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Abstract. Tuberculosis is one of the most serious infectious diseases,
and its treatment is highly dependent on early detection. Microscopy-
based analysis of sputum images for bacilli identification is a common
technique used for both diagnosis and treatment monitoring. However,
it a challenging process since sputum analysis requires time and highly
trained experts to avoid potentially fatal mistakes. Capturing fields of
view (FOVs) from high resolution whole slide images is a laborious pro-
cedure, since they are manually localized and then examined to deter-
mine the presence of bacteria. In the present paper we propose a method
that automates the process, thus greatly reducing the amount of human
labour. In particular, we (i) describe an image processing based method
for the extraction of a FOV representation which emphasises salient, bac-
terial content, while suppressing confounding visual information , and
(ii) introduce a novel deep learning based architecture which learns from
coarsely labelled FOV images and the corresponding binary masks, and
then classifies novel FOV images as salient (bacteria containing) or not.
Using a real-world data corpus, the proposed method is shown to out-
perform 12 state of the art methods in the literature, achieving (i) an
approximately 10% lower overall error rate than the next best model and
(ii) perfect sensitivity (7% higher than the next best model).

Keywords: Whole slide images · Fluorescence microscopy · Image pro-
cessing · Artificial intelligence · Medicine · Infection · Respiratory system

1 Introduction

Tuberculosis (TB) is the biggest infectious disease-related cause of mortality
globally [10]. Mycobacterium tuberculosis (Mtb) is the causative bacterium of
TB, spread by droplet and aerosol, with up to 85 percent of cases affecting the
lungs [38]. Other organs or tissues, such as the brain, kidneys, bone, and skin,
can be infected by these pathogens. The present work focuses on microscopy
images for identifying Mtb bacilli, with an emphasis on pulmonary tuberculosis.
According to the WHO, up to 2 billion people worldwide have Mtb bacteria
in their bodies, with up to 10 million instances of active illness and 2 million
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deaths every year [38]. Since the 1940s, TB was treatable, but things began to
deteriorate with the advent of Drug Resistant TB variations such as Multi Drug
Resistant, eXtensive Drug Resistant, and Total Drug Resistant forms of the bac-
terium [12]. The largest burden of morbidity and death from tuberculosis occurs
in poor and middle-income nations, where healthcare resources are limited [30].
Early TB testing improves patient chances for treatment and recovery while also
assisting in the prevention of disease spread, and lowering the probability of drug
resistant pathogen emergence [38, 7, 20].

Sputum smear microscopy has traditionally been the primary method for di-
agnosing tuberculosis. Sputum samples from symptomatic individuals are heat-
fixed onto slides and stained using laboratory techniques that identify acid-fast
bacteria (AFB) like Mtb cells. For light microscopy (typically at ×1000 mag-
nification), the older Ziehl-Neelsen treatment stains AFB red on a blue back-
ground, but newer Auramine-based protocols stain it yellow-green against a black
background for fluorescence microscopy (usually at ×400 magnification). Semi-
quantitative grading methods have been created to measure the bacterial bur-
den in a patient’s lungs. The findings of sputum smear microscopy are often
described as ‘negative’, ‘scanty’, ‘1+’, ‘2+’, or ‘3+’ [34], in ascending order of
disease severity.

1.1 Importance of microscopy

Many centres throughout the globe have switched their attention away from
smear microscopy and towards new tools (such as the Xpert MTB/RIF test) for
TB diagnosis in recent years [17]. Sputum smear gradings, on the other hand,
remain effective for triaging disease severity and prognosis, with implications for
therapeutic individualisation [34] and treatment response where new assays are
not currently suggested [38].

Smear microscopy provides data considerably faster than waiting for Mtb to
develop in culture in clinical microbiology practice [31]. When properly done, it
has a high specificity (99%) for detecting Mtb cells [34]. Smear microscopy has
become more sensitive since switching from classic Ziehl-Neelsen to fluorescent
Auramine-based microscopy (from 0.34-0.94 to 0.52-0.97 according to one sys-
tematic review) [3, 32]. Although microscopy laboratory materials are typically
affordable, the method is time-consuming, which has an impact on laboratory
staffing costs. The large ranges of diagnostic sensitivity reported for TB smear
microscopy also reflect the complexity and subjectivity of the process.

