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Abstract

This thesis presents extensions and enhancements to an existing Lagrangian model

for atmospheric convection. The Moist Parcel-In-Cell (MPIC) method, developed

by Dritschel et al. (2018), is a novel approach which avoids some shortcomings of

conventional large-eddy simulation models, particularly concerning the represen-

tation of sub-grid turbulence. While the method is in a relatively early stage, we

provide case studies to show the model’s potential.

The first case study simulates the ascent of a rising thermal, subject to constant

vertical wind shear. Using MPIC, we find that low to intermediate shear appears

to promote cloud growth, but high shear tears the thermal apart. The air is

partitioned into cloud-air and dry-air components based on the liquid water content

and the evolution of the enstrophy associated with each component suggests that

the increasing shear is causing more dry air to become turbulent and influence the

growth of the cloud.

Our second study analyses the potential energy in MPIC and its sensitivity to

numerical parameters. The results show an abnormal growth in the total energy

at early times, which is attributed to a failure to enforce incompressibility in

the method. The energy evolutions appear to converge with resolution and the

numerical mixing parameters in the model for early to intermediate times, although

the turbulent flow leads to greater discrepancies in the late-stage energy evolution.

Finally, we present a simulation of the shear-free atmospheric boundary layer,

modelled through the implementation of surface fluxes of parcel attributes in

MPIC. Our results show evidence of the two-layer entrainment zone structure

observed in previous studies. Comparisons of the vertical enstrophy distribution

and vorticity field further support this. We also compute entrainment rate pa-

rameters that suggest that MPIC underestimates entrainment compared to the

zero-order model and overestimates entrainment when using the global buoyancy

increment across the entire entrainment zone. Nonetheless, the entrainment rate in



MPIC compares favourably to results in the literature when using a local buoyancy

increment computed at the height of minimum buoyancy flux.
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Chapter 1

Introduction and review of relevant

literature

1.1 Introduction

The study of atmospheric convection has long been of substantial importance

to our understanding of weather and climate (Holloway et al. 2014; Bony et al.

2015). Convective phenomena can range from shallow cumulus clouds and stra-

tocumulus atop the planetary boundary layer to the global scale circulations of

Hadley and Walker cells (Hadley 1735; Walker 1923) and the Madden-Julian os-

cillation (Madden and Julian 1971). Deep atmospheric convection can give rise

to intense thunderstorms, causing significant local disruption. If such thunder-

storms organise, mesoscale convective systems may develop (Houze 2004), which

have been observed to contribute strongly to the energetics of the monsoon and

heavy rainfall events in South Asia (Dube et al. 2014; Singh et al. 2018; Singh

et al. 2022). The coupling of convective processes to large-scale circulations can

also give rise to extreme weather events. For example, Mekonnen et al. (2006) pre-

sented evidence that enhanced convective activity over the Darfur region typically

precedes the presence of the African easterly waves. Further work in Mekonnen

and Rossow (2011) also identified the interactions between upper level waves and
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(a) (b) (c)

Figure 1.1: Images showing: (a) fair weather cumulus clouds over Florida, (b)
a cumulonimbus cloud with anvil and (c) a mesoscale convective system forming
over a landmass in the tropics. Image sources NOAA Library: (a) and (b); NASA
Library (c).

convective systems over the Ethiopian Highlands as a source of the lower level

waves. These lower level waves were found to, under favourable conditions, serve

as the ‘seedlings’ for tropical cyclones which can cause considerable damage and

displacement in the United States and elsewhere.

These phenomena all serve to illustrate that the study of atmospheric convection

spans a vast range of spatial scales: from the order of meters at cloud edges and

in high liquid water cores (Austin et al. 1985; Grabowski and Clark 1993; Blyth

et al. 2005; Blyth et al. 2015; Seifert et al. 2015) to the global scales of tens, or

even hundreds, of kilometres. As such, the representation of convection in global

climate models has presented an immense challenge to the atmospheric community

(Randall et al. 2003; Bony et al. 2015; Rio et al. 2019; Lin et al. 2022c), effectively

forming a bottleneck in the development of more sophisticated models for climate

and weather prediction.

This problem is compounded further by the complexity of the microphysics at

play within convective clouds. The phase changes of water contribute significantly

to the energy budget within moist convection and can enhance or hinder the as-

sociated vertical motions. Attempts to model cloud water and other hydrometeor

species (rain, graupel and hail, for example) must contend with the numerous

states of water within clouds and consider the distribution of droplet sizes and

collisions for precipitation (Kessler 1969, Pruppacher et al. 1998, Swann 1998).
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Other sources of feedback to be considered are the effects of radiative heating (e.g.

Slingo 1989) and the impact of aerosol species and their transport (Gidel 1983).

Adding further layers to the issue are the interactions with the boundary layer and

ocean or land surface couplings (Wu et al. 1998; Patton et al. 2005; Sullivan et al.

2014). In short, the modelling of convection is an increasingly complex problem

and representing it explicitly on a global scale is beyond the present limitations of

computational power.

Many of these feedback processes are interlinked and make clouds one of the

most sensitive factors in climate simulations (Sanderson et al. 2010; Sherwood

et al. 2014). For example, high concentrations of cloud ice will lead to a greater

reflection of solar radiation at the cloud top, resulting in a cooling effect within the

Earth’s atmosphere. On the other hand, as clouds grow they produce a blanketing

effect that may trap heat, resulting in a warming effect on the atmosphere. The

concentrations of chemical species will also impact the cooling and warming effects

of clouds. Similarly, precipitation cools the lower atmosphere, and the effects of

entrainment and detrainment can result in upwards or downwards transport of

heat and moisture. To further stress this, a study by Klein et al. (2018) found

that low-cloud feedback is currently one of the largest sources of uncertainty in

climate models. With regard to weather forecasting, the scales involved in cloud

processes are often orders of magnitude smaller than the scales of regional models

typically used. Consequently, these models often rely on parameterisation of the

unresolved cloud processes, which themselves introduce considerable uncertainty

to the problem, for example in the prediction of precipitation levels (Slingo and

Palmer 2011).

Another prominent feature of atmospheric convection that is difficult to repre-

sent on the global scale is turbulence. Turbulence is what drives the mixing of

clouds and the surrounding environmental air via entrainment and has significant

implications for the life cycle of clouds (Blyth 1993). Turbulent mixing occurs on

scales far smaller than the typical grid resolution of global models. The process

of mixing can lead to shells of partially mixed air forming around rising plumes of
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cloud air (Bretherton and Smolarkiewicz 1989; Hannah 2017) and impacts entrain-

ment rate in the lower troposphere (Becker et al. 2018) due to the dilution of the

air entrained into rising thermals. The turbulent motions of air within the cloud

also influence the microphysical processes that dictate transitions between differ-

ent species of hydrometeor, as well as the precipitation intensity. For example,

the frequency of collisions between suspended water droplets increases as turbu-

lent motions become more intense, causing them to grow more readily (Grover

and Pruppacher 1985; Falkovich et al. 2002; Pinksy and Khain 2002). Similarly,

in studies of the atmospheric boundary layer, turbulence drives the entrainment

of dry air from above, feeding the growth of the layer. The cascading nature of

turbulence means that even simulations that explicitly resolve convective motions

have difficulty resolving the small scales required. These simulations must still

account for the influence of turbulence, however, and typically rely on sub-grid

scale models to represent unresolved motions.

The coupling between the small and large scale processes is a recurring theme in

the study of atmospheric convection and presents a fundamental challenge of the

field. Because the processes involved are interconnected across scales, both global

scale representations that simplify many key processes and techniques designed to

explicitly model convection at smaller scales are equally important in expanding

our understanding of convection and its impact on weather and climate. As such,

the advancement of our representations of convection is crucial to improving both

weather forecasting capabilities (Slingo and Palmer 2011) and our ability to predict

the response of the Earth’s climate (Bony et al. 2015) to factors such as rising sea

surface temperatures and increases in aerosol concentration.

1.2 Representation of convection in global models

1.2.1 Convective parameterisation schemes

Due to computational limitations, as previously noted, most global circulation

models do not explicitly model convection. Instead, the most common approach
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is to use a convective parameterisation scheme. The problem of convective param-

eterisation is best summarised in Arakawa (2004) as “the problem of formulating

the statistical effects of moist convection to obtain a closed system for predicting

weather and climate”. Any system of large-scale equations for heat and moisture

will always have undetermined parameters associated with the effects of unre-

solved convection. A convective parameterisation scheme aims to make assump-

tions about the statistical properties of convective motions on the sub-grid scale

that can close the system.

Thus, these schemes are very much defined by the assumptions made about con-

vective motions to close the set of equations, the primary closure assumption. The

earliest convective parameterisation schemes were developed by Arakawa and Schu-

bert (1974), Kuo (1974) and Manabe et al. (1965), who used closure schemes based

on mass-flux quasi-equilibrium, moisture convergence and energetic or state based

quasi-equilibrium respectively. The modern parameterisation schemes used today

in weather forecasting primarily originate from the successors to these schemes

developed in the 80s and 90s (Tiedtke 1993; Kain and Fritsch 1990; Grell 1993).

Because global models cannot resolve the effects of individual clouds, these

schemes instead attempt to simulate the collective influence of an ensemble of

clouds coupled to the large-scale circulations (Arakawa and Schubert 1974; Arakawa

2004). The two main approaches to this problem are bulk methods, which model

the ensemble as a single entraining-detraining plume with the properties repre-

sentative of the ensemble as in Yanai et al. (1973), and spectral methods, which

characterises plumes in the ensemble based on properties such as updraft velocity

or cloud top (Arakawa and Schubert 1974; Tiedtke 1993).

1.2.2 Basics of convective parameterisation schemes

A common approach in the parameterisation of convection is to assume that the

mass-flux of a convective ’plume’ (usually referring to a cloud or convective up-

draft) dominates the upwards transport in the system, as in Arakawa and Schubert

1974. The basic principle of the mass flux approach is that the ith plume covers
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Figure 1.2: A schematic from Arakawa and Schubert (1974) showing an ensemble
of clouds penetrating through a layer unit surface area at some point below the
cloud top. the ith cloud occupies an are σi and has associated mass fluxMi. Clouds
that lose buoyancy detrain air into the environment. Reproduced from Figure 1
in ‘Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment,
Part I’ by Arakawa and Schubert (1974) with permission. Published 1974 by
the American Meteorological Society

a horizontal area σi (z, t) of the grid cell (see Figure 1.2). As such, the mass flux,

Mi through the area σi can be represented by the equation

Mi =

∫
σi

ρwdσ = ρσiwi, (1.1)

where ρ is the density of the air and wi is the vertical velocity of air in the ith

plume. Figure 1.3 shows a schematic of the mass continuity for a single plume.

For a property χ, we can determine the mass-flux representation of its vertical flux

from the expression,

⟨ρ′χ′w′⟩ =
∑
i

Mi (χi − χ̃) (1.2)

where angled brackets denote horizontal averaging, a prime denotes the deviation

from horizontal plane averages and the tilde denotes the value in the non-cloudy

environment (Plant 2010). These vertical fluxes of properties are used to quantify

the effects of plumes on their environment under the mass flux approximation.
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Figure 1.3: Schematic showing the mass continuity for a thin layer of thickness
∆z in the ith cloud. Mi is the mass flux of the rising plume and (∂Mi/∂z)∆z
is the mass flux into the layer from the environment. Reproduced from Figure 2
in ‘Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment,
Part I’ by Arakawa and Schubert (1974) with permission. Published 1974 by
the American Meteorological Society.

This approximation assumes that plumes are rising much faster than the vertical

motions of ambient air, i.e., w ≪ wi, and that the fractional area covered by a

single plume is much smaller than the grid cell, i.e. σi ≪ 1.

To develop a convective parameterisation scheme using the mass-flux approach,

the plume budget equations for momentum, heat, moisture and liquid water are

temporally averaged over the lifetime of the plume. The budget equations are then

integrated from the cloud base, to the top of the detrainment layer at the top of

the plume where air is detrained into the surrounding environment environment

(Yanai et al. 1973; Arakawa and Schubert 1974; Plant 2010). It is here that the

spectral and bulk methods diverge from one another, as the bulk approach of Yanai

et al. (1973) made use of a mass-flux weighted average to produce the properties

of the single bulk plume:

⟨ρ′χ′w′⟩ =
∑
i

M (χB − χ̃) (1.3)

where

M =
∑
i

Mi (1.4)

10



and the bulk value of the chosen parameter, χ is given by

χB =

∑
i Miχi

M
. (1.5)

Quantities denoted with a prime in these equations represent a deviation from the

horizontal averages and quantities denoted with a tilde represent the values in a

cloud-free environment. For the plume equations to take the same form in terms

of bulk variables, some assumptions must be made. The first is in regard to the

detrainment rate. When computing the bulk detrainment rate of χ, it is found

that it does not add up to the sum of the plume detrainment rates, Di, across the

ensemble and is, in fact, different for each variable. This is what prompted the

assumption used in Arakawa and Schubert (1974) that detrainment only occurs

at the top of the plume, in the detrainment layer. The assumption is that Di is

assumed to be zero elsewhere and the entrainment rate of the plume, Ei, is assumed

to be zero in the detrainment layer. Arakawa and Schubert (1974) provided two

sets of equations for each plume’s entraining and detraining regions. In the bulk

approach of Yanai et al. (1973), however, they relied on the assumption that the

liquid water detrained from each plume is equal to the bulk value, i.e. li = lB.

Yanai et al. (1973) go on to describe this as “a gross assumption but needed to

close the set of equations”. It is also assumed that the plumes within the ensemble

are non-interacting with one another.

The closure assumption in Arakawa and Schubert (1974) computes a cloud work

function, A(λ), for each plume type (sorted by some parameter λ) that closes the

system of equations, decomposed into cloud and large-scale contributions. The

closure comes from the quasi-equilibrium assumption that the work function’s

net rate of change should be approximately zero, dA/dt ≈ 0. The bulk closure

assumption of Yanai et al. (1973) is based on similar principles in terms of defining

a work function, but differs from the quasi-equilibrium requirement of Arakawa

and Schubert (1974). Instead, closure requires that the timescale associated with

the evolution of the large-scale contribution greatly exceeds that of the cloud

contribution. Alternative closure assumptions may use the convective available
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potential energy (CAPE ) to close the system of equations (Plant 2010).

While more computationally intensive, the spectral approach tends to be favoured

in modern global models of the atmosphere. Because the distribution of entrain-

ment rates, Ei, in an ensemble can be studied through radar observations of indi-

vidual clouds, this can be used to provide a more realistic representation of plume

properties within the parameterisation scheme. Both parametrisations are typi-

cally evaluated against observational data and results from convection resolving

models at smaller scales (i.e. Siebesma and Cuijpers 1995; Angevine et al. 2018;

Zhang et al. 2021). That said, comparisons to large-eddy simulations suggest that

bulk representations of convection tend to underestimate significantly the entrain-

ment rates associated with convective clouds (Romps 2010). On the other hand,

some studies suggest this may help to account for the dilution of air around plumes

(Hannah 2017). Knight et al. 2007 also found that the entrainment parameter in

convection schemes is one of the most sensitive aspects of global circulation models.

1.2.3 Modern adaptations and challenges

Modern convective schemes have faced a range of challenges over the years and

are the result of constant adaptation to observational data. A common refinement

made in more modern schemes is the implementation of stochastic processes to

enhance the triggering and development of convection. Examples include stochas-

tic perturbations of the parameters (Grell and Freitas 2014) or stochastic trigger

conditions (D’Andrea et al. 2014) and even stochastic distributions of cloud types

(Goswami et al. 2017). Stochastic processes have led to improvements in the in-

traseasonal variability within climate models.

Another relatively new advance in these schemes is the introduction of scale-

awareness, such as in Han et al. (2017). In this scheme, the mass flux associated

with clouds decreases as the resolution is increased, resulting in an improved pre-

diction of summer precipitation in the U.S. when compared to observational data.

These schemes are particularly useful as resolutions approach the ‘gray-zone’ in the

region of 5 km to 25 km and models are required to differentiate between resolved
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and parameterised convection (Kwon and Hong 2017).

Despite the success of modern techniques, there are still numerous difficulties

facing convective parameterisation schemes. For example, a common problem

faced in global circulation models is that convection within the model is too read-

ily triggered, leading to precipitation biases, as in Huang et al. (2018), although

this was similarly observed in high resolution simulations too. Trigger conditions

are a vital part of these schemes, and are based upon a range of factors. Possi-

ble trigger conditions include the moisture convergence within a grid cell or the

updraft velocities of the strongest thermals and whether they can overcome the

convective inhibition of the environment. A consequence of models too readily

enabling convection is a persistent low level of precipitation, very different to the

heavy rain events observed in some regions. This bias can influence the large-scale

circulation features and even disrupt the formation of stratocumulus in some re-

gions. Other tests of scale-aware schemes over Taiwan have found a warm bias

(Lin et al. 2022a). Furthermore, comparisons with course-grid convection resolv-

ing simulations have also found disagreement in the mass flux profiles of some

parameterisation schemes (Zhang et al. 2021).

Another weakness of most convective parameterisation schemes is that they

were primarily developed to capture the effects of deep atmospheric convection,

with lengthscales extending beyond 5 km and upwards towards the tropopause.

As such, the representation of shallow convection associated with boundary layer

circulations and stratocumulus clouds is difficult to accommodate in models using

traditional schemes (Arakawa 2004) and remains a major source of uncertainty in

climate models (Sanderson et al. 2010; Sherwood et al. 2014). There has been a

push to generate unified schemes that include both shallow and deep convection

(Hohenegger and Bretherton 2011). However, some argue that due to the differ-

ence in driving forces between shallow and deep convection (i.e. deep organised

convection is heavily influenced by wind shear, while shallow convection typically

arises from surface fluxes) that different mass flux schemes are required for each

(Rio et al. 2013).
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Furthermore, in studies of shallow convection, the atmospheric boundary layer

is topped by an inversion layer called the entrainment zone. The entrainment

zone is a transition region between the turbulent boundary layer and the free

atmosphere with structural features that the grid scales of global climate models

cannot resolve (Fedorovich et al. 2004; Garcia and Mellado 2014). The entrainment

rate into the boundary layer can be estimated in parameterisation schemes and

use representations such as the zero-order model of Zilitinkevich (1991), based on

the buoyancy jump across the entrainment zone. Higher resolution studies into

the vertical structure, however, have suggested that such representations may not

be appropriate (Sorbjan 1999; Garcia and Mellado 2014).

These difficulties have led to some researchers moving away from the traditional

parametrisations of convection and towards alternative methods that depend more

heavily on explicit convection modelling via large-eddy simulation. For example,

Sansom (2021) demonstrates the use of machine learning techniques in improving

the ability of models to simulate shallow stratocumulus convection. In particular,

they used the Met Office NERC model (Brown et al. 2015) to train a neural

network to improve how convection is represented at global scales using statistical

emulation.

Other researchers have moved towards the growing accessibility of embedded

convection resolving models or even superparameterisation frameworks (Randall

et al. 2003; Grabowski 2016). These approaches are especially promising for fu-

ture studies of the atmosphere. Superparameterisations also represent a natural

progression from many of the scale-aware schemes currently in use. The com-

putational requirements to run such simulations on climate timescales are still

beyond current capabilities. Nonetheless, such models are likely to see increasing

use within the weather forecasting community in the coming years.

Superparamatrisations work by coupling a large-scale model to an explicit model

at convective resolutions. Within each grid cell, convection is simulated, indepen-

dent of the surrounding grid cells, but subject to forcings from the large-scale.

Typically, this is accomplished with two-dimensional convection models, but recent
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advances are making the possibility of fully three-dimensional embedded models in-

creasingly achievable. The bulk properties of the convection simulation in each cell

along with vertical distributions of prognostic variables and fluxes etc. are shared

back into the main model and their effects on the large-scale flow computed. An

example is given in Jansson et al. (2019) where they demonstrated the application

of a regional-scale superparameterisation model using a fully three-dimensional

convection model within each grid cell. While there remained some issues with

load imbalance requiring a modular approach to the problem, the results demon-

strated the growing potential of the approach. It is likely that increasing demand

will be placed on computationally efficient versions of existing convection resolving

models and large-eddy simulations or equivalent techniques that can be embedded

within a superparamterisation model.

That is not to say that conventional convective parameterisation schemes are

likely to go away anytime soon, far from it. As previously noted, the timescales

involved in climate simulations (typically over 100 years) mean it may be decades

before even a superparameterised model can be applied, let alone a global convec-

tion resolving simulation. As such, we believe that the development of new tech-

niques should continue to supplement the existing representations of convection

on the global scale. Simultaneously, more efficient or creative ways to incorporate

explicit convection in global circulation models should also be considered as part

of the push towards global convection resolving models.

1.3 Explicit modelling of convection: Large-eddy simulation

1.3.1 Introduction

First explored in the 1970s by Lilly (1966) and Deardorff (1970), the large-eddy

simulation (LES) technique has become a workhorse of the atmospheric commu-

nity. The distinction between LES and cloud resolving models (CRM) is primarily

one of scales, with CRMs operating at larger scales and thus requiring a different

sub-grid formulation. The method was employed to precisely resolve the convec-
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tive motions of clouds on much smaller scales than in global circulation models,

with the first simulations of shallow clouds performed by Sommeria (1976). Later

work by Deardorff (1980) produced early simulations of the stratocumulus topped

boundary layer, and since then the technique has developed rapidly, with increas-

ingly sophisticated models being developed (Brown et al. 2015; van Heerwaarden

et al. 2017). LES models have granted us a greater insight into the small-scale

mixing processes occurring within clouds (Grabowski and Clark 1993; Heus et al.

2008) and see frequent use as a feedback method for the refinement of convec-

tive parameterisation schemes described in Section 1.2 (i.e. Siebesma and Cuijpers

1995). Advances in computational power (Khairoutdinov et al. 2009) have also

expanded the sizes of domains that can be feasibly modelled in an LES, bringing

us even closer to resolving convection on global scales. At the very least, we are

seeing notable advances towards superparameterisation and embedded schemes,

such as those discussed in Randall et al. (2003) or Grabowski (2016).

1.3.2 Basic model formulation

Large-eddy simulations are non-hydrostatic models that numerically resolve the

Navier-Stokes equations on an Eulerian grid. LES models occupy an intermediate

space between methods that attempt to fully resolve turbulent motions via direct

numerical simulation (DNS) and those that rely on averaging of the Navier-Stokes

equations while representing turbulence exclusively through a turbulence model

(i.e. the Reynolds averaged Navier-Stokes equations, RANS). As such, they are

often viewed as an appealing alternative to DNS due to the reduced computational

expense, while offering a greater resolution of turbulent eddies than RANS models.

The crux of the LES method is the application of a spatial filter to the Navier-

Stokes equations, removing the smallest scale motions from the model (Sagaut

and Lee 2002). A turbulence model is then employed to represent the turbulent

motions below the filter scale and the resulting stresses before computing their

effects on the resolved flow. This filtering means that LES models still resolve

the largest eddies in a turbulent flow, unlike RANS models, which represent all

turbulent eddies in the flow via turbulence modelling. As such, the method is
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highly advantageous in cases where the averaged equations are not appropriate,

while being less computationally expensive than DNS models. The advantages

of LES models make are a natural choice for highly turbulent phenomena in the

atmosphere such as clouds and boundary layer interfaces where DNS may be too

expensive.

The filtering in an LES model is represented, in physical space, as a convolution

product. The resolved part of a variable, ϕ, is defined as

ϕ (x, t) =
1

∆

∫ ∞

−∞

∫ ∞

−∞
G

(
x− r

∆
, t− τ

)
ϕ (r, t) dτdr, (1.6)

where G is the convolution kernel which determines the shape of the filter, such as

a Gaussian filter, or a sharp cutoff and ∆ is a spatial representation of the filter

width. In this equation and those that follow in this section, any variable ϕ(x, t)

is expressed as a decomposition between their resolved values after application of

the spectral filter, ϕ, and the sub-grid deviations from these values, ϕ′. As such,

any property ϕ can be written as ϕ = ϕ + ϕ′. It follows that the terms given by

u′
jϕ

′, therefore, can be interpreted as the turbulent flux of ϕ. Terms denoted by a

hat, such as ϕ̂, correspond to the space-time variable defined in Fourier (spectral)

space. The kernel of the filter is typically associated with a spatial width, ∆ which

is determined by the LES model. The most common approach is to set ∆ to be

equivalent to the grid spacing of the model and choose the kernel, G a sharp cutoff

for the kernel in physical space, such that

G (x− r) =
sin (kc (x− r))

kc (x− r)
, (1.7)

where kc = π/∆ is the cutoff wavenumber of the filter. When converted to special

space, via the use of Fourier transforms, this becomes a Heaviside step function

with respect to the wavenumber, k. The spectral-space form of the kernel has a

value of 1 for wavenumbers of magnitude ∥k∥ < kc and a value of 0 otherwise.

In spectral space, the filtering operation is performed by multiplying the spectral

form of the kernel, Ĝ by the variable to be filtered in spectral space ϕ̂,
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ϕ̂ = Ĝϕ̂. (1.8)

Applying the sharp cutoff filter defined previously in this fashion serves to com-

pletely isolate the sub-grid component of ϕ which can then be removed from the

governing equations to produce the filtered versions of the Navier-Stokes equations

used in large-eddy simulations.

Large-eddy simulations of convective clouds require prognostic equations for

the velocity components of the wind u = (u, v, w) with w being the vertical

component. A temperature variable is also required, which is often the potential

temperature, θ, defined as the temperature a parcel of air would attain if raised to

a reference pressure. Another commonly used temperature variable is the liquid

water potential temperature, θl, which is defined as the potential temperature

that a parcel of air would attain if all liquid water content in the parcel were

evaporated. This is popular in studies of cumulus convection as it incorporates

the effects of moisture into the primary thermodynamic variable in the equations.

Also required are at least two water variables, for example water vapour and cloud

mixing ratios hv and hc. The number of water variables used will vary depending

on the microphysical scheme.

Below, we present a minimal set of filtered equations for use in an LES, as

detailed in Guichard and Couvreux (2017). The notation used is chosen to be

consistent with existing literature on LES models, such as in Heus et al. (2010) and

van Heerwaarden et al. (2017). The anelastic approximation of Ogura and Phillips

(1962) is used, which approximates the density, ρ as only being a function of the

vertical coordinate, i.e. ρ(z) = ρr. In many cases, the Boussinesq approximation

is sufficient, particularly in the simulation of shallow cumulus and boundary layer

studies. We use θ as the temperature variable and (u, v, w) for the wind with

w being the vertical component. The governing equations are as follows. The

equation of state is

T

θ
=

(
P

P0

)Rd
Cp

, (1.9)
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where T is the temperature, P0 is a reference pressure, Rd is the dry air gas constant

and Cp is the specific heat coefficient.

The filtered governing equations in an LES model are obtained by applying the

spatial filter to the Navier-Stokes equations and any prognostic equations in order

to remove the sub-grid terms ϕ′. The filtered continuity equation is,

ρr
∂uj

∂xj

+ w
∂ρr
∂z

= 0. (1.10)

The subscript i refers to the ith component of the corresponding vector quantity,

for example u3 = w is the vertical component of the velocity.

The filtered dynamic equation is

∂ui

∂t
= − 1

ρr

∂ (ρruiuj)

∂xj

− 1

ρr

∂P

∂xi

+Bδi,3 −
1

ρr

∂
(
ρru′

iu
′
j

)
∂xj

− 2ϵi,j,kΩjuk (1.11)

where the buoyancy force is given by B = (g/θr)
(
θvl − θr

)
with g being the grav-

itational acceleration. θvl is the virtual potential temperature, which is defined

as the potential temperature of dry air that would have the same buoyancy as

moist air at a reference pressure, and θr is a reference potential temperature. The

fourth term on the right-hand side corresponds to the force density on the fluid

due to turbulent fluctuations and is given by the divergence of the Reynolds stress

term, ρru′
iu

′
j. Ωj is the jth component of the Earth’s angular velocity, such that

2ϵi,j,kΩjuk = Fcor represents the effects of the coriolis force.

The thermodynamic equation is

∂θ

∂t
= − 1

ρr

∂
(
ρrujθ

)
∂xj

− 1

ρr

∂
(
ρru′

jθ
′
)

∂xj

+Qrad +QmΦ +

(
∂θ

∂t

)
LS

, (1.12)

where Qrad corresponds to heating due to radiative processes and QmΦ to heating

from microphysical processes (i.e. phase changes of water). Terms denoted LS

correspond to the influence of large-scale advection on a scalar quantity.

We also require prognostic equations for other scalar properties of the flow, such
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as water vapour and hydrometeor species,

∂ϕx

∂xj

= − 1

ρr

∂
(
ρrujϕx

)
∂xj

− 1

ρr

∂
(
ρru′

jϕ
′
x

)
∂xj

+ Sx +

(
∂ϕx

∂t

)
LS

. (1.13)

Here Sx is a term used to group together all the sources and sinks of property ϕx,

for example microphysical processes that influence the population of hydrometeor

and water vapour mixing ratios (i.e. hc and hv).

The filtered governing equations must then be solved numerically over the whole

domain, typically through finite-difference schemes or spectral methods. It is worth

noting that choosing an appropriate numerical method depends largely on the set

of equations and any simplifications. Other important numerical choices include

the grid spacing, which must be chosen to satisfy the CFL condition, but using too

fine a grid will dramatically increase computational expense. LES models tend to

use a near isotropic grid spacing (i.e. ∆x = ∆y = ∆z) but staggered grids can also

be used, where different sets of variables are defined at different points on the grid

cells. An example of this is shown in Mesinger and Arakawa (1976), where scalar

variables such as potential temperature are defined at the centre of the grid cell

while vector quantities such s wind speed are defined at the edges. A staggered

grid can serve to reduce the distance between points on the finite difference stencils

used, allowing a higher effective resolution.

1.3.3 Representation of sub-grid turbulence

As previously stated, large-eddy simulations operate by applying a low-pass spatial

filter to the Navier-Stokes equations, effectively removing any motions smaller

than the filter size, typically chosen in accordance with the model’s grid spacing.

However, this then means that the effects of the sub-grid scale motions must be

represented in the model via parametrisation. In essence, this is very similar to

how global-circulation models represent convection in that a closure assumption is

required. The turbulent fluxes of variables are written as functions of their local

gradients, i.e.
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u′
jϕ

′ = −K
∂ϕ

∂xj

(1.14)

where K is an eddy-diffusivity coefficient and describes the diffusion of ϕ due to

turbulent eddies below the grid scale. Through this, the sub-grid model can model

the turbulent motions in terms of the resolved flow. The filtering option in LES is

designed to resolve fluid motions down to the inertial subrange, and the sub-grid

model takes over in the viscous subrange (see Figure 1.4).

The transfer of energy across scales is well described in Vincent and Meneguzzi

(1994) but the basic principle is that the largest eddies (with the smallest wavenum-

bers, k) are responsible for removing kinetic energy from the resolved flow. These

eddies are typically found in the regions where the strain is particularly strong

(i.e. high shear regions) and as such rapidly become unstable, breaking down into

vortex tubes that become stretched and give way to even smaller-scale structures.

This effect gives rise to the energy cascade illustrated in Figure 1.4. The exact

nature of the boundary between the resolved and sub-grid scales in an LES will

vary depending on the type of filter chosen (characterised by the convolution ker-

nel, G), although a sharp cut-off is commonly used. At the end of this transfer of

energy, the molecular diffusion takes over and kinetic energy is dissipated.

In the inertial subrange, the energy can be related to the wavenumber by the

expression (Onsager 1949):

E (k) = αϵ
2
3k− 5

3 (1.15)

where α is the Kolmogorov constant and ϵ is the viscous dissipation rate of tur-

bulence kinetic energy. The universality of this constant has been discussed in

Sreenivasan (1995).

The fundamental idea behind implementing a sub-grid scheme is that the trans-

fer of energy across scales from resolved to sub-grid occurs via processes similar

to molecular diffusion in the viscous range. As such, it was proposed to repre-

sent this transfer similarly, using a sub-grid eddy-viscosity, νSGS analogous to the
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Figure 1.4: Schematic drawn showing the forward cascade of energy through the
inertial subrange down to the Kolmogorov lengthscale, Lk, for isotropic turbulence
(Kolmogorov 1941). The wavenumber, k, is represented in terms of the associated
lengthsale, for, example, k = 1/(Lk) is the wavenumber associated with the Ko-
molgorov lengthscale. The spirals are added to illustrate the decreasing size of the
eddies associated across the subrange, and we mark the ranges in an LES that are
resolved by the filtered equations and parameterised by the sub-grid model.
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molecular viscosity. The main difference is that νSGS is effective at intermediate

scales smaller than the resolved flow, but too large for molecular diffusion to be

relevant. To define νSGS, characteristic lengthscales and timescales are required,

i.e.

νSGS =
l20
t0

(1.16)

which is obtained by dimensional analysis, since the same units as diffusivity are

required.

One of the more widely used sub-grid models is the Smagorinsky-Lilly model

(Smagorinsky 1963; Lilly 1962). This sub-grid model and adaptations of it are

used heavily in many of the LES-based models in use today due to its simplicity

and efficiency. Smagorinsky (1963) assumed that any shear or buoyancy generated

by the turbulence kinetic energy (TKE) is balanced by molecular dissipation and

that the flow is in spectral equilibrium. A Kolmogorov spectrum similar to the

illustration in Figure 1.4 was also assumed. The lengthscale used is determined

by the filter width, ∆, multiplied by the Smagorinsky constant, Cs. The timescale

associated with this viscosity is computed from the resolved component of the local

strain rate tensor, giving the expression

νSGS = C2
s∆
(
2SijSij

) 1
2 (1.17)

where

Sij =

(
∂ui

∂xj

+
∂uj

∂xi

)
(1.18)

is the resolved strain rate tensor. Various studies have tried to determine the

value of Cs, and it may not be universally constant, with Canuto and Cheng

(1997) suggesting the properties of the flow determine it. Values typically used lie

in the range 0.1 ≤ Cs ≤ 0.2.

The sub-grid model is intended to capture the cascade of scales in turbulent

flows and consequent mixing of dynamical and microphysical properties. While
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the Smagorinsky model represents a simple model of this, there have been multiple

adaptations based on it, such as the dynamic Smagorinsky model of Germano et

al. (1991).

1.3.4 Representation of cloud microphysics

Hydrometeors in LES models are typically separated into cloud water and pre-

cipitate such as rain, hail etc. However, many processes contribute to the con-

centration and size of each. For example, rain drops can grow in size through the

collection of cloud water in their surroundings or collisions with other rain droplets.

Cloud water freezes to form ice droplets which can aggregate onto snow and rim-

ing of cloud ice can produce graupel and hail. Most LES-type models adopt a

bulk water approach to hydrometeors and precipitation (Kessler 1969; Lin et al.

1983) which fits naturally into the Eulerian framework, computing the fraction of

each species in the grid box to be converted by each process and updating after

each timestep. These schemes are typically classified by the number of moments

described by the distribution function of particle sizes. These moments include

the mass/mixing ratio of each water species and the number concentration. In a

single-moment scheme, the mixing ratio of each species is used, and droplet size

distributions are computed as monotonic mixing ratios. Double-moment schemes

also exist, which represent the mixing ratio and number concentration of each

hydrometeor species prognostically. A double moment microphysical scheme, im-

plemented in the Met Office Large Eddy Model (LEM) was able to predict a size

sorting effect due to the increased fall speed of larger particles. The predictions

of the model were consistent with radar observations, according to Swann (1998)

but single moment schemes were not able to reproduce these results. The LEM

microphysics scheme involved 34 distinct microphysical processes between 6 hy-

drometeor species.

A bulk-water approach is not the only option for modelling precipitation. Re-

cently, Lagrangian ‘super-droplet’ schemes, such as the one described in Shima

et al. (2009) have been developed. These models represent large quantities of rain
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droplets by a single ‘super-droplet’, carrying size distributions and other infor-

mation. The super-droplets are then advected in a Lagrangian manner according

to their terminal velocity and the local wind speeds. Adapting such schemes to

include other hydrometeor species may prove difficult and even then, it adds sig-

nificant computational expense when compared to the conventional bulk water

approach due to the large number of droplets required. As such, the method may

be less feasible over larger domains. Needless to say, a fully Lagrangian scheme

modelling individual hydrometeors is well beyond the limitations of current com-

putational power.

1.3.5 Radiative and surface processes

A radiative scheme needs to account for the range of wavelengths present in so-

lar radiation, absorption and emission lines of water molecules and any aerosols

present. In the Met Office LEM, for example, the representation of radiative pro-

cesses used is described in Edwards and Slingo (1996). The basic premise is that

two spectral files containing gaseous absorption, impact of aerosols and Rayleigh

scattering are read in, corresponding to solar and terrestrial radiation. The code

uses a two-stream radiation scheme and splits the absorption lines in each type of

radiation into 6 spectral bands for solar radiation and 8 for terrestrial radiation.

It also accounts for the influence of precipitating hydrometeors and cloud ice when

determining the volume extinction coefficients, single scatter albedo and asymme-

try. Most conventional models also make use of the Eddington approximation for

plane parallel atmosphere, which assumes that the spectral radiance is a linear

function of the cosine of the angle of incidence, commonly used in stellar physics.

Some LES models use similar representations of radiative transfer to those used in

large-scale parameterisation schemes (i.e. Slingo 1989 and Ebert and Curry 1992).

The effects of surface processes also contribute, such as moisture and heat fluxes

arising from the evaporation of seawater (or lakes, ponds in urban areas etc.)

or other sources. Surface effects can be represented via the coupling of land or

ocean surface models to the LES (Patton et al. 2005) to generate surface boundary
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conditions. Alternatively, the model can prescribe surface fluxes to investigate the

atmospheric response to given boundary conditions. Coupling of these models

is often valuable for analysing the feedback loops between clouds and the larger

environment, and more detailed land surface models can account for the effects

of vegetation and soil levels. Ocean-atmosphere models have also been used to

investigate interactions at the mesoscale (Wu et al. 1998) and the sensitivity of

the boundary layer waves in the ocean (Sullivan et al. 2014).

1.3.6 Applications of LES

Since its introduction, LES models have proven to be a potent tool in devel-

oping our understanding of the atmosphere and is widely used throughout the

atmospheric community. However, their application only started to take off in the

1990s, nearly 25 years after their initial development. Figure 1 in Stoll et al. (2020)

shows the increase in articles mentioning LES and illustrates that the number of

references to LES began to grow around this time. This was mostly likely due

to advances in computing, allowing for the higher resolution studies that would

demonstrate the method’s strengths. While initially applied to studies of shallow

convection similar to those seen in Sommeria (1976), LES models now see use in

engineering, combustion (Pitsch 2006) and acoustics (Wagner et al. 2007). Simul-

taneously, advances in observational techniques allowed for better comparisons to

real world convection on LES scales.

One of the biggest uses of LES models has been in the study of clouds interacting

with their environments, particularly in cases of shallow convection. The use of

passive tracers in Zhao and Austin (2005) allowed for a study of the life cycle of

six cumulus clouds formed in a sheared environment. Their study revealed that

a vortical structure in the ascending cloud top modulates entrainment through

the top and sides. Modulating entrainment in this way produces a mushroom-like

core as air is entrained into the cloud from below and rises up through the centre,

mixed by turbulent eddies within. .

In other studies, Heus et al. (2008) used Lagrangian tracers to analyse the
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mixing between clouds and their surroundings in the subsiding shells found around

convective clouds. Later works by Hannah (2017) and Becker et al. (2018) also

found these to play an important role in interactions between convective plumes

and the large-scale environment, as the air around the cloud becomes diluted,

resulting in the entrainment of less environmental air.

LES models are not exclusively limited to studies of shallow convection, however.

Work by Böing et al. (2012) used the DALES model of Heus et al. (2010) to

study the role of cold pools in promoting the transition between shallow and deep

convection through Lagrangian tracers. Their study found that the presence of

cold pools in the sub-cloud layer, formed by evaporative cooling due to rainfall,

enhanced the intensity of the convection. It was also found that these cold pools

promote the formation of deeper clouds with more intense precipitation, which

in turn form larger cold pools in a positive feedback loop. Their results also

suggested that convective organisation within the sub-cloud layer was important

to the triggering of deep convection.

Creative extensions of LES models have also been designed over the years, for

example in the simulation of a tropical cyclone in Rotunno et al. (2009). In their

study, a nested grid was used to provide increased resolution in the central regions

of the circulation where the need for high resolution was greatest, avoiding the

computational expense of maintaining the fine grid spacing over a large domain.

This method was used again in Ren et al. (2020) to study the changes in wind

speed distribution to sea surface temperature changes. Ren et al. (2022) used the

same model to determine the radius of maximum wind in a hurricane and related

this to an inflection point in the angular momentum contours. Other examples

of this approach can be found in Moeng et al. (2007) and Mirocha et al. (2014),

where an LES model was embedded in a mesoscale simulation.

Meanwhile, advances in computational power are leading to applications of LES

models over larger domains, such as those carried out in Heinze et al. (2017) and

Stevens et al. (2020). Similarly, the development and application of superparam-

eterisation schemes (Lin et al. 2022b) is a rapidly developing field. While global
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LES modelling may be a distant dream, great advances have been made in inte-

grating them into the development and refinement of convection schemes in global

models such as in Angevine et al. (2018). The growing use of machine learning

techniques in this field too (Mooers et al. 2021; Sansom 2021) mean that LES and

similar models will play a major role in the global representation of convection for

a long time

These examples all serve to illustrate just how wide the range of applications

for LES models is. Trying to recount every significant result obtained from LES

studies would far exceed the scope of this review, so we have chosen a range of

examples to emphasise its effectiveness. Despite the limits of computational power,

LES results have influenced our understanding of convection across a vast range

of scales and are likely to remain one of the pillars of the field for the foreseeable

future as new developments continue.

1.3.7 Limitations of the LES models

Despite their wide range of successes, LES models have some shortcomings of their

own. These, in some ways, parallel the problems of global circulation models in

representing convection. Despite operating at finer scales than global or regional

models, LES models are often limited by their representation of sub-grid processes.

For example, in a mirror to the issues of global models, there is a ‘gray zone’ close to

the grid spacing in which work-sharing can occur as the model must differentiate

between resolved and sub-grid processes. This can have consequences for the

computational efficiency.

Studies of cumulus clouds by Matheou et al. (2011) and Pressel et al. (2015) have

shown that LES models are susceptible to the choice of numerical methods (Stevens

et al. 1999). Increasing numerical dissipation results in lower precipitation and

reduced cloud formation, displaying a sensitivity to the resolution of the model.

Similarly, different numerical schemes found variations in precipitation. These

results have been similarly observed in studies of stratocumulus clouds (Stevens

et al. 2005; Pressel et al. 2015). Likewise, Takemi and Rotunno (2003) found that
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varying the eddy-viscosity coefficient offered increased resolution of convective cells

within a mesoscale system. However, making the constant too large caused the

cells to become smoothed, losing many features of the fine-scale structure.

One area in which these difficulties become particularly relevant is in the con-

vective boundary layer. Sullivan and Patton (2011) investigated the effects of

varying grid spacing on the properties of the boundary layer. They found that, for

low-order moment statistics such as fluxes, they become independent of the grid

spacing once there is sufficient scale separation between the boundary layer height

and the cut-off scale for the sub-grid scheme (i.e. when zi ≫ Cs∆). Not only

that, but they found that the bulk entrainment rate of the boundary layer was a

highly sensitive measure of convergence of the LES, increasing as the grid becomes

coarser. However, the entrainment rate still became independent of the grid spac-

ing at sufficient resolution. This is likely due to the failure to resolve temperature

gradients in the entrainment zone adequately. Furthermore, in the entrainment

zone, the temperature variance was found to increase as the grid became finer.

As a result of the sub-grid models and the highly turbulent nature of the bound-

ary layer causing difficulties in LES studies, subsequent studies have opted to use

direct numerical simulation (DNS) (Garcia and Mellado 2014; Mellado et al. 2017;

Haghshenas and Mellado 2019). These studies have offered considerable insight

into the vertical structure of the boundary layer, but are limited to relatively low

Reynolds numbers, orders of magnitude lower than typical atmospheric values.

These shortcomings do not diminish the great successes of LES and similar mod-

els, it should be stressed. The weaknesses of LES models are far outweighed by the

numerous improvements they have provided to our understanding of atmospheric

convection. Advances in computing and new approaches to the representation of

sub-grid turbulence are likely to see LES models improve in the future, and they

remain promising candidates to be embedded in large-scale superparameterisation

models. However, the sub-grid representation leaves somewhat undesirable numer-

ical sensitivities that may present an opening for alternative methods of modelling

turbulence. Such techniques would be particularly beneficial in the convective
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boundary layer, where DNS studies are computationally expensive and struggle

to approach atmospheric Reynolds numbers. Nonetheless, LES models will likely

remain a staple of research into atmospheric convection far into the foreseeable

future. Any alternative methods developed are more likely to supplement the

insights gained from LES studies rather than aim to supplant them.

1.4 A Lagrangian perspective

1.4.1 Lagrangian and semi-Lagrangian models

Lagrangian methods within fluid dynamics in involve the simulation of fluid mo-

tions following particles of fluid, themselves moving with the flow. The discretisa-

tion of the fluid is based on the definition of these particles. This is in contrast to

the traditional Eulerian method used within many atmospheric models, in which

the fluid is discretised onto a grid (Cartesian or otherwise). The absence of this

grid in Lagrangian methods means they naturally lend themselves to seeking alter-

native representations of turbulence in comparison to the eddy-viscocity schemes

used in LES models. Similarly, the representation of the fluid in terms of particles

itself comes with many advantages.

Models developed in a purely Lagrangian framework have seen considerable suc-

cess in other fields, for example, smooth particle hydrodynamics (SPH) (Lucy 1977;

Monaghan 1992). This method forgoes an underlying grid and uses a smoothing

function to model the distributions of mass and other properties around the La-

grangian particles. The method can naturally incorporate an adaptive resolution,

as the lengthscale associated with the smoothing function can be adjusted in more

active regions of the flow to provide a greater spatial resolution (Gingold and Mon-

aghan 1977; Rosswog 2009). As such, it lends itself well to the vast range of scales

present in astrophysical flows, ranging from studies of star forming regions such as

Smilgys and Bonnell (2017) to the evolution and structure of black hole accretion

disks (Nealon et al. 2015). Moreover, the absence of an underlying grid allows the

method to easily accommodate complex boundary dynamics, such as those found

30



in free-surface flows in engineering (Violeau and Rogers 2016). SPH has even been

used to simulate multiphase flows (Chen et al. 2015) such as at the air-sea in-

terface or oil-water interactions. Such features may also support a more natural

implementation of the Lagrangian precipitation scheme proposed by Shima et al.

(2009) to develop a fully Lagrangian representation of cumulus convection.

The representations of turbulence within SPH are still a developing area of

research, and most studies are limited to two-dimensional turbulence within en-

gineering flows (Monaghan 2017; Monaghan and Mériaux 2018) rather than the

study of atmospheric phenomena. Three-dimensional turbulence within SPH, in

general, is very difficult to simulate accurately. Even in idealised channel flows

such as in Mayrhofer et al. (2015), the model failed to reproduce the statistical

properties observed in DNS of the Taylor-Green vortex flow (Taylor and Green

1937).

However, one promising avenue of research comes from the idea that the smooth-

ing operation within SPH is similar in framework to the filtering carried out in LES,

despite the difference in model formulation. The proposal of a Lagrangian SPH-

LES model in Di Mascio et al. (2017) outlines the potential framework required for

a meshless SPH model that incorporates the turbulence representation of LES. It

should be noted, however, that these models would rely on Lagrangian adaptations

of the turbulence schemes commonly used within LES models (i.e. Smagorinsky

1963 and Lilly 1966). Therefore, it is likely they may encounter similar limitations

and sensitivities. It remains to be seen if the Lagrangian formulation and built-in

adaptive resolution are sufficient for the study of atmospheric flows while avoiding

the drawbacks of an Eulerian approach. Nonetheless, combining these techniques

may yet lead to exciting developments as the methods are refined.

Such models also come with unique challenges, however. One of the common

issues found in mesh-free methods is incompressibility, as the clustering of particles

can result in ‘holes’ elsewhere in the flow and consequently produce inaccuracies

in the density and pressure fields of the flow (Swegle et al. 1995; Monaghan 2000).

In hybrid approaches to the problem, with an underlying grid, there remains the
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option of redistribution of particles periodically to ensure the flow remains in-

compressible, such as in the combined Lagrangian advection method of Dritschel

and Fontane (2010). This involves compromising the Lagrangian integrity of the

particles occasionally, but in turn allows for the quasi-conservative redistribution

of particles and their properties to prevent the numerical instabilities incurred by

insufficient particle concentrations. Other issues arise at the boundaries in SPH

models. While well-suited to free-surface flows and systems with displaced bound-

aries, the implementation of wall boundary conditions or even inlet and outlet

conditions has proven challenging to simulate in SPH. In this case, the absence

of an underlying grid in any form makes these boundaries particularly problem-

atic to represent. The development of such boundary conditions for SPH models

is considered one of the ‘grand challenges’ of the SPH research and engineering

international community (SPHERIC), according to Vacondio et al. (2021).

While the development of combined SPH-LES schemes is promising, it seems

unlikely that a fully Lagrangian model will be able to accurately simulate highly

turbulent atmospheric flows such as those found in convective clouds and the

boundary layer. This is likely to remain the case, at least for the near future.

However, it is not impossible, and the SPH method would bring considerable

advantages due to its adaptive resolution and the ability to incorporate complex

boundary dynamics. Instead, it may be more beneficial to pursue the development

of hybrid models, in which an underlying grid supports the Lagrangian dynamical

core in some capacity.

Even within LES, semi-Lagrangian methods have already seen use through the

introduction of tracers to study the mixing of clouds and their environment (Zhao

and Austin 2005; Heus et al. 2008; Böing et al. 2012). Some LES models have even

adopted semi-Lagrangian schemes for advection. These schemes work by modelling

the advection of Lagrangian particles according to the gridded velocity fields at

each timestep. The particle properties are then interpolated back onto the grid

to reconstruct the gridded fields afterwards (see Zerroukat et al. 2002 and Kaas

2008 for examples). This process is essential to ensure the conservation of mass
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in such schemes because neither the continuity nor transport equations appear

in flux form within semi-Lagrangian advection schemes. As such, they do not

explicitly conserve mass. Introducing a mass-conservation scheme to these models

also incurs additional computational expense that can make them undesirable.

Similar tracer advection methods have also been used in climate scale studies

of atmospheric chemistry and transport in the stratosphere (Konopka et al. 2004;

Stenke et al. 2008; Stenke et al. 2009). These methods are relatively effective when

the properties carried by the Lagrangian tracers are not directly coupled to the

dynamics of the flow, such as in passive transport studies. The key advantage of

these methods is that passive tracers in a Lagrangian framework do not require

additional prognostic equations as they would in a grid-based method, because the

Lagrangian particles carry tracer concentrations as they are advected. However,

the use of such schemes introduces inconsistencies between the Lagrangian and

Eulerian descriptions of the local air density which, in turn, produced discrepan-

cies in tracer concentrations and other properties. Grewe et al. (2014) attributed

these inconsistencies to an incompatibility between the tracers’ advection and the

model’s dynamical core, as column-based chemical processes carried out using the

grid often led to errors in the associated Lagrangian quantities. The proposed

solution in Grewe et al. 2014 was that models with a Lagrangian dynamical core

should be employed. In their work, they explore two candidates: the finite mass

method (FMM) of Gauger et al. (2000) and the Hamiltonian particle-mesh (HPM)

method of Frank et al. (2002).

The FMM is another mesh-free method, and the primary feature of this model

is that, rather than discretising the spatial domain, the system’s mass is discre-

tised into a series of overlapping packets. These packets each carry their own mass

distributions, often described through the use of a smooth base function (Klin-

gler et al. 2005), similar to the SPH method using a smoothing kernel for particle

properties. The method requires prognostic equations for both the centre of each

mass packet and the associated deformation matrix describing the mass distribu-

tion. The fluid density at a given point in space and time can then be obtained
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by summing the corresponding densities of any overlapping mass packets at that

point. Grewe et al. (2014) propose a reshaping of the mass packets to form an

underlying auxiliary grid used for chemical processes. Applications of this method

are somewhat limited. One such scheme has been developed by Dong et al. (2015)

and was tested in three dimensions using the flow generated by an LES model.

The HPM method is a hybrid method which uses both particles and an under-

lying longitude-latitude grid that initialises many more particles than the FMM

(approximately an order of magnitude greater). Whereas in the FMM, the volume

of each particle is defined by its deformation matrix, HPM particles do not carry

volume. The prognostic variables for this method are the particle centres and the

pressure gradient derived from the overall particle mass distribution. Also, unlike

the FMM, there is no additional step required to construct an auxiliary grid, as

the model already makes use of one. However, studies using the HPM have mainly

been limited to two-dimensional models using the shallow water equations (e.g.

Frank and Reich 2004 and Bresch et al. 2020).

While these semi-Lagrangian schemes have been primarily applied to transport

studies in the larger atmosphere, their application to cumulus convection is rela-

tively limited. Still bound to the Eulerian nature of LES-based models, they are

subject to the same sub-grid schemes representing turbulent mixing and thus many

of the resulting sensitivities. This presents a niche for models of a more Lagrangian

nature, somewhere intermediate to these methods without altogether abandoning

the Eulerian grid as in SPH. Furthermore, such a model would be well-suited to the

transport of tracer concentrations due to its Lagrangian nature, and able to adopt

a more explicit representation of sub-grid turbulence with Lagrangian particles

providing a similar adaptive resolution.

1.4.2 The Moist Parcel-In-Cell method

The Moist Parcel-In-Cell (MPIC) method of Dritschel et al. (2018) represents an

attempt to create a model for studying atmospheric convection that is almost

entirely Lagrangian in nature. Although it currently exists in a highly idealised
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setting, it has shown promising comparisons to an existing LES model in the Met

Office NERC model (MONC, based on the LEM in Brown et al. 2015), documented

in Böing et al. (2019). The method is worth exploring, as it occupies a position

intermediate between fully mesh-free techniques like SPH and the traditional Eu-

lerian approach to convection. As previously discussed, this framework allows the

model to explore more physical representations of turbulence and sub-grid mixing.

Simultaneously, the formulation of the model makes adding tracers and chemical

species relatively straightforward.

The model is similar to the existing particle-in-cell methods commonly used in

plasma physics (Harlow 1962; Brackbill 1991; Markidis and Lapenta 2011), but

draws inspiration more heavily from the vortex-in-cell method of Christiansen and

Zabusky (1973). Similar methods have even been used previously in convection

studies, albeit in two dimensions (Gadian 1991). The basic principle of the model

is that all physical quantities are evolved on the Lagrangian parcels, using an un-

derlying Cartesian grid to determine the physical distributions of properties. The

particles carry vorticity and are used to determine the system’s dynamical evo-

lution while the grid is used to compute the velocity field for advection. This is

accomplished through interpolating the parcel vorticity to produce a gridded vor-

ticity field, which is then inverted to generate the velocity field (more information

on this is given in Chapter 2, where we present an overview of the method).

Turbulence and mixing in MPIC differ from LES models and are represented

through the splitting and removal of parcels. In particular, the integrated vorticity

stretch of a parcel is calculated at each dynamical timestep. Once it exceeds a spec-

ified threshold, the parcel splits into two identical parcels, with the original parcel’s

properties shared between them. This mirrors the adaptive resolution effect seen

in SPH by increasing the number of parcels, and simultaneously decreasing their

size, in highly turbulent flow regions. Of course, this cannot continue indefinitely,

as the computational expense incurred would be too great. Therefore, parcels are

removed from the model once they fall below a specified volume. Their properties

are then redistributed onto the grid and subsequently interpolated onto the sur-
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rounding parcels to ensure conservation. This process presents a more physical,

explicit representation of the sub-grid turbulence, although other model adapta-

tions have modified the mechanism determining when splitting occurs (Frey et al.

2022).

The advantage of this sub-grid representation is that the numerical diffusion is

considerably weaker than in an LES-type model of similar grid resolution. The

parcel formulation of MPIC allows it to carry more information about the sub-grid

scales, meaning that coarser grid resolutions can be used, and thus can be more

efficient computationally. At the same grid resolution, the parcel formulation of

MPIC allows for a higher effective resolution in active regions of the flow.

Initial comparisons of the method with MONC in Böing et al. (2019) show very

good agreement between the two methods, despite the vast differences in their

formulation. As such, any subsequent work on modelling known case studies in

MPIC would do well to compare to existing LES and DNS models. The visual

appearance of the clouds formed in Böing et al. (2019) are very similar, although

due to the highly turbulent nature of the flow, the smallest scales differ (see the

comparison of cloud edges from Böing et al. 2019 in Figure 1.5). The bulk prop-

erties of the flow too are found to be in strong agreement with one another, which

is a mark in the method’s favour.

At smaller scales, there is more considerable deviation from the results observed

in MONC, in particular that the effects of mixing in MPIC are weaker, especially at

low resolution. In an LES model, the turbulence scheme will rapidly diffuse ther-

modynamic properties such as liquid water once they enter the sub-grid regime.

This is not the case in the MPIC simulations carried out in Böing et al. (2019),

best shown in the liquid water probability distribution functions where there are

sharp peaks in the distribution at higher wavenumbers. This represents an unde-

sirable resolution sensitivity within MPIC, although the distributions do appear

to converge with increasing resolution.

The representation of the vorticity field within MPIC is also particularly useful,

as studies of the vorticity dynamics in cloud mixing are relatively limited. In stud-
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Figure 1.5: Detailed view of a cloud edge showing the liquid water specific humidity
(a, d, g, j), vorticity (b, e, h, k) and vertical velocity (c, f, i, l) fields for clouds
formed in MPIC using high resolution interpolation of the parcel field (a, b, c)
and the grid resolution (d,e, f). These are compared to MONC simulations using
Smagorinsky (g, h, i) and implicit (j, k, l) sub-grid models. Reproduced from
Figure 2 of ‘Comparison of the Moist Parcel-In-Cell (MPIC) model with large-
eddy simulation for an idealized cloud’ by Böing et al. (2019) in QJRMS under
the Creative Commons license (CC-BY 4.0).

37

https://creativecommons.org/licenses/by/4.0/


ies of the boundary layer, the spatial distribution of enstrophy has been proposed

as a potential conditioning parameter to distinguish between the turbulent and

nonturbulent regions of the atmosphere (Fodor and Mellado 2020). This may have

some relevance too to the two-layer structure observed in DNS simulations of the

entrainment zone, where the upper sublayer is believed to represent a transition

layer between two regions. A model like MPIC is therefore uniquely positioned

to study the vorticity in this region, and perhaps offer further insights into the

structure of the boundary layer.

Furthermore, the addition of Lagrangian tracers representing aerosols, chemical

species or other parcel attributes fits naturally into the MPIC framework. Tracer

concentrations would be carried as materially conserved attributes on each parcel,

subject to the same splitting and mixing operations and, as such, do not require

additional prognostic equations to be solved as they would in an Eulerian method.

This also makes the addition of tracers and attributes within MPIC far less ex-

pensive computationally in comparison to LES models, for example, and may lend

itself well to studying distributions of different chemical or hydrometeor species

in future studies. One straightforward of example of tracer usage in MPIC was

shown in Böing et al. (2019), tracking the origin height of parcels to compute their

vertical displacement (Fig 1.6). This could be useful in studies of the boundary

layer or cloud development to identify the origin of entrained air. The main ad-

vantage of MPIC, over the handling of tracers in LES models, is that there is

no need for additional prognostic equations associated with each attribute. Not

having to solve these additional prognostic equations reduces the cost of potential

tracer implementations in MPIC. Likewise, many of the consequences for tracer

concentrations resulting from the inconsistency between Lagrangian parcels and

an Eulerian dynamical core could be avoided. Another benefit to the use of tracers

in MPIC is that, because it keeps the tracers monotone, it does not create false

extrema or spurious negative values. However, there are still concerns regarding

incompressibility within Lagrangian models.

Despite its weaknesses, the MPIC method remains a promising candidate for

38



Figure 1.6: Cross-section through the centre of the domain showing the vertical
displacement of parcels for an MPIC simulation at a resolution of 2563, shown at
(a) t=4, (b) t=6 and (c) t=8. Reproduced from Figure 10 of ‘Comparison of the
Moist Parcel-In-Cell (MPIC) model with large-eddy simulation for an idealized
cloud’ by Böing et al. (2019) in QJRMS under the Creative Commons license
(CC-BY 4.0).

a Lagrangian model of atmospheric convection. The model retains many of the

strengths of fully mesh-free models such as SPH, while avoiding the difficulties of

representing boundary conditions due to the underlying grid. The explicit sub-grid

representation of turbulence makes it a very appealing method in highly turbulent

flows where the mixing of air is important, such as in the growing boundary layer

or cloud edges. The model may also, in later stages of development, be suitable as

an embedded scheme within superparameterisation models and consequently the

favourable comparisons of bulk flow properties to an existing LES model in Böing

et al. (2019) are particularly promising.

1.5 Overview of thesis structure

In this thesis, we aim to further develop the MPIC method and showcase its

application beyond the initial work shown in Dritschel et al. (2018) and Böing et

al. 2019. These changes are made with the goal of applying the MPIC method to

atmospheric problems and case studies that were not previously possible with the

method and have not previously been modelled with Lagrangian methods, such as

the atmospheric boundary layer, as is done in Chapter 5. Such problems, in the

future, may benefit greatly from the Lagrangian nature of the method through the
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computationally efficient implementation of tracer populations to study transport

problems, for example in atmospheric chemistry. Analysis of the energy budget

in MPIC may also lend to its use in guiding parameterisation schemes in larger

scale models. It is hoped that the work in this thesis will provide a stepping

stone towards a more realistic Lagrangian model of convection that may be used

alongside existing methods to further our understanding of cloud development and

boundary layer convection.

To this end, we demonstrate the application of MPIC to additional case studies

corresponding to sheared thermals and the dry atmospheric boundary layer that

may be of interest to the atmospheric community. While still in a relatively ide-

alised state, the MPIC method provides valuable insight into these case studies.

Moreover, as additional layers of complexity are added to MPIC’s microphysical

representation, or through the addition of Lagrangian diagnostics these studies can

be further extended. One of the key advantages of MPIC is the natural implemen-

tation of additional parcel attributes without the need to solve further prognostic

equations and as greater microphysical and chemical complexity is added to the

model, such an advantage only becomes more pronounced. As such, the work

documented here primarily presents some early steps in moving MPIC towards

fully realistic modelling of convection, while demonstrating the method’s poten-

tial, even in its current state. Many of the diagnostics used in later chapters, such

as the vertical distributions of thermodynamic properties and energies associated

with thermals, may even be relevant for coupling to larger-scale circulations as a

potential embedded convection model.

An overview of the method and numerical parameters used in this thesis are pre-

sented in Chapter 2. The majority of this chapter is a recap of the methodology

outline in the original papers on the method. We do, however, present a modi-

fication to the vertical solver within MPIC, moving from a semi-spectral method

to a tri-diagonal solver. This change is necessary to facilitate the implementation

of surface fluxes within the method, as it was not possible using the model pre-

sented in Dritschel et al. 2018. This modification is used in all subsequent works in
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this thesis, and is particularly relevant to later chapters studying boundary layer

growth.

Chapter 3 studies a modification of the original MPIC test case. We have

smoothed the thermal edge to limit the sharp buoyancy gradients mentioned in

Böing et al. (2019) that gave rise to more intense vorticity than would normally

occur. We study the ascent of the new thermal, subject to a constant vertical

wind shear of different strengths. While vertical shear is thought to be important

for the organisation of deep convection, the effects of wind on individual thermals

has not been studied in particular depth. Furthermore, our analysis studies the

enstrophy of the air, partitioned into cloud and dry air components by liquid water

content to assess the effects of entrainment into the rising thermal on the cloud

properties.

Chapter 4 presents an analysis of the rising thermal in the absence of verti-

cal shear, similar to the previous test case. The analysis presented can easily be

applied to sheared cases too, but this chapter aims to assess how well energy is

conserved within MPIC and the effects of numerical choices within the method.

As such, it benefits from studying a simplified test case. However, we now de-

rive a measurement of the potential energy associated with the thermal that is

available for convection and briefly assess its sensitivity to numerical parameters

within MPIC. Furthermore, the potential energy derived here is analogous to the

convective available potential energy used in convective parametrisations and some

closure assumptions. We discuss how this energy varies with height for parcels of

different origins within the test case. Showcases of possible modifications to the

background stratification that could subject parts of the thermal to convective

inhibition are also given, which may be useful in studies of convection driven by

surface fluxes.

Finally, Chapter 5 presents a study of the dry convective boundary layer growing

into a linearly stratified atmosphere in the absence of vertical shear. This is, to

the author’s knowledge, the first study of its kind to use a Lagrangian method

like MPIC and requires substantial changes to the method to include the effects
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of surface fluxes of buoyancy. The flux implementation is highly advantageous

within the MPIC framework, as the same method can be applied to fluxes of any

parcel attribute, normally requiring additional prognostic equations in an LES or

DNS model, As such, future works using MPIC would easily be able to implement

surface flues of, for example, aerosol species, moisture, or even vorticity. We include

analysis of the enstrophy field and entrainment rate parameters of the boundary

layer in comparison to existing LES and DNS studies of the entrainment zone.

In particular, we compare our results to the two-layer vertical structure of the

entrainment zone observed in Garcia and Mellado 2014 and assess MPIC’s ability

to model the boundary layer, despite the differences in framework.

Chapter 6 presents a summary of the key findings in these studies and a discus-

sion of future extensions and applications for the method. We provide an assess-

ment of the potential of MPIC in its present state as an alternative or supplement

to conventional convection models on both the small and large scale.
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Chapter 2

Overview of the Moist Parcel-In-Cell

method

This chapter largely presents a recap of the work of Dritschel et al. (2018) and

Böing et al. (2019). While not original work, details of the method are essential

to the understanding of subsequent chapters, and as such are presented here. Full

details of the MPIC method are given in Dritschel et al. (2018). We also detail

the modifications made to the vertical solver in section 2.3 which is used for all

subsequent studies and has since been integrated into later versions of MPIC and

its parallel version PMPIC. Chapter specific changes to the model will be discussed

in the corresponding sections discussing the experimental setup for each chapter.

2.1 Governing Equations

The governing equations are given below. The notation used in this chapter differs

from the description of LES models in Section 1.3 as it was chosen to be consistent

with previous papers on the development of the MPIC method (Dritschel et al.

2018; Böing et al. 2019)
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Du

Dt
= −∇p

ρ0
+ bêz, (2.1)

Dbl
Dt

= 0, (2.2)

Dq

Dt
= 0, (2.3)

∇ · u = 0, (2.4)

where u is the velocity, p is the non-hydrostatic pressure, bl is the liquid water

buoyancy and q is the specific humidity. D/Dt = ∂/∂t + u · ∇ is the material

derivative. ρ0 is a constant reference density, equivalent to the ρr in Section 1.3.

At present, the density in these equations differs from the LES example given in

section 1.3 because we use the incompressible Boussinesq approximation to simplify

the equation set and filter out sound waves. The approximation assumes that

fluid density variations are small in comparison to the average fluid density in the

domain (Durran and Arakawa 2007) and as such the density profile is approximated

to be constant with respect to the vertical coordinate, z. This causes the pressure

term to vanish in a vorticity formulation (see equation 2.7).

The total buoyancy is approximated by

b = bl +
gL

cpθl0
ql, (2.5)

where

ql = max
(
0, q − q0e

−λz
)
, (2.6)

is the liquid water content, q0 is the surface saturation humidity and λ is the

inverse condensation scale height. The liquid water buoyancy is given by bl =

g (θl − θl0) /θl0 with θl being the liquid water potential temperature and θl0 a ref-

erence value. This equation represents a simple, height-based representation of

condensation. Once a parcel of air reaches the height at which the parcel specific
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humidity exceeds that of the background profile, the excess humidity is converted

into liquid water.

The prognostic equation for vorticity, ω = (ξ, η, ζ), is obtained by taking the

curl of the momentum equation (2.1),

Dω

Dt
= ω ·∇u+

(
∂b

∂y
,− ∂b

∂x
, 0

)
. (2.7)

The solenoidal condition (∇ · ω = 0) is also enforced on the vorticity field (taking

the curl of equation 2.4). We note that the equivalent form of the vorticity equation

discussed in Dritschel et al. (2018), as proposed by Cottet and Koumoutsakos

(2000), is no longer used in MPIC in favour of numerically solving the prognostic

equation for vorticity on the parcels.

2.2 Parcel representation

The core feature of MPIC is its representation of the fluid as a collection of parcels,

in many ways similar to the particle representation used in smoothed particle hy-

drodynamics or the hamiltonian particle mesh method. As was stated in Chapter

1, MPIC originates from the vortex-in-cell method of Christiansen and Zabusky

(1973) (see also Cottet and Koumoutsakos 2000). All fields within MPIC are

evolved using the parcels, which move freely within the domain. In order to re-

construct the fields for visualisation and inversion, an underlying Cartesian grid

is used. The inversion of the vorticity field on this grid recovers the velocity field

that is then re-interpolated back to the parcels for advection.

Parcels in MPIC carry vorticity, ω, liquid water buoyancy bl, specific humidity

q and parcel volume V . Except for vorticity, these are materially conserved quan-

tities that lend themselves well to the parcel representation of the model, since no

further prognostic equations are required to describe their evolution. This feature

of the model will be especially beneficial in studies involving tracer concentrations

or the addition of aerosol species, since the additional computational expense is
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reduced in comparison to grid-based models. Parcels also allow for a relatively

straightforward representation of processes such as condensation and evaporation,

although it is unclear how effective this will be in the case of a full microphysical

scheme. Finally, in order to accurately model the flow with MPIC, the entire do-

main is filled with parcels. In the simulations in this thesis, MPIC is initialised

with 8 parcels per grid cell in regions not occupied by an initial thermal, and 64

parcels per grid cell in cells where an initial thermal is present.

In MPIC, we transfer the parcel properties to the underlying grid by means of

trilinear interpolation in which the grid box is broken into smaller boxes which are

used as weights for interpolation. We denote gridded quantities by a bar, i.e. q̄

while parcel quantities have the subscript i. The gridded value of specific humidity

q̄ (x̄, t) is obtained at a grid point x̄ from the equation,

q̄(x̄, t) = V̄ −1
∑

i∈P(x̄)

ϕ (xi − x̄) qiVi, (2.8)

where

V̄ (x̄, t) =
∑

i∈P(x̄)

ϕ (xi − x̄)Vi, (2.9)

and the trilinear weights are given by

ϕ (xi − x̄) =

(
1− |xi − x̄|

∆x

)(
1− |yi − ȳ|

∆y

)(
1− |zi − z̄|

∆z

)
. (2.10)

Here P denotes the set of all parcels within the 8 grid boxes surround x̄. We can

then do the reverse operation to interpolate the velocity field from the grid back

to the parcel positions,

u (xi, t) =
∑

i∈Gi(x̄)

ϕ (xi − x̄) ū (xi, t) , (2.11)

where Gi is the set of all 8 grid points at the corners of the grid point containing

46



the ith parcel.

