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Abstract

Image processing is fundamental to observational astronomy workflows. Astronomers acquire

imaging data, and process the imagery to extract useful information. This thesis introduces

two new image processing algorithms. The first, PyTorchDIA1 is a GPU-accelerated approach to

Difference Image Analysis (DIA). The approach is fast, without sacrificing modelling flexibility.

It makes use of the Pythonic, PyTorch machine learning framework to accelerate convolution

computations on the GPU, and compute gradients of user-specified objective functions with

automatic differentiation methods to fit DIA models quickly and accurately. The second algo-

rithm, The Thresher2, was designed as a new tool to extracting information from Lucky Imaging

(LI) data sets. We adopt a modelling approach which optimises a justifiable, physically mo-

tivated likelihood function to return the best estimate of the observed astronomical scene. It

does this using all available data, and the more data the model is fit to, the better the signal-

to-noise and resolution of the scene estimate. This fundamentally differs from conventional

shift-and-add procedures, which typically reject the vast majority of the acquired LI data, as

in these approaches, the signal-to-noise of the final coadd is inversely related to its resolution.

With an eye to accessibility, integration into workflows and open science, the code for these

two algorithms has been open sourced. Lastly, we show how Python image processing appli-

cations can be used to realise time-critical, demanding computational challenges in a chapter

outlining the results of a novel pilot study to detect the occultations of background stars by

small, outer solar system objects with high frame-rate sCMOS cameras.

1https://github.com/jah1994/PyTorchDIA
2https://github.com/jah1994/TheThresher
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1
Introduction

This thesis documents my work on a few astronomical image processing applications for

ground-based observations. These applications have been implemented in the Python pro-

gramming language. Python has consistently been ranked as one of the most popular lan-

guages, and in recent years has seen a marked rise in usage in astronomy. This trend doesn’t

seem to be changing any time soon, and in the last year alone, Python has had the largest in-

crease in popularity amongst the 20 most popular languages in the TIOBE index rankings1. In

this context, for the sake of both accessibility and integration into workflows in the wider as-

tronomy community, we have released open source Python implementations of the algorithms

developed here.

Unlike other popular high-level, general purpose languages such as C++ or JAVA, Python

is dynamically typed, and so applications can be slow compared to their statically typed coun-

terparts. However, this need not be the case for our applications, and we make grateful use of

the rich suite of Python libraries to write performant image processing tools. These libraries

1https://www.tiobe.com/tiobe-index/
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Chapter 1. Introduction

include NumPy for array programming (Harris et al., 2020), which when combined with the

just-in-time compiler Numba (Lam et al., 2015), can straightforwardly transform Python code

into fast machine code that can be executed in parallel across multiple CPU cores. We also

make use of the PyTorch machine learning framework (Paszke et al., 2019) to run expensive,

yet embarassingly parallel image operations on graphics processing units (GPUs), and use its

automatic differentiation tools to reliably fit image models to data.

My use of the term "image processing" in the title of this thesis is deliberately vague. The

work in Chapters 2 and 3 would probably be better described as "image modelling". Indeed,

Chapter 3 in particular argues for the benefits of modelling approaches over the more typical,

"operations-based" approaches to dealing with imaging data sets that astronomers are familiar

with (e.g. procedures to align images, coadd them etc.). There is absolutely no image mod-

elling in Chapter 4 however, and so in the pursuit of coming up with a title that ties this thesis

together, I’ve settled with the usefully broad term "processing" to describe the act of applying

algorithms to images.

With one admission out of the way, I’ll move on to my next. The work in most astronomy

theses neatly fall within some sub-discipline (Exoplanet science, Star Formation, Galaxies,

Cosmology, Instrumentation etc.), and authors will use the introductory chapter to give some

context as to how their work sits within the larger landscape. This thesis is mostly concerned

with very specific image processing "Methods", which are not associated with any one par-

ticular astrophysics goal. Given this, I instead defer outlining the wider context of each of

these methods to their respective chapters. I hope you’ll agree with me that providing a gen-

eral review of astronomical image processing approaches would only result in producing an

increase in net global boredom, so instead, I use this introductory chapter to summarise my

motivations for tackling these specific image processing topics, and what I believe to be the

main contributions of each piece of work.

Chapter 2 describes a new approach to Difference Image Analysis (DIA), also known as

Image Subtraction. DIA is a popular technique in time domain astronomy, and the aim is

to compute the so-called "difference image" of a reference image and a data image of some

astronomical scene. Unfortunately, we can’t just subtract the reference from the data, as we

must first correct for the inevitable differences in observing conditions between the times each

of these images were acquired. For images on the ground in particular, these differences are

2



largely due to the variable atmosphere, and the two images will almost certainly have different

point-spread-functions (PSFs), and different photometric throughputs. We therefore must fit a

model to the data image, whose parameters encode the transformations which fit the reference

image to it. A problem for many DIA techniques is that fitting this model to the data can take

a long time. As astronomical data sets get bigger, we need processing methods that scale to

this challenge. This is of particular importance for time-critical science cases in modern sky

surveys using DIA, such as the Legacy Survey of Space and Time (LSST) (Ivezić et al., 2019).

The faster images can be processed, the faster alerts for follow-up observations can be issued

to the community. The work in Chapter 2 was motivated by wanting to address this concern

without sacrificing model complexity. In grateful collaboration with the co-authors, I introduce

a DIA approach which can fit models quickly, and is uniquely flexible with regards to the choice

of noise model. Unlike any other DIA method we are aware of, our approach can make use of

robust statistical techniques that allow it to straightforwardly accomodate outlying pixels in the

data i.e. those affected by saturation, cosmic rays, instrumental defects etc. This does away

with the need of delicate masking and/or (the albeit unreasonably effective) "sigma clipping"

procedures which are commonly used in astronomy. I was kindly invited to give a short talk by

the LSST Transients and Variable Stars collaboration in October 2021 on this work 2. If you’re

short on time, or looking for a high level overview of the key ideas, I’d recommend watching

the recording (link in footnote) in place of reading Chapter 2.

The work in Chapter 3 was initially motivated by a dissatisfaction with image coaddition

methods. Stacking images together to increase the effective signal-to-noise ratio (SNR) of the

observed scene is a very common and useful procedure. However, like in the DIA problem,

for images taken through the atmosphere, due to differences in observing conditions between

the times the images are acquired, each image will have a different PSF. Consequently, if you

simply align and add (or average over) all your images, the effective seeing of this coadd will

be limited by the worst seeing image you have. For this reason, it is usual to just select a small

number of good quality images to contribute to the coadd. The Lucky Imaging (LI) technique

is an extreme example of this (Law et al., 2006). At the sub-second timescales over which LI

images are acquired, the image-to-image seeing variations in the complex PSFs can be large,

as there’s limited time-averaging over the PSF speckle patterns. LI is a brute force solution

to this problem, which takes many 1000s of these sub-second exposures, and usually selects

2https://www.youtube.com/watch?v=jAEFsrVrlSs&t=1006s
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just the sharpest 1% of images for the coadd, and discards the vast majority of the data. But,

it cannot possibly be that when treated correctly, this ignored data is useless for improving

our knowledge of the observed scene. LI is primarily concerned with taking high-resolution

imagery from the ground, and the reason that rejecting data helps in LI is because the SNR of the

final coadd is inversely related to its resolution. With The Thresher, I and co-authors attempted

to address this shortcoming of coaddition, and LI shift-and-add procedures in particular. The

main contribution is an online, multi-frame blind deconvolution algorithm that is robust to

the very low SNR of short exposure LI data. Unlike shift-and-add processing procedures for

LI data, our algorithm optimises a physically motivated, justifiable likelihood function for the

observed scene. And unlike conventional coaddition procedures, as more and more data is

shown to the algorithm, both the SNR and resolution of the scene estimate improve.

Chapter 4 is also concerned with the processing of high frame-rate imaging data, but with

the specific goal of detecting the occultations of background stars by small objects in the outer

solar system. Unlike the two previous chapters, this work has not been published (nor yet

prepared for publication), and largely consists of the analysis of data taken in the autumn

of 2022, so may be comparatively a little rough around the edges. Nonetheless, I think the

science is interesting, and as it shares a common imaging processing thread with the rest of

this work, I think it’s worth putting it in here. Myself and my colleague, Prof. Richard Gomer

(Texas A&M University), are interested in trying to detect and characterise objects in the solar

system beyond the Kuiper belt, in the hypothetical Oort Cloud. I stress the word hypothetical,

as although solar system formation models predict the existence of this vast reservoir of mass,

no observations of its constituent objects have yet been made. As the objects are so small

and distant, even the most powerful telescopes cannot detect their reflected light. Therefore,

the best way to learn something about them is through serendipity surveys, where just by

chance, such an object may pass in front of some distant star, causing a momentary, but possibly

measurable dip in its brightness. This has some similarities to the transit method to detecting

and characterising the properties of exoplanets, although unlike transit light curves, the light

curves associated with occultations by relatively nearby objects can show features associated

with Fresnel diffraction (Nihei et al., 2007). Additionally, and the feature most important to

image processing work, is that these occultation events occur on sub-second timescales. One

therefore needs a very fast camera to detect these events, and the better sampled the light

curve is, the better the diffraction pattern can be resolved, and the better the properties of
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the occulting object can be characterised. We have developed a data system that can process

3200× 3200 pixel scientific Complementary Metal-Oxide-Semiconductor (sCMOS) images at

frame rates as high as ∼ 500 Hz in real time. Real time processing is essential, since at these

frame rates just a second of observing equates to an unwieldy ∼ 5 Gb of imaging data. For

serendipity surveys, the storage requirements are completely impractical. The challenge is

therefore to extract the useful information from each image on a millisecond timescale before

throwing it away, never to be seen again. The work in this chapter describes the first steps in

a long-term project that ultimately aims to mount these fast cameras in the otherwise unused

areas around the edges of the focal planes of modern telescopes. The attractive advantage

of this is that we can conduct a serendipity survey without taking up any dedicated telescope

time; the main science observations proceed as normal, and our data system just sits in the

background. We present an analysis of observations produced from trialling our data system

on the 2.1m telescope at McDonald Observatory, Texas, acquired between the 16th - 22nd of

September 2022.
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2
PyTorchDIA: A flexible, GPU-accelerated

approach to Difference Image Analysis

2.1 Declaration

This chapter includes material adapted from: Hitchcock, J.A., Hundertmark, M., Foreman-

Mackey, D., Bachelet, E., Dominik, M., Street, R. and Tsapras, Y., 2021. PyTorchDIA: a flexible,

GPU-accelerated numerical approach to Difference Image Analysis. Monthly Notices of the

Royal Astronomical Society, 504(3), pp.3561-3579.

2.2 Introduction

Difference Image Analysis (DIA) describes several astronomical image processing algorithms

with the shared goal of delivering precise photometric measurements of variable astronomical

sources. Given two images of the same scene acquired at different times, in a DIA framework,

one aims to subtract one image from the other and recover a difference image from which dif-
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ferential fluxes can be directly measured. This makes DIA a particularly effective approach to

measuring the photometric variability of objects in crowded stellar fields – such as microlens-

ing campaigns e.g. (Wozniak, 2000; Bond et al., 2001) and studies of globular clusters e.g.

(Bramich et al., 2011; Kains et al., 2012; Figuera Jaimes et al., 2013) – where the blending of

light from neighbouring sources cannot otherwise be easily disentangled.

Even for two perfectly aligned images from the same instrument, in order to produce a

clean subtraction, the DIA algorithm of choice must model the inevitable changes in 1) the

Point spread function (PSF) due to variations in seeing, telescope focus or tracking errors,

2) the Photometric scaling from differences in atmospheric transparency, exposure time or

instrument throughput and 3) the sky background caused by e.g. changes in the position and

phase of the moon.1

The differential change in PSF and photometric scaling can be found by inferring the convo-

lution kernel, which ‘blurs’ the sharper of the two images to match the PSF in the other. Alard

& Lupton (1998) (hereafter AL98) demonstrated that the kernel can be found using linear

least-squares by decomposing it as a set of user-specified basis functions. Specifically, AL98

opted for Gaussian basis functions modified by low-order polynomials. A decade later, the lin-

ear least-squares solution was advanced by Bramich (2008) (hereafter B08) who modelled the

kernel as a highly flexible (albeit computationally more expensive) discrete pixel array, which

is analogous to the AL98 algorithm, but with a choice of delta basis functions for the kernel

model. Later advances included extending the DIA solution to a spatially varying kernel and

differential background to model position-dependent variations in seeing, transparency and

airmass across the field-of-view (FoV) in wide-field imaging data (Alard, 2000; Bramich et al.,

2013).

In this analytical linear least-squares framework, a normal matrix for the linear system

of equations is required. It is the construction of the normal matrix for these approaches

which results in a computational bottleneck. For example, for a (square) pair of images each

of size n, and a (square) kernel of size m the construction of the normal matrix for the B08

approach – which implements the same model for the kernel as our algorithm – scales as

O (n2m4) (i.e. the run-time increases with the square of the input image size and with the

kernel size to the power of four). These problems are exacerbated by the need to iteratively

1We note that there are other differences between images that cannot be captured by current DIA models, such as
differential refraction or extinction, and we do not address these in this work.
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fit for the model parameters in the linear least-squares sense (as the problem is in fact non-

linear, see Section 2.3.1) and, typically, the normal matrix will need to be constructed about

3-4 times until convergence is reached. Attempts have been made to exploit symmetries in the

problem (see Section 5.2 of Bramich et al. (2013)) or bin pixels around the kernel edges to

speed up this construction (Albrow et al., 2009). In the era of wide FoV sky surveys such as

the upcoming Legacy Survey of Space and Time (LSST) (Ivezić et al., 2019), or the ongoing

Zwicky Transient Facility (ZTF) (Bellm et al., 2018) etc., which aim to deliver prompt alerts of

transient astronomical phenomena detected through image subtraction, many current popular

approaches make real time event discovery impractical. This has driven some recent advances

in the DIA literature, most notably the ZOGY algorithm (Zackay et al., 2016), and even a

machine-learning approach (Sedaghat & Mahabal, 2018).

Image processing tasks – where some common operation is performed on very many pixels

– are inherently massively parallel. Mild to substantial computational speed-up by parallelising

the construction of the normal matrix in classical DIA algorithms with GPUs has been demon-

strated in the literature (for example, Hartung et al., 2012; Li et al., 2013; Zhao et al., 2013).

Adoption by the larger astronomical community however has been slow.

The main barrier to adoption for most astronomers is likely the lack of a working knowledge

of CUDA, NVIDIA’s parallel computing platform, which is required to develop GPU-accelerated

applications on supported devices. In astronomy, the Python programming language has firmly

established itself as a favourite of the majority of the community, and most importantly, will be

the primary user-interface language for the next generation of astronomical data management,

processing and analysis systems (Perkel, 2018). The appropriateness of DIA image models can

be highly data set dependent, and tuning by individual researchers to meet their science goals

within a Pythonic framework is to be expected. The work presented here is one of a few recent

attempts2 to address the paired issues of performance and accessibility.

In this chapter, we present a novel Pythonic implementation of an alternative route to the

B08 solution, without the need for constructing the computationally expensive normal matrix.

Conceptually, our approach is unique in that we model the kernel as if it were the convolutional

filter of a very simple convolutional neural network (CNN), which can be solved for efficiently

with GPU-accelerated optimisation tools originally developed for deep learning applications.

2Including approaches attempting to parallise the construction of the B08 normal matrix (Albrow, 2017)
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As we will describe, the machine-learning framework which we use to approach this prob-

lem also equips us with powerful modelling tools, and frees us from a number of restrictive

assumptions inherent to classical approaches. Our implementation is also unique amongst

GPU-accelerated DIA algorithms for being written entirely with standard Python packages.

We begin Section 2.3 with an introduction of the basic image model used in our DIA im-

plementation. We then outline how PyTorch could be well suited to addressing existing as-

tronomical image modelling and data processing challenges in general, before describing the

details of our own DIA implementation, ‘PyTorchDIA’. We quantify the model fit quality and

photometric accuracy of PyTorchDIA with tests on both synthetic and real images in Sections

2.4 and 2.5, comparing it directly to the performance of its classical DIA analogue, the B08

algorithm. In Section 2.6, we compare the speed of our GPU-accelerated numerical solution

against a fast Cython implementation of the B08 algorithm3 used in the ROME/REA project

(Tsapras et al., 2019), and explore how our algorithm scales with image and kernel size. We

summarise our conclusions in Section 2.7.

2.3 Problem Formulation

In this section we outline the DIA problem, and provide a motivating overview for using Py-

Torch as a tool to address image modelling challenges – of which DIA is just one example –

and describe the details of our DIA implementation.

2.3.1 Difference Image Analysis

Given a reference image with pixels Ri j , ideally of excellent spatial resolution and high signal-

to-noise, and a target image with pixels Ii j , of the same scene taken at some other epoch and

aligned on the same pixel grid, the model image which represents Ii j is given by

Mi j = [R⊗ K]i j + Bi j , (2.1)

and so the challenge is to find the fit for an accurate kernel, K , and differential background

Bi j .

Following B08, by representing the kernel as a discrete array Klm containing a total of NK

3The kernel solution method heavily borrows from the relevant section of the pyDANDIA microlensing reduction
pipeline, https://github.com/pyDANDIA.
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pixels, and including an additive scalar differential background, B0, we can re-write equation

2.1 as

Mi j =
∑

lm

KlmR(i+l)( j+m) + B0 . (2.2)

The photometric scale factor – which encodes any differences in atmospheric transparency

and/or exposure time between the images – is simply the sum of the kernel pixels,

P =
∑

lm

Klm . (2.3)

Assuming that the pixel values of the target image, Ii j , are independently drawn from normal

distributionsN (Mi j ,σ
2
i j) – where Mi j is paramaterised by the vector θ = [Klm, B0] (see Section

2.3.3) – the negative log-likelihood function for the target image takes the form

−ln p(Ii j|θ ) =
1
2
χ2 +
∑

i j

ln σi j +
Ndata

2
ln(2π) , (2.4)

where σi j are the pixel uncertainties, Ndata is the number of valid pixels in the target image,

and the χ2 is equal to

χ2 =
∑

i j

�

Ii j −Mi j

σi j

�2

. (2.5)

It is important to note that Ndata is not equal to the total number of pixels in the target

image, as the convolution operation is undefined for pixels within half a kernel’s width from

the target image edges i.e. for a kernel of size (2n+ 1)× (2n+ 1) and (square) reference and

target images of size N × N , Ndata = (N − 2n)2.

The σi j pixel uncertainties are dependent on the image model Mi j , and so fitting this

model to the target image Ii j is therefore a non-linear optimisation task. Linear least-squares

approaches like AL98 and B08 must then approach this iteratively, by minimising the χ2 with

fixed estimates for σi j . After the first estimate of Mi j is acquired, the updated σi j are com-

puted, and then plugged into the χ2 for the next iteration. This process continues for at least

3 iterations, until some convergence condition is met.

In this work, we use both simulated CCD images and real Electron Multiplying CCD (EM-

CCD) images, acquired on the Danish 1.54m (DK154) Lucky Imaging camera (Skottfelt et al.,

2015) to verify our implementation, each of which requires a different noise model. In what

follows, we ignore the noise contributions from the reference image, since these are negligible
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in the experiments performed in this work. 4.

For CCD images, we adopt a noise model for the σi j pixel uncertainties of Mi j as

σ2
i j =

σ2
0

F2
i j

+
Mi j

G Fi j
(2.6)

where σ0 is the read noise (ADU), G is the detector gain (e−/ADU), and Fi j is the master flat

field.

The EMCCD images are constructed from typically thousands of shift-and-added sub-second

exposures. The electron multiplying gain reduces the read out noise to negligible levels, but

the cascade amplification process effectively doubles the variance of the photon noise. For the

real EMCCD images used in this work, we adopt a noise model of the form

σ2
i j = E

Mi j

GTotal Fi j
, (2.7)

where GTotal represents the combined gain (e−phot/ADU) of the DK154 Lucky Imaging cam-

era, which is calculated as the ratio of the CCD gain of 25.8 (e−EM/ADU) over the electron-

multiplying (EM) gain of 300 (e−EM/e
−
phot). Following Harpsøe et al. (2012), we differentiate

between electrons before and after the cascade amplification with the notation e−phot and e−EM

respectively. E represents the ‘excess noise factor’, and accounts for the probabilistic nature of

the cascade amplification as the EMCCD is read out, and is set to be E = 2. EMCCD images

are flat corrected in the same way as conventional CCD images, and as in Equation 2.6, Fi j is

the master flat field.

2.3.2 Astronomical Image Processing with PyTorch

The model image of Equation 2.1 is a convolution with some added scalar constant. In the

computer science literature, this is exactly analogous to an extremely simple convolution neural

network (CNN), with a single input and output related by a single convolutional filter, with

some additional scalar bias added to the output. Efficient solutions for the ‘weights’ (the

kernel) and ‘bias’ (background term) to this convolution operation can be implemented within

the Python package, PyTorch (Paszke et al., 2019).

4Our interest in testing the performance of our DIA algorithm on DK154 EMCCD images relates to our ongoing
microlensing follow-up campaign, which is the main science project of the MiNDSTEp consortium, http://www.
mindstep-science.org/
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PyTorch is a popular open source machine learning framework. Its constant development is

motivated by the impressive advances in deep learning (for an overview see e.g. (LeCun et al.,

2015; Goodfellow et al., 2016)), in which CNNs have played an important role in processing

images. Specifically, this package supports CUDA-enabled GPU acceleration and automatic dif-

ferentiation to perform efficient optimisations. One key motivation behind these developments

is the training of complex CNNs, consisting of thousands, to hundreds of thousands of param-

eters. The 2-dimensional convolution (as in Equation 2.1) is the core processing operation

in these networks, and is straightforward to implement in PyTorch’s modelling architecture.

Indeed, many useful image models in astronomy can be written as a convolution, and the tools

outlined in this work are therefore broadly applicable to many astronomical image processing

problems.

We stress that although PyTorch’s powerful tools were designed for machine learning, they

can be turned to generic data analysis and modelling problems, as shown in this work, of

which image models are just a subset. In particular, efficient computation of gradients via

automatic differentiation frees the user from having to manually recompute gradients if the

parameterisation of the model is changed. This flexibility allows models written in PyTorch

to be easily tuned to meet the variety of science goals arising from a diversity of data sets. In

astronomical image processing in particular, this flexibility combined with GPU acceleration

could make PyTorch a valuable tool for addressing challenges associated with both model

complexity and data volume. As PyTorch is Pythonic, these implementations could be easily

integrated into existing Python stacks.

2.3.3 Difference Image Analysis as an Optimisation

The crucial advance in AL98 was to formulate DIA as a linear least-squares problem, and sev-

eral efficient algorithms for solving these problems exist (Golub & Van Loan, 1996). The com-

putational bottleneck associated with this approach is the construction of the normal matrix

(see Section 2.2). Models in PyTorch however are generally fit with a numerical optimisation

procedure – making use of automatic differentiation – which we outline here.

For a given target image with Gaussian noise contributions, Ii j , and current estimates for

the kernel Klm and differential background B0 which transform the reference image, Ri j , we

define our vector of weights as θ = [Klm, B0]. Ignoring the irrelevant normalisation constant,

the maximum-likelihood-estimate (MLE) for θ can be found by minimising the overall loss (or

13
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negative log-likelihood Cf. Equation 2.4),

argmin
θ=[Klm,B0]

L0(θ ) =

= argmin
θ





1
2

∑

i j

�

Ii j −Mi j(θ )

σi j(θ )

�2

+
∑

i j

ln σi j(θ )



 .
(2.8)

We note here that both the image model and noise model are both functions of θ . We

drop the notation explicitly showing the dependence of Mi j and σi j on θ from the rest of this

chapter.

Equation 2.8 can be solved by a process of (steepest) gradient descent. At each iteration t

in the optimisation, we use the update rule

θ (t+1) ←− θ (t) −α(t)∇θ (t)L0(θ
(t)) , (2.9)

where αt is the learning rate (or step-size) at each iteration. PyTorch includes implementa-

tions of several more sophisticated gradient descent algorithms, which can compute adaptive

learning rates for each parameter (see Ruder 2016 for a good overview). In our implementa-

tion, we use the Adaptive Moment Estimation (Adam) algorithm , which computes learning

rates for the kernel pixels and the background parameters from estimates of the first and sec-

ond moments of their gradients at each step (Kingma & Ba, 2014). Adam has been empirically

demonstrated to work well on non-convex optimisation problems, is computationally efficient,

and the hyper-parameters are both intuitive and require little tuning from the astronomer (see

Section 2.3.9 for an overview of the ‘engineering’ aspects of the optimisation).

