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ABSTRACT
In this short note, we show that the number of monogenic submonoids of
the full transformation monoid of degree n for n > 0, equals the sum of the
number of cyclic subgroups of the symmetric groups on 1 to n points. We
also prove an analogous statement for monogenic subsemigroups of the finite
full transformation monoids, as well as monogenic inverse submonoids and
subsemigroups of the finite symmetric inverse monoids.
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1. Introduction

In this short note we count, up to isomorphism, the number of monogenic subsemigroups and sub-
monoids of the finite full transformation monoids and the number of monogenic inverse subsemigroups
and submonoids of the finite symmetric inverse monoids.

The question of counting the monogenic subsemigroups of the finite full transformation monoids was
posed to the third author by A. Egri-Nagy in the course of their work on [5]. The general case of counting
all of the subsemigroups of the finite full transformation monoids up to isomorphism seems extremely
complex, but the highly restricted case of the monogenic subsemigroups is tractable. The numbers of
subsemigroups of the full transformation monoids and the number of inverse subsemigroups of the
symmetric inverse monoids are very large (see for example Corollary 3.3 of [9] or Theorem 9.1 in [1]).
So, unsurprisingly, the monogenic semigroups account for a tiny proportion of the subsemigroups of
these monoids.

The question of counting the monogenic inverse subsemigroups of the finite symmetric inverse
monoids arose naturally in the context of another project of the authors of the present note. Every finite
semigroup can be embedded in a full transformation monoid, and every finite inverse semigroup can be
embedded in some symmetric inverse monoid. As such counting, or characterizing, the transformation
monoids, or inverse monoids, that can be found as subsemigroups of any given full transformation
monoid, or symmetric inverse monoid, seems natural enough. The structure of monogenic semigroups
is rather straightforward, and while the structure of monogenic inverse semigroups is more involved,
they are sufficiently straightforward that it is possible to enumerate them. Similar questions have been
studied for finite symmetric groups, see, for example, [6] and the references therein, and for other classes
of semigroups and monoids; see, for example, [3] and [10].

There are a number of results in the literature relating to monogenic inverse semigroups. Pre-
ston [8] presented a description of all monogenic inverse monoids up to isomorphism. This description
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was independently obtained by Conway, Duncan and Paterson [2] in the context of C∗-algebras.
Dyadchenko [4] gave a number of results on monogenic inverse semigroups by studying free monogenic
inverse semigroups. Some of the results in [4] and [8] overlap with the results in the present paper, and
the authors have endeavored to point this out.

Throughout this short note, we denote the natural numbers {0, 1, . . .} by N. If n ∈ N and n ≥ 0, then
the symmetric group, denoted Sn, is the group of all permutations of the set {1, . . . , n}. The full trans-
formation monoid is the monoid of all functions from the set {1, . . . , n} to itself (called transformations)
and the semigroup operation is the usual composition of functions. The symmetric inverse monoid In
is the set of all bijections between subsets of {1, . . . , n}, with the operation of composition of binary
relations. Throughout the remainder of this note we will write functions to the right of their arguments
and compose from left to right.

We distinguish two notions of being “generated” by a single element, for monoids, and inverse
monoids as follows. A monoid M is monogenic if there is m ∈ M such that M = {mn : n ∈ N}. An
inverse monoid M is a monogenic inverse monoid if there exists m ∈ M such that M is the monoid
generated by m and m−1. Note that in a monogenic monoid M, or inverse monoid, the identity is m0 for
every m ∈ M. For finite groups, these two definitions coincide, and so a monogenic finite group is just a
cyclic group. We elaborate why we have chosen to consider monoids rather semigroups after stating the
main theorem below.

Let s, t, i : N −→ N be defined by
(n)s = the number of non-isomorphic cyclic subgroups of Sn

(n)t = the number of non-isomorphic monogenic submonoids of Tn

(n)i = the number of non-isomorphic monogenic inverse submonoids of In.
Since cyclic groups are determined up to isomorphism by their size, it follows that (n)s is the number of
distinct orders of elements in Sn; see [11] and Table 1 for some values for (n)s. Note that we will follow
the convention that (1)s = 1 (and (0)s = 1 by virtue of the trivial group being cyclic). A partition of
n ∈ N is a k-tuple (a1, . . . , ak), where k ≥ 0, a1 ≥ · · · ≥ ak ≥ 1 and a1 + · · · + ak = n. For instance,
the partitions of 5 are:

1 + 1 + 1 + 1 + 1, 2 + 1 + 1 + 1, 2 + 2 + 1, 3 + 1 + 1, 3 + 2, 4 + 1, 5.
There is a unique partition of 0, namely, the empty partition ∅. We use the standard conventions that
an empty sum equals 0 and an empty product equals 1; in particular, lcm(∅) = 1.

The order of a permutation f ∈ Sn is just the least common multiple of the lengths of its cycles, and
so (n)s is the size of the set {lcm(a1, a2, . . . , ak) : a1 + · · · + ak = n}.

The purpose of this short note is to prove the following result.

Theorem 1. Let n ∈ N such that n > 1. Then

(n)t =
n∑

k=1
(k)s and (n)i =

n∑
k=0

(k)s = (n)t + 1.

See Table 1 for the values of (n)s, (n)t, and (n)i for some small values of n.
A semigroup S is monogenic if there is s ∈ S such that S = {sn : n > 0, n ∈ N}. As such a monogenic

subsemigroup S of Tn contains the identity transformation 1n ∈ Tn; if and only if S is a monogenic
submonoid of Tn (in this case S is a cyclic group).

Table 1. The values of the functions (n)s, (n)t, and (n)i for some small values of n.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(n)s 1 1 2 3 4 6 6 9 11 14 16 20 23 27 31 35 43 47 55 61
(n)t 1 1 3 6 10 16 22 31 42 56 72 92 115 142 173 208 251 298 353 414
(n)i 1 2 4 7 11 17 23 32 43 57 73 93 116 143 174 209 252 299 354 415
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It follows that every monogenic submonoid M of Tn is either a cyclic group; or M ∩ Tn \ Sn is a
monogenic subsemigroup and M∩Sn = {1n}. Conversely, every monogenic subsemigroup of Tn is either
a monogenic submonoid of Tn (and hence a group) or can be obtained from a monogenic submonoid by
removing the identity element. Thus the number of monogenic subsemigroups of Tn up to isomorphism
is the number of cyclic subgroups of Sn plus the number of monogenic subsemigroups of Tn \ Sn that
are not groups. As we will see later, the number of monogenic subsemigroups of Tn \ Sn, that are groups
is (n − 1)s. Analogous comments hold for monogenic inverse subsemigroups and inverse submonoids
of In. From this discussion we obtain the following corollary to Theorem 1.

Corollary 2. The number of monogenic subsemigroups of Tn equals (n)t − (n − 1)s up to isomorphism.
The number of monogenic inverse subsemigroups of In, up to isomorphism, is (n)i − (n − 1)s.

There is a natural injection from isomorphism types of submonoids of Tn to inverse submonoids of
In defined by mapping a generating transformation to a generating partial permutation with the same
period and threshold. This is almost a bijection, however, it does not map onto any element of threshold
n as Tn contains no such element. This element is unique up to the isomorphism type of a submonoid it
generates.

2. Monogenic transformation monoids

In this section, we collect a small number of facts about monogenic transformation monoids that we
require to prove Theorem 1.

If M is a finite monoid and x ∈ M, then the threshold t ∈ N and period p ∈ N of x are the least values
such that p > 0 and xt+p = xt .

Lemma 3. Let M be a monoid and let a, b ∈ M. Then the monogenic submonoids of M generated by a and
b, respectively, are isomorphic if and only if the threshold and period of a equal those of b.

To prove Lemma 3, it is not difficult to show the unique homomorphism extending the map a �→ b
is an isomorphism whenever the thresholds and periods of a and b coincide. A special case of Lemma 3
is when M = Sn, where the lemma asserts that 〈a〉 and 〈b〉 are isomorphic if and only if |〈a〉| = |〈b〉|, as
mentioned above.

