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Abstract

Breast cancer claims 11,400 lives on average every year in the UK, making it one of the

deadliest diseases. Mammography is the gold standard for detecting early signs of breast

cancer, which can help cure the disease during its early stages. However, incorrect mam-

mography diagnoses are common and may harm patients through unnecessary treatments

and operations (or a lack of treatment). Therefore, systems that can learn to detect breast

cancer on their own could help reduce the number of incorrect interpretations and missed

cases. Various deep learning techniques, which can be used to implement a system that

learns how to detect instances of breast cancer in mammograms, are explored throughout

this paper. Convolution Neural Networks (CNNs) are used as part of a pipeline based on

deep learning techniques. A divide and conquer approach is followed to analyse the effects

on performance and efficiency when utilising diverse deep learning techniques such as vary-

ing network architectures (VGG19, ResNet50, InceptionV3, DenseNet121, MobileNetV2),

class weights, input sizes, image ratios, pre-processing techniques, transfer learning, drop-

out rates, and types of mammogram projections. This approach serves as a starting point

for model development of mammography classification tasks. Practitioners can benefit from

this work by using the divide and conquer results to select the most suitable deep learning

techniques for their case out-of-the-box, thus reducing the need for extensive exploratory

experimentation. Multiple techniques are found to provide accuracy gains relative to a gen-

eral baseline (VGG19 model using uncropped 512 × 512 pixels input images with a dropout

rate of 0.2 and a learning rate of 1 × 10−3) on the Curated Breast Imaging Subset of DDSM

(CBIS-DDSM) dataset. These techniques involve transfer learning pre-trained ImagetNet

weights to a MobileNetV2 architecture, with pre-trained weights from a binarised version of

the mini Mammography Image Analysis Society (mini-MIAS) dataset applied to the fully con-

nected layers of the model, coupled with using weights to alleviate class imbalance, and

splitting CBIS-DDSM samples between images of masses and calcifications. Using these

techniques, a 5.6% gain in accuracy over the baseline model was accomplished. Other

deep learning techniques from the divide and conquer approach, such as larger image
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sizes, do not yield increased accuracies without the use of image pre-processing techniques

such as Gaussian filtering, histogram equalisation and input cropping.

Introduction

Breast cancer is one of the most common forms of cancer amongst women and is the second

most common form of cancer in the world with over 2 million new cases recorded in 2018 [1].

Indeed, 55,200 new breast cancer cases are reported every year in the UK, of which an alarm-

ing average of 11,400 lead to death [2]. With an average of 20% mortality rate, breast cancer is

ranked as one of the deadliest diseases [3].

Early detection of breast cancer through screening tests such as mammograms are an effi-

cient way to maximise patient survival rate by treating the disease prematurely. However, no

matter the expertise of radiologists examining mammograms, external factors such as fatigue,

distractions and human error need to be minimised [4], as the rate of undetected instances of

breast cancer during initial mammogram screenings are as high as 30% [5]. To convey the

complexity of mammogram interpretation, Fig 1 illustrates two different mammograms con-

taining benign and malignant samples, revealing how similar they look to an untrained eye.

Computer-Aided Detection (CAD) systems using deep learning techniques could, in theory,

significantly increase the accuracy of mammography screenings for detecting early signs of

breast cancers. However, these techniques require large amounts of data to learn the cancer’s

underlying patterns and adapt to new cases, and require powerful computational resources to

accelerate the process of learning the data, making them difficult to optimise for.

Fig 1. Mammogram labels. Example of benign and malignant cases of mammograms from the mini-MIAS dataset

[6].

https://doi.org/10.1371/journal.pone.0280841.g001
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Context review

The context review explores the background and existing literature surrounding the tech-

niques used for mammography classification tasks, starting by covering the literature sur-

rounding breast cancer detection before focusing on the use of transfer learning and varying

images sizes and regions of interest as input.

Breast cancer detection context

Test screenings are used to detect early signs of breast cancer before the appearance of any

symptoms. The main method used for breast cancer screenings is mammograms, low-dosage

x-rays around the breast area [7]. These scans reveal a high contrast background in black with

dense areas in whites, which may correspond to calcifications or masses (e.g. lumps or cysts).

If suspicious areas are detected, mammograms are followed by breast ultrasounds and MRIs

(Magnetic Resonance Imaging) [8]. If any of the screenings raise suspicion or reveal a potential

presence of breast cancer, then a breast biopsy, the removal of a small section of breast tissue

to be analysed by a pathologist, can be conducted to confirm the screening tests’ results [9].

Due to the invasive nature of biopsies, it is ideal for doctors or clinicians to use medical imag-

ery tools to detect early signs of breast cancer that can be treated early. Despite being the pri-

mary imagery method used, mammograms rely on the conventional diagnoses of expert

radiologists [10]. These diagnoses rest on the correct interpretation of the mammograms,

which may be subject to errors and interobserver variability due to the difficulty in correctly

interpreting them [5, 11].

Supervised machine learning techniques are replacing these expert systems, allowing for

hidden patterns in mammography data, which can not be perceived by radiologists, to now be

recognised by these new algorithms [12]. Machine learning-based approaches were selected

over statistical approaches, especially when dealing with large, complex and high-dimensional

data like mammography datasets [13]. However, these machine learning models such as k-

Nearest Neighbours (kNN) [14], decision trees, Support-Vector Machines (SVM) [7] and Arti-

ficial Neural Networks (ANN) [13] can not accurately operate on raw data as they required rel-

evant features ranging from visual information (colours, edges, corners, shapes and textures

[15]) to extracted information (cell size, clump thickness, bare nuclei, etc. [13]) to first be engi-

neered from the images. Deep learning models, which corresponds to neural networks with

hundreds of hidden layers, are based on the concept that these features can be learned by mod-

els on their own, directly from the data [16]. However, these deep models have not been

broadly implemented until recent years as they require high powered Graphical Processing

Units (GPU) to be trained effectively [17, 18].

Deep learning applications with transfer learning

Due to recent advances in deep learning techniques, this method of image analysis has shown

promise in being transferred to the medical image domain, and more specifically for use in dis-

ease classification, detection and segmentation.