2.3 Vorticity inversion

To obtain the velocity field needed for parcel advection, we must invert the vortic-

ity field obtained from equation 2.7. In the horizontal, a spectral solver is used with

periodic boundary conditions, further details of which are included in Dritschel et

al. (2018). Previous versions of MPIC required that the horizontal vorticity com-

ponents, ξ and η must be zero on the lower boundary to allow their representation

in the inversion problem as a sine series in the vertical coordinate. This was done

to allow for a simple and efficient spectral solution in the vertical. Consequently,

the buoyancy at the lower surface could not vary, as the horizontal vorticity com-

ponents are forced by buoyancy gradients. In order to implement surface heating

for later studies on realistic convection and boundary layer turbulence, it would

be beneficial to allow for surface heating of the domain, represented by a flux of

buoyancy at the lower surface. To this end, a tridiagonal solver is implemented,

with fourth-order compact differencing (Esfahanian et al. 2005) supplemented by

one-sided compact differences at the boundaries (Ghader et al. 2011), resulting in

third-order accuracy. This method also allows for the eventual addition of variable

fluxes of other parcel properties, such as moisture, at the lower boundary of the

simulation. This marks the main deviation from the method described in Dritschel

et al. (2018) and is used in all subsequent works within this thesis.

The vertical extent of the domain in MPIC is between the lower boundary at

the surface z = 0 and a rigid boundary at the top of the domain z = Lz. In order

for the buoyancy to vary at the lower surface, it must be possible to have non-zero

horizontal vorticity components at the lower boundary, since these are forced by

the horizontal derivatives of buoyancy.

Dξ

Dt
= ω · ∇u+ by ,

Dη

Dt
= ω · ∇v − bx . (2.12)
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Our inversion problem is,

∇2A = ω , u = −∇×A , (2.13)

where A is a vector potential and ∇ · A = 0 has been imposed without loss of

generality. We then convert to semi-spectral space by taking Fourier transforms

in the x and y directions (with wavenumbers k and l respectively). The velocity

components are then given by,

û = B̂z − ilĈ , v̂ = ikĈ − Âz , ŵ = ilÂ− ikB̂, (2.14)

where the subscript z denotes differentiation with respect to the vertical coordinate

and Â, B̂ and Ĉ are the components of Â, the vector potential in semi-spectral

space. We can use the non-divergence of the vector potential to define the bound-

ary conditions,

Â = B̂ = Ĉz = 0, (2.15)

on the boundaries z = 0 and Lz, since we must have ŵ = 0.

Thus, the interior equations satisfied by Â, B̂ and Ĉ are

Âzz − (k2 + l2)Â = ξ̂,

B̂zz − (k2 + l2)B̂ = η̂,

Ĉzz − (k2 + l2)Ĉ = ζ̂ , (2.16)

where ξ̂, η̂ and ζ̂ are the x, y and z vorticity components (semi-spectral) respec-

tively.

This problem can be solved to second order accuracy using centred differencing

to discretize into the tridiagonal problems for the vector potential components.

However, we opt to use the fourth-order compact differencing of Esfahanian et al.

(2005) which gives us the tridiagonal problem,
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Âj+1 − 2Âj + Âj−1

∆z2
− K2

12
Âj+1 −

5K2

6
Âj −

K2

12
Âj−1

=
1

12
ξ̂j+1 +

5

6
ξ̂j +

1

12
ξ̂j−1, (2.17)

B̂j+1 − 2B̂j + B̂j−1

∆z2
− K2

12
B̂j+1 −

5K2

6
B̂j −

K2

12
B̂j−1

=
1

12
ξ̂j+1 +

5

6
η̂j +

1

12
η̂j−1, (2.18)

Ĉj+1 − 2Ĉj + Ĉj−1

∆z2
− K2

12
Ĉj+1 −

5K2

6
Ĉj −

K2

12
Ĉj−1

=
1

12
ζ̂j+1 +

5

6
ζ̂j +

1

12
ζ̂j−1, (2.19)

j = 1, . . . , nz − 1 , ,

where K =
√
k2 + l2, to be solved for Â, B̂ and Ĉ.

Because the boundary conditions for the vertical component of the vector po-

tential, C, are different to the two horizontal component, we need to assign a value

to ζ̂−1 across the lower boundary and similarly across the upper boundary in order

to define the source terms on the right-hand side of 2.19. To do this, we use the

semi-spectral version of the solenoidal condition on vorticity,

ikξ̂ + ilη̂ + ζ̂ = 0, (2.20)

which can be used to obtain ζ̂ in terms of ξ̂ and η̂. Applying this at the bound-

aries allows us to obtain expressions for the required terms,

ζ̂−1 = ζ̂1 + 2∆z
(
ikξ̂0 + ilη̂0

)
(2.21)

ζ̂n1 = ζ̂nz−1 − 2∆z
(
ikξ̂nz + ilη̂nz

)
. (2.22)

This second order approximation of the source terms, leads to a fourth-order ac-
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curate representation of Ĉ.

To obtain the vertical derivatives, Â′ and B̂′, we must solve another tridiagonal

problem,

1

6
Âz,j+1 +

2

3
Âz,j +

1

6
Âz,j−1 =

Âj+1 − Âj−1

2∆z
, j = 0, . . . , nz . (2.23)

These are supplemented by one-sided compact differences at the boundaries, as

in Ghader et al. (2011), due to the finite difference stencils extending beyond the

domain. However, this actually results in a loss of accuracy, and the scheme only

achieves overall third-order accuracy.

2.4 Parcel splitting and mixing

In MPIC, mixing is represented by the splitting and removal of parcels from the

model. The splitting of parcels is controlled by the integrated vorticity stretching,

estimated by

γi(t) =

∫ t

t0

(
|ωi ·

dωi

dt
|
) 1

3

dt. (2.24)

The parcel is split when this value exceeds γmax = 4, although tests in Dritschel et

al. (2018) show that the model is not sensitive to the choice of γmax. Upon splitting,

the parcel is replaced by two equal sized parcels separated by a distance determined

by the original parcel volume. A minimum volume is then defined to decide at

which point parcels should be removed from the model. When a parcel is removed,

its attributes are redistributed onto the grid corners and interpolated back onto

neighbouring parcels. This procedure is covered in more detail in Dritschel et al.

(2018). Currently, the minimum volume for splitting is set to ∆V/63 where ∆V is

the grid cell volume, although this choice is analysed further in Chapter 3.
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2.5 Non-dimensionalisation

The equations used in MPIC are non-dimensional, in particular, we non-dimensionalise

time using the characteristic squared buoyancy frequency gλ∆θl0/θl0 = 1 where

∆θl0/θl0 = 0.01 is a characteristic fractional variation of the liquid water potential

temperature. The lengthscale, λ is non-dimensionalised using 1/lambda = 1 where

λ = 2000m is the scale height. Combining these gives a non-dimensional gravity of

g = 1/(∆θl0/θl0λ), such that g = 1/(0.01 ∗ 1) = 100. The specific humidity is then

scaled by its saturation value at ground level q0 and the dimensionless equation

for buoyancy is

b = bl + bmmax
(
0, q − e−z

)
, (2.25)

where q = q/q0 and

bm =
gLq0
cpΘl0

. (2.26)

We use values of L/cp = 2500K, q0 = 0.015, and θl0 = 300K, giving bm = 12.5. As

previously stated, we make use of the incompressible Boussinesq approximation,

which is appropriate for shallow convection. In such a case it can be argued

that the Boussinesq approximation is not valid as this enters the realm of deep

convection. The approximation is used regardless for the purpose of keeping the

dynamics relatively straightforward. It may be reasonable to reduce the scale of

the case-defining heights to more typical values for shallow cumulus convection

and adopt an anelastic approach in which the density is a function of height (e.g.

Ogura and Phillips 1962) in future work.
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Chapter 3

Response of a rising thermal to vertical

wind shear in a Lagrangian framework

3.1 Introduction

Clouds and moist convection in the atmosphere can significantly influence the

large-scale environment (Arakawa and Schubert (1974), Mekonnen et al. (2006))

and play a large role in the global regulation of heat and moisture. In particular,

the large-scale organisation of convection can lead to the formation of mesoscale

convective systems (MCSs) (Houze 2004) such as squall lines and thunderstorms

which bring intense precipitation (Parker and Johnson 2000) and can cause severe

disruption. As such, it is important to understand the processes that influence the

development of such systems and their effects on convective systems of all scales.

In particular, vertical wind shear has a large impact on the formation and de-

velopment of MCSs, especially squall lines (Rotunno et al. 1988, Takemi 2006),

and individual clouds. Several studies have shown how the structure of a MCS can

change drastically in response to strong wind shear at different levels (e.g Chen

et al. 2015). For example, strong wind shear in the lower troposphere (from 0 km

to 5 km) leads to interactions with cold pools in the boundary layer and causes

a preference to develop into lines of clouds(Rotunno et al. 1988, Moncrieff 1992)
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while mid-level (5 km to 10 km) shear appears to encourage rotation and favours

development of supercells (Coniglio et al. 2006) such as those in which tornadoes

form. Strong shear in levels above this point seems to cause a flattening of cloud

tops (Sathiyamoorthy et al. 2004) and can inhibit convection through increased

exposure to radiation. Vertical wind shear can also affect the entrainment of dry

air and the turbulent mixing, which is important when considering the spread of

aerosol particles in the atmosphere (Wang and Prinn 1998, Yamaguchi et al. 2019).

Most work is focused on the role of wind shear in convective organisation and

as such make use of cloud resolving models (CRM), grid-based models with a

resolution typically of the scale 1 km in comparison to the 100m scale typically

seen in large-eddy simulation (Sommeria 1976, Deardorff 1980). These models

are limited by computational power and do not resolve motions on the smallest

scales, instead using sub-grid parametrisations involving eddy-closure assumptions

(Lilly 1962, Smagorinsky 1963). As such, there is little discussion of the impacts of

vertical wind shear on the smallest scales or for individual clouds, where thermo-

dynamic properties can vary on lengthscales of a few metres (Austin et al. 1985).

Lagrangian approaches, such as the Hamiltonian particle method (HPM, Klingler

et al. 2005) and finite mass method (FMM, Frank et al. 2002) have seen some

success in studies of atmospheric chemistry/transport (Grewe et al. 2014) when

compared to Eulerian methods and may be able to afford better resolution, but

are underused due to the need for tuning of various numerical parameters.

While the impacts of shear on convective organisation are well documented in

the literature, previous studies have overwhelmingly focused on advanced stages of

deep convective systems, such as supercells (Weisman 1992; Weisman and Rotunno

2000; Warren et al. 2017). Comparatively, studies of isolated thermals in the

literature are limited. Despite this, they offer considerable insight into the role

of wind shear in the initiation and development of early-stage convection, such as

shallow cumulus clouds. Some studies into sheared thermals have suggested that

sheared up and downdrafts are weaker than their shear-free counterparts (Peters

2016), despite the fact that shear is known to enhance convection in organised
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convective systems. A more recent study in Peters et al. (2019) also found that

the deepening of convection in sheared environments was actively inhibited by

vertical wind shear.

Moreover, the study of individual thermals and plumes is relevant to the de-

velopment and refinement of convective parameterisation schemes. Because such

schemes aim to represent an ensemble of clouds and plumes through their statisti-

cal properties, they depend heavily on our own understanding of individual clouds.

A core assumption of the earlier schemes (Arakawa and Schubert 1974; Yanai et al.

1973) are that the plumes are non-interacting with one another. These schemes

also have difficulties with representing shallow convection (Arakawa 2004; Sander-

son et al. 2010). As such, the application of higher resolution cloud simulations,

like LES and MPIC, to the study of individual clouds and their response to verti-

cal wind shear may yield results of use to global models that make use of modern

parameterisation schemes. In particular, some studies on isolated thermals aim to

assess the role of vertical wind shear in the initiation of convection, feeding into

the trigger functions and closures used in convective parameterisation schemes (i.e.

Pan and Randall 1998). As such, further analysis of sheared thermals using novel

approaches and analysis may offer further insight to be used in the refinement of

the representation of convection on the global scale. For example, a particle based

method may be beneficial in identifying exactly how vertical shear inhibits convec-

tive motions, potentially through the use of tracers, or even in sheared transport

studies.

To this end, we employ the Moist Parcel-In-Cell (MPIC) method described in

Dritschel et al. 2018, a Lagrangian, vorticity dynamics based model for studying

moist convection that uses an underlying grid. The MPIC method is still in an

early stage, but an initial comparison of the model to the Met Office NERC model

(MONC) detailed in Böing et al. (2019) has shown promising results. In particu-

lar, MPIC is able to resolve cloud features on much smaller scales than a MONC

simulation of the same grid resolution due to its Lagrangian nature. This is es-

pecially helpful in studies of turbulence and mixing/entrainment. The model also
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uses a more physical representation of mixing than the parametrisation schemes

adopted in LES/CRM simulations through the splitting and removal of parcels.

These features make it a strong choice to analyse the influence of vertical wind

shear on the development of an individual cloud and to look at properties such as

enstrophy which can be used as a measure of turbulence.

We set up idealised simulations of the ascent of a spherical thermal, initially at

rest, in environments with a linear vertical shear profile of varying strength and

compute bulk properties, such as enstrophy and liquid water volume, to gain some

insight into the effects of shear strength on the development and structure of the

resulting cloud. We separate the enstrophy and kinetic energy into cloud and dry

air components to demonstrate the increasing degree of entrainment. In Section

3.2 we provide an overview of the test case. Section 3.3 contains the main results

and discusses their implications. Finally, Section 3.4 summarises our results and

considers possibilities for refinements and extensions.

3.2 Physical Model

We use the MPIC model as described in Chapter 2 and our test case is similar

to that described in Dritschel et al. (2018). The initial setup of the thermal

is shown later in Figure 3.1. The lower region of the environment is a mixed

layer, with neutral liquid water buoyancy, bl = 0 and a uniform specific humidity

q̃env = µq̃th, where µ = 0.9 is a constant and q̃th is the specific humidity inside the

thermal. Above this is a stratified region, beginning at the level of dry neutral

buoyancy, zb = 2.38 (corresponding to the humidity of parcels located in the mixed

layer, q̃b = 0.8), and the dimensionless Brunt-Väisälä frequency in this region is

N = 0.97, such that there is no discontinuity in the buoyancy field at this point.

We also specify the height of the lifting condensation level, zc = 2.5, which is

used to determine the specific humidity of parcels located within the thermal,

q̃th = ezc . Finally, we specify the level of moist neutral stratification, zm = 5.0,

and the level of dry neutral stratification, zd = 4.0. We use periodic horizontal

boundary conditions with a rigid, free-slip boundary to represent the surface and
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upper boundary of the domain.

We can calculate the buoyancy inside the thermal, from

bl,th = N2 (zd − zb) . (3.1)

We also introduce an asymmetry in buoyancy within the thermal such that

bl = bl,th

(
1 +

e1x
′y′ + e2x

′z′ + e3y
′z′

R2

)
, (3.2)

where x′, y′ and z′ represent the displacement from the centre of the thermal and

e1 = 0.3, e2 = −0.4 and e3 − 0.5 are dimensionless constants. These are chosen to

ensure that the mean value of bl is unchanged. This asymmetry is carried over from

the initial test case in Dritschel et al. (2018) and is used to break the symmetry

of the simulation. While the shear in our test cases may accomplish this, a small

asymmetry can still lead to more interesting dynamics, and as such, we have kept

it in our study.

Where this initial setup differs is that we have now opted to smooth the edge of

the initial thermal in an attempt to make the model more realistic. The sharp edges

in previous MPIC simulations lead to strong vorticity and resolution dependence

so we have altered the properties accordingly. The radius of the thermal used in

this work is now R = 0.88 and we allow buoyancy and humidity to transition to

the background levels in the mixed layer over the outer 20% of the radius.

To accomplish this, we introduce a function of the radial position within the

thermal that tells us how far between the inner edge and outer edge of the smoothed

region each parcel, i, is during initialisation and apply this to each parcel within

the smooth region:

di =

√
x′2
i + y′2i + z′2 − 0.8R

R− 0.8R
=

ri − 0.8R

R− 0.8R
(3.3)

Note that di = 1 when ri = 1 and di = 0 when ri = 0.8R and the first derivative

is zero at both. With such a function, we can represent the buoyancy of a parcel,
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(a) (b)

Figure 3.1: x-z cross-sections of the initial buoyancy (a) and specific humidity (b)
fields for the test case.

bi in this region by

bi = bl,th (1− Fsm (di)) (3.4)

where bl,th has the same meaning as before and Fsm is a smoothing function used

to smooth the sharp edges of the thermal. This will give a parcel at r/R = 1 a

buoyancy of zero, making a continuous transition to the environmental value. The

humidity for a parcel can be calculated from

q̃i = qth (1 + (µ− 1)Fsm (di)) , (3.5)

such that the humidity of a parcel at the edge of the thermal is qi = µq̃th.

The smooth step function used for this purpose is

Fsm (d) = 6d5 − 15d4 + 10d3. (3.6)

The buoyancy and specific humidity of the initial thermal at rest are shown in

Figure 3.1.

The final and most important change to the initial conditions is the implemen-

tation of a vertical wind profile across the entire domain. In MPIC, this is done
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relatively simply by applying an initial distribution of the horizontal vorticity com-

ponents. Because we use free-slip boundary conditions at the vertical boundaries,

this vorticity will persist at all times in the simulation, resulting in a constant in

time background wind profile. A wind shear profile, can be obtained by applying

a background vorticity profile to the domain, i.e.

Sx(z) =
d ⟨u⟩
dz

= ⟨η⟩ , Sy(z) =
d ⟨v⟩
dz

= −⟨ξ⟩ . (3.7)

Angled brackets refer to the horizontal averages of quantities. In this work, we

take the simplest possible case, a horizontal wind in the x-direction that increases

linearly with height and is zero at the bottom of the domain. This corresponds

to adding a constant value to ⟨η⟩, since the vorticity is equivalent to the vertical

gradient of horizontal velocity, which determines the strength of the vertical shear

profile. It may be feasible in future works to apply more complex shear profiles.

To investigate the effects of increasing shear, we use a constant value for the shear

parameter Sx throughout the domain and vary this from 0.0 to 1.0 in intervals of

0.1. The upper limit here is roughly equivalent to the non-dimensional squared

buoyancy frequency (N2) in the environment. Going beyond this value would likely

lead to overturning and in runs where this was attempted, the vorticity values

became excessively large early in the run. This is likely because the buoyancy

frequency determines the stratification and stability of the atmosphere, so as the

vertical shear becomes stronger, the environment becomes susceptible to Kelvin-

Helmholtz instabilities. While these instabilities can occur within clouds in real

convection, if they affect the entire domain due to the shear being too strong,

the entire environment becomes unstable, leading to the observed vorticity blow-

up. It is reasonable to assume that such cases are generally not common in the

atmosphere and do not offer much insight into cloud development. The simulations

are run out to a non-dimensional time of 20 (roughly double the duration of those

presented in Dritschel et al. (2018)) to study the development of the system beyond

the initial ascent of the thermal.
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3.3 Results

Here we present the various diagnostics and bulk properties computed to analyse

the impact of vertical wind shear. Unless stated otherwise, these properties were

computed using the gridded values of the various attributes. For any diagnostic

which depends linearly on a prognostic variable, the values obtained from the

parcel and gridded based variables are identical by design.

3.3.1 Flow evolution

In this section, we present visual representation of the flow evolution for a selection

of shear parameters (S = 0.3, 0.5, 0.7, 1.0). This is shown in Figures 3.2-3.5.

In these figures, the actual ’cloud’ that is formed by the rising thermal is visu-

alised by the liquid water content shown in the third column of each figure. As

such, this is immediately useful to qualitatively assess the effects of shear on the

shape of the cloud. The first snapshots, taken at t = 5 can highlight the impact of

shear on the initial ascent of the thermal. In the lower shear cases, it is immedi-

ately apparent that the thermal penetrates the stratified region of the domain to

a greater vertical extent, and is less stretched horizontally. The cloud at the early

stages shows a ’mushroom’-like shape not dissimilar to the shear-free test case in

Dritschel et al. (2018) and Böing et al. (2019), albeit stretched in the direction of

the horizontal wind. In the case of stronger vertical shear, this is not present, and

even at early times, the cloud starts to fragment. This is in line with the results

obtained in other studies of sheared thermals (Peters et al. 2019) which also found

that the vertical extent and deepening of convection is inhibited by vertical shear.

At later stages in the cloud’s evolution, it becomes spread across the upper

region of the domain. In the case of weaker vertical shear, the cloud area remains

mostly contiguous. In the higher shear cases, however, the cloud water is scattered

across the domain in various fragments, and it is debatable whether the images

really depict a cloud at all. At a glance, there also appears to be less cloud volume

in the domain as the shear strength is increased, and it occupies a lesser vertical
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extent than low shear cases.

The buoyancy field in these figures can, to some extent, be used to track the

displacement of air in the system as the thermal rises. Dark red regions correspond

to cooler air from the mixed layer that becomes entrained into the thermal as it

rises through the domain. As the thermal rises through the domain, air from the

mixed layer is pulled into the space behind the rising thermal. Similarly, air above

the thermal is pushed out of the way during its ascent and forced downwards.

Consequently, air from below is pulled up into the stratified region and vice versa.

To distinguish between air entrained from below and the air associated with the

thermal, we can compare the buoyancy cross-sections to the corresponding liquid

water cross-sections, as buoyant air from the thermal that rises above the conden-

sation level will form cloud water. As such, less buoyant air in the upper regions

of the domain that do not overlap with the cloud itself is likely to have been en-

trained from the mixed layer. In the highest shear case (Figure 3.5) we can clearly

see wisps of air from the mixed layer being pulled up above the cloud. This is

particularly evident at t = 10 on the right of figures 3.5 (e) and (g) and is present

at later times too but appears to be mixed with the upper air. We can see that

more air is being caught up within the cloud itself as the shear is increased. From

these cross-sections alone, however, it is difficult to assert that vertical shear is

enhancing the entrainment of air into the stratified region of the domain. Many of

these features are also visible in the specific humidity cross-sections shown in the

second column.

Finally, the vorticity field paints an interesting picture and can show how turbu-

lence spreads through the domain as a result of the cloud’s ascent. At early times

in all simulations, the regions of high vorticity are primarily located at the edges

of the thermal. However, we can also observe that the vorticity field appears to

trace out the path of the thermal during its ascent, leaving a ’trail’ behind it where

the environmental air has been disrupted. This is particularly evident in the low

or mid-shear cases. As the system is allowed to evolve further, vorticity rapidly

spreads throughout the domain as environmental air becomes caught up in the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.2: x-z cross sections through the centre of the domain for shear parameter
Sx = 0.3 showing the buoyancy, b, (a,e,i,m), specific humidity, q, (b,f,j,n), liquid
water content, ql, (c,g,k,o) and vorticity magnitude, |ω|, (d,h,l,p). The cross-
sections are taken at t = 5 (a-d), t = 10 (e-h), t = 15 (i-l) and t = 20 (m-p).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.3: x-z cross sections through the centre of the domain for shear parameter
Sx = 0.5 showing the buoyancy, b, (a,e,i,m), specific humidity, q, (b,f,j,n), liquid
water content, ql, (c,g,k,o) and vorticity magnitude, |ω|, (d,h,l,p). The cross-
sections are taken at t = 5 (a-d), t = 10 (e-h), t = 15 (i-l) and t = 20 (m-p).
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Figure 3.4: x-z cross sections through the centre of the domain for shear parameter
Sx = 0.7 showing the buoyancy, b, (a,e,i,m), specific humidity, q, (b,f,j,n), liquid
water content, ql, (c,g,k,o) and vorticity magnitude, |ω|, (d,h,l,p). The cross-
sections are taken at t = 5 (a-d), t = 10 (e-h), t = 15 (i-l) and t = 20 (m-p).
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turbulent eddies forming around the thermal’s path. At the latest stages of these

simulations, large regions of the mixed layer have become turbulent. This pro-

cess happens much more quickly in the case of strong vertical shear and vorticity

rapidly covers almost the entirety of the lower domain.

These cross-sections offer a qualitative insight into the ascent of the thermal

and evolution of the system in response to vertical shear. However, a quantitative

analysis would be greatly beneficial to quantify the impact of increasing shear

strength on an individual clouds development.

3.3.2 Cloud volume and depth

The most obvious property to study when determining how shear influences the

development of cumulus clouds is the liquid water volume – the total amount of

cloud produced in each simulation. This is relatively easily computed by summing

the liquid water fraction across all grid cells/parcels and multiplying by the volume

occupied by each. We use the gridded fields here as they are saved more frequently

due to taking up less space and therefore offer a greater temporal resolution. The

time evolution of the liquid water volume is shown in Figure 3.6.

The first thing of note is that the point at which the cloud volume reaches its

peak value seems to occur at a later time as the vertical shear strength increases,

which suggests that the shear may be hindering the vertical motion of the thermal.

This is in agreement with the results of Peters (2016) and Peters et al. (2019), as

well as the observed cloud cross-sections in Section 3.3.1. It is also interesting that

the initial peak is actually higher in the low-mid shear runs, with the highest value

occurring for a shear parameter of Sx = 0.4. As the vertical shear gets stronger

past this point (Sx = 0.7− 1.0) the initial growth of the cloud becomes very slow,

although there is a greater accumulation of liquid water than the low shear cases.

This is likely a result of shear slowing the vertical motions of cloud parcels in the

simulation, meaning not only that they rise more slowly, but also do not descend

as rapidly afterwards. If we focus on the initial growth though, it suggests that

some degree of wind shear may be favourable for the growth of larger clouds. This

64



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.5: x-z cross sections through the centre of the domain for shear parameter
Sx = 1.0 showing the buoyancy, b, (a,e,i,m), specific humidity, q, (b,f,j,n), liquid
water content, ql, (c,g,k,o) and vorticity magnitude, |ω|, (d,h,l,p). The cross-
sections are taken at t = 5 (a-d), t = 10 (e-h), t = 15 (i-l) and t = 20 (m-p).
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Figure 3.6: Time evolution of total liquid water volume for shear values ranging
from Sx = 0.0 to Sx = 1.0

result is not immediately obvious from the cross-sections shown previously. In

particular, shear in the lower levels may have the greatest influence on the early

development of an individual cumulus cloud. Separating the shear profile into

lower, mid and upper level components would be an interesting exercise to see at

which level shear has the greatest impact.

We can look further into the vertical extent of the clouds by calculating a liquid

water weighted mean height and standard deviation with serves as a ‘half-depth’.

These are shown in Figure 3.7. As expected, the cases with little to no vertical

shear generally have a higher mean height and this decreases as the vertical shear

gets stronger. It is also worth noting that the mean cloud height in every case

seems to oscillate slightly while slowly settling to a steady value, suggesting it

evolves towards an equilibrium state. Higher shear values seem to result in a

larger half-depth, meaning the cloud is more spread out vertically in the case of

high wind shear. We also see that the initial growth slows down as shear increases,

similar to the cloud volume. At first glance, this could be interpreted as the highest

shear cases resulting in larger, deeper clouds being built up over a longer period
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Figure 3.7: Time evolution of mean cloud height (a) and half-depth (standard
deviation, (b)) for all values of shear parameter Sx.

of time. However, the results in Section 3.3.1 clearly show that the clouds in these

cases are being pulled apart by the vertical shear and the convection at work is

much less intense, resulting in very little vertical motion of cloud water.

3.3.3 Vertical motion

To investigate this further, we calculate the maximum updraft velocity for each

simulation to gain some insight into the influence of shear on vertical motions

within the domain. This is done in a simple manner, simply finding the maximum

value of w at each save time in the simulation. We also compute the total kinetic

energy associated with vertical motions of the system integrated over the entire

domain, Kv,tot =
1
2

∫
V
w2dV .

Results are shown in figure 3.8. They show the strong impact of shear strength

on the initial ascent of the thermal, with the peak updraft velocity in this stage

decreasing steadily as Sx increases. The vertical kinetic energy (KE) shows a

similar trend at first, but at later times in higher shear cases we can see that the

peak vertical kinetic energy grows with increasing shear. It almost appears as if

there are two regimes visible in the kinetic energy evolutions, with a transition
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Figure 3.8: Time evolution of peak updraft velocity (a) and vertical kinetic energy
(b) for shear values ranging from 0.0 to 1.0

occurring at shear strengths of around Sx = 0.6 or Sx = 0.7. In the weak-shear

regime, we see that the vertical KE peaks rapidly during the initial ascent of the

thermal, before also decaying rapidly at later times. In the high-shear regime, the

vertical KE continues to grow, peaking at much later times and decaying slowly

afterwards.

Many of the vertical KE evolutions appear to intersect at a time of approximately

t = 4.3. Here the models transition from the early ascent phase where shear is

inhibiting the vertical motions to later stages where vertical motions are enhanced

by the wind shear, as evidenced by the vertical KE evolution after this point.

At a glance, these results tell us that the vertical motions at later times are more

intense in the higher shear cases. However, it is possible that a large component

of this energy is due to dry air which has been entrained into the cloud during its

ascent. To investigate this, we set a liquid water threshold which defines which

grid cells contain significant cloud water and separate the vertical kinetic energy

into cloud and dry air components. This threshold is set at hl,threshold = 0.01 in

line with the value used in Böing et al. (2019) when calculating fractal dimension.

The time evolution of these energy components are shown in Figure 3.9 for all

68



(a) (b)

Figure 3.9: Time evolution of vertical kinetic energy for cloud air (a) and dry air
(b) for shear values ranging from 0.0 to 1.0

runs. In the figure we see that, for low-mid shear values, the same initial increase

occurs for dry air prior to the onset of condensation with a noticeable decline

once condensation starts to occur. In the higher shear simulations, the dry air

vertical KE is higher for the majority of the simulation. Also interesting is that

the general shape of the cloud and dry air vertical KE curves are actually similar

in the highest shear cases, even though the cloud values are significantly lower.

Evidently, the vertical motions in high shear cases are dominated by the dry air

which is disrupted by the thermal during its ascent. This serves to confirm that

the vertical motions of cloud water are relatively weak for high shear, leading to

the observed accumulation of liquid water at later times.

The differences in vertical KE between weak-shear and high-shear regimes noted

in Figure 3.8 are equally apparent in the dry air vertical KE evolution. The

transition here is also seen to occur at shear strengths in the Sx = 0.6 to Sx = 0.7

range. This implies that there is some link between the difference in the vertical

KE evolution between the two regimes and the entrainment of dry air into the

cloud at low levels, since the moist component of the kinetic energy is relatively

low. However, work in Peters et al. (2019) suggests that the role of entrainment in

inhibiting vertical motions is not as significant when compared to dynmic pressure

69



acceleration. They do also note, though, that entrainment may play a greater

role in the dilution of buoyancy in the middle troposphere, which may be more

comparable to the domain sizes considered here. An experiment with only low-

level vertical shear would be an interesting means to investigate this further and

analysis of dilution in our case studies would also present an interesting avenue of

research. This is presently beyond the scope of this study, but developing methods

to better quantify entrainment within particle methods would be highly beneficial.

3.3.4 Enstrophy

While the study of vertical kinetic energy has given a clear indication of significant

entrainment in high vertical shear simulations, the total enstrophy of the system is

generally a stronger indicator of turbulence. Hence, the enstrophy field should be

expected to show a much more pronounced difference between dry air and cloud

air in the case of significant entrainment. To investigate this, we integrate the

squared vorticity magnitude over the entire domain to obtain a measure of total

enstrophy,

E =

∫
V

|ω|2 dV. (3.8)

We subtract the initial vorticity profile from ω to get the vorticity field relative to

background wind. As above, we separate this into cloud and dry air components,

but this time we compute the ratio between the two terms. This will provide a

measure of the turbulence present in the cloud itself compared to the environmental

air, which can be used to illustrate the extent of entrainment due to wind shear.

This is shown in Figure 3.10. We also show the values obtained for cloud and dry

air separately in Figure 3.11.

This paints a very clear picture. In the case with no shear, a sharp peak occurs

during the initial ascent of the thermal after the onset of condensation before

decaying at later times. We note that this value remains above 1.0 until around t =

15 suggesting that the majority of the turbulence is due to the cloud itself. As the

vertical shear is increased, however, this peak becomes less and less pronounced,

suggesting that more dry air is becoming turbulent as a result of interactions with

70



Figure 3.10: Time evolution of ratio between cloud and dry air enstrophy for shear
values ranging from 0.0 to 1.0.

the rising thermal. And for the strongest shear values (Sx ≥ 0.7), this ratio does

not exceed 1.0 at any point in the simulation. The implication of this is that

significantly more dry air is disturbed and entrained into the cloud during its

ascent as the strength of the vertical shear increases. Physically, the entrainment

of dry air is causing the cloud to spread out horizontally as dry air enters the

thermal.

Looking at the values of enstrophy for cloud and dry air individually, we see that

while there is some variation in cloud enstrophy with vertical shear strength, this

does not account for the low ratios observed in higher shear cases (in fact some high

shear cases actually show greater values for cloud enstrophy). Looking at the dry

air kinetic energy confirms this: the observed decay in enstrophy ratio is largely due

to a considerable growth in the dry air enstrophy with increasing vertical shear

strength – significantly more dry air is entrained by the initial thermal during

its ascent. This causes the thermal to rapidly spread out and disrupt more of the

environmental air, causing it to rapidly become turbulent. This correlates with the

observed effects on liquid water volume: if entrainment and wind shear are pulling
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Figure 3.11: Time evolution of enstrophy for cloud air (a) and dry air (b) for shear
values ranging from 0.0 to 1.0

the thermal apart as it rises initially, a smaller portion of the thermal will rise

above the condensation level initially while the rest will lag behind. Disentangling

the effects of shear and entrainment in MPIC is somewhat difficult, as we need to

develop a means to quantify entrainment within the Larangian framework. This is

significantly easier in grid-based Eulerian methods. Because entrainment and wind

shear inhibit the vertical motion of cloud water, the cloud above the condensation

level takes longer to move downwards than in low shear cases and the rest catches

up, resulting in the slow accumulation of liquid water observed in Figure 3.6.

The increasing half-depth with shear strength actually suggests that the cloud

itself may be pulled apart by the vertical shear, becoming more fragmented and

scattered across the upper region of the domain. It is also possible that a significant

portion of the dry air enstrophy may be contained in the lower region of the domain

(mixed layer) as the flow becomes turbulent during the thermal’s ascent.

To further investigate this, we look at the x-z cross-sections of liquid water

content and vorticity magnitude through the centre of the domain, as well as

vertical profiles of liquid water volume and total enstrophy for each of the shear

values. We only present images for Sx = 0.3, 0.5, 0.7, 1.0 to provide a representative

range of low, mid and high shear examples. We attempt to capture the same stage
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Figure 3.12: x-z cross-sections through the centre of the domain for liquid water
(a, c, e, g) and vorticity magnitude (b, d, f, h) for simulations with shear values
Sx = 0.3 (a, b), 0.5 (c, d), 0.7 (e, f) and 1.0 (g, h) at the time of peak cloud
enstrophy.
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Figure 3.13: Vertical profiles of liquid water volume (a) and total enstrophy (b)
for simulations with shear values Sx = 0.0, 0.3, 0.5, 0.7, 1.0 at the time of peak
cloud enstrophy.

in cloud evolution for all of these, so rather than using the same fixed time, we

identify the time at which the total cloud enstrophy is at its peak (when the cloud

itself is at its most turbulent). For the aforementioned shear strengths, these times

are tp (Sx = 0.0) = 8.5, tp (Sx = 0.3) = 8.3, tp (Sx = 0.5) = 8.4, tp (Sx = 0.7) =

10.5, tp (Sx = 1.0) = 10.1.

The cross-sections are shown in Figure 3.8 and show roughly what we would

expect to observe in this case. The clouds formed in low to intermediate shear

simulations still appear largely concentrated whereas the higher shear simulations

show significant fragmentation and spread across the upper region of the domain.

This is consistent with the results noted in previous sections, as the greater vertical

spread of the cloud in high shear cases was linked to significantly more vertical

spread. Whether the highest shear cases still constitute an individual cloud is

worth studying in further detail, perhaps through the use of liquid water proba-

bility distribution functions. At present, the visual difference still shows a clear

structural deviation from the low shear cases.

Looking next at vorticity we can see that the low shear cases have very little
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vorticity in the mixed layer below the cloud at this point in the simulation, com-

pared to the high shear cases. This is somewhat expected, as the enstrophy ratio

shows a lesser degree of entrainment in these simulations. In the high shear cross-

sections we see significant turbulence in all regions except the highest points in the

domain, where the cloud water has not reached. This is particularly revealing as

it shows how much air in the mixed layer has been entrained by the cloud during

its initial ascent. The cross-section for Sx = 0.3 shows clear eddies forming around

the thermal as it ascends and displaces air in the stratified region. In the Sx = 0.5

run these eddies are still apparent, but there are now eddies forming in the lower

levels of the domain, formed as the thermal entrained air during its ascent. As the

shear is increased further, the disturbance in the low levels becomes increasingly

pronounced and widespread and in the Sx = 1.0 cross-section we see that most of

the domain below the cloud top is filled with turbulent eddies.

Mid-level shear causes the vortices associated with the cloud to become stretched

horizontally compared to the no shear case. These observations are in line with

Coniglio et al. (2006) who showed that strong mid level shear favoured rotation.

The effects of high level shear in the simulations can also be observed through lim-

iting the vertical extent of the liquid water and cloud vorticity. This is consistent

with previous observations of the kinetic energy in Figures 3.9 and 3.10, as the

late time kinetic energy of the system is largely dominated by the motions of dry

air. It is worth noting that these are only cross-sections through the centre of the

domain and still only provide a limited view of the full cloud structure. Further

analysis of the vertical structure could be obtained through studying profiles of

the horizontally averaged buoyancy field and its vertical flux and the evolution of

both. x− y cross-sections through key heights in the domain may also offer better

insight into the horizontal distribution of liquid water. Alternatively, it may be

worthwhile computing the difference between the buoyancy and the background

profile or horizontal average to offer a better representation of the origin of air in

the stratified region and identify entrainment. It may also be feasible to map key

heights based on properties of the system, such as heights of peak enstrophy (or

the cloud/dry air enstrophy ratio), cloud water and updraft velocity etc.
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Figure 3.14: Liquid water probability distribution functions for shear values rang-
ing from 0.0 to 1.0 calculated as in Böing et al. (2019). These use the parcel data
at the save interval closest to the time of peak enstrophy for each simulation.

The vertical profiles of liquid water and total enstrophy in Figure 3.13 mostly

serve as a companion to the above results, demonstrating the vertical structure of

the resulting clouds and turbulence in the lower region of the domain. It reaffirms

that the cloud is less spread out vertically in lower shear cases, but the peak of the

cloud water distribution is located at a higher altitude. It appears some weak shear

can result in more cloud water being concentrated at the base of the cloud, causing

its mean height to drop as observed. Higher shear cases cause this effect to become

even more dramatic, resulting in a cloud within which most of the water volume

is concentrated in the cloud base, with very little reaching the upper regions. In

this case, using the standard deviation of cloud height as a measure of the cloud

depth may not be an accurate measure of how deep the convection is. While there

is still a portion of cloud water at upper levels in the highest shear cases, it has

very likely been torn apart by the shear in these levels, leaving small fragments

in the upper region. In simulations with more sophisticated microphysics these

would likely be removed by evaporation.
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We also calculate the liquid water probability distribution functions using the

same algorithm from Böing et al. (2019). These are shown in Figure 3.14. Because

saving parcel data requires a lot of storage, the parcel save intervals are significantly

less frequent than the gridded data (∆tsave,p = 2.0) so we used the parcel data

closest to the time at which peak cloud enstrophy occurs for each simulation. The

gridded field data is saved at intervals of (∆tsave,g = 0.1) and so offers a much

greater temporal resolution. Reducing the discrepancy between these would also

be beneficial, although saving parcel data frequently increaes storage demands.

It may be more reasonable to look at the same point in all simulations, but for

consistency with the other comparisons drawn above, we attempt to stay as close

to the time of peak cloud enstrophy as possible. Regardless, these still reflect the

effects of vertical shear on the structure of the cloud.

In the no shear case, we see a peak in liquid water fraction just below hl =

0.07, suggesting that the majority of the cloud volume is contained in a smaller

number of parcels with higher liquid water content. As the shear value is increased,

the effects on the curve are very clear: the concentration of parcels with high

liquid water are reduced, causing this peak to flatten (and drift to the left); and

the concentration of parcels with small liquid water fractions (or none at all)

increases as the vertical shear is increased. The Sz = 0.3 case seems to behave

differently, with the high liquid water peak occurring nearer the shear-free case.

The lower liquid water bins are increasingly filled as the shear strength is increased.

Furthermore, the highest shear cases (Sx = 0.8, 0.9, 1.0) appear to show an almost

identical liquid water distribution and vary dramatically compared to the other

cases. These results reaffirm that, especially in cases with higher vertical shear,

the cloud is increasingly pulled apart, as it becomes spread out over a greater

number of parcels. The liquid water distributions and their dependence on shear

are particularly interesting when we also consider that the higher shear cases have

a greater total cloud volume at the time of peak cloud enstrophy.

It is also worth noting that the leftmost values in Figure 3.14 actually occur

below the threshold value of liquid water fraction used in the previous results,
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although it is unclear whether the threshold should be adjusted to include these.

A final point of interest is the behaviour of the curve for shear parameters of

Sx = 0.7 and Sx = 0.8 where there appears to be a transition in the behaviour of

the curve. The highest shear cases (Sx = 0.8, 0.9, 1.0) appear to show an almost

identical liquid water distribution are vastly different compared to the other cases,

further emphasising the division between low and high shear regimes.

At a glance though, our results do seem to suggest that low-mid strength vertical

wind shear (particularly in the lower/mid levels) can actually produce a greater

volume of liquid water and deeper clouds without significant fragmentation. A

more detailed analysis of the structure may be necessary, through vertical profiles

of heat and moisture fluxes, or studying buoyancy anomaly compared to the en-

vironment or other means as mentioned previously. Nonetheless, our results at

higher shears show clear evidence that the vertical convective motions are being

strongly inhibited, as seen in the vertical kinetic energies and cross sections of

cloud water. The inhibition of convection due to vertical shear is documented in

existing studies (Peters et al. 2019) and reproducing this effect, despite the differ-

ences in formulation between MPIC and conventional approaches like LES gives

some validity to the method.

3.4 Conclusions

We have presented a simple model of cumulus convection subject to vertical wind

shear, using a Lagrangian, particle-based method with the aim of providing some

insight into the effects of different shear strengths on the development of an indi-

vidual cloud in an idealised setting. The choice of a linear shear layer with a depth

of 12 km may not be an accurate representation of typical atmospheric conditions,

but it provides a starting point from which to study the effects of more complex

shear profiles. One possible extension would be to investigate the effects of strong

wind shear concentrated in different levels of the domain. Regardless, the results

show that vertical wind shear can significantly influence the evolution of a shallow

cumulus cloud, even in the absence of sophisticated microphysics. Improvement
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to the microphysical scheme and potentially implementing precipitation may lead

to increased organisation of convection in the system. The vertical shear causes

updrafts and the resulting clouds to become slanted, and, as such, the highest

region of the cloud, where condensation occurs more readily, will be located on

one side of the cloud. The evaporation of rainwater on this side of the cloud will

produce a cooling effect on the environment and may enhance the organisation of

convection. In the absence of precipitation and evaporation, the entrainment of

dry air is a very important factor in the growth and structure of a rising thermal.

Some low-mid shear (particularly in the lower levels) will delay the initial ascent,

but leads to a greater overall liquid water volume, with a larger fraction of this

being at the cloud base, resulting in clouds with a much greater vertical extent.

In the highest shear cases, liquid water slowly accumulates in the upper region of

the domain, but is limited vertically.

The impacts of vertical shear even more apparent when looking at the kinetic

energy and enstrophy of the cloud and dry air components of the domain. At lower

shears, the enstrophy ratio between cloud air and dry air shows a very clear peak

which becomes less and less pronounced as the shear is strengthened. We observe

that the initial ascent of the thermal is hindered greatly in the highest shear cases,

while the majority of the total system enstrophy is concentrated in the dry air

being entrained. Looking at the structure of the cloud suggests that the shear and

entrainment tear it apart in cases where the vertical shear is sufficiently strong.

More detailed analysis is required her. Studies of fractal dimension and liquid water

probability distribution functions or other measures of parcel dispersion may offer

more insight into the effects of shear on individual cloud structure and convective

initiation. This is of particular interest to the atmospheric community due to

the importance of trigger function in the closure assumptions for parameterisation

schemes.

Future work on this topic should endeavour to study the potential energy of the

system to see how much of it is being used to move dry air, especially in cases

where there is significant entrainment and to look at more physically realistic
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shear profiles. An especially important step forward from the work presented here

is to develop a means to quantify entrainment within MPIC to disentangle its

influence on vertical motions from the wind shear itself. One potential means to

do this is through the addition of a tracer population in the environmental air,

and would take advantage of the natural addition of parcel attributes in MPIC.

This would allow us to follow parcels of air from the mixed layer and their vertical

displacement as a result of the thermal’s ascent. Implementing more complex

microphysics in the model, in particular precipitation and evaporation, would also

be particularly interesting to investigate whether convective organisation occurs

on the scales studied in these models. An anelastic framework would also be

helpful here, given the vertical extent of the domain brings the validity of using

the Boussinesq approximation into question. This framework would allow for a

study of deep convection subject to vertical shear. One could even go further and

add in horizontal wind shear, although it would need to be made consistent with

the boundary conditions (either by choosing a periodic profile or modifying the

horizontal boundaries) to study the effects of rotation.

The list of refinements and extensions that could be made to produce a more

realistic setting is extensive. However, it should not detract from the benefits of

the idealised test case presented. Even in a largely simplified setting, we have been

able to demonstrate the effects of vertical wind shear on a developing cloud and

the subsequent consequences for its bulk properties and structure. Our results at

high shears are consistent with the limited existing literature on isolated thermals,

although the increased cloud content at low shear is interesting. Further analysis

of these test cases in a Lagrangian framework, incorporating tracers, for example,

may offer a greater insight into potential sensitivities of convective systems to shear

and entrainment, particularly in the lower troposphere, as was suggested in Peters

et al. (2019).
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Chapter 4

Energy budget analysis of a rising thermal

in the Moist Parcel-In-Cell method

4.1 Introduction

Many factors contribute to the intensity of convection observed in the atmosphere

and need to be accounted for in large-scale circulation models. Due to the tur-

bulent nature of atmospheric convection and complex microphysics, the processes

that primarily drive moist convection are highly nonlinear. For example, the po-

tential energy released by condensation in clouds can often allow them to overcome

the stratification of the atmosphere. This can cause deep convection, extending as

far as the tropopause, often accompanied by intense rainfall and thunderstorms.

If external conditions are favourable, deep convective cells can even organise and

give rise to mesoscale convective systems (Houze 1997; Houze 2004). Other cloud

microphysical processes, such as freezing and riming, also contribute to the energy

budget of these systems (Zipser 1994; Zipser and Lutz 1994). Meanwhile, tur-

bulence can lead to a dissipation of kinetic energy via molecular diffusion at the

smallest scales (Kolmogorov 1941; Onsager 1949; Smagorinsky 1963). As such,

understanding the energy transfers occurring within clouds is important for devel-

oping representations of convection at all scales.

81



Figure 4.1: Skew-T plot showing key features. The positive area denotes a re-
gion of convective available potential energy (CAPE ) and the lower negative area
represents a region of convective inhibition (CIN ). Isotherms are shown at 45
degree angles, hence the name skew-T. The lifting condensation level, LFC and
equilibrium level are labelled and the moist and dry adiabats are shown alongside
the sounding data (dark line with data points marked). Image source: NOAA -
http://laps.noaa.gov/szoke/Korea/introconvective_stuff.html
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The triggering of deep convection depends heavily on the energy available in the

environment (Moncrieff and Miller 1976). This potential energy typically consists

of two components, split between the gravitational potential energy due to the

buoyancy of the air and a component due to latent heat released from the conden-

sation of moisture. Studying the potential energy of a given environment can allow

us to assess whether it is favourable for deep convection or will resist convective

motions due to vertical stability. The data used to study the susceptibility of the

atmosphere to convection comes from sounding studies and is often shown using a

skew-T plot tracking the temperature of the background air with height. Skew-T

plots show the air temperature variation with height and how it compares to the

temperature of a dry or saturated parcel being raised adiabatically through the

environment. These lines on the skew-T plot are called adiabats.

In Figure 4.1, there are two regions of particular interest. These are the areas

between the temperature curve and the saturated adiabat (which describes the

adiabatic cooling/heating of a saturated air parcel on a graph of temperature and

pressure). Saturated refers to parcels of air in which water can exist both as a vapor

and a liquid. We note that the line representing the air temperature intersects the

saturated air adiabat at two particular points on the graph. The lowest of these

represents the point at which ambient air temperature begins to decrease more

rapidly than the moist adiabatic lapse rate of the parcel in question. A parcel

raised to this point will then be able to rise through its surroundings further due

to its higher potential temperature and lower density. This is known as the level

of free convection (LFC). The second point of intersection represents the point at

which the air parcel starts to become denser than the surrounding air again. The

vertical structure of the environment inhibits convection above this point. This

intersection is the parcel’s equilibrium level.

The convective available potential energy (CAPE ) is defined as the work done

by the buoyancy force in raising a parcel from the free convection level to its

equilibrium height. CAPE is the energy available to the parcel once it ascends into

the region where free convection can occur and is a property of the environment
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rather than a property of the parcel itself. Figure 4.1 illustrates this energy as

the area between the temperature line and the saturated adiabat between the

LFC and the lifting condensation level. It is important to note the sign here, as

the CAPE must be positive for free convection. A negative value would actively

hinder convection. Non-zero values of the CAPE are typically associated with

the formation of storm systems (Craven and Brooks 2004), but this alone is not a

sufficient condition for triggering deep convection. We can calculate the CAPE by

integrating the difference between the temperature curve and the moist adiabat,

and this gives the expression

CAPE =

∫ zn

zf

g

(
θv,parcel − θv,env

θv,env

)
dz (4.1)

where θv,parcel is the virtual temperature of the parcel of air, θv,env is the virtual

temperature of the environmental background air, zn is the level of neutral buoy-

ancy of the parcel, and zf is the level of free convection. The virtual temperature

of an air parcel implicitly contains the effects of moisture, by representing a moist

air parcel as an equivalent theoretical parcel of dry air.

The second region of interest is below the LFC, where the air parcel is denser

than its surroundings. This typically occurs when a parcel of air is under a region

of warmer air and thus has a lower density than its surroundings, resulting in

a negative buoyancy. This difference in density actively suppresses convective

motions and can prevent the parcel from reaching the LFC to begin free convection

under the buoyancy force. The negative area between the temperature curve and

saturated adiabat is known as convective inhibition (CIN ).

The CAPE is defined as the work done against the gravitational/buoyancy force

in lifting a parcel from the bottom of a system to the level of free convection. As

such, CIN can be calculated similarly to CAPE :

CIN =

∫ zf

zbot

g

(
θv,parcel − θv,env

θv,env

)
dz (4.2)
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here zbot is the lower boundary of the domain (surface level). These two quan-

tities work in opposition to one another. For deep convection to occur, the CIN

of the environment must be overcome either through mechanical forcing such as

orographically forced clouds or surface heating, giving the air sufficient energy to

rise to the lifting condensation level. Once air rises to the condensation level, the

phase change of water vapour releases additional heat. Deep convection can occur

if this additional energy release is sufficient to allow the parcel to ascend above the

LFC. CAPE can, in some cases, be a much more significant factor than CAPE in

determining the intensity and distribution of precipitation (Myoung 2010).

Consequently, the difference in altitude between the LFC and lifting condensa-

tion level becomes a critical factor in the formation of storm systems. As the gap

between these two levels narrows, the CAPE of the environment decreases and

deep convection occurs much more readily. One consequence of this occurs in the

formation of tornadoes. Sounding data from significant tornadoes suggests that

they primarily form where there is a relatively high condensation level (≥ 1300m)

and the LFC height is comparatively low (≤ 2000m) (Rasmussen and Blanchard

1998; Thompson et al. 2003; Craven and Brooks 2004). This means that the la-

tent heat release due to condensation allows the air to easily overcome the shallow

layer of CIN and reach the LFC to access the CAPE above. Conversely, a large

difference between the lifting condensation level and LFC results in a large region

of CIN that can prevent deep convection.

The environmental CIN strongly influences the triggering of deep convection

(Emanuel et al. 1994; Mapes 2000). When representing convection in global scale

models via parameterisation schemes, the CIN sometimes appears as part of the

trigger condition for convection in a grid cell. For example, Rochetin et al. (2014)

used a stochastic distribution of thermals with varying updraft speeds. The trig-

gering condition in their scheme depends on the updraft speed of the strongest

thermal in the distribution and if it is sufficient to overcome the CIN of the envi-

ronment. Other effects can also encourage environmental air to push through the

inhibition layer, such as orographic forcing due to terrain. Studies have suggested
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that when convection is triggered this way, where the CIN is reduced through

external means, the resulting convection is more intense than if no CIN were ini-

tially present. The build-up of heat in the lower layer likely enhances convection

once the air can rise to the LFC. This is why intense rainfall often occurs near

mountain ranges where the air blows inland from the sea, and is forced upwards

over the terrain.

Similarly, the environmental CAPE is of utmost importance in global weather

prediction and climate models. Cumulonimbus clouds and thunderstorms transfer

CAPE into the upper atmosphere, regulating the temperature balance between

the upper and lower troposphere, and often occur on rapid timescales (Raymond

and Herman 2011). Since CAPE indicates an instability to convection in the

environment, its build-up is often indicative of severe weather events. Therefore,

climate models need to pay particular attention to how the CAPE (and CIN )

respond to rising sea surface temperatures and other factors (Chen et al. 2020).

Similarly, the vertical distribution of CAPE in the atmosphere is also important

since low-level CAPE can encourage convection.

CAPE and CIN are widely used in global models to diagnose whether domain

regions are unstable to convection. However, studies on the scale of individual

clouds are important too. Analysis of the energetics of clouds during their for-

mation and development can help improve our understanding of cloud processes.

Using smaller-scale models such as LES to feed into large-scale global models to

develop more sophisticated parametrisations schemes is not uncommon in the field

(i.e. Siebesma and Cuijpers 1995; Angevine et al. 2018 and Zhang et al. 2021). As

such, it is beneficial for any convection resolving model or large-eddy simulation

to estimate the energy available for convection in the system. This is especially

relevant if such a model is to be considered for use in an embedded or superparam-

eterisation scheme. Analysis of the energy transfers during cloud formation and

development can also be beneficial in evaluating microphysical schemes and their

implications for cloud development in more unpredictable regions (Rybka et al.

2021).
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Furthermore, some convective schemes may also make use of CAPE as part of

their closure assumption (Nordeng 1994; Neggers et al. 2004). These closure as-

sumptions differ from more conventional quasi-equilibrium approximations but are

not typically favoured in current representations of convection. Again, evaluating

these assumptions via LES studies is a crucial component of refining convection

schemes in global models. Being able to reliably observe and model the evolution of

potential energy within a convection model is of great relevance to our understand-

ing the triggering of deep convective systems. Because CAPE is directly related

to deep convection, parameterisation schemes attempting to model the transition

between shallow and deep convection often use explicit simulations or observations

of low-CAPE environments to evaluate their performance (Yano et al. 2013; Baba

2020). Analysis of the energy released by clouds during convection is of interest

when considering their representation on all scales.

To this end, we aim to derive quantities within a Lagrangian convection model,

the Moist Parcel-In-Cell model of Dritschel et al. (2018), that will allow us to

analyse the potential energy available to the system. These are intended to tell

us about the transfer between potential and kinetic energy within the model and

the energy released by condensation, which previous MPIC studies have not yet

investigated. In future works, the energetics within MPIC may be able to feed into

larger-scale models and parameterisation schemes, similarly to how LES models are

often used in the atmospheric community. The Lagrangian formulation of MPIC

allows these quantities to be calculated for individual parcels instead of on grid

cells. While CAPE is an integrated quantity and is fixed for a given environment,

the potential energies calculated in this chapter vary for parcels of air as they

rise through the domain. As such, the parcel energetics may offer greater insight

into the distribution of potential energy within the cloud during development in

future works. For example, we could map the available potential energy within a

cloud, or implement a tracer population to assess how the energy of entrained air

varies during convection. Calculating the energy on the parcels also produces a

more accurate estimation of the energies present in the system since no additional

interpolation steps are required.
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We apply this energy budget analysis to a variation of the standard MPIC test

case (see Chapter 3) and study the balance of potential and kinetic energy. We

also assess how the parcel energetics respond to varying numerical parameters

used in MPIC, particularly the grid resolution and the parcel splitting threshold.

Section 4.2 describes the derivation of the potential energy in MPIC and presents

a comparison to environmental CAPE and section 4.3 presents our results. In

section 4.4 we discuss the broader implications of this study and briefly discuss

the impact of a new scheme to ensure incompressibility in MPIC. Finally, in section

4.5, we summarise our findings and discuss possible extensions of this work.

4.2 Parcel Energetics in MPIC

4.2.1 Derivation of Energy Components

We start from the governing equations in MPIC as presented in Chapter 2 (Dritschel

et al. 2018; Böing et al. 2019), which are as follows:

Du

Dt
= −∇p

ρ0
+ bêz, (4.3)

Dbl
Dt

= 0, (4.4)

Dq

Dt
= 0, (4.5)

∇ · u = 0, (4.6)

with the equation of state being given by,

b = bl +
gL

cpθl0
ql, (4.7)

where

ql = max
(
0, q − q0e

−λz
)
, (4.8)
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is the liquid water content. More details of the vorticity dynamics approach used to

solve these equations for parcels are provided in Chapter 2 on the MPIC method.

We intend to derive an expression for the system’s total energy, divided into

kinetic and potential energy components. To this end, we follow the work of

Vallis (2017), who describes the energetics for a Boussinesq system with a general

equation of state. We use this to derive expressions for an air parcel’s kinetic and

potential energy within MPIC.

First, we look at the kinetic energy distribution, which is relatively straightfor-

ward to calculate. We first define the kinetic energy density, K, as

K =
1

2
|u|2 . (4.9)

The evolution of this component, as per Vallis (2017), is given by

DK

Dt
= bw −∇ · (ϕu) , (4.10)

where w is the vertical component of the parcel velocity, b is the total parcel buoy-

ancy and ϕ = p/ρ0. Note that p here is the non-hydrostatic pressure, equivalent

to δp in Vallis (2017)).

Next, we must define the potential energy from the equation of state. In Vallis

(2017), it is shown that in order to conserve energy, the equation of state must be

a function of the vertical coordinate, i.e. of the form b = b (bl, q, z), where bl and

q are state variables. In MPIC, we use the liquid water buoyancy bl and specific

humidity q as state variables. The procedure is essentially the same. We define

the potential energy density, Π, at vertical position z as

Π (bl, q, z) = −
∫ z

a

bdz′, (4.11)

where a is a constant reference height that may be chosen freely. The choice of a is

arbitrary but determines where the zero-point in available potential energy occurs

within the system. We could, for example, use the condensation level, defined as
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zc = −1

λ
ln

(
q

q0

)
, (4.12)

although the specific humidity determines this and thus it is different for each

parcel. This would also lead to a negative available potential energy should a parcel

rise above zc. Another option is to set the reference height at the top or bottom

of our domain. While the choice of domain height does not have any physical

significance in the MPIC test case, it does represent the highest point a parcel can

reach within the simulation. The boundary is rigid, but later developments may

seek to add a ‘sponge layer’ or damping effect close to the boundary. For now, this

seems a sensible point to set the zero of available potential energy.

First, we consider the potential energy density, with a > zc, such that the

reference height is above the condensation level. So our integration is now:

Π (bl, q, z) = −
∫ z

a

bdz′ =

∫ a

z

bdz′. (4.13)

All parcels will have a component due to moisture in their available potential

energy, which does not contribute when integrating from the lower boundary for

a parcel below zc. This is not strictly true for drier parcels in the upper regions

of the domain. Sometimes, the condensation height can exceed the domain height

and will approach infinity as the specific humidity approaches zero, due to the

dependence on ln q/q0 in equation 4.12. In the case of such parcels, the moist

component of their potential energy will be unavailable at any point in the domain,

so we can neglect this term. We do this by setting their condensation height zc

equal to the upper boundary of the domain since the potential energy density

must be continuous across zc. This will cause any condensation terms to vanish

in the integral as they will only contribute for heights in the range zc < z < ztop.

Carrying out the above integral, we obtain two expressions for parcels above and

below their condensation level,
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Π(bl, q, z) = bl (a− z) +
gL

cpθl0

[
q (a− z) +

q0
λ

(
e−a − e−z

)]
, q > q0e

−λz, (4.14)

and

Π (bl, q, z) = bl (a− z) +
gL

cpθl0

[
q (a− zc) +

q0
λ

(
e−a − e−zc

)]
, q < q0e

−λz, (4.15)

where only the dry component varies with z. For dry parcels where zc has been

reset to ztop, the moist component (second term on the right-hand side) vanishes

for the choice a = ztop. For the rest of this chapter, we will set a = ztop, thus

assigning the zero in potential energy to the domain top.

Taking the material derivative, as in Vallis (2017), we obtain

DΠ

Dt
= −bw, (4.16)

which can be combined with the expression for kinetic energy density above,

∂

∂t
(K +Π) +∇ · [u (K +Π+ ϕ)] = 0. (4.17)

The second term in this expression is a flux term and vanishes when integrated

over the entire domain. Because we assume density variations in the flow are small

(Boussinesq approximation), all parcels have approximately the same density, ρ0.

Hence, to obtain the system’s total energy, we compute a volume-weighted sum of

K and Π over all parcels. This value should remain approximately constant in the

absence of any external fluxes of heat or moisture, ignoring the effects of numerical

dissipation and parcel mixing at later times.

4.2.2 Physical model

We will use the expressions derived above to analyse the behaviour of kinetic and

potential energy components for the chosen test case. This should allow us to

91



study the evolution of the energies involved in cloud development and also provide

an opportunity to assess how effectively total energy is conserved in the model. We

can also study the enstrophy of the system and the mixing of parcels to observe the

effects these have on energy conservation. Our test case is identical to that shown

in Chapter 3, where the response of the rising thermal to vertical wind shear was

analysed, albeit with the shear removed.

4.2.3 Comparison to CAPE

As seen above, the choice of reference height determines the vertical position at

which the potential energy of a given air parcel will be zero. In the later sections

showing the energetics, we primarily look at the change in the potential energy

since this should be similar to the change in CAPE of a parcel with height. There

are several differences between the potential energy derived above and CAPE. In

particular, CAPE is an integrated quantity and thus fixed for a given environment

and only includes the effects of water vapour in the environment. Liquid water

already present does not contribute to the CAPE. What we have computed instead

is effectively a profile version of CAPE that can be computed on a given parcel of

air in the simulation and varies as the system evolves.

We take a set of three test parcels using typical values observed in the standard

MPIC test case for the mixed layer (bl,ml = 0.0, qml = 0.074), the centre of the

thermal (bl,th = 1.52, qth = 0.082), and near the top of the domain (bl,top = 3.78,

qtop = 0.0001). We plot the evolution of the available potential energy of each

parcel as they rise through the domain. Initially, we set a to be at the domain’s

top.

In Figure 4.2, we can see that the potential energy of each parcel reaches a

value of 0 at the top of the domain due to the choice of a. Each initially starts

as a straight line (with slope bl for the respective parcel type) before curving

due to the effects of condensation once the parcel crosses its respective lifting

condensation level, except for the upper layer parcel for which zc occurs at the top

of the domain. In the case of mixed-layer parcels, the available potential energy
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Figure 4.2: Plot of the variation in potential energy with vertical position for
three test parcels using typical values of specific humidity and buoyancy from the
thermal, mixed layer and upper region of the domain. Green: bl,ml = 0.0, qml =
0.074; blue: bl,th = 1.52, qth = 0.082; red: bl,top = 3.78, qtop = 0.0001. Black
markers are used to denote the approximate location of the condensation height
for each test parcel.

does not change until condensation occurs since the mixed layer in the test case

has zero buoyancy. The condensation height for parcels in the mixed layer and the

thermal are relatively similar.

In reality, the potential energy of a parcel is zero at its associated equilibrium

level (if all parcels in a given environment are at their equilibrium level, the CAPE

is also zero). It thus makes more sense for us to use this as our upper limit of

integration in the above derivation, such that we have a region of positive potential

below, where the parcel rises freely, and a region above, where the negative poten-

tial energy inhibits convection. This follows the structure of CAPE and CIN in

real-world observations. To do so, we may construct something comparable to the

skew-T (Figure 4.1) shown in Section 4.1 for the environment in MPIC. Figure 4.3

shows a similar plot to the skew-T, however we have replaced temperature with

buoyancy as the thermodynamic variable and the vertical coordinate, z, is used in

place of the pressure.
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In MPIC, the potential temperature of parcels is included in the buoyancy,

which means that we cannot directly plot the temperature. The buoyancy of a

parcel at any given point is related to its virtual potential temperature by b =

gθv/θ0, which is the same for all parcels. Hence, we can compare the parcel’s

total buoyancy and the environment’s vertical structure to determine where the

LFC and equilibrium level will lie for the parcel in question. We use the initial

background buoyancy profile described in the standard MPIC test case, Dritschel

et al. (2018) and Chapter 3 of this thesis, as our reference profile. Here we have

bl,bg = 0.0 below zb where zb is the top of the mixed layer and bl,bg = N2 (z − zb) in

the stratified region above, where N2 = 0.97048 is the squared buoyancy frequency.

We can then take the same test parcels and use equation 4.7 to compute their

total buoyancy as they rise through the domain. This allows us to identify the

regions in which they are more or less buoyant than their surroundings, along with

the points of intersection (LFC and equilibrium level) to serve as the limits of

integration for analogues to CAPE and CIN.

Mixed layer parcels do not ever cross the line corresponding to the buoyancy

of the reference profile, although the two lines are identical below the top of the

mixed layer. This is by design, as the background for the MPIC test case was

intended to be stable to convection so the study could focus on the thermal’s

ascent. If the environment were unstable, we would see dry air being lifted by the

thermal above the free convection level (which may make for an interesting study

in itself). Consequently, this test case has no LFC for the mixed-layer parcels.

If they rise above the mixed layer, they will always be less buoyant than the

surrounding air and forced downwards under gravity. The equilibrium level of the

mixed layer parcel is zb at the top of the mixed layer, but it technically occupies

a range between the surface and this point since the buoyancy in the mixed layer

is constant.

If moved down from the upper layer, the upper-level parcel will almost always be

more buoyant than its surroundings and be forced upwards towards the equilibrium

level (approximately zn = 2π). There is little else to say here, but if the domain
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Figure 4.3: Plot showing the variation in buoyancy for the three test parcels.
Green: bl,ml = 0.0, qml = 0.074; red: bl,th = 1.52, qth = 0.082; cyan: bl,top =
3.78, qtop = 0.0001. Also shown is the background environmental profile (blue).
The points at which the buoyancy curves intersect with the environmental buoy-
ancy profile indicates either the lifting condensation level (if approaching from the
left, i.e. lower buoyancy) or equilibrium level of the parcel (if approaching from
the right, i.e. higher buoyancy).

were extended above this point, the potential energy would become negative when

raising the parcel further. This is the same for any environmental air parcels

displaced during the ascent of the thermal.

In contrast to this, the parcels in the thermal studied in this chapter are always

more buoyant than the environmental air in the mixed layer until a point at an

altitude of around z = 5.0. At this point, they then become less buoyant than

the surrounding air, suggesting this is the level of neutral buoyancy. Again, this

is by design as the initial MPIC tests specify the levels of dry and moist neutral

buoyancy for the initial thermal in setting up the test case (zd = 4.0 and zm = 5.0)

and the buoyancy frequencyN2 is determined using these values. As such, the level

of free convection for parcels in the initial thermal is effectively the lower surface

of the domain. In physical terms, the thermal has already been heated sufficiently

to overcome the CIN and thus experiences free convection until it reaches the

equilibrium level. However, we can discuss hypothetical test problems that could
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Figure 4.4: Plot showing the variation of potential energy with height for the three
test parcels, Green: bl,ml = 0.0, qml = 0.074; blue bl,th = 1.52, qth = 0.082; red:
bl,top = 3.78, qtop = 0.0001. The blue dashed line indicates the x-axis (PE = 0)
This time the equilibrium levels used in potential energy calculation are deter-
mined from identifying the point at which they match the background buoyancy
profile as detailed in this section. Note that the overall shape of the curves remain
unchanged, but the x-intercept (zero potential energy) occurs at the equilibrium
level.

be studied in future works with MPIC in which CIN must be overcome.

In this case, to estimate the equilibrium level of an air parcel, we could also

solve the equation btot(z) = bl,bg(z) for z to obtain the points at which the parcel

buoyancy matches the reference profile (background) buoyancy. So we solve

b = bl +
gL

cpθl0
max

(
0, q − q0e

−λz
)
= N2 (z − zb) , (4.18)

for each parcel at a given time. We revisit our test parcel energies and use the

values of zn obtained by solving 4.18 to set the zero points for available potential

energy. The resulting curves are shown in Figure 4.4.

Another possibility would be to adjust the structure of the mixed layer slightly.

While the region should maintain an approximately constant potential temperature

(included in the buoyancy in MPIC), the moisture content of the air in the mixed
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Figure 4.5: Variation of total buoyancy for a mixed layer parcel, bl,ml = 0.0, qml =
0.07 (green) and the background buoyancy profile described in Section 4.2.3 with
zb = 2.0, N2 = 0.27 (blue) to illustrate where the LFC and equilibrium level for a
mixed layer parcel would lie in such a setup.

layer is typically non-homogenous, and it may be worth considering a height-

dependent profile in this region. Adjusting the humidity of the mixed layer would

affect the stability of the environment to convection. With some changes to the

vertical structure, we could design a vertical structure that more closely mimics

natural convection, in which a region of CIN lies below the LFC with a region

of CAPE above it. In Figure 4.5, we have lowered the top of the mixed layer to

z = 2.0 and adjusted the strength of the stratification in the upper region of the

domain, reducing the buoyancy frequency to approximately N2 = db/dz = 0.27.

This adjustment makes the domain less stable to convection. We then plot the

vertical buoyancy profile of a test parcel in the mixed layer. While these may be

arbitrary adjustments, they illustrate that we can alter the vertical structure of the

MPIC setup to create an environment that is conditionally unstable to convection

without the need to generate an initial thermal.

Through this, we can identify regions of CIN and CAPE for such an environ-

mental profile and the level of free convection (z = 2.9) and equilibrium level

(z = 5.1). There now exists a region of CIN that will push the parcel back down

into the mixed layer, even if condensation can occur. In this case, we expect to see
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shallow cumulus clouds forming below the LFC due to the position of the conden-

sation level. If these parcels receive enough energy from external sources to ascend

above the LFC, they will rise freely to the equilibrium level, which becomes the

nominal cloud top.

While not used for the isolated thermal simulations in the rest of this chapter,

the implications of such a setup are more interesting if we allow for a source of heat

and moisture at the lower surface of the domain. This could raise the buoyancy

of the parcels in the mixed layer to the point where they can reach the LFC and

initiate deeper convection. By adding a simple mechanism for cooling and drying,

we can observe the environment’s evolution and investigate how strong such a

heat source would need to be to allow for deep convection in MPIC. Moreover,

external factors, such as vertical wind shear, could be investigated in terms of

whether they reduce or increase the required heating to initiate deep convection

in such a setup. This would open up many possibilities for exploring the evolution

of convective systems without an initial thermal in MPIC, moving away from the

more idealised test problems shown in this chapter and chapter 3. That said, it

may also be worthwhile to study what would happen in the thermal test case if

the environment were adjusted similarly.

4.3 Results

The simulations in this chapter are allowed to evolve to a non-dimensional time of

t = 20 and the energy components and gridded properties are saved at intervals

of ∆tsave = 0.1 with a maximum timestep of ∆t = 0.05. Unless stated otherwise,

all results use a grid resolution of 643. These settings are the same as was used in

chapter 3. Quantities calculated in the subsequent analysis are calculated using the

values on parcels and not the gridded fields unless specified. Energies calculated

refer to the change in that component of the total energy relative to its initial

value at t = 0.0, unless stated otherwise.
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4.3.1 Thermal Energetics

Here we present an analysis of the energetics for the thermal test case detailed in

3.2, in the absence of wind shear. We have separated the total available potential

energy into two components, corresponding to the dry potential energy and the

latent heat released by condensation. The energy components in subsequent anal-

ysis are defined as follows. ET is the total energy, EK is the kinetic energy, EP

is the total potential energy including moisture, ED is the potential energy not

including moisture and EL is the latent heating component of potential energy.

Note that Ek and EP are the volume integrals of the energy densities defined in

section 4.2.1, K and Π, respectively. All subsequent analysis referring to these

components will refer to the differences between their values at a given time and

their value at t = 0, unless explicitly stated otherwise. We also added a curve to

represent the sum of the change in kinetic and potential energy to visualise the

extent to which the model conserves the total energy.

In Figure 4.6 we can see that, at the earliest times, the total system energy

is conserved, as the change in total potential energy mirrors the kinetic energy

evolution (note Ek(t = 0) = 0 here since the system is initially at rest). This plot

also allows us to see when condensation begins to occur in the model, denoted

by the latent PE component (difference between total PE and dry component)

becoming non-zero. At later times, the total energy starts to decay, with the loss

in energy eventually becoming comparable to the kinetic energy.

A potentially concerning feature of these results is that the total energy does

not decrease monotonically. There are times at which the total energy rises. In

particular, during the early stages of the thermal’s ascent, the total energy appears

to grow substantially until around t = 5 to t = 6, after which it begins to level

out and decay. This is somewhat contradictory to expectations in a simulation

of three-dimensional turbulence. Choosing appropriate boundary conditions and

integrating equation 4.17 over the domain would also offer some insight into global

conservation of energy in MPIC and this is worth investigating in future works. A

likely cause of this is that MPIC, in its current state, does not enforce incompress-
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Figure 4.6: Plot showing the time evolution of the difference in each energy com-
ponent and their initial values. ET is the total energy, EP is the total potential
energy including moisture, ED is the potential energy not including moisture and
EL is the latent heating component of potential energy. γ is the current splitting
threshold for parcels and n denotes the resolution, 643. The dashed line, tc, shows
the point at which condensation begins to occur in the simulation. Note that these
energy values here are the change in each component from their initial values, as
stated previously.
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ibility. A fix for this has since been developed in two dimensions in an alternative

model version (Frey et al. 2022). However, the work in this chapter was carried

out long before its three-dimensional implementation. As such, we acknowledge

this as a significant limitation of the study but will briefly discuss the impacts of

the incompressibility corrections in a later section.

4.3.2 Resolution Sensitivity and grid vs parcel comparison

One of the first things we want to test in studying the energetics of cloud de-

velopment is the effect of numerical diffusion within the model, particularly at

early times before the flow has become highly turbulent. To this end, we vary

the resolution of the underlying grid in MPIC and run the same test case at grid

resolutions of 323, 483, 643 and 963 in order to assess the effects of resolution on

energy conservation. It is worth adding that the effective resolution achieved by

the parcels in MPIC is greater than that of the grid used for inversion since the

minimum parcel volume is 1/63 of the grid cell volume (Dritschel et al. 2018).

In the early stages of the thermal’s ascent in Figure 4.6, we see that the system’s

total energy is converging towards the horizontal axis. As the system evolves,

however, we observe a significant decay in total energy. At later stages in the

development of the cloud, the flow has become highly turbulent, so we expect the

total energy to decrease as a result. Moreover, as the flow becomes increasingly

turbulent, the small-scale variations that may occur due to resolution have an

increasing effect on the flow. It is also worth noting that the vorticity field in MPIC

exhibits some sensitivity to resolution (Dritschel et al. 2018) and as such higher

resolutions may result in increased turbulence at the smallest scales, although the

effect on the decay of total energy is not totally clear.

We can also decompose the energy into each component (kinetic, dry potential,

latent heat) to study their sensitivity to changes in grid resolution, and we show

this in Figure 4.7. Starting with the system’s kinetic energy, we notice that the

peak values of kinetic energy increase as the resolution is improved. At later

times, we note some degree of convergence with resolution. What stands out
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(a) (b)

(c) (d)

Figure 4.7: Evolution of the difference in total energy (a), kinetic energy (b),
latent heat potential energy (c) and dry potential energy (d) for grid resolutions
of n = 32, 48, 64, 96.
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is that, even though the kinetic energy grows more rapidly during the ascent

of the thermal, it also decays more rapidly at later times, eventually seeing the

963 and 643 runs decrease to comparable and occasionally smaller values than

the run on a 323 grid. There are a few possible causes for this behaviour, the

first being the resolution dependence of the vorticity field in MPIC mentioned

above. The fact that kinetic energy increases and decreases more rapidly appears

to be consistent with the idea that there is more turbulence at smaller scales

due to the higher vorticity values on the parcels. It is also possible that a grid

resolution of 323 is too coarse to fully capture the behaviour in regions where the

lengthscales involved become very small, for example, at cloud edges where there

is mixing between the cloud and surrounding air. Another possibility is related to

the previously mentioned concerns regarding incompressibility. Since the number

of parcels present is proportional to the number of grid cells used, we would expect

higher resolutions to show variations in the density field that would influence the

calculation of the energy components.

The two potential energy components also appear to exhibit a convergence with

resolution at early to intermediate times (in fact, they are nearly indistinguishable

until after t = 5). Towards the end, we see more significant variation in the latent

heating component. Whether this is a consequence of turbulence and increased

mixing in higher resolution simulations is currently unclear. That aside, these

results still show that the derived expressions capture the system’s behaviour better

as the resolution is increased prior to extensive mixing and strong turbulence.

At this stage, it is instructive to compare the values of the kinetic energy of the

fluid when integrating over the grid cells and parcels, respectively. This is shown

in Figure 4.8 for reference, although it demonstrates that there is not a substantial

difference between the two. Since the velocity field in MPIC is computed on the

grid initially and then interpolated to the parcel positions, it is perhaps unsurpris-

ing that there is no substantial difference. This result is included for completeness.
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Figure 4.8: Comparison of total kinetic energy calculated using gridded and parcel
fields for the simulation run at 643 resolution to show that deviations between the
two are small.

4.3.3 Sensitivity to parcel mixing

Because turbulence is strongly related to the diffusion of kinetic energy, it makes

sense to investigate how the MPIC representation of small-scale mixing affects

the energetics. Recall that, in conventional LES models, a sub-grid turbulence

model is used to parameterise the dissipation of energy down to the viscous sub-

range where molecular diffusion takes over (Kolmogorov 1941, Smagorinsky 1963).

MPIC differs substantially from these representations because it does not use an

eddy-viscosity scheme and has no explicit molecular diffusion. Mixing in MPIC is

modelled through the splitting and removal of parcels as described in Chapter 2.

Hence, it is worth studying exactly how the process impacts the energy evolution

of the system. The splitting and removal of parcels also dissipate the high vorticity

values found in turbulent flow regions.

The primary parameter controlling the mixing effects in MPIC is the splitting

threshold γmax. As previously described, parcels in MPIC are split when their

integrated vorticity stretching,
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Figure 4.9: Plot showing evolution of the total energy difference and each of its
components for a simulation run at 643 resolution with parcel splitting turned off
(γ = ∞) to illustrate the impact of parcel mixing on system energetics.

γi(t) =

∫ t

t0

(
|ωi ·

dωi

dt
|
) 1

3

dt (4.19)

exceeds this threshold. In most of the work in this thesis, we use the same value

as Dritschel et al. (2018) and Böing et al. (2019), which is γmax = 4.0. During

the initial development and testing of MPIC, this parameter was noted to have a

minimal effect on the flow evolution.

We can study the effects on energy by making changes to the splitting threshold,

γmax, and investigating how the total energy responds. The obvious first step is to

switch the splitting of parcels off altogether and allow the system to evolve without

mixing. The resulting energy evolution is shown in Figure 4.9. It is interesting to

note that there is still some growth in the total energy at early times, although

it is significantly reduced compared to the initial results for γmax = 4.0. There

appears to be a point where the total energy is balanced again.

In contrast to the initial results in Section 4.3.1, we observe that at no point does
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the system’s total energy exceed the initially available energy. We still observe a

brief period of decay during the initial ascent as in the previous case, but the final

values of the total energy are similar to the γmax = 4.0 simulation. The absence

of the initial growth suggests some link between the diffusion of energy and the

rates at which splitting and removal occur, suggesting that the process of splitting

parcels is part of the error in total energy. Consequently, the method is sensitive

to the numerical choices surrounding the splitting and mixing of parcels and this

should be considered if it is used in future studies. The results also hint that this is

not the only factor contributing to the abnormal growth in total energy observed

early in the simulation since we still do not observe monotonic decay.

To investigate further, we will study a range of values for the splitting threshold

between γmax = 4.0, and γmax = 12.0 and observe the impact this has on the

behaviour of the total energy curve. The features of interest in each curve are the

rise in the total energy at early times and the dissipation due to turbulence at later

times. Figure 4.10 shows how the total energy curve of the simulation changes as

the splitting parameter is adjusted between γmax = 4.0 and γmax = 12.0, but also

includes the run with splitting disabled for comparison. Studying these results

suggests that using a slightly higher threshold for splitting may help to conserve

energy in the system. While Dritschel et al. (2018) explains that the system’s

overall behaviour is generally insensitive to the choice of this parameter, the work

covered here reveals that it impacts the overall evolution of energy in the system

more substantially than anticipated. The convergence as the threshold increases

is another noteworthy feature of the results. This is expected at exceptionally

high splitting thresholds (since close to no splitting and mixing would occur). We

see good agreement with the case with no splitting, even at γmax = 10.0. As

with resolution, late stages in the simulation become more complicated due to the

highly turbulent nature of the flow.

Finally, we seek to determine which components of the system energy are most

susceptible to the choice of γmax, so we decompose the total energy into kinetic,

dry potential and latent heating components and plot these on the same axes.
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(a) (b)

(c) (d)

Figure 4.10: Evolution of the difference in total energy (a), kinetic energy (b),
latent heat potential energy (c) and dry potential energy (d) for parcel splitting
thresholds of γ = 4, 6, 8, 10, 12,∞.
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In Figure 4.10, we can see that, before t = 5, when the total energy starts to

increase, the kinetic energy in runs with a lower splitting threshold is higher and

decreases as γmax is increased. At this point, the difference between the values

of kinetic energy is roughly ∆K = 0.5 between the highest and lowest splitting

thresholds. Hence, splitting seems to cause a considerable increase in the system’s

kinetic energy at early times, although as the run continues, this difference becomes

less significant. The kinetic energy variation is only especially significant between

the lowest values, γmax = 4.0 and γmax = 6.0. The kinetic energy curves for higher

splitting thresholds remain very close to each other.

The potential energy shows a much larger sensitivity to the choice of γmax at

times just beyond this point. In particular, the dry component of potential energy

shows a substantial decrease ∆Ep,dry = 1.0 between the highest and lowest values

of γmax at approximately t = 6.5 which coincides with the peak of the rising

total energy at early times. Unlike the kinetic energy, this difference remains

approximately constant at later times. Also of note, is that the dry potential

energy appears to be the most sensitive to variations in the splitting parameter in

the later stages of the cloud’s evolution.

Finally, we look at the potential energy component due to the latent heat of

condensation. At early-mid times (around t = 6 to t = 7), we see a similar

degree of variation to the kinetic energy, albeit negative, since the potential energy

initially decreases in time. This coincides with the minimum value of this energy

component. Shortly after this point, the values of Ep,lat appear to converge again

until around t = 9 to t = 10, when the impact of changing the splitting parameter

has a substantial effect. For example, by the end of the simulation at t = 20,

the difference between the highest and lowest values of γmax is approximately

∆Ep,lat = 1.2. This is comparable to the variation in dry potential energy at

early-mid times. It is also interesting to note that at early times this energy

component appears to increase with increasing γmax whereas, after t = 9, things

become inverted. By the end of the simulation, Ep,lat decreases as γmax is increased.

These results tell us that the numerical choices made in the initial development
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Figure 4.11: Plot showing the evolution of the total system enstrophy for sim-
ulations of a rising thermal carried out with parcel splitting thresholds of γ =
4, 6, 8, 10, 12,∞.

of MPIC likely have more substantial effects than initially anticipated. All energy

components are sensitive to the readiness with which mixing is allowed to occur

within the model. This sensitivity must be taken into consideration when the

model is applied to future case studies. The kinetic and dry potential energy seem

to be most susceptible to this. Also of note is that the rate of decay of energy

components appears to increase as the splitting threshold is increased. It would

seem that the numerical diffusion of energy in MPIC occurs more readily when

fewer parcels are being split and removed, although it becomes complicated at later

times. The plot of the total system enstrophy shown in Figure 4.11 reflects this.

We observe that the reduction of parcel splitting results in a much more significant

build-up of enstrophy within the system. This is very likely to be a source of excess

diffusion. It also appears that the increased diffusion resulting from higher values

of γmax is enough to offset the observed energy growth at early times. While we

attribute this primarily to a violation of incompressibility in the model, we must

also consider the role of parcels splitting excessively. These results suggest that
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using the vorticity stretching of parcels to dictate mixing may impact the system’s

energy budget. As such, it may be worth considering alternative mechanisms to

determine if a parcel should split such as in Frey et al. (2022)).

4.4 Discussion of Results

Here we seek to evaluate the above results and place them in a broader context.

One of the most prominent criticisms of this work in its current state is the highly

idealised nature of the test case. At this stage, a key feature missing from the model

is a more sophisticated microphysics scheme, including more realistic condensation

and precipitation. The ability to simulate the effects of precipitation will play a

significant role in the energy budget of a developing cloud. There are similar

concerns regarding the validity of the Boussinesq approximation in the thermal

test case. In these simulations, the scale height is around 2000m, meaning the

domain is approximately 12 km in height. It would be more reasonable to consider

an anelastic approximation in which the pressure and density are functions of the

vertical coordinate (Ogura and Phillips 1962).

We must also consider the vertical structure of the environment and initial

conditions since we start with an already formed thermal. In this work, the initial

thermal has already overcome the environmental CIN to enable convection. In

reality, it would make sense to position a heat source on the lower surface and

allow the convection to develop more naturally. Such a setup would bear a greater

resemblance to convection over the land or ocean surface.

While the idealised nature of the test case does not allow for more realistic

simulations in this work, it still provides information about the exchange of energy

occurring during the development of a cloud and allows us to study the structure

of potential and kinetic energy within. The test case described are also helpful in

analysing the effects of mixing and turbulence on the energy balance in MPIC.

We do not achieve energy conservation in the thermal test case, and several

contributing factors remain to be investigated. While they do substantially influ-
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ence the energetics, the parcel removal and splitting are not the sole causes of the

observed increases in the total energy at early times. Further work into the possi-

bility of numerical errors are also worth considering, there may be more numerical

choices made in the development of the MPIC method that also contribute to de-

viations from energy conservation. Test cases which aim to study the evolution of

a system with minimal turbulence may be more capable of isolating the sources of

variation in total energy more reliably than the standard rising thermal test case

used in this work.

The algorithm used for parcel mixing in MPIC may contribute to anomalies

observed in the evolution of the total energy. Implementing a more physically

intuitive algorithm for splitting and removing parcels may be worthwhile. This

could be done, for example, by representing them as ellipsoids. Such a method

has recently been developed and tested in two dimensions (Frey et al. 2022) and

may allow for better conservation of total energy if implemented.

We can also estimate the total initial available potential energy of the thermal

described within our test case using the expressions derived in 4.2.1. In doing

so, we elect to set the level of neutral buoyancy within the thermal to the moist

neutral buoyancy level specified in the original MPIC test case (zm = 5.0). This

provides an approximation of the total potential energy available to the system

for convection. The thermal parcels all have a similar equilibrium level, with some

small variations at the edges, so any errors from this approach will be minimal.

This also serves as a sanity check to ensure we do not significantly overestimate

the kinetic energy. Since the plots above all use the change in potential energy,

the choice of the upper limit of integration does not change their behaviour in any

meaningful way.

Computing the available potential energy by summing over all parcels at t = 0

and applying the volume weighting gives an initial estimate of Etot = 16.6. We

also assume that, since background parcels are already initialised at their equilib-

rium level, they do not contribute to the initial potential energy. Comparing this

to the peak values of kinetic and change in potential energy, we can estimate the
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percentage of potential energy converted into kinetic energy. When kinetic energy

reaches its peak, approximately 34% of the initially available potential energy has

been converted to kinetic energy. Another benefit of knowing the initial potential

energy is that we can analyse how significant the loss in total energy is relative

to the energy available at the start of the simulation. Using this calculation, we

can infer that, by the time the system has evolved out to t = 20, approximately

16% of the initially available energy has been lost. Comparatively, the abnormal

growth in total energy at early times is only 6% of the initially available potential

energy so may not be an especially serious concern. The loss in energy is not un-

reasonable for a highly turbulent flow, such as this. Kolmogorov theory predicts

a strong dissipation due to the forward cascade of energy (Figure 1.4). Because of

the high vorticity values attained in these simulations, the lengthscales associated

with the flow rapidly reach the viscous range where diffusion occurs. The effects

of resolution on the dissipation are limited, because, even as the dissipation scales

become smaller, the flow still reaches them quickly in turbulent regions. Moreover,

the results observed for varying the splitting threshold agree with the predictions

of Kolmogorov theory. As the splitting threshold is increased, the system enstro-

phy grows substantially at intermediate to late times (Figure 4.11). Enstrophy

reflects turbulence and, as such, is associated with the dissipation of kinetic en-

ergy. Hence, while reducing the splitting of parcels might remove some numerical

diffusion due to the splitting/removal operations, the subsequent increase in the

system enstrophy actually results in increased dissipation of energy. This is why

increasing the splitting threshold appears to counteract the erroneous growth in

energy at early times.

These results are only for a 643 grid, and enhancing the resolution will likely

limit energy diffusion due to such effects. We also note that the original MPIC test

cases only ran as far as t = 10. At the same point in this test case, diffusion has

removed approximately 8% of the initial energy. While these losses are somewhat

significant, we again emphasise that the development of a cumulus cloud, as de-

picted here, is a highly turbulent flow, and the enstrophy evolution of the system

reinforces this. As such, we do not believe such losses to be cause for significant
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concern.

The Lagrangian nature of MPIC will also be beneficial to studying energy, as

being able to map regions of high and low CAPE in real-world environments plays

a role in predicting extreme weather. Since we calculate the available potential

energy of parcels, this can help us study how the distribution of CAPE and CIN

evolve within a cloud as it entrains air from the surrounding environment. An-

other consequence is that, as MPIC is developed further, the same methods can

be used to analyse the energetics of clouds developing in more complex and real-

istic physical settings. Flows driven by surface fluxes or where there is a vertical

wind shear present (this is a common factor in the formation of some convective

systems such as squall lines) are just a few examples. Here we have simply laid the

groundwork for studying cloud energetics in MPIC. Another goal, eventually, is to

implement a precipitation scheme within the model, which will introduce further

complexity to the energy budget analysis. Depending on the scheme chosen, the

above equations will likely require refinement to accommodate more sophisticated

microphysics as MPIC develops further. However, the basic principles behind the

derived energies remain valid as long as the system is still Boussinesq and the state

variable is a function of the vertical coordinate. As stated before, the Boussinesq

approximation may not be valid, given the domain depth in MPIC. So this may

need to be re-evaluated later if an anelastic version is considered. In such a case,

it may also prove helpful to investigate whether the anomalous behaviour of the

total energy is due to volume/density fluctuations being mishandled due to the

use of the Boussinesq approximation in these results.

4.4.1 Incompressibility

Further work on enforcing incompressibility within MPIC has been carried out

in Frey et al. (2022) during the development of the elliptical parcel-in-cell model.

A three-dimensional extension of these corrections is used in a later section of

this thesis. This was not implemented when recording the initial results in this

chapter. As such, we can confidently say that the anomalous increases in total
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Figure 4.12: Sample energy difference evolution from a simulation using the three-
dimensional extension of the volume correction applied in EPIC (Frey et al. 2022).

energy observed in the higher resolution simulations appear to be primarily a

result of the non-conservation of volume. When the same test cases are run with

these corrections applied, the energy decays slowly during the initial ascent and

more rapidly at later stages when the flow becomes highly turbulent. Energy

conservation within parcel-in-cell models has always been a problematic aspect

of the method, as they do not tend to conserve energy naturally (Markidis and

Lapenta 2011). As such, we expect to see some loss in energy within MPIC,

especially as the flow becomes increasingly turbulent.

In Figure 4.12 we show the energy evolution of a short simulation run out to a

time of t = 10 to demonstrate the impact of enforcing incompressibility in MPIC.

This shows that applying the correction removes the spurious growth in total

energy observed in previous simulations’ early stages. One consequence of this

appears to be more substantial energy loss from the system at intermediate to late

stages. A possible consequence of this is that the correction contributes to the

numerical dissipation of energy in MPIC. Looking at previous results, we see that

the overall energy loss between t = 5 and t = 10 is comparable to that observed in
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previous simulations at similar resolutions. In the previous simulations, the initial

growth in total energy offsets this. The impacts on numerical diffusion are likely

relatively low, although this may be worth investigating further.

4.5 Conclusions

In this chapter, we have presented a means to analyse the energetics of clouds

modelled using the current version of MPIC. Doing so has shed light on the nature

of energy conservation within the method and provided us with tools to study how

kinetic and potential energy evolve within more complex systems. The potential

energy derived and presented in these results can be considered a profile version

of (CAPE ), often used in weather prediction and studying convective systems in

the atmosphere. Being able to derive this for the initial conditions can also let us

identify the convective inhibition (CIN ) in settings where it is relevant and assess

whether a given setting is unstable to convection. In the case of an initial thermal,

this is less relevant since the thermal has already overcome the environmental

CIN during its formation, and it rises freely under buoyancy. This may become

more important for settings where a heat source is present in the lower domain,

depending on the vertical structure of the environment. The available potential

energy of the initial thermal can still be used to determine how ‘efficiently’ potential

energy is converted to kinetic energy within the system and giving a yardstick for

measuring any energy loss.

The results suggest that at very early times, barring numerical diffusion, MPIC

conserves energy during the initial stages of cloud development relatively well,

and the total energy curve at early times converges towards zero. As the flow

rapidly becomes turbulent and the splitting and removal of parcels begin to take

place, the behaviour of the energy becomes somewhat less stable. By varying the

threshold values used for parcel splitting, we were able to identify that the splitting

and removal of parcels in MPIC seems to cause a slight increase in the system’s

total energy. It is unclear if this effect results from how parcel properties are

redistributed after removal, or if the energy gain is a dynamical effect of the mixing
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process smoothing out turbulence in the flow. We note that the potential energy

components appear to be more sensitive to variations of the splitting threshold.

This would suggest that the redistribution of parcel properties may contribute to

this more than the dynamical effects of mixing. The decay in total observed energy

is primarily attributed to turbulence and numerical dissipation in the model. Even

though the losses at later times become quite large (16% of CAPE at late times).

they are not unreasonable in a highly turbulent flow, and so we do not believe

them to be a significant concern.

Further work done after this initial study using a correction to the volume field

to preserve incompressibility has offered further insight into energy conservation

within MPIC. Moreover, a three-dimensional adaptation of the scheme used to

preserve incompressibility in Frey et al. (2022) has been implemented in later

work in this thesis. A quick comparison in this chapter shows the impact this

has on energy conservation. The results are promising, as the spurious increase in

total energy is almost completely eliminated.

In the future, the analysis in this chapter may be able to take advantage of the

Lagrangian nature of MPIC to analyse the distributions of potential and kinetic

energy and their overall evolution in a range of test cases. The change in poten-

tial energy for a given parcel in MPIC is related to its vertical displacement, for

example. This could be used to track the origin of environmental air in studies

of flux driven convection. The presence of different chemical species in MPIC is

also easily implemented through the addition of parcel attributes and their effects

on potential energy could be represented in the equation for total energy density

(4.17), for example some aerosols serve as condensation nuclei that can encourage

condensation and reduce the condensation level of a given parcel. Such a modifi-

cation may be beneficial in studies of atmospheric chemistry and transport in the

future. At present, however, the work presented here has detailed a study into

the properties of interest for the simplified test case. It will serve as a basis for

analysing energetics presented in future works. Assessing the validity and signif-

icance of the results, even in a simple, idealised setting, has been very helpful in
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moving forward with confidence.
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Chapter 5

A Lagrangian study of the convective

boundary layer growing into a linearly

stratified atmosphere

5.1 Introduction

One area of atmospheric convection in which a Lagrangian model such as MPIC

may be greatly beneficial is in the study of convective boundary layers (CBLs):

turbulent layers at the base of the troposphere in which air entrained from above

is mixed by convective motions. At the top of the CBL lies the entrainment

zone (or the inversion layer), the region in which air is entrained downwards to

feed the growth of the CBL. The primary driving force behind CBL growth is

the flux of heat from the surface, although they are also strongly influenced by

vertical wind shear and, in some cases, wind shear can form boundary layers by

itself (Stull 1988). Both sheared and shear-free boundary layers occur regularly

in the atmosphere and influence not only the surface weather, but often larger

scale convective motions. Purely shear-driven boundary layers are less common,

and mostly arise within the atmosphere due to surface friction, although they are

common in oceanic cases where the surface wind can give rise to a shear stress at
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the ocean-atmosphere boundary. In this chapter, we will primarily look to analyse

the shear-free boundary layer.

Boundary layers are particularly important in larger-scale studies of atmospheric

circulations, as they control the transfer of heat, moisture and momentum from the

surface into the upper troposphere. Likewise, the thermodynamic properties of air

entrained into the boundary layer can strongly influence its development, leading

to potential drying or moistening of the layer which influences cloud development

(Deardorff 1974; Mahrt 1991). As such, entrainment is a very important factor in

determining the vertical distributions of heat, moisture, and momentum (Sorbjan

2005; Mellado et al. 2017) in the CBL. Because of the crucial role of entrainment

in the feedback loop between CBLs and the rest of the atmosphere, studies into

the behaviour of entrainment parameters and how they respond to variations in

stratification or wind shear are of particular interest (Moeng and Sullivan 1994;

Kim et al. 2003, Fedorovich et al. 2004; Conzemius and Fedorovich 2006a; Liu

et al. 2018).

Unfortunately, the scales associated with the convective motions that drive en-

trainment into CBLs are much smaller than those we are able to resolve in atmo-

spheric models. Turbulent motions within clouds, for example, occur on length-

scales of a few meters (Austin et al. 1985; Blyth et al. 2005). As such, it is necessary

to derive boundary layer parametrisations that encompass the effects of entrain-

ment (Lilly 1968; Betts 1974; Deardorff 1979; Zilitinkevich 1991; Fedorovich 1995;

Fedorovich et al. 2004; Conzemius and Fedorovich 2006b; Pino et al. 2006; Garcia

and Mellado 2014) in order to represent the effects of the CBL. These models typ-

ically make use of bulk properties such as the entrainment rate, defined as the rate

of change of the CBL depth, zi, in time, dzi/dt. There is some debate as to exactly

how the CBL depth is defined, as well as the vertical extent of the entrainment

zone above it (Garcia and Mellado 2014 provides a range of potential definitions

for zi). The most common definition used in the literature is the point at which

the minimum in kinematic heat flux occurs.

Of the models used to parameterise the CBL, the most commonly used is the
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Figure 5.1: Schematic of the vertical structure of the CBL in zero-order model of
Zilitinkevich (1991). Vertical profiles of buoyancy, b (a), and vertical buoyancy flux
B (b), are shown. Thick black lines indicate zero-order model predictions of the
quantities. Dashed horizontal lines indicate the upper, zi,u, and lower, zi,l, bound-
aries of the entrainment zone, as well as the zero-order model discontinuity line at
zi. B0 is the buoyancy flux at the lower surface and ∆b is the buoyancy increments
across the whole entrainment zone and δb is the local buoyancy increment at the
discontinuity. δ represents the thickness of the entrainment zone (heights are not
necessarily drawn to scale).

zero-order bulk model proposed by Lilly (1968), which was further developed in

Zilitinkevich (1991) and Fedorovich (1995) and Fedorovich et al. (2004).The sim-

plicity of this model makes it highly appealing for parameterisation schemes. The

model approximates the entrainment zone atop the CBL as an infinitesimally thin

layer across which the properties of potential temperature, θ, and horizontal ve-

locity, u, are discontinuous. The potential temperature within the CBL is con-

stant and above the defined top, zi, it scales linearly with height according to

dθ/dz = N2θ0/g where N is the Brunt Väisälä frequency and θ0 is the potential

temperature at the lower surface. The buoyancy, b, is related to the potential tem-

perature by b = (g/θ0) (θ − θ0), and vertical buoyancy flux, B, is related to the

heat flux by, B = (g/θ0)Q. The horizontal velocity component is constant above

and below the discontinuity line, with a jump at this point. Finally, the heat flux

decays uniformly as the vertical coordinate increases from its value at the surface,

Qs, to Qi = ∆θ (dzi/dt) at the top of the CBL, where Qi is the entrainment heat

flux and ∆θ is the jump in potential temperature across the entrainment zone

continuity. The corresponding buoyancy increments across the discontinuity are
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defined as ∆b = (g/θ0)∆θ. dzi/dt is the rate of growth of the CBL. Example

profiles of the buoyancy and flux are shown in Figure 5.1.

These properties can be compared with the output of LES studies as in Fe-

dorovich et al. (2004) where the entrainment ratio is directly obtained from the

LES profiles. The value of the entrainment ratio, A, in the equilibrium entrain-

ment regime is typically around A = 0.2, in agreement with observational and

experimental data (Stull 1976; Deardorff 1974; Deardorff 1980; Fedorovich et al.

2004). Higher-order bulk models of CBL growth have also been developed (Betts

1974; Vanzanten et al. 1999) as well as general structure models (Fedorovich and

Mironov 1995; based on Deardorff 1979), although Fedorovich et al. (2004) finds

that these models are less effective in modelling the entrainment zone, likely due

to an incomplete understanding of its structure. As such, higher-order models

are generally unused in favour of the zero-order model, which remains applicable

and benefits further from its simplicity and lack of computational expense as a

parameterisation scheme.

Because the zero-order model assumes the entrainment zone is infinitesimally

thin, however, it struggles to predict entrainment rate parameters in boundary

layers with much thicker entrainment zones (as shown in Sullivan et al. 1998 ;

Fedorovich et al. 2004). Work on the vertical structure of the entrainment zone in

higher-order bulk models is relatively limited and has led to difficulties in defining

the entrainment rate parameters. Garcia and Mellado (2014) suggested that a

structure consisting of two overlapping sublayers may explain some discrepancies

seen in other models. Their study used DNS at moderate Reynolds numbers

to probe the vertical structure of the entrainment zone, identifying self-similar

behaviour in the buoyancy profile.

The majority of studies on boundary layer entrainment are carried out using LES

models and similar methods and results are compared to the zero-order model when

calculating entrainment parameters (Fedorovich et al. 2004; Liu et al. 2018). LES

studies, however, are limited by the parametrisations of sub-grid turbulence. Con-

vective entrainment is highly turbulent and as such, the use of sub-grid turbulence
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models may not be best suited to accurately probe the entrainment parameters

and structure of the entrainment zone (Sullivan and Patton 2011). In previous

works, this has motivated the use of DNS to fully resolve the turbulent flow of,

shear-free CBL growing into a linearly stratified atmosphere (Garcia and Mellado

2014; Mellado et al. 2017). These studies yielded considerable insight into the

vertical structure of the entrainment zone. DNS does have one distinct weakness

in that, due to the computational expense of modelling turbulence, it struggles

to model the high Reynolds numbers associated with atmospheric flows. Garcia

and Mellado (2014) cite Reynolds number similarity – some flow properties be-

come independent of the effective Reynolds number once it exceeds a certain value

(Moin and Mahesh 1998; Dimotakis 2000) as partial justification for the use of

DNS in their study. DNS has been proven to be a powerful tool in the study of

atmospheric turbulence, in spite of the Reynolds number limitations.

We propose the MPIC method of Dritschel et al. (2018) as an alternative ap-

proach to modelling the growth of CBLs and probing entrainment zone structure.

As a semi-Lagrangian model with an explicit sub-grid representation of mixing, this

model avoids the parametrisations used by LES models and eliminates a degree of

uncertainty at the finer scales. The model compares favourably with existing con-

vection models (Böing et al. 2019) in a simple test case based on a rising thermal,

and the parcel representation allows it to model the flow well below the resolu-

tion of its underlying grid. The particle-based nature of the model means that

there is no explicit kinematic viscosity directly introduced into the model outside

of limited numerical diffusion that occurs during the mixing process. As a result,

a model like MPIC may have the potential to enable study CBL growth at higher

effective Reynolds numbers than existing DNS studies, while offering a greater de-

gree of computational efficiency and avoiding LES parametrisations of turbulence.