Recall that a digraph � is a pair (V , E) consisting of a vertex set V and an edge set E ⊆ V×V . A digraph
is functional if for every u ∈ V there exists a unique v ∈ V such that (u, v) ∈ E. Suppose that Dn denotes
the set of functional digraphs with vertex set {1, . . . , n}. It is straightforward to verify that the function
mapping f to the functional digraph �f with vertices V = {1, . . . , n} and edges E = {(v, (v)f ) : v ∈ V}
is a bijection. We give an example of a functional digraph of a transformation in Figure 1.

Lemma 4. Let n, p, t ∈ N be such that n > 0 and p > 0. Then t and p are the threshold and period of an
element of Tn if and only if there exists m ∈ N \ {0} with m ≤ n, such that p is the order of an element of
Sm, and t ∈ {0, . . . , n − m}.

Proof. The period of a transformation f ∈ Tn is equal to the least common multiple p of the lengths of
the cycles in the digraph �f , and the threshold of f is equal to the maximal number t of edges in a path
(x0, x1, . . . , xt) where the vertex xt belongs to a cycle but the vertices {x0, . . . , xt−1} do not. In particular,
the threshold of f ∈ Tn is between 0 and n − 1, inclusive. If g ∈ Sm is any permutation, then there exists
a transformation f ∈ Tn such that the period of f equals the order p of g and the threshold of f is any
value in t ∈ {0, . . . , n − m}; one such transformation is

(i)f =

⎧⎪⎨
⎪⎩

(i)g if 1 ≤ i ≤ m
i − 1 if m + 1 ≤ i ≤ m + t
i if i > m + t.
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Figure 1. Functional digraph of a transformation on 11 points with threshold 2 and period 3.

This transformation has threshold t and period p, since

(i)f t+p =

⎧⎪⎨
⎪⎩

(i)gt+p = (i)gt = (i)f k if 1 ≤ i ≤ m
((i)f i−m)f p+t−(i−m) = (m)f p+t−(i−m) = (m)f t−(i−m) = (i)f t if m + 1 ≤ i ≤ m + t
(i)f t+p = i = (i)f t if i > m + t

shows that the threshold and period are at most t and p, respectively. As f restricts to a permutation of
order p, the period of f can be no less than p, and so the period of f equals p.

If x < t and t > 0, then (m + t)f x /∈ {1, 2, . . . , m}, (m + t)f x+pt ∈ {1, 2, . . . , m}. In particular,
(m + t)f x �= (m + t)f x+p, and so the threshold of f does not equal x, and therefore it must equal t.

3. Monogenic inverse monoids of partial permutations

We now consider monogenic inverse submonoids of In. Many of the results in this section have analogous
or equivalent results in [8]. We include proofs for completeness.

Throughout this section we consider the monogenic inverse monoid Sn,k defined by the following
inverse monoid presentation (i.e., Sn,k is isomorphic to the quotient of the monogenic free inverse
monoid by the least congruence containing the relations):

Pn,k = Inv〈x | xnx−n = xn+1x−(n+1), xnx−n = xnx−nxk〉 (5)

for an arbitrary but fixed k, n ∈ N with k > 0.
By [7], elements of the free inverse monoid are uniquely determined by the corresponding Munn tree.

The Munn tree of an element of the monogenic free inverse monoid can be defined for any a, b, c ∈ N

such that a, c ≤ b to be the chain of length b where the initial state is the node at distance a from the start
of the chain, and the terminal node is distance c from the start. Hence every element of a monogenic
free inverse monoid is represented by a word of the form:

x−axbx−bxc ∈ {x, x−1}∗
where a, b, c ∈ N and a, c ≤ b and {x, x−1}∗ is the free monoid over the alphabet {x, x−1}. We give an
example of a Munn tree in Figure 2.
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Figure 2. Munn tree for the free inverse monoid element abaa−1baaa−1a−1b with start α and end ω.

We start by defining a set of representative words for each element, which we use to classify all finite
monogenic inverse monoids.

Lemma 6 (see also Proposition 4 of [4]). The set

W := {x−axbx−bxc ∈ {x, x−1}∗ : 0 ≤ a, c ≤ b < n} ∪ {x−axnx−nxc ∈ {x, x−1}∗ : 0 ≤ a, c < k}
contains representatives for all elements of Sn,k. That is to say, if FIM({x}) is the free inverse monoid on
{x}, and � : {x, x−1}∗ −→ FIM({x}), � : FIM({x}) −→ Sn,k are the natural homomorphisms, then
(��) �W is surjective.

