-vortex arrays with κc = κp in the reference frame
steadily rotating at the equilibrium angular velocity Ω for (a): β = 0.5, tmax = 4.82, (b): β = 1.5, tmax = 1.95,
(c): β = 2.5, tmax = 0.94.

Fig. 14. Stroboscopic view of the location of vortex 1 in unstable 10 + 1-vortex arrays with κc = κp in the
reference frame steadily rotating at the equilibrium angular velocity Ω. A point is shown every ∆t = 1 for
0 ≤ t ≤ 100000 and for (a): β = 0.5, (b): β = 1.5, (c): β = 2.5.
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Fig. 15. p.d.f of radial and azimuthal location of vortex 1 in circular 10 + 1-vortex arrays with κc = κp.
The location is sampled every ∆t = 1 for 0 ≤ t ≤ 100000 and for β = 0.5 (solid black), β = 1.5 (solid red),

β = 2.5 (solid blue). The solid green line in (b) correspond to (2π)−1 corresponding to an uniform azimuthal
distribution.
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Fig. 16. Trajectories of the 11 vortices of unstable 10 + 1-vortex arrays with κc = −κp in the reference frame
steadily rotating at the equilibrium angular velocity Ω for β = 2 and (a): 0 < t < 1, (b): 0 < t < 1.5, (c):
0 < t < 3.

convoluted motions are nonetheless interesting in themselves on a purely dynamical point of view.
These motions are constrained by fundamental flow invariants such as the angular impulse which
can limit the region in which the vortices may evolve.

We have focused here on initial conditions which consist of arrays of vortices in mutual
equilibrium. These are highly symmetric arrays. It would be interesting to explore further arrays
with fewer symmetries which, instead of being in an exact mutual equilibrium may have non-trivial
periodic motions and to address the stability of these motions when subject to small external
perturbations.

Another possible extension is to consider the extension consist in the extension of the investiga-
tion of staggered vortex arrays considered in [8] to the generalised QG dynamics.

APPENDIX

We describe the general equations used for the linear stability analysis for the N + 1-vortex
arrays in generalised three-dimensional QG equations. For the N -vortex arrays, the equations are
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red), N = 6 (solid blue), N = 7 (solid green), N = 8 (dotted black), N = 9 (dotted red) and N = 10 (dotted
blue).

the same just removing explicitly vortex 0 from the equations. For the two-dimensional generalised
Euler equations, we simply remove the z-component in all distances. The N peripheral vortices of
strength κi = κp, 1 ≤ i ≤ N are located along a ring of radius R at a polar angle {θi}i=1,N . The
central vortex is located at (0, 0, 0) and has strength κ0 = κc. Note that in the present study the
equations simply a little with R = 1 and zi = 0, ∀i.

θi =
i− 1

N
2π (A.1)
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Vortex 1 is located (R, 0, 0) and is used to evaluate the uniform rotation angular velocity Ω

Ω =
v1
R

=
κ0
Rβ+2

+

N∑
i=2

κi
1− cos θi

Rβ+2
(

(1− cos θi)
2 + sin2 θi

)(β+2)/2
(A.2)

The location of the point vortices (xi, yi, zi). We denote

r2ij = (xi − xj)2 + (yi − yj)2 + (zi − zj)2 (A.3)

We consider perturbations of the horizontal position of the vortices

(x′i, y
′
i, 0) = eσt(x̃i, ỹi, 0). (A.4)

We do not consider vertical perturbation since the vertical advection is negligible in the QG model.
The equations for the perturbations are obtained by linearising the equations of motion of the
vortices in the reference frame rotating with the vortices about their equilibrium position:

dx′i
dt

= σx′i = Ωy′i−
N∑

j=0,j 6=i

κj

rβ+2
ij

[(
1− (β + 2)

(yi − yj)2
r2ij

)
(y′i − y′j)− (β + 2)

(yi − yj)(xi − xj)
r2ij

(x′i − x′j)
]

(A.5)

dy′i
dt

= σy′i = −Ωx′i+

N∑
j=0,j 6=i

κj

rβ+2
ij

[(
1− (β + 2)

(xi − xj)2
r2ij

)
(x′i − x′j)− (β + 2)

(yi − yj)(xi − xj)
r2ij

(y′i − y′j)
]

(A.6)

which leads to a (2N + 2)-eigenvalue problem where σ is the eigenvalue and (x′0, ..., x
′
N , y

′
0, ..., y

′
N )

is the eigenvector. The eigenvalue problem is numerically solved using the standard function dgeev
of the linear algebra package Lapack.
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