At the very least, Lagrangian methods may offer an alternative to conventional

atmospheric models that can attain similar Reynolds numbers and results typical

of atmospheric turbulence at lower resolutions than is required within LES and

DNS simulations.
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In this chapter, we present the results of a simulation in MPIC modelling the

growth of a convective boundary layer into a linearly stratified atmosphere, in the

absence of wind shear or moisture effects. To the author’s knowledge, this is the

first time a particle-based model has been used to analyse the atmospheric CBL

and entrainment zone. The chapter is organised as follows. In section 5.2 we

present the modifications made to the base MPIC method described in chapter 2

to allow for modelling CBL development, in particular the modifications to allow

for a flux of heat to be applied at the lower surface of the system while preserving

volume conservation and avoiding spurious growth of vorticity at the surface. In

section 5.3 we present the results of these simulations. In section 5.3.1 we present

a brief study of the energy budget in the simulation and determine an estimate

for the buoyancy Reynolds number of the flow. Sections 5.3.2 and 5.3.3 show

the evolution of the boundary layer through cross-sections of the buoyancy and

vorticity fields, respectively. Section 5.3.4 focuses on the vertical distributions of

thermodynamic properties of the boundary layer and entrainment zone. Section

5.3.5 discusses the vertical distributions of kinetic energy in the system. In section

5.3.6 we present analysis based on the vorticity dynamics based approach in MPIC

in which enstrophy is used to trace turbulence within the domain, similarly to work

done in Fodor and Mellado (2020), Borrell and Jiménez (2016) and references

therein, and we relate these to the vertical structure of the entrainment zone

noted in previous sections. In section 5.3.7 we use the vertical distributions of

these properties to derive a series of measures of the boundary layer height and

relate these to the structure of the entrainment zone. A brief discussion of the

estimated thickness of the two entrainment zone sublayers is presented in section

5.3.8. Finally, in section 5.3.9, we compute the mean entrainment rate and other

entrainment parameters of the flow, and compare these results to the predictions

of zero-order models and existing computational studies to assess the performance

of MPIC in relation to parameters important to large-scale models and convective

parametrisations. Section 5.4 presents a summary of our findings and comments on

potential extensions to sheared boundary layers, including the effects of moisture

and cloud development.
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5.2 Physical model

5.2.1 Surface fluxes of heat

The implementation of surface fluxes within MPIC is relatively straightforward,

with the changes made to the solver in Chapter 2. A point of note in comparison to

existing models is that MPIC does not directly calculate the potential temperature

of a parcel. As such, we use the associated buoyancy as a thermodynamic variable

in our results and the vertical fluxes of heat are obtained by calculating the kine-

matic flux of buoyancy through the domain. Similarly, the transfer of heat from

the lower surface into the domain is modelled by incrementing the buoyancy of

parcels accordingly, yielding a relatively simple model for a surface heating driven

boundary layer.

First we prescribe a surface profile for the buoyancy and humidity flux on a

two-dimensional grid matching the resolution of the grid used for inversion. We

then identify all parcels in the simulation that are within the lowest grid layer,

zi < zg1 where zg1 is the top of the lowest grid cells. The buoyancy flux is then

interpolated onto the parcels using bi-linear interpolation, with a linear decay to

0 at the top of the first grid layer. For example, the buoyancy increment received

by a parcel, at position xi is given by

bi,inc =
∑
x̄∈Gi

ϕ (xi − x̄) binc (x̄) (zg1 − zi)∆t, (5.1)

where x̄ ∈ Gi are the four corners of the grid box containing the parcel on the

lower boundary of the domain and ∆t is the timestep. binc (x̄) is the buoyancy

increment on the corner of the 2D grid on the lower boundary (from the prescribed

profile). The ϕ (xi − x̄) represent the bilinear weights used to interpolate from the

prescribed surface flux profile to the horizontal parcel locations. These expressions

are then weighted by the volume fraction carried by each parcel in the grid layer,

V̂i.

Because the buoyancy increment is applied to each grid cell at the lower bound-
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ary, we apply a global scaling factor to eliminate the effects of resolution and

convert it to the input buoyancy flux B0. To ensure that the input flux is inde-

pendent of the horizontal resolution, we must scale it according to the horizontal

grid spacing. More specifically, we multiply the input flux by a factor of ∆x∆y.

This effectively converts the flux from a buoyancy input per unit area to the total

buoyancy applied to a grid cell of area ∆x∆y which can then be interpolated onto

the parcels within. This does, unfortunately, include some degree of resolution

dependence the surface flux scheme but it remains a simple and effective means to

incorporate surface heating in MPIC, since the region in which heat enters the sys-

tem shrinks as resolution is increased. It may be more physical to define a physical

depth at the base of the domain and apply the heating within and investigation

into this is a topic for future works.

This represents the simplest possible implementation of surface heating within

MPIC, but it is not the only possibility, as an alternative approach would involve

the injection of new parcels into the flow over time. We have opted for the simplest

approach initially to showcase the ability of the model to simulate boundary layer

development, but a more detailed evaluation is left for future works.

5.2.2 Volume conservation

One issue that initially arose from the implementation of surface heating was a

depletion of parcel concentrations in the lowest regions of the domain. This is not

an uncommon issue within particle based models, so it is unsurprising that we

might encounter a similar effect here. The issue arises in MPIC flux simulations

because the surface heating forces parcels away from the lower boundary of the

domain, and the parcels are not sufficiently replaced by the constant forcing. In

order to interpolate properties correctly, MPIC requires a sufficient number of

parcels in the nearby grid cells for interpolation. Consequentially, properties of

the flow in the lower region become unstable. This depletion of parcels at the

lower surface was found to impact the rate at which the surface flux was added

to the domain, because this is directly related to the volume fraction of the grid
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cells in the surface layer of the domain. This resulted in the input flux gradually

declining over time as flux driven simulations were allowed to continue. In fact, the

parcel depletion effect has been found in previous simulations of rising thermals in

MPIC in general, although not to the extent observed in flux-driven flows

This issue was also encountered in the latest version of MPIC, the Elliptical

parcel-in-cell method (EPIC) (Frey et al. 2022) which replaces the vorticity-based

parcel splitting with elliptical parcels for which a more physical measure of parcel

stretch can be computed. In this model, Frey et al. (2022) propose two corrections

used to enforce volume conservation, the first of which ensures that the flow is

divergence free, and the second is based on spatial gradients of the volume field. A

two-dimensional version of these corrections and their usage is described in detail

in Frey et al. (2022). The basic premise of the second correction is that parcels are

shifted along the gradients of density within a given grid cell. In one dimension,

the displacement of a parcel, δx̃ in this correction is given in Frey et al. (2022) by,

δx̃ = Cx̃ (1− x̃) , (5.2)

where x̃ here describes the relative position of the parcel within the grid cell,

ranging from 0 at one edge, to 1 at the opposite edge in the x-direction. C is a

prefactor which is dependent on the change in gridded volume fraction across the

grid cell. The magnitude of C determines the maximum extent to which parcels are

compressed at the edges of the cell. To obtain the actual shift in parcel position,

we simply multiply δx̃ by the grid spacing ∆x. In one dimension, C is given, in

the ith grid cell by,

C = −β
V i+1 − V i

Vcell

, (5.3)

where V represents the volume of each grid cell and Vcell is the desired volume to

be occupied by a grid cell in the domain (i.e. the correct grid cell volume). The

coefficient, β, is chosen to be 1.8, based on numerical tests (Frey et al. 2022).

To extend this to two dimensions, this correction is applied in each dimension
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independently. However, to obtain the corresponding density gradient in the x-

direction for a parcel also depend on its relative position along the vertical axis,

ỹ. To obtain the appropriate prefactor, Cx for the shifting along the x-axis, we

linearly interpolate the volume gradients between the edges of the grid cell at

ỹ = 0 and ỹ = 1 to the particle’s vertical position. The process is repeated for the

vertical parcel shifting, this time interpolating to the parcel’s horizontal position

within the cell.

To obtain a three-dimensional correction along a given axis, the process is iden-

tical, however now we must linearly interpolate the volume gradient along both of

the other axes. For example, to obtain δx̃ we must obtain Cx by computing the

volume gradient in the x-direction, interpolated between ỹ = 0 and ỹ = 1 as well

as between z̃ = 0 and z̃ = 1. For example, when shifting a parcel according to

density gradients in the x-direction, we have,

Cx = − β

Vcell

[
(1− z̃)

[
(1− ỹ)

(
V iy,ix+1,iz − V iy,ix,iz

)
+ ỹ

(
V iy+1,ix+1,iz − V iy+1,ix,iz

)]
+ z̃

[
(1− ỹ)

(
V iy,ix+1,iz+1 − V iy,ix,iz+1

)
+ ỹ

(
V iy+1,ix+1,iz+1 − V iy+1,ix,iz+1

)] ]
,

(5.4)

where ix, iy, iz refer to the x, y and z indices of the grid cell in which the parcel

being shifted is located. Similarly, when shifting parcels according to density

gradients in the y-direction, we use,

Cy = − β

Vcell

[
(1− z̃)

[
(1− x̃)

(
V iy+1,ix,iz − V iy,ix,iz

)
+ x̃

(
V iy+1,ix+1,iz − V iy,ix+1,iz

)]
+ z̃

[
(1− x̃)

(
V iy+1,ix,iz+1 − V iy,ix,iz+1

)
+ ỹ

(
V iy+1,ix+1,iz+1 − V iy,ix+1,iz+1

)] ]
.

(5.5)
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(a) (b)

Figure 5.2: Comparison of the observed RMS errors in gridded volume fraction (a)
and maximum fractional volume error (b) for multiple applications of the volume
corrections presented in Frey et al. (2022) for the simple rising thermal test case.
0x, 2x denote the number of iterations of the volume corrections were applied to
the simulation. The colour of the line indicates the number of times that the
divergence and gradient based corrections were applied.

Finally, the prefactor for shifting parcels in the vertical is given by,

Cz = − β

Vcell

[
(1− x̃)

[
(1− ỹ)

(
V iy,ix,iz+1 − V iy,ix,iz

)
+ ỹ

(
V iy+1,ix,iz+1 − V iy+1,ix,iz

)]
+ x̃

[
(1− ỹ)

(
V iy,ix+1,iz+1 − V iy,ix+1,iz

)
+ ỹ

(
V iy+1,ix+1,iz+1 − V iy+1,ix+1,iz

)] ]
.

(5.6)

The results in figure 5.2 showcase the effects of applying each correction multiple

times. These results are obtained for the standard MPIC test case described in

previous sections of a rising thermal initially at rest and show the RMS errors in

the gridded volume fraction. These results show that just applying the correction

twice is sufficient to reduce the fractional RMS volume errors to well below 10−3

and the maximum volume fraction errors to a few percent. We also note that

the observed errors appear to show convergence on the log scales used as the
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corrections are applied multiple times. Beyond a certain point, we see diminishing

returns for the computational cost incurred. The largest errors are observed at

early times in the rising thermal test case in runs with fewer applications of the

corrections, and this is likely because the strongest vertical motions are observed

during the initial ascent. This means that parcels within the thermal are displaced

rather rapidly, causing depletion to occur more strongly than can be counteracted.

As such, we elect to apply the correction twice to balance between the additional

computational cost and accuracy of the volume field.

5.2.3 Prevention of spurious vorticity generation

Another issue that emerges as a consequence of the surface fluxes is the generation

of vorticity, (ω = (ξ, η, ζ)), at the lower boundary. More specifically, this is a

consequence of the free-slip boundary conditions used in MPIC. These, combined

with the horizontal buoyancy gradients arising from a surface flux profile, can lead

to vortices becoming trapped at the lower (and occasionally upper) boundaries.

These vortices grow in strength and lead to the formation of a spurious shear in

the domain that can eventually grow to dominate the motions of the system.

In conventional simulations of convective boundary layers, a no-slip bound-

ary condition is enforced (see any of the previous studies cited in this chapter).

Whether a free-slip boundary can be considered realistic within studies of atmo-

spheric convection is unclear. We do not attempt to force no-slip boundaries in

MPIC to minimise the effects of additional viscosity and maintain higher Reynolds

numbers across the domain. We do, however, acknowledge that some degree of

diffusion is required in order to offset the vorticity growth at the vertical bound-

aries. Hence, we aim to apply a damping effect on the vorticity of parcels very

close to the boundaries.

We start from the vorticity equation presented in Chapter 2

Dω

Dt
= ω ·∇u+ (by,−bx, 0) , (5.7)
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which can be split into the individual components

Dξ

Dt
= ξux + ηuy + ζ (η + wx) + by,

Dη

Dt
= ξvx + ηvy + ζ (η + wy)− bx,

Dζ

Dt
= ξwx + ηwy − ζ (ux + vy) .

(5.8)

The simplest course of action would be to introduce an additional term to each

component consisting of a dimensionless damping rate, α, multiplied by the corre-

sponding vorticity component such that, for example, Dξ/Dt → Dξ/Dt−αξ. This

linear damping was then applied to all parcels located within the lowest grid cell

of the domain, the same region as those receiving increments of buoyancy from the

lower surface. This method left much to be desired, as it is heavily dependent on

the choice of α. For example, if the system is overdamped we generate an instability

at the boundary and underdamping fails to prevent the excessive growth of vor-

ticity. When employing a nonlinear damping of the form, Dξ/Dt → Dξ/Dt−αξ2

we found similar issues.

Instead, we look to a more sophisticated means of curbing the growth of vor-

ticity at the vertical boundaries. We introduce a diffusion term to the vorticity

equation that is dependent on the spatial gradients of the vorticity components

and controlled by a nonlinear function of the vertical coordinate, chosen such that

it disappears above the damping region. Using the x-component of vorticity again

as an example, the tendency now takes the form

Dξ

Dt
= ξux + ηuy + ζ (η + wx) + by +∇ · (κ (z)∇ξ) , (5.9)

where κ(z) is a height-dependent eddy viscosity which defines the form of the

diffusion profile. More specifically, we choose

κ(z) = α (z2 − z)2 , (5.10)

where α is a dimensionless damping rate. z2 is the vertical coordinate associated
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with the second grid layer such that the diffusion is spread across the two grid

layers closest to each vertical boundary. Computing the diffusion term requires

the spatial derivatives of ξ and so we convert to spectral space in the horizontal,

obtaining

ξ̂t +
(
k2 + l2

)
κ(z)ξ̂ = Ŝξ +

d

dz

(
κ (z)

dξ̂h
dz

)
, (5.11)

where Ŝξ is the usual tendency of ξ in spectral space and k and l are the horizontal

wavenumbers as in Chapter 2. We then evaluate the vertical derivatives using

second order finite differences. At z0 we obtain

d

dz

(
κ (z)

dξ̂h
dz

)
=

[
κ
(
z 1

2

) dξ

dz

(
z 1

2

)
− κ

(
z− 1

2

) dξ

dz

(
z− 1

2

)]
/∆z. (5.12)

The vorticity components are chosen to be symmetrical across the boundary be-

tween, nz = −1, .., 1 such that the second term in the numerator is the product of

an odd and an even function. This results in a centred difference at z = z0,

d

dz

(
κ (z)

dξ̂h
dz

)
≈

2κ
(
z 1

2

)
−
(
ξ̂1 − ξ̂0

)
(∆z)2

, (5.13)

and similarly, we obtain the finite differencing at the base of the second grid cell,

z = z1,

d

dz

(
κ (z)

dξ̂h
dz

)
≈

κ
(
z 3

2

)(
ξ̂2 − ξ̂1

)
− κ

(
z 1

2

)(
ξ̂1 − ξ̂0

)
(∆z)2

. (5.14)

The process is identical for the upper boundaries between z = znz and z = znz−2.

Initial tests suggest that in the absence of this damping, vorticity can become

trapped at the top of the domain and accumulate. To avert this, we implement

the same damping layer at the upper surface of the domain. It may be preferable

to introduce a proper sponge layer in this region that relaxes all properties towards

the initial state near the upper surface instead. This is a somewhat more involved

procedure within MPIC however and would require tuning of further numerical

parameters, so we have opted to simply damp the vorticity. Our testing suggests
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Figure 5.3: Schematic diagram showing the experimental setup for the boundary
layer simulation. The buoyancy field at time t = 0 is shown alongside a graph
showing the linear variation of buoyancy with height, < b0 > (z) = N2z. B0

represents the strength of the buoyancy flux at the lower surface and Lx and Lz

are the dimensions of the domain of the horizontal and vertical directions.

that a value of α = 0.05 is sufficient to prevent the build up of vorticity in CBL

simulations using MPIC without overdamping the system.

This method is perhaps not the ideal means with which to address the issue,

but it does provide a relatively simple solution to the problem of spurious vorticity

growth. Damping the vorticity in this way leaves the bulk of the MPIC method

unaltered and avoids having to directly enforce no-slip boundaries, which would

require considerable modifications to the vertical solver.

One concern with this method is that it introduces resolution dependence, since

vorticity is only damped within the lowest two grid cells. It may be worth revisiting

the damping and defining a physical extent of the diffusive region which does not

change with vertical resolution. On the other hand, the resolution dependence

may be beneficial as the diffusion takes effect only within a smaller region of the

domain retaining high Reynolds numbers in all but the lowest and uppermost grid

cells. It may be necessary to adjust the damping rate in such cases, however.

5.2.4 Experimental setup

Here, we present the parameters used for the simulation of a dry convective bound-

ary layer in MPIC. Quantities used are non-dimensionalised according to the values
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in Chapter 2 unless stated otherwise. The majority of the numerical parameters

within MPIC are the same as in previous chapters, with the exception of the split-

ting threshold for parcels which, for this simulation, was set to γmax = 8.0. This

value was chosen because Chapter 4 has shown that reduced splitting of parcels

offers greater conservation of energy in the simulation. The minimum parcel vol-

ume was kept as 1/63 of the grid cell volume and the model was initialised with 4

parcels within each grid cell.

Compared to previous simulations of rising thermals in MPIC, we have adopted a

much wider horizontal domain. This allows for much better sampling of properties

used to generate vertical profiles. In an attempt to emulate existing works such

as Garcia and Mellado (2014) and Mellado et al. (2017), we expand the horizontal

extent of the domain to be four times larger than the vertical, while keeping the

grid spacing the same. Figure 5.3 shows a schematic of the initial setup, including a

cross-section through the domain along with the vertical profile of the horizontally

averaged initial buoyancy, < b0 >. The domain size is Lx×Ly×Lz = 8π×8π×2π

at a resolution of 128 × 128 × 32. Our reasoning for keeping the horizontal and

vertical grid spacing the same is due to the homogeneous nature of turbulence

in shear-free boundary layers. The upper and lower boundaries of our domain

are free-slip, stress-free boundaries as in previous MPIC simulations and we use

periodic boundary conditions in the horizontal directions. As discussed previously,

we apply a surface flux of buoyancy, with strength B0 to all parcels in the lowest

grid cell of the domain. We also use the vorticity damping at the upper and lower

vertical boundaries outlined in Section 5.2.3, with a dimensionless damping rate

of α = 0.05.

The vertical structure of the initial environment is very straightforward, be-

ing a dry linearly stratified atmosphere with db/dz = N2 where N is the Brunt

Väisälä frequency. This surface is heated from below by a uniform buoyancy flux of

strength B0 in order to drive the growth of the boundary layer. In order to break

symmetry, we add a random noise to each grid cell in the prescribed buoyancy

profile, generating a random perturbation between −1% and +1%. An analytic
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perturbation to the flux profile was also tested in early stages, using a superposi-

tion of sine and cosine waves but this was removed in favour of the random noise.

We also note that the choice of initial conditions has little effect on the long term

evolution of the system, at late times the bulk properties of the flow are near

identical in both cases. The random noise was more effective in breaking down

symmetry at early times, despite being dependent on the horizontal resolution.

The most important parameters in determining the evolution of the system are

the surface buoyancy flux, B0, and the background stratification ,N2. We use these

to define an Ozmidov lengthscale, L0, which can be interpreted as the integral

lengthscale of turbulence within the system (Ozmidov 1965) because the viscous

dissipation rate in a shear-free boundary layer is of similar order of magnitude

to the surface buoyancy flux (Fedorovich et al. 2004). This Ozmidov lengthscale

can also be interpreted as the minimum thickness of the CBL (see Appendix A

in Garcia and Mellado 2014). L0 incorporates the effects of the stratification and

surface heating and so can be useful in further analysis, or even used to represent

the development stage of the CBL in place of non-dimensional time (Garcia and

Mellado 2014; Haghshenas and Mellado 2019). L0 is given by the equation,

L0 =

(
B0

N3

) 1
2

. (5.15)

In this simulation of a convective boundary layer in MPIC we use dimensionless

values of B0 = 0.0044, N = 0.97 and obtain L0 = 0.07 corresponding to physical

values of L0 = 140m, B0 = 0.007m2s−3 and N = 0.007 s−1. We note that the

values of B0 and N are comparable to typical atmospheric values (Fedorovich et

al. 2004). The value of L0 also lies well within the range of values studied in

Garcia and Mellado (2014). Through the course of the simulation we see the CBL

grows to depths of zenc(t)/L0 = 10 by a dimensionless time of t = 50 where zenc(t)

is the encroachment height, representing the upper boundary of the mixed layer

at time t. The computation of the encroachment height (Lilly 1968; Carson and

Smith 1975) is discussed further in section 5.3.7. The run was allowed to continue

to a dimensionless time of t = 400, encompassing stages of development studied
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in Garcia and Mellado (2014) in which the boundary layer grows to a depth of

zenc/L0 = 26.

5.3 Results

5.3.1 Energy budget and estimation of Reynolds number

While studying the development of the boundary layer, it is important to un-

derstand how accurately the flow resembles real turbulence. Hence, we aim to

estimate the buoyancy Reynolds number of the flow in MPIC. This is typically

obtained from the expression

Re0 =
B0

νN2
, (5.16)

where all symbols have their previously stated meanings, and ν is the kinematic

viscosity of the fluid. Within the semi-Lagrangian model MPIC, this becomes

somewhat more complicated to calculate, because the model does not include

an explicit representation of viscosity. This is due to how the mixing process is

handled within MPIC. More details on this can be found in Chapter 2. Because

MPIC simulates mixing through the splitting and removal of parcels based on

their volume and the vorticity stretching integral, the only dissipation that occurs

is numerical. Thus, we must look for an alternative means to estimate the effective

buoyancy Reynolds number.

To do this, we must consider what it is that limits the resolution of turbulence

within MPIC. In particular, we must identify the smallest lengthscale within the

system that energy can cascade down to before it is subjected to numerical diffu-

sion. We may instead represent the kinematic viscosity of the system in terms of

the Kolmogorov scale given by the equation

lk =

(
ν3

ϵD

) 1
4

, (5.17)

where ϵD is used to represent the average rate of dissipation of turbulence kinetic

energy and lk is the Kolmogorov scale at which viscous forces become dominant
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Figure 5.4: Evolution of the volume-averaged total energy (black line) and the
energy generated by the surface flux (blue line).

and kinetic energy is dissipated.

This term can be rearranged to give an estimate of the kinematic viscosity due to

numerical mixing, ν, within MPIC but we still need to determine the lengthscale lk.

A reasonable and simple way to estimate this scale is to use the volume threshold

that determines when parcels are removed from the model and their properties

redistributed to the grid. In the version of MPIC used in this study, parcels are

removed once their volume becomes smaller than (1/63)∆V where ∆V is the grid

cell volume. So we can make a crude estimation that the minimum lengthscale

is approximately six times smaller than the grid spacing. This would give us a

value of lk ≈ 0.03 which is equivalent to about 60m, several orders of magnitude

larger than typical atmospheric values. Given the domain height is the same as

in previous simulations at 12 km, that means this lengthscale is about 0.5% of the

domain height. Also of note is the relatively low resolution at which this study has

been carried out. It is likely that focusing on a shallower domain and increasing

the grid resolution could reduce this value considerably.
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The other term needed to estimate the Reynolds number is ϵD, the dissipation

rate of kinetic energy density, represented as a volume averaged quantity. There

is no simple way to estimate this within MPIC a priori, and so we must study

the evolution of the total system energy across the duration of the simulation.

We calculate the potential energy of the parcels as described in Chapter 4 and

compare this to the energy added to the system by the surface buoyancy flux. The

comparison of these is shown in Figure 5.4, and we can use this to estimate that

by the end time of t = 400, the volume averaged total energy of the system is

approximately ∆E = 0.1 less than the energy density that entered through the

lower surface. Because the rate of change of total energy is approximately linear

in Figure 5.4, we can estimate the value of ϵD by simply dividing by the run time

of the simulation, giving us ϵD = 0.00025 in non-dimensonal units.

We can then substitute the rearranged expression for the kinematic viscosity

in terms of the lengthscale lk and dissipation rate ϵD into the expression for the

buoyancy Reynolds number, Re0 giving,

Re0 =
B0

l
4
3
k ϵ

1
3
DN

2
. (5.18)

Substituting in the values obtained above gives an estimated value of Re0 = 8.5.

In comparison to typical atmospheric cases this is incredibly small, and even com-

pared to work done in Garcia and Mellado (2014) it is still an order of magnitude

lower than the value obtained in their second test case, (Re0 = 117). It is impor-

tant to note that there is a massive difference in resolution between the simulations

carried out here and those in other studies. For example, Garcia and Mellado

(2014) use a grid resolution of 5120 × 5120 × 840 in the second test case which

is more than ten times the grid resolution used here in MPIC in each dimension.

Another example can be found in Liu et al. (2018) who used 400× 400× 400 grid

points at a resolution of 25m×25m×25m compared to a homogeneous grid spac-

ing of ∆x = ∆y = ∆z = 0.196 ≈ 400m in the MPIC study presented here. Given

that the radius of the smallest parcels used to estimate lk is directly proportional

to the grid spacing, we can see that this Reynolds number will have a n4/3 scaling
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with the grid resolution. This would likely yield comparable, if not higher, values

of Re0 than in DNS and LES in a study of comparable grid resolution. Chapter

4 also shows that the conservation of energy in MPIC can be improved with in-

creasing resolution and tuning of the parcel splitting parameters, which will also

impact the value of Re0. Because Re0 only depends on ϵ
1/3
D , the effect of this will

be less pronounced.

It is also worth noting that the only source of viscosity within the model beyond

the numerical mixing is the vorticity damping in effect at the upper and lower

surfaces due to their free-slip nature. If this is indeed responsible for the dissipation

of energy observed in Figure 5.4 then we should note that the behaviour of the

remainder of the domain, in particular the entrainment zone at later times, may

have a higher local Reynolds number than the estimates provided here. To examine

this further, we would need to be able to map the dissipation of energy within the

system.

In relation to the characteristic lengthscale L0 we find that the estimated Kol-

mogorov scale is slightly less than half the value of L0. One could then also argue

that the buoyancy Reynolds number can be determined by using the ratio of these

two lengthscales, i.e.

Re0 =

(
L0

lk

) 4
3

. (5.19)

This yields an estimated value of Re0 = 3.1 which is even lower still. This does not,

however, account for the dissipation of energy and effective viscosity introduced

by the numerical method in MPIC, so we believe the initial estimate to be more

reliable. It would not be correct to dismiss this outright either, so we present it

here regardless as an alternative estimation.

Our ability to reliably estimateRe0 here is also somewhat limited by the fact that

we can only assume that the Kolmogorov scale is the size of the smallest parcels,

and that we must estimate the dissipation rate from the loss in total energy. This

remains a crude estimation used to provide some comparison to other studies of

convective boundary layers in the atmosphere. A comparison of the kinetic energy
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Figure 5.5: Evolution of the change in kinetic energy as a fraction of the total
energy in the system. This is not the same as the total energy entering the system
due to the surface flux (see Figure 5.4).

of the system as a fraction of the total energy is shown in Figure 5.5, and we see

that the overwhelming majority of the energy input is used to heat the domain and

stored as potential energy. Kinetic energy constitutes a fraction of 0.20−0.25% of

the total energy available, much lower even than the fraction lost to dissipation.

After the initial spike in kinetic energy, this fraction actually becomes close to

steady in time.

The implications of this are unclear, but may well have an impact on the re-

liability of our estimation of the dissipation rate. The considerable difference in

magnitude of the kinetic and potential energy may well suggest that the dissipa-

tion rate is much higher than expected, if it is the result of kinetic energy being

rapidly dissipated into heat via turbulent mixing. This may lend some credibility

to the estimated value based on the ratio of the characteristic lengthscale L0 and

the Kolmogorov scale, lk, which has a lower value. It is unlikely, however, that

a factor of two in Re0 would result in dissipation capable of accounting for the

several orders of magnitude between kinetic and potential energy. On the other
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hand, if the total kinetic energy is so much lower than even the total energy loss,

it may be possible that energy other than kinetic energy is being diffused. This

would suggest that our value of ϵD above is too high, since it describes only the

dissipation of turbulent kinetic energy. It is unclear which of these is likely to

be the case, but in later sections we endeavour to keep the estimated effective

Reynolds number in mind as we describe the evolution of the boundary layer and

its structure.

5.3.2 Evolution of the buoyancy field

Here we illustrate the evolution of the system through cross-sections of the buoy-

ancy and vorticity field taken through the centre of the domain at different stages

in the boundary layer’s development. This provides a useful visualisation of how

the domain evolves in time. Figure 5.6 shows the early thermals rising into the

stratified atmosphere after the surface heating through the buoyancy field along-

side its variation relative to the initial background profile b0(z) and the horizontal

average, ⟨b⟩. We also include the vorticity field. The analysis presented is largely

a qualitative assessment of these properties and the insight they may give us re-

garding the structure of the boundary layer and entrainment zone.

Prior to around t = 35− 40 the heat generated by the surface flux accumulates

within the lower region of the domain before the warm air eventually organises into

small thermals. These thermals rise upwards a short distance before dispersing and

entraining air from above into the lower region of the domain. This process is what

feeds the growth of the boundary layer. The distribution of these thermals is likely

determined by the small random perturbations applied to the near homogeneous

surface heat flux, and is much less uniform than if we had used an analytic function

as was originally tested. Beyond this initial growth phase, we find that the effects

of the form taken by the small spatial variations of the surface flux have a limited

impact on the overall development of the boundary layer at later times. The

vorticity field shown provides a much clearer visualisation of the influence of the

thermals on the ambient air. In particular, the vorticity does not necessarily
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(a)

(b)

(c)

(d)

Figure 5.6: x-z cross-sections through the centre of the domain, taken at time
t = 35 showing (a) the buoyancy field, b; (b) the buoyancy anomaly relative to
the initial profile, b − b0(z); (c) the buoyancy anomaly relative to the horizontal
average, b−⟨b⟩; (d) the vorticity field magnitude, |ω|, during the rise of the initial
thermals resulting from the surface heating.
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overlap with the regions in which the buoyancy field shows the dispersing thermals

but rather it is concentrated at the edges of the dispersing thermals and along their

upward trajectory as air is pulled into the region below them and can hence show

us where the strongest mixing is likely taking place.

Because we keep many of the parameters the same as in previous MPIC simu-

lations of individual thermals (see Dritschel et al. 2018 and Böing et al. 2019 or

Chapters 3 and 4) we can actually compare the time taken for these thermals to

form, rise and disperse to the existing simulations. The original MPIC case study

was run out to a non-dimensional time of t = 10.0 but in this simulation the early

thermals are not seen until a time of around t = 35. Once formed, they reach

the peak of their ascent quite rapidly, although they are each individually smaller

and less buoyant and hence only rise a short distance vertically. This does, how-

ever, represent the first time within this framework in which we have simulated

naturally occurring convection without the need to start from an initial thermal.

This opens the way for studies of surface flux driven cloud fields in a Lagrangian

framework.

Once the initial thermals have ascended and entrained air downwards, it begins

to mix with the air in the lower region of the domain, and we start to see the

formation of the boundary layer. The further evolution of the buoyancy field is

shown in Figure 5.7. We also include the time evolution of the buoyancy anomaly

relative to the initial background profile and horizontally averaged buoyancy in

Figures 5.8 and 5.9. These are included to better illustrate the plumes and thermals

forming in the mixed layer. The b− b0(z) shows the extent of the boundary layer

particularly well, while the b − ⟨b⟩ profile highlights the plumes in the boundary

layer and the air displaced by convective updrafts. These results show that the

mixed layer at the base of the domain appears to grow rapidly in time and as the

layer becomes more strongly mixed we no longer observe clear thermals but rather

wisps and plumes rising from the surface and pushing air up into the stratified

region. The entrainment zone is most clearly visible within the early-mid times

of the cross-sections (Figures 5.7, 5.8, 5.9) where pockets of cool air from the
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(a)

(b)

(c)

(d)

Figure 5.7: x-z cross-sections through the centre of the domain taken at times (a)
t = 100, (b) t = 200, (c) t = 300 and (d) t = 400 showing the buoyancy field, b.
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(a)

(b)

(c)

(d)

Figure 5.8: x-z cross-sections through the centre of the domain taken at times (a)
t = 100, (b) t = 200, (c) t = 300 and (d) t = 400 showing the buoyancy anomaly
relative to the initial background profile, b− b0(z).
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(a)

(b)

(c)

(d)

Figure 5.9: x-z cross-sections through the centre of the domain taken at times (a)
t = 100, (b) t = 200, (c) t = 300 and (d) t = 400 showing the buoyancy anomaly
relative to the horizontally averaged buoyancy, b− ⟨b⟩.
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stratified region are seen being pulled down into the boundary layer. By the end

of the simulation, it appears that the mixed layer has grown to nearly a third of

the domain height.

Another feature of note in the buoyancy field is the appearance of perturbations

in the upper regions of the domain, far above the boundary layer and entrainment

zone. The cross-sections of the buoyancy anomaly relative to the horizontal average

(b− ⟨b⟩) highlight these perturbations more clearly. It is, at present exactly what

the source of these is, but they may arise to numerical effects.

5.3.3 Evolution of the vorticity field

While the buoyancy field of convective boundary layers growing into stratified

atmospheres has been studied in previous works (Fedorovich and Mironov 1995;

Sorbjan 1999; Fedorovich et al. 2004; Garcia and Mellado 2014; Liu et al. 2018),

studies pertaining to the vorticity field are somewhat rarer. Typically, it is used

to distinguish between the turbulent regions of the boundary layer and the non-

turbulent region above (Bisset et al. 2002; Mellado et al. 2009; da Silva et al.

2014b; Fodor and Mellado 2020) as well as in studies of the interface between such

regions (da Silva et al. 2014a). These studies typically use DNS to resolve the

enstrophy field. This, to the author’s knowledge, is the first time a Lagrangian

model has been used in this context and due to this novelty, the comparison to

existing studies will be beneficial to improving the method in the future. As a

model formulated from the vorticity equation, the study of enstrophy in MPIC

seems a natural application of the method. Because enstrophy is directly related

to kinetic energy and often traces regions of dissipation in the system, we can use

it to identify the regions where turbulent mixing is occurring most strongly.

The evolution of the vorticity field, presented in Figure 5.10 paints an interesting

picture. At t = 100, we see that the boundary layer is still in a relatively early stage

of its development, and the vortices found in the lower region of the domain are

fairly small and spread around the thermals and plumes observed in the buoyancy

field at this time.
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(a)

(b)

(c)

(d)

Figure 5.10: x-z cross-sections through the centre of the domain taken at times
(a) t = 100, (b) t = 200, (c) t = 300 and (d) t = 400 showing the magnitude of
the vorticity field, |ω|.
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As the boundary layer grows at intermediate times, t = 200 to t = 300, the

vorticity field begins to change. The many small pockets of vorticity seem to have

dispersed or merged, giving way to larger, stronger regions of vorticity that are

concentrated primarily just below the upper extent of the layer. These vortices

extend into the entrainment zone itself, where the cool air is being pulled from.

This implies that the majority of the mixing is found just below the base of the

entrainment zone, which seems reasonable given that this is where the air rising

through the mixed layer is likely to meet the pockets of air entrained from above.

There are particularly prominent vortices found near the centre of the domain at

both t = 200 and t = 300 that illustrate this point clearly. If we compare the same

snapshots of the buoyancy fields, we can see that these vortices roughly align with

particularly strong updrafts and the resulting entrainment of air from above.

In the upper region of the domain, we see vorticity aligning with the buoyancy

perturbations observed in Figures 5.7-5.9. In this figure their distribution is much

more clear, in particular at t = 200. The intensity of the vorticity appears to

decay by the end of the simulation. This is likely caused, in part, by the damping

at the upper and lower surfaces.

Directly above the vortices driving the entrainment, there appears to be a tran-

sition region. Across this layer, the vorticity field changes from being dominated

by updrafts and the mixing of entrained air to being largely dominated by small

regions of weak vorticity scattered across the upper half of the domain. The vor-

ticity falls off rapidly, giving rise to a region of depleted vorticity between the

boundary layer and the stratified region aloft. This is particularly evident in the

cross-section for t = 200. These findings are consistent with the work of Garcia

and Mellado (2014), who suggested that the entrainment zone can be represented

by two overlapping sublayers. The upper sublayer in this description of the en-

trainment zone is characterised by turbulent thermals penetrating into a smooth

environment, and it is described as a transition region between turbulent and non-

turbulent air. Further analysis of the enstrophy field in Fodor and Mellado (2020)

found that enstrophy drops off dramatically across the entrainment zone, which
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is reflected in our own results. The scale separation between the free atmosphere

above and the boundary layer below was used to determine suitable thresholds for

the conditioning of air into turbulent and nonturbulent regimes. This is illustrated

in the MPIC vorticity field by the large vortices failing to rise beyond the upper

limits of the entrainment zone. Section 5.3.5 and 5.3.6 will study this further

through the vertical distributions of enstrophy and kinetic energy.

5.3.4 Vertical distribution of thermodynamic properties

Qualitative analysis of the observed fields can only provide so much information.

As discussed in Section 5.1, many bulk models used for representing the convective

boundary layer (Fedorovich et al. 2004 provide an of overview of both zero-order

and general structure models) make use of the vertical distributions of thermo-

dynamic properties of the boundary layer. This approach can offer some insight

into the growth of the layer and provides a means of validating our results against

other studies.

One of the most commonly used quantities in defining the vertical extent of the

convective boundary layer is the vertical flux of buoyancy since this can identify

where the entrainment of buoyant air from above is occurring. This is given by

B = ⟨b′w′⟩ − κm
∂b

∂z
, (5.20)

where angled brackets denote the horizontal averages of the quantities within,

and primes denote variations from the horizontal average. κm is the molecular

diffusivity. In MPIC, we do not model molecular diffusion explicitly, so κm is zero

for the purpose of this study.

The vertical profiles for the horizontally averaged vertical buoyancy flux, B =<

b′w′ >, are shown in Figure 5.11. The formulation of the MPIC model requires

that the vertical velocity at the lower surface be zero, hence the sudden decay

in the lowest grid cell in these profiles. In reality the flux at this level will be

B = B0 = 0.0044. The region in which the buoyancy flu decays at the base of
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Figure 5.11: Vertical distributions of the horizontally averaged vertical buoyancy
flux B =< b′w′ >for t = 100 (red), t = 200 (green), t = 300 (blue), t = 400
(magenta).

the domain also appears to overlap with the vorticity damping layer, which may

influence the vertical velocity to some extent.

The most important feature of these profiles is the region in which the buoyancy

flux becomes negative, the entrainment zone. A negative buoyancy flux indicates

that air more buoyant than the horizontal average is being entrained downwards

(positive b′, negative w′) or that air less buoyant than the horizontal average

is detraining upwards (negative b′, positive w′). Typically, the point at which

the buoyancy flux first becomes negative (the zero-crossing point) is regarded as

the base of the entrainment zone (Fedorovich and Mironov 1995; Sorbjan 1999;

Fedorovich et al. 2004), and the negative buoyancy flux observed above is the

entrainment buoyancy flux (Lilly 1968).

The negative peak marking the approximate centre of this region moves upwards

in time as the boundary layer grows. It extends more in the vertical direction,

resulting in an entrainment zone that spans a comparable depth to the boundary

layer below. It may be that this results from the lack of a sponge layer in the
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upper region of the domain. It may also be a consequence of us neglecting the

molecular diffusion term in equation 5.20. Comparing this to the vertical cross-

section shown in Figure 2 and the vertical profiles across the entrainment shown in

Figure 4 in Garcia and Mellado (2014), it would appear that MPIC has produced a

much thicker entrainment zone. In a low Reynolds number flow, we would expect

the region of negative buoyancy flux to be narrower because it is harder for air

rising from thermals and plumes to penetrate so far into the stratified region.

Likewise, the turbulent motions that drive entrainment would be damped more

strongly. This is also of note because the zero-order bulk model assumes that the

entrainment zone is infinitesimally thin, as discussed in Section 1. This model

becomes less reliable for boundary layers with a relatively thick entrainment zone

(Sullivan et al. 1998; Fedorovich et al. 2004) and this should be kept in mind in

subsequent comparisons.

One more feature of note in these profiles of the vertical buoyancy flux is the

region above the entrainment zone, where the buoyancy flux becomes positive (or

zero) again. This seems to suggest that there is upward transport of heat through

the stratified region above the boundary layer, it may be, in some way, linked to

the disturbances observed in the vorticity in this region, although the origin is

not immediately clear. We can see at t = 100 that the buoyancy flux above the

entrainment zone is effectively zero.

The region below the entrainment zone is the mixed layer, characterised by rising

updrafts of buoyant air heated by the surface flux. The buoyancy in the mixed

layer is close to constant. Consequently, once air has been heated to a certain point

(see Figure 5.12), it can rise freely through this region, typically overshooting into

the layer above due to its momentum. Hence, we typically observe a strong positive

flux of buoyancy that decays with height. The zero-order bulk model approximates

this as a linear decrease in the buoyancy flux (Zilitinkevich 1991; Fedorovich et al.

2004), and the results obtained in MPIC seem to exhibit similar behaviour in this

region.

The vertical distribution of buoyancy shown in Figure 5.12 illustrates how the
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Figure 5.12: Vertical distributions of the horizontally averaged buoyancy, b, for
t = 100 (red), t = 200 (green), t = 300 (blue), t = 400 (magenta).

Figure 5.13: Vertical distributions of the horizontally averaged vertical buoyancy
gradient, d < b > /dz for t = 100 (red), t = 200 (green), t = 300 (blue), t = 400
(magenta).
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surface flux influences the vertical structure of the environment. Close to the lower

surface, we see a small region where the air is unstable to convection (buoyancy

decreases with height) due to the heating. Above this lies a mixed layer where the

buoyancy is somewhat close to constant or grows slowly before curving to match

the background stratification again as the profile crosses through the entrainment

zone above.

There are some small variations in the horizontally averaged buoyancy at the

very top of the domain at later times. The buoyancy at the upper surface appears

to decay in time. It is unclear exactly what the cause of these is, but it may

be a numerical effect. Alternatively, the decrease in buoyancy could be due to

unforeseen dissipation caused by the vorticity damping at the upper surface. That

said, it does not appear to be a significant result concerning the development of

the boundary layer as a whole but is worth drawing attention to.

Computing the vertical gradient of the buoyancy field also offers some insight

into the vertical structure of the boundary layer and entrainment zone. In these

plots, the two-layer structure of the entrainment zone discussed by Garcia and

Mellado (2014) is apparent. The main argument in favour of this structure is that

the buoyancy gradient scales differently with time at different heights relative to

the point at which its maximum occurs.

Garcia and Mellado (2014) observe that in the upper sublayer, the maximum

value of the buoyancy gradient grows with time. This sublayer is centred on the

maximum gradient’s height. The lower sublayer is defined as the region between

the height of the maximum buoyancy gradient, shown in Figure 5.13, and the

zero-crossing point of the buoyancy flux, visible in Figure 5.11. The length and

buoyancy scales evolve differently in each of these layers. Our results in Figure

5.13 partially support this idea because the magnitude of the observed peak in

the buoyancy gradient grows with time. The thickness of the region where the

buoyancy gradient exceeds the background stratification before returning to the

background level also increases in the later stages of the growth of the boundary

layer.
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Figure 5.14: Vertical distributions of the horizontally averaged kinetic energy,
< KE >, for t = 100 (red), t = 200 (green), t = 300 (blue), t = 400 (magenta).

The region below this shows the vertical buoyancy gradient at each stage in the

boundary layer’s development, all evolving parallel to one another. The curves

effectively shift upwards as the system evolves, converging towards zero at almost

the same height regardless of the stage in the simulation. Below this is the unstable

region where the buoyancy gradient is negative. The region in which the different

evolution stages diverge is the mixed layer, which grows in time. As the system

evolves, its buoyancy gradient becomes closer to zero. It follows that the first

sublayer of the entrainment zone likely begins at the top of this mixed layer,

where the vertical profiles of buoyancy gradient are parallel to one another. The

upper sublayer represents a transition region between this layer and the stratified

atmosphere above the entrainment zone. The existence of these sublayers is not

immediately apparent from the profiles alone. Analysis of kinetic energy and

vorticity-related properties may further support this view of the entrainment zone.
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5.3.5 Vertical distribution of kinetic energy

To better understand the structure of the boundary layer and entrainment zone,

it is beneficial to study the kinetic energy associated with the air motions in the

system. The evolution of kinetic energy distribution in Figure 5.14 shows that

the kinetic energy within the boundary layer grows over time. A more expansive,

well-mixed layer makes it much easier for the warm air in thermals and plumes

to rise through, accelerating upwards towards the stratified upper region of the

domain. We would expect that the point at which the kinetic begins to decay is

the base of the entrainment zone. Hence, the kinetic energy profiles show a smooth

rise and fall with height.

At the lower surface, the kinetic energy is non-zero due to the free-slip boundary

conditions used, but it decreases with height immediately above this. This is a

consequence of the vorticity damping described in Section 5.2, which prevents

extreme vorticity growth at the lower surface. Failing to damp the vorticity would

give rise to intense horizontal motions and consequent shear layers dominating the

system’s dynamics.

To better understand the picture within the boundary and entrainment zone, it

can be helpful to decompose the kinetic energy into components associated with

the horizontal and vertical motions of the flow. Examining the lower surface first in

Figure 5.15, we can see that the damping of vorticity here is working as intended.

Only the horizontal motions decay with height in the lowest grid cells, and while

there is some evidence of a potential shear layer, it does not grow to the extent that

it dominates the motions across the whole domain. The kinetic energy associated

with vertical motions appears largely unaffected and decays smoothly to zero at

the lower surface.

There is a small region between z = 1.85 and z = 2.75 within which the horizon-

tal kinetic energy exceeds the vertical component. As the stratified environment

begins to inhibit the vertical motion of rising air, it decelerates, and the verti-

cal component decreases. At the same time, more air from below is pushed up

underneath it, and it is forced to spread out horizontally once it can rise no further.
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Figure 5.15: Vertical distributions of the horizontally averaged kinetic energy
(black line) along with its vertical (blue line) and horizontal (red line) compo-
nents for t = 300.

Figure 5.16: Vertical distributions of the horizontally averaged kinetic energy gra-
dient for t = 100 (red), t = 200 (green), t = 300 (blue), t = 400 (magenta).
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The negative buoyancy flux in Figure 5.11 also overlaps with this region of the

flow, although the zero-crossing point of ⟨b′w′⟩ lies below the intersection of the

kinetic energy components at z = 1.5. The base of this region is better aligned

with the minimum in the buoyancy flux profile at the corresponding time. This

may suggest that this layer is linked to the driving of entrainment, as the rising

air begins to move out horizontally and forces ambient air at the same height

downwards. Relating this to the two sublayer structure in Garcia and Mellado

(2014) and Haghshenas and Mellado (2019), it may also be possible that this is

part of the transitioning upper sublayer as it encompasses the peak in buoyancy

gradient found at t = 300 at z = 2.5.

To further investigate the structure of this region, the behaviour of the vertical

gradient of the kinetic energy is shown in Figure 5.16. The behaviour of this

gradient is interesting, as it appears to oscillate between positive and negative

peaks before dropping to zero in the upper half of the domain. The height at

which the minimum occurs rises in time as the boundary layer grows, and the

negative regions are similar in shape, effectively being vertical translations of one

another. The thickness of the negative kinetic energy gradient regions suggests that

the decline occurs gradually over a large vertical range, as observed in the smooth

profiles of kinetic energy in Figure 5.14 and Figure 5.15. This gradient’s zero-

crossing point consistently occurs well below the zero-crossing point of buoyancy

flux.

5.3.6 Vertical distribution of enstrophy and related quantities

Analysis of the enstrophy distribution across the boundary layer has been done

in other studies of the entrainment zone and in studies of the interface between

turbulent and nonturbulent regions (da Silva et al. 2014b; da Silva et al. 2014a;

Fodor and Mellado 2020). Comparing results obtained in MPIC to the results of

such studies using DNS is essential to assess the model’s performance. At the same

time, evidence of the two-layer entrainment zone structure proposed in Garcia and

Mellado (2014) and Haghshenas and Mellado (2019) found within MPIC provides
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Figure 5.17: Vertical distributions of the horizontally averaged enstrophy for t =
100 (red), t = 200 (green), t = 300 (blue), t = 400 (magenta).

validation despite the different modelling approach used in our study. We use the

definition of enstrophy from Pope (2000) as E = ω · ω.

Studies of enstrophy in the boundary layer have recorded that it drops dramat-

ically across the entrainment zone. This is observed in the vertical profile of the

horizontally averaged enstrophy in Figure 5.17. These plots show a region of high

enstrophy located within the mixed layer that falls off rapidly with height above.

As the boundary layer grows, this region becomes considerably broader vertically.

Despite this, the peak enstrophy contained within does not grow considerably

throughout the simulation.

Compared to the enstrophy PDF shown in Figure 1 of Fodor and Mellado (2020),

we see that many of the same features appear in both. An equivalent stage in

the boundary layer development to this figure would be around t = 300 in the

MPIC simulation. In particular, the enstrophy decays by around a factor of 5

across the entrainment zone, a much smaller drop than occurs within their study.

This difference of scales between the enstrophy in the turbulent and nonturbulent

regions validates the estimates of the Reynolds number earlier in this work, as it is
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Figure 5.18: Vertical distributions of the horizontally averaged vertical enstrophy
flux for t = 100 (red), t = 200 (green), t = 300 (blue), t = 400 (magenta).

thought to be directly proportional to the Reynolds number of the system (Fodor

and Mellado 2020). In this study, we see that the factor of 5 difference in the

horizontally averaged enstrophy of the boundary layer and the free atmosphere is

comparable to the estimates of Re0 = 8.5 or Re0 = 3.1 obtained in Section 5.3.1.

Another point of note is that in Fodor and Mellado (2020), the enstrophy within

the boundary layer is approximately constant. It grows at the lower surface in the

simulation with a Froude number of 20. This highlights a core difference between

the two models, as the MPIC simulation uses a free-slip boundary condition that

diffuses vorticity in the lower regions of the domain. Meanwhile, the typical DNS

and LES simulations use a no-slip boundary at the lower surface and a free-slip

(stress-free) upper boundary. Within the MPIC framework, implementing no-

slip boundary would require substantial changes to the numerical solver, possibly

through the implementation of virtual parcels or otherwise as is done in Macià

et al. (2011) for SPH. The implementation of no-slip boundaries in particle-based

methods is less straightforward than for their gridded counterparts. This may

however be worth attempting in future work to allow for better comparisons to
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existing LES studies. The damping in MPIC causes the enstrophy in the mixed

layer to decay towards zero at both surfaces.

The lower vertical resolution of the MPIC study exacerbates these problems.

With only 32 vertical grid cells, the vorticity diffusion layer at the lower sur-

face extends through approximately 6% of the domain height. As the resolution

increases, the size of the diffusion layer will decrease, and its impact on the evolu-

tion of the boundary layer will be reduced. Whether the diffusion strength is too

great is also worth investigating, although the fact that we achieve comparable

results despite the model differences is noteworthy.

Early studies with MPIC revealed that the vorticity field in the model displays a

sensitivity to resolution (Dritschel et al. 2018, Böing et al. 2019). The small-scale

buoyancy gradients generate more intense, localised vorticity, so studies at higher

resolutions may yield a much greater scale separation than observed here. Local

buoyancy gradients within the boundary layer are likely to be much stronger than

in the stratified region above the entrainment zone, which may also impact the

enstrophy scales, but this remains to be investigated.

It also appears that MPIC overestimates the vorticity in the upper region of

the domain. This may be due to the absence of a sponge layer in MPIC, as the

only relaxation in the domain is the damping on vorticity at the upper and lower

boundaries. Figure 5.18 shows the horizontally averaged vertical flux of enstrophy

and indicates that enstrophy is not being carried upwards above the entrainment

zone by fluid motions. This flux is calculated in the same manner as the vertical

buoyancy flux,

F = ⟨E ′w′⟩ , (5.21)

where F is used to denote the vertical flux.

The profiles show a similarly broad region within the mixed layer as the original

profiles of enstrophy. Across the entrainment zone, they decay rapidly to zero and

remain there in the free atmosphere above.

One of the key features shown in Figure 1 of Fodor and Mellado (2020) is the
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Figure 5.19: Vertical distributions of the horizontally averaged vertical enstrophy
gradient for t = 100 (red), t = 200 (green), t = 300 (blue), t = 400 (magenta).

saddle point in the enstrophy PDF (denoted by a star in their work). This saddle

point is used to determine the enstrophy threshold for the conditioning in their

study. We can aim to find something similar by studying the vertical gradient

of the enstrophy profile within MPIC (Figure 5.19). The minimum of this profile

is an approximate equivalent to the saddle point and shows the point within the

entrainment zone where the decay of enstrophy with height is most substantial.

As expected, the enstrophy gradient is negative throughout the entrainment zone,

and the minimum rises through the domain as the boundary layer grows.

In relation to the two-layer structure, the point of minimal enstrophy gradient

may be relevant to the location of the upper sublayer and the transition between

turbulent and nonturbulent air. We know that enstrophy experiences a rapid

decline with height, so the point at which this is the strongest may denote the base

of the upper sublayer, centred on the height of the maximum buoyancy gradient.

Interestingly, as the boundary layer grows between t = 100 and, t = 300 the

minimum value of the enstrophy gradient actually decreases (although it grows

slightly between t = 300 and t = 400). In section 5.3.7, we will study in more
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detail how the height at which this minimum occurs compares to other measures

of the entrainment zone height.

Below, a region of near constant enstrophy forms towards later times, with a

layer of high enstrophy gradient at the base due to the diffusion layer. The profiles

of the enstrophy gradient also have a similar shape to those of buoyancy flux

(and, naturally, the kinetic energy gradient), although it should be noted that the

enstrophy gradient does not grow linearly across the mixed layer.

5.3.7 Measures of boundary layer depth

The vertical profiles shown previously have been interpolated quadratically in post-

processing to a higher resolution to give a more smooth variation of the various

properties used to measure the heights used in the following subsections. This has

a minimal effect on the actual results, but since less than half of the domain is

occupied by the boundary layer and entrainment zone, using fewer than 16 grid

points makes it much harder to distinguish between different heights.

When discussing measures of boundary layer depth, it seems only fair to start

from the encroachment height (Lilly 1968; Carson and Smith 1975) to estimate

where the base of the entrainment zone should lie. This can be obtained from an

expression similar to equation 5 of Garcia and Mellado (2014) where the boundary

layer depth is quantified in terms of the total energy input into the system,

zenc(t) =

[
2B0

N2
(t− t0)

] 1
2

, (5.22)

where the symbols have their usual meaning. t0 is a virtual origin time chosen to

be after the initial transient. The total buoyancy entering the system due to the

surface flux between can also be written as,

B0 (t− t0) =

∫ z∞

0

⟨b⟩ (z, t)− b0 (z) dz, (5.23)

in the absence of dissipation. z∞ is chosen to be far into the stratified region (i.e.
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Figure 5.20: Time evolution of the right-hand side of equation 5.23.

the top of the domain. Choosing t0 = 0 means that this equation allows us to

represent the boundary layer depth in terms of the total buoyancy entering the

system. Combining this with equation 5.22 gives us a modified version of equation

7 in Van Heerwaarden and Mellado (2016),

zenc(t) =

[
2

N2

∫ z∞

0

⟨b⟩ (z, t)− b0 (z) dz

] 1
2

. (5.24)

The reason we use the integrated buoyancy difference throughout the domain

is because this gives a more accurate representation. Computing B0t gives the

total energy input from the surface flux, but integrating the buoyancy difference

over the domain also accounts for energy lost to dissipation. Figure 5.20 shows

the time evolution of the right-hand side of equation 5.23, which determines the

encroachment height in our simulations. The graph follows an almost straight

line, except for a minor blip at the beginning (t = 35 to 40). This is around the

time when the initial thermals take shape, as seen in Figure 5.6, and is either

the result of the initial transient developing into a convective instability or the

vorticity diffusion layer inhibiting the buoyancy growth beyond the lower two grid
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cells. It is easy to estimate zenc. Using equation 5.24, we no longer need to specify

the virtual origin time, t0. This method also gives a more realistic impression of

what is happening within the system since it is based on the buoyancy field as

opposed to just the input flux and effective Reynolds number.

In order to evaluate the growth of the boundary layer compared with the en-

croachment height, we need to define some measure of depth. Thankfully, there are

multiple measures used throughout the literature, primarily based on the vertical

profiles of buoyancy and buoyancy flux (Fedorovich et al. 2004, Garcia and Mel-

lado 2014). So we use some of these while adding two additional measures based

on the vertical distribution of enstrophy and its gradient. The different measures

used are as follows:

1. zif : The conventional measure of entrainment zone height used in the zero-

order model. This is where the minimum value of ⟨b′w′⟩ occurs.

2. zi: The zero-crossing point of ⟨b′w′⟩. This typically denotes the base of the

entrainment zone.

3. zig: The height at which the maximum value of vertical buoyancy gradient,

d ⟨b⟩ /dz, occurs. The upper entrainment zone sublayer is centred on this

height according to Garcia and Mellado (2014).

4. ziE: The height at which enstrophy reaches its maximum value.

5. ziEgm : The height at which the minimum value of the enstrophy gradient

occurs. This represents an approximation to the saddle point discussed in

Fodor and Mellado (2020).

These are shown along with the encroachment height in Figure 5.21. It is im-

mediately apparent that the encroachment height and the zero-crossing height of

the buoyancy flux are very closely aligned. This is particularly notable as it reaf-

firms that the model has accurately estimated the growth of the boundary layer

itself (and the base of the entrainment zone) despite the differences in its formu-

lation and limited spatial resolution. The other heights appear to follow a very

similar time-dependence to zenc, which is also reassuring, and we visualise this by
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Figure 5.21: Time evolution of the various heights relevant to the entrainment
zone and boundary layer structure.

normalising each height with respect to zenc in Figure 5.22.

We disregard results from particularly early times (pre t = 50) because these

are primarily a result of the initial heating of the lower region of the domain. The

large value of the buoyancy gradient-based height at this time is likely an anomaly

due to the initial setup. This issue is resolved by the time the initial thermals

form. The substantial spike in zif likely captures a significant overshoot by the

thermals causing significant initial entrainment.

The height of maximum enstrophy remains consistently below the encroachment

height, which is to be expected given that the decay of enstrophy occurs in the

entrainment zone. Meanwhile, the minimum enstrophy gradient height ziEgm starts

below the height of minimum buoyancy flux zif before rising above it by t = 150

and remaining only slightly above until the end of the simulation. This is consistent

with observations in Fodor and Mellado (2020) in which the saddle point was found

to lie between zif and zig.

From Figure 5.22, we see that most of the heights, except for ziE, seem to become
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Figure 5.22: Time evolution of the various heights relevant to the entrainment
zone and boundary layer structure, normalised by the encroachment height zenc.

nearly constant with respect to zenc as the system evolves. The fact that this is also

true for ziEgm lends some strength to the argument that it is representative of one

of the sublayers, possibly the base of the upper sublayer in Garcia and Mellado

(2014). This suggests that each height can be written similarly to Garcia and

Mellado (2014) as a constant multiplying the encroachment height. For example,

the buoyancy flux minimum height is given by

zif = Cifzenc, (5.25)

where Cif is the approximate ratio between zif and zenc at later times in the

simulation. The fact that all the previously listed heights associated with the

entrainment zone tend towards the t1/2 scaling of zenc indicates that the boundary

layer is within the equilibrium entrainment regime. The ratio (zenc/L0) exceeding

an order of magnitude is shown to be an indicator of this in Fedorovich et al.

(2004) and Garcia and Mellado (2014) and we cross the threshold of zenc/L0 = 10

by a time of approximately t = 75.
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There are some discrepancies with the results shown in Figure 1 of Garcia and

Mellado (2014). The ratios between each relevant height and zenc are considerably

larger in MPIC. This suggests that the entrainment zone produced in this work

is actually considerably thicker than in LES and DNS studies (Fedorovich et al.

2004; Garcia and Mellado 2014), even though much of the overall structure remains

similar. This may be due to the lack of a sponge layer in the MPIC simulation,

which may inhibit the vertical growth somewhat depending on where it is located.

5.3.8 Estimates of sublayer thickness in the entrainment zone

We can also attempt to estimate measures of thickness for the two overlapping

sublayers that comprise the entrainment zone using the heights we have already

obtained. We can use the buoyancy gradient thickness definition (equation 21 in

Garcia and Mellado 2014, see also Pope 2000):

δb =
⟨b⟩ (zig)− b (zig)

(∂ ⟨b⟩/∂z) (zig)−N2
. (5.26)

We also include the thickness of the lower sublayer, simply given by zig−zenc, along

with two more measures based on the enstrophy gradient. The first is simply the

difference between the enstrophy gradient-based height and the buoyancy gradient-

based height, zig − ziEgm , chosen for the purpose of comparison to δb to investigate

whether ziEgm could potentially be considered the base of the upper sublayer. The

second is the vertical distance between ziEgm and the point at which the negative

enstrophy gradient has returned to half of its minimum value. This may appear

an arbitrary measure, but given that the upper sublayer is considered a transition

region between the turbulent and nonturbulent fluid, it is worth examining a point

at which the decay of enstrophy with height has slowed significantly.

It is expected that the thickness of the first sublayer will grow proportionally to

zenc and that the thickness of the upper sublayer will decrease with respect to zenc

and this is observed in Figure 5.23. However, what is less expected is how closely

the three, independently calculated, measures of the upper sublayer thickness align
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Figure 5.23: Time evolution of the various measures of sublayer thickness, includ-
ing the buoyancy gradient thickness definition in Equation 5.26 (black); the lower
sublayer thickness (green); the enstrophy gradient based thickness (red); and the
difference between zig and ziEgm .

with each other. All three maintain a near constant average between 0.35 and 0.4

with some fluctuations, although we do note that the buoyancy gradient definition

appears to be growing very slowly. If the upper sublayer is believed to be centred

on zig then this would mean that the enstrophy gradient minimum occurs roughly

a distance of δb below it and would, in this case at least, represent the base of the

upper sublayer. Simultaneously, after reaching its minimum value at ziEgm , the

enstrophy gradient has returned to half of its minimum value at the centre of the

upper sublayer.

These results further support the picture of the upper entrainment zone sublayer

as a transition region. It does also bear keeping in mind that MPIC seems to over-

estimate the vertical extent of the entrainment zone, so further studies may wish

to examine enstrophy and its vertical gradient for more typical model formulations

(LES and DNS).

168



Figure 5.24: Time evolution of the mean entrainment rate, E, at height zif (blue
markers) on a log-log scale. The red line denotes the value of equation 5.30 with
an entrainment ratio of A = 0.1.

5.3.9 Entrainment rate parameters

Finally, we attempt to derive entrainment rate parameters from the MPIC simula-

tion. These parameters are useful in representing convection in larger scale models

and will provide a useful comparison between the MPIC simulation and existing

parametrisations of the entrainment zone, such as the zero-order model.

We can start by simply calculating the entrainment rate at a specific point in

the entrainment zone. This is typically done at the height of minimum buoyancy

flux, so we will use zif where we have assumed that beyond t = 75 − 100 that

zif ≈ 1.25zenc (i.e. it is constant with respect to zenc, as in equation 5.25). This

removes many of the small scale variations and makes the comparison to predicted

entrainment rates much easier.

The mean entrainment rate at the height zif is given by

E =
wef

w∗f
(5.27)
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where

we =
dzif
dt

, (5.28)

is the rate of growth of the measure of entrainment zone height and

w∗f = (B0zif )
1
3 , (5.29)

is the convective velocity at height zif . A power law in the zero-order model for

the mean entrainment rate is given in Fedorovich et al. (2004), for the equilibrium

entrainment regime, as

E = z
− 1

3
i

dzi
dt

=
1

2
[2 (1 + A)]

1
3 t−

2
3 , (5.30)

where A is the entrainment ratio. The mean entrainment rate for the MPIC simu-

lation is shown in Figure 5.24. We compare this to the predicted entrainment rate

from equation 5.30 for an entrainment ratio of A = 0.1, denoted by the red line. At

late times, we see a very strong agreement between the observed entrainment rate

in MPIC and the predicted value, although we must note that the typical value of

A used in the zero-order models is A = 0.2 and is supported by LES studies car-

ried out in Fedorovich et al. (2004), which suggests that MPIC is underestimating

the entrainment. It is possible this may change at higher resolutions, since MPIC

at the current resolution is operating at lower Reynolds numbers. The numerical

mixing of parcels may also play a role.

We can investigate this further by calculating the entrainment ratio indepen-

dently. A can be obtained from the expression

A =
∆bi
B0

dzi
dt

, (5.31)

for a given entrainment zone height zi, which we will represent by zif . The term

∆bi refers to the buoyancy increment across the entrainment zone, shown in Fig-

ure 5.1. In the case of the zero-order model, this refers to the jump in buoyancy

between zil and ziu (Fedorovich et al. 2004). This becomes more difficult to de-

170



Figure 5.25: Time evolution of total buoyancy increment (blue) and the local
buoyancy increment at zif (red).

termine in our simulation. We compute the buoyancy increment across the entire

entrainment zone in MPIC, and this is shown in Figure 5.25. We measure the

buoyancy increment between zi and zig ≈ 1.5zenc, giving us

∆btot = N2 (zig − zi) , (5.32)

as a substitute for this value in MPIC. We also consider the local buoyancy incre-

ment at the height of the minimum buoyancy flux as an alternative. The difference

between this increment and the total buoyancy increment is shown in Figure 5.1

and in Figure 10 of Garcia and Mellado 2014. δb is used to denote the local buoy-

ancy increment in these examples, so we use δbif to include the height at which

it is defined. The main reason to consider this is that many of the zero-order

and general structure model approximations are not valid for entrainment zones of

considerable thickness (e.g. Sullivan et al. 1998). We have already observed that

the boundary layer in MPIC has created an especially thick entrainment zone, and

as such, the buoyancy increment across it, ∆btot, is likely to be much larger than

is expected. In Figure 5.25, we show a comparison between this and the local
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Figure 5.26: Time evolution of the entrainment ratio, A, from equation 5.31,
calculated using total buoyancy increment (blue) and the local buoyancy increment
at zif (red).

buoyancy increment at the height of minimum buoyancy flux, given by,

δbif = ⟨b⟩ (zif )− b0 (zif ) . (5.33)

As expected, the total buoyancy increment greatly exceeds the local increment.

Because we are only interested in the equilibrium entrainment regime, we may

ignore the exceedingly large values at early times, as this is likely measuring the

increment across most of the domain until the boundary layer is clearly formed.

The resulting estimates of the entrainment ratio are shown in Figure 5.26. The

ratio using the total buoyancy increment starts very large (probably due to the

high initial value of zig) and decays towards a value of around 0.5 at the end of the

run. Meanwhile, the entrainment ratio calculated using δbif has a nearly constant

value just above A = 0.1 from t = 50 onwards, rising slightly to around A = 0.12

by the end of the simulation.

Very clearly, the entrainment ratio predicted using the lower buoyancy increment
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is much closer to the observed entrainment rate in Figure 5.24. This further

suggests that MPIC underestimates entrainment compared to standard zero-order

model predictions. Meanwhile, using the total buoyancy increment leads to an

overestimation of entrainment. We can also compare our results in MPIC to lab-

based experiments carried out in Jonker and Jiménez (2014) using a saline water

tank. Figure 10 in Jonker and Jiménez (2014) shows that at the lowest Reynolds

numbers in their experiments (Re ≈ 50− 100) they observe entrainment ratios in

the range of A = 0.8 − 1.3. These values are very close to the results obtained

at MPIC and lend some credibility to the notion that MPIC is underestimating

entrainment due to a low effective Reynolds number. As such, future work should

prioritise higher resolution simulations which can attain greater values of Re0 to

verify this.

With these increments calculated, we can also attempt to verify the Richardson

number power law in MPIC. This power law directly relates the mean entrainment

rate, and thus the growth rate of a boundary layer to the convective Richardson

number. Several computational studies (Sullivan et al. 1998; Fedorovich et al.

2004; Garcia and Mellado 2014), observational data from radar aircraft (Träumner

et al. 2011) and even some lab based studies in water tanks (i.e. Jonker and

Jiménez 2014) have verified the existence of a power law-like relationship between

the Richardson number and entrainment rate. The entrainment rate is related to

a Richardson number by the expression

E = ARi−n
∗ , (5.34)

where 1 ≤ n ≤ 2 and

Ri∗ =
zenc∆btot

w2
∗

, (5.35)

is the convective Richardson number using the total buoyancy increment. A

Richardson number for the local increment is also given by equation 60 in Garcia

and Mellado (2014)

Rif =
zencδbif

w2
∗

. (5.36)
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The value of n is typically understood to be close to n = 1 (Fedorovich et al.

2004;) and so in Figure 5.27, we show plots of the relationship between E and Ri

for Richardson numbers calculated using the total and local buoyancy increments

alongside one another similar to Figure 11 in Garcia and Mellado (2014).

From this we can see that, for intermediate values of the Richardson number

between approximately Ri = 0.2 and Ri = 35, the MPIC simulation recovers

the power law relatively well (with some outliers). However, entrainment rates

predicted by the power law using the total buoyancy increment are estimated

using an entrainment ratio of A = 0.55. This is more than double the typical

value found in zero-order model studies using LES (A = 0.2). Meanwhile, the

power law predictions of entrainment rate using the local buoyancy increment

use A = 0.1. Therefore, we must conclude that while the MPIC simulation of

the shear-free boundary layer is effective in recovering many of the properties of

entrainment, it still does not reliably reproduce the results predicted by common

representations of the entrainment zone. The extended entrainment zone in MPIC

may, at least in part, explain why the results in Figures 5.26 and 5.27 predict a

much larger entrainment ratio when using the total buoyancy increment.

On the other hand, the results using the local buoyancy increment are very

similar to those obtained in Figure 10 of Garcia and Mellado (2014), which also

compared the entrainment rate to 0.10Ri−1‘
f . This is reassuring as many of the

results obtained using MPIC have been aligned with the predictions in their work,

particularly relating to the two sublayer structure of the entrainment zone. It is

also promising that the entrainment rate—Richardson number relationship recov-

ered is so similar to their results, despite the difference in numerical method and

spatial resolution of the two models.

5.3.10 Sensitivity to numerical mixing

Studying the vertical profiles of buoyancy and buoyancy flux near the boundaries in

previous sections has revealed some unusual behaviour (see Figure 5.11 and 5.12).

For example, the vertical flux of buoyancy at the surface appears to fall off rapidly.
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Figure 5.27: Relationship between entrainment rate, E, and Richardson
number,Ri, computed for both the local buoyancy increment (red markers) and to-
tal buoyancy increment (blue markers). The blue line corresponds to E = 0.1Ri−1

f

while the green line corresponds to E = 0.55Ri−1
∗ and shows how the data com-

pares to the predictions of the power law using rough estimates of A for each
buoyancy increment.
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Figure 5.28: Vertical distributions of the horizontally averaged buoyancy flux,
< b′w′ > for the simulation with γmax = 4.0 at t = 100 (red), t = 200 (green),
t = 300 (blue), t = 400 (magenta).