Given the size of deep learning networks, training an entire model from scratch is an intim-

idating task which requires huge amounts of data, time and compute resources to achieve

accurate results [19]. To alleviate this issue, transfer learning is often utilised. This involves

using networks which are pre-trained on large yet different datasets, and using these pre-

trained weights as a starting point for further training on the desired dataset for the specific

task, effectively fine-tuning the model [20]. The aim of this is to improve a network designed

for a specific domain by transferring that which has already been learnt from another similar

domain [21]. An analogy used [22] helps to explain this in real life; If one was to compare the
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ability of an experienced guitarist and someone with no musical experience to learn the piano,

the guitarist would learn the piano in a more efficient way through using prior knowledge.

This is much like how a network uses its knowledge from previous training as a starting point

for learning similar tasks.

The need for transfer learning comes when there is insufficient training data, whether this

is due to expense, scarcity or inability to generate labelled data. This is a common problem in

the medical imaging domain and more specifically for mammograms as there are very few

public databases which exists that contain an extensive number of cases with labelled data.

One of the largest public databases, the Digital Database for Screening Mammography

(DDSM) [23] has as few as 2600 cases. Second to this, released in April 2021, is The Chinese

Mammography Database (CMMD) [24] which contains 3728 images for a total of 1775

patients. It should be noted that both DDSM and CMMD datasets are available freely for

research usage via The Cancer Imaging Archive [25]. Papers focusing on the DDSM dataset

tend to use complex pipelines consisting of extensive pre-processing procedures. A prominent

example is Mohiyuddin et al. who achieved a record accuracy of 96.50% [26] with the use of

state-of-the-art algorithms such as YOLOv5 [27]. However, in their work, they design their

experiments such that macro calcification are omitted completely and only masses are consid-

ered, whereas this study considers both masses and calcifications both together and separately.

Another paper with a complex pipeline consisting of several pre-processing, segmentation,

false-positive reduction and classification steps, achieved an accuracy of 90.44% and an AUC

of 90% [28].

Aboutalib et al. [29] explored the use of transfer learning through an incremental approach

for a 3-class classification task on mammograms for negative, benign and malignant cases. The

study used an AlexNet [30] architecture. This model made use of transfer learning by using

ImageNet for pre-training and then further learning on the DDSM database (9648 images)

before finally fine-tuning the model on the Full-Field Digital Mammography (FFDM) dataset

(5212 images), a private dataset [29]. To explore the effects of transfer learning, and given that

the DDSM database was larger than the FFDM database, Aboutalib et al. compared a model

with further pre-training on the DDSM database before fine-tuning on the FFDM dataset

against a model with only fine-tuning on the FFDM dataset (note, both models were pre-

trained on the ImageNet database and testing was done on the FFDM dataset). It was observed

that the effects of further pre-training on the DDSM dataset helped to improve the model’s

Area Under the Curve (AUC) performance by an average of 3.2% across the 6 classification

pairs. That being said the final performance only managed to generate an AUC of 76% and the

results showed the model had a clear weakness in diagnosing malignant cases as opposed to

benign. This points towards the fact that there are imaging features unique to the recalled

benign cases which the network is able to successfully identify, features that are much harder

to pick up for the malignant cases where the network is less successful.

Comparing full image against regions of interest as model input

The lack of accuracy generated by some models and deep learning techniques can often be

traced back to the size of the image and the corresponding Regions of Interest (ROI) where

breast masses and calcifications occur. The ROI can often vary in size and be a very small pro-

portion of the entire image. As a result, this makes it more difficult for diagnosis [31]. A com-

mon setup in research has involved using pre-annotated ROIs for classification purposes. This

approach was taken by Chun-ming et al. [32], in undertaking a 5-class classification task:

benign calcification, malignant calcification, benign mass, malignant mass and a normal

breast. The paper explores the creation of a Deep Cooperation Neural Network consisting of
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two parallel CNNs that feed into a fully connected network. The research made use of data

from the DDSM archive, where pre-annotated ROIs were used for images with calcifications

and masses, and cropped images of the same size were used for normal breast images, all with

image sizes of 299×299 pixels. For a negative-class classification task, this network was able to

achieve an accuracy of 91% with an AUC of 98%, a drastic improvement from the full mam-

mogram classification carried out by Aboutalib et al, emphasising the advantage of using

cropped images. Similarly, Levy et al. [33] used a similar approach in determining the malig-

nancy of masses using the DDSM database. This research involved a comparison of three

CNNs, a baseline shallow CNN with three convolutional layers and three fully connected layers

along with AlexNet and GoogLeNet [34]. As before, pre-annotated ROIs were used for the

classification task, with padding equal to 50 pixels (small context) and padding equal to a given

amount such that the ROI equals to twice the size of the mass bounding box (large context).

The results showed that, by utilising the large context enhanced classification method, accu-

racy with the GoogLeNet CNN architecture reached 93%. From this research, however, it is

apparent that the accuracy of using CNNs for breast cancer classification is improved by using

more specific ROIs, for a closer view of tumours, in order to generate more accurate results.

This is an important point as it is a critical idea that can aid classification accuracy, a primary

objective of this research paper. The issue with this however is similar to the issue represented

by using ANNs, SVMs or kNN algorithms for classification using pre-extracted features, in

that, image pre-processing and ROI tagging is required for an accurate prediction. This is then

again reliant on trained radiologists generating ROIs to be used as an input to a CNN for

breast cancer detection. Thus, bringing back the initial issues of being reliant on human input.

The inherent difficulties and limitations associated with classification of breast tumours

using whole images alone leads onto the next wave of research based on automated extraction

of ROIs and/or feature extraction for cancer classification using whole images. The effective-

ness of using ROIs is clear; given the size of most tumours in respect to the entire image, a

large majority of the image is essentially background noise that can throw off a classifier which

is why it is important for a classifier to be able to learn and recognise the ROIs for classification

tasks. This is achieved in multiple ways, from ROI tagging to mass segmentation and classifica-

tion. An example of this is carried out by Punitha et al. [35]. In this research, an optimised

region growing technique is used for breast mass segmentation. The segmentation algorithm

uses a thresholding technique for region growing with thresholds and optimised seed points.

Once segmented, GLCM and GLRLM (Gray Level Co-occurrence Matrix and Gray Level

Run-Length Matrix) feature texture extraction is carried out on the mass. The results are then

fed into a simple feed-forward neural network for classification. Through the use of segmenta-

tion and feature extraction, the classifier was able to achieve a sensitivity and specificity of

98.1% and 97.8% respectively and the final classification task had an accuracy of 98%. This

process has effectively brought forward the strengths of using prior machine learning classifi-

ers with high accuracy used on extracted features whilst managing to automate the feature gen-

eration through segmentation and automatic feature extraction. In doing so, research such as

this highlights the importance of being able to detect where a mass or calcification is, either via

bounding boxes or segmentation, in order to enhance classification tasks without the need for

prior human input.