Disadvantages of microscopy and motivation for computer based auto-
matic detection There are obstacles to using microscopy effectively for clinical
patient treatment and scholarly research on Mtb. As a microscopist, maintain-
ing a high level of skill necessitates a consistent commitment of time. To stay
proficient, practitioners should study at least 25 slides every day according to
general guidelines [22]. Each slide is divided into small regions that are examined
sequentially, with human error (e.g. due to weariness) reducing the specificity and
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sensitivity of analysis [25]. Some slides are also difficult to interpret because AFB
can exhibit unusual appearance or because non-bacterial components (artefacts)
inside the sputum matrix resemble Mtb cells. A promising direction of address-
ing these challenges lies in the removal of the human from the loop, that is by
employing modern artificial intelligence approaches [36].

2 Related Work

To the best of our knowledge, there is no published work that is specific to the
collecting of enlarged FOV images containing probable microorganisms. Most
datasets used in tuberculosis research comprise images that have been manually
magnified and cropped by a microbiologist specialist.

The work of Forero et al. [6] was one of the earliest attempts at the use of
automatic methods for the analysis of fluorescence microscopy slides with Mtb
bacteria. The authors’ primary objective was to develop a diagnostic tool, and
they used autofocus functions to crop FOVs from microscopic slides. Autofocus
was accomplished by a two-pass algorithm that determines whether or not a
specific area is void of bacterial content before bringing the image into focus [18].
The initial run of the algorithm analyses slides at three z-axis points to assess
if there is sufficient variance between them to signal the presence of salient
content in the field. As the authors note, Mtb bacteria occupy extremely small
areas of the image, i.e. most of the image is taken up by the background, and
their experiments demonstrate that a narrow scanning window (256×256 pixels)
must be used for accurate FOV localization. Using auramine stained slides, out
of the four focusing methods examined by the authors, two, namely the wave
and auto-correlation based ones, produced promising results.

A more recent attempt to make use of autofocus functions is that of Zhai et
al. [41]. The primary distinction between theirs and previous work lies in the use
of conventional rather than fluorescent microscopy. Amongst others, a notable
difference as compared with the approach introduced in the present paper lies
in the scanning process. In particular, Zhai et al. employ a row-wise scanning
strategy whereas herein we proceed in a spiral manner. The authors employed
three different autofocus measurement, namely the sum of gray-level differences,
the Laplacian, and the Tenengrad function with the Sobel operator, and found
that the latter outperforms the former two. Nevertheless, the reported empirical
accuracy of the method is much lower than that of other methods in the literature
that perform diagnosis without collecting FOVs [24, 37, 19].

Kant and Srivastava’s work processes entire slides in a bottom-up manner,
that is by aggregating information extracted from small patches [12]. They used
a five-layer patch-wise classifier to load each tile from a microscopic slide and
a 20 × 20 pixel window which moves through the FOV to assess the presence
of germs. Although the authors claim 99.8% accuracy, this number is rather
misleading. The reason stems from the observation that the vast majority of
the area of a microscopic slide is occupied by the background, resulting in high
accuracy owing to accurate background classification (i.e. in effect, false negative
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errors are deprioritized). Indeed, when sensitivity and specificity are considered,
the reported rates of 83.8% and 67.6% respectively are comparable to or worse
than those of other methods discussed in the present paper.

3 Proposed method

We begin our process of cropping the slide by putting each tile into memory (as
the entire slide is too big ≈ 19GB) and cropping 200 × 400 pixel patches from
each tile. Our slides include a total of 2700 tiles which are anisotropically scaled
by a factor of 4.83 in the x direction and 3.24 in the y direction, so as to match
FOVs created manually by a specialist.

3.1 Discrimination enhanced representation extraction

A human specialist detects Mtb microorganisms by inspecting the green chan-
nel of a FOV. The more acid fast a bacterium is, the more prominent is its
appearance [5]. Additionally, Mtb bacteria that store non-polar lipids intracel-
lularly are classified as lipid-rich (LR) cells, as opposed to lipid-poor (LP) cells.
It is hypothesised that resistant LR bacteria play a critical role in patient re-
lapse [21, 27]. As a result, their acid resistance begins to deteriorate, and they
become less visible in the green channel. Fortunately, in this case they become
more apparent in the red channel [23, 8] using Nile red staining as opposed to
Auramine-O. While the evidence that the presence of LR Mtb bacteria indeed
does predict poor treatment outcome is still insufficiently strong, there are nu-
merous studies on non-polar lipids in Mtb bacteria and Nile red staining which
point in this direction [2, 14, 13, 4]. Thus, both the red (Nile red staining) and
the green (Auramine-O) channel remain of relative importance in both research
and clinical terms.