With judicious choices for both the learning rates and the parameter initialisations, solu-

tions via steepest descent when accelerated on the GPU are lightning fast (see Section 2.6), but

without this hardware acceleration, this approach in general can be slow. Solving this prob-

lem on the CPU – and therefore forgoing the massive inherent parallelism otherwise exploited

in Equation 2.9 – would result in a substantial performance hit. This problem is particularly

severe when close to the minimum of the loss function, where the gradients become increas-

ingly shallow and the gradient steps become correspondingly smaller. An effective solution

to this problem is to make use of quasi-Newton optimisation methods which approximate the

curvature of the loss surface.
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These approaches converge extremely quickly where the loss surface can be modeled

quadratically, and use an approximation of the inverse of the Hessian at each t iteration,

B(θ )(t), to condition the search direction, giving the update rule

θ (t+1) ←− θ (t) −α(t)B−1(θ )(t)∇θ (t)L0(θ
t) . (2.10)

For this convex optimisation, this is a very good assumption when close to the minimum.

Newton methods in general are sensitive to bad parameter initialisation (i.e. when we’re ini-

tially far from the minimum), and so we advocate for optimising via steepest descent steps – as

in Equation 2.9 – to first get close to the minimum, before converging with the more memory

intensive quasi-Newton procedure once the relative change in the loss between any two op-

timisation steps falls below a user-specified threshold. Specifically, we use a L-BFGS method

(see Chapter 7.2 of Nocedal & Wright 2006) which is available as an in-built algorithm in

PyTorch5.

2.3.4 Robust loss function

In general, the assumption that all the pixel values in the target image are drawn fromN (Mi j ,σ
2
i j)

will be violated for real images. Instrumental defects, cosmic ray hits, saturated pixels, and

variable or transient sources etc. will all arise as outlying pixel values. Our Gaussian loss

function (Equation 2.4) will be badly affected by these outliers, as it minimises the squared

difference between the model and the data. The standard approach to outlier rejection in as-

tronomy is to iteratively remove these ‘bad’ pixels by sigma-clipping, and B08 use this approach

to mitigate the impact of outliers to the least-squares solution. In addition to being very sensi-

tive to the accuracy of the adopted noise model, this procedure does not explicitly penalise the

rejection of data, nor is it necessarily clear how many iterations should be performed. In the

context of classical DIA algorithms, these iterations incur an extra computational expense, as

a new normal matrix must be constructed each time.

As we are not restricted to standard least-squares minimisation with our optimisation pro-

cedure, we have the freedom to choose robust alternatives to Equation 2.8 which are less

sensitive to outlying values. Huber (1992) identified a family of wide-tailed univariate distri-

butions. The ‘ε-contaminated’ Gaussian model in particular corresponds to a unimodal sym-

5https://pytorch.org/docs/stable/optim.html
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Figure 2.1: A comparison of squared error loss against Huber loss for different values of c.

metric distribution which resembles a Gaussian for central values and a Laplacian in the tails.

The probability density function (up to a normalising constant) with location and scale param-

eters µ and σ has the form

f (x)∝
1
σ

exp
h

−ρHuber,c

� x −µ
σ

�i

, (2.11)

Substituting z = (x −µ)/σ, ρHuber,c(z) is the loss function, which is defined as

ρHuber,c(z) =











1
2z2, for |z| ≤ c

c(|z| − 1
2 c), for |z|> c .

(2.12)

We see that ρHuber,c(z) computes the squared error between the model and data for small

residuals, and the absolute deviation for outliers above some user-specified threshold, c. This

threshold defines the switch between quadratic and linear treatment of the error (see Figure

2.1), and Huber & Ronchetti (2009) recommend c = 1.345 as a suitable value for enforcing

robustness while retaining reasonable efficiency for normally distributed data.
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Using the same notation as in Section 2.3.1, if we assume the pixel values in the target

image Ii j are drawn from the distribution in Equation 2.11, the negative log-likelihood function

takes the general form

− ln p(Ii j|θ ) =
∑

i j

ρHuber,c

�

Ii j −Mi j

σi j

�

+
∑

i j

lnσi j +Q , (2.13)

where Q is the normalising constant,

Q = N ln





p
2erf
�

c
p

2

�

+
2exp
�

−c2

2

�

c



 . (2.14)

Note that when c becomes large, Q = (N/2)× ln2π, which is equivalent to the normalisa-

tion constant of a Gaussian log-likelihood (Cf. Equation 2.4).

As our implementation makes use of automatic differentiation, it is straightforward for

the user to experiment with loss functions, as they are freed from having to manually recom-

pute gradients. We highlight the Huber loss in particular as this enforces robustness without

sacrificing performance (see Section 2.6.1), but any number of wide-tailed distributions (e.g.

Student’s t distribution) could be used as drop-in replacements.

2.3.5 Uncertainty estimation - Observed Fisher Information

The central limit theorem states that than any well-behaved likelihood function approaches a

Gaussian near its maximum. The Fisher Information Matrix (FIM) is a measure of the curvature

of the likelihood function with respect to the model parameters – intuitively, this can be thought

of as a ‘sensitivity’ – and its inverse provides a lower bound on the asymptotic variance of the

Maximum Likelihood Estimate (MLE).

The observed FIM, F(θ ) for our NK+1 parameters is the (NK+1, NK+1)matrix containing

the entries

Fpq =
∂ 2

∂ θp∂ θq
ln p(Ii j|θ ) , 1≤ p, q ≤ NK + 1 , (2.15)

where ln p(Ii j|θ ) is the log-likelihood (Equation 2.4).

The inverse of F(θ ) evaluated at the MLE for θ (i.e. θ̂MLE) can then be used as an estimate
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for the covariance matrix

Σ̂= Cov(θ̂MLE) = [F(θ̂MLE)]
−1 , (2.16)

which provides an estimate of the uncertainties on the model parameters by taking the square

roots of the diagonal elements of Cov(θ̂MLE). Fisher information provides us with the limiting

precision with which model parameters can be estimated for any given data set i.e. the sub-

sequent error bars cannot be smaller (Heavens, 2009). Formally, the Cramér-Rao inequality

states that the uncertainty on some parameter θp is given by

∆θp ≥ (F−1)1/2pp . (2.17)

This method is subject to two assumptions 1) the likelihood function correctly describes

the data generating process (i.e. the error distribution of the measurements is correctly de-

scribed by the likelihood), and 2) the likelihood really is approximately Gaussian at the MLE.

In practice, both of these assumptions will likely be violated, and in these situations, the uncer-

tainty estimates by this approach can be severely underestimated. Given this, Andrae (2010)

strongly recommend to test this assumption by checking the validity of Σ̂ . In general, a valid

covariance matrix Σ̂ must be positive definite (i.e. for any non-zero vector x , x T .Σ̂.x > 0).

If either the determinant of Σ̂ is negative, or (after diagonalising the matrix) any eigenvalue

is found to be negative or zero, then Σ̂ is not valid. We include both these tests in our code

release, and a warning flag is raised if any is failed.

2.3.6 Extension to a Spatially Varying Background

Within the PyTorch architecture, a spatially varying background can be easily modelled by

replacing Bi j in Equations 2.1 and 2.8 with a linear combination of functions of x and y . We

adopt a polynomial model of some user-specified degree d,

B(x , y) =
d
∑

m=0

d−m
∑

n=0

bmnη(x)
mξ(y)n (2.18)

where bmn are the polynomial coefficients to be inferred, and η(x) and ξ(y) are the nor-
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malised spatial coordinates,

η(x) = (x − xc)/Nx ,

ξ(y) = (y − yc)/Ny ,
(2.19)

which result from a Taylor expansion of coordinates (x , y) about the image centre (xc , yc),

for an image of Nx × Ny pixels. This choice of coordinates is recommended by Bramich et al.

(2013), and has the effect of (1) improving the orthogonality of the spatial polynomial terms,

and (2) preventing the coefficients of the higher order polynomial terms from being pushed

towards zero.

2.3.7 Regularising the kernel pixels

As noted by Becker et al. (2012), while kernels modeled as a discrete array of pixels are very

flexible, the consequent fidelity with the data can result in significant overfitting. To guard

against excessively noisy kernels, we provide the option to regularise the loss with the ad-

dition of a penalty term. Following the notation in Bramich et al. (2016) (hereafter B16) –

where the strength of the regularisation is controlled by the parameter λ, which must be tuned

empirically – the scalar objective function to minimise now takes the form,

arg min
θ

L (θ ) = arg min
θ

�

L0(θ ) +λNdataθ
TLTLθ
�

, (2.20)

where Ndata is the number of target image pixels, θ is the vector of parameters to optimise,

L0(θ ) is the loss function, and L is the symmetric and positive-semidefinite (NK+1)×(NK+1)

Laplacian matrix, which represents the connectivity graph of the set of kernel pixels, and has

elements

Luv =































































Nadj,u, for v = u≤ NK , and Nadj,u is the number of

kernel pixels adjacent to the kernel pixel

corresponding to u

−1, for u≤ NK , v ≤ NK , v ̸= u, and u and v are

adjacent kernel pixels.

0, otherwise.

(2.21)

This penalty term is derived from an approximation of the second derivative of the kernel
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surface (Becker et al., 2012). Intuitively, it favours compact kernels, where adjacent kernel

pixels should not vary too sharply. The optimal value of λ should, ideally, be tuned for each

image, and B16 found optimal values could be anywhere in the range λ= 0.1− 100.

By regularising the kernel weights, we are in effect introducing a Bayesian prior, which

would then transform our solution into a maximum a posteriori (MAP) optimisation. In our

experiments in the following sections, we restrict ourselves to the MLE solution by simply

minimising either Equation 2.8 or 2.13.

2.3.8 General purpose computing on GPUs

For this work, we ran our PyTorchDIA implementation on two different NVIDIA GPUs. The

computations associated with the results presented in Section 2.4 and 2.5 were performed on

a GeForce GTX 1050 on a laptop, and the speed tests in Section 2.6 were run on a Tesla K80

on Google’s Colab6 service, a free-to-use cloud-based computation environment. There are a

couple of important details worth describing on using these devices for scientific computing.

Firstly, while modern CPUs are able to handle computations on 64-bit floating point num-

bers efficiently, such operations are either not supported on GPUs, or are associated with a

significant reduction in performance (Göddeke et al., 2005). It is for this reason that 32-bit

precision – or increasingly commonly, 16-bit precision – is used in deep learning. For this

problem, we have found computations typically take at least 2 − 5 times longer for fiducial

image sizes using 64-bit precision with a Tesla K80 7. For memory intensive optimisers such

as L-BFGS, the hit to performance will be even worse. For this reason, for the results in this

work we use 32-bit floating point precision for our PyTorchDIA implementation. This speed-up

comes at the expense of some accuracy, but we show this difference to be small in Sections 2.4

and 2.5.

Convolution computations on NVIDIA GPUs can be accelerated by highly-tuned algorithms

available in specialised libraries. One such NVIDIA library, cuDNN, specialises in efficient

computations with small kernels. These algorithms are selected by cuDNN heuristically, and

not all are deterministic. As such, for an identical pair of images, the number of computations

6https://colab.research.google.com
7Tesla cards are designed to perform fast computations at higher precision than most GPU models, and a slowdown
of ∼ 2− 5 at 64-bit would still outperform some state-of-the-art classical DIA methods (see Section 2.6). Most
NVIDIA models however (including GeForce cards), excel at 32-bit and lower precisions, but would suffer a more
severe slowdown at 64-bit.
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used to infer the convolution kernel may be different on different runs. Consequently, the

optimiser may converge at a slightly different point in the parameter space. We explore the

speed-up associated with enabling cuDNN tools in Section 2.6.

Finally, while not explored in this work, we highlight mixed precision ‘training’ as a tech-

nique which our approach could benefit from. PyTorch now supports Automatic Mixed Preci-

sion (AMP) training, in which 32-bit data can be automatically cast to half precision for some

types of computationally expensive operations on the GPU8. By appropriately scaling the loss

during the training/optimisation, AMP prevents underflow that would otherwise cause gradi-

ents to drop to 0 at half precision, and can achieve the same accuracy as training only with

32-bit precision with significant speed-up, depending on the GPU architecture and model de-

sign (Micikevicius et al., 2017). Some recent NVIDIA GPUs now include Tensor cores, which are

specifically designed to perform highly optimised 16-bit matrix multiplications. Consequently,

cuDNN convolution algorithms such as ‘GEMM’ are particularly well suited to benefit from this

technique (Jordà et al., 2019).

2.3.9 Optimisation as an engineering problem

As we fit for the convolution kernel via an optimisation, hardware alone will not determine

the solution time. There is an ‘engineering’ aspect to optimisation that the user should be

aware of. Here, we summarise three key choices that the user must make: 1) Parameter

initialisation; 2) The learning rate (or step size) and 3) The convergence condition. We also

provide an overview of (and justification for) the specific choices made when generating the

results presented in this manuscript.

Throughout this work, we always background subtract the reference image, and so we

initially set the differential background parameter, B0, to be equal to the median pixel value

of the given target image. For the fit quality and photometric accuracy tests in Sections 2.4

and 2.5, we make no assumptions about the shape of the kernel at initialisation. We set all

kernel pixels to have the same value, with the only condition being that they sum to 1 (i.e.

each pixel is initialised as 1/NK). In Section 2.6, we experiment with initialising the kernel

as a symmetric Gaussian, with a shape parameter judiciously set with knowledge of either the

known or measured differences in the PSFs of the reference and target image pair.

8https://pytorch.org/docs/stable/notes/amp_examples.html
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The Adam algorithm used at the start of the optimisation – with which we perform steepest

gradient descent – allows us the freedom to set individual learning rates for our model param-

eters, which will be adaptively tuned (see Section 2.3.3). For all tests in this work, we set the

learning rate of the Adam optimizer for the pixels in the kernel at 0.001, as recommended in

Kingma & Ba (2014). We have found that it is advantageous to use a fairly high learning rate

for B0, and we set this to either 1, 10 or even 100, dependent on the data set. There is a strong

anticorrelation between P and B0, and quickly finding the approximate photometric scaling

between the two images allows us to disentangle this offset from the inference of the spatial

differences in the images (associated with the different PSFs), which is encoded in the shape

(and not the ‘scale’) of the convolution kernel. The learning rate of the L-BFGS optimiser is

always set to 1.

We use the same convergence condition for all tests in this work. This decision was made on

the basis of the model performance and photometric accuracy metrics in Sections 2.4 and 2.5 ,

and should balance a satisfactory model accuracy with the time taken to converge. If between

any two steepest descent updates the relative change in the loss is less than 10−6 (i.e. we

are getting close to the minimum) a L-BFGS optimiser takes over. For each subsequent quasi-

Newton update, the L-BFGS function evaluation routine terminates when either the change in

loss between evaluations reaches the limit of our numerical precision – which corresponds to

a relative change in loss in the range 10−8−10−7 between the last two optimisations steps – or

a first order optimality condition is met, such that the gradient of the scalar objective function

to be minimised with respect to each model parameter is less than 10−7.

2.3.10 The Algorithm

Our DIA algorithm is as follows. Decisions to be made by the user are in italics. ‘tol’ is the

user-specified relative change in the loss between successive steepest descent (SD) updates, at

which point the optimisation routine switches from SD to L-BFGS.

• Choose the square kernel dimensions (must be odd), and whether to use a scalar, or poly-

nomial fit of degree d, for the differential background

• Set Adam’s per-parameter learning rates and ‘tol’

• Set the convergence condition
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• Initialise θ

• Begin minimising the chosen scalar objective function (Equations 2.4 or 2.13, with

or without the optional penalty term (Equation 2.20)) with steepest gradient descent

(Equation2.9)

• At each iteration if the relative change in the loss is less than ‘tol’, switch to a quasi-

Newton update (Equation 2.10) and continue until convergence condition satisfied.

2.4 Simulated Image tests

Artificially generated images can be used to assess the accuracy of our algorithm. In this sec-

tion, we compare the fit quality and photometric accuracy of our numerical, GPU-accelerated

algorithm against an implementation of the analytic B08 algorithm with a data set of 71569

synthetic images.

2.4.1 Generating Artifical Images

We base our image generation procedure on Section 5.1 of B16. The results from the simulated

image tests in that work were shown to closely agree with similar tests using real CCD data.

Specifically, we generate images similar to those in the ‘S10’ set of that work, wherein the

reference image of each image pair has 10 times less variance than the target.

We first generate a noiseless reference, Rnoiseless,i j , of size 142× 142 pixels as follows.

(i) We generate a normalised two-dimensional symmetric Gaussian PSF for this image,

parameterised by a standard deviation, φR, drawn from the continuous uniform distribution

U ∼ (0.5, 2.5).

(ii) We populate the 142 × 142 pixel array template of Rnoiseless,i j with Nstars, whose lg

density lgρstars per 100×100 pixel region, is drawn from the uniform distribution U ∼ (0, 3).

The fractional pixel coordinates for each star are uniformly drawn between the image axis

lengths.

(iii) For each of the Nstars, we draw a value of F−3/2 from the uniform distribution U ∼

(10−9, 10−9/2), whereF is a given star’s flux (ADU). This flux distribution is a good approxima-

tion when imaging to a fixed depth for certain regions in the Galaxy. For reasons of performing

PSF photometry at the position of the brightest star in the difference images, we move the pixel
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coordinates of the star associated with the largest F value to the centre of the image.

(iv) For each star, the normalised Gaussian profile generated in (i) is placed at the appro-

priate pixel coordinates, and scaled by the star flux from (iii).

(v) Finally, a constant background level SR is drawn from the continuous distribution,

U ∼ (10,1000), is added to the image.

(vi) It is common practice to create a high signal-to-noise reference frame by either stacking

images or increasing the exposure time. To simulate this, we generate a ’noise map’, σR,i j to

apply to Rnoiseless,i j with 10 times less pixel variance than is applied to the target image. This

can be achieved by scaling the uncertainties by a factor of 10−1/2 ∼ 0.316. Adopting the

usual CCD noise model (Equation 2.6) with σ0 = 5 (ADU), G = 1 (e−/ADU) and Fi j = 1, we

compute the reference frame pixel uncertainties as

σR,i j = 10−1/2
q

σ2
0 + Rnoiseless,i j . (2.22)

(vii) A 142×142 pixel image, Wi j , with values drawn from a standard normal distribution,

N (0, 1), was also generated, and the noisy reference, Rnoisy,i j , is formed as

Rnoisy,i j = Rnoiseless,i j +Wi jσR,i j . (2.23)

For each Rnoisy,i j we then generate a corresponding target image.

(viii) As with the reference images, we choose a symmetrical Gaussian PSF for the target

images, paramaterised by φI . As the convolution of a Gaussian with a Gaussian is another

Gaussian, the kernel is itself a Gaussian, and we draw the corresponding kernel width φK

from U ∼ (0.5,2.5). We can then compute the width of the PSF in the target image,

φ2
I = φ

2
R +φ

2
K , (2.24)

and repeat steps (iv) - (v), using φI in place of φR and SI in place of SR to generate Inoiseless,i j .

Additionally, we also apply sub-pixel shifts to the stellar fractional pixel positions along both

the x- and y-axis, with the ∆x and ∆y shifts each drawn separately for each simulation from

U ∼ (−0.5,0.5).

24



2.4. Simulated Image tests

(ix) Similar to (vi), we then generate the noise map

σI ,i j =
q

σ2
0 + Inoiseless,i j , (2.25)

(x) and then generate a 142×142 pixel image, Wi j , with values drawn fromN (0,1), and

create Inoisy,i j ,

Inoisy,i j = Inoiseless,i j +Wi jσI ,i j . (2.26)

The signal-to-noise ratio of the target image is computed as

SNRI =

∑

i j(Inoiseless,i j − SI)
Ç

∑

i jσ
2
I ,i j

. (2.27)

2.4.2 Performance Metrics

We assess the fit quality and photometric accuracy of the kernel and background solutions with

the following performance metrics. The derivations of these metrics are based on Section 5.2

of B16. For easy reference, the definitions and equation numbers for all metrics are listed in

Table 2.1.

(i) Model error. The mean squared error (MSE) assesses how well the inferred model

image, Mi j , matches the true target image, Ii j,noiseless,

MSE=
1

Ndata

∑

i j

(Mi j − Inoiseless,i j)
2 . (2.28)

The smallest values of MSE indicate the best fit in terms of model error.

As noted in Bramich et al. (2015), systematic errors in the photometric scale factor, P,

can badly influence photometric accuracy. Given this, we also assess the inferred P and B0

parameters, whose true values are equal to 1 and 0 respectively in these simulations.

(ii) Fit quality. The mean fit bias (MFB) and mean fit variance (MFV) are measures of the
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bias and excess variance in Mi j, and are given as

MFB=
1

Ndata

∑

i j

Inoisy,i j −Mi j

σI ,i j
, (2.29)

MFV=
1

Ndata − 1

∑

i j

�

Inoisy,i j −Mi j

σI ,i j
−MFB

�2

. (2.30)

Kernel and background solutions with a MFB close to 0, and a MFV close to unity are measured

to have a good fit quality.

(iii) Photometric accuracy. To assess the photometric accuracy of the solution, we perform

PSF fitting photometry at the position of the brightest star in the difference image. We generate

a normalised PSF object parameterised by φR, centered at the position of the brightest star,

and convolve this with the kernel solution. This is renormalised, giving us a normalised PSF

object to fit to the difference image. The true target image PSF width is known by Equation

2.24, and we set the size of the renormalised PSF object ‘stamp’ to be 9φI × 9φI pixels large.

We then fit this PSF stamp to an equally sized cutout from the difference image (centered at

the position of brightest star) with a scaling factor Fdiff and an additive constant, weighted

with the known pixel variances in the target image, σ2
I ,i j . The fitted Fdiff is then scaled to the

photometric scale of the reference image, giving Fmeasured =Fdiff/P.

The theoretical minimum variance of Fmeasured for a PSF-fitting procedure which scales a

PSF model to a stamp with pixel indices rs is

σ2
min =

1

P2
true

�

∑

rs

P 2
I ,rs

σ2
I ,rs

�−1

, (2.31)

where Ptrue is the true photometric scale factor (equal to 1 in our simulations) and PI ,rs is the

true PSF of the brightest star in the target image i.e. a normalised Gaussian with standard

deviation φI .

As there are no variable sources, over Nsim simulations of accurate kernel and background

solutions we should expect a distribution ofFmeasured/σmin values with mean 0 and a variance

of unity. The mean photometric bias (MPB) and mean photometric variance (MPV) over Nsim

simulations, each indexed by k, would be equal to the statistics
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Metric Definition Equation

P Photometric Scale Factor 2.3
MSE Mean Squared Error 2.28
MFB Mean Fit Bias 2.29
MFV Mean Fit Variance 2.30
MPB Mean Photometric Bias 2.32
MPV Mean Photometric Variance 2.33

Table 2.1: The model accuracy, fit quality, and photometric performance metrics used to assess the DIA
implementations in this work.

MPB=
1

Nsim

∑

k

Fmeasured,k

σmin,k
(2.32)

MPV=
1

Nsim − 1

∑

k

�

Fmeasured,k

σmin,k
−MPB

�2

. (2.33)

As noted in B16, although the MPV should be close to unity, it may have values less than

this when the target image is overfitted, and/or when the model PSF fitted to the difference

image (i.e. formed from the convolution of the reference image PSF with the inferred kernel)

is different than the true PSF of the target image.

Figure 2.2 shows an example 142×142 [pixels] reference and target image pair generated

for these tests. The difference images and kernels corresponding to the B08 and PyTorchDIA

solutions, annotated with the fit quality and photometric accuracy metrics, are shown below.

2.4.3 Simulated Image Test results

In these tests, both B08 and PyTorchDIA attempt to fit the image model in Equation 2.1, with

an unregularised (square) 19× 19 pixel kernel. The generated (square) reference and target

images are each 142×142 pixels large, and so the number of target image pixels which enter

the fit is Ndata = (142 − 2 × 9)2 = 15376. B16 used 141 × 141 large reference images and

included 10201 target image pixels in their solution, and so the results presented here can be

meaningfully compared against that prior work.

Following B16, we first divide the results of our 71569 simulation tests into 3 regimes by the

signal-to-noise ratio (SNR) of the target image, I : (1) 8 < SNRI < 40; (2) 40 < SNRI < 200

and (3) 200 < SNRI < 1000. Each of these 3 categories is then divided into a 4 further
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Figure 2.2: Example images and fit quality metrics from the simulated image experiments. (Top row)
An example reference (left) and target (right) image pair generated in the simulation tests. (Middle row)
The subsequent difference images and fit metrics recovered by the B08 approach (left) and our PyTorch
implementation (right). (Bottom row) The corresponding convolution kernels and fit parameters for
the B08 (left) and PyTorch (right) solutions. The median pixel value is subtracted from the reference
image before fitting the kernel and differential background term, and so B0 will not be equal to zero.
The B08 and PyTorchDIA solutions are very similar.
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categories by the sampling regime of the images: (i) φR > 1 and φK > 1, (ii) φR > 1 and φK

< 1, (iii) φR < 1 and φK > 1, (iv) φR < 1 and φK < 1.