However, the implementation of multi-stage detection systems can add greater degrees of

error into the system. Although these may appear to have high accuracy, the drawback of such

a system is that the entire classification becomes increasingly dependent on the accuracy of the

earlier detection stages. If, for example, one uses a mass segmentation system followed by a

classification of the segmentation for cancer detection, this firstly relies on the full successful

segmentation of a tumour followed by the successful classification of that tumour. As such, it
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can be seen why there is value in a single stage whole image classification system that has no

prior reliance on other levels of image analysis.

The literature covered in this context review analysed the various techniques already used

in mammography classification, ranging from machine learning and deep learning techniques

to pre-processing steps. Early breast cancer detection methods such as expert systems and

supervised machine learning-based techniques, lacked the performance attainable from deep

learning techniques. Recent datasets have been beneficial in medical imaging, such as

CBIS-DDSM for mammography classification. However, most studies using these datasets

have made use of complex pre-processing techniques to obtain improved performance. Unfor-

tunately, this makes their models reliant on tailored pre-processing pipelines to extract this

performance and can reduce model generalisability. Alternatively, this study concentrates on

these deep learning techniques and the performance gained by combining them to maximise

classification accuracy instead. Accordingly, the divide and conquer approach proposed in the

Materials and Methods section focuses on achieving that, rather than focusing on a single

model and relying on optimised data that is pre-processed.

Materials and methods

This section covers practical aspects of the paper, including reproducibility, resources used,

ethics statements, datasets used, and the techniques covered in the divide and conquer

approach (data preparation, model training and model evaluation).

Reproducibility

To maximise reproducibility, the code used to implement the deep learning techniques in this

paper, as well as the instructions to download the relevant data and run the pipeline, have all

been made open-source and can be accessed online at https://doi.org/10.5281/zenodo.

6828154.

Resources

Computational resources, in the form of a GeForce GTX 1060 6Gb GPU, were used to train

models. To make use of the GPU’s compute capabilities, Tensorflow [36] and Keras [37] were

used. These provide deep learning frameworks with CUDA support (to enable GPU optimisa-

tion and parallelisation), CNN support and pre-trained models.

Ethics statement

Datasets utilised in this paper include CBIS-DDSM and mini-MIAS, both of which are pub-

licly available with all personal data anonymised and removed by default. In addition to the

mammography images, both datasets supply accompanying diagnostic information. This

accompanying data does not include any identifiable labels. Additionally, this study was

approved by the University of St Andrews School of Computer Science Ethics Committee on

behalf of the University Teaching and Research Ethics Committee (UTREC). Both datasets

were not created by the authors and no participants were involved in this study. Therefore, no

further consent-taking or ethics approval was needed.

Data

The deep learning models implemented in this work require clinical data to learn the underly-

ing patterns necessary to detect cases of breast cancer in mammograms and to evaluate its
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performance. Therefore, the CBIS-DDSM and mini-MIAS datasets, fully anonymised, open-

source and public datasets, were used.

The Curated Breast Imaging Subset of Digital Database for Screening Mammography

(CBIS-DDSM) dataset, an open-sourced, anonymised public dataset [38], is available online

from The Cancer Imaging Archive [25]. The dataset, which contains a total of 10,239 images

in Digital Imaging and Communications in Medicine (DICOM) format gathered from 1,566

patients across 6,775 studies [39], is the main dataset used in this work. This dataset is an

updated and standardised subset of the older DDSM dataset [40], containing only abnormal

cases with benign and malignant tumours (no normal cases). The scans found in the dataset

are a mix of the two most commonly used projections in routine mammogram X-ray scans:

bilateral craniocaudal (CC) and mediolateral oblique (MLO) [5]. The dataset can be further be

separated into two different types of structures that radiologists usually look for to detect early

signs of breast cancer: calcifications (small flecks of calcium usually clustered together) and

masses (e.g. cysts or lumps) [41].

The mini Mammography Image Analysis Society dataset (mini-MIAS) [6] is a smaller

open-sourced, anonymised public dataset available online from Pilot European Image Process-

ing Archive (PEIPA). It is used solely for transfer learning purposes. It contains 322 images in

greyscale Portable Gray Map (PGM) format with associated ground truth data and images all

reduced to a uniform size of 1024×1024 pixels [42]. It is divided into normal, benign and

malignant cases [43], but only the benign and malignant cases were used in this work.

The methods outlined in this section are implemented using a divide and conquer

approach, whererin a combination of techniques are iteratively tested and evaluated to build

an understanding of which perform best. They include a mixture of data preparation and

model training techniques, combined as shown in Fig 2.

Data preparation techniques

Dataset balance. The class distributions seen in Fig 3 reveal that the CBIS-DDSM dataset

is imbalanced, which must be taken into account to avoid fitting a biased CNN model.

Fig 2. Divide and conquer experiments summary table. Table comparing the different divide and conquer models

tested using various deep learning techniques covered in the Materials and Methods section. *Histogram equalisation

+ Gaussian filtering. α: All layers instantiated with pre-trained weights from a binarised mini-MIAS dataset. β: Base

CNN layers instantiated with ImageNet weights; fully-connected layers instantiated with pre-trained weights from a

binarised mini-MIAS dataset. γ: Base CNN layers instantiated with ImageNet weights; fully-connected layers

instantiated with random weights. δ: Balanced class weights (0.907 for majority benign class, 1.113 for minority

malignant class). �: +50% class weight for minority class (1.0 for majority benign class, 1.5 for minority malignant

class). z: Two sets of convolutional layers before base CNN. η: Convolutional layers before fully-connected layers.

https://doi.org/10.1371/journal.pone.0280841.g002
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Potential solutions for countering this imbalance are to either undersample the majority class

or oversample the minority class. Undersampling the dataset can be considered inefficient as it

will diminish the number of samples the model could learn from [44]. However, oversampling

by creating new artificial images resembling the original data, referred to as data augmenta-

tion, is a viable solution as it was proven to decrease the risk of overfitting [45]. Alternatively, a

cheaper option in terms of computing resources would be to add class weights, which will

cause the loss to become a weighted average giving more importance to less frequent classes

[46].

