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Species Distribution Models are pivotal for fisheries management. There has been an increasing number of fishery data sources available, making
data integration an attractive way to improve model predictions. A wide range of methods have been applied to integrate different datasets in
different disciplines. We focus on the use of Integrated Species Distribution Models (ISDMs) due to their capacity to formally accommodate
different types of data and scale proportional gear efficiencies. ISDMs use joint modelling to integrate information from different data sources
to improve parameter estimation by fitting shared environmental, temporal and spatial effects. We illustrate this method first using a simulated
example, and then apply it to a case study that combines data coming from a fishery-independent trawl survey and a fishery-dependent trammel
net observations on Solea solea. We explore the sensitivity of model outputs to several weightings for the commercial data and also compare
integrated model results with ensemble modelling to combine population trends in the case study. We obtain similar results but discuss that
ensemble modelling requires both response variables and link functions to be the same across models. We conclude by discussing the flexibility
and requirements of ISDMs to formally combine different fishery datasets.
Keywords: essential fish habitat, fish distribution modelling, fisheries management, integrated species distribution modelling, spatial modelling.

Introduction

Species Distribution Models (SDM) use spatially georefer-
enced data to quantify the relationship between species oc-
currence or abundance with biotic and abiotic factors in order
to gain ecological and evolutionary insight (Elith and Leath-
wick, 2009). Fish SDMs play a key role at identifying essen-
tial fish habitats (EFHs) (Laman et al., 2018; