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Abstract: Hybrid plasmas have been reported in various areas of research over the last 40 years.
However, a general overview of hybrid plasmas has never been presented or reported. In the present
work, a survey of the literature and patents is carried out to provide the reader with a broad view
of hybrid plasmas. The term refers to several different configurations of plasmas, including but not
limited to: plasmas driven by several power sources simultaneously or sequentially, plasmas that
have the properties of both thermal and nonthermal plasmas, plasmas that are enhanced by additional
energy, and plasmas that are operated in a unique medium. In addition, a way of evaluating hybrid
plasmas in terms of the improvement of processes is discussed, as well as the negative impacts that
follow the employment of hybrid plasmas. Regardless of what the hybrid plasma in question is
composed of, it often poses a unique advantage to its nonhybrid counterpart, whether it be used for
welding, surface treatment, materials synthesis, coating deposition, gas phase reactions, or medicine.

Keywords: gas discharge plasma; hybrid plasma; inductively coupled plasma; capacitively coupled
plasma; microwave plasma; arc; gliding arc

1. Introduction

Gas discharge plasmas are widely applied for materials processing due to their unique
properties of reactivities, effectiveness, controllability, and environmental friendliness [1].
For example, plasmas can be applied in the following areas or industries: semiconductors,
electronics, automotives, polymers, food, construction, mechanics, medicine, combustion,
and energy. With regards to materials processing, plasmas can be used to functionalize
surfaces of bulk materials and films as well as synthesize particles. In fact, it is difficult
to find industrial areas in which plasmas are not used; plasmas are very useful since they
can be used to process solids (bulk, materials, thin films, particles, etc.), liquids, and gases.
There have been various attempts to further improve the properties of plasmas, as well as
attempts that seek to discover and explore unknown effects.

The development of hybrid plasma is stimulated by these ventures [2], often operated
at atmospheric pressure [3,4]. However, the technical term “hybrid plasma” has been used
for several different types of technologies. The present paper reviews different types of
hybrid plasmas for materials processing and discusses the scope of future developments.
The term “hybrid plasma” can refer to a plasma driven by multiple different sources,
a plasma having multiple unique properties simultaneously, or a plasma enhanced by
additional energy such as photoirradiation, acoustic energy, or thermal energy. In addition,
plasma operated in a unique medium rather than a gaseous phase can also be classified as
a hybrid plasma.

Since the major motive of developing hybrid plasmas is to exhibit something that cannot
be achieved by conventional plasma alone, it is natural that these plasmas are often associated
with intellectual properties. There are many patents associated with hybrid plasmas filed
and granted worldwide for decades. Due to the nature of intellectual properties, operating
conditions are ambitiously defined. For example, it is often the case that hybrid plasmas
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described in patents are described to be operational at both low and atmospheric pressures,
even if this is sometimes unrealistic; the hybrid plasmas in these patents do not necessarily
demonstrate the proposed effects at both pressures. As a result, their descriptions can some-
times be inaccurate or incorrect. Nonetheless, useful information can be included, and thus,
these patents should neither be underestimated nor neglected.

In the current paper, the following types of hybrid plasmas from academic publications
and patents will be presented:

- Plasmas driven by multiple different electrical sources simultaneously;
- Plasmas driven by multiple different electrical sources sequentially;
- Plasmas having properties of thermal and nonthermal plasmas;
- Plasmas enhanced by additional energy;
- Plasmas operated in a unique medium.

Furthermore, proposals and suggestions are made for the future of hybrid plasmas,
and the advantages and disadvantages of hybrid plasmas are discussed.

2. Plasmas Driven by Multiple Different Electrical Sources Simultaneously
2.1. Combination of Two Plasmas

The technical term “hybrid plasma” was mentioned as early as 1983 [2], and this
work by Yoshida et al. can therefore be counted among the earliest works to study hybrid
plasmas. This hybrid plasma is described as the superposition of a radio-frequency (RF)
plasma and an arc jet. The numerical model of the hybrid plasma predicts its higher effi-
ciency than conventional plasmas. The experimental investigation based on the numerical
model exhibits that the hybrid plasma enables the effective synthesis of ultrafine SiNx
compounds [2].

Similarly, a mathematical model that simulates a plasma reactor, which combines
direct current (DC) and RF plasmas for the production of silicon, finds that by coupling
flow and temperature fields, both production and recovery of silicon become remarkably
more efficient than for a purely DC or RF plasma reactor [5].

Saiki et al. propose a process for producing ultrafine metallic or metal compound
particles using an apparatus comprised of a plurality of DC plasma sources with inductively
coupled plasma (ICP) [6], as shown in Figure 1. Here, the DC plasma sources generate arc
discharges to heat up the source material to synthesize the particles. The ICP is used to
induce reactions of the synthesized particles with the surrounding reactive gas.
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Figure 1. A schematic diagram of an apparatus comprised of a plurality of DC plasma sources with
ICP (based on [6]).

Both capacitively coupled plasma (CCP) and ICP can be generated using RF power
supplies. Cho et al. propose a low-pressure plasma setup containing both operated
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by one generator, as shown in Figure 2 [7]. ICP can be generated in a space between
powered and ground electrodes that constitute CCP. The proposed setup allows for high
throughput productions for plasma etching and any other general plasma processing due
to its simple design.
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Figure 2. Schematic diagrams of a low-pressure plasma setup. (a) A cross-sectional view of the setup;
(b) A perspective view of the electrodes and coil configuration of the setup with RF generator and
matching circuit (based on [7]).

Chen et al. [8,9] and Cui et al. [10] also propose the combination of ICP and CCP
for semiconductor processing, as shown in Figure 3. The difference from [7] is that ICP
is a remote plasma source. The plasma excited species generated at CCP with the aid
of ICP is fed to the gas reaction region. A specimen is placed at the gas reaction region
to be processed. When higher power operation is required, both plasmas can be used
simultaneously so that CCP can be operated at lower power. This configuration can reduce
the generation of unwanted contaminations from CCP electrodes.
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Roppel et al. [11] propose a dual plasma microwave (MW) apparatus. It is a combina-
tion of DC or RF plasma with MW, as shown in Figure 4. A DC or RF plasma is generated
by supplying DC or RF power to a platform on which a specimen to be treated is placed.
A DC or RF plasma is generated above the specimen. Meanwhile, MW is introduced to
generate MW plasma. By applying a bias, ions in the MW plasma can be extracted to
interact with the DC or RF plasma. This configuration enables pronounced ignition of the
DC or RF plasma as well as tuning and improving plasma treatment effects.
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Figure 4. A cross-sectional view of a hybrid plasma setup, where the lower part is a hybrid of MW
plasma and DC or RF plasma depending on the way it is biased (based on [11]).

MW plasma and low-frequency (LF) plasma can be used in combination for plasma
sterilization at atmospheric pressure [12]. It is discovered that the sterilization effects on
spore-forming bacteria depend on the way the plasma gases are supplied [12].

Bárdoš et al. [13,14] propose a hybrid plasma configuration applicable for low-pressure
processing (below 1 Pa) and for the generation of cold atmospheric pressure plasma, which
can be used for thin film deposition or plasma surface treatment. The low-pressure hybrid
plasma source combines an electron cyclotron resonance (ECR) plasma and a plasma
generated by a hollow cathode, as shown in Figure 5. In the case of atmospheric pressure
operation, efficient ECR is not expected due to significant collisions of electrons in the
plasma. The plasma from the hollow cathode and MW plasma can be simultaneously
generated to exhibit high plasma densities without the need for a magnetic field.
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Figure 5. A schematic diagram of a hybrid plasma setup comprised of a plasma generated by a
hollow cathode and MW plasma in the presence of a magnetic field (based on [13]).

Choi [15,16] proposes a hybrid plasma reactor comprised of a ring-shaped transformer-
coupled plasma with magnetic flux channel-coupled plasmas, to perform plasma processing
for solids, powders, and gases. Figure 6 shows a sectional view of the hybrid plasma reactor.
The transformer-coupled plasma is generated by delivering alternating current (AC) signals
into the ring-shaped chamber (1st plasma chamber) by using a transformer, which is not
illustrated in Figure 6. Although it is not clearly specified in the patent, both CCP and
ICP can be generated in the first plasma chamber in this way. The hybrid plasma includes
the magnetic flux channel-coupled plasmas. This configuration allows for a high control
capability for plasma ion energy and a wide operation region from a low-pressure region
to a high-pressure region.
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Vaduganathan et al. [17] study ozone generation by using a combination of AC surface
discharge and pulsed DC corona discharge at atmospheric pressure. They find that a
positive corona with surface discharge exhibits more efficient ozone generation than a
negative corona. In both cases, the improvement of ozone generation can be attributed to a
larger reaction volume.

Dual cathode magnetron sputtering (DCMS) can also be regarded as a hybrid plasma.
When two different metals are used for the targets, the synthesis of alloy films can be
conveniently studied since each target can be operated independently. One example is the
deposition of boron–carbon–nitride (BCN) films using DCMS [18], in the expectation that
this will result in growth of cubic-BCN which has a structure like a diamond or cubic boron
nitride. However, the results indicate that the introduction of boron is often difficult even
with DCMS. DCMS can be used not only for alloy synthesis but also for improving the
performance of magnetron sputtering. Specifically, by facing the magnetron targets with
each other and arranging the configuration of the closed magnetic field in between, ion
bombardment to the substrates and the growing film can be significantly improved [19].

Kong et al. [20] propose a hybrid plasma source combining two arc discharges, as
shown in Figure 7. The first arc is used to ionize a hydrocarbon gas. The gas is subsequently
fed to a second plasma source. Water is introduced between the arcs, and the second arc
activates water to generate activated hydrogen and oxygen. The ionized hydrocarbon gas
is reacted with the activated hydrogen and oxygen to generate synthetic gas. A plurality of
arc sources can also be combined to produce synthetic gas [21], as shown in Figure 8.
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2.2. Ionized Magnetron Sputtering and Electron Cyclotron Resonance Magnetron Sputtering

One of the most successful uses of hybrid plasmas in this category from the late 1990s
and early 2000s is in ionized magnetron sputtering (IMS) for thin film deposition, although
it is never referred to as such. Magnetrons are used to sputter atoms against a target surface,
and this technology has been praised as a step forward in sputtering technology [22].
However, the magnetron sputtering process can be improved further by increasing the ion
bombardment flux to the film deposited on the substrate, by generating an ICP after the
magnetron plasma to ionize the sputtered atoms [22]. Figure 9 shows a schematic diagram
of a typical IMS setup. ICP is usually generated in a space between the magnetron and the
substrate. If the substrate is biased, the ions can be accelerated toward the substrate so that
a dense coating can be deposited, and the impact of collision of the ion to the film is greater
as the potential difference is greater.
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Chen et al. [23] demonstrate improved crystallinity and low resistivity of tungsten
films using an IMS. Chiu et al. [24,25] use IMS for stress control and texture formation
of silver films, showing that the product of the ion flux and ion energy is the controlling
parameter for texture formation. Tranchant et al. [26,27] present similar investigations to
Chui et al. for MoCr films. Christou et al. [28] find that ionization of sputtered atoms
strongly depends on the pressure of the sputtering gas. Schneider et al. [29,30] demonstrate
low-temperature deposition of alumina using IMS.