Dataset preparation. Multiple steps were followed to ensure that the data was in an opti-

mal format before being used as model input. The dataset did not need to be manually split as

it was already pre-split with a 80%/20% ratio when it was originally created [39]. These splits

were stratified to maintain representative samples from the data in both the training and the

testing sets to avoid introducing sampling bias. Containing 10,239 images, which equates to

163.6 GB of disk space, the dataset cannot be loaded in memory in a single import and needs

to be loaded in batches to be fed into the CNN sequentially. Additionally, the mammography

images were resized to target sizes, specified in Fig 2, during import to scale them down (as

original images are larger than 3000×5000 pixels) and to avoid having inconsistent input sizes.

Because the weights in neural networks are usually initialised with values between 0 and 1,

utilising large input values for the pixel intensities ranging from 0 to 255 can disrupt and slow

down the fitting process, ultimately leading to lower performances. Therefore, normalising the

pixel intensities to values in the range of 0 to 1 can solve this problem by ensuring all values

are small enough to reduce computational workload.

Finally, as the labels for each mammogram are in categorical string format, they must be

encoded into a numerical format. To do so, binary encoding is used, labelling ‘benign’ and

‘malignant’ cases as 0 and 1 respectively.

Image enhancement. A number of image processing steps were taken as optional aug-

mentations to aid network performance. These were:

• Optimised image cropping

• Gaussian filtering

• Histogram equalisation

Fig 3. Dataset imbalance. Bar chart illustrating the imbalance of classes in the CBIS-DDSM dataset.

https://doi.org/10.1371/journal.pone.0280841.g003
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The first step was to use optimised cropping dimensions. From inspecting the mammogra-

phy images, it was clear that image sizes ranged from roughly 2000×4000 to 3000×5000 pixels.

In this work, VGG19 and DenseNet, models that are originally designed for square images of

size 224×224 pixels, were used, which was taken into account for the initial sizes. It was how-

ever decided that because sizes of 224×224 pixels would require significant downsizing, hence

the model input was scaled up to 512x512 pixels, and a square image ratio was preserved.

There are two ways an image can be resized: resizing it such that the image takes up the

entire dimensions, i.e. stretch or compress it to a desired dimension, or resizing the image

with padding to maintain the image’s aspect ratio. Although the images were initially scaled to

a square size without padding, it was determined that this would distort the images’ spatial fea-

tures through expansion along the horizontal axis. Accordingly, resizing with padding was

used to maintain aspect ratios. The issue, however, was that given the usual dimensions of the

image, by resizing with padding, a large amount of the image would become blank space. In

order to reduce this, the best option was to change the input size to reflect the natural aspect

ratio of the mammogram images. In general this aspect ratio was around 1.5:1. Choosing input

dimensions that conformed to this level resulted in much less black space in the images as

compared to the square images, whilst preserving the natural aspect ratio. An example of the

varying resizing of the same image can be seen in Fig 4 below.

Additionally, it has been shown that the use of Gaussian filtering and histogram equalisa-

tion can enhance the details in mammograms, to optimise them for use with CNNs. As imple-

mented by George et al. [47], a Gaussian filter with σ = 0.5 was applied, along with histogram

equalisation as applied by Cheng et al [48]. A Gaussian filter is a 2D convolutional filter that is

used to blur an image and remove detail. In general, depending on the value of σ, a large blur

is not used since vital details will be lost. However, this filter is used to remove noise inherent

to the image itself.

Histogram equalisation is an image processing technique used to improve the contrast in

an image. It does this by spreading out the most frequent intensity values and stretching them

over the intensity range. The combination of Gaussian filtering and histogram equalisation is

used as another pre-processing step to enhance the quality of the image input. This step can be

visualised in Fig 5.

Model training techniques

At this stage of the pipeline, the training data is ready to be fed into the CNN model, where it

will learn from the images that were processed using the steps above, before making

Fig 4. Image resizing and padding. Demonstration of varying resizing and padding of the same image: Resized to fill

image without padding—aspect ratio not preserved (left), resized to fill image with padding—aspect ratio preserved

(middle), resized and cropped without padding—aspect ratio preserved (right).

https://doi.org/10.1371/journal.pone.0280841.g004
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predictions on unseen test dataset, which will be compared with the ground truth labels for

evaluation.

CNN model. Due to the very small nature of the CBIS-DDSM dataset (approximately

3000 samples), the knowledge of CNN models pre-trained on large general datasets such as

ImageNet (which contains over 14 million images belonging to 22000 categories [30]) is used

via transfer learning, a technique that is proven to work on breast cancer detection tasks [49,

50]. This leads a general CNN to converge towards one that is tailored for the task of breast

cancer detection using mammography images, rather than creating one from scratch. Differ-

ent CNN architectures can be used as the base of a custom CNN model tailored for breast can-

cer detection. This is achieved by using popular CNN architectures natively available within

Keras such as VGG19 [51], ResNet50 [52], InceptionV3 [53], DenseNet121 [54] and Mobile-

NetV2 [55] as the base of the CNN [56]. The fully connected layers of these models, originally

designed for general classification of 1,000 different categories, were dropped from the model

and replaced with a custom MLP (Multi-Layer Perceptron) [57]. The fully connected MLP

contains hidden layers and an output layer with different activation functions based on the

dataset used.

Depending on the size of the image used, additional convolutional and pooling layers were

added before the base model to downsample the image to smaller sizes and learn lower-level

features. This was followed by the pre-trained base model, a flatten layer to convert the output

from 2D to 1D, and finally the MLP which will make the final prediction. Dropout layers were

added in the MLP to avoid overfitting [58]. The full model can be visualised in Fig 6.

Model training. Different activation functions can be used in the output layer (final layer)

of the model. Because this is a binary classification problem, a single neuron with a sigmoid

activation function is used as it outputs an independent value between 0 and 1 that can be

interpreted as a probability of the positive class.

Cross entropy is one of the most commonly used loss functions as it can be used for any

classification task that estimates probabilities [12]. Because the sigmoid function outputs

Fig 5. Image enhancements. Mammogram scans with (left) and without (right) histogram equalisation and Gaussian

filtering.

https://doi.org/10.1371/journal.pone.0280841.g005
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probabilities, cross entropy is the ideal loss function as it heavily penalises the model when a

low probability is predicted for the target class [20].