Similarly, the buoyancy at in the top grid cell appears to change as the boundary

layer has been allowed to grow too. In this section, we aim to investigate if and

how these effects are linked to numerical choices made during the development of

the model. To this end, we have carried out a second experiment with a different

value of the parcel splitting threshold, γmax, as was used to investigate energy

conservation in Chapter 4. In the previous results, we have used a value of γmax =

8, 0, double what was used in the original works on MPIC. This was chosen as we

found better conservation of energy in Chapter 4 when the threshold was increased.

Here, we use a value of γmax = 4.0 to allow mixing to occur more readily

within the simulation and examine how the results obtained respond. Doing so is

useful to offer further insight into the sensitivity of results obtained using MPIC

in the future to the choice of numerical parameters related to mixing. Moreover,

results of these investigations can also serve to provide guidelines for tuning these

parameters in future studies using MPIC.
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Figure 5.29: Vertical distributions of the horizontally averaged buoyancy, < b >,
for the simulation with γmax = 4.0 at t = 100 (red), t = 200 (green), t = 300
(blue), t = 400 (magenta).

Figure 5.28 shows the buoyancy flux profiles for this test case in at t = 100, 200, 300, 400

as was done for the previous test case. Overall, these results are largely very similar

to the observations. Although the flux profile at the later stages in the simula-

tion does start to deviate from the previous simulation, in particular, at t = 300

and 400 in the centre of the entrainment zone. This makes some sense as the

flow at this stage of the simulation has become highly turbulent and thus the

role of numerical mixing is likely to become increasingly significant. Whether this

significantly impacts the growth of the boundary layer and the entrainment rate

parameters will be investigated further later in this section.

Due to the requirement in MPIC that the vertical velocity at the lower surface

must be zero, we see < b′w′ > decays to zero at this point as in the previous

case, but if this were the sole reason we would expect a sharp decay to zero

between the first grid cell and the lower surface. However, as noted previously,

the decay in buoyancy flux actually starts above this point, This is very similar to

what is observed in the first test case with γmax = 8.0 and the increase in parcel

177



Figure 5.30: Vertical distributions of the horizontally averaged buoyancy gradient,
< db/dz >, for the simulation with γmax = 4.0 at t = 100 (red), t = 200 (green),
t = 300 (blue), t = 400 (magenta).

splitting/mixing in this simulation appears to have very little influence on this. The

peak in buoyancy flux seems to start at a height of approximately z = 0.4. This

aligns with the top of the second grid cell in the model, since 2π/32 = 0.19, which

is also the top of the vorticity damping layer. With parcel splitting ruled out as a

cause of this error, we must consider that the damping layer is somehow influencing

the buoyancy flux in the lowest two grid cells of the domain. Further investigations

into this effect should aim to increase the resolution and study whether the region

in which buoyancy flux decays shrinks with the damping layer. If this is the case,

then it may be worthwhile to study exactly how strongly the damping method

described in this work impacts the buoyancy fluxes and consequently the growth

of the boundary layer as a whole.

Above the entrainment zone, the buoyancy flux behaves similarly to what was

observed in the γmax = 8.0 test case too. This suggests that the positive buoyancy

flux above the boundary layer are likely not a consequence of the splitting proce-

dure, but a further investigation may wish to completely disable parcel splitting to
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Figure 5.31: Time evolution of the various heights relevant to the entrainment
zone and boundary layer structure for the simulation with γmax = 4.0.

see if this has a more dramatic effect. Variations in the behaviour of the damping

layer at the upper boundary may also be worth investigating. Similarly, resolution

studies would also be crucial.

While on the topic of the upper boundary, we show the horizontally averaged

buoyancy profile in Figure 5.29. These are near identical to those observed in the

previous simulation, including the unusual changes at the top of the simulation.

The slope of the buoyancy profile at the upper surface seems to be decaying in

time, although the region in which this occurs also seems to align with the vorticity

damping layer, this time at the top of the domain. Because of the similarity of these

profiles to the previous simulation, it appears highly unlikely that the horizontally

averaged buoyancy profile is especially sensitive to the choice of splitting threshold.

However, a study at higher (or even lower) resolution would likely reveal whether

this behaviour is directly related to the vorticity damping.

We show a profile of the buoyancy gradient in Figure 5.30 as a supplement, as this

clearly shows the region in which the changes start to occur. This highlights that
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Figure 5.32: Time evolution of the mean entrainment rate, E, at height zif (blue
markers) on a log-log scale for the simulation using γmax = 4.0. The red line
denotes the value of equation 5.25 with an entrainment ratio of A = 0.1.

the region in which buoyancy gradient decays extends well beyond the damping

layer. Compared to the previous simulation, the decay at later times appears to be

slightly smoother, although the overall effect is largely the same. As before, it may

be worth revisiting this at higher resolution and with splitting completely switched

off to see how this impacts the vertical structure of buoyancy. The sensitivity to

splitting and mixing may also become more apparent at higher resolutions too.

Figure 5.31 shows the evolution of the various heights associated with the en-

trainment zone used in previous sections for the simulation with γmax = 4.0. The

overall results are highly similar to the previous case, and we still see a strong

agreement between the encroachment height, zenc and the height of zero buoyancy

flux, zi. This figure suggests that the overall growth of the boundary layer and its

bulk properties are not particularly sensitive to the choice of splitting threshold,

although there may be some deviation in particularly turbulent regions of the flow

where splitting occurs more frequently.

To take this a step further, we compute the mean entrainment rate and compare

180



this to the predictions made in section 5.3.9 (equation 5.30). The results are

shown in Figure 5.32 and compared to the same estimated entrainment ratio of

A = 0.1 and we see that the resulting entrainment rate is shows a near identical

agreement, as in the previous section. This implies that the mean entrainment

rate and thus the rate of growth of the boundary layer are largely insensitive to

the parcel splitting threshold.

We also attempt to recover the Richardson number power law as in the previous

simulation for these new results. While the mean entrainment rate in Figure 5.32

shows a strong agreement, Figure 5.33 shows that the entrainment ratios, A, and

power scaling of the power law, n, require some slight tuning to produce better

agreement with the results in this simulation. This is likely due to the differences

in the minima of the vertical buoyancy flux observed in Figure 5.28. Here we find

that the relationship for the local buoyancy increment is closer to E = 0.1Ri1.05f

and similarly, for the local buoyancy increment, E = 0.6Ri1.05. This still lies

somewhat within the predictions of the power law, as n is typically expected to be

between 1 and 2. However, the predicted entrainment ratio and scaling are still

larger, revealing a sensitivity to the parcel mixing.

Further work into the numerical sensitivities of boundary layer simulations in

MPIC should aim to investigate the effects of increasing resolution and potentially

turning off the parcel splitting entirely. The depth of the damping layer for vor-

ticity may also be worth investigating, as this presently depends on the resolution

of the test case. Avenues for exploration here could be extending the layer to

higher grid cells and studying if the anomalous behaviour in the buoyancy and

flux profiles change in response, or simply increasing resolution. Alternatively,

defining the damping layer in terms of a fixed, physical depth instead of being

resolution-dependent as it is currently may also be worth studying. The results

obtained in this section suggest that there are still some numerical sensitivities

within MPIC when it is applied to boundary layer studies that would be beneficial

to understand in greater detail if the method is to be applied to more ambitious

test cases. such as cloud-topped boundary layers or sheared cases.
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Figure 5.33: Relationship between entrainment rate, E, and Richardson
number,Ri, computed for both the local buoyancy increment (red markers) and
total buoyancy increment (blue markers) for the simulation using γmax = 4.0.
The blue line corresponds to E = 0.1Ri−1.05

f while the green line corresponds to
E = 0.6Ri−1.05

∗ and shows how the data compares to the predictions of the power
law using rough estimates of A for each buoyancy increment. Note that we use
n = 1.05 instead of n = 1 here unlike in the analysis of the previous simulation.
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5.4 Conclusions

The results in this chapter demonstrate the ability of MPIC to model the growth

of a convective boundary layer into a linearly stratified atmosphere. For the MPIC

method, this marks a major step forward as it has previously only been used in the

study of a single rising thermal. The implementation of surface fluxes of heat can

easily be applied to the moisture field and could allow for the study of cloud fields

resulting from these fluxes alone. A good next step may be to use MPIC to study

the moisture distribution across a boundary layer or even cloud field as it evolves

in time, similarly to Mellado et al. (2017). While the effectiveness of the free-slip

boundary conditions with a vorticity diffusion layer is yet to be further validated,

it likely provides a useful stepping stone toward more realistic or conventional

boundary conditions in future studies.

The model is not without its shortcomings, being different in the numerical

method to conventional LES and DNS models, and we see this through the greater

vertical extent of the entrainment zone formed. Similarly, the low grid resolution

of this study means that the results obtained are only at low Reynolds numbers in

the range Re0 = 3.1− 8.5. Consequently, we do not attain the same separation of

scales in the enstrophy field observed in other studies of turbulent and nonturbulent

flow regions. We observe a much higher averaged enstrophy than occurs here in

other studies (Fodor and Mellado 2020), but it is possible that higher resolution

simulations in MPIC would improve this issue, given that the estimates of Re0

are largely dependent on the minimum parcel size, which in turn depends on the

grid spacing. It is also possible that these anomalies arise from other numerical

effects, but this warrants further investigation into the effects of resolution and

numerical mixing. Similarly, MPIC experiences some resolution dependence in

the vorticity field, which may also see the difference in enstrophy between the two

regions change significantly at higher resolutions.

We were able to provide a range of estimates of the depth of the entrainment zone

and estimates of the thickness of the upper sublayer. These results illustrate that

the lower boundary of the entrainment zone, defined as the zero-crossing height
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of the buoyancy flux profile, shows excellent agreement with the encroachment

height predicted by equation 5.24. This indicates that MPIC accurately models

the growth of the boundary layer base into the atmosphere. The other measures of

entrainment zone depth, however, occur at greater heights relative to this, meaning

that MPIC is producing a thicker entrainment zone than is observed in previous

works.

The vertical gradient of enstrophy is also studied to provide an approximation to

the saddle point used in studies that condition air into turbulent and nonturbulent

air based on an enstrophy threshold. The height at which the vertical enstrophy

gradient is at its minimum value, ziEgm , is found to lie between the heights of min-

imum buoyancy flux and maximum buoyancy gradient. This grows only slightly

with respect to zenc in the equilibrium regime, being nearly constant. We pro-

pose that this point may in some way be linked to the upper sublayer proposed in

previous studies. In Figure 5.23, we do indeed find that the separation between

this point and the centre of the upper sublayer located at zig is close to the buoy-

ancy gradient thickness of the upper sublayer obtained from equation 21. The

significance of this is further illustrated when including the distance from ziEgm at

which the enstrophy gradient has returned to half of its minimum value, as this

also agrees with the aforementioned measures of sublayer thickness. These mea-

sures are close to constant in time and thus decay with respect to the thickness of

the lower sublayer, which is directly proportional to zenc, again in agreement with

previous studies (Borrell and Jiménez 2016; Fodor and Mellado 2020).

The importance of these results is that even with a very different model and

boundary conditions to other boundary layer simulations, we are still able to ob-

serve evidence of this structure in the entrainment zone with MPIC. And while

there are some differences in the size of the entrainment zone, much of its structure

remains, and it appears that MPIC accurately models the growth of the regions

between zenc and zif , the lower sublayer.

Computing entrainment parameters for this simulation reproduces some well-

known power laws associated with the equilibrium entrainment regime (equations
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5.25 and 5.29). And studying the time evolution of the entrainment rate alone

suggests that MPIC may be underestimating entrainment, with a value of A ≈
0.10 being found in Figure 5.24. We then directly computed the entrainment

ratio from the global and local buoyancy increments, and found values in the

ranges A = 0.10 − 0.12 and A = 0.5 − 0.6, respectively. This would suggest that

MPIC’s thicker entrainment zone results in a much greater entrainment rate across

the whole layer, whereas the local entrainment ratio at the height of minimum

buoyancy flux is closer to estimated values in other works (Garcia and Mellado

2014). We then computed the relationship between the Richardson number and

entrainment rate, using two different Richardson numbers based on the different

buoyancy increments. The power law in equation 5.29 was very closely recovered

in both cases for A = 0.10 for the local buoyancy increment and A = 0.55 for the

global increment. The latter value represents a significant overestimation of A in

comparison to previous works, but we note that the local increment relationship

is very close to that obtained in Figure 10 of Garcia and Mellado (2014). This

suggests that, at least around height zif , MPIC is producing similar estimates of

entrainment to DNS.

The discrepancies between MPIC and other studies seem to lie in the upper

regions of the entrainment zone, where it is much less compact. Nonetheless,

this chapter shows that a semi-Lagrangian approach to modelling convection in a

vorticity dynamics framework can still reproduce many of the features of convective

boundary layer growth. Subsequent work with MPIC should strive to perform

studies at higher resolutions and seek to probe the impacts of wind shear on

the boundary layer growth to see if any of the established relationships between

shear strength and entrainment zone structure are maintained in this framework.

Alternatively, it may be worth studying the distributions of moisture starting

from a dry domain subject only to surface fluxes and assessing the point at which

cloud formation can begin to occur. By altering the environmental structure as

discussed in Chapter 4, for example, we could study the formation of flux driven

convective clouds in the presence of convective inhibition to assess how overcoming

this through surface heating influences the intensity of convection. Furthermore,
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studies into boundary layer entrainment could take advantage of the Lagrangian

nature of MPIC by implementing tracer populations to track the origin of air in

the entrainment zone with minimal additional computational expense. This could

similarly be applied to chemical transport problems by adding surface fluxes of

chemical populations. This would offer some insight in the vertical transport of

aerosols and chemical species into the upper atmosphere and how this responds to

wind shear and changes in surface heating profile. Refinements to resolution and

numerical effects in MPIC will also allow further investigation into the transition

regime of the entrainment zone and its structure.

This work showcases the beginning of many possible applications of the model

now that it no longer needs to be initialised with a thermal already present. Future

enhancements and extensions to the method will open the way for many more

applications of Lagrangian models to studies of convection. This represents a

major step forward for the MPIC method that can be built upon in future works.
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Chapter 6

Summary and Outlook

In this chapter, we summarise the results of the work carried out for this thesis

and the outlook for Lagrangian modelling of atmospheric convection, in particular,

using the MPIC model.

Developing our understanding of convective processes in the atmosphere is essen-

tial to improving weather forecasting and climate prediction in the future. On the

global scale, these processes are represented by parameterisation schemes and are

typically refined through explicit convection simulations via LES or DNS. While

conventional Eulerian models like LES have proven very effective in modelling at-

mospheric convection, they are not without their shortcomings. To this end, we

have endeavoured to demonstrate the promise of a Lagrangian approach to the

problem by applying the MPIC model to case studies of isolated thermals and the

boundary layer. In this final chapter, we will start by revisiting the key findings

from studies of convection in MPIC, despite its currently idealised state. Then

we will present ideas for additional extensions and enhancements of the model,

particularly concerning the surface flux implementation described in Chapter 5.

Chapter 3 presents the simple test case of a rising thermal subject to constant

vertical wind shear. Wind shear at different altitudes is known to impact the

evolution of convective clouds and even contribute to the organisation of convective
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systems, such as squall lines (Rotunno et al. 1988; Takemi 2006). Many studies

primarily focus on the larger-scale impacts of shear. Our analysis of its effects

on an isolated thermal may be relevant to some convective schemes that seek to

represent convection through the statistical properties of an ensemble of plumes

(Arakawa and Schubert 1974). The simple approach of using a constant shear at all

heights makes it easier to assess the effects of the shear strength within the model.

Due to the free-slip boundary conditions within MPIC, the implementation of the

wind shear profile is relatively straightforward, requiring only an initial vorticity

component applied throughout the domain.

The effects on the evolution of the cloud were significant. We saw from study-

ing the volume of cloud water in each simulation that low to intermediate shear

strengths led to a larger (in terms of liquid water volume) cloud forming during the

initial ascent. This suggests that wind shear can enhance cloud development even

for an isolated thermal. A likely cause of this enhancement was the entrainment

of ambient air from the environment. Since the wind shear stretches the initial

thermal horizontally, more air is pulled into its path during the ascent. A curious

feature of the liquid water volume evolution is that, for strong shear, the initial

ascent of the cloud is strongly inhibited, but the overall cloud volume formed at

later stages is considerably greater than for low-shear simulations.

Further diagnostics taken include the liquid water-weighted mean cloud height

and its standard deviation. These offered insights into the vertical distribution

of cloud water subject to a given shear strength. In the high-shear simulations,

we saw that the estimated cloud height was lower than in low-shear cases, but

they exhibited a larger vertical dispersion of liquid water. This was also likely a

consequence of increased dry air entrainment into the rising thermal due to the

wind shear.

We confirmed the role of entrainment by partitioning the air in the domain

into cloud air or dry air based on the liquid water fraction threshold used in

previous works (Böing et al. 2019). We then computed the total enstrophy ratio

between the cloud and dry air components. In low-shear simulations, we see a
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pronounced spike during the initial ascent of the thermal, which smooths out as

dry air enters the thermal. The extremity of this spike decreased significantly

as the shear strength increased, reaffirming that more entrainment is occurring

at lower levels. In the high-shear cases (above Sx = 0.7), we saw that the ratio

has particularly low values, and most of the system enstrophy is contained in dry

air. Comparing this to cross-sections through the domain around the time of the

peak cloud enstrophy reveals large vortical structures in the lower levels for high-

shear cases. This analysis demonstrates that enstrophy can be used to identify

the entrainment of air into a cloud. Moreover, we identified the visible effects of

excessive entrainment on the cloud through the liquid water cross-sections. At

higher values of shear, the turbulent entrainment of dry air at low levels appeared

to tear the initial thermal apart, resulting in a fragmented cloud formation.

Analysis of the vertical motions of cloud and dry air also exhibited apparent

differences for high and low shear cases. As the strength of the shear increases,

the vertical motions of dry air start to become dominant, as shown in Figures

3.5 and 3.6. The growth of the kinetic energy associated with vertical motions

was suppressed during the initial ascent of the thermal. Instead, there was a late

period of kinetic energy growth, primarily associated with dry air motions in the

domain’s lower region.

While not groundbreaking, these results showcase MPIC as a tool for analysing

convection and its response to external forcing. The Lagrangian model enables

a straightforward partitioning of parcels based on thresholds associated with any

attributes. For example, one could divide the parcels based on their enstrophy, as

is sometimes done in studies of the convective boundary layer (Fodor and Mellado

2020). Moreover, varying the initial thermal properties may change the response to

the vertical wind shear. This may be useful when examining statistical properties

within an ensemble of clouds. However, we note that there are limitations of the

simplified state of MPIC at the time of writing. A more sophisticated microphysics

representation within the model or even more complex shear profiles with differing

strengths at low and high altitudes would both be beneficial modifications to this
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setup for further studies. The microphysics in particular represent one of the most

important targets to further the application of MPIC studies of the atmosphere.

Similarly, initiating multiple thermals or applying surface heating to the domain

may be worth initiating. Nonetheless, the results still offer insight into how vertical

wind shear can impact the growth of an individual cloud.

In Chapter 4, we investigated the potential energy of a rising thermal in MPIC.

Particle-in-cell methods typically do not conserve energy (Markidis and Lapenta

2011), so assessing the energy transfers within MPIC would offer some insight into

the model’s performance. We also used this analysis to assess energy dissipation

due to turbulence. The distribution of potential energy is a significant quantity and

tells us much about whether an environment is favourable for the triggering of deep

convection. This is typically represented through the convective available potential

energy (CAPE ) and convective inhibition (CIN ). In MPIC, the derived potential

energy is a non-static version of the CAPE and provides a quantification of the

energy available for a parcel of air within the cloud. To further this comparison, we

demonstrated the variation of potential energy with height for a selection of test

parcels from within the MPIC test case. This allowed us to identify modifications

to the vertical structure of the environment that would create regions of CIN

and CAPE for a given parcel of air. These examples showed that the potential

energy derived can be used in MPIC to predict whether the environment is stable

to convection or if the vertical motions will be resisted. In future studies where

mechanical forcing, such as surface heating, is included, these properties may be

beneficial.

We studied how numerical settings within MPIC affect the evolution of the

kinetic and potential energy in MPIC, in particular, the resolution and parcel

splitting threshold. For both of these, we observe that the total energy converges

at early times in the simulation, but this is primarily lost at later stages when the

flow has become fully turbulent. Furthermore, this revealed an abnormal growth in

the total energy at early to intermediate times. The cause of this growth was later

identified as a lack of incompressibility in the model, a common problem in fully
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Lagrangian methods. A three-dimensional adaptation of the volume conservation

correction detailed in Frey et al. (2022) solved this issue.

Finally, Chapter 5 presents a study of the dry convective boundary layer in

MPIC. To the author’s knowledge, this represents the first time such a model

has been applied to study the boundary layer. The test case for this setup was

primarily based on the works of Garcia and Mellado (2014) and Liu et al. (2018).

Studies of the boundary layer typically employ LES or DNS, although DNS appears

to be preferred recently (Garcia and Mellado 2014; Mellado et al. 2017; Fodor

and Mellado 2020). DNS suffers from computational limitations on how high the

Reynolds number of a simulation can become. As such, applying a Lagrangian

model like MPIC provides an alternative means to analyse the properties of the

boundary layer and entrainment zone.

Furthermore, the vorticity dynamics formulation in MPIC lends itself naturally

to studies of enstrophy in boundary layer turbulence. We apply a uniform heat

flux, with minor random variations, to the lower boundary of a linearly stratified

atmosphere and analyse the growth of the resulting boundary layer. The results

serve to further our understanding of the entrainment zone and assess the perfor-

mance of MPIC in such a setting. While our estimates of the Reynolds number in

these simulations fall short of even DNS values, we stress that these were carried

out at much lower resolutions than other studies in the field. Studies of MPIC

carried out at comparable grid resolutions are likely to yield much higher Reynolds

numbers than are typically obtained in DNS. While these may prove to be com-

putationally expensive, similarly high resolution studies in DNS and LES models

are likely to require similar resources. A higher resolution study of the boundary

layer in MPIC, likely using a massively parallel computer, would be a beneficial

next step in the comparison to existing studies. A discussion of the computational

expense of MPIC in comparison to existing Eulerian methods is provided in Sec-

tion 2 of Böing et al. (2019) and discusses the scalability of the base MPIC code

on multiple cores. For reference the simulations carried out in this work were run

using 6 cores with runtimes varying significantly depending on the simulation in
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question, with the boundary layer simulations taking 3-4 days depending on the

parcel splitting threshold used. A new highly parallel version, called PMPIC has

been developed since then, although the developments documented in this thesis

are not yet implemented in PMPIC.

This case study required substantial modifications to the MPIC method to in-

corporate the buoyancy’s surface flux. The modifications to the vertical solver for

inversion were discussed in Section 2.3. These solver changes were required to allow

the buoyancy gradients to vary at the lower surface for the flux implementation.

Surface heating in MPIC is simulated by adding increments of buoyancy to the

parcels in the lowest grid cell of the domain. These are weighted by the vertical

position of the parcels within each cell. In conjunction with the three-dimensional

volume correction, it ensures the correct flux is applied to the domain at each

timestep. While this may seem like a somewhat simple change to the model, it is

a potent tool for future studies. The same flux method can be applied to introduce

a surface flux of any parcel attribute, and we will discuss some possible extensions

later in the chapter. For now, it is enough that this method brings the MPIC

model even closer to more realistic studies of convection, such as the boundary

layer study in Chapter 5.

The growth of the boundary layer in MPIC appears to agree relatively well with

predictions made by other studies. Defining the base of the boundary layer as the

zero-crossing height of the buoyancy flux profile and comparing to the encroach-

ment height (Fedorovich et al. 2004; Garcia and Mellado 2014), we saw that the

two measures are almost identical. This reaffirms the surface flux implementation

within MPIC, as the encroachment height defines the base of the boundary layer

based on information about the heat flux into the system. Another important

detail about this measure is that it confirmed that our study captured the bound-

ary layer in the equilibrium entrainment regime at intermediate to late times. A

comparison of the encroachment height to other measures of the boundary layer

depth also found that at late times, the heights defined by buoyancy gradients and

fluxes were approximately constant with respect to the base of the boundary layer.
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One concern is that the entrainment zone observed within MPIC was substantially

thicker than in other studies and contrasted strongly with the zero-order model of

Zilitinkevich (1991), based on an infinitesimally thin layer. This may result from

not implementing a sponge layer in the upper domain to suppress deviations from

the background state or be a sign that MPIC overestimated the entrainment’s ver-

tical influence. This does not detract from the overall significance of our results,

as the overall entrainment zone structure was mostly unchanged.

Our study also analyses the vorticity field and vertical distribution of enstrophy

in the boundary layer, which is not commonly studied in LES studies. x-z cross-

section through the centre of the domain revealed large eddies within the boundary

layer itself, topped by a region of depleted vorticity. This depleted region is con-

sistent with the description of the entrainment zone in Garcia and Mellado (2014),

who observed that the entrainment zone is comprised of two overlapping sublay-

ers. The upper sublayer is described as a transition region between the turbulent

entrainment zone and the nonturbulent stratified region aloft. As such, we believe

that the vorticity depletion above the boundary layer is aligned with this upper

sublayer as the flow transitions nonturbulent region above. The vertical profile of

the horizontally averaged enstrophy and its gradient reflect this. The enstrophy

profile agrees with the work of Fodor and Mellado (2020), who observed a sharp

decay of enstrophy at the top of the entrainment zone. They used the saddle

point of this distribution to partition air into turbulent and nonturbulent compo-

nents. This is comparable to the minimum of the vertical enstrophy gradient in

our boundary layer study. We found that the vertical position of this minimum,

at later stages of the boundary layer’s evolution, became close to constant with

respect to the encroachment height. Its position above the height of minimum

buoyancy flux was also consistent with the observations of Fodor and Mellado

(2020).

We propose that the minimum of the enstrophy gradient may represent the base

of the upper sublayer in the entrainment zone. The measures of sublayer thickness

computed in section 5.3.8 support this. The buoyancy gradient thickness definition
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used in Garcia and Mellado (2014) was compared to the difference between the

maximum buoyancy gradient height and the minimum enstrophy gradient height.

Since the upper sublayer is believed to be centred on the buoyancy gradient maxi-

mum, the fact that both quantities agreed seems to support this claim. Moreover,

we computed the height at which the enstrophy gradient decayed to half its mini-

mum value and found that this also aligned with the other measures of the upper

sublayer thickness. These results and the definition of the upper sublayer as a

transition region seem to support the notion that its base is aligned with the min-

imum vertical enstrophy gradient. Further studies may wish to investigate this

relationship further. Notably, despite the different models used, our study ap-

pears to support the two-layer structure observed in Garcia and Mellado (2014)

and subsequent works.

Finally, we computed parameters associated with the entrainment rate. These

were compared to the predictions and results of Fedorovich et al. (2004), Liu et al.

(2018) and Garcia and Mellado (2014). Initial estimates of the mean entrainment

rate in MPIC seemed to show a good agreement with the t−2/3 scaling predicted by

LES results for the shear-free boundary layer. However, the models differed when

comparing entrainment ratios, with MPIC underestimating entrainment (A = 0.1

in MPIC compared to the generally accepted value of A ≈ 0.2). The underesti-

mation of the entrainment ratio was mirrored in comparisons of the entrainment

rate-Richardson number power law to Garcia and Mellado (2014). The power law

was recovered for the entrainment rate computed using the buoyancy increment at

the minimum flux height. We find that it aligned well with the DNS study’s en-

trainment ratio of A = 0.1. When using the buoyancy increment across the whole

entrainment zone, we found that MPIC significantly overestimated the entrain-

ment ratio. A likely source of this is the thicker entrainment zone observed in the

MPIC simulation. Overall, this initial simulation of the boundary layer in MPIC

showed good initial comparisons to existing studies using DNS and LES. The fact

that we obtained good agreement with existing results despite the difference in

model formulation and the lower boundary conditions is significant, and illustrate

the potential of a Lagrangian approach.
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The results of this thesis demonstrate the application of a Lagrangian method

for modelling convection to studies of both isolated thermals and the convective

boundary layer and the influence of wind shear. Simultaneously, we have de-

veloped modifications and diagnostics within the model that have allowed us to

gain new insights into convective processes from a new perspective while present-

ing comparisons to existing studies, as in Chapter 5. These results showcase the

MPIC method’s potential as a possible alternative to conventional Eulerian mod-

els like LES in studies of atmospheric convection. The modifications have opened

up many avenues of exploration that may further develop our understanding of

convective processes. Meanwhile, many of the diagnostics obtained are relevant

to convective parameterisation schemes, such as the available potential energy,

vertical fluxes and vertical distributions of thermodynamic properties. These di-

agnostics are also particularly relevant to the potential implementation of MPIC

within a superparameterisation scheme since many are used in coupling to large-

scale circulations.

The surface flux implementation, in particular, represents a significant model

enhancement. While the analysis of pre-initiated thermals may be of use in studies

of cloud mixing and the response to external forcing like wind shear, surface fluxes

open the door for more realistic studies of convection. In Chapter 5, we focused on

the growth of a dry convective boundary layer to better understand the structure of

the entrainment zone and for comparison to existing studies. One straightforward

extension to the existing study would be a simulation of the sheared boundary layer

and comparison to the results in Liu et al. (2018). Entrainment relationships in the

sheared boundary layer differ from the shear-free case significantly, and this would

provide another opportunity to test the model. Another straightforward extension

would be adding a surface flux of moisture and studying how the moist convective

boundary layer develops. Mellado et al. (2017) studied moisture statistics in the

entrainment zone using a DNS simulation, which may provide a point of reference

for similar studies using MPIC. As previously stated, the implementation of surface

fluxes for other parcel attributes can be handled exactly as the buoyancy fluxes, so

this would be a relatively straightforward addition. Moreover, such an approach
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would open the door to simulating the stratocumulus-topped boundary layer and

the triggering of deep convection, both significant areas of uncertainty in convective

parameterisation schemes.

Another extension of this surface scheme lies in representing aerosols and tracers

in MPIC. The parcel approach of MPIC makes implementing aerosol and tracer

concentrations straightforward and computationally inexpensive. This is because

parcel attributes in MPIC are evolved on the parcels and do not require additional

prognostic equations to be solved. Surface fluxes of these concentrations could

be added in the same way as buoyancy. Tracer populations fit naturally into the

MPIC framework, since they simply become additional attributes carried by the

parcels. This represents one of the core advantages of the method in potential

future studies of convection, since it becomes straightforward to track properties

such as the origin height of air in the boundary layer to see the vertical extent of

entrainment, or the transport and mixing or hydrometeor and chemical species.

Such studies are relevant to climate simulations due to the influence of aerosols

on radiative transfer and cloud parametrisations through the resulting changes in

heating and condensation nuclei.

Further applications of MPIC may wish to move away from the currently sim-

plified microphysics representation. In this thesis, we have noted the limitations

of such an approach. A complete microphysics scheme within MPIC is a logical

next step for the method but raises questions about how exactly to incorporate

this. Simple steps would involve changing the saturation height-based approach to

condensation and replacing it with a more physical process. If MPIC is to become

an appealing alternative to LES models it must seek to represent the effects of

evaporation and precipitation realistically. Precipitation presents the most signif-

icant challenge. A simple approach might be to interpolate liquid water onto the

grid and adopt a bulk water approach (Kessler 1969), as is typically done in LES

models. This method is appealing in the simplicity of its implementation and the

easy comparison to existing LES results. However, one could argue that such an

approach would compromise some of the novelty of the Lagrangian approach in
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MPIC. As such, it may be beneficial to look to the Lagrangian ‘super-droplet’

scheme proposed by Shima et al. (2009), which may fit more naturally into the

MPIC framework. Precipitation would significantly enhance the existing MPIC

model regardless of the scheme used and allow for comparisons to observational

data and parameterisation schemes. It would, for example, be possible to recreate

the study of Böing et al. (2012) on the influence of cold pools on convective or-

ganisation if precipitation and evaporation were added to MPIC simulations. This

would also provide an interesting comparison of the method to existing results

obtained from LESs in terms of more physically relevant diagnostics, like rainfall

distributions and intensity.

Another limitation of MPIC’s current state, which we have previously acknowl-

edged in this thesis, is the use of the Boussinesq approximation. The scale height

used in all studies in this work has remained at 2000m as in the original test

cases (Dritschel et al. 2018; Böing et al. 2019). This results in the estimated

height of the domain being 12 km, extending far above the range for which the

Boussinesq approximation is valid. It is worth considering whether an anelastic

approximation (Ogura and Phillips 1962) is more appropriate for future works. An

anelastic model would also allow MPIC to study deep convection more accurately.

Implementing a height-dependent density profile is somewhat complex and would

depend heavily on the vertical density profile’s exact form. In particular, the form

of the density profile would alter the tridiagonal problem that needs to be solved

in the vertical, and doing this for a generalised form ρ(z) would likely require nu-

merical differentiation of the density profile. This would also introduce additional

mixed derivatives into the tridiagonal problem in the vertical solver. In this case,

solving the system of equations is non-trivial, and the compact differencing must

be modified accordingly. A similar inversion problem was encountered in Section 3

of Mohebalhojeh and Dritschel (2007), and solving the inversion problem in MPIC

may be possible by adapting the solution presented therein. The exact nature of

the tridiagonal problem will still depend on the form of the vertical density profile.

As such, the generalisation of the solver to any prescribed profile may be more

complicated. However, for a prescribed, analytic density profile, the tridiagonal
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problem becomes more straightforward. This may be a worthwhile endeavour, and

a simple test case for an exponential profile (i.e. ρ(z) = ρ0e
−z) is certaily feasi-

ble. In log-pressure coordinates, this density profile is accurate for an isothermal

atmosphere, where the log-pressure height is approximately equal to the physical

height. Within the troposphere this appears to be reasonable approximation. As

such, it would represent a natural step towards developing a fully anelastic version

of MPIC.

One final aspect of MPIC that could be improved is the representation of mix-

ing. The integrated vorticity stretching of parcels determines when they are split

(equation 2.19). It may instead be beneficial to consider a more physical approach

for this. Frey et al. (2022) present a two-dimensional implementation of an al-

ternative called the Elliptical parcel-in-cell method (EPIC). In EPIC, parcels are

modelled as ellipsoids rather than point parcels, and the deformation of the ellip-

soids determines whether parcels split. The threshold for splitting is now defined

based on a critical aspect ratio between the major and minor axes of a given

parcel. The removal of parcels is replaced by merging smaller parcels into their

nearest neighbours rather than transferring residuals onto the grid in the version

of MPIC used here. This would likely reduce the effects of numerical diffusion

associated with the mixing within MPIC. Initial tests of the two-dimensional ver-

sion of EPIC show that the new mixing scheme performs well and shows excellent

conservation with little extra computational expense. A fully three-dimensional

version of this approach to mixing is currently in development and would signif-

icantly enhance the representation of turbulence. Even within the work in this

thesis, we have drawn inspiration from the development of EPIC. For example, a

three-dimensional adaptation of the corrections used to ensure incompressibility

in EPIC was applied in Chapter 5.

While many possible refinements to the method remain, our results show that

MPIC presents a promising alternative to existing convection models. Moreover,

we have shown that a Lagrangian approach can also enhance our understanding

of the phenomena associated with convective processes. Lagrangian models offer a
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new perspective to supplement and go beyond the knowledge obtained from Eule-

rian models. While limited in scope, we have demonstrated some early steps and

applications towards a more complete Lagrangian model of atmospheric convec-

tion.
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