While efficient ionization and subsequent effects are demonstrated for metal deposi-
tions, carbon and carbon nitride films are also deposited using IMS in the application of
hard and tribological coatings. Kusano et al. [31] find that positive substrate bias on the
substrates showed higher sp and sp2-hybridized carbon contents than those without ICP
and/or with negative bias voltages related to the selective etching of nitrogen and sp and
sp2-hybridized carbon. The results are associated with the tribological properties of carbon
nitride films [32]. The effects of using different inert gases, including helium, neon, and
krypton, are also reported [33]. Angleraud et al. [34,35] also study the synthesis of carbon
nitride films using IMS, finding selective areal deposition of carbon nitride on conductive
and insulating parts of substrates.

In a similar way, electron cyclotron resonance magnetron sputtering (ECR-MS) can
also be considered a hybrid plasma. According to Yoshida [36] and Xu et al. [37], ECR-
MS can be operated at 0.007 Pa. The electron cyclotron frequency and MW frequencies
are synchronized to achieve resonance, hence the classification of ECR-MS as a hybrid
plasma. It is noted that at higher pressures, collisions are pronounced to prevent efficient
ECR acceleration. As a result, ECR-MS is most effective for pressures between 0.001
and 1 Pa [38]. When the pressure is higher than 0.1 Pa, wave damping by collisions is
reported [39]. Therefore, ECR-MS is attractive for applications requiring low-pressure
sputter depositions.

IMS and ECR-MS are developed to enhance ionization of the plasma in the magnetron
environment. This aim can also be achieved by supplying a DC-pulsed voltage of high
energy density to the magnetron without hybridization. This technique is called high-
power impulse magnetron sputtering (HIPIMS), also called high power pulsed magnetron
sputtering (HPPMS) [40–42]. Due to the use of the pulsed high-voltage excitation, high
ionization fraction of the sputtered species is expected. However, it is beyond the scope of
this review, and hence a detailed description is not provided.

2.3. Superposition

In Sections 2.1 and 2.2, hybrid plasmas that are created by generating two or more plasmas
simultaneously were discussed. However, processing using a single plasma can be improved
by superposing different frequencies and/or waveforms of excitation voltages to generate and
sustain a plasma. This type of plasma can also be regarded as a hybrid plasma.

Ito et al. [43] report the synthesis of superconducting films by using a magnetron
sputtering system, in which RF voltage is superimposed on a DC voltage. This sputtering
method is called hybrid plasma sputtering or hybrid plasma magnetron sputtering.

This technique enables the formation of superconducting films with high crystallinity due
to the RF plasma, while achieving high-speed deposition due to the DC plasma. A setup of the
hybrid plasma sputtering is illustrated in Figure 10, presented by Yoshida et al. [44].

It is reported that superposing different frequencies and/or waveforms of voltages
is effective at producing ozone (for example [45]), similar to the pulsed excitation of the
plasma [46]. Ahn et al. [45] combine AC-driven surface discharge with a pulsed DC corona
discharge to demonstrate improved ozone production yield.

It is noted that this type of technique is often referred to as “superimposition”. How-
ever, “superposition” is the proper technical term to be used.
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3. Plasmas Driven by Multiple Electrical Sources Sequentially

One interpretation of hybrid plasmas is “the use of two plasma sources in the same
vacuum chamber for two different applications” [47]. Alim et al. [47] refer to this as duplex
surface treatment, and in their application, they utilize an ICP source and a magnetron
cathode. The former is used to nitride and activate a given surface, while the latter is
utilized for titanium deposition onto the surface.

Duplex surface treatment is also used to improve tribological characteristics of metals;
Díaz-Guillén et al. use pulsed plasma nitriding and a postoxidizing process to treat both hot
work H13 tool steel [48] and cold work AISI D2 tool steel [49]. Researching such treatment
for the latter material is especially important, considering its brittleness and wear rate; after
the duplex surface treatment, the wear resistance is improved drastically because of the
protective properties of the newly oxidized layer.

It can be noted that hybrid plasmas are tools often used for surface strengthening.
Treating Ti6Al4V with a combination of plasma immersion ion implantation with ion
nitriding processes improves the hardness of this alloy considerably [50].

Another example is the deposition of Ti by magnetron sputtering followed by DLC
coating using acetylene by hybrid plasma-activated metal–organic vapor deposition/physical
vapor deposition (PA-MOCVD/PVD) [51] to synthesize hard coating for dental application.
The technique has the disadvantage of using a single RF generator for the deposition of Ti
and DLC with a risk of carbon contamination of the reaction chamber.

Hseih et al. [52] propose a roll-to-roll hybrid plasma modular coating system, which is
comprised of at least one arc plasma processing unit and a magnetron sputtering unit, as
shown in Figure 11. A web substrate is continuously fed to the arc plasma zone to pretreat
the surface, and subsequently, a coating is deposited onto the activated surface by the
magnetron sputtering.
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Although the above examples in this section are claimed as hybrid plasmas, they are
most suitably regarded as two-step processes.