Due to the complex nature of the model, it is important to minimise the number of optimi-

sable hyperparameters. Adaptive learning rate algorithms usually generalise better than tradi-

tional optimisers [60] such as Stochastic Gradient Descent (SGD) [61] or momentum, which

are slow to converge and require more fine-tuning. The most general adaptive optimiser is

Adaptive moment estimation (Adam) [62], which combines both momentum for more signifi-

cant steps in the direction of the steepest gradient and Root Mean Square Prop (RMSProp) for

more accelerating on steep slopes than small slopes, making it the best choice for this model.

To best make use of the transfer learning technique with the base model’s weights instanti-

ated with ImageNet weights, training was separated into two phases. In the first phase, all the

layers from the base model were frozen, enabling only the custom MLP with fully connected

layers to fit the mammogram images. The initial training phase ends once the maximum num-

ber of epochs is reached, or the early stopping condition is met. In the second phase, all the lay-

ers were unfrozen, and training was resumed with a lower learning rate of 1 × 10−5, allowing

the base model to slightly alter its weights to adapt to the mammogram dataset while not for-

getting the previously learned knowledge from the ImageNet weights.

To ensure that the model generalises well to the unseen data from the testing set, the train-

ing set is further split to form a validation set using a 75%/25% split, resulting in a respective

60%/20%/20% train/validate/test split of the original dataset. The validation set is used to

make predictions at the end of each epoch by calculating the loss and accuracy on it. The loss

on the validation set is monitored against the number of epochs to determine whether to stop

the training earlier than a preset maximum number of epochs in order to prevent the model

from overfitting the data if the loss does not improve as the number of epochs increases. An

alternative technique to using a validation set, K-fold cross-validation, which divides the train-

ing set into K subsets and evaluates the model K times to avoid overfitting, was not used due to

time constraints. Since fitting the model on the CBIS-DDSM dataset takes between 1h15m-

8h49, this would be multiplied by a factor of K when using cross-validation, hence leading to

the usage of a validation set instead.

Hyper-parameter optimisation. Traditionally, a grid search approach would have been

preferred to fine-tune the model’s hyperparameters. However, due to the project’s time con-

straints, the significant training runtime and the number of hyperparameters to fine-tune, a

grid search would have been an unrealistic approach. Instead, a divide and conquer approach

was selected, manually implementing and validating different combinations of deep learning

Fig 6. Model architecture. Model architecture implementation, which includes input images, additional convolutional

and max pooling layers, ImageNet pre-trained convolutional layers (e.g., on either VGG19 or MobileNetV2 architectures),

fully connected layers (flatten, dropout) and the output layer. Original image, “ImageNet pre-trained model” by Aphex34

[59].

https://doi.org/10.1371/journal.pone.0280841.g006
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techniques mentioned in this section. The combinations tested are summarised in Fig 2, and

include using different pre-trained CNN models, variations in transfer learning, data augmen-

tation, dropout values and input image sizes. The methods mentioned across this section and

the pipeline proposed are summarised in Fig 7, covering the data preparation steps followed,

the model training steps, and the model validation.

Model evaluation metrics

In mammography classification, overall accuracy (see Eq 1, [49]) is often complemented with

additional metrics to evaluate how well the classifier fitted the data. The following terminology

is used to define the metrics that are broken down below:

• P: Positives (all positive predictions).

• N: Negatives (all negative predictions).

• TP: True Positives (positive case correctly predicted as positive).

• TN: True Negatives (negative case correctly predicted as negative).

• FP: False Positives (negative case incorrectly predicted as positive).

• FN: False Negatives (positive case incorrectly predicted as negative).

Detecting FPs and FNs is essential to avoid interpreting malignant tumours as benign and

vice versa. Such an interpretation could harm the patient and potentially lead to their death.

Therefore, a mixture of additional metrics were used to assess how well the model learns the

mammograms data and generalises to unseen cases.

Fig 7. Flowchart pipeline. A detailed flowchart of the implemented breast cancer detection deep learning pipeline.

https://doi.org/10.1371/journal.pone.0280841.g007
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Precision, which corresponds to the number of correct positive predictions (see Eq 2, [44]),

shows the model’s ability to avoid labelling negative instances as positive. Recall, which is the

number of positive instances that are correctly predicted (see Eq 3, [44]), shows how well the

model can find all positive instances. Together, they can be combined into a more concise met-

ric, the F1 score (see Eq 4, [20]). To achieve a high F1 score, both precision and recall must be

high (unlike a regular mean) because as the precision goes down, the recall goes up, and vice

versa, making the F1 score a reliable metric for evaluating a classifier since a balance between

precision and recall must be found [20].

Accuracy ¼
TPþ TN
P þ N

ð1Þ

Precision ¼
TP

TP þ FP
ð2Þ

Recall ¼
TP

TP þ FN
ð3Þ

F1 ¼
2

1

precision
þ

1

recall

¼
TP

TPþ
FN þ FP

2

ð4Þ

Pipeline generalisation

This workflow can be generalised to other breast cancer detection mammography classifica-

tion tasks as it can be applied to any dataset similar in nature, and could also be used as a start-

ing point for comparable medical imaging tasks such as MRI classification. To evaluate the

generalisability of the model across a larger range of demographics and medical imagery tech-

niques, future work would be needed to test the model’s performance on other mammography

datasets acquired from other geographical locations and medical devices. Additionally, all of

the code implemented for the steps in this Materials And Methods section has been made pub-

licly available and is hosted on GitHub for reproducibility [63].

The different techniques covered in this section are all tested iteratively in a divide and con-

quer fashion. The results of each experiment from Fig 2 are presented and discussed in the fol-

lowing sections.

Results

The methods described in the previous section serve as the baseline model for all divide and

conquer techniques tested, as it uses the most general and adaptive settings for a CNN. This

will allow for a clear depiction of whether a technique will help to increase the performance in

the context of mammography classification for breast cancer detection. This baseline model

has the following specification:

• VGG19 base CNN model.

• Whole images with sizes of 512×512 pixels.

• Dropout rate of p = 0.2.

• Adam optimiser using a learning rate of 1 × 10−3.
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There are a number of varying factors that are tested and discussed in the next section

using a divide and conquer approach. These include tuning the base CNN architecture, batch

size, class weights, data augmentation factor, dropout rate, input size, weight initialisation,

type of mammograms, use of additional convolutional layers, use of whole or cropped images

and image pre-processing techniques. A few parameters remain constant throughout the

experiments, including the structure of the fully connected layers (512 and 32 hidden neurons

and 2 output neurons), as well as the optimiser used (Adam optimiser with a learning rate of

1 × 10−3 when using VGG19 and 1 × 10−4 when using MobileNetV2).

The CBIS-DDSM test dataset contains 641 test samples, of which 381 are benign and 260

malignant. With the baseline model, as described above, an overall accuracy of 61.80% is

achieved on the CBIS-DDSM predefined test set. This metric is used as the relative benchmark

that is compared to the results obtained through the various explored techniques. All future

references to model names (e.g., “model X”) represent one of the divide and conquer experi-

ments found in Fig 8, where X ranges from A to V.

Fig 8. Divide and conquer results summary table. Bar chart comparing the results achieved using various deep learning techniques relative to the baseline

(see Results section for baseline implementation specification). *Histogram equalisation + Gaussian filtering. α: All layers instantiated with pre-trained

weights from a binarised mini-MIAS dataset. β: Base CNN layers instantiated with ImageNet weights; fully-connected layers instantiated with pre-trained

weights from a binarised mini-MIAS dataset. γ: Base CNN layers instantiated with ImageNet weights; fully-connected layers instantiated with random

weights. δ: Balanced class weights (0.907 for majority benign class, 1.113 for minority malignant class). �: +50% class weight for minority class (1.0 for majority

class, 1.5 for minority class). z: Two sets of convolutional layers before base CNN. η: Convolutional layers before fully-connected layers.

https://doi.org/10.1371/journal.pone.0280841.g008
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Discussion

Using the accuracy of the baseline model defined in the previous section, the combinations of

deep learning techniques covered throughout the previous sections are discussed in this sec-

tion to serve as frame of reference for mammography classification tasks.

Base CNN architectures

Five different CNN architectures, pre-trained on ImageNet (VGG19, ResNet50, InceptionV3,

DenseNet121 and MobileNetV2), are tested out as the base architecture of the model. For this

test, the CBIS-DDSM dataset is used with whole images resized to 512×512 pixels, a batch size

of 2 and a learning rate of 1 × 10−4.

The results clearly reveal that MobileNetV2 outperforms the other CNN architectures,

achieving a higher accuracy and F1 score. The baseline model’s VGG19 architecture is outper-

formed by more efficient models such as DenseNet121 (model T) and MobileNetV2 (model

C), while still performing better than both the models that use ResNet50 (model V) and Incep-

tionV3 (model U) as base architectures. These results contradict Falconi’s results on the

CBIS-DDSM dataset, which find that ResNet50 outperforms MobileNetV2 [50]. However,

MobileNetV2 still outperforms InceptionV3. These results may differ due to the different pre-

processing techniques being used as Falconi et al. uses cropped images around ROIs, whereas

whole images are used in this experiment. It is also worth noting that using MobileNetV2 as

base architecture already surpasses the baseline by 4.66%, and beats models that use traditional

machine learning methods like SVMs with GLCM features (63.03% accuracy) on the

CBIS-DDSM dataset [64].

However, observing the training and testing runtimes reveals that VGG19 takes the longest

time to train (3h50m), whereas the more efficient MobileNetV2 architecture takes less time

(2h46m). Additionally, inference runtime is 2.3 times faster with MobileNetV2 compared to

VGG19, which ultimately is more useful, in practice, for clinics as mammogram diagnosis

results can be returned faster.

Class imbalance

Distinct variations of class weights are used on the CBIS-DDSM dataset in attempt to rectify

the adverse effects that can be introduced by imbalanced datasets. This method avoids the pro-

cess of data augmentation, which considerably slows down the training time. Three unique

class weights values were tested using the imbalanced CBIS-DDSM dataset with whole images

resized to 512×512 pixels, a batch size of 2 and a learning rate of 1 × 10−4:

• No class weights (dataset remains imbalanced).

• Balanced class weights:

• 0.907 for majority class (benign).

• 1.113 for minority class (malignant).

• Pre-determined +50% class weight for minority class:

• 1.0 for benign samples.

• 1.5 for malignant samples.

The results using using balanced weights clearly show a 0.62% increase to the accuracy

(model H) relative to the one that uses no class weights (model C), thus helping against the

imbalanced dataset issue without the need for techniques like data augmentation. However,
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the pre-determined weight increase for the minority class decreases the relative accuracy by

1.41% (model I) to that same model that uses no class weights, revealing the complexity and

importance of finding the right parameters for balancing datasets since a 50% weight increase

for malignant samples introduced even greater imbalance.

Input image sizes

Whole images. Various image sizes were explored to determine their effect on the model’s

performance. For the smaller image sizes, larger batch sizes are used, whereas, for the larger

image sizes, smaller batch sizes are defined, along with extra convolutional and pooling layers,

to accommodate the larger image size:

• 224×224 pixels (chosen as most CNNs pre-trained on ImageNet use this size) with a batch

size of 8.

• 512×512 pixels with a batch size of 2.

• 1024×1024 pixels (with an additional set of 2 convolutional and pooling layers) with a batch

size of 2.

• 2048×2048 pixels (with an additional two sets of 2 convolutional and pooling layers) with a

batch size of 2.

The results clearly outline the accuracy increase when using 512 pixels-wide input size

rather than 224 (model F), observing a 2.03% increase with VGG19 (model K) and 4.52%

increase with MobileNetV2 (model B) relative to model F. When observing the evolution of

the training accuracy and loss when using 1024×1024 pixels input size on VGG19, it can be

seen that the validation loss increases while the training loss decreases and that both sets’ train-

ing accuracies are increasing as well; which is a typical pattern of a model overfitting the data.

Because the model is overfitting the data, a very high precision (66.94%) but low recall

(59.28%) can be seen for the 1024×1024 input size. This is highly detrimental since a breast

cancer detection system that detects malignant cases as benign could lead a failed diagnosis

and, ultimately, the death of the patient.

However, further increasing the input size to 1024 pixels has no positive effect if the images

are not pre-processed. Indeed, when not using image pre-processing methods, the accuracy

drops by 1.76% on VGG19 (model N) relative to model F and leads to an Out Of Memory

(OOM) error on MobileNetV2, despite lowering the batch size to 1. However, using Gaussian

filtering and Histogram equalisation with 2048 pixels-wide input size increases the accuracy by

3.70% (model O) relative to the baseline.