The distributions of the fit metrics are in general skewed, and so we report the median

values as a robust estimate of the central value in Figure 2.3 for both the B08 and PyTorchDIA

implementations. Each sub-plot pair in Figure 2.3 pertains to a single metric, with the B08

results in blue in the left column, and PyTorchDIA results in red in the right column. On the

x-axes, we plot the SNR regime of the target image, categorised as above. There are 4 points in

each SNR regime in each sub-plot, each of which corresponds to a different sampling regime,

and we offset these from each other for clarity. We use circular markers to denote the sampling

regime of the reference image, and crosses to indicate the sampling regime of the kernel. A

big circle or cross corresponds to an over-sampled reference image or kernel respectively, and

a small circle or cross corresponds to an under-sampled reference image or kernel. The green

dashed lines for each sub-plot pair represent the ‘best’ value for each metric. We also tabulate

these results in Table 2.2, and include the 16th and 84th percentiles about the median of the

distributions. In the bottom section of this table, we note the number of simulations which fall

into each SNR and sampling regime category.

Across all the metrics, one of the biggest differences between the B08 and PyTorchDIA

solutions is seen in the values for the photometric scale factor. B08 is more accurate in general,

but differences between the median values in each SNR and sampling regime are typically

small (∼ 0.001), and become negligible when the SNR is high. B16 showed that the accuracy

of P is strongly determined by the SNR of the target image, and in Table 2.2, we also see that

the distribution of P values about the median becomes tightly concentrated about unity as

the SNR increases. Interestingly, for results in any given sampling regime, there is no clear

similarity in trends between the two approaches with the target image SNR.

There are no large differences between B08 and PyTorchDIA in terms of MSE, with B08

better only at the level of the first decimal place. Looking at Table 2.2, B08 does however begin

to slightly outperform PyTorchDIA in the highest SNR regimes when both the kernel and the

reference frame are under-sampled.

As observed in B16, both approaches show overall gradually decreasing MFB as the SNR

increases, although B08 shows a negative bias while PyTorchDIA is typically positively bias.

PyTorchDIA again only appears to do noticeably worse than B08 in the highest SNR category
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when both the reference image and the kernel are undersampled.

The MFV values returned by B08 and PyTorchDIA are also very similar. The B08 MFV

values are usually lower than those for PyTorchDIA, although all median values are less than

unity. These results too are consistent with B16, who also found the unregularised kernel was

prone to overfitting when the SNR of the target image is low.

The differences between B08 and PyTorchDIA in terms of MPB are small, with both showing

the same trends with SNR and sampling regimes. As found by B16, with increasing SNR,

the MPB greatly improves. That this is typically best when the kernel is oversampled, and

worst when both the kernel and reference image are undersampled, is likely in part due to

sampling issues associated with the PSF model which is scaled to the flux in the difference

image. Encouragingly, with reference to the values in Table 2.2, we can see that in general,

PyTorchDIA performs even better than B08. That the MPB metrics are similar despite the

differences in MFB is likely due to our choice to simultaneously fit for a constant scalar offset

in our PSF fitting procedure, which would correct for any net over-/underestimation in the

background parameter of the image model.

The same trends in the MPV values with both SNR and sampling regimes can again be

seen by the two approaches. With an increasing SNR, the MPV increases. This behaviour was

also seen by B16, and it can be explained as reduced overfitting of the bright central stars

from which this metric is computed. For both approaches, apart from some cases when both

the kernel and reference image are undersampled, the MPV is always less than unity, and

similar results were obtained by B16 (see Figure 6 therein). We experimented by performing

an additional 21271 tests in which the photometry of the faintest star in the image was used

to compute the MPV. In this instance, no MPV values were less than 1.1.

While being overall very similar, the PyTorchDIA MPV values are slightly higher than their

B08 counterparts. Because B08 overfits more strongly than PyTorchDIA (see MFV values), we

should expect the noise in the B08 difference images to be slightly more suppressed. Conse-

quently, the photometry will tyically have a lower variance. The difference in MPV is greatest

when both the kernel and reference image are undersampled. This may be associated with the

worse MFB values for PyTorchDIA in this category, as while the additive constant in our PSF

fitting procedure will be able to correct for inaccuracies in the differential background, it will

do so at the cost of slightly increased variance in the photometry.
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In conclusion, PyTorchDIA performs very similarly to the B08 algorithm in these tests on

synthetic images, and it is encouraging to see that the major conclusions drawn from these

tests are consistent with those in B16. These images have Gaussian noise contributions, and

have no outliers, and it is therefore not surprising that the B08 algorithm does slightly better

overall, since the linear least-squares formulation (within an iterative scheme) correctly de-

scribes the observation model, and this approach operates at twice the floating-point precision

of PyTorchDIA.

2.4.4 No ‘algorithmic’ bias

As PyTorchDIA is a numerical algorithm, it is essential to know to what precision it can recover

the correct solution if random noise has been removed from the data. By default, PyTorchDIA

operates at F32, giving us 6-8 decimal digits of precision.

Following Section 3.1 of B08, we perform the following tests (i) - (iv) where known,

noiseless transformations are applied to a reference image to generate a target image. The

142 × 142 pixel reference image used in what follows is generated randomly, as outlined in

Section 2.4.1. We compute the fractional error, ε, of P and B0, as εP = |(P − PTrue)/PTrue| and

εB0
= |(B0 − B0,True)/B0,True|9.

(i) The simplest possible test we can perform is to difference an image against a copy of

itself. The kernel should be exactly 1 at the centre and 0 everywhere else. Encouragingly, Py-

TorchDIA is able to return the correct answer to within the theoretical convergence tolerance,

with fractional errors of εP = 4×10−7 and εB0
= 1×10−8. The central kernel pixel was correct

to a precision of 7 decimal digits.

(ii) Next, we convolve the reference with a Gaussian kernel of φK = 1.5 pixels. Once

again, PyTorchDIA returns this Gaussian kernel to within its convergence tolerance, with εP =

3× 10−7 and εB0
= 1× 10−8.

(iii) The target image is created by shifting the reference image by one pixel in each of the

positive x and y spatial directions, without resampling. The corresponding kernel should be

the identity kernel (central pixel value of 1 and 0 elsewhere) shifted by one pixel in each of

the negative l and m kernel coordinates. PyTorchDIA returns a kernel with a peak pixel value

of unity precise to F32 machine precision, and εP = 4× 10−7 and εB0
= 1× 10−8.

9As always, we background subtract the reference frame, so B0 > 0.
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Figure 2.3: Fit quality and photometric accuracy metrics from the 71569 simulated image tests. Results
for the B08 algorithm are in blue (left column), and the PyTorchDIA results are in red (right column).
The signal-to-noise regime of the target image is shown on the x-axis, increasing from left to right.
Metrics in each SNR regime are offset from each other for clarity. We use circular markers to denote the
sampling regime of the reference image, and crosses to indicate the sampling regime of the kernel. A big
circle or cross corresponds to an over-sampled reference image or kernel respectively, and a small circle
or cross corresponds to an under-sampled reference image or kernel; there are therefore 4 possible
combinations of marker for each SNR regime. The green dashed lines for each sub-plot pair represent
the correct, ‘ideal’ value for each metric.
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Metric SNR
regime

φR > 1,φK > 1 φR > 1,φK < 1 φR < 1,φK > 1 φR < 1,φK < 1

P (B08) 1 0.9961+0.0335
−0.0358 0.9942+0.0316

−0.0380 0.9968+0.0273
−0.0323 0.9900+0.0279

−0.0342

P (PyTorchDIA) 1 0.9948+0.0335
−0.0360 0.9926+0.0320

−0.0376 0.9913+0.0277
−0.0328 0.9848+0.0285

−0.0368

P (B08) 2 0.9994+0.0125
−0.0125 0.9989+0.0124

−0.0134 0.9996+0.0101
−0.0108 0.9987+0.0103

−0.0111

P (PyTorchDIA) 2 0.9989+0.0124
−0.0126 0.9983+0.0128

−0.0135 0.9980+0.0098
−0.0112 0.9969+0.0114

−0.0135

P (B08) 3 0.9998+0.0045
−0.0046 0.9997+0.0045

−0.0046 1.0001+0.0037
−0.0040 1.0001+0.0039

−0.0040

P (PyTorchDIA) 3 0.9996+0.0045
−0.0045 0.9999+0.0047

−0.0050 0.9995+0.0038
−0.0040 0.9996+0.0042

−0.0049

MSE (B08) 1 528.53+328.79
−329.61 552.62+310.51

−349.03 539.85+318.94
−342.21 545.34+313.22

−340.47

MSE (PyTorchDIA) 1 528.54+328.80
−329.60 552.63+310.51

−349.03 539.86+318.95
−342.21 545.42+314.59

−340.54

MSE (B08) 2 530.88+343.43
−330.54 537.47+337.46

−328.53 532.74+342.01
−337.18 553.47+336.57

−347.22

MSE (PyTorchDIA) 2 530.90+343.43
−330.55 537.92+337.16

−328.88 532.82+341.94
−337.24 555.51+337.07

−346.81

MSE (B08) 3 597.17+352.67
−362.18 608.09+361.21

−361.96 585.85+365.45
−356.65 626.40+415.64

−366.67

MSE (PyTorchDIA) 3 597.33+352.64
−362.28 610.09+361.05

−363.08 585.93+365.41
−356.49 634.81+415.59

−371.31

MFB (B08) 1 −0.0001+0.0000
−0.0001 −0.0002+0.0001

−0.0002 −0.0001+0.0000
−0.0001 −0.0004+0.0002

−0.0003

MFB (PyTorchDIA) 1 0.0004+0.0004
−0.0003 0.0001+0.0003

−0.0003 0.0003+0.0004
−0.0004 −0.0002+0.0005

−0.0006

MFB (B08) 2 −0.0001+0.0000
−0.0001 −0.0003+0.0001

−0.0002 −0.0001+0.0000
−0.0001 −0.0004+0.0002

−0.0004

MFB (PyTorchDIA) 2 0.0004+0.0005
−0.0004 0.0001+0.0009

−0.0008 0.0003+0.0004
−0.0003 −0.0002+0.0044

−0.0060

MFB (B08) 3 −0.0001+0.0001
−0.0001 −0.0003+0.0001

−0.0003 −0.0001+0.0001
−0.0002 −0.0005+0.0003

−0.0008

MFB (PyTorchDIA) 3 0.0004+0.0007
−0.0007 0.0003+0.0018

−0.0013 0.0003+0.0005
−0.0004 −0.0008+0.0025

−0.0044

MFV (B08) 1 0.9792+0.0116
−0.0112 0.9851+0.0116

−0.0115 0.9794+0.0114
−0.0115 0.9911+0.0115

−0.0127

MFV (PyTorchDIA) 1 0.9793+0.0116
−0.0112 0.9851+0.0117

−0.0115 0.9794+0.0114
−0.0115 0.9912+0.0116

−0.0127

MFV (B08) 2 0.9796+0.0113
−0.0116 0.9862+0.0121

−0.0123 0.9797+0.0113
−0.0117 0.9930+0.0143

−0.0133

MFV (PyTorchDIA) 2 0.9797+0.0113
−0.0116 0.9863+0.0123

−0.0123 0.9798+0.0113
−0.0117 0.9933+0.0147

−0.0134

MFV (B08) 3 0.9794+0.0114
−0.0112 0.9875+0.0122

−0.0117 0.9797+0.0118
−0.0113 0.9974+0.0304

−0.0156

MFV (PyTorchDIA) 3 0.9796+0.0114
−0.0112 0.9878+0.0128

−0.0118 0.9799+0.0118
−0.0114 0.9982+0.0384

−0.0161

MPB (B08) 1 0.401 0.880 0.300 0.900

MPB (PyTorchDIA) 1 0.400 0.862 0.300 0.887

MPB (B08) 2 0.138 0.324 0.038 0.184

MPB (PyTorchDIA) 2 0.136 0.313 0.036 0.176

MPB (B08) 3 0.027 0.074 −0.055 −0.219

MPB (PyTorchDIA) 3 0.023 0.046 −0.059 −0.257

MPV (B08) 1 0.640 0.760 0.640 0.937

MPV (PyTorchDIA) 1 0.639 0.754 0.640 0.955

MPV (B08) 2 0.692 0.728 0.725 0.951

MPV (PyTorchDIA) 2 0.693 0.728 0.726 1.066

MPV (B08) 3 0.789 0.788 0.880 1.339

MPV (PyTorchDIA) 3 0.789 0.794 0.883 1.478

1 12332 4151 4078 1349

NSimulations 2 13224 4447 4387 1526

3 14673 4900 4829 1673

Table 2.2: Fit quality and photometric accuracy metrics for the 71569 simulated image tests for both an
implementation of the B08 algorithm and PyTorchDIA. We divide the results of these tests by the SNR
regime of the target image and the sampling regimes of the reference image and convolution kernel.
The number of simulations used for the computation of the metrics in each of the 12 possible SNR and
sampling regime categories is shown in the bottom section.
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(iv) The reference image is shifted by half a pixel in each of the positive x and y spatial di-

rections to create the target image, an operation that requires the resampling of the reference

image. We use a bicubic spline resampling method10. PyTorchDIA performs very well, suc-

cessfully returning the complicated kernel, with fractional errors on P and B0 of εP = 4×10−7

and εB0
= 1× 10−8.

As PyTorchDIA is able to recover the true fit parameters correct to the data type’s decimal

digit precision, we conclude that there is no bias associated with our numerical algorithm.

2.5 Real Image Tests

DIA is a particularly effective tool for measuring the flux and positions of variable sources in

crowded fields (see the start of Section 2.2 for some examples). The MiNDSTEp consortium

performs follow-up observations of microlensed targets towards the galactic bulge with the

high frame-rate EMCCD cameras on the Danish 1.54m telescope (DK154), at ESO La Silla

(Skottfelt et al., 2015). Short 0.1 second exposures are shift-and-stacked to eliminate tip tilt

distortions, and recover scenes with ∼ 2 − 3 times better resolution than conventional long

integrations. The combined effects of the mount (the DK154 mirror rests on three points)

and the shift-and-add procedure produces irregular, triangular PSFs, with a sharp peak and

diffuse halo. With a scale of 0.09 arcseconds per pixel, this high resolution EMCCD instrument

explores a subset of the sampling regimes covered in the CCD simulations in Section 2.4.

2.5.1 Data and reductions

We use a sample of 251 512 × 512 pixel images, each consisting of up to 3000 shift-and-

stacked 0.1 s short exposures11 (i.e. each stack is equivalent to at most a 5 minute exposure),

obtained with the ‘red’ camera (approximately equivalent to a broad SDSS ‘z’ filter Fukugita

et al. 1996) on the Danish 1.54m Lucky Imaging instrument between 2019-07-17 and 2019-

07-30. The observations are of the centre of the OGLE-III-BLG101 microlensing field, (l, b) =

(0.1331◦,−1.9643◦). With a pixel scale of 0.09 arcseconds per pixel, the camera covers a

field of view of 45 × 45 arcseconds2. All images are bias subtracted and flat corrected, and

the master flats associated with each night of observing are used in the noise model for the

following DIA performance tests (Equation 2.7).

10Specifically, we use the function scipy.ndimage.interpolation.shift, with no pre-filtering.
11During the shift-and-stack procedure, if a shift is above a certain threshold the frame is rejected, and so some

stack consist of slightly less than 3000 images.
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To create a high signal-to-noise reference, 13 sharp images acquired on 2019-07-20 were

registered to the same pixel grid using bicubic spline resampling. The stacked reference frame

was constructed by then summing the registered images, and dividing by 13. To measure

the PSF of this stacked image, a (symmetric) Gaussian PSF model was independently fit to 5

bright, isolated stars, from which we found a median width of φR = 2.89 pixels. The median

φI of the 238 remaining target images was 3.83 pixels, with a maximum of 6.67 pixels.

In preparation for assessing the photometric accuracy of the algorithms, we measured the

fluxes and positions of the stars in the reference image. A total of 236 candidate sources were

detected in the image. We avoided all stars near the reference image edges and those with a

peak pixel flux less than 3× 104 ADU. This gave us a reduced sample size of the 37 brightest

stars. Due to processing time constraints (see below), this sample was further reduced to

30, approximately uniformly spaced stars. The light curves of these 30 stars can be used to

compute the MPB and MPV metrics (see Section 2.5.2).

For both the reference and each of the 238 target images, a 142 × 142 pixel region was

cutout around the positions of each of the 30 stars. This approach avoids resampling the target

images to align them with the reference, and prevents introducing correlated noise into the

target images by interpolating between pixels.12

Cursory image model fits to these target image stamps identified kernels with a size of

7φI × 7φI to give good results. For the tests in Section 2.4, a 9φI × 9φI kernel corresponded

to a 19×19 pixel array. For these tests on real images, even though the kernel is set to be just

7φI × 7φI large, due to the fine sampling of the LI images, the median size of the kernel in

pixel-space for this data set is 27× 27 pixels, with a maximum size of 47× 47 pixels. For the

B08 algorithm in particular – which scales with the square of the number of NK kernel pixels

– processing times are much more expensive than in Section 2.4, and this is why we further

reduced our sample of bright stars down from 37 to 30 to keep this investigation tractable.

This should give us a total of 7140 reference-target image pairs (i.e. ∼ 10% the size of the

simulated image data set), but in some instances, for stars close to the borders of the target

image, large shifts between this image and the reference meant that part of the 142 × 142

pixel region fell outside the image edge. Additionally, the measured signal-to-noise ratio of

the target image in some instances exceeded 1000, and so these were rejected to provide a

12We note that the noise in all shift-and-stacked images will be correlated to some degree due to the shift procedure.
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more consistent comparison with the results from Section 2.4. After these cuts, we had a final

sample of 6989 reference-target image pair stamps.

2.5.2 Model performance metrics for real data

For this test, we compare the PyTorchDIA code implementing our robust loss function with

c = 1.345 (Equation 2.13), against the B08 solution making use of sigma-clipping. We run the

B08 approach for a total of 3 iterations, and clip |εi j|> 5 pixels on the third iteration only.

Although we are both limited to a smaller sample size and do not know the true noise

properties or model parameters of the actual images and kernel solutions respectively, we

can still use almost all of the metrics outlined in Section 2.4.2 to assess the accuracy of the

implementations. As the true model image is unknown, we are unable to use the MSE metric

to measure the model error. The photometric scale factor, P, while also unknown, can however

be compared on a relative scale, which requires an estimate for Ptrue.

It was found that the inferred P was correlated with the distance from the image centre

along the x-axis. This is due to a change in the sky level along this axis associated with in-

strumental effects, which influences P due to the anti-correlation between the photometric

scale factor and B0. Consequently, Ptrue for the entire image is not well represented by a single

number (e.g. the median value from all 30 stamps). Given this, we divided the x-axis into

4 equally spaced regions, and computed 4 separate Ptrue values using the subset of stamps in

each of these region. The measured P from any stamp was then normalised by the Ptrue corre-

sponding to the region it belonged to along the chip’s x-axis. As B08 outperformed PyTorchDIA

in terms of P in Section 2.4, we use the P values inferred by this approach to determine Ptrue.

The remaining metrics require an accurate noise model to be meaningful. For these EMCCD

images, we use Equation 2.7, and substitute the Mi j obtained on the third and final iteration of

the B08 solution of each reference-target image pair to estimate the pixel uncertainties. These

pixel uncertainties can then be used to calculate the MFB and MFV metrics, in place of σI ,i j .

Similarly, by substituting the target image for Inoiseless,i j in Equation 2.27 we can use these pixel

uncertainties to calculate the signal-to-noise ratio of the target image for each reference-target

image pair. For the third iteration of the B08 approach, we also sigma-clip |εi j| > 5 pixels to

guard against variable sources or spurious pixels affecting the kernel solution. We use this

associated bad pixel mask to omit these pixels from the calculation of the corresponding MFB
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and MFV metrics for both the B08 and PyTorchDIA solutions.

We perform PSF fitting photometry at the centre of the difference images obtained from

each reference-target image pair (i.e. at the position of one of the 30 possible stars) to assess

the photometric accuracy of the approach. We infer an empirical model PSF for the target

image in the following way. For each reference-target image pair, we identify the peak pixel

values of bright sources in the reference, and set all other pixel values to 0. We then use our

PyTorchDIA implementation to infer the ‘PSF’ which convolves this scene of (approximate)

delta-functions to the target image. That is, we are inferring an estimate of the PSF of the

target image with the ‘kernel’ solution of the PyTorchDIA code. When inferring this empirical

PSF, we weight all pixels equally, which gives the pixel values of the very brightest stars more

weight relative to the other pixels in the image.

As in Section 2.4.2, we use a small square stamp for the PSF fitting. We set the radius

of this stamp (i.e. the half-width of the stamp) to 1.5 FWHMs of the target image (i.e. ∼

1.5 × 2.355 × φI pixels), rounded up to the nearest odd integer pixel. The PSF object is

normalised, and scaled to the flux of the difference image. To guard against the influence

of (possibly variable) neighbouring sources or spurious pixels in the stamp not captured by

the PSF model, we scale the model to a star’s differential flux under our robust loss function

(Equation 2.12), with fixed pixel uncertainties and c = 1.345.

As with the MFB and MFV metrics, we adopt Equation 2.7 as the noise model, substituting

the Mi j values obtained on the final iteration of the B08 solution. In order to calculate σ2
min

(Equation 2.31), we substitute the normalised empirical PSF inferred by the PyTorchDIA code

for PI ,rs, and substitute the region-dependent Ptrue inferred by the B08 implementation. An

example reference-target image pair and associated fit quality metrics for both the B08 and

PyTorchDIA implementations are shown in Figure 2.4.

2.5.3 Real Image Test results

We again start our analysis by splitting our results into three signal-to-noise ratio (SNR) regimes

by the signal-to-noise of the target image, I : (1) 8< SNRI < 40; (2) 40< SNRI < 200 and (3)

200 < SNRI < 1000. We found that no reference-target image pairs correspond to the very

lowest SNR regime, and so we are forced to restrict our analysis to regimes (2) and (3). Also,

unlike the simulated image tests, all 251 real images used here are well sampled. A majority
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Figure 2.4: Example reference-target image pair from the real image performance tests, in the same
style as Figure 2.2. Note the unusual PSFs in the reference and target images, and the correspondingly
irregular kernels. The target star with which the photometric accuracy was assessed is at the centre of
the reference-target image pair.
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195 of the target images correspond to the case where the kernel is oversampled (i.e. φK > 1),

and for the other images the kernel is undersampled (i.e. φK < 1). We therefore further di-

vide each signal-to-noise regime into two sampling regimes, dependent on whether the kernel

is approximately over or undersampled. We plot the median metric values and the MPB and

MPV for both B08 (blue) and PyTorchDIA (red), each split into the 4 possible sub-categories

in Figure 2.5. As all images are oversampled, the circular markers are all large. The small

and large crosses correspond to under- and oversampled kernels. The theoretical best value

for each metric is plotted as a dashed green line. The median metrics and the 16th and 84th

percentiles of their distributions are tabulated in Table 2.3.

It was noted that some star differential light curves could have a noticeable non-zero offset

from their reference frame flux level. In order to correct for this before grouping the normalised

photometric residuals from across all light curves into each of the SNR and sampling regime

categories, each star light curve was shifted such that its median photometric residual value

was 0. Additionally, there was a small subset of outlying photometric residuals that may badly

affect the MPB and MPV metrics. To remove the influence of these bad outliers in each category,

we first calculate the median absolute deviation of the Fmeasured,k/σmin,k values scaled to a

standard deviation σMAD as a robust estimate of the spread of the underlying distribution.

This is defined as

σMAD = κ×median

�

�

�

�

Fmeasured,k

σmin,k
−median
�Fmeasured

σmin

�

�

�

�

�

, (2.34)

where κ = 1.4826 for approximately normally distributed data. Before calculating the MPB

and MPV metrics shown in Figure 2.5 and Table 2.3, we have removed all photometric residu-

als with absolute values more than 4.5σMAD from median(Fmeasured/σmin) for each SNR and

sampling regime category. Note that the number of outlying points may differ for the B08 and

PyTorchDIA solutions.

We tabulate the number of reference-target image pairs in each category in Table 2.3. Due

to the sigma-clipping used before computing the MPB and MPV, we write the number of image

pairs in each category used to compute these particular metrics as a fraction of the total number

of image pairs. All image pairs in each category were used to compute all the other metrics,

as these are robust to outliers.

We can again see that the PyTorchDIA and B08 approaches are broadly consistent, with
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both DIA implementations returning very similar metric values. Across all SNR and sampling

regimes, only the median MFB values show consistently large differences. PyTorchDIA ex-

hibited notably larger MFB values in the tests on simulated images, and here too, the B08

approach performs better with respect to fit bias. The P values for B08 appear to be superior,

but recall that these are normalised to the median P values obtained from each x-axis sub-

region by the B08 algorithm, so we should expect the B08 P values to be closer to unity. For

both implementations, as seen in the tests in Section 2.4 and similar experiments in B16, the

accuracy with which P can be determined clearly improves with increasing SNR.

Similar trends with both MFV and MPB are seen from both approaches. There is a relative

paucity of results corresponding to an undersampled kernel – particularly for SNR category 2

– but for the richly populated categories corresponding to oversampled kernels, both of these

metrics improve with increasing SNR, as also observed in the simulated tests.

The MPV metrics for both approaches are noticeably larger here than in the simulations.

However, we again see that the photometric variance goes up with the SNR of the target image,

and that both approaches are overall very similar. Unlike the simulations, there is no guarantee

that the 30 selected stars are the brightest in their respective stamps, and each stamp is well

populated with stars in this crowded field (see top panel of Figure 2.4). We should not then be

overfitting the target stars, and so MPVs greater than unity are expected, since the fractional

contribution of flux of the target to the entire stamp will, in general, be much less than unity

(see e.g. Figure 10 of B16). Also, of the 43 images corresponding to an undersampled kernel,

23 of these images have a PSF sharper than the stacked reference. In these instances, the model

image will inevitably fail to match the PSFs – as it would in fact have to de-convolve, rather

than convolve the reference – which will result in bad artefacts at the position of sources in the

difference image. Indeed, in each SNR regime, the MPV corresponding to the undersampled

kernel is much worse than its oversampled counterpart. However, these effects are common

to both approaches, and here, we stress that we simply want to highlight the similarity of the

MPV metrics obtained by the B08 and PyTorchDIA implementations. Indeed, the PyTorchDIA

metrics can only be compared in a relative sense to the B08 results, as the B08 solutions for

P and σi j are used to compute these metrics for both approaches. As we do not know the

ground-truth for these values, we cannot say whether B08 or PyTorchDIA is closest to the

correct answer, but only how similar they are to each other.
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In addition to the differences in floating-point precision that would have influenced the

small differences in results in Section 2.4, the two approaches now assume two different noise

distributions for the target image pixels. For this real, outlier populated data, PyTorchDIA

optimises a robust scalar objective function, while the B08 approach uses an iterative sigma-

clipping procedure, so we should expect this to contribute to differences between the metric

values also. And of course, the sample sizes in each category are smaller than their simulated

data counterparts (particularly so for the instance of φK < 1 in SNR category 2) and therefore

noisier, which could partly explain some of the small differences between the metric values for

the two approaches.

In summary, similar trends in metrics with SNR and sampling regime categories are shown

by both the B08 and PyTorchDIA implementations, and these trends resemble those found in

our experiments on simulated images. This both validates that our simulated images are rea-

sonable approximations of real data, and that our robust PyTorchDIA solution provides com-

petitive photometric performance with the B08 algorithm when applied to real astronomical

data sets.

2.6 Speed tests

In the speed tests in this Section, we compare the performance of our GPU-accelerated numer-

ical implementation against a fast, analytical least-squares fit solution using compiled Cython

code. The PyTorchDIA code is run on Google’s Colab13 service, a free-to-use cloud-based com-

putation environment. The instance used for these experiments was equipped with a NVIDIA

Tesla K80 GPU, with 2496 CUDA cores (with ‘compute capability’ 3.7), with up to 16280 Mb of

GPU RAM free. The Cythonised B08 solution is run on an Intel(R) Xeon(R) CPU @ 2.30GHz,

with ∼ 12.6 Gb RAM available.

Having established the accuracy of our algorithm on both synthetic and real images in

Sections 2.4 and 2.5, we first provide a motivating test exploring the computational speed-up

over the state of the art classical approach on a set of real DK154 microlensing observations

in Section 2.6.1. We then use a pair of large synthetic images to formally explore the scaling

of our algorithm with image and kernel size in Sections 2.6.2 and 2.6.3.

13https://colab.research.google.com
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Figure 2.5: Fit quality and photometric accuracy metrics from the 6989 real image tests. Results for
the B08 algorithm are in blue (left column), and the PyTorchDIA results are in red (right column). The
signal-to-noise regime of the target image is shown on the x-axis, increasing from left to right. We
use circular markers to denote the sampling regime of the reference image, and crosses to indicate the
sampling regime of the kernel. As the reference image is oversampled, all circular markers are large. A
large cross corresponds to an oversampled kernel, and a small cross corresponds to an under-sampled
kernel; there are therefore 2 possible combinations of marker for each SNR regime.No reference-target
image pairs used to compute these metrics fell into the lowest SNR regime, and so that is left blank.
The green dashed lines for each sub-plot pair represent the correct, ‘ideal’ value for each metric.
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Metric SNR regime φR > 1,φK > 1 φR > 1,φK < 1

P (B08) 1 - -

P (PyTorchDIA) 1 - -

P (B08) 2 0.9992+0.0136
−0.0122 1.0000+0.0070

−0.0036

P (PyTorchDIA) 2 0.9987+0.0134
−0.0121 1.0004+0.0065

−0.0048

P (B08) 3 1.0000+0.0086
−0.0063 1.0000+0.0050

−0.0048

P (PyTorchDIA) 3 0.9999+0.0083
−0.0066 1.0003+0.0049

−0.0052

MFB (B08) 1 - -

MFB (PyTorchDIA) 1 - -

MFB (B08) 2 0.0001+0.0002
−0.0001 0.0000+0.0002

−0.0002

MFB (PyTorchDIA) 2 0.0114+0.0038
−0.0036 0.0198+0.0082

−0.0054

MFB (B08) 3 0.0003+0.0005
−0.0004 −0.0003+0.0007

−0.0009

MFB (PyTorchDIA) 3 0.0116+0.0045
−0.0044 0.0244+0.0098

−0.0067

MFV (B08) 1 - -

MFV (PyTorchDIA) 1 - -

MFV (B08) 2 0.9649+0.0480
−0.0431 1.0392+0.0328

−0.0204

MFV (PyTorchDIA) 2 0.9699+0.0477
−0.0402 1.0416+0.0331

−0.0209

MFV (B08) 3 1.0200+0.0809
−0.0475 1.1168+0.0901

−0.0561

MFV (PyTorchDIA) 3 1.0253+0.0827
−0.0473 1.1246+0.1212

−0.0602

MPB (B08) 1 - -

MPB (PyTorchDIA) 1 - -

MPB (B08) 2 0.112 0.415

MPB (PyTorchDIA) 2 0.090 0.456

MPB (B08) 3 0.008 0.530

MPB (PyTorchDIA) 3 −0.001 0.703

MPV (B08) 1 - -

MPV (PyTorchDIA) 1 - -

MPV (B08) 2 1.220 1.902

MPV (PyTorchDIA) 2 1.165 1.892

MPV (B08) 3 1.979 2.851

MPV (PyTorchDIA) 3 1.929 2.945

NStamps (B08) 1 - -

NStamps (PyTorchDIA) 1 - -

NStamps (B08) 2 1981/1992 57/57

NStamps (PyTorchDIA) 2 1983/1992 57/57

NStamps (B08) 3 4060/4097 843/843

NStamps (PyTorchDIA) 3 4056/4097 842/843

Table 2.3: Fit quality and photometric accuracy metrics for the 6989 real image tests for both an
implementation of the B08 algorithm and PyTorchDIA, separated into the SNR and sampling regimes.
The number of image stamps used to compute the metrics in each of the SNR and sampling regime
categories is shown in the bottom section of the table. As outlying photometric residuals have been
removed from some categories prior to computing the MPB and MPV metrics, we write the number of
NStamps values used in their computation as a fraction of the total number of stamp samples.
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2.6.1 Real EMCCD images

For these tests, we use a typical microlensing data set obtained with the DK154’s ‘red’ camera

during the 2019 MiNDSTEp observing season. The data set consists of 159 shift-and-added

exposures, each consisting of as many as 1200 short 0.1 s exposures (i.e. ∼ 2 minute integra-

tions).

The sharpest image was chosen as the reference, with a φR = 1.82 pixels. The median

target image width was φI = 3.18 pixels. All images were bias subtracted and flat corrected.

The target images were then re-sampled using bicubic spline interpolation to align them with

the reference.

We use the flat field used for the data reduction in our noise model (Equation 2.7). For

the B08 implementation, we perform 3 model iterations and employ sigma-clipping, masking

pixels associated with |εi j| > 5, to guard against variable sources (e.g. the gravitationally

lensed target). For our PyTorchDIA implementation, we minimise the negative log-likelihood

corresponding to our robust loss function (Equation 2.13).

We test how the speed of our implementation scales with both image and kernel size by

symmetrically cropping the borders of the images to different extents, and solving for both

a 19× 19 and 25× 25 kernel. We measure the solutions times for each of the 158-large set

of target images for our GPU-accelerated numerical algorithm, and plot the median solution

time for a single image against the single axis length of the cropped square images (as a proxy

for image size) in Figure 2.6, for two different choices of parameter initialisation. The ‘error’

bars on the median image solution times are the 16th and 84th percentiles of the distribution

of the 158 target image solution times. For comparison, we plot the time taken for 3 model

iterations of the B08 analytical least-squares approach. We do not plot uncertainties for the

B08 solution times. The total time of this analytic approach is dominated by the normal matrix

construction, which is dependent only on the size of the kernel and images, and therefore

effectively consistent across all 158 target images for each image and kernel size combination.

Unsurprisingly, the massive parallelisation inherent to the convolution computations in our

implementation means it performs very well for even quite large image and kernel size combi-

nations (see Section 2.6.2 for a formal discussion of how the algorithm scales.). The median

solution times for both the 19×19 and 25×25 kernels are at least an order of magnitude faster
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than for the B08 approach. When scaled to data sets consisting of hundreds or thousands of

images, this clearly provides substantial savings in processing times.

The two plots in Figure 2.6 only differ in the choice of initialisation of the kernel pixels

for PyTorchDIA. The plot on the top shows the solution times for a kernel initialised as a ‘flat’,

box-car which sums to 1. The bottom plot shows the results for kernels initialised as symmetric

Gaussians, normalised to sum to 1, with shape parameter estimated as φK =
q

φ2
I −φ

2
R. For

these stacks of short EMCCD exposures, neither φI nor φR are particularly well approximated

with a Gaussian, and the median solution times are at most only ∼ 1.1 times faster. However,

the spread of the distribution of solution times is clearly tighter when a Gaussian in used for

the initialisation compared to the flat box-car.

To gain some insight into the cause of the differences between the spread of values for the

two different kernel initialisations (and therefore inform us of how to get the best performance

out of PyTorchDIA) we plotted the solution times against the PSF width,φI , and signal-to-noise

ratio (SNR) of the target image for the set of 482 × 482 images fit with a 19 × 19 kernel as

a pairplot in Figure 2.7. We quantified the correlation between solution times and these two

image properties with the Spearman’s rank correlation coefficient, ρ14. Both kernel initial-

isations result in solution times which are anticorrelated with φI (ρφI ,Box−car = −0.69 and

ρφI ,Gaussian = −0.29) and correlated with the signal-to-noise ratio (ρSNR,Box−car = 0.63 and

ρSNR,Gaussian = 0.26). We expect however that the cause of these trends is due only to φI and

specifically, the difference between the width of the PSFs in the target image and reference

image. That the solution time is correlated with the signal-to-noise of the target image is due

to the fact that the signal-to-noise is strongly anticorrelated with φI .

The very strong anti-correlation between the solution time for the box-car kernel and φI is

very likely due to this ‘flat’ kernel surface being a much better initialisation for wide kernels.

When the PSFs between the reference and the target images are very similar, the kernel is

sharply peaked at the centre, and a flat kernel is far from the solution. Initialising with a

Gaussian, although imperfect for the irregular PSFs associated with these images, appears

to mitigate this problem to some degree, although the solution time still blows-up when the

kernel is approximately under-sampled.

14This provides a measure of any monotonic relation between two variables. The distributions (vs solution time)
are clearly not linearly related, and so Pearson’s correlation coefficient – which assumes a linear relation – is not
suitable here.
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Figure 2.6: The time taken to solve for square kernels of different sizes against image single axis length
(as a proxy for image size) for our PyTorchDIA implementation on the GPU and the B08 approach for
images in a typical DK154 microlensing data set. The PyTorchDIA kernel pixels were initialised with
a (top plot) ‘flat’, box-car kernel and (bottom plot) a symmetric Gaussian with width estimated as
φK =
Æ

φ2
I −φ

2
R.
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Figure 2.7: Pair plot showing the optimisation solution times for a 19×19 kernel – initialised as either
a flat box-car or Gaussian – on a 482× 482 large image, against the φI and SNR of the target image.
The histograms of the distributions are shown on the diagonal.
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2.6.2 Synthetic CCD images

Here, we test the performance of our implementation on synthetic images. We use our syn-

thetic image generation procedure (see Section 2.4.1) to first generate a large 4000 × 4000

pixel noiseless reference image. We set the logarithm of the stellar density per 100×100 pixels

to be 1.5, we set φR = 1 and the sky level at 100 ADU. Fluxes are assigned randomly as de-

scribed in Section 2.4.1. We set φK = 1.5, and generate a target image with φI =
q

φ2
R +φ

2
K

in the same manner as above. We then randomly add noise to the images in way described in

Section 2.4.1, such that the target image has 10 times more pixel variance than the reference.

As there are no outlying pixels in this simulated pair of images, for the PyTorchDIA im-

plementation, we minimise the Gaussian negative log-likelihood (Equation 2.4). The pair of

4000 × 4000 images are symmetrically cropped to assess how the solution times scale with

image size. For each kernel and image size combination (and choice of kernel initialisation),

we plot the solution times in Figure 2.8, for kernels initialised with either a flat box-car, or

symmetrical Gaussian with width equal to φK = 1.5.

As with the speed results in the prior Section, for larger images, the PyTorchDIA 19× 19

and 25 × 25 kernel solution times are at least an order of magnitude faster than their B08

counterparts. In this case, since the correct convolution kernel really is a Gaussian, initialis-

ing the kernel as a Gaussian substantially reduces the number of optimisation steps required

before convergence, with these solution times typically being ∼ 4− 5 faster than with a box-

car initialisation for the kernel. Formally, the B08 normal matrix construction time scales as

O (n2m4), where n and m are the sizes of the (square) images and kernel respectively. The two

black curves in both Figures 2.6 and 2.8 follow this scaling (i.e. ∼ (25/19)4). Our optimisation

procedure computes a direct convolution, which is predicted to scale as O (n2m2). The data

points corresponding to the PyTorchDIA solution times in Figure 2.8 approximately obey this

rule – in both the separation of the two curves and the separation between data points on each

curve – although we should expect some variation due to differences in the number of opti-

misation steps required before converging and, potentially, cuDNN’s choice of algorithm for

the convolution computations, which can depend on both kernel and image size (see Section

2.6.3). In general, we found the number of optimisation steps required for convergence to

slightly decrease with increasing image size. This makes sense, in that the effective informa-

tion content of the image is greater the larger it is, and so the gradient steps are more accurate.
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Figure 2.8: The time taken to solve for (square) kernels of different sizes against image single axis
length (as a proxy for image size) for our PyTorchDIA implementation on the GPU and the B08 approach
for a pair of square synthetic images, cropped to different sizes.

This explains why for the smallest image size in Figure 2.8 the time to solve for some of the

kernels takes longer than expected. Our solution time is then, not completely determined by

the formal O (n2m2) scaling.

2.6.3 cuDNN: Accelerating convolution computations on NVIDIA GPUs

One major use-case of PyTorch is for deep learning, in which CNNs, consisting of many small

kernels, are used for feature detection in image recognition tasks (for example, Lawrence et al.,

1997; Krizhevsky et al., 2012). The current research interest in deep learning applications

has motivated device manufacturers such as NVIDIA to develop highly tuned GPU-accelerated

libraries, specifically designed to improve the performance of common processing operations

(e.g. forward and backward convolution) with these small kernels. By default, PyTorch makes

use of NVIDIA’s cuDNN library to accelerate convolutions on NVIDIA GPUs. This library has

access to both deterministic and non-deterministic algorithms to compute convolutions, which

are selected heuristically to accelerate computations15. As the sizes of useful kernels in DIA

15While not explored here, cuDNN also contains tools to benchmark convolution computations for a given kernel
and image size combination. When processing many images, it performs tests to assess which cuDNN algorithm
performs best on the first example, caches this information, and uses this best performing algorithm on all further
images in the data set. Turning this feature towards astronomical data set reduction with PyTorchDIA will be
explored in future work.
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are themselves fairly small, it is expected that PyTorchDIA will also benefit from these tools.

Indeed, we have enabled the use of non-deterministic cuDNN algorithms to accelerate the

computation of convolution operations in all the results presented so far in this paper. In this

subsection, we explore the benefit of this library in the context of DIA.

For this test, we measure how for an image pair of fixed sizes, the time to infer the kernel

scales with kernel size. We use the pair of synthetic 4000× 4000 pixel images from the prior

section, symmetrically cropped to smaller 1000×1000 images. We infer the associated convo-

lution kernel (initialised with a box-car) by minimising the Gaussian negative log-likelihood

for this pair of synthetic images, which contain no outlying pixels. The time to infer the kernel

on the GPU for different cuDNN settings in shown in Figure 2.9.

For all small kernels tested here, allowing cuDNN to use non-determinstic algorithms for

the convolution computations results in slightly faster inference times. There is a clear change

in behaviour for kernels larger than 23× 23 pixels, and while the non-deteriminsitic compu-

tations again seem to win overall, the scaling with kernel size is now far less predictable. This

makes sense, as cuDNN is optimised for working with small kernels. Clearly however, for the

larger kernels, small changes in kernel size can lead to sporadic changes in performance. This

will most likely be due to changes in the choice of convolution algorithm implemented by the

software for any given image-kernel size combination, although a full exploration of the dif-

ferent CUDA convolution algorithms, how they are chosen, and how they scale, is outside the

scope of this work.

2.7 Conclusions

We have presented a new algorithm for difference image analysis, where we model the tar-

get image as the output of a simple convolutional neural network. The kernel is treated as

a discrete pixel convolutional filter, with weights which can be fit for efficiently within the

PyTorch architecture. Specifically, we make use of automatic differentiation and GPU support

to perform a lightning fast optimisation of the image model. We validate the fit quality and

photometric accuracy of our implementation against its closest classical DIA analogue, with

both simulated and real images. Our algorithm is simple to understand, and written entirely

in standard Python packages, with an emphasis on accessibility to the wider astronomical

community.
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Figure 2.9: A comparison of the times taken to infer square kernels of different sizes with varying
cuDNN settings for a given pair of 1000× 1000 pixel synthetic images. Note the log-log scale.

Its benefits over some traditional approaches can be summarised as follows:

• Speed: We exploit the massive parallelism inherent to the convolution operation by mak-

ing use of highly-tuned GPU-accelerated deep learning libraries to perform efficient con-

volution computations. With a good choice of learning rate, the optimisation procedure

converges rapidly, and our algorithm can perform DIA on astronomical data sets at least

an order of magnitude faster than its classical analogue.

• Scalability: For a pair of (square) images, each of size n, convolved with a (square) ker-

nel of size m, our implementation approximately scales as O (n2m2), while the classical

approach goes as O (n2m4).

• Flexibility: In our optimisation framework, we can maximise the (correct) Gaussian like-

lihood suitable for conventional CCD/EMCCD astronomical exposures (where the Gaus-

sian approximation of Poissonian photon noise is valid), without resorting to an itera-

tive procedure of χ2 minimisation. This framework also allows us to relax the Gaussian

noise assumption, and optimise robust scalar objective functions for images affected by

outlying pixels. This provides a justifiable alternative to procedural sigma-clipping ap-
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proaches. Further, we make use of automatic differentiation tools that free the user

from having to manually recompute gradients if the paramaterisation of the model is

changed, making experimentation by users straightforward.

The current main disadvantage to this approach is the use of 32-bit numerical precision

to ensure the GPU-accelerated convolution computations are performed rapidly. Also, some

engineering (e.g. choice of learning rates) is required by the researcher to get the best per-

formance. And while the O (n2m2) scaling typically holds for a given image-pair and kernel

combination, our approach is a non-linear (convex) optimisation, and so the solution times

for our approach are not entirely deterministic. We also note that access to mid- to high-end

GPUs can be an issue, and their use in both the gaming market and cryptocurrency mining

has caused a surge in prices. Given this, Tensor Processing Units (TPUs) – which now support

floating point computations – could be a viable alternative for some use-cases.

We highlight automatic mixed precision training, available since PyTorch 1.6.0, as an area

to explore in future work to further accelerate the convolution computations. Given the im-

pressive recent advances in general purpose GPU computing, in large part driven by the deep

learning community, we are well positioned to take advantage of improvements to these tools.

Lastly, we again stress that the application to DIA is just one possible example of astronomical

image processing that can benefit from deep learning tools, as very many useful image models

include a convolution operation.

All code associated with the work in this chapter can be found at https://github.com/

jah1994/PyTorchDIA.
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3
The Thresher : Lucky Imaging without the Waste

3.1 Declaration

This chapter includes material adapted from: Hitchcock, J.A., Bramich, D.M., Foreman-Mackey,

D., Hogg, D.W. and Hundertmark, M., 2022. The Thresher: Lucky imaging without the waste.

Monthly Notices of the Royal Astronomical Society, 511(4), pp.5372-5384.

3.2 Introduction

The atmosphere produces high frequency temporal and spatial variations in the point-spread

function (PSF) of ground-based astronomical images, as turbulent convective cells pass over

the telescope aperture. The time-averaging effect of fluctuations of the PSF for conventional

observations quickly degrades the resolution, and results in blurry, band-limited images. A

class of techniques for compensating for this involve obtaining a large number of extremely

short exposures close to the timescale of the atmospheric variations. These short exposures

individually have low signal-to-noise and very complicated PSFs, but they provide strong con-
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straints on the diffraction limited scene when many images are used collectively.

The idea of exploiting the high resolution information in short exposures was first sug-

gested by Labeyrie (1970) and there has been a rich literature on this topic since. In partic-

ular, a very popular technique which we will call traditional lucky imaging (TLI) (Law et al.,

2006) is based on Fried’s derivation of the probability of obtaining a frame with unusually

“lucky” seeing1 when many images are taken quickly. That is, occasionally—just by chance—

the wavefront distortions from the atmosphere will come close to cancelling the imperfections

in your telescope. These best images are identified, shifted, and co-added, with the rest of the

data relegated to the dustbin. TLI is very popular because it is simple to understand and im-

plement, it is computationally tractable, and it can be used with very inexpensive equipment.

As a technique, however, it is not really inexpensive because it results in a substantial amount

of wasted data. Typical TLI results are based on only the best (i.e. sharpest) percentage of

the acquired images, and progress has focused on improving the way images are co-added

or selected to improve the efficiency of the method (Staley et al., 2010; Mackay, 2013, for

example).

The work presented in this chapter was motivated by the (correct) feeling that, treated

properly, there is no way that the discarded majority of data in a TLI imaging stack can be

detrimental to constraining the astronomical scene! In the context of TLI, the fundamental

reason why throwing away data helps is that the core data analysis step is shift-and-add co-

addition of the imaging, which (though widely used in astronomy) is not justifiable when the

point-spread function is varying rapidly.

The method we present here—The Thresher—is a new flavour of an old idea. It is a special

case of a broad class of algorithms called blind deconvolution (Ayers & Dainty, 1988; Campisi &

Egiazarian, 2017). It is closely based on the online multi-frame blind deconvolution (OMFBD)

image analysis method of Hirsch et al. (2011) in particular. However, our algorithm differs

from this prior work in several important ways: 1) The Thresher implements a physically moti-

vated, justifiable likelihood function for short-exposure images; 2) our algorithm implements

a robust stochastic gradient descent procedure based on state-of-the-art optimisation algo-

rithms, and 3) It is entirely general to the choice of image model and likelihood function, as it

makes use of automatic differentiation tools. Points 1) and 2) in particular make The Thresher

1A measure of the blurring of an astronomical image due to atmospheric turbulence.
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extremely well suited to dealing with realistically faint and noisy high frame-rate astronomical

imaging data.

In this work, we describe the theory behind our algorithm and the details of our particular

implementation. Most importantly, we demonstrate the significant improvements over TLI

made possible by this technique using both simulated and real data from Electron-Multiplying

(EM) CCD, fast imaging cameras. A fundamental limitation of TLI is that the signal-to-noise

of the final co-add is inversely related to its resolution (i.e. the better the resolution, the poorer

the signal-to-noise). We show that this need not be the case; The Thresher has the potential of

returning an image with the signal-to-noise of the entire data set at the resolution of the very

best images.

This chapter is structured as follows. In Section 3.3, we describe the inference problem

and the algorithm developed to solve it. We present our results on simulated and real data in

Sections 3.4 and 3.5, respectively. In Section 3.6, we probe current limitations of the algorithm

and outline the scope for further improvements. Section 3.7 states our conclusions.

Finally, in order to help the reader keep track of the notation introduced in the following

sections, we include a table of symbols and their definitions in Table 3.1).

3.3 Problem Formulation

3.3.1 Online Multi-frame Blind Deconvolution

We start by writing down a model for our imaging data. For any short exposure, yn, in our

Lucky Imaging (LI) data set of N images, a reasonable model for the light distribution at any

given i j pixel is

mn,i j = [kn ⊗ s]i j + bn . (3.1)

Equation 3.1 states that each image is generated by the convolution of some high-resolution,

‘true’ image s, with some unknown blur kernel, kn, and some additive sky background, bn.

Throughout this work, we assume that s is time invariant, and that both kn and bn are spatially

invariant. The latter is justified for the small angular area LI data that we use – on the order

of the scale of the isoplanatic patch – where the seeing is approximately constant over the

field-of-view.