4. Plasmas Having Properties of Thermal and Nonthermal Plasmas

Simultaneously achieving high chemical selectivity and efficient productivity is a
challenge for atmospheric pressure plasma processing [3,4]. Nonthermal plasmas at a
nonequilibrium state ensure elective chemical processes influence the chemical bonding
of the molecules in the plasma and/or at the material surfaces to be treated. On the
other hand, thermal plasmas, often characterized by high energy densities, enable efficient
productivity. However, high nonequilibrium states with high energy densities are hard to
achieve by general nonthermal plasmas or thermal plasmas. Therefore, the prospective of a
plasma processing method that, by combining thermal and nonthermal plasmas possesses
the advantages of both, is attractive. The gliding arc is one such type of plasma and is
categorized as a hybrid plasma [1,53]. Note that while the gliding arc is technically a single
plasma, the fact that it possesses the properties of both thermal and nonthermal plasmas is
the reason that it is classified as hybrid. In this sense, perhaps it should be considered a
separate kind of hybrid plasma.

The gliding arc is shown to have many important applications, such as the cleaning of
gas and controlling pollution, the conversion of fuel, and the production of hydrogen [1,53].
Gliding arcs also enhance combustion [54] and demonstrate sterilization effects [55]. Exten-
sive research has been conducted on surface treatment for adhesion improvement using
gliding arcs [56–61]. For example, wettability and adhesive strength of polyester composite
plates with an adhesive (vinylester resin) are significantly improved, and as a result, the
laminated structure of polyester composite and vinylester demonstrate significant frac-
ture resistance [57,58]. The major treatment effect is attributed to the oxidation of the
polyester [56–61].

Plasma diagnostics of the gliding arc have been extensively carried out and reported
mainly by capturing photo images, using optical diagnostics and electric measurements. A
typical gliding arc is a plasma column that is generated as an arc discharge and extends
between two diverging electrodes in a turbulent gas flow.

The gliding arc is generally visualized as a thick photoemitting region. The upper
images of Figure 12 show photos of AC-driven gliding arcs with different air flowrates [62].
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However, true dynamic behaviors of gliding arcs are favorably observed by high-speed
charged-coupled device (CCD) cameras with short exposure times [54,63–72]. Photos of
gliding arcs observed by CCD cameras are shown in the lower images of Figure 12. The
gliding arc is a thin plasma column. A typical evolution of a gliding arc is shown in
Figure 13. The plasma column elongates until its extinction or until it encounters short-
cutting events.

Materials 2023, 16, 4013 11 of 27 
 

 

Plasma diagnostics of the gliding arc have been extensively carried out and reported 

mainly by capturing photo images, using optical diagnostics and electric measurements. 

A typical gliding arc is a plasma column that is generated as an arc discharge and extends 

between two diverging electrodes in a turbulent gas flow.  

The gliding arc is generally visualized as a thick photoemitting region. The upper 

images of Figure 12 show photos of AC-driven gliding arcs with different air flowrates 

[62]. However, true dynamic behaviors of gliding arcs are favorably observed by high-

speed charged-coupled device (CCD) cameras with short exposure times [54,63–72]. Pho-

tos of gliding arcs observed by CCD cameras are shown in the lower images of Figure 12. 

The gliding arc is a thin plasma column. A typical evolution of a gliding arc is shown in 

Figure 13. The plasma column elongates until its extinction or until it encounters short-

cutting events.  

 

Figure 12. Photos images of the gliding arc I at air flowrates of: (a) 14 standard liter per minute 

(SLM), (b) 17.5 SLM, (c) 21 SLM, (d) 31.5 SLM, and (e) 42 SLM. The upper images: acquired by a 

normal camera using an automatic exposure time. The lower images: captured by a high-speed cam-

era using an exposure time of 13.9 μs. Reproduced with permission from [62] Kusano et al., Eur. 

Phys. J. D.; published by Springer Nature, 2014. 

 

Figure 13. Gliding arc evolution. 

Figure 12. Photos images of the gliding arc I at air flowrates of: (a) 14 standard liter per minute (SLM),
(b) 17.5 SLM, (c) 21 SLM, (d) 31.5 SLM, and (e) 42 SLM. The upper images: acquired by a normal
camera using an automatic exposure time. The lower images: captured by a high-speed camera using
an exposure time of 13.9 µs. Reproduced with permission from [62] Kusano et al., Eur. Phys. J. D.;
published by Springer Nature, 2014.
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Voltage-current (VI) characteristics are often researched since their measurement gives
direct information on ignition, short-cutting events, power consumption, evolution, and
fluctuation of gliding arcs [63–67,69,70,72–80].

Optical emission spectroscopy (OES) is widely used for plasma diagnostics. It is
regarded as an ideal noninvasive technique that does not contaminate the plasma environ-
ment. OES of gliding arcs is reported for studying reactive species in the plasma such as
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excited-state OH radicals and NO radicals, as well as estimating rotational and vibrational
temperatures of gliding arcs [71,73,74,81–85]. It is noted that OH radicals are known to
be highly oxidative agents, and that photoemission of OH radicals is detected even 60
mm away from the edge of the electrodes [56]. The result indicates that the gliding arc
can be advantageously applied for surface modification of 3D bulky objects for adhesion
improvements [56].

Laser-induced fluorescence (LIF) can be employed to measure distribution of the ground-
state OH, which does not emit photons by itself. Figure 14 exemplifies LIF images at the
vicinity of a gliding arc [67]. The detected ground-state OH exhibits a hollow structure around
the plasma column. It is therefore indicated that the ground-state OH can be generated by the
decay of the excited OH that is detected in the discharge column by OES.
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In addition to the observations and characterizations of gliding arcs by plasma diag-
nostics, theoretical studies are reported in terms of energy balance [1,53,86–91] and force
balance [66,92]. Furthermore, equivalent electric circuits are proposed for studying gliding
arcs [1,53,62]. The plasma string model [89–91] is regarded as an energy balance equation of
the equilibrium gliding arc [1,53], taking a small part of the plasma column and neglecting
radial convection or turbulent effects. The Elenbass–Heller equation is regarded as a sim-
plified governing equation of a gliding arc [93], which can accurately describe the electrical
field, electrical conductivity, temperature, and plasma column radius of the gliding arc.

It is desirable for many industrial applications that a gliding arc does not extinguish
in a short time after ignition and is sustained as the nonthermal gliding arc. This is so that
the energy introduced to the gliding arc can be used efficiently. Otherwise, a significant
amount of energy is consumed for reignition. Therefore, studying stability, fluctuations,
and thermal to nonthermal transition of gliding arcs is important for better controlling the
gliding arcs. Ref. [62] reports an analytical calculation based on Ohm’s law for studying
the critical length of AC gliding arc discharge columns. The study indicates that the critical
length of the AC gliding arc can be larger than that of a DC gliding arc. The analysis further
shows that the critical length can be increased by increasing the AC frequency for driving
the gliding arc, decreasing the serial resistance connected to the gliding arc electrode, and
reducing the gas flowrate (Figure 12). The predicted dependence of air flowrate on the
length of the gliding arc is experimentally demonstrated in [62].

5. Plasmas Enhanced by Additional Energy
5.1. Combination with Thermal Energy

Plasmas whose performances are enhanced by additional energy are also frequently
referred to as hybrid plasmas.
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Welding is a process that benefits from the use of these hybrid plasmas. The combina-
tion of a concentrated plasma arc and a “metal active gas” (MAG) has been found to be a
more favorable replacement to traditional welding methods, since it is more efficient, has
less weld metal content, and requires less preparation of welded metal joints [94]. Hybrid
plasma arc welding has also been seen to reduce the weld width by 25–50% compared to
the more traditional plasma arc welding, while keeping the energy output the same [95].

Furthermore, the combination of a hybrid plasma arc and micro rolling (HPAMR)
technology have been used to coat Inconel 718 superalloy, often used in areas such as
aviation. Due to the rolling process, this combination leads to an improvement in wall
morphology of the coating, refinement of internal grains, elimination of defects and micro-
porosity, an increase in the precipitation of the strengthening phase, and an improvement
of the mechanical properties, much more so than plasma arc additive manufacturing [96].

Plasma MIG, which is hybrid plasma arc welding with gas–metal arc welding in a
single torch, is more effective than the traditional pulsed MIG process since plasma can
preheat and stabilize the MIG arc [97].

Another example of combining plasma with heat is the amalgamation of dielectric
barrier discharge (DBD) plasma with external heating, resulting in a two-stage hybrid
plasma–thermal system (HPTS) that shows promise in converting methane to ethylene and
hydrogen [98].

5.2. Combination with Electron Beam

Hybrid plasma of this nature can also be applied in other ways, such as in the realm
of medicine and biology. Upon exposure to oxygen hybrid plasma with the assistance of
electron beams (EB), it is found that the hydrophilic tendencies of thin chitosan films are
greatly improved for a period of nearly 50 days [99]. Additionally, it is noted that hybrid
plasma can be used as a reliable bactericide and sterilizer, in comparison to oxygen RF
plasma [99]. In this research, the main ionizer was an EB, while the other ionization source
was an RF discharge [99].

Chen et al. [100] also combine an EB source with RF plasma, as shown in Figure 15.
The introduction of EB assists ignition and sustainment of the plasma, as well as controlling
the plasma properties. Laser-accelerated EB can also be used to power a plasma accelerator,
which makes studies with such devices far easier at commonly available high-power laser
facilities [101].
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Figure 15. A schematic diagram of a hybrid plasma setup combining an EB source with RF plasma
(based on [100]).

5.3. Combination with Photoexcitation

Plasma processing can also be further activated by photoexcitation, for which laser
sources are commonly used. Varghese et al. [102] propose a skin treatment device using an
atmospheric pressure plasma, to which a laser beam is irradiated to facilitate the plasma
treatment, as shown in Figure 16.
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Figure 16. A schematic diagram of laser-activated atmospheric pressure plasma (based on [102]).

Bayer et al. [103] combine MW plasma with laser irradiation for welding application,
as shown in Figure 17. There are two configurations presented. One is similar to [102] where
the directions of the MW plasma and the laser beam are coaxially aligned (Figure 17a).
Another configuration is that the laser beam is directed at an angle to the MW plasma
(Figure 17b). It is functionally the same as Figure 17a, but the advantage of this configuration
is that the parts can be produced separately.

5.4. Combination with Acoustic Energy or Mechanical Vibration

During atmospheric pressure plasma processing, a process gas is usually fed to the
plasma. However, even when the gas flow is fully turbulent, a gas boundary layer sticks at
the surface of the material that is to be treated with plasma. Plasma reactive species such as
ions, electrons, high-energy neutrals, and radicals diffuse through the gas boundary layer
and activate and/or react with the material surface. Since these reactive species generally
have short lifetimes, only a small fraction of them can reach the material surface. It is
reported that ultrasonic waves with a sound power level (SPL) above approximately 140 dB
can reduce the thickness of the gas boundary layer and that the pressure plasma treatment
can be made highly efficient by simultaneously irradiating ultrasonic waves to the treating
surface [104–112]. This is because the acoustic energy can be delivered efficiently at high
gas pressures, which reduces the thickness of the gas boundary layer, as shown in Figure 18.
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Figure 17. Schematic diagrams of laser-activated atmospheric pressure MW plasma. (a) The directions
of the MW plasma and the laser beam are coaxially aligned. (b) The laser beam is directed at an angle
to the MW plasma (based on [103]).
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on [112]).

As a result, the probability of the plasma reactive species reaching the surface before
inactivation is higher when ultrasonic waves are applied, which improves surface mod-
ification efficiency. Combinations of a plasma and ultrasonic waves are investigated for
understanding the interaction between plasma and acoustic waves [113–115], electrical
discharge machining [116,117], plasma etching [118], ozone production [119–122], decom-
position of volatile organic compounds (VOC) [123], charging performance improvement
of corona chargers [124], and surface modification [104–111].

Ultrasonic-assisted electrical discharge machining combines ultrasonic waves with
plasma using a solid-state electroacoustic transducer to vibrate material surfaces. However,
due to the significant acoustic impedance mismatch between a solid material and a gas,
most of the acoustic power generated by a solid-state transducer cannot be efficiently
transmitted into the surrounding gas. Therefore, the thickness of the gas boundary layer
at a material surface cannot be reduced efficiently. On the other hand, a gas jet ultrasonic
generator excites acoustic waves in a gas and is suitable to eliminate or reduce the gas
boundary layer. Figure 19 exemplifies a setup of an ultrasound-enhanced hybrid plasma.
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Ultrasonic waves are introduced to the plasma volume using a waveguide. A membrane
can be used to separate the plasma gas from the ambient air. A mesh electrode is used as
the upper electrode so that the ultrasound can pass it without a significant loss of acoustic
energy. In this example, a gas jet ultrasonic generator is used.
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Plasma etching can also be enhanced with ultrasonic vibrations. Here, the surface to
be treated is vibrated mechanically. These vibrations increase the plasma collision energy
since the vertical vibration in the plasma leads to a relative speed enhancement of the
particles in the plasma. The incident angle of particles and the energy at which they collide
are also increased. The increase in collision angle leads to better anisotropy in plasma
etching, while the energy increase results in an improvement of the etch rate [118].

6. Plasmas Operated in a Unique Medium

There is a growing interest in operating plasmas in different mediums, expecting new
results for material synthesis, processing, and reaction fields. Examples of such plasmas
include plasmas generated in a packed catalyst, plasmas generated in a liquid, and plasmas
generated in a supercritical fluid.

The study of plasma catalysis has recently been growing in popularity; this involves
inserting a catalyst into a plasma volume, in expectation of a synergistic reaction resulting
from catalytic activity and the use of plasma [125,126]. Methanation, methane coupling, and
CH4 reforming, as well as dry reforming of methane, can all be performed using plasma
catalysis [125,127,128]. The same also applies to CO oxidation and CO2 decomposition [125].
Other processes that can be executed using plasma catalysis are the decomposition of
nitrogen oxides and the synthesis of H2O2 [125,126]. Another application is in Fischer–
Tropsch synthesis, which is the conversion of CO2, CH4, and waste biomass to more useful
chemical substances and fuels [125]. Plasma catalysis can also be used in the removal of
pollutants, such as volatile organic compounds (VOC) consisting of aromatics, alcohols,
ketones, and esters, sterilization of environments and wastewater, as well as the degradation
and removal of pesticide residues [125,126]. For a more comprehensive guide to plasma
catalysis, readers are recommended to refer to [125,126].

Another quickly developing field of research concerns plasma discharges formed in
liquids, as well as plasma discharges interfacing with liquids [129]. The advantage of liquid
discharge plasmas is that they can achieve high-speed oxidation in water due to it emitting
photons and chemical compounds with very strong oxidizing power [130–132]. More
specifically, the OH radicals produced by this kind of plasma have a higher energy than
those produced by UV light or ozone [130–132]. These plasmas offer “unique conditions”,
such that they can be used to decontaminate pathogens, synthesize nanostructures, and treat
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contaminated liquids such as water [129]. For example, low-temperature corona plasma can
be employed for wastewater treatment, either in a solution, or alternatively through direct
barrier discharge plasma [130]. It seems that such plasmas also have consequences that are
beneficial for the environment. Liquid-phase plasma, in conjunction with a photocatalyst,
can be used to decompose hydrocarbons into hydrogen and carbon, without generating
carbon dioxide as a byproduct [130]. For a more exhaustive and thorough review of liquid
phase plasmas, readers are recommended to refer to [129].

It is anticipated that subjecting a plasma to a supercritical fluid (SCF) may result
in unique characteristics and reactions that differ from those of a normal gaseous state
plasma [133]. Studies reported of plasmas in SCFs [134] include plasma ignition, plasma
diagnostics, decomposition, synthesis [135], and deposition. However, the fundamental
characteristics of plasmas in SCFs are still not understood. In an SCF, the plasma may
not be controlled sufficiently at a nonequilibrium state or may be substantially unevenly
distributed, and it follows that the plasma density is not high enough. There is a risk of
generating a thermal or arc plasma [136–138], losing chemical selectivity. High voltage is
required to generate a plasma in an SCF, and the gap between the electrode should be small
enough for igniting and sustaining a plasma in an SCF environment. Jackson [138] presents
generation of a plasma in an SCF, called “super-atmospheric plasma”, to enhance surface
processing. Figure 20 exemplifies the configuration of the setup, comprised of SCF and
plasma [139].
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7. Characterization Techniques

For a deep understanding of hybrid plasmas and their performances, a variety of char-
acterization techniques are necessary. This chapter briefly lists important characterization
techniques for plasma diagnostics as well as applications of hybrid plasmas.