Proof. As mentioned above, every element of Sn,k, can be given as x−axbx−bxc where a, c ≤ b. If b < n,
then x−axbx−bxc belongs to the first set in the union in the statement of the lemma.

By the relations in (5), we know that xnx−n = xnx−nxk and by inverting this it follows that xnx−n =
x−kxnx−n. Hence, again using the given relations, if b ≥ n, then

x−axbx−bxc = x−a mod kxnx−nxc mod k.

In particular, if b ≥ n and a, c ≤ b, then x−axbx−bxc is equivalent to a word in the second set in the
union in the statement of the lemma.

If M is an inverse monoid, then we denote the monogenic inverse submonoid of M generated an
element f ∈ M by 〈f 〉. An element f ∈ In is called a chain if the there exists x ∈ {1, . . . , n} \ im(f )
such that dom(f ) = {(x)f i : i ∈ {0, . . . , | dom(f )| − 1}} (and so im(f ) = {(x)f i : i ∈ {1, . . . , n}}). The
length of a chain f is denoted |f | (the cardinality of f as a subset of {1, . . . , n} × {1, . . . , n}). We denote
a chain f by [x, (x)f , . . . , (x)f |f |−1]. Note that we will sometimes implicitly refer to a chain on 1 point
of (length 0), this should be interpreted as the empty function, for example in Lemma 9, if a = 1 then
x = (2, 3, . . . , b + 1).

To classify all monogenic inverse monoids, we must first classify those generated by chains.

Lemma 7. Let f , g ∈ In be chains such that |f | ≥ |g|. Then there exists a surjective homomorphism
φ : 〈f 〉 −→ 〈g〉.
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Proof. Clearly if |f | = |g|, then the homomorphism from 〈f 〉 to 〈g〉 mapping f to g is an isomorphism.
Suppose that |f | > |g|. We may assume without loss of generality that f = [1, . . . , n] and that g =
[1, . . . , n − 1]. It suffices to show that there exists a set X such that 〈g〉 acts faithfully by partial perms on
X and that 〈f 〉 has the same action by partial perms on X as 〈g〉. We set X = {(1, 2), . . . , (n − 1, n)} and
define the actions of f and g by

(a, a + 1)f = ((a)f , (a + 1)f ) (b, b + 1)g = ((b)g, (b)g + 1).

It is routine to verify that these two actions are equal.

We require the following lemma, which is a special case of [8, Theorem 7], we have included a proof
here for the sake of completeness.

Lemma 8. If M is a finite monogenic inverse submonoid of In, then there exist a, b ∈ N such that a+b = n
and M is isomorphic to the inverse submonoid of In generated by

x = [1, . . . , a] ∪ p.

where p is some permutation on the set {a + 1, . . . , b + 1}. Moreover, the monoid is isomorphic to the
submonoid of Ia+|p| generated by [1, . . . , a] ∪ (a + 1, . . . , a + |p|).

Proof. If M = 〈m〉 is a monogenic inverse monoid, then M is isomorphic to an inverse submonoid of In
for some n, and so we may suppose that M is an inverse submonoid of In. Thus m is a union of disjoint
cycles y1, . . . , yk and chains h1, . . . , hl, and M is an inverse submonoid of the direct product

M =
k∏

i=1
〈yi〉 ×

l∏
j=1

〈hj〉.

If k = 1 and l = 1, then there is nothing to prove, and so we suppose that k ≥ 2 or l ≥ 2.
If l ≥ 2, then we define x to be a chain of length equal to the maximum of the lengths of hm−1 and

hm and we define

U =
k∏

i=1
〈yi〉 × 〈x〉 ×

l−2∏
j=1

〈hj〉.

We define φ : U −→ M to be the homomorphism induced by the isomorphisms yi �→ yi for all i, hj �→ hj
for all j < l − 1, and such that x �→ (hl−1, hl), which is also an isomorphism by Lemma 7. Hence φ is
an isomorphism when restricted to 〈(y1, . . . , yk, x, h1, . . . , hl−2)〉, and this monoid has a generator with
one fewer chains than the generator of M.