Given some statistical model for the noise in our imaging data, we can write down a likeli-
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Symbol Definition

Variables

θ vector of image model parameters

m model for an image

k blur kernel

s scene model

b sky background

y vector of images

y single image

N total number of images

npix total number of pixels in a single image

L total loss for imaging data

l loss for a single image

φ hyper-parameter for tuning the L1 regularisation on k

α0 SGD learning rate

µ̂ exponentially decaying average of the gradients of the loss w.r.t s

ν̂ exponentially decaying average of the squared gradients of the loss w.r.t s

Ω vector of noise model parameters

f A/D conversion factor

G electron-multiplying (EM) gain

σ0 readout noise

c spurious charge

q quantum efficiency

λ rate parameter of the Poisson distribution

Y image co-add

M model for an image (image co-add)

K blur kernel (image co-add)

B sky background (image co-add)

σ pixel uncertainties (image co-add)

Operators and spe-
cial functions

⊗ convolution

∇ vector differential operator

|| · ||1 L1 norm

H Heaviside step function

I1 modified Bessel function of the first order

Iterables and indices

I number of complete passes over all images

n single image index

t SGD update index

i image row pixel index

j image column pixel index

Table 3.1: A table of notation used in this paper.
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hood function for yn given our vector of model parameters, θ = [k1, ..., kN , b1, ..., bN , s]. The

notation is kept light for clarity. For each yn image, kn is modelled as a square array of pixels

of some user-specified size, and bn is a scalar. s is modelled as an array of pixels with the same

dimensions as the data images. Assuming independence between images, and independence

between pixels, the likelihood function for our entire data set, y = [y1, ..., yN ], is just the

product of the individual pixel likelihoods,

p(y |θ ,Ω) =
N
∏

n=1

∏

i j

p(yn,i j|kn, bn, s,Ω) . (3.2)

We introduce Ω to represent the list of other known quantities the likelihood is conditional on

e.g. the parameters of the detector noise model.

For numerical convenience, it is helpful to instead work with logarithms, which transforms

the above product into a sum. We can then define the total loss as the negative log-likelihood

of our imaging data given the model parameters

L(y;θ ,Ω) = − ln p(y |θ ,Ω)

= −
N
∑

n=1

∑

i j

ln p(yn,i j|kn, bn, s,Ω)

=
N
∑

n=1

l(yn; kn, bn, s,Ω) ,

(3.3)

with l(yn; kn, bn, s,Ω) being the loss associated with a single image.

Unfortunately, there are a couple of practical complications that prevent us from straight-

forwardly minimising Equation 3.3 to obtain the maximum-likelihood estimate (MLE) for our

model parameters. Firstly, LI data sets consist of thousands of images, and it is not practical

to load these all into computer memory simultaneously. Secondly, and most importantly, in

this blind deconvolution setting, for each yn image, kn and s are perfectly degenerate, as there

exists a limitless number of possible combinations of these parameters that could generate the

observed data (Equation 3.1).

Hirsch et al. (2011) proposed an iterative online algorithm, which needs to access only a

single image at any time, and makes the problem tractable, consisting of two steps for each yn
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image in our data set:

(i) [k̂n, b̂n] = argmin
kn≥0, bn

l(yn; kn, bn, st ,Ω) (3.4)

(ii) st+1← st −αt∇st
l(yn; k̂n, b̂n, st ,Ω) . (3.5)

In step (i), the current estimate of the scene, st , is kept fixed, and the unique kn and bn

which minimise the loss for the given yn are inferred. In step (ii), these new estimates for the

blur kernel and sky background are used to re-evaluate the loss. The gradient of the loss is

computed with respect to st , which is then updated with a single steepest descent step with

step-size αt , to give us a new estimate for the high-resolution scene, st+1. In this way, we can

sequentially update our estimate of s by repeating steps (i) and (ii) for every image we can

access. If required, multiple I passes can be made over the imaging data (i.e. giving a total of

I × N updates).

As kn and bn are unique to each yn, these should be inferred by minimising the loss for

any given image. s however is common to all images, and so only a single update should

be performed in step (ii). This update is an example of stochastic gradient descent (SGD; see

Bottou et al. 2018 for an excellent overview). For settings in which it is impractical to compute

the gradient of the total loss with respect to our model parameters,∇L, SGD allows us to make

progress by computing stochastic approximations to the total gradient,∇l. Despite being noisy

approximations to∇L, optimisation by SGD typically makes rapid initial progress, as when far

from the optimum, ∇l will very likely have the same sign as ∇L. This progress will generally

be very sensitive to the step-size, particularly once in the vicinity of the optimum, but with

some appropriately decaying step-size2, SGD can be shown to converge in both convex and

non-convex settings (Bottou et al., 1998). In practice however, it is useful to terminate the

optimisation early, as issues with model representation can occur as the scene is deconvolved.

In order to stabilise and automatically anneal the stochastic updates to s, we propose a

practical modification to step (ii) by introducing the following update into our SGD step,

st+1← st −
α0
p

ν̂t + ε
µ̂t , (3.6)

where µ̂t and ν̂t are the (unbiased) exponentially decaying running averages of the gradi-

2This is hugely problem specific, and typically requires empirical tuning. Despite SGDs popularity and long history,
the optimal choice of step-size for a given optimisation problem is an open research problem.
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ent and squared gradients respectively, and serve as estimates of the mean and (uncentered)

variance of the gradients. This is an example of the popular Adam update, which adaptively

tunes the learning rate for the parameters in a way that is sensitive to their gradient history.

We refer the reader to Kingma & Ba (2014) for definitions of how µ̂t and ν̂t are computed.

Therein, we adopt the suggested values for the hyper parameters. This includes the value for

ε, which is a small number added to the denominator of Equation 3.6 to improve numerical

stability.

It is useful to think of the quantity µ̂t/
p

ν̂t as something like the signal-to-noise ratio (SNR)

of the gradients. The Adam update builds momentum for parameters with persistent non-zero

gradients, and exerts friction when the variance of past gradients grows. This is useful, since

parameters with a low ‘SNR’ should be characterised by oscillating about some optimum (or

they are just insensitive to the data), and so their step-size decreases automatically.

For our problem, s has many free parameters – modelled as pixels on a grid – associated

with both the sky background and astronomical sources of interest. Provided we can reliably

estimate the sky level with our model (Equation 3.1), the gradient histories of pixels associated

with only this smooth background (i.e. regions in s not populated with sources) should typi-

cally be centered around 0. Consequently, their effective step-sizes are naturally annealed by

the update in Equation 3.6. Conversely, pixels associated with sources should have a greater

consistency in gradient sign and lower variances, and so their effective step-size is annealed

less aggressively. This has the overall effect of stabilising the deconvolution, as it helps to

suppress noise amplification3 in the updates to s.

Another major advantage of this SGD framework is that the only hyperparameter that

needs some empirical tuning is the learning rate, α0. This can be set independently for every

parameter, and for this problem, we strongly recommend that it is! As argued above, the

pixels associated with astronomical sources in s should be allowed to vary the most – for this

is where the data are most informative – and so these parameters should be assigned larger

initial learning rates. Further, α0 has the added advantage of approximately bounding the

size of the per-parameter updates for each SGD step. In this way, it performs a function very

similar to the update clipping scheme used by Lee et al. (2017) to stabilise the deconvolution

of noisy astronomical images.

3Inaccuracies in either step (i) or (ii) will propagate to the next step in a positive feedback loop.
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3.3.2 A Poisson-Gamma-Normal Noise Model for EMCCD Data

Having written down a model for our imaging data, and an algorithm for inferring its pa-

rameters, we now need to choose a suitable loss function (i.e. a negative log-likelihood) that

represents our belief about the observation noise. In this work, we consider observations ac-

quired with Electron-Multiplying CCDs (EMCCDs).

A distinguishing feature of astronomical scenes is their huge dynamic range; some objects

are very bright, and many more are typically very faint. Objects of interest in individual LI im-

ages will exist at very low signal-to-noise, with many below a reasonable detection threshold

in any given exposure. Furthermore, collections of sufficiently short LI exposures are richly

informative, containing high frequency (spatial) information otherwise lost in conventional,

band-limited, long exposures. These high frequency components in general exist at the low-

est intensities, and will therefore be very sensitive to the noise. For all but the very bright-

est sources, in these photon-starved images, Gaussian approximations to Poissonian counting

statistics do not apply, and as will be seen, the electron-multiplication process particular to

EMCCDs introduces an additional source of noise. An accurate statistical model which incor-

porates our physical knowledge of the noise generating processes of EMCCDs should allow us

to better exploit this information, and take full advantage of the maximum-likelihood method

for making robust and accurate inferences from our imaging data.

Korevaar et al. (2011) and Hirsch et al. (2013) independently derived the same physically

motivated likelihood function for EMCCD data. This probability density function (PDF) is

built from convolutions of 1) Poissonian photon noise and spurious charge events, 2) The

cascade amplification of charge in the EM register, which is well approximated by a Gamma

distribution, and 3) Normally distributed readout noise. After setting Ω= [ f , G,σ0, c, q] (refer

to Table 3.2 for definitions of these detector parameters), in units of ADU−1, this Poisson-

Gamma-Normal (PGN) likelihood takes the form,

pPGN(yn,i j|kn, bn, s,Ω) =

f H[yn,i j]

√

√

√

λn,i j

yn,i j G2
I1

�

2 f
G

q

λn,i j yn,i j

�

exp
�

−
f
G
(λn,i j + yn,i j)
�

+

f
p

2πσ0

exp

�

−
1
2

�

f yn,i j

σ0

�2�

exp
�

−
f
G
λn,i j

�

, (3.7)
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Parameter Description and units

f A/D conversion factor (e−EM / ADU)

G Electron-multiplying (EM) gain (e−EM / e−Photon)

σ0 Readout noise (e−EM)

c Spurious charge (e−Photon)

q Quantum efficiency (dimensionless)

Table 3.2: EMCCD detector parameters. We adopt the same notation as Harpsøe et al. (2012), who
differentiate between electrons generated before and after the EM amplification as e−Photon and e−EM
respectively.

where our image model (Equation 3.1), enters through

λn,i j = qmn,i j + (G/ f )c . (3.8)

Note that H is the Heaviside step function and I1 is the modified Bessel function of the first

order.

For individual yn exposures and our image model (Equation 3.1), the loss function under

this noise model is simply the sum of the per-pixel negative log-likelihoods,

lPGN(yn; kn, bn, s,Ω) = −
∑

i j

ln pPGN(yn,i j|kn, bn, s,Ω) , (3.9)

and the total loss over all images is equal to

LPGN(y;θ ,Ω) =
N
∑

n=1

lPGN(yn; kn, bn, s,Ω) . (3.10)

3.3.3 Noise Model Validation and Calibration

We will now assess how well the PGN noise model can capture the noise properties of real

EMCCD images acquired with the Danish 1.54m (DK154) TCI ‘red’ camera (Skottfelt et al.,

2015). Of course, real world data brings real world problems, and the distribution of DK154

image counts on raw images stored for analysis is not well represented by Equation 3.7.

Firstly, due to storage constraints, despite being read out at 16-bit precision, the pixel

values in the raw images are quantised to integers. We therefore ‘dither’ the raw images prior

to further calibration by adding to each integer pixel value a float randomly sampled from
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the uniform distribution, U ∼ (−0.5,+0.5). This replaces the discretised raw image with a

plausible analogue representation as originally observed by the camera. Under the values of

f and G that apply to DK154 data, the associated uncertainty introduced by this procedure

is approximately an order of magnitude smaller than the readout noise, and can safely be

ignored.

Secondly, as with conventional CCD images, systematic bias and inter-pixel quantum ef-

ficiency differences should be corrected for. After dithering, we therefore bias subtract and

flat-field all EMCCD images. However, one additional step must be taken to calibrate the

EMCCD images, as there is a significant bias level drift – caused by on-chip heat-dissipation

associated with the fast readout and large current – unique to each and every image, that

should be corrected. This drifting bias level can be measured by comparing the values of the

pixels in the unilluminated overscan regions of the given image and the master bias frame4.

As these pixels too are affected by the cascade EM amplification, Harpsøe et al. (2012) pro-

posed using the truncated mean of the distribution of the difference in these pixel counts as

an estimate of the bias level drift. Specifically, the truncated mean is taken to be the mean

computed after rejecting the top 5% of counts, and this value is subtracted from the relevant

science frame.

We note that, in principle, one could introduce another free parameter into our detector

model to represent this bias level drift, whose value could then be optimised, which would

leverage the power of our physically motivated noise model. This is definitely more accurate

than the heuristic approach outlined above, but it is challenging to implement in practice as the

likelihood surface with respect to this parameter is discontinuous – since the likelihood is piece-

wise about a point determined by this parameter – and so non-gradient based optimisation

approaches would need to be used.

Calibrating the noise model parameters

We took a sequence of 500 DK154 dark images with the same camera settings that are used

throughout this work. From these we can calibrate all but one of our noise model parameters.

As these images are not illuminated, any ‘signal’ can be assumed to be solely due to spurious

4Every (i, j) pixel value in the master bias frame is the truncated mean of the corresponding pixel values from 1000
bias images, where the top 5% of counts for the given pixel are rejected. The master bias frame can be considered
noiseless, since the mean pixel variation between master bias images is an order of magnitude lower than the
readout noise (Section 5.2.1 of Skottfelt et al. (2015))
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charge events, which is equivalent to substituting λn,i j = (G/ f )c into Equation 3.7. Conse-

quently, we cannot determine q – which is in general very challenging to measure – and so we

adopt the detector manufacturer’s value of q = 0.8 throughout this work.

For a stack of n = 1, ..., 500 dark images acquired with an EMCCD camera with detector

parameters Ω= [ f , G,σ0, c, q], we minimise the following objective function,

�

f̂ , Ĝ, σ̂0, ĉ
�

= argmin
f ,G,σ0,c

LPGN(y;Ω)

= argmin
f ,G,σ0,c

N
∑

n=1

lPGN(yn;Ω) ,

= argmin
f ,G,σ0,c

−
N
∑

n=1

∑

i j

ln pPGN(yn,i j|Ω) ,

(3.11)

where all free detector parameters are modelled as unknown constants. As there is a single

readout register, this is a reasonable approximation for f , G and σ0. For the purposes of this

work, we restrict our analysis to a 256 × 256 pixel central part of the DK154 camera, over

which c is also approximately constant (see Figure 3 in Harpsøe et al. (2012)). Equation 3.11

was optimised with the Adam algorithm (which is outlined in Section 3.3.1, but here we are

using the full gradient,∇LPGN, when updating). The model PDF (Equation 3.7) parameterised

with the MLEs is overlain onto a normalised histogram of the data in Figure 3.1, with bin

widths determined using the approach in Knuth (2006). The range of data to be binned was

restricted to that with a predicted probability density of at least 10−6 under the MLE of the

noise model. As there are ∼ 3.3× 107 data points in total, this guards against large numbers

of empty (or near-empty) bins. The relative difference between the model and binned data is

plotted in the lower panel. We can see in Figure 3.1 that the PGN noise model captures the

asymmetric, and heavy-tailed features of our data distribution arising from the EM amplified

spurious charges. We stress that in no way should this model be thought of as the ‘truth’; it

is only an approximation. But it is a practically effective, physically motivated, and broadly

accurate representation of our data.

Now equipped with an accurate, detailed noise model for the detector – with calibrated

instrument parameters – we can proceed to tackle the deconvolution problem.
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Figure 3.1: Normalised histogram of pixel counts from 500, 256 × 256 pixel (i.e. ∼ 3.3 × 107 data
points in total), dark DK154 EMCCD images, overlain with the fitted Poisson-Gamma-Normal (PGN)
likelihood. The positive fat tail is a result of amplified spurious charges. The relative difference between
the model and data – computed as (data - model) / model – for each bin is plotted in the lower panel.
The MLE for the detector parameters are also shown (see Table 3.2 for units).
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3.3.4 Constraints and Regularisation

Due to the ill-posed nature of the blind deconvolution problem, it can be useful to include

constraints and regularisation/penalty terms (i.e. Bayesian priors) on the model parameters

to restrict the scope of their possible solutions, or push the model parameters to some a priori

preferred value when the data are uninformative.

Non-negativity

In the deconvolution literature, it is very common to restrict the pixel values in the underlying

scene s to non-negative values. For our problem, while it is reasonable to restrict the pixels

in the blur kernel to non-negative values, it is less clear whether it is correct to enforce non-

negativity on s. In any given LI image, there will almost certainly exist faint sources at or below

the detection threshold that blend into the sky background. In the units of the final inferred

scene, it could be that these sources have negative flux, and will be strongly affected by any

non-negativity constraint.

In practice, this decision should, at least partly, be motivated by the adopted noise model.

It seems reasonable to force s to be non-negative if using the PGN noise model, as this will

guard against possible numerical issues with likelihood evaluations, since under this particular

noise model, the image model mn, should be non-negative everywhere; the PGN noise model

does not permit negative photoelectrons5. However, if using a simple squared error loss (as we

do for tests on simulated, noiseless images in Section 3.4.1), no such ‘physical’ argument for

non-negativity of s can be made. In this case, the crucial point is that the data do not constrain

the absolute value of any given parameter in s, but only the relative values of the parameters.

Consequently, in this work, we do not enforce non-negativity on s in the tests on noiseless data

(Section 3.4.1), but we do impose this constraint for the tests on data modelled with the PGN

noise model (Sections 3.4.2 and 3.5).

Penalised Maximum-Likelihood-Estimation

Noise amplification is the perennial problem for many deconvolution algorithms, and this is

only exacerbated by the extremely low signal-to-noise of our short exposure data. It is then

5For this reason, we also restrict bn ≥ 0 when using the PGN noise model, especially as we always sky-subtract s0

to mitigate the anti-correlation between kn and bn. The differential background level between this sky-subtracted
model and the data will be non-negative, justifying this constraint, which in combination with the non-negativity
constraints on kn and s will ensure mn is always non-negative.
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common to include penalty terms in the loss function to guard against excessively noisy blur

kernels and scene estimates.

Given the degenerate nature of the inference problem, the accuracy with which we can

determine each of the kn kernels will strongly determine how we update s at each step. Indeed,

extensive empirical experience gained from developing and testing The Thresher has shown us

that almost all problems in the reconstruction of s can be traced back to poor kernel inference.

The delta-function basis used to model the kernel is highly flexible, but this comes at the cost

of increased overfitting, resulting in excessively noisy kernels, particularly when the signal-

to-noise is low (Becker et al., 2012; Bramich et al., 2016, provide some instructive examples

from the highly analogous Difference Image Analysis literature). This is a problem, as noise

in the kernel will propagate to successive estimates for the scene. To guard against this, we

include the L1 norm on the kernel pixels as a penalty term to our loss function, which pushes

kernel pixels towards 0 unless the data are informative. Consequently, we can re-write step

(i) (Equation 3.4) as

(i) [k̂n, b̂n] = arg min
kn≥0, bn

l(yn; kn, bn, st ,Ω) + npixφ||kn||1 , (3.12)

where npix is the number of pixels in each yn image, and φ is a tuning constant which sets the

strength of the regularisation, and must be set empirically. In practice, we find values in the

range of φ = 0.001− 0.1 to be reasonable, with lower signal-to-noise data requiring stronger

kernel regularisation.

It is common to also include penalty terms on the scene which reflect our beliefs about

the properties of images. These penalty terms typically disfavour high frequencies (e.g. sharp

gradients) in the scene, and so have a smoothing effect, and can help suppress noise. Popular

choices include the L1 or L2 norm on the image gradients. Unfortunately, these penalty terms

actually favour blurry scenes (Levin et al., 2011). Additionally, they are prone to introducing

correlated artefacts into the image model, and their gradient fields produce complicated PSFs

which pose challenges for the purposes of any further measurements on the reconstructed

image. These issues pose serious challenges for the astronomer, and distinguishes our use-case

from the general image reconstruction setting. In astronomy, the target of the deconvolution

must almost always be useful for the purpose of making measurements, and the PSF is typically

one of the things that we are most interested in measuring! Having a practically useful model
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for the PSF is extremely important for a variety of downstream tasks that we are likely to care

about (e.g. source detection, astrometry, flux measurements).

Lastly, as discussed in Vio et al. (2005), the penalisation of the high frequencies of the image

model could effectively nullify our efforts in implementing an accurate statistical description

of the noise which attempts to exploit this low intensity, high frequency information. These

penalty terms are designed to ensure that low /mid frequencies dominate the reconstruction.

While unimportant for band-limited imaging data, this could badly affect the performance on

LI data, as it prevents us from fully exploiting the unique advantages these short-exposures

offer us in constraining the high-resolution estimate of the scene.

To summarise, in practice we find that as long as the blur kernel estimation is accurate,

these simple penalisation terms for the scene are either unnecessary, or create more problems

than they solve.

No sum-to-one constraint

There is a remaining multiplicative degeneracy between the kn blur kernels and s. We have

found that successive updates to s will increase its photometric scale, and the scale of the blur

kernels will decrease accordingly in order to fit the data (Equation 3.1). This does not cause

any problems for the results presented here, but for applications where preserving the pho-

tometric scale of the data in the reconstructed image is important e.g. (uncalibrated) source

flux measurements, a sum-to-one constraint could be applied to the blur kernel pixels. Also,

while not being a problem we have encountered, it is conceivable that numerical issues could

arise as the scale of the kernels gets smaller, further motivating some sort of regularisation or

constraint. For these reasons, we will experiment with implementing such a feature in future

applications of our algorithm.

3.3.5 Algorithm and Implementation details

We sketch the pseudo-code for The Thresher below (Algorithm 1). Inferring the blur kernel

and differential background in step (i) for every yn image is the computational bottleneck of

the algorithm. This problem has received renewed attention in astronomy in the context of

Difference Image Analysis (DIA) – also known as image subtraction – in the advent of the

Legacy Survey of Space and Time (Ivezić et al., 2019), and a variety of popular algorithms

exist (Alard & Lupton, 1998; Bramich, 2008; Zackay et al., 2016, for example). However,
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these approaches all assume a Gaussian noise model for the imaging data – which is leveraged

to solve the problem analytically – and cannot be generalised to handle the PGN likelihood

(Equation 3.7) appropriate for our short exposure EMCCD images. Consequently, we base our

kernel solution approach on the PyTorchDIA algorithm (Hitchcock et al., 2021), which re-casts

the DIA problem as an optimisation, making it general to the choice of objective function. As

the name suggests, this code is built within the PyTorch machine learning framework (Paszke

et al., 2019), and makes use of the powerful tools within – such as automatic differentiation

and highly optimised, GPU-accelerated convolution computations – to make it performant.

Like PyTorchDIA, The Thresher also makes use of PyTorch to automatically compute gradi-

ents of the objective function with respect to the image model parameters. We stress again that

this does not just bring advantages in computational efficiency. Because of these automatic

differentiation capabilities, The Thresher is entirely general to the choice of the image model

and noise model. Although we focus on the case of EMCCD images in this paper, The Thresher

can straightforwardly generalise to work with other high frame-rate detectors with very dif-

ferent noise properties, such as the next generation of sCMOS devices (Qiu et al., 2013; Steele

et al., 2016; Walker, 2020).

We should note that the convolution of s with a (square) kernel is undefined for pixels in s

within half a kernel-width from its edges. Therefore, when fitting kn and bn in step (i) of the

algorithm, these edge pixels in s and yn do not enter the loss. Then, in order to ensure that

the updated s preserves the original dimensions of the yn images in step (ii), we must pad s

when convolving it with k̂n. In this work, we used a naive zero-padding, and this may result

in “edge-effects” in the reconstructed image; while the background level of s should be close

to zero, it is not exactly zero, and any sources that are situated on the image edges could be

strongly affected. This padding is a delicate but necessary operation, since without it s would

become smaller and smaller at each iteration every time it was convolved with a new k̂n.

Also, in order to keep the kernel array size reasonable, we align each yn image with s to

the nearest integer pixel at each iteration. This avoids having to interpolate between pixel

values, since any sub-pixel precision mis-alignment between yn and s will be captured by k̂n

(Bramich, 2008). While the integer shifts between images should almost always be less than

half a kernel width in size, and so will not affect the fit in step (i), any shift, regardless of size

will affect the update in step (ii), as "missing" pixels around the image edges must be replaced

68



3.4. Simulated Image Tests

to preserve the dimensions of each yn image. As with the aforementioned zero-padding, we

again choose to substitute these missing pixels with zeros as a crude estimate of the sky level in

the short exposure imaging, which will also contribute to any edge-effects in the reconstructed

image.