Additionally, the ability to generate high-quality microscopic images is con-
tingent upon the quality of clinical samples collected and the details of smear
preparation and staining processes. Thick smears from highly mucous samples
can have an excessive amount of background staining, which makes bacteria
harder to localize. To increase the robustness of our method, as well as to reduce
the complexity of the learning task, we propose a pre-processing stage that en-
hances image content of interest while at the same time suppressing confounding
information e.g. in the form of staining artefacts [39].

Considering that the bacteria of interest form largely straight, thin, and elon-
gated structures, we employ a ridge detector [1]. In particular, we make use of the
Hessian matrix approximation (at the scale of 2× 2 pixels in the present work).
Its eigendecomposition allows for a differentiation between different kinds of
local image behaviour leading to a straightforward process of distinguishing be-
tween blob-like structures, uniform regions, and elongated structures of interest
herein [15]. Considering that bacilli form elongated structures, we are interested
in the loci which exhibit significant change in one principal direction (perpen-
dicular to a bacterium) and little change in the other (along a bacterium), and
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these can be readily identified using the corresponding Hessian matrix eigen-
values. In particular, to create an enhanced image (in the context of our end
goal), each pixel in the original image is replaced with the absolute value of the
lower magnitude value of the Hessian eigenvalue computed at the locus. The at
first sight appealing alternatives which take into account both eigenvalues, such
as the use of the ratio of the two eigenvalues, were found unsuitable due to an
increase in noise and the dynamic range.

3.2 The learning

Our end goal is to classify cropped FOVs as positive or negative for Mtb microor-
ganisms. By doing so, that is by filtering out uninteresting FOVs, the burden
of the manual workload required from a lab worker is dramatically reduced. In
addition, the aforementioned classification can also be used to simplify and im-
prove further automatic processing, e.g. diagnostic inference or bacterial culture
analysis.

Proposed model Evidence from previous work on non-automatic smear analy-
sis, that is analysis performed by humans, suggests that for the detection of Mtb
bacteria the use of both texture and shape information is superior to the use
of either of the two in isolation [37, 6, 29]. Herein we introduce a network that
reflects this finding by employing two encoders to generate two separate feature
maps. One of these is trained on the discrimination enhanced representation of
FOVs introduced in Section 3.1, while the other is trained on the binary masks
corresponding to the FOVs, which distinguish between the objects of interest
(bacteria) and the uninteresting content (background and artefacts). The en-
coder outputs are concatenated to generate the input matrix for another smaller
network (16×32×512); see Figure 1. The weights of the two encoders are frozen,
and no gradient computation is done during the training of the smaller network.
As a result, the smaller network makes an effort to infer the probability distri-
bution from the two encoders which independently infer texture and shape. To
train the two encoders, a further layer with adaptive max pooling and a linear
layer leading to a single output unit with a sigmoid activation function were
added. The same environmental and hyper-parameters as previously employed
were utilized to train the two encoders and the smaller network.

4 Evaluation

4.1 Data

The data used in the present work consists of microscopic slides captured from
a clinical cohort study in Mbeya, Tanzania. Between February 2017 and March
2018, 46 persons with sputum smear positive pulmonary tuberculosis (40 newly
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Fig. 1. Diagram of information flow through the architecture proposed in the present
paper: following an encoding process, information passes through a convolutional net-
work, leading to the eventual inference of the bacterial presence in a FOV.

diagnosed and 6 previously diagnosed) were recruited and tracked until the con-
clusion of a 6-month course of conventional tuberculosis therapy. Sputum sam-
ples were taken pre-treatment and at the end of months 2, 4, and 6 of ther-
apy. Smears on microscope slides were made from the sputum samples. The
slides were dyed using normal Auramine-O procedures, and the smears were
systematically scanned through a fluorescein isothiocyanate filter using a Leica
DMLB epifluorescence microscope at ×1000 magnification by an experienced
microscopist. A digital camera was used to capture and save all fields having
auramine-stained, yellow-green AFB. A total of 230 slides were inspected, and
for each AFB positive slide 30 images were created.

The training dataset for this experiment included 46 patients with around
150 FOV images per patient from diagnosis through therapy completion. Around
800 FOVs were randomly chosen from the Tanzanian corpus . To verify that the
automated image analysis method being developed is not affected by changes
in the morphology of Mtb cells during or after TB therapy, images were picked
across all time periods of sample collection. These images were re-examined by
a microscopist who was not involved in the original experiment. Each FOV was
then assessed as positive or negative by a microscopy specialist.

Two additional slides from a separate facility and technician were used to
evaluate our method. The test set consists of 130 FOVs extracted from the
slides using the approach proposed in the present paper, chosen using balanced
random sampling that ensures that the set is balanced in terms of positive and
negative examples.
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4.2 Competitor models

We compare the proposed method with a number of state of the art models from
the VGG family [26], the ResNet family [9] (including Wide-Resnet [40]), the
Densenet family [11], and InceptionV3 [33]. All models were pre-trained using
the ImageNet dataset, which contains 1000 target classes and three input chan-
nels. Regardless of their initial configuration, each model’s first convolutional
layer was replaced with one that comprises a single input channel, kernel of size
3× 3, stride value of 1, and padding of size 3× 3. The alterations are motivated
by the fact that our slide representation is monochrome (i.e. single channel) and
the objects of interest are thin, elongated structures that frequently appear near
the image boundary. The last modification is to the final linear layer, which is
replaced with one that retains the same input features but has just one out-
put node (in InceptionV3, this change is applied to its auxiliary classifier). The
output weights of the last linear layer are passed through the sigmoid function.

4.3 Hyper-parameter learning

To ensure a fair comparison, all models, including the proposed one, were trained
using the same set of hyper-parameters. To begin, the batch size was chosen
to be 16 in order to achieve a balance between generalization, accuracy, and
computing speed. Adam optimizer with the values of the β parameters (that is,
the initial decay rates used when estimating the first and second moments of the
gradient) equal to 0.50 and 0.99 was used. For the training process, following
evidence from prior research [28], the base and maximum learning rates were
set to 0.00001 and 0.0004, respectively, and the learning scheduler used was the
novel circular scheduler with a step size equal to five times the size of the dataset
(which varies according to batch size). Finally, binary cross entropy was used as
the loss function; see Figure 2.

4.4 Results and discussion

A microbiological specialist classified 73 of the 130 FOV images in our test set
as positive and 57 as negative. The same expert manually created binary masks
corresponding to all of the 130 FOVs, which were treated as the ground truth. In
order to facilitate a comprehensive and nuanced comparison between models [35],
we assess performance using a number of metrics, namely overall accuracy, recall
(sensitivity) and precision (specificity), receiver operating characteristics (ROC),
and the area under the ROC curve (AUC).

A summary of our experimental results is shown in Table 1. To start with,
consider the overall performance metric in the form of the classification error
(in the rightmost column of the table) and observe that the proposed method
achieved the best performance of all 13 methods compared. The error rate of
the next best model, namely ResNet50, is more than 11% greater. InceptionV3
and the best DenseNet family model, DenseNet201, performed next best (23%
higher error rate than the proposed model). While there is significant variation
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Fig. 2. With the exception of VGG family, all models converge around the 65th epoch
and exhibit the same overall learning behaviour. The poor performance of the VGG
family suggests that the present task requires greater architectural sophistication than
that achieved by merely stacking convolutional layers.

Fig. 3. Comparison of ROC curves and the areas under the curves, both show that the
proposed solution outperforms the current state of the art. For the sake of clarity, each
model family is illustrated using the average performance of its evaluated models.

between different specific models within all families, generally speaking ResNet
performed better than DenseNet, and VGG networks fared the worst (45–101%
higher error rate than the proposed model).
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Table 1. Summary of results. All VGG models were trained using batch normalization
(BN). The best performing model with respect to each statistic is shown in bold.

Model name True +ve False +ve True -ve False -ve Error rate
VGG11 (w/ BN) 68 5 49 8 0.100
VGG13 (w/ BN) 67 6 47 10 0.123
VGG16 (w/ BN) 67 6 46 11 0.131
VGG19 (w/ BN) 63 10 50 7 0.131
ResNet18 65 8 51 6 0.108
ResNet34 66 7 51 6 0.100
ResNet50 68 5 52 5 0.077
ResNet50-Wide 68 5 49 8 0.100
DenseNet121 66 7 51 6 0.100
DenseNet169 67 6 45 12 0.139
DenseNet201 68 5 51 6 0.085
InceptionV3 67 6 52 5 0.085
Proposed 73 0 48 9 0.069

A more nuanced insight into the behaviour of different models can be gained
by examining the specific error types (in columns 3 and 5 of Table 1; also see
Figure 3). Importantly, note that the proposed method performed best in terms
of the false positive error rate – indeed, it made no incorrect positive calls at
all. This is extremely important in this context for reasons already noted in
Section 2, to wit the vast majority of FOVs do not contain bacteria and it is
of paramount importance that these are filtered out as a means of reducing
expert human labour thereafter. No other method comes close to ours, with
DenseNet201, ResNet50, ResNet50-Wide, and VGG11 erring in approximately
7% of the cases. On the other hand, the proposed method was not superior
in terms of the false positive rate. In the context of this metric InceptionV3
and ResNet50 performed best, achieving the error rate of approximately 9%.
However, here it is important to observe the asymmetry of the importance of
type I and type II errors on the task at hand [16]. As we noted earlier, the
former are of primary importance as low type I error rate means that the vast
amount of irrelevant information is not passed on further for human analysis
which is where the practical bottleneck lies. On the other hand, type II errors,
while of course undesirable (as any error is), are far less important, as clinically
salient information about a bacterial culture can be readily derived from only a
sample of bacteria, without there being a need for the entirety of the culture to
be examined. Of course, this is predicated on the sample being representative
which is why the type II error rate must not be excessively high. As witnessed by
our results in Table 1 this is not a major challenge here as none of the methods
compared produced a high number of false negatives.
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5 Conclusion

Although sputum smear microscopy is being phased out in many settings in
favour of Xpert MTB/RIF and other molecular tests, it still serves a function
in some aspects of disease severity assessment and therapy monitoring. Since
microscopic examination of Mtb cells is critical as a research tool, work on
the development of improved automated tools for standardising and expedit-
ing image analysis remains important. To this end, in this paper we described
a novel solution based on a newly crafted deep learning based architecture tai-
lored specifically for the task, which learns from coarsely labelled FOV images
and the corresponding binary masks, and then classifies novel FOV images as
bacteria containing or not. The fully automated nature of the model and its
empirically evidenced vanishing false positive rate, demonstrate the potential of
the proposed method to significantly reduce human expert labour.

Acknowledgements We will like to express our appreciation to the McKenzie
Institute for providing the necessary funding to complete this work.

References

1. Arandjelović, O., Cipolla, R.: A new look at filtering techniques for illumination
invariance in automatic face recognition. pp. 449–454 (2006)

2. Baron, V.O., Chen, M., Clark, S.O., Williams, A., Hammond, R.J.H., Dholakia, K.,
Gillespie, S.H.: Label-free optical vibrational spectroscopy to detect the metabolic
state of M. tuberculosis cells at the site of disease. Scientific Reports 7(1), 1–9
(2017)

3. Costa Filho, C.F.F., Costa, M.G.F., Júnior, A.K.: Autofocus functions for tuber-
culosis diagnosis with conventional sputum smear microscopy. Current Microscopy
Contributions to Advances in Science and Technology pp. 13–20 (2012)

4. Daniel, J., Kapoor, N., Sirakova, T., Sinha, R., Kolattukudy, P.: The perilipin-like
PPE15 protein in Mycobacterium tuberculosis is required for triacylglycerol ac-
cumulation under dormancy-inducing conditions. Molecular Microbiology 101(5),
784–794 (2016)

5. Deb, C., Lee, C.M., Dubey, V.S., Daniel, J., Abomoelak, B., Sirakova, T.D., Pawar,
S., Rogers, L., Kolattukudy, P.E.: A novel in vitro multiple-stress dormancy model
for mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant
pathogen. PLoS ONE 4(6), e6077 (2009)

6. Forero, M.G., Sroubek, F., Cristóbal, G.: Identification of tuberculosis bacteria
based on shape and color. Real-Time Imaging 10(4), 251–262 (2004)

7. Gele, A.A., Bjune, G., Abebe, F.: Pastoralism and delay in diagnosis of TB in
Ethiopia. BMC Public Health 9(1), 1–7 (2009)

8. Greenspan, P., Fowler, S.D.: Spectrofluorometric studies of the lipid probe, nile
red. Journal of Lipid Research 26(7), 781–789 (1985)

9. He, D., Xia, Y., Qin, T., Wang, L., Yu, N., Liu, T.Y., Ma, W.Y.: Dual learning
for machine translation. Advances in Neural Information Processing Systems 29,
820–828 (2016)



Extracting and Classifying Salient Fields of View From Microscopy Slides 11

10. Holmes, C.B., Hausler, H., Nunn, P.: A review of sex differences in the epidemiology
of tuberculosis. International Journal of Tuberculosis and Lung Disease 2(2), 96–
104 (1998)

11. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely Connected
Convolutional Networks. In: IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4700–4708 (2017)

12. Kant, S., Srivastava, M.M.: Towards Automated Tuberculosis detection using Deep
Learning. In: IEEE Symposium Series on Computational Intelligence. pp. 1250–
1253 (2019)

13. Kayigire, X.A., Friedrich, S.O., van der Merwe, L., Donald, P.R., Diacon, A.H.:
Simultaneous staining of sputum smears for acid-fast and lipid-containing My-
obacterium tuberculosis can enhance the clinical evaluation of antituberculosis
treatments. Tuberculosis 95(6), 770–779 (2015)

14. Kennedy, J.A., Baron, V., Hammond, R.J.H., Sloan, D.J., Gillespie, S.H.: Centrifu-
gation and decontamination procedures selectively impair recovery of important
populations in Mycobacterium smegmatis. Tuberculosis 112, 79–82 (2018)

15. Kumar, N.C.S., Radhika, Y.: Optimized maximum principal curvatures based seg-
mentation of blood vessels from retinal images. Biomedical Research 30(2) (2019)

16. Lomacenkova, A., Arandjelović, O.: Whole slide pathology image patch based deep
classification: an investigation of the effects of the latent autoencoder represen-
tation and the loss function form. In Proc. IEEE International Conference on
Biomedical and Health Informatics (2021), DOI: 10.1109/BHI50953.2021.9508577

17. Mehta, P.K., Raj, A., Singh, N., Khuller, G.K.: Diagnosis of extrapulmonary tuber-
culosis by PCR. FEMS Immunology & Medical Microbiology 66(1), 20–36 (2012)

18. Merchant, F.A., Castleman, K.R.: Computer-assisted microscopy. In: The Essential
Guide to Image Processing, pp. 777–831 (2009)

19. Panicker, R.O., Kalmady, K.S., Rajan, J., Sabu, M.K.: Automatic detection of
tuberculosis bacilli from microscopic sputum smear images using deep learning
methods. Biocybernetics and Biomedical Engineering 38(3), 691–699 (2018)

20. Peter, J.G., van Zyl-Smit, R.N., Denkinger, C.M., Pai, M.: Diagnosis of TB: state
of the art. European Respiratory Monograph 58, 123–143 (2012)

21. Phillips, P.P.J., Mendel, C.M., Burger, D.A., Crook, A., Nunn, A.J., Dawson, R.,
Diacon, A.H., Gillespie, S.H.: Limited role of culture conversion for decision-making
in individual patient care and for advancing novel regimens to confirmatory clinical
trials. BMC Medicine 14(1), 1–11 (2016)

22. Rieder, H.L., Van Deun, A., Man Kam, K., Jae Kim, S., Chonde, T.M., Trebucq,
A., Urbanczik, R.: Priorities for Tuberculosis Bacteriology Services in Low-Income
Countries. International Union Against Tuberculosis and Lung Disease (2007)

23. Rumin, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, A., Bernard, O.,
Cadoret, J.P., Bougaran, G.: The use of fluorescent Nile red and BODIPY for lipid
measurement in microalgae. Biotechnology for Biofuels 8(1), 1–16 (2015)

24. Sadaphal, P., Rao, J., Comstock, G.W., Beg, M.F.: Image processing techniques for
identifying Mycobacterium tuberculosis in Ziehl-Neelsen stains. The International
Journal of Tuberculosis and Lung Disease 12(5), 579–582 (2008)

25. Shea, Y.R., Davis, J.L., Huang, L., Kovacs, J.A., Masur, H., Mulindwa, F., Opus,
S., Chow, Y., Murray, P.R.: High sensitivity and specificity of acid-fast microscopy
for diagnosis of pulmonary tuberculosis in an African population with a high preva-
lence of human immunodeficiency virus. Journal of Clinical Microbiology 47(5),
1553–1555 (2009)

26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)



12 M. Zachariou et al.

27. Sloan, D.J., Mwandumba, H.C., Garton, N.J., Khoo, S.H., Butterworth, A.E.,
Allain, T.J., Heyderman, R.S., Corbett, E.L., Barer, M.R., Davies, G.R.: Pharma-
codynamic modeling of bacillary elimination rates and detection of bacterial lipid
bodies in sputum to predict and understand outcomes in treatment of pulmonary
tuberculosis. Clinical Infectious Diseases 61(1), 1–8 (2015)

28. Smith, L.N.: Cyclical learning rates for training neural networks. In: IEEE Winter
Conference on Applications of Computer Vision. pp. 464–472 (2017)

29. Sotaquira, M., Rueda, L., Narvaez, R.: Detection and quantification of bacilli and
clusters present in sputum smear samples: a novel algorithm for pulmonary tu-
berculosis diagnosis. In: International Conference on Digital Image Processing, pp.
117–121 (2009)

30. Spence, D.P., Hotchkiss, J., Williams, C.S., Davies, P.D.: Tuberculosis and poverty.
British Medical Journal 307(6907), 759–761 (1993)

31. Steingart, K.R., Henry, M., Laal, S., Hopewell, P.C., Ramsay, A., Menzies, D.,
Cunningham, J., Weldingh, K., Pai, M.: A systematic review of commercial sero-
logical antibody detection tests for the diagnosis of extrapulmonary tuberculosis.
Postgraduate Medical Journal 83(985), 705–712 (2007)

32. Steingart, K.R., Henry, M., Ng, V., Hopewell, P.C., Ramsay, A., Cunningham, J.,
Urbanczik, R., Perkins, M., Aziz, M.A., Pai, M.: Fluorescence versus conventional
sputum smear microscopy for tuberculosis: a systematic review. Lancet Infectious
Diseases 9(6), 570–581 (2006)

33. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition. pp. 1–9
(2015)

34. Toman, K.: Toman’s tuberculosis: case detection, treatment and monitoring. Ques-
tions and answers. World Health Organization (2004)

35. Valsson, S., Arandjelović, O.: Nuances of Interpreting X-ray Analysis by Deep
Learning and Lessons for Reporting Experimental Findings. Sci 4(1), 1–13 (2022)

36. Vente, D., Arandjelović, O., Baron, V., Dombay, E., Gillespie, S.: Using machine
learning for automatic counting of lipid-rich tuberculosis cells in fluorescence mi-
croscopy images. In Proc. AAAI Conference on Artificial Intelligence Workshop on
Health Intelligence pp. 57–68 (2019)

37. Veropoulos, K., Learmonth, G., Campbell, C., Knight, B., Simpson, J.: Automated
identification of tubercle bacilli in sputum: A preliminary investigation. Analytical
and Quantitative Cytology and Histology 21(4), 277–282 (1999)

38. World Health Organisation: Global Tuberculosis Report. Tech. rep. (2018),
https://apps.who.int/iris/bitstream/handle/10665/274453/9789241565646-
eng.pdf

39. Zachariou, M., Arandjelović, O., Sloan, S., Sabiiti, W., Mtafya, B.: Tuberculosis
bacteria detection and counting in fluorescence microscopy images using a multi-
stage deep learning pipeline. Information 13(2), 96 (2022)

40. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint
arXiv:1605.07146 (2016)

41. Zhai, Y., Liu, Y., Zhou, D., Liu, S.: Automatic identification of mycobacterium
tuberculosis from ZN-stained sputum smear: Algorithm and system design. In:
IEEE International Conference on Robotics and Biomimetics. pp. 41–46 (2010)