Suppose that k ≥ 2. Then we define x to be any cycle of length lcm(|yk−1|, |yk|) and we define

U =
k−2∏
i=1

〈yi〉 × 〈x〉 ×
l∏

j=1
〈hj〉.

We define φ : U −→ M to be the homomorphism induced by the isomorphisms yi �→ yi for i < k − 1,
hj �→ hj for all j, and the isomorphism 〈x〉 −→ 〈(yk−1, yk)〉 induced by x �→ (yk−1, yk). Then the
restriction of φ to 〈(y1, . . . , yk−2, x, h1, . . . , hl)〉 is an isomorphism of 〈(y1, . . . , yk−2, x, h1, . . . , hl)〉 and
M. In particular, these monoids are isomorphic, and the former has a generator with one fewer cycles
than the generator of M.

When one is not concerned with embedding an inverse monoid into a partial permutation monoid
on a specific number of points, the following formulation of the above lemma is more natural.
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Lemma 9. If M is a finite monogenic inverse monoid, then there exist a, b, n ∈ N such that M is isomorphic
to the inverse submonoid of In generated by

x = [1, . . . , a] ∪ (a + 1, . . . , a + b).

Proof. This is immediate from Lemma 8.

We are now ready to give the theorem which allows us to classify the isomorphism types of finite
monogenic inverse monoids. This theorem is essentially a reformulation of Theorem 7 from [8].

Theorem 10. The inverse submonoid of In+k generated by a partial permutation

[1, 2, . . . , n] ∪ (n + 1, n + 2, . . . , n + k)

is isomorphic to Sn,k defined in (5) for all n ≥ 0 and k ≥ 1. Moreover, if m ≥ 0 and l ≥ 1, then Sn,k ∼= Sm,l
if and only if (n, k) = (m, l).

Proof. Since the set containing normal forms for Sn,k from Lemma 6 is finite, the monoid Sn,k is finite.
It follows by Lemma 9 that there are a, b ∈ N such that Sn,k is isomorphic to the inverse submonoid of
Ia+b generated by the partial permutation

x = [1, . . . , a] ∪ (a + 1, . . . , a + b).

We will show that a = n and b = k (unless k = 1 in which case b may be 0). The relation xnx−n =
xn+1x−(n+1) implies that

[1, . . . , a]n[1, . . . , a]−n = [1, . . . , a]n+1[1, . . . , a]−(n+1).

This can only hold if a ≤ n. Thus, the relation xnx−n = xnx−nxk implies that

id{a+1,...,a+b} = xnx−n = xnx−nxk = (a + 1, . . . , a + b)k

where id{a+1,...,a+b} is the identity function on the set {a+1, . . . , a+b}. Thus b|k and, in particular b ≤ k
since k ≥ 1.

It suffices to show that a ≥ n and b ≥ k (unless k = 1, in which case b is also allowed to be 0).
Seeking a contradiction suppose that a < n. Since the relations in (5) hold for y = [1, . . . , n], the
inverse monoid generated by y is a homomorphic image of Sn,k. In particular, xax−a �= xnx−n since
yay−a �= yny−n (the latter is the empty function and the former is not). However, we proved above that
xax−a = id{a+1,...,a+b} = xnx−n, which is a contradiction.

If 1 < k and b < k, then a similar argument implies (the contradiction) that the relation xnx−n =
xnx−nxb does not hold in Sn,k since it does not hold in the image of the homomorphism extending
x �→ (1, . . . , k).

4. Proof of the main theorem

Proof of Theorem 1. We start by proving the formula for (n)t. Let A be the set of pairs (t, p) such that t
and p are the threshold and period of some transformation of degree n and let

At = {p ∈ N \ {0} : (t, p) ∈ A}.

Then, by Lemma 3, |A| = (n)t and |A| = |A0| + · · · + |An−1| = (n)t. It therefore suffices to show that
|At| = s(n − t) for all t ∈ {0, . . . , n − 1}.

If t ∈ {0, . . . , n − 1} and Bt is the set of orders of elements in Sn−t , then clearly |Bt| = (n − t)s and it
suffices to show that At = Bt . If p ∈ Bt , then we showed above that there exists a transformation f ∈ Tn
with threshold t and period p and so p ∈ At . Conversely, if p ∈ At , then, by the definition of At , there
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exists f ∈ Tn with threshold t and period p. Since the threshold of f is t, there are at most n − t points in
any cycle of f , and so p is the order of a permutation in Sn−t . In other words, p ∈ Bt . Thus

(n)t =
n−1∑
i=0

|Ai| =
n−1∑
i=0

(n − i)s =
n∑

i=1
(i)s,

as required.
Next, we prove that the formula for (n)i in the statement of the theorem is correct. By Lemma 8, every

monogenic inverse submonoid of In is isomorphic to one generated by the disjoint union of a chain and
permutation. Moreover, by Theorem 10, two such elements generate isomorphic inverse submonoids of
In if and only if the chains have the same length and the permutations have the same order. Hence for
every length of chain i, the number of distinct monogenic inverse submonoids up to isomorphism is
(n − i)s. It follows that

(n)i =
n∑

i=0
(n − i)s =

n∑
i=0

(i)s.

Acknowledgments

The authors would also like to thank A. Egri-Nagy for originally asking the question that gave rise to this paper, and J. East
for discussing the case of the full transformation monoid with the third author.

Funding

The second and third authors would like to thank the London Mathematical Society, the Heilbronn Institute for
Mathematical Research, and the University of St Andrews, for their support of this work.

References

[1] Cameron, P. J., Gadouleau, M., Mitchell, J. D., Peresse, Y. (2017). Chains of subsemigroups. Israel J. Math.
220(1):479–508. DOI: 10.1007/s11856-017-1523-x.

[2] Conway, J. B., Duncan, J., Paterson, A. L. T. (1984). Monogenic inverse semigroups and their C*- algebras. Proc.
Royal Soc. Edinburgh: Sec. A Math. 98(1–2):13–24. DOI: 10.1017/s030821050002552x.

[3] Distler, A., Jefferson, C., Kelsey, T., Kotthoff, L. (2012). The semigroups of order 10. In: Milano, M. ed. Principles
and Practice of Constraint Programming. Berlin, Heidelberg: Springer, pp. 883–899.

[4] Dyadchenko, G. G. (1984). Structure of monogenic inverse semigroups. J. Sov. Math. 24(4):428–434.
DOI: 10.1007/bf01094373.

[5] East, J., Egri-Nagy, A., Mitchell, J. D. (2017). Enumerating transformation semigroups. Semigroup Forum 95(1):
109–125. DOI: 10.1007/s00233-017-9869-2.

[6] Holt, D. F. (2010). Enumerating subgroups of the symmetric group. In: Computational Group Theory and the Theory
of Groups, II. Vol. 511. Contemporary Mathematics. Providence, RI: American Mathematical Society, pp. 33–37.
DOI: 10.1090/conm/511/10041.

[7] Munn, W. D. (1974). Free inverse semigroups. In: Proc. London Math. Soc. s3-29(3):385–404. DOI: 10.1112/plms/s3-
29.3.385.

[8] Preston, G. B. (1986). Monogenic inverse semigroups. J. Austral. Math. Soc. Ser. A 40(3):321–342.
[9] Pyber, L. (1993). Enumerating finite groups of given order. Ann. Math. (2) 137(1):203–220. DOI:10.2307/2946623.

[10] Russell, C. (2021). Enumerating 0-simple semigroups. DOI: 10.17630/STA/109. https://research-repository.st-
andrews.ac.uk/handle/10023/23558.

[11] Sloane, N. J. A. (2023). Sequence A009490. In: The On-Line Encyclopedia of Integer Sequences. OEIS Foundation
Inc. http://oeis.org/A009490.

https://research-repository.st-andrews.ac.uk/handle/10023/23558
https://research-repository.st-andrews.ac.uk/handle/10023/23558
http://oeis.org/A009490

	1.  Introduction
	2.  Monogenic transformation monoids
	3.  Monogenic inverse monoids of partial permutations
	4.  Proof of the main theorem
	Acknowledgments
	Funding
	References