Plasma diagnostic techniques include invasive methods like inserting probes in a
plasma, passive spectroscopies such as OES [140], active spectroscopies such as LIF [66],
Fourier transform infrared (FTIR) spectroscopy [141], mass spectroscopy [142], and electri-
cal measurements. For a comprehensive review of plasma diagnostics, see [143,144].

For the applications of plasma processing, a broad range of material characteriza-
tions is needed. There are no limitations for the choice of characterization techniques.
Characterization techniques include, but are not limited to: microscopic analysis, spectro-
scopic analysis, structural analysis (molecular structure, molecular weight, crystallinity,
defects), elemental and compositional analysis, and measurement of chemical or physical
(mechanical, thermal, electrical etc.) properties. Some of the fundamental characterization
techniques are described in [145]. Major areas of the applications include characterization of
gas, liquids, solid materials, and materials surfaces. Among them, surface characterization
plays a unique and important role in relation to hybrid plasma processing, since in many
applications, the essential changes after the plasma processing can be only at the surfaces
or their vicinities. Commonly used surface characterization techniques include contact
angle measurement for the estimation of surface tensions [146–148], FTIR spectroscopy,
X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry (EDS), Time
of Flight secondary ionized mass spectrometer (TOF-SIMS) for surface chemistry analyses,
atomic force microscopy (AFM), optical microscopy, and scanning electron microscopy
(SEM) for morphological analyses [4]. Contact angle measurement is widely used in the
industry. It is the simplest method for surface characterization, sensitively detecting the
surface property with the analysis depth of approximately 1 nm or less.

8. Discussion

In this review, different types of hybrid plasmas have been explained and discussed.
While the ambiguity of the term “hybrid plasmas” leads to a large variety of types of
enhanced plasma, one must also consider whether a given “hybrid plasma” can suitably be
called “hybrid” in terms of its configuration and effects; for example, one must contemplate
whether a two-step process can appropriately be coined as a “hybrid” process. Additionally,
while different configurations of plasmas may be interesting to discuss and file patents for,
discussions must be had regarding what kinds of advantages these have in comparison to
their nonhybrid counterparts. Without this, a hybrid–plasma configuration for the sake of
discovering a new configuration may prove to be without much meaning.

How can research then move forward in this field of study? One idea worth mentioning
is combining hybrid plasmas. Hill et al. [149] propose a gas reformer by a further hybridization
process, comprised of an upstream gliding arc and downstream DBD in combination as shown
in Figure 21. It is a combination of the concepts from Sections 2.1 and 4.
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In a similar yet slightly different way, Kusano et al. report a process to combine gliding
arc and ultrasonic irradiation [109,150,151] as shown in Figure 22. The gliding arc is tilted,
and ultrasound is irradiated vertically, relative to the specimen holder. The combination of
gliding arc with ultrasonic irradiation further improves the treatment effect.
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It is also worth mentioning that even though the gliding arc itself is already a hybrid
plasma, it takes the form of a single plasma, and therefore it can easily be subjected to
further hybridization.

The assumption in studying hybrid plasmas is that treatments or processing by them
are more beneficial compared to their nonhybrid counterparts. However, one must also
discuss the disadvantages that accompany hybrid plasmas. For example, if the configu-
ration of the hybrid plasma is relatively complicated, it can result in the need to produce
expensive equipment. One must also consider the increase in the cost of manufacturing,
maintenance, and investment for such a device. There are also environmental impacts to be
considered, for the activation of hybrid plasmas may lead to the production of substances
toxic to health or to the environment. Here, major environmental impacts of using plasma
processing are reported to be due to the use of electricity for the generation and operation
of the plasma [152]. It is therefore suggested that one be very selective in choosing which
configurations of hybrid plasmas are industrially useful. Specifically, the advantages and
disadvantages of each configuration must be weighed very carefully, especially when the
effects of improvements by hybridization are not significant.

Taking an example in plasmas combined with ultrasonic irradiation, oftentimes this
configuration on its own only yields moderate improvements [108–111]. However, under
certain conditions, the improvements can be much more noticeable. It has been observed
that even with under a 5-min exposure in helium DBD treatment at less than 1 W, the
water contact angle decreases much more significantly with added ultrasonic irradiation
than without, and this is especially visible for lower frequencies of ultrasound [61,107]. It
has also been observed that if PET films are treated by DBD plasma without ultrasonic
irradiation, it takes 30 times longer to reach the same level of plasma treatment effect
compared to when ultrasonic irradiation is applied [104]. These results make a strong case
for further pursuing this type of hybrid plasma.

Consider also that the application of hybrid plasma may also result in the obtainment
of results that are simply unachievable by ordinary nonhybrid plasma, regardless of the
energy and time used to operate it. These types of improvements are also very important
to examine. For example, it is known that a DBD in air is an assembly of filamentary
micro-discharges [153] and material surfaces that are exposed to it are inevitably unevenly
treated. On the other hand, when the DBD–ultrasound configuration is operated in air at
atmospheric pressure, polymer surfaces are treated uniformly [110]. It is foreseen that when
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air DBD is used and uniform treatment is required in bio or semiconductor applications,
the ultrasound-assisted hybrid plasma processing can be worth consideration.