Algorithm 1 The Thresher

1: Input: Stream of images yn for N ≥ 2
2: Output: Reconstructed image s
3: (scene) Initialise s0 as the sharpest shift-and-added X% of TLI images and (optionally)

subtract some estimate of its sky background
4: (scene) Set α0 so that it is proportional to s0
5: (kernel) Set size of kernel array and φ
6:

7: for I passes over the data do
8:

9: while another image yn available do
10: Align yn with st to the nearest integer pixel
11: (i) [k̂n, b̂n] = arg min

kn≥0,bn

l(yn; kn, bn, st ,Ω) + npixφ||kn||1

12: (ii) st+1← st −
α0p
ν̂t+ε
µ̂t

13: end
14: return last estimate st

3.4 Simulated Image Tests

We first test our algorithm on a detailed simulation of a Lucky Imaging data set. This artificial

telescope is similar to the DK154, with the same mirror size, but a pixel scale at 0.05 ”/pix,

rather than the actual DK154s LI camera’s 0.09 ”/pix sampling. The DK154 ‘red’ camera has

a broadband filter with an effective wavelength of ∼ 800 nm, and so we adopt this as the

wavelength for this monochromatic simulation.

Simulating Lucky Imaging data

We used the HCIPy package (Por et al., 2018) to generate the atmospheric phase screens

needed to simulate the complicated LI PSFs. We adopted a single layer model generated by

the infinitely long phase screen extrusion method of Assémat et al. (2006), which provides a

memory efficient approach to generating realistic, time-evolving phase screens as would be

observed over the course of a long LI run. Observing conditions were chosen to be similar

to those under ‘good’ La Silla seeing conditions, at 0.6 arcseconds, corresponding to a Fried

parameter, r0 = 27 cm at 800 nm. Archival GSM data were used to set the outer scale of the
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turbulence to L0 = 24 m, and the wind speed to v = 5.8 m/s (Martin et al., 1998).

Planar light waves – consisting of real and imaginary components – are propagated through

this atmospheric model and are incident on a circular telescope aperture with diameter D =

1.54 m. The instantaneous speckle-pattern observed on the detector at the focal plane of

the telescope is then obtained by applying a fourier transform to this wavefront and down-

sampling it to the appropriate pixel scale, at 0.05 arcseconds per pixel.

The coherence time for speckle-patterns associated with this single layer atmospheric model

can be computed as τe ∼ 0.31D/v = 80 ms (Tubbs, 2003). In practice, the Danish 1.54m usu-

ally takes 100 ms exposures, and so some degree of time-averaging will occur. To simulate the

PSFs associated with each 100 ms exposure, we therefore time-average 100 speckle patterns

sampled at 1 ms intervals.

Equipped with a simulation for the PSF, we can now populate a set of images with point

sources in the following way.

(i) We first define a 128× 128 pixel grid, and choose this to be populated with 10 point

sources.

(ii) Fluxes (in units of e−Photon) are randomly drawn from U ∼ (10, 500) for every source.

(iii) The sub-pixel (x , y) positions of these 10 sources are randomly populated across the

image, while avoiding the regions close to the edges. The brightest source is moved to the

exact centre of the image.

(iv) In each image, the associated 0.1 s time-averaged PSF is scaled to the flux from (ii) at

the position of (iii) on the grid defined in (i).

(v) A sky level of 0.1 e−Photon is then added to each image.

(vi) Finally, for every pixel in each noiseless image, ADU values are randomly sampled

from the PGN PDF (Equation 3.7), with f = 25 (e−EM/ADU), G = 300 (e−EM/e
−
Photon), σ0 = 60

(e−EM), c = 0 (e−Photon) and q = 1. This assumes that all contributions from spurious charges are

zero, the quantum efficiency is flawless, and that instrumental effects such as per-frame bias

level drift, have been perfectly corrected for.

In this way, we generate a stack of 3000 simulated 100 ms exposures.
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3.4.1 Tests on Noiseless Images

Before deploying our algorithm on realistically noisy and coarsely sampled astronomical im-

ages, we will first assess what it is capable of learning from idealised, noiseless and well-

sampled, high frame-rate imaging data. For this test, we use our spool of 3000 noiseless short

exposure PSFs, which are generated at a pixel scale of ∼0.013 arcseconds.

The model image was initialised with the sharpest 1% of shift-and-added exposures. Fig-

ure 3.2 shows how this estimate of the high-resolution scene improves with successive SGD

updates. We ran our algorithm for a total of four passes (equivalent to 12,000 SGD updates)

over the noiseless image spool, and in Figure 3.3, we plot the diffraction limited Airy pattern,

the sharpest 1% of shift-and-added exposures, and the model returned by our algorithm after

12,000 updates. As the data are noiseless, we adopted a simple squared error for the loss

function (i.e. (data - model)2). Under this loss function, we do not adopt any non-negativity

constraint on the scene model. As the data are noiseless, we do not need to enforce any L1

regularisation on the kernel pixels. The SGD step-size was initialised as α0 = 0.005s0, and the

kernel array was set to be 129× 129 pixels large6 .

Encouragingly, albeit in this highly idealised scenario, the model returned by The Thresher

is able to recover something like the Airy diffraction pattern of the telescope. In fact, the

central lobe of the model PSF is tighter than that of the instrument diffraction pattern. This

can be more clearly seen by plotting the radial profiles of these images in Figure 3.4. We can

see that the peaks of the rings returned by the model are at approximately the same location

as those of the diffraction limited PSF, and the intensities of the peaks decreases at about the

same rate with distance from the centre. However, for rings closer to the peak intensity, they

tend to be shifted slightly towards the centre, and the central lobe itself is noticeably sharper.

It is reasonable to wonder if it really is possible for The Thresher to do better than the optics

alone. In theory, the information to achieve this does exist in our collection of images. Due to

atmospheric turbulence, the short exposure PSFs have wandering centroids, and so we get a

slightly different view of the scene in each observation; there is additional spatiotemporal data

available in the sequence of images. It is this extra information which allows super-resolution

methods to reconstruct images sharper than the diffraction limit (Borman & Stevenson, 1998).

6In this case of noiseless data and a simple squared error loss function, we found that fitting the large kernel array
in step (i) of our algorithm was more quickly achieved with the L-BFGS method (Liu & Nocedal, 1989), and so
we used that optimisation algorithm to minimise Equation 3.4 in this test, and this test only.
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Figure 3.2: The model image returned by our algorithm after (left to right) 0, 50, 250 and 500 SGD
updates from the test on noiseless short exposure PSF images.

Figure 3.3: 128× 128 pixel cutouts of the (from left to right) theoretical instrument diffraction pat-
tern, the shift-and-added sharpest 1% of images and the model returned by our algorithm after 12000
updates from the test on the 3000 noiseless short exposure PSF images. All cutouts are normalised
relative to the highest intensity pixel, and are plotted on a logarithmic scale. The squared error loss
used by our algorithm for these noiseless data does not require non-negativity of the model, and so we
do not enforce this constraint. Consequently, some regions close to the centre went negative, and for
the purposes of plotting on the log-scale we added a small offset.

Figure 3.4: Radial profiles of the PSF images in Figure 3.3. Each (normalised) intensity value is the
mean of all pixels at the given distance from the peak. The pixel scale is ∼ 0.013 arcseconds per pixel.
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3.4.2 Tests on Noisy Images

Next, we run our algorithm on our simulated DK154 EMCCD data (see Section 3.4 for a de-

scription of the how the images are generated). The initialisation for the model, s0, was con-

structed as the TLI sharpest 50% of images. The median pixel value of s0 was subtracted as

an estimate of the background, and non-negativity was enforced. We set the kernel array size

to be 25×25 pixels, φ = 0.07, α0 = 0.005s0, and we made a single pass over the data set (i.e.

3000 SGD updates).

We plot the model image and the TLI sharpest 1% and 50% coadds in Figure 3.5; to high-

light the noise in the images, they are all displayed on a log-scale, with a small positive offset

added for visual clarity. The coadd of the sharpest 1% images is sharp, but at very low signal-

to-noise. The point sources in the coadd of the sharpest 50% have high signal-to-noise, but this

comes at the expense of resolution, and the PSF exhibits a broad, extended halo characteristic

of shift-and-add methods.

The Thresher, after having been fed 100% of the images in the spool, delivers the best of

both worlds; the image model is as sharp as the best images in the data set, but at substantially

higher signal-to-noise. Plots of the radial profile of the central brightest star – normalised to the

same scale – are shown in Figure 3.6. The width of the PSF in our image model is comparable

in sharpness to the PSF in the TLI sharpest 1% coadd, but appears much smoother due to the

significant improvement in signal-to-noise.

It is important to note that we have not run our algorithm to some converging resolution.

Unlike in the highly idealised scenario in Section 3.4.1, as the image model starts to approach

something close to the diffraction limited scene, we encounter issues with representing s on this

now coarsely sampled grid. This in turn badly affects the per-image kernel inference, leading

to a positive feedback loop of bad updates to the image model. This issue could be mitigated by

representing s and each kn at a finer pixel sampling, and including a down-sampling operation

in the forward model to match the resolution of the data (i.e. a super-resolution approach).

However, for typical astronomical images, the associated computational expense can become

prohibitive, and in practice, it is not always necessary to achieve this resolution. The utility

of our algorithm is that it can do better than TLI in terms of resolution and signal-to-noise.

For most science goals, this is generally a more useful objective to aim for than a perfect

deconvolution.
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Figure 3.5: A comparison of the TLI sharpest 1% and sharpest 50% of images, and the image model
returned by The Thresher after a single pass over a stack of 3000 simulated short exposures. For com-
parison with the model, the TLI coadds have had their respective median pixel values subtracted (as
estimates of their sky levels) and non-negativity enforced. All images are on a log-scale.

Figure 3.6: Radial profiles of the bright, central star in Figure 3.5 in the sharpest 1% TLI coadd and the
image model returned by The Thresher. The theoretical diffraction limited PSF is plotted for comparison.
Each (normalised) intensity value is the mean of all pixels at the given distance from the peak. The
pixel scale is ∼ 0.05 arcseconds per pixel.

74



3.5. Real Image Tests

3.5 Real Image Tests

Here, we run The Thresher over a spool of 4800 real 0.1 second DK154 ‘red’ (i.e. ∼ 800nm

wavelength) EMCCD exposures, streaming through the yn images chronologically. The target

is a central 20× 20 arcsecond (i.e. 256× 256 pixel) region of the globular cluster NGC 7089,

and the time-averaged seeing was ∼ 0.8 arcseconds. We adopt the noise model parameters

estimated from the fits to dark images in Section 3.3.3 to calibrate our likelihood function

(Equation 3.7). All raw images were dithered (as described in Section 3.3.3), and then bias

subtracted (including the per-frame drift level) and flat-fielded. A cosmic ray was identified

on a single image in the spool; the affected pixels were fairly isolated from any sources, and

so their values were simply replaced with the median value of the image, as an estimate for

the sky background.

s0 was again initialised as the shift-and-added sharpest 50% of images. Next, we subtracted

an estimate of the 2D sky background7 of s0 and enforced non-negativity. The step-size was

initialised as α0 = 0.005s0, and the tuning constant controlling the L1 regularisation on the

kernel was set to φ = 0.03. The kernel array was set to be 25 × 25 pixels, and we make a

single pass over the data (i.e. 4800 SGD updates).

In TLI, the SNR of the coadd can only be improved by stacking increasingly blurrier images,

and so the resolution rapidly worsens. Provided The Thresher is able to accurately account for

the individual frame PSFs, feeding more data to the algorithm will not degrade the resolution

of the image model and the SNR should increase. This is exactly what we see in Figures 3.7 and

3.88; the image model returned by our algorithm is of comparable sharpness to the sharpest

1% of images in the stack, but at substantially higher signal-to-noise.

Indeed, many faint sources that are either blended and/or barely distinguishable above

the background in the coadds are clearly visible in the image model. This capability of The

Thresher to reconstruct even very faint sources was an important goal during its design, and

this directly motivated the development of the robust SGD procedure and accurate, physically

motivated EMCCD noise model.

We note that some sources close to the edges of the TLI coadds cannot be clearly viewed in

7This was estimated using the background tools in the photutils package (Bradley et al., 2016).
8In reality, the Danish 1.54m is not diffraction limited, and the limiting resolution is set by the mirror support
and optical system. Consequently, the sharpest achievable PSFs in any given short exposures appear somewhat
triangular, and the diffraction limit PSF in Figure 3.8 is purely instructive.
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Figure 3.7: A comparison of the TLI sharpest 1% and 50% of images, and the image model returned
by The Thresher after a single pass over a stack of 4800 real short exposures. For comparison with
the model, the TLI coadds have had their respective sky background’s subtracted and non-negativity
enforced. All images are on a log-scale.

the model, and there is a prominent absence of flux along the model’s right-hand edge. This

is due to issues with the convolution operation being undefined for these border pixels, and

data images being aligned with the model, as explained in Section 3.3.5.

3.6 Current limitations of The Thresher and the scope for future

work

3.6.1 Flux Non-linearity

One attractive property of coadding astronomical images is that source fluxes are preserved. In

the general case, where the sky background level of the data are non-zero (i.e. every bn > 0),

deconvolution algorithms provide no such guarantee. Historically, this was an area of interest

during the early years of the Hubble Space Telescope (HST), where a variety of deconvolution

algorithms were used to partially compensate for the aberrations introduced by the defective

primary mirror (see White & Allen 1991 for an overview). Some of these studies indicated that

the deconvolution introduced systematic non-linearities in flux in the reconstructed image,

and so an additional correction was needed to calibrate the photometry. This issue motivated

the development of deconvolution algorithms adopting a "two-channel" approach, which have

been shown to preserve source fluxes by decomposing the deconvolved image model into point

sources and background (Hook & Lucy, 1994; Magain et al., 1998, for example).

The Thresher, as presented in this chapter, is not designed to explicitly distinguish between

point sources and sky background in the scene, and so we should not expect the relative

photometric scale of the data to be preserved in the reconstructed image if the background is

76



3.6. Current limitations of The Thresher and the scope for future work

Figure 3.8: Radial profiles of a bright, fairly isolated, centrally located star in Figure 3.7 in the sharpest
1% TLI coadd and the image model returned by The Thresher. The theoretical diffraction limited PSF is
plotted for comparison. Each (normalised) intensity value is the mean of all pixels at the given distance
from the peak. The pixel scale is ∼ 0.09 arcseconds per pixel.

non-zero. We probe this behaviour using the results of Sections 3.4.2 and 3.5, where bn > 0

for every yn image. We do this by fitting image models (of the form in Equation 3.1) to the TLI

coadds of all the images in each data set. If a reconstructed image has preserved the relative

photometric scale of sources in the data, then a plot of pixel values in (the kernel convolved)

s against their counterparts in the coadd should be consistent with a straight line with a slope

of 1, and intercept 0. As we are now fitting an image model to the shift-and-added stack of the

short exposure images, Y , we can adopt a Gaussian approximation for its noise, where only

the photon contributions are significant. We adopt upper-case notation here to make clear that

we are referring to coadds of the yn short exposures, so Equation 3.1 now becomes

Mi j = [K ⊗ s]i j + B . (3.13)

Ignoring the irrelevant normalisation constant, the negative log-likelihood takes the form,

lN (Y ; K , B, s, f , G ) = −
∑

i j

ln pN

�

Yi j |K , B, s, f , G
�

=
1
2

∑

i j

�

Yi j −Mi j

σi j

�2

+
∑

i j

ln σi j , (3.14)

with photon shot-noise limited per-pixel uncertainties9

σ2
i j = 2Mi j

G
f

. (3.15)

9Note that although we are in the Gaussian limit, there is no analytical approach to minimising this function due to
the photon shot noise. The factor of two in Equation 3.15 is referred to as the ‘excess noise’ factor, and accounts
for the probabilistic cascade amplification (Korevaar et al., 2011; Hirsch et al., 2013).
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We can then return the MLEs of the PSF-matching kernel and sky background that fit s to the

coadd,

[K̂ , B̂] = argmin
K , B

lN(Y ; K , B, s, f , G) (3.16)

and compute M̂ via Equation 3.13. We do this for both of the final estimates of s returned by the

tests on simulated and real images (Sections 3.4.2 and 3.5), fitting each of these s estimates

to their respective stacks of 100% of the shift-and-added data. Plots of pixel counts in the

image model, M̂ , against their respective counts in the coadds are shown in Figure 3.9. In the

middle and bottom panels we plot the residuals from the straight line representing photometric

consistency between the model and data; residuals in the bottom panels are expressed as a

percentage of the model value (i.e. as a percentage of the model brightness). Uncertainties

on the points are equal to the square root of the variances given by Equation 3.15.

The two plots suggest that The Thresher does indeed introduce non-linearities into the flux

of the reconstructed image. Specifically, fluxes of bright objects are systematically overesti-

mated; in both plots, the residuals from a consistent photometric scale become more negative

with increasing model brightness. This is most clearly seen in the right panel of Figure 3.9, as

the dynamic range of sources in the crowded field is large. The asymmetry in the residuals at

the faint end is an artefact of the 2D background subtraction of the scene initialisation.

Some experimentation has suggested that this problem decreases by allowing The Thresher

to run for longer, making several passes over the data (similar to findings by Lindler et al.

2013). However, this has to be balanced with computational expense and issues with model

representation as the reconstructed sources become increasingly sharper. Given the impor-

tance of preserving the local photometric scale of the data in the reconstructed image for many

science cases, this is highlighted as something to address for future work on our algorithm.

3.6.2 Computational expense

The computational bottleneck of our algorithm is set by the speed with which we can fit kn and

bn (Equation 3.12), as this requires computing a convolution for the estimate of the forward

model (Equation 3.1) at each step in the optimisation as l is minimised. The convolution

operation is embarrassingly parallel, and so The Thresher leverages GPUs if they are available.

Lucky Imaging data sets consist of thousands of images, but since the algorithm only ever

has to access a single image at a time, memory management is not an issue. Nonetheless, it
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Figure 3.9: A plot of pixel values of the (kernel convolved) reconstructed image vs. the respective
counts in a TLI 100% selection coadd from the tests in (left) Section 3.4.2 and (right) Section 3.5. The
straight line – with gradient 1 and intercept 0 – represents photometric consistency between the model
and data as a function of flux. The residuals in the bottom panel are expressed as a percentage of the
model value.

must process these many images, and so must perform very many convolutions. All tests in

this paper were run on modest hardware – a laptop with a single GeForce GTX 1050 – and

so execution times were fairly slow, at about 2.5, 6 and 20 hours for the tests in Sections

3.4.2, 3.5 and 3.4.1 respectively. Desktop GPUs will of course help to beat-down those times,

particularly if the images are large, but the technique remains computationally expensive.

Indeed, although the code is designed to be agnostic to the hardware, if only a CPU is available

to the user, it may prove to be computationally intractable for most problems.

3.7 Conclusions

We have presented The Thresher, a new algorithm for processing Lucky Imaging data. It funda-

mentally differs from Traditional Lucky Imaging (TLI) shift-and-add procedures in that it op-

timises a physically motivated likelihood function for the entire set of imaging data to recover

the underlying astronomical scene. Because it uses the full data set, The Thresher outperforms

TLI in signal-to-noise; because it accounts for the individual-frame PSFs, it outperforms TLI in

angular resolution.

We implement an accurate noise model for low light level, Electron Multiplying CCD data.

When combined with a robust stochastic gradient descent procedure and appropriate regulari-
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sation of model parameters, The Thresher can cleanly reconstruct even extremely faint sources,

which may be below the detection threshold in any given short exposure. The Thresher is en-

tirely general to the choice of image model and noise model, as it makes use of automatic

differentiation tools, and has been designed to anticipate near future high-frame rate imag-

ing on sCMOS devices. Furthermore, it makes use of GPUs to massively accelerate the many

convolution computations.

While the image model returned by the current version of The Thresher can be used for,

among other things, astrometry and source detection, systematic non-linearities in flux must

be corrected for if accurate photometry is needed. Addressing this issue will be a focus for

future development of our algorithm.

We end by commenting that the ideas in The Thresher, while particularly well suited to high

frame-rate imaging data, can also be useful for fitting models to conventional images. To this

end, we also include the option to adopt a Gaussian log-likelihood for the noise in the imaging

(of the form in Equation 3.14) suitable for conventional, ground-based CCD exposures, as part

of our software implementation. While the deconvolution would no longer benefit from the

high frequency information uniquely available to short exposures, The Thresher provides an

interesting alternative to co-addition approaches when the image-to-image PSF is varying.

Development of the software implementation of our algorithm is ongoing, and we refer the

reader to the following Github repository https://github.com/jah1994/TheThresher.
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4
A data system for the serendipitous detection of

small outer solar system objects

4.1 Declaration

The work in this chapter has been done in collaboration with Prof. Richard Gomer (Texas A&M

University). It describes the results of a pilot study, and the work has not been published nor

submitted for review.

4.2 Introduction

The serendipitous occultation of background stars by outer solar system objects is recognised as

a key approach to understanding the size and quantity of small (on the scale of<10 km radius)

objects in the Kuiper belt, and perhaps even the Oort cloud (Nihei et al., 2007; Bickerton et al.,

2008; Bianco et al., 2009; Siraj & Loeb, 2020). Because of their small light reflecting area

these objects are extremely faint and direct detection by even the largest telescopes remains
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unfeasible.

Understanding the population of these far out objects is crucial for testing planetary system

formation models (Duncan & Levison, 1997; Davis & Farinella, 1997; Benz & Asphaug, 1999;

Pan et al., 2005; Benavidez & Bagatin, 2009; Raymond et al., 2018; Hands et al., 2019). For the

solar system, such models predict that the objects populating the Kuiper belt are the members

of the far-out objects of the system’s protoplanetary disk that failed to form planets, due to

the slow rates of collisions at these distances. The Oort cloud is thought to be populated

by planetesimals that initially formed closer to the Sun, but were ejected to distant orbits

by gravitational perturbations from the young giant planets, and is likely a resevoir of long-

period comets that enter the inner solar system (Hills, 1981; Weissman, 1990; Dones et al.,

2004). Ascertaining the size, spatial and mass distributions of these far-out objects is therefore

a necessary step in understanding the solar system’s evolutionary history.

To date, from both ground and space-based observations, a small number of sub-kilometre-

sized Kuiper Belt Object (KBO) candidates have been reported (Chang et al., 2011; Liu et al.,

2015; Arimatsu et al., 2019b), and a likely sub-kilometre KBO has been detected (Schlichting

et al., 2009). There have however been no confirmed detections of Oort cloud objects. The

Transneptunian Automated Occultation Survey (TAOS II) is a dedicated serendipity survey

for detecting these occultation events (Lehner et al., 2012). The project will use three 1.3

m telescopes equipped with sCMOS cameras to observe ∼ 10, 000 stars close to the ecliptic

simultaneously at 20 Hz. After a delay due to the COVID 19 pandemic, observations are

expected to begin shortly.

The use of high frame-rate imaging in both predicted and serendipitous occultation sur-

veys is a popular approach to detecting small outer solar system objects (Roques et al., 2009).

These include dedicated missions, such as the aforementioned TAOS II and its precusor, the Tai-

wanese American Occultation Survey (TAOS) (Bianco et al., 2010). These surveys are comple-

mented by other high frame-rate astrophysics missions – in which stellar occultations are just

one of many science cases — where medium to large-sized telescopes are equipped with fast

frame-transer CCDs (Dhillon et al., 2007; Doressoundiram et al., 2013), Electron-Multiplying

CCDs (Dhillon et al., 2014), and most recently sCMOS cameras. The low noise and rapid

frame rates that characterise these new cameras make them an exciting choice for both ded-

icated occultation surveys (Pratlong et al., 2016; Wang et al., 2016; Mazur et al., 2022) and
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observations targeting predicted occultation events (Arimatsu et al., 2019a).

In this chapter, we document the initial phase of work for an occultation survey comple-

mentary to TAOS II. Many of the next generation of ground-based telescopes will have un-

used areas within the circular optical focal surface e.g. the 11.25 m Maunakea Spectroscopic

Explorer (MSE) will sample light within a circumscribed hexagonal area within this region

(Marshall et al., 2019). We propose to place high frame-rate sCMOS cameras within these

otherwise unoccupied parts of the focal surface. The image quality within these regions will

be appropriate for flux measurements of objects. The disadvantage of this is that we cannot

prioritise observations of dense star fields close to the ecliptic to maximise the chance of de-

tecting KBO or inner Oort cloud object occultations, but we believe this is more than offset

by our unique practical advantage of taking up no dedicated telescope time; we will just take

high frame-rate imaging of whatever is in the FoV as the telescope works through its schedule

of observations.

There are many challenges associated with this work. Several overlap with TAOS II, so

we have looked to them for some inspiration. Some are however unique to this project. In

particular, we propose to take high-cadence photometry at frame rates on the order of 100

Hz, which is considerably higher than that in TAOS II. The justification for running a survey

at these high frame rates is that the majority of far out solar system objects are thought to

be sub-kilometre in size (Kenyon & Luu, 1999; Kenyon, 2002; Bottke Jr et al., 2005). For

the Kuiper belt, there are predicted to be 1-2 orders of magnitude more 1 km bodies than

10 km bodies, and 1-2 orders of magnitude more 0.1 km objects than 1 km objects, and it’s

speculated that the size distribution of objects in the Oort cloud should be similar. Such small

objects produce shorter duration occultation signals which would be poorly sampled at 20 Hz,

attenuating the depth of the occultation, and making it more likely to be missed in a survey,

let alone characterising the event, which is also made challenging if not impossible due to the

sampling resolution. Further, the occultation signals associated with such small objects are

weak, and even if they were sufficiently well sampled at 20 Hz, they would be challenging to

detect with a 1.3 m telescope.

For this initial phase of the work we have used Teledyne Photometrics’ new "Kinetix" cam-

era, which can readout a 3200x3200 pixel area as fast as 498 Hz1. At these frame rates, just

1https://www.photometrics.com/products/kinetix-family/kinetix
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a second of observing time produces ∼ 5 Gb of imaging data. Storing the imagery is there-

fore totally impractical for any long-term serendipity survey. We must therefore process the

images in real time, and once we’ve extracted the information useful for our purposes, throw

the image away, never to be seen again. This will make many astronomers uncomfortable, and

if it doesn’t, it probably should, but needs must. Outside of astronomy, there are precedents

for doing this in research limited by data storage capabilities, such as the use of a “trigger” in

particle physics experiments 2.

This chapter is arranged as follows. Section 4.3 briefly presents the expected signatures

produced in photometric time series of occultation events by small solar system objects. We

then describe our approaches to real time image processing and occultation event detection

in Section 4.4. In Sections 4.5 and 4.6 we report the results from trialling our data system

over 7 nights of observations with the 2.1m telescope at McDonald Observatory, Texas. Our

conclusions are given in Section 4.7.

4.3 Occultation Light Curves

As comprehensively outlined in Nihei et al. (2007), the occultation light curves of small outer

solar system objects can display signatures associated with Fresnel diffraction effects. The

signal is not just a function of the size, distance and impact parameter of the object (the

distance of closest approach between the observer and the centre of the occultation shadow),

but also the angular size of the background star and observation wavelength, and consequently

the stellar type. For reference, we list the symbols of the occultation event parameters and their

associated definitions in Table 4.1.

In Figures 4.1 - 4.3, we show the expected noise-free occultation signals for a variety of

parameter configurations at the sampling frequencies of TAOS II (20 Hz) and the fiducial

frequencies used in the observations presented in this chapter (80 and 300 Hz)3. The blue

curves correspond to a KBO objects at 40 AU, and the orange curves are for objects at 1000

AU i.e. at the scale of the supposed inner edge of the Oort cloud.

Note the diffraction effects seen in the occultation light curves of the more nearby objects.

2https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.lhc_trigger
3The code used to generate these signals was adapted from https://github.com/ekpass/colibri/blob/
master/fresnelModeler.py. Modifications were made to model occultations viewed outside of opposition, in
addition to the effects of integrating over the Kinetix response curve convolved with a particular stellar spectrum.
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Symbol Definition

r Radius of an occulting object

a Distance to an occulting object

b Impact parameter of an occulting object

θ∗ Angular size of the background star

φ Observation opposition angle

f Observation sampling frequency

t Time

I Relative brightness

Table 4.1: Table of occultation event parameters and their definitions

The background star is a main sequence star of spectral type A0V, whose spectrum was obtained

from the Pickles (1998) catalogue. In this work, we will observe with no filter to maximise our

data signal-to-noise ratio (SNR), and we model this by convolving the A0V star’s spectrum with

the Kinetix camera’s response curve, and then integrate the occultation intensity pattern over

the wavelength range 200−1050 nm. The effect of this is to smooth the diffraction fringes in

the occultation light curves that would otherwise be observed at a single wavelength, or with

a narrow filter (Nihei et al., 2007)

The bigger and closer the object is, the deeper the associated dip in relative brightness.

Less obviously, as seen in Figure 4.3, the larger the angular size of the background star, the

more the event depth is dampened. Indeed, the occultation signature of a fairly large 2.5 km

radius object at a distance of 1000 AU is neglible when θ∗ ≥ 0.2 mas, which is approximately

the size of a Red Giant at a distance of 50,000 light years.

These are the expected signals if viewing the event at opposition (i.e. φ = 0), where the

Earth’s orbital velocity is orthogonal to the background star. It is worth noting that the length

of the events would be increased at shallower viewing angles, since the Earth then spends a

longer time in the occultation shadow. This consideration, in addition to wanting to minimize

the angular size of the background star, factored in to our choice of targets in Section 4.5,

where we prioritised young open clusters close to the line of the Earth’s orbital velocity, and

containing fairly young main sequence stars.

With an eye to the future of this project, we also include a plot of occultation signals pro-

duced by sub-kilometre diameter objects in Figure 4.4. This highlights the benefit of us running
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a survey at sampling frequencies substantially higher than the 20 Hz used for TAOS II. Due to

the shorter timescales of these events, the occultation depths are reduced by roughly half when

sampled at 20 Hz, and the signal is more likely to be missed in the survey data. However, the

overall depths are small compared to those in Figure 4.1 – with even very nearby Oort cloud

objects producing negligible occultation signals – and detection is likely only feasible in data

acquired on the larger, next generation of telescopes such as the MSE.

The improvement in SNR by mounting the Kinetix on telescopes with large mirrors such as

the MSE has the added benefit of allowing us to collect sufficient flux from distant stars, with

small angular sizes. As hinted at above, this is of particular importance for the detection and

characterisation of solar system objects further out than the Kuiper belt, (see the right-hand

column of Figure 4.3). For a telescope with a mirror of diameter D observing a star of radius

r∗ at distance a∗, the observed flux, F , is

F ∝ D2/a2
∗ , (4.1)

and the stellar angular size is approximately equal to

θ∗ ≈ r∗/a∗ . (4.2)

Consequently, for observing a star of the same spectral type (r∗,1 = r∗,2) at a greater dis-

tance (a∗,2 > a∗,1), with a larger telescope (D2 > D1) such that the observed flux is the same

(F1 = F2), the angular size would be smaller by a factor of D1/D2
4.

For this pilot study, we used the 2.1 m McDonald telescope and targeted nearby open

clusters, whose bright main sequence A0V stars have angular sizes of about 0.02 mas. By

mounting the Kinetix on the 11.25 m MSE, we could observe such stars at the same SNR at a

distance such that their angular size would be 0.02× (2.1/11.25) ≈ 0.004 mas. The benefit

of using these more distant background stars for searching for far out solar system objects is

made clear by Figure 4.5, showing the occultation signals of a 5 km radius object at a distances

of 5000 AU and 10,000 AU, passing in front of an A0V type star with angular sizes of 0.004,

0.02 and 0.2 mas. For stellar angular sizes of 0.02 and 0.2 mas, the occultation light curve

4With the caveat that there would be increased extinction for the more distant object, which is strongly dependent
on its galactic latitude. This will decrease the brightness of the star and redden its spectrum.
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is smoothed, and the resulting dip depth is greatly attenuated, complicating detection. The

occultation of this object in front of the smaller, more distant star however would produce a

detectable signal.

Regardless of the parameter configurations, the distinguishing features of these events is

that they occur on sub-second timescales. To search for occultations, we therefore need a

highly sensitive imaging detector with a fast readout and low noise, as exemplified by the

latest generation of sCMOS cameras.

4.4 The Data System

We define the "data system" as comprising of the camera, PC and software. The 29.4 mm diag-

onal FOV 3200× 3200 pixel "Kinetix" sCMOS camera was released by Teledyne Photometrics

in early 2021. A distinguishing feature of this camera is that it can be operated in four distinct

observing modes5. For this study, we work in either Sensitivity or Speed mode: the former

has a maximum frame-rate of 88 Hz at 12 bits/pixel while maintaining low readout and dark

current, while the latter can achieve 498 Hz at the expense of increased noise and a decreased

8 bits/pixel depth. The Kinetix is connected to the PC with two 50 m fibre optic PCI cables.

In 2021, our colleague Darren DePoy at Texas A&M University fabricated an adaptor for this

10×10×13 cm camera for the 2.1 m telescope at McDonald Observatory, which was used for

a series of successful observations in September 2021, but due to the immense data volume

produced at these frame rates, we were only able to take data for a few minutes at a time when

running the camera at these high frame rates. Below, we explain our solution to this problem.

4.4.1 Real Time Data Processing

Because the Kinetix camera generates gigabytes of image data within seconds of observing, we

have written software to extract the information useful for our project – namely the aperture

photometry and sky background vales in the FoV – before throwing the image away.

The main computational challenge is to extract the stellar aperture photometry from the

images on the timescale of ∼ 1 millisecond. This requires calibration steps such as bias sub-

traction and flat correction, the summing of pixels at each aperture, and the determination of

sky levels in the field. To achieve this, we were motivated by two important insights 1) We

5https://www.photometrics.com/wp-content/uploads/2021/11/Kinetix-Datasheet-Rev-B2-02112021.pdf
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Figure 4.1: Noise-free occultation light curves that would be observed with the Kinetix with no filter
for circular objects of radii 0.5, 2.5 and 5 km at distances of 40 and 1000 AU, passing in front of an A0V
background star, viewed at opposition. The impact parameter and background star angular size are set
to b = 0 km and θ∗ = 0.02 mas respectively. Each row corresponds to the fiducial sampling frequencies
of f = 20, 80 and 300 Hz for the TAOS II mission, and the Sensitivy and Speed modes of the Kinetix
camera used in this work.
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Figure 4.2: Noise-free occultation light curves that would be observed with the Kinetix with no filter
for a 2.5 km radius circular object at distances of 40 and 1000 AU, passing in front of an A0V back-
ground star, viewed at opposition. From left to right, the impact parameter is set to b = 0, 1 and 4 km
respectively. The background star angular size is set to θ∗ = 0.02 mas. Each row corresponds to the
fiducial sampling frequencies of f = 20, 80 and 300 Hz for the TAOS II mission, and the Sensitivy and
Speed modes of the Kinetix camera used in this work.
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Figure 4.3: Noise-free occultation light curves that would be observed with the Kinetix with no filter for
a circular object of radius 2.5 km at distances of 40 and 1000 AU, passing in front of an A0V background
star, viewed at opposition. From left to right, the background star angular size is set to θ∗ = 0.01, 0.02
and 0.20 mas respectively. The impact parameter is set to b = 0 km. Each row corresponds to the
fiducial sampling frequencies of f = 20, 80 and 300 Hz for the TAOS II mission, and the Sensitivy and
Speed modes of the Kinetix camera used in this work.
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Figure 4.4: Noise-free occultation light curves that would be observed with the Kinetix with no filter
for circular objects of radii 0.05, 0.1 and 0.25 km at distances of 40 and 1000 AU, passing in front of an
A0V background star, viewed at opposition. The impact parameter and background star angular size
are set to b = 0 km and θ∗ = 0.02 mas respectively. Each row corresponds to the fiducial sampling
frequencies of f = 20, 80 and 300 Hz for the TAOS II mission, and the Sensitivy and Speed modes of
the Kinetix camera used in this work.
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Figure 4.5: Noise-free occultation light curves that would be observed with the Kinetix with no filter
for a circular object of radius 5 km at distances of 5000 AU and 10,000 AU, passing in front of an
A0V background star, viewed at opposition. From left to right, the background star angular size is set
to θ∗ = 0.004,0.02 and 0.20 mas respectively. The impact parameter is set to b = 0 km. Each row
corresponds to the fiducial sampling frequencies of f = 20, 80 and 300 Hz for the TAOS II mission, and
the Sensitivy and Speed modes of the Kinetix camera used in this work.
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can exploit the inherent parallelism in this image processing problem, and 2) Most pixels in

the FoV are not particularly useful.

Firstly, an initial long integration "reference image" is obtained and saved to disk, from

which a PSF model is inferred for the sake of determining aperture sizes and performing source

detection. We model the PSF as an asymmetric 2D Gaussian, with standard deviations of φx

andφy . For computational efficiency, we use a rectangular aperture for each star, and typically

set the two side lengths to be ∼ 2.5×φx and ∼ 2.5×φy . Next, the reference image is cross-

correlated with the fitted PSF model to produce a point source "detection map", on which we

run a peak finding routine to determine the source positions with an approach analogous to

that of Lang & Hogg (2020) for the case of a single image. The detected sources are given

IDs, and then ordered in descending order of brightness. Once the sizes and positions of the

apertures are known, we cut out aperture “stamps” of the master flat and bias frames at these

pixel positions. Next, a plot of the reference image is displayed on the GUI which allows the

user to select several rectangular regions from which local sky values will be computed for

each image. Once this is done, a plot of the reference image annotated with the sky apertures

and background regions is displayed; an example is shown in Figure 4.6. The software then

switches the Kinetix into live acquisition mode, and images are read out into a circular FIFO

buffer, from which they are sequentially "popped" for processing, one image at a time.

For each popped image, we cut out the aperture stamps at the positions of the detected

sources and the sky background regions (thus ignoring the vast majority of non-useful pixels).

All pixels in the aperture stamps and sky regions are bias subtracted and flat corrected with

their corresponding dark and flat stamps. Then, the calibrated pixel values in the aperture

stamps are summed to give source flux estimates, and the median pixel value for each sky

region is computed to give estimates of the local background levels. Arrays of these numbers

and their associated IDs are then saved to disk, and the image is removed from computer

memory forever. In this way, we are saving MBs of photometric data to disk rather than GBs

of imagery, and so can comfortably observe many 1000s of stars over several nights.

Crucially, since operations on a particular stamp or sky region are independent of all others,

we can do this processing in parallel. The PC used in this work was equipped with an 18 core

Intel Xeon W-2295 processor6, and for most targets observed in this work, the mean image

6We cannot use dual processor systems for this work, since access of memory held by the other processor can
significantly throttle the data rates possible with the Kinetix.
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processing time was ∼ 1 − 2 ms per image. The PC was also equipped with 64GB of DDR4

RAM, allowing us to easily store ∼ 100 images in the FIFO buffer at any time.

In order to assess the telescope guiding and quality of the incoming data, plots of a couple

of exemplar apertures and their associated light curves are generated and displayed on the GUI

every 5 seconds or so. To generate these figures quickly, we use ‘blitting’7 to cache all parts of

the plot that remain the same in each figure (e.g. the axis labels, grid lines and whitespace

etc.), such that it takes only ∼ 10 − 100 ms to render the figure. An example display from

this real time plotting is shown in Figure 4.7. Finally, while the software runs, time-stamped

housekeeping information is saved to a log file to record the positions and sizes of the sky and

aperture stamps, the camera exposure time and mean image processing times. A configuration

file for a given data run is also saved, which records additional information such as the names

of the calibration frames used in the reduction, and the subset of brightest sources used to

determine the PSF model.

Having saved aperture flux measurements of stars in the FoV to disk, we can proceed

to analyse the data for candidate occultation events offline by first correcting for systematic

noise in the light curves, and then applying a matched filtering procedure to sift through the

corrected data to detect events.

The software was written in Python, and makes grateful use of the following packages: PyV-

CAM8, Numba, Numpy and Matplotlib (Lam et al., 2015; Harris et al., 2020; Hunter, 2007).

4.5 Observations at McDonald Observatory

We trialled our data system with the Kinetix camera on the 2.1 m telescope at McDonald

Observatory, Texas, over 7 nights between the 16 - 22 September 2022. The Kinetix is 3200×

3200 pixels, with a plate scale of 0.08”/pixel with a focal reducer lens at the Cassegrain focus,

and so has a FoV of 4.3’. To maximise the signal-to-noise of the data, we observed with no

filter. In total, we observed for more than 35 hours over the 7 nights, resulting in ∼ 30 GB

of star light curves and sky background measurements of bright open clusters. Open clusters

were chosen as the bright main sequence stars within them have an angular size an order

of magnitude smaller than red giants at a comparable distance, which are the brightest stars

populating globular clusters, and would smooth out the occultation signature for all but the

7https://matplotlib.org/stable/tutorials/advanced/blitting.html
8https://github.com/Photometrics/PyVCAM
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Figure 4.6: Example of a reference image annotated with the (black) source aperture stamps and (red)
regions in which to compute sky background levels. The image is of M2, taken in high-speed mode with
the Kinetix camera on the McDonald 2.1 meter in September 2021.
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Figure 4.7: The real time plots consist of up to four panels; during the continuous live acquisition,
this is updated once every ∼ 5 seconds. The first two panels are bright, well-separated aperture source
stamps from the most recently acquired image; axes indicate pixels. We also include the option to
time-average over many aperture source stamps if the targets are faint. Data are from sources 0 and 4
from Figure 4.6. The third panel shows the normalized light curves from these two stamps for the last
100 images. The final panel shows the light curve root-mean-square deviation (RMSD) as a function
of source flux for all detected sources over the last 100 images. Collectively, this information helps us
with guiding the telescope and assessing the choice of aperture size.

largest objects (see Figure 4.3). Because the length of an occultation is determined mostly

by the effective speed that the Earth passes at right angles through the shadow, we observed

clusters that were as close as possible to the line tangent to the Earth’s orbit; this effectively

slows the speed that the Earth passes through the shadow, and thus lengthens the occultation

time.

The targeted clusters, and an inventory of the observations, are recorded in Tables 4.2 and

4.3 respectively. The frame rate we record in Table 4.3 is our software’s estimate of the true

real time data processing rate. Note that for 3 ms exposures (i.e. when the Kinetix was in

Speed mode) we do not achieve the theoretical maximum of 333 Hz. This was found to be

due to imperfections in the optic fibre cables connecting the Kinetix to the PC that we couldn’t

completely remove. Regardless, even when this problem was at its worst between 18 - 21

September, the frame rate still exceeded 300 Hz.

Master dark frames encoding the pixel bias patterns and dark currents for the Speed and

Sensitivity modes were obtained by averaging 1000 frames with no light on the camera, taken

at the same frame rate as the data. A similar series of sky flats were obtained and then median

averaged immediately after sunset with the telescope tracking off, and slewing the telescope
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Object RA Dec Distance [kly] Apparent Magni-
tude [V]

Apparent Dimen-
sions [V]

M11 18:51:05 -06:16:12 6.1 5.8 22.8’

M37 5:52:18 33:32:02 4.5 6.2 24’

NGC884 02:22:0 57:08 7.6 3.8 30’

NGC6811 19:37:17 46:23:18 3.6 6.8 13’

NGC7788 23:56:45 61:23:59 7.8 9.4 5’

Table 4.2: The open clusters targeted for these observations. In addition to hosting many bright, main
sequence stars, these targets were chosen as they were fairly close to the line tangent to the Earth’s
orbit at the time of observing.

N-S while taking data in the two modes with the exposure time set to give an average pixel

value in each frame of approximately 50% of the maximum pixel value.

4.5.1 Correcting systematic noise

For easy reference in what follows, Table 4.1 provides definitions of the symbols introduced

in this chapter pertaining to our approaches to correcting our raw photometry and flagging

candidate occultation events in the data. We define a "data set" as being the set of aperture

photometry light curves corresponding to a single row of the observation inventory shown in

Table 4.3.

The raw aperture flux time series of stars in our data sets are affected by correlated noise.

This arises due to sub-second tip-tilt wavefront motions, where the speckle pattern PSF wan-

ders within the fixed source aperture. Since this noise is systematic – that is, common to all

stars in the FoV to some greater or lesser extent – we can use their collective behaviour to

correct this effect. Each data set consists of n= 1, ..., N stars, each with t = 1, ..., T concurrent

flux measurements, and stars are ordered by brightness such that n = 1 is the brightest and

n= N is the faintest. Typical data sets consist of 107−109 individual flux measurements, so as

a first approach, we use a computationally inexpensive “classical” comparison star approach,

where we average over the time series of a subset of stable stars.

The tip-tilt induced noise is common to all light curves to some greater or lesser extent

(see the raw aperture flux measurements in Figure 4.8). For the purposes of this work, it is

convenient to work in relative brightness rather than ADU flux measurements (e.g. for making

decisions about what star light curves are amenable to detecting occultation events of a given

depth, what star light curves should be used as comparison stars etc.). Figure 4.9 shows
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Object Date Exposure time [ms] Duration [Hrs] Detected stars Frame rate [Hz]

M11 2022-09-16 12 0.25 373 83

M11 2022-09-16 12 3.5 468 83

NGC884 2022-09-16 12 3 73 83

M37 2022-09-16 12 0.4 55 83

M11 2022-09-17 3 0.15 198 322

M11 2022-09-17 12 2 326 82

M11 2022-09-17 3 1 313 328

M11 2022-09-17 3 0.75 291 328

NGC884 2022-09-17 12 0.15 56 82

M11 2022-09-18 3 0.3 292 301

M11 2022-09-18 12 1 421 83

M11 2022-09-19 12 1.3 642 83

M11 2022-09-20 12 0.5 296 83

M11 2022-09-20 12 1 282 83

M11 2022-09-20 3 0.15 149 301

M11 2022-09-20 3 1 222 301

M11 2022-09-20 3 1 269 301

M37 2022-09-20 12 1.8 87 83

NGC884 2022-09-20 12 0.4 58 83

NGC7788 2022-09-20 12 2.65 78 83

M11 2022-09-21 12 0.8 185 83

M11 2022-09-21 3 2.8 135 301

M11 2022-09-21 3 0.25 158 301

M11 2022-09-21 3 0.1 118 301

NGC884 2022-09-21 3 1.5 35 301

NGC884 2022-09-21 3 2.5 41 301

NGC884 2022-09-21 3 1 35 301

M11 2022-09-22 12 1.5 125 83

M11 2022-09-22 3 1 16 330

M11 2022-09-22 3 1 23 330

NGC6811 2022-09-22 12 0.65 28 83

Table 4.3: Observation inventory 16th - 22nd September. 3 and 12 ms exposures were recorded in the
Kinetix’s Speed and Sensitivity modes respectively.
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Symbol Definition

n Star number in a data set

N Total number of stars in a data set

t Exposure number in a data set (proxy for time)

T Total number of exposures in a data set

m Comparison star number in data set

M Total number of comparison stars, where M < N

FRaw,n Aperture photometry flux in ADU of star n

IRaw,n Uncorrected relative brightness of star n

wm Weight of comparison star m

ISys Estimate of the systematic noise in a data set

ICorr,n Corrected relative brightness of star n

H Matched filter template

f Frequency

S Unnormalised matched filter signal

σ Matched filter signal-to-noise ratio

Table 4.4

the same data in Figure 4.8, but each time series has now been normalised w.r.t its median

brightness i.e. IRaw,n(t) = FRaw,n(t)/Median[FRaw,n]. It is clear that the tip-tilt induced noise

affects all stars in a similar way in terms of their relative brightness, and we can compute the

time-wise weighted average to describe this behaviour using some subset of M (i.e. M < N)

stable comparison stars,

ISys(t) =
M
∑

m=1

1
M
[w1 IRaw,1(t) + ...+wM IRaw,M (t)] , (4.3)

with weights equal to the reciprocal of the standard deviation of the particular star’s time

series,

1
wm
=

√

√

√

√

1
T

T
∑

t=1

[IRaw,m(t)− IRaw,m]2 , (4.4)

where IRaw,m is the mean relative intensity of comparison star m9. The corrected flux

9N.B. IRaw,m is not in general equal to 1, as the flux time series were normalised by their median, and not the mean,
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Chapter 4. A data system for the serendipitous detection of small outer solar system objects

Figure 4.8: The raw aperture flux measurements in ADU of a few sources of different brightnesses in
an example Sensitivity mode data set. Note the log scale of the y-axis.

measurements for some given star n at time t are then simply,

ICorr,n(t) =
IRaw,n(t)

ISys(t)
, (4.5)

where n is not in the set of M stars used to compute ISys(t).

In Figure 4.10 we show a comparison of the IRaw,n and ICorr,n time series for stars over a

range of brightnesses, where the lighter coloured raw light curves have been vertically offset

for clarity. This highlights the importance of the correction, since many features in the IRaw,n

could be otherwise easily confused for candidate occultation events.

We plot the SNR of the corrected data light curves against the stellar magnitude from two

example Sensitivity (circles) and Speed (crosses) mode runs targeting M11 in Figure 4.1110.

We also plot the predicted SNR of the data for each run, using a noise model which includes

estimates of the readout noise, dark current, photon shot noise and scintillation. The predicted

scintillation noise, which is computed via the popular approximation given in Young (1967),

clearly limits the achievable SNR at the bright end, and this limit is lower for shorter exposure

to guard against spurious measurements affected by e.g. cosmic ray hits
10The reference images for each of these runs were astrometrically calibrated with the astrometry.net tool (Lang

et al., 2010), and the detected sources were cross-matched against the Pan-STAARS catalogue to obtain the
r-band magntiudes (Magnier et al., 2013).
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4.5. Observations at McDonald Observatory

Figure 4.9: The data in Figure 4.8 where each star light curve has been normalised w.r.t its median
flux measurement.

data. The corrected Speed mode data shows reasonable, albeit noisy agreement with the

model prediction, but the SNR of the corrected Sensitivity mode photometry actually exceeds

the theoretical limit at the bright end. While the data does appear to be scintillation limited

as predicted by the noise model, this limit is more than 50% higher than expected. We are

still investigating the source of this, though suspect it is a limitation of our simple photometric

correction. Whether the scintillation noise is correlated amongst comparison stars or not, it is

possible that by dividing each comparison star light curve by their collective weighted average,

some of the noise proportional to the signal is removed. And as the brightest stars dominate

the weighted average, we are in effect over correcting their raw time series, resulting in a

higher than expected SNR.