As expected, increasing the image size also increases the training runtime, which is wors-

ened further by a factor of 2.4 when adjusting from 224 to 512 pixels, and a factor of 2.8 from

512 to 1024 pixels on VGG19. However, image pre-processing and additional convolutional

layers are a necessity to adapt to the larger input size. Nevertheless, the accuracy/training run-

time trade-off is not paramount in breast cancer detection as the primary goal is to develop a

system that can correctly diagnose early forms of cancers in mammograms as accurately as

possible, regardless of the runtime. Ultimately, inference runtimes will play an important role

when used in clinics.

Cropped images. Through the use of varying image sizes and additional convolutional

layers to optimise the baseline VGG19 model, some clear observations can be seen in motivat-

ing the use of deeper networks with larger input images. The baseline VGG19 model was

designed for smaller images, likely consisting of less obscure features than those found in

mammograms. As a result, it achieved a lower accuracy when trained and tested on the
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CBIS-DDSM dataset. One attempt to improve this was to extend the model with convolutional

layers of differing kernel size and filters, in addition to a pooling layers for large image inges-

tion. This brought about two experiments, the first one for image sizes of 1024×1024 pixels

with the additional two convolutional layers and the second one for image sizes of 2048×2048

pixels with a further additional two convolutional layers atop of the previous model. Although

small, the latter generated an improved accuracy of 0.80% relative to the baseline (model Q).

As suggested, the increase in the number of convolutions allows the network to pick up on

finer details that would otherwise go unobserved in the original model, due to the size and res-

olution of these images.

In a further effort to improve the efficiency of the network, the largest image size was

cropped from a square image to a rectangular one of size 2048×1376 pixels, which retained

image resolution but partially removed some of the black background and padding present in

the scans. This improved sample processing speeds by roughly 20% and saw a 2.9% accuracy

increase (model S) relative to the 2048×2048 pixels experiment. This demonstrates that crop-

ping images around a region of interest is less computationally expensive and more accurate.

It should be noted this is a rough crop as it is to a fixed size and aspect ratio, and as such, an

alternative approach involving more specific cropping right around the breast area of the scan

may offer better results.

Degrees of transfer learning

Instead of using a CNN pre-trained on ImageNet, model weights trained on a binarised ver-

sion of a small dataset, mini-MIAS, are transferred to the CBIS-DDSM dataset. Four different

experiments using identical CNN architectures with variations in transfer learning are tested

to assess the effect of transfer learning from the binarised mini-MIAS dataset and ImageNet

on the CBIS-DDSM dataset:

• Transfer learning of all layer weights (MobileNetV2 and fully connected MLP layers instanti-

ated with binary mini-MIAS weights).

• Transfer learning of fully connected layer weights (MLP layers instantiated with binary

mini-MIAS weights, MobileNetV2 layers instantiated with ImageNet weights).

• Transfer learning of ImageNet weights only (fully connected MLP layers instantiated with

random weights, MobileNetV2 layers instantiated with ImageNet weights).

• No transfer learning (MobileNetV2 and MLP fully connected layers instantiated with ran-

dom weights).

The results clearly indicate that any given form of transfer learning provides an improve-

ment over random weight initialisation (model G). On the other hand, too much transfer

learning, by using all the weights from the model trained on the binary mini-MIAS dataset,

does not generalise well to the CBIS-DDSM dataset (model A). The best performance of this

experiment came from initialising MobileNetV2 with ImageNet weights and the MLP fully

connected layers with weights trained on the binarised mini-MIAS dataset (model B), achiev-

ing an accuracy increase of 5.28% relative to the baseline, which corresponds to an F1 score of

67.23%. This model was closely outperformed by again using ImageNet weights for Mobile-

NetV2 and random weights for the MLP layers which reached a 5.6% relative accuracy

increase (model H). The ImageNet weight transfer method provided a performance gain whilst

proving the effective and adaptive nature of CNNs when leveraging knowledge learned from

large general datasets on a more specific task like mammography classification. It is worth
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noting that training is marginally faster when using weights from binary mini-MIAS as the

model converges more quickly.

Mammogram types

To assess how the model would adapt to learning samples from a single type of mammogram,

the CBIS-DDSM dataset was separated into only mass samples and only calcification samples.

These results show that the model using VGG19 as a base architecture achieves moderate

improvement when mass and calcification samples are separated, reaching a 2.55% accuracy

increase (model L) and a 4.87% accuracy increase (model M) relative to the baseline respec-

tively on the test set, while achieving an relative accuracy increase of of 2.79% when using the

full CBIS-DDSM dataset (model K). Indeed, all instances are classified as “benign” on the full

CBIS-DDSM dataset (either true negatives or false negatives), indicating that the model fails to

consistently deal with multiple views and cannot differentiate benign and malignant cases

from each other. This outcome is in line with Hepsag’s et al. results, which achieve higher

accuracies when classifying either masses or calcifications on another dataset [43], and con-

firms Elter’s et al. claim that masses are more difficult to detect than calcifications [5].

However, the opposite effect is witnessed when MobileNetV2 is used as a base model,

reaching an accuracy increase relative to the baseline of 4.66% (model C) when the full dataset

is used and only 1.32% (model E) and 1.43% (model D) for calcifications and masses respec-

tively, contradicting the previous results. Because CNNs automatically learn features, it can be

hard to know exactly what goes on underneath the hood of these models, especially when

using architectures like VGG19 and MobileNetV2 due to their complex structures. Visualising

heatmaps of the feature maps for each convolution layer could help understand why these

models react differently when using all images or only specific types of mammograms, but is

out of the scope of this work.

Image pre-processing steps

Following the successful implementation of various models, the next step was to move beyond

the model fine-tuning and towards the data itself to improve model performance. This was

undertaken through image processing techniques that involved histogram equalisation and

Gaussian filtering. Histogram equalisation, in particular, is used to help with contrast adjust-

ment. This can be helpful in highlighting important features by increasing contrasts to further

highlight masses and/or calcifications. Through applying these image processing techniques,

the data was then used to train and test using the VGG19 architecture with image sizes of

2048×2048 pixels and two additional sets of two convolutional and pooling layers. This gener-

ated the greatest improvement in accuracy with an accuracy increase of 1.8% (model P) in

comparison to the same model without any image pre-processing steps (model Q). This fur-

ther emphasises the effectiveness of image pre-processing steps such as Gaussian blur and his-

togram equalisation for mammography classification tasks.

Dropout rate

Although early stopping was implemented during training to avoid overfitting, it has been

shown that adding dropout layers to the fully connected portion of the model can help elimi-

nate overfitting [58]. Applying dropout layers with a drop rate p = 0.2 to the VGG19 architec-

ture with image sizes of 2048×2048 pixels and two additional sets of two convolutional and

pooling layers provides an increased accuracy of 1.10% (model O) compared to the same set-

tings without any dropout (model P). Previously, the classification results showed a lot of bias

within the baseline model with a considerable offset between precision and recall due to a
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heavy bias towards predicting the benign class. However, through adding dropout layers, the

inherent biases in the model are reduced, resulting in a reduction in this disparity to only 1%,

and more importantly, a greater ability in classifying malignant samples. Ultimately, for tasks

like cancer detection, it is more important that a model is sensitive to the malignant class to

avoid incorrectly diagnosing patients that have a malignant tumour as having a benign

tumour.

Conclusion

This study saw the design and implementation of a deep learning pipeline capable of perform-

ing mammography classification for breast cancer detection through various deep learning

techniques. After investigating a wide array of techniques using a divide and conquer

approach, the greatest accuracy gain of 5.6% relative to the baseline (total accuracy of 67.4%)

was obtained using transfer learning techniques (Fig 8, Model H). This model used ImageNet

weights with MobileNetV2 and randomly instantiated weights for the custom MLP layers,

coupled with class weights for balancing the dataset and other deep learning-based techniques.

Additional results for this model, including a normalised confusion matrix (S1 Fig), AUC/

ROC (S2 Fig) and additional metrics (S1 Table), can be found in the Supporting Information

section.

Further, separating samples between masses and calcifications also yielded increased accu-

racies compared to the benchmark (64.35% and 66.67% respectively) when using VGG19 as a

base model (Fig 8, models L and M). However, other techniques did not behave as expected

and resulted in poor accuracies, such as separating samples between masses and calcifications

with MobileNetV2 or using larger input images with extra convolutional and pooling layers to

learn lower-level features without any image pre-processing steps such as histogram equalisa-

tion and Gaussian filtering.

Although other papers achieve more performance in their final model, notably the ones

explored in the Context Review, the ultimate goal of this paper is to serve as a guide for mam-

mography classification tasks that use deep learning techniques through the divide and con-

quer approach rather than aiming to develop a single model with superior performance. It is

worth noting that the combination of deep learning techniques used by model H outperforms

studies that use different machine learning techniques on the same CBIS-DDSM dataset such

as Sarosa et al.’s SVM model with GLCM features [64].

Limitations

A known limitation concerning all breast cancer detection systems lies with the data itself, as

the most widely used datasets of mammograms (e.g. DDSM) contain data that mainly origi-

nates from white females located in North America, which naturally introduces bias to the

model learning this data [16]. Different body types linked to the geographic location of the

patients used to create these databases can have a direct impact on the mammograms them-

selves and not generalise to females from other cultures. For example, a recent study with

53,000 North American females showed how diets that include dairy milk consumption might

increase the risk of breast cancer by a maximum of 80% based on the consumption [65]. This

means that if these deep learning algorithms were implemented in clinics outside western

countries, they might not generalise well to other body morphologies (e.g. due to different

diets based on the geolocation’s culture). This limitation could be resolved by collecting more

varied data from multiple locations around the world, not just a single region, which would

also help the deep learning algorithms used as more data is always more beneficial [66].
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Another limitation in terms of the detection system’s usability is the confidence of the pre-

dictions. Indeed, when given new test samples, the model predicts a class label, e.g. benign or

malignant. However, these do not indicate the prediction’s confidence, as it can be anywhere

between the decision boundary’s limit (not confident) and far from the decision boundary

(confident). Therefore, from a clinical point of view, it is hard to make a decision based on the

predictions made by a system similar to this one. Ideally, a probability-based confidence metric

would be coupled with the predictions to motivate the next step after the diagnosis. For exam-

ple, if the confidence of a malignant tumour is high (e.g. 99%), then breast-conserving surgery

or chemotherapy can be recommended, whereas if the confidence is low (e.g. low 50%s), then

further screening tests can be recommended instead.

Future work

The main area of work that requires improvements is the mammogram imagery pre-process-

ing as it is often an area where significant performance gains can be found [12] by using tech-

niques such as Global Contrast Normalisation (GCN), local contrast normalisation, and

Otsu’s threshold segmentation. Artefacts such as tags on the x-rays and black backgrounds

should all be removed using computer vision techniques to avoid the CNN learning irrelevant

features. A couple of ways to do so could involve cropping the image directly around the breast

area or introducing bounding boxes for ROIs. Those improvements, accompanied with pro-

viding the degree of certainty with regards to the binary classification, would increase the clar-

ity of the predictions for clinical practitioners and allow for improved human cross-validation

and/or investigation of the pipeline’s output.

Another area where improvements can be made is the fine-tuning to extract better perfor-

mance on the datasets and avoid overfitting. With the data pre-processing mentioned above,

images would be smaller (e.g. no redundant dark background), which would in turn allow for

quicker fitting and inference runtimes revealed, allowing hyperparameter fine-tuning algo-

rithms like grid search or Bayesian optimisation to explore more combinations of configura-

tions in order to unlock better solutions.

Finally, future research could look into applying the results found in this paper on other

mammography datasets, such as the recently released Chinese Mammography Database

(CMMD) dataset [24] and other datasets that introduce greater heterogeneity across its sam-

ples. This would improve generalisability with regards to imaging and cross-continental varia-

tion in body morphologies. Expanding the classification task from a binary to multi-class one

by using different datasets would also help make the pipeline more versatile as it could not

only be able to classify benign and malignant cases, but also normal cases with no masses or

calcifications.
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S1 Fig. Normalised confusion matrix. Normalised confusion matrix of the predictions made

by the model achieving the highest accuracy (Fig 8, Model H) on the test set.
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S2 Fig. Area Under Curve Receiver Operator Characteristic (AUC/ROC). Area Under

Curve Receiver Operator Characteristic (AUC/ROC) of the model achieving the highest accu-

racy (Fig 8, Model H) on the test set.
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