9. Summary and Outlook

Various types of hybrid plasmas are reviewed, referring to scientific literature and
patents. They are briefly summarized below.

Plasmas driven by multiple electrical sources simultaneously (Section 2) are presented
by combining two plasmas (Section 2.1), magnetron sputtering with RF or ECR plasma
(Section 2.2), and plasma generated by superposing different frequencies or waveforms of
voltages (Section 2.3). A noticeable uniqueness of the plasmas in Section 2.3 is that it is a single
plasma, while those of Sections 2.1 and 2.2 are a combination of a plurality of plasmas.

Plasmas driven by multiple different electrical sources sequentially (Section 3) are
regarded as two-step processes rather than hybrid plasmas.

Plasmas having properties of thermal and nonthermal plasmas (Section 4) are repre-
sented by gliding arcs. They are also single plasmas but are generated without superposing
excitation voltages.

Plasmas enhanced by additional energy (Section 5) are demonstrated by combining plas-
mas with thermal energy (Section 5.1), electron beam (Section 5.2), photoexcitation (Section 5.3),
and acoustic energy or mechanical vibration (Section 5.4). The type of additional energy can be
adequately selected in accordance with specific applications.

Plasmas operated in a unique medium (Section 6) are relatively new, and unique
characteristics of reaction fields for chemical processes can be expected for the realization
of novel materials processing.

Characterization techniques are listed in Section 7, and scopes of hybrid plasmas are
discussed in Section 8.

There is no simple solution or criteria to select for the best choice of processes. How-
ever, appropriate selections must be made for the benefit of research and industry. The
above examples will hopefully give the reader some insight into hybrid plasmas and
encourage them to make further discoveries in this field of research.
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94. Skowrónska, B.; Chmielewski, T.; Golański, D.; Szulc, J. Weldability of S700MC steel welded with the hybrid plasma + MAG
method. Manuf. Rev. 2020, 7, 4. [CrossRef]

95. Korzhik, V.N.; Pashchin, N.A.; Mikhoduj, O.L.; Grinyuk, A.A.; Babich, A.A.; Khaskin, V.Y. Comparative evaluation of methods of
arc and hybrid plasma-arc welding of aluminum alloy 1561 using consumable electrode. Paton Weld. J. 2017, 4, 30–34. [CrossRef]

96. Chen, Q.; Wang, G.; Zhang, H.; Runsheng, L. Research on microstructure and mechanical properties of hybrid plasma arc and
micro-rolling additive manufacturing of Inconel 718 superalloy. Rapid Prototyp. J. 2022, 28, 1509–1519. [CrossRef]

https://doi.org/10.1109/TPS.2011.2150247
https://doi.org/10.1063/1.4876754
https://doi.org/10.1063/1.4903781
https://doi.org/10.1088/0022-3727/47/29/295203
https://doi.org/10.1063/1.4974266
https://doi.org/10.1088/0963-0252/19/6/065003
https://doi.org/10.1109/TPS.2010.2096481
https://doi.org/10.1109/TPS.2012.2219557
https://doi.org/10.1063/1.1505682
https://doi.org/10.1209/0295-5075/83/45001
https://doi.org/10.1109/TPS.2012.2208470
https://doi.org/10.1088/0963-0252/23/3/035004
https://doi.org/10.1109/TPS.2011.2151885
https://doi.org/10.1023/A:1021371529955
https://doi.org/10.1088/1009-0630/15/8/11
https://doi.org/10.1063/1.3266420
https://doi.org/10.1364/OE.25.020243
https://doi.org/10.1063/1.367003
https://doi.org/10.1063/1.368187
https://doi.org/10.1109/OPTIM.1998.710464
https://doi.org/10.1063/1.361188
https://doi.org/10.1088/0022-3727/33/19/311
https://doi.org/10.1088/0022-3727/32/8/009
https://doi.org/10.2514/1.24795
https://doi.org/10.2514/1.17018
https://doi.org/10.1051/mfreview/2020001
https://doi.org/10.15407/tpwj2017.04.06
https://doi.org/10.1108/RPJ-09-2021-0227


Materials 2023, 16, 4013 24 of 25

97. Asai, S.; Ogawa, T.; Ishizaki, Y.; Minemura, T.; Minami, H.; Iyazaki, S.M. Application of Plasma MIG Hybrid Welding to Dissimilar
Joints between Copper and Steel. Weld. World 2012, 56, 37–42. [CrossRef]

98. Liu, R.; Hao, Y.; Wang, T.; Wang, L.; Bogaerts, A.; Guo, H.; Yi, Y. Hybrid plasma-thermal system for methane conversion to
ethylene and hydrogen. Chem. Eng. J. 2023, 463, 142442. [CrossRef]

99. Vasilieva, T.M.; Vasiliev, M.N.; Garaeva, V.V.; Zlobin, I.S.; Mint, Z.Y.; Htau, K.M.; Kyaw, H.W.Y.K.; Zaw, H.K.K. Hybrid plasma—
Prospects for application in medicine and biology. Russ. Phys. J. 2020, 62, 2092–2100. [CrossRef]

100. Chen, Z.; Ventzek, P.; Ranjan, A. Hybrid Electron Beam and RF Plasma System for Controlled Content of Radicals and Ions. U.S.
Patent 11,205,562 B2, 21 December 2021.

101. Kurz, T.; Heinemann, T.; Gilljohann, M.F.; Chang, Y.Y.; Couperus Cabadağ, J.P.; Debus, A.; Kononenko, O.; Pausch, R.; Schöbel, S.;
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