We also plot the theoretical SNR predictions for TAOS II at 20 Hz and observations with

the Kinetix on the MSE in both camera modes in Figure 4.11. From these SNR estimates,

we generate some occultation light curves that would be observed for small objects occulting

a fiducial r magnitude 14 star – of stellar type A0V with an angular size of 0.02 mas – by

TAOS II and our planned mission to mount the Kinetix on the MSE. These are shown in Figure

4.12. The benefits in sampling frequency and SNR of our planned project over TAOS II for

detecting the small, but presumed to be numerous objects of radius < 1 km are evident. TAOS

II’s aim is to detect occultations for KBOs down to 0.5 km diameter - this is certainly possible

for brighter targets, but for the more numerous faint stars it is extremely challenging, and
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Chapter 4. A data system for the serendipitous detection of small outer solar system objects

Figure 4.10: A comparison of the raw and corrected relative brightnesses of some star light curves in
a data set. The lighter coloured raw light curves are vertically offset for clarity.
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4.5. Observations at McDonald Observatory

Figure 4.11: Stellar r-band magnitude vs SNR for stars in M11 in typical Sensitivity (circles) and
Speed (crosses) mode datasets from our observations on the 2.1 m at McDonald Observatory. We plot
the predicted SNR of stars across this brightness regime for our observations on the 2.1 m, the upcoming
TAOS II mission and our planned observations on the 11.25 m Maunakea Spectroscopic Explorer (MSE).
The noise model predictions include appropriate estimates of the readout noise, dark current, photon
shot noise and scintillation. Scintillation noise clearly limits the achievable SNR at the bright end for
these short exposure time series, and horizontal lines are marked on the plot showing where this limit
should exist for the Sensitivity (undashed) and Speed (dashed) observations.

effectively impossible when coupled with the slower 20 Hz sampling frequency, as shown in

the top left panel of Figure 4.12. In comparison, such events could be clearly resolved by

Kinetix observations on the MSE, allowing us to probe objects that the TAOS II mission is not

optimised to detect. This is true for more distant occulting objects too, as although the duration

of these occultation events is quite long, the dips in brightness are nonetheless shallow, and

benefit from both the improved sampling frequency and SNR of mounting a Kinetix on the

MSE. Indeed, Figure 4.12 suggests we would have a good chance of detecting an occultation

of an object with a 1 km radius at 1000 AU, while such events would be invisible to TAOS II

for all but the brightest of background stars. However, Figure 4.12 was generated with the

optimistic assumption that we would have perfectly corrected the systematic noise sources in

the light curve data. This motivates experimenting with more advanced methods to the simple,

first approach used here.
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Chapter 4. A data system for the serendipitous detection of small outer solar system objects

Figure 4.12: Occultation light curves for 3 small objects of r ≤ 1 km at distances of 40 AU (blue) or
1000 AU (orange) passing in front of a r-band magnitude 14 star of spectral type A0V, with an angular
size of 0.02 mas. The top row shows how these events would appear in TAOS II data, and the middle
and bottom rows show how the same occultation signals would appear in Kinetix observations on the
11.25 m Maunakea Spectroscopic Explorer (MSE). Gaussian white noise was added to the simulated
events based on the predicted SNR estimates in Figure 4.11 for each situation.
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4.5.2 Occultation Event Detection

We adopt a matched filtering approach to detect candidate occultation events in the corrected

light curves. There is a huge amount of data to sift through, and because flagged candidate

events will require by-eye review for validation, the following decisions were made to produce

a manageable number of events for human inspection.

As outlined in Section 4.3, the occultation light curves produced by small solar system

objects are dependent on several parameters, and while the variety of possible signals is di-

verse, very different parameter configurations can result in similar observed signals in the

data. This complicates the generation of the template bank for matched filtering, and so

like Huang et al. (2021), we attempt to simply detect U-shaped dips in the data. These

templates have only two parameters; the depth d (in relative intensity), and duration ∆t

(in number of exposures as a proxy for time). In this work we trial templates with d =

0.1 − 1 at intervals of 0.1. Then, depending on the Kinetix camera mode, we trial ∆t =

[2,3, 4,5, 6,7, 8,9, 10,11, 12,13, 14,15, 15,17, 18,19, 20,30, 40,50, ..., 500] (i.e. 10 exposure

intervals between 20 - 500) for Sensitivity mode, and ∆t = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 15, 17, 18, 19, 20, 40, 60, 80, ..., 2000] (i.e. 20 exposure intervals between 20 -

2000) for Speed mode. In this way we generate two banks consisting of templates for Sensi-

tivity and Speed mode observations. We show below that in practice, adopting these simple

approximations to real, complex occultation signals is comparably effective to using a more

accurate template.

We start with a given template H(t) (padded to be the same length as the data) and cor-

rected data ICorr,n(t), and transform these into the frequency domain, by taking their Fourier

transforms e.g. H( f ) =F [H(t)]. We then compute the unnormalised matched filter signal in

the time domain as

Sn(t) =F−1[H∗( f )ICorr,n( f )] , (4.6)

where ∗ denotes the complex conjugate. We compute a robust, empirical estimate of the

matched filter signal-to-noise ratio (SNR) timeseries as
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σn(t) =
Sn(t)

κ×MAD[Sn]
, (4.7)

where MAD[Sn] is the median-absolute-deviation of the unnormalised matched filter signal

in the time domain for source n. We set κ = 1.4826, which is appropriate for approximately

normally distributed data (refer to Equation 2.34). If σn(t) exceeds some threshold, it can be

used to flag a candidate occultation event in the light curve of star n at time t.

To test the efficacy of this procedure for detecting candidate occultation events, we injected

simulated occultation signals into the time series of real data, and attempted to detect the

events by matched filtering using both the exact template that generated the signal and a

simple U-shaped template. This approach means we do not have to make any assumptions

about the noise in the data. The results are shown in Figures 4.14 - 4.16. All data were

corrected using the approach described in Section 4.5.1, and for this particular data set, M =

71 comparison stars were used, which were chosen on the basis that the standard deviation

of their uncorrected normalised relative intensity light curves was less than 0.1. The σn(t)

time series shown are those corresponding to the template in the bank which gave the highest

peak.

As should be expected, for occulting objects in the Oort Cloud, the best matching U-shaped

template results in a comparable detection significance to using the true occultation signal as

there are less pronounced fringe diffraction effects associated with these signals. There is

however reduced efficiency when using U-shaped templates for KBOs, but as seen in Figure

4.15, these simple U-shaped templates can still confidently detect even modest KBO occultation

events. Indeed, this approach can still recover even very shallow KBO associated dips (see

Figure 4.16).

4.6 Results and Discussion

For each data set in Table 4.3, we applied corrections to the raw aperture flux measurements via

the method outlined in Section 4.5.1. The set of M stable comparison stars for a given data set

was chosen as all stars whose uncorrected relative brightness standard deviation was less than

0.1. This typically provided a sample of 10s of bright stars, but in the event one or less stars

met this condition, using the top 10 brightest stars was found to be a useful heuristic. From

these stars, an averaged description of the light curve systematics was computed (Equation
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Figure 4.13: [Top] Simulated occultation event for a 2500 m radius object at 1000 AU injected into
the real time series of a star in an example Sensitivity mode data set. Other occultation parameters are
b = 0 m, and θ∗ = 0.02 mas, and the star is assumed to be of spectral type A0V. The data has been
corrected using the approach outlined in Section 4.5.1. [Bottom] The matched filter signal-to-noise
ratio time series of the (left) true occultation signal and (right) best-matching U-shaped template.

Figure 4.14: [Top] Simulated occultation event for a 1250 m radius object at 1000 AU injected into
the real time series of a star in an example Sensitivity mode data set. Other occultation parameters are
b = 0 m, and θ∗ = 0.02 mas, and the star is assumed to be of spectral type A0V. The data has been
corrected using the approach outlined in Section 4.5.1. [Bottom] The matched filter signal-to-noise
ratio time series of the (left) true occultation signal and (right) best-matching U-shaped template.

107



Chapter 4. A data system for the serendipitous detection of small outer solar system objects

Figure 4.15: [Top] Simulated occultation event for a 500 m radius object at 40 AU injected into the
real time series of a star in an example Sensitivity mode data set. Other occultation parameters are
b = 0 m, and θ∗ = 0.02 mas, and the star is assumed to be of spectral type A0V. The data has been
corrected using the approach outlined in Section 4.5.1. [Bottom] The matched filter signal-to-noise
ratio time series of the (left) true occultation signal and (right) best-matching U-shaped template.

Figure 4.16: [Top] Simulated occultation event for a 250 m radius object at 40 AU injected into the
real time series of a star in an example Sensitivity mode data set. Other occultation parameters are
b = 0 m, and θ∗ = 0.02 mas, and the star is assumed to be of spectral type A0V. The data has been
corrected using the approach outlined in Section 4.5.1. [Bottom] The matched filter signal-to-noise
ratio time series of the (left) true occultation signal and (right) best-matching U-shaped template.
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4.3) to correct all N light curves (Equation 4.5).

4.6.1 No detection of real occultations

We next applied the matched filtering approach to the corrected light curves (as described in

Section 4.5.2). For either the Sensitivty or Speed mode data, matched filtering the respective

template bank against a single light curve usually takes ∼ 10 − 100 seconds, and so to save

processing time, all corrected light curves whose SNR was less than 3.3 were ignored from

this part of the analysis, as these are too noisy to reliably detect an occultation event. For all

remaining corrected light curves, we computed the matched filter SNR time series (Equation

4.7) using the templates in the banks appropriate to the sampling frequencies of either the

Sensitivity or Speed modes of the Kinetix. Also, we manually examined all corrected light

curves by eye to rule out the presence of any obvious, deep dips in the data.

The threshold for a candidate event detection in light curve n at time t was set to beσn(t)>

5. This decision was made after some experimentation, and is a tradeoff between bogging the

by-eye verifier down with having to sift through many false positives, while remaining sensitive

to modest, potentially real events. In order to guard against multiple detections of the same

event in a given n light curve, we divide each light curve into 1000 exposure "windows", and

if multiple peaks pass the detection threshold we record only the largest value of σn(t) and

the associated template i.e. that template that best matches the feature in the data in this part

of the light curve.

Next, to further reduce the number of the candidates to a manageable size prior to by-

eye inspection, if multiple σn(t) peaks above the detection threshold are identified within 50

exposures of each other in different light curves, these peaks are rejected. This guards against

false positives associated with correlated noise that is not fully removed by our correction

procedure. This leaves us with a set of isolated σn(t) peaks that are not seen in any of the

other light curves above the detection threshold.

We then sift through the returned events by eye. As part of the human scanning, we

checked figures of the candidate event light curve plotted alongside a nearby bright star as a

comparison. If the two light curves show similar behaviour in the vicinity of the supposed dip,

the event was flagged as spurious and ignored.

Having applied the above procedure to both the Sensitivity and Speed mode data sets, we
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did not find any candidate occultation events. This is to be expected given the short length

and small coverage of this pilot study. For example, the first TAOS survey, after 7 years of

dedicated observations of rich star fields close to the ecliptic, has also reported no detections

(Bianco et al., 2010; Zhang et al., 2013).

4.6.2 Computing our Detection Efficiency with Simulated Events

We estimate the detection efficiency of our candidate event detection algorithm by injecting

simulated occultation signals into the data, and computing the detection efficiency as a func-

tion of the occultation event parameters and the signal-to-noise ratio of the data. This can

be used to assess the efficacy of our data correction and event detection procedures, and ulti-

mately can be used to compute upper bounds on object abundances.

As the parameter space of an occultation event is large, we choose to fix some parame-

ters for these simulations. The sampling frequency and wavelength range can be uncontro-

versially fixed; the former is dependent only on the Kinetix mode (i.e. ∼ 300 Hz in Speed

mode and ∼ 80 Hz Sensitivity), and the latter can be simulated by integrating over the

Kinetix response curve convolved with spectrum of a type A0V main sequence star. This

stellar type is typical of the bright main sequence stars in the targeted open clusters, and

we similarly fix the angular size to 0.02 mas, which is appropriate for an A0V star at the

distance of M11, for which we have by far the most data. The two parameters most im-

portant for constraining the size and distribution of Oort cloud objects are object radii and

distances. We inject objects of radii r = 0.25,0.5, 1,2.5, 5,7.5, 10 km at distances of a =

30, 40,50, 100,250,500, 750,1000, 2500,5000, 7500,10000 AU. We also vary the impact pa-

rameter, b = 0,1, 2.5,5, 7.5,10 km and the opposition angle, φ = 0, 25,50, 75 degrees. We

then uniformly sample the time at which to inject an occultation event into a given light curve.

We inject exactly one simulated event into each and every light curve whose corrected SNR

> 3.3. In total, we injected 84048 simulated occultation events into the Sensitivty mode data

set, and 38510 events into the Speed mode data. We note that injecting signals in this way

slightly overestimates the Poisson noise of an event, since we do not modify the data noise

that would be associated with the reduction in flux during an occultation, and so our reported

detection efficiencies should be considered to be conservative.

We make a couple of passes over the Speed and Sensitivity mode data sets in Table 4.3,

where we uniformly sample the occultation parameters above, generate the noiseless occulta-
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tion light curve, and inject that into the raw flux measurements associated with a given source.

We process the data in exactly the same way as in Section 4.6.1, which returns a list of isolated,

significant σn(t) peaks for each n light curve in each data set. If one of these local peaks is

within 500 exposures of the mid-point of an injected occultation, then we consider that to be a

successful detection. We show some examples of occultation events successfully recovered by

our algorithm in both the Sensitivy and Speed mode data in Figures 4.17 and 4.18 respectively.

We compute the detection efficiency as the number of recovered events divided by the

sum of the total number of injected events. The detection efficiency as a function of event

parameters is shown in Figure 4.19 for both the Speed and Sensitivity mode data sets. As to

be expected, the larger the occulting object and the closer it is to the Earth, the greater the

likelihood to successfully detect the event. The larger the impact parameter, the shallower

the dip, and we indeed see that the detection efficiency drops off slightly. The likelihood of

detecting an event is only weakly correlated with the opposition angle, but in both camera

modes the best detection efficiencies are associated with the largest angle. The opposition

angle only affects the duration of the event – with the greater the angle the longer the duration

– and since our slowest observing cadence is still ∼ 80 Hz, even the shortest duration events

simulated here are well sampled in our data, resulting in minimal sampling related annealing

of the dip depth. We note that characterising an event is a different problem to detection

however, so larger opposition angles may be of benefit in this regard since the details of events

are better resolved. Overall, the detection efficiencies of both camera modes are very similar,

and Speed mode generally provides marginally better detection success for objects with r ≤ 2.5

km, and those within 100 AU from the Earth. However, we suspect that this is due in part to

serendipitous false positives in the Speed mode data (see below).

We break down the detection efficiency as a function of object size in Figure 4.20. For

the smallest 250 m radius objects, we report non-negligible detection efficiencies at distances

of 30 - 60 AU in either camera mode. This is markedly better than those reported in Bianco

et al. (2010), who injected objects of this size at a distance of 43 AU in 5 Hz TAOS I data. At

their data SNR and sampling frequency, they were only able to detect 0.002% of the injected

events. With our substantially higher frame-rate, we can recover ∼ 4% of these events at a

comparable distance of 40 AU in our Sensitivity mode data. However, the Speed mode detec-

tion efficiencies for the smaller objects are suggestive of lingering false positives not removed

by our rejection criterion e.g. see that there are non-negligible detection efficiencies for 250 m
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Figure 4.17: Simulated occultation events detected in 83 Hz data acquired in Sensitivty mode. Plots
are annotated with the event parameters.
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Figure 4.18: Simulated occultation events detected in 300 Hz data acquired in Speed mode. Plots are
annotated with the event parameters.
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Figure 4.19: The detection efficiency as a function of simulated occultation event parameters for the
Sensitivity and Speed mode data sets.
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objects at distances greater than 100 AU, where the occultation should be completely buried

in the light curve noise, but just by chance, residual correlated noise features in the data have

coincided with a real injected event. This not only highlights the necessity of by-eye follow

up of flagged detections when searching for real events, but also an approach to quantifying

the false positive rate. The simplest approach would be to the run the detection algorithm

on our light curves with no injected events, under the assumption these do not contain real

occultations, and assess the number of false positives returned. Going further, we could utilise

Gaussian Processes (MacKay et al., 1998) to model the correlated noise in our data, and gener-

ate synthetic light curves with no injected occultation signals, and run the detection algorithm

on these. Both approaches will be considered in future work, and will be a requirement in any

analysis claiming a real detection.

We have a ∼ 10% chance to detect objects with a radius of 10 km at 7500 AU in Sensitivity

mode data, but this drops to a small, although non-zero chance at 10,000 AU on this 2.1 m

telescope. Speed mode provides similar detection efficiencies for these very far out, but fairly

large objects. We are then only able to recover occultations by large Oort cloud objects at the

closest boundary of the inner disk, thought to be distributed within ∼ 10,000 − 20, 000 AU

(Oort, 1950; Hills, 1981; Morbidelli, 2005), but are reasonably sensitive to r ≥ 2.5 km objects

at distances of 1000 AU in either camera mode, corresponding to the smallest predicted semi-

major axes for Oort Cloud objects. Objects beyond this in the outer cloud, unless unusually

large, are likely beyond our reach in this data set of nearby open clusters, with target stars of

angular sizes of about 0.02 mas.

We also note that the detection efficiency does not straightforwardly drop off with in-

creasing distance in the regime of 30 - 1000 AU, particularly for the Speed mode data. The

detection efficiency of the larger objects over this regime appears to be somewhat insensitive

to the distance. For 2.5 km radius objects the detection efficiency starts to steeply drop past

distances of 1000 AU and for the 10 km objects the first big drop in efficiency is around 5000

AU. This makes sense, since for the r ≥ 5 km objects, their occultations at either 50 or 1000

AU both result in substantial drops in flux of at least 50% and so are amenable to detection

when thresholding the SNR to be greater than 3.3, while e.g. occultations by 2.5 km objects

at 50 AU result in a ∼ 90% drop in brightness, compared to only ∼ 20% at 500 AU.

We plot (normalised) histograms of the number of recovered and missed events of objects
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Figure 4.20: The detection efficiency as a function of occultation event parameters for the different
object sizes used in the simulations.
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of different sizes as a function of data SNR in Figure 4.21. As expected, the number of missed

events increases with decreasing SNR, and this effect is most pronounced for small objects, as

these produce the smallest dips in brightness. Conversely, at higher data SNR, the (normalised)

number of recovered events generally exceeds the missed events, particularly for sub-kilometre

diameter objects.

Finally, we note that having now computed our effective detection efficiency via simulation,

and not having recovered any real events in our observations, we could compute constraints

on the number of objects as a function of the sizes used in the simulation. However, given

we only have 7 nights of data to go on, these constraints are not practically useful. Indeed,

our preliminary calculations put our constraints on the upper bound of object abundances at a

couple orders of magnitude above those in the literature. The main utility of this analysis is for

the purpose of testing, and improving upon our data correction and candidate event detection

procedures as this project progresses.

4.7 Conclusions

We have outlined a pilot study for a planned occultation survey that will mount high frame-

rate sCMOS cameras in the otherwise unused areas in the focal planes of large, ground-based

telescopes. Here, we describe the data system used to process the massive amounts of imagery

in real time, and a procedure to analyse the recorded photometry for candidate occultation

events by outer solar system objects. Because of the immense frame-rates that will be used

for this project, the image processing must be done in real time, as gigabytes of imaging data

are produced every second, making storage of the imaging impractical for long-term observing

campaigns.

We present preliminary results of successfully trialling our data system on 7 nights of

“Kinetix” sCMOS observations of nearby open clusters with the 2.1 m telescope at McDonald

Observatory, Texas. We then analysed the data for candidate occultation events, and found

no detections. We also assessed the detection efficiency of our small pilot survey by injecting

simulated events into our observations. These suggest that we have a non-neglibible chance

of detecting objects with a radius of 10 km as far out as 7500 AU, and 7.5 km radius objects

out to 5000 AU. These detection probabilities increase to ∼ 70−80% for objects of these sizes

out to 1000 AU, providing us with a methodology to probe the size distribution of small solar
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Figure 4.21: The (normalised) number of recovered and missed events for objects of different sizes as
a function of data SNR.
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system objects in the inner Oort cloud. The procedure used to compute our detection effi-

ciency will be essential in further developing our data correction and occultation event search

procedures as this project progresses. Indeed, experimenting with more advanced albeit ex-

pensive procedures to correct the systematic noise in our data will be prioritised in the near

term due to the similarities between these sub-second, tip-tilt induced correlated features, and

the occultation signals we’re attempting to detect and ultimately characterise. For the bright

observed sources, the systematic contributions to the noise clearly exceed the inherent random

noise. In the literature, Principal Component Analysis (PCA) approaches have proved effective

in capturing these systematics, where the learned “eigen light curves” in a data set can be used

as basis vectors in a design matrix in a linear regression model to detrend the raw photometry

(Luger et al., 2016).

Having verified our data acquisition and processing procedures in this pilot study, the next

step in this project will be to mount the Kinetix on larger telescopes. The long-term goal is to

place the camera in the unused parts of the focal surface of the planned 11.25 m Maunakea

Spectroscopic Explorer (MSE). We have argued that the unique qualities of this project make

it complementary to TAOS II. The TAOS II mission is optimised to detect objects in the Kuiper

belt, down to diameters of 0.5 km. Because of the Kinetix’s higher frame rates and the MSE’s

much greater primary mirror size, our survey will be sensitive to occultations by both smaller

Kuiper belt objects, and much more distant objects in the inner Oort cloud. The former events

are badly sampled in the 20 Hz TAOS II data and easily missed, while the latter require faint

background stars of a small angular size to produce detectable occultation signatures, which

is challenging, if not impossible, with the small 1.3 m TAOS II telescopes.
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5
Summary and Future Work

In this thesis, I and co-authors have developed two new image processing algorithms – Py-

TorchDIA and The Thresher – and have introduced a pilot serendipity study for detecting the

population of small outer solar system objects. All of this research has required developing

performant image processing tools, and open source software releases of the algorithms de-

scribed in Chapters 2 and 3 have been made available to encourage adoption, and further

experimentation by the wider astronomy community. Indeed, it has been gratifying to hear

back from academics, undergraduates and enthusiastic astrophotographers who are trialing

these applications in their research, final year projects or hobbies.

All of these image processing applications make grateful use of the rich suite of Python

libraries. In particular, we have shown how machine learning frameworks can be used as

generic modelling environments. For image processing in particular there are striking struc-

tural similarities between foundational deep learning operations (namely the 2D convolution)

and common astronomical image models. In addition to their automatic differentiation capa-

bilities – which is a welcomed feature given the large parameter space of many image models
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– frameworks like PyTorch make running applications on hardware accelerators such as GPUs

extremely simple, allowing us to exploit the inherent parallelism in image processing. Simi-

larly, in Chapter 4 we have also demonstrated how combining Python libraries such as Numpy

and Numba can achieve straightforward parallelism across multiple CPUs to realise time crit-

ical image processing tasks.

The time it takes to develop code usually exceeds the total time it’s set to run. This is

undoubtedly why dynamically typed languages like Python, with its extensive box of packages,

is so favoured amongst researchers, as ideas can be sketched out and implemented quickly. As

far as image processing is concerned, we show that this ease of use and flexibility need not

come at the expense of performance.

The main contributions of this thesis are as follows:

• A new algorithm for difference image analysis that is fast, scalable and flexible

• A new algorithm for processing lucky imaging data (and ground-based imaging in gen-

eral) that can improve both the signal-to-noise and resolution of the observed scene

• The development of a data system that can process in real time the imagery obtained

at frame rates on the order of ∼ 100 Hz, for use in a serendipity survey to detect the

occultations of background stars by small outer solar system objects

Considering future work, I’d first like to thank those that have reached out to suggest

improvements to both PyTorchDIA and The Thresher while they adapt these tools for their own

use-cases, and help to keep the code up-to-date on the software engineering front. A great

advantage of writing these applications in PyTorch is that these machine learning frameworks

are developing in parallel with progress in accelerator hardware due to the importance of GPUs

in modern deep learning. As such, it’ll be interesting to see how these tools will develop with

advances in both software (e.g. using mixed precision training) and hardware (e.g. new GPU

models with Tensor cores) to further speed up computations.

The work in Chapter 4 will be used as a springboard for a paper submission, so any and

all feedback is strongly encouraged to help us get it into good shape. Looking further ahead,

we will attempt to fully automate the real time data processing system, such that the software

“knows” when the telescope has changed to a new target, and so can start up a new data run
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on the fly. We will also experiment with more advanced procedures to removing systematic

noise in the high frame-rate aperture photometry, using our 2.1 m McDonald data as a testbed.

We then plan to trial this improved data system on larger telescopes. In the shorter term, we

are currently planning another observing run at McDonald later this year to attempt to detect

small Jupiter Trojans occulting distant background stars with our data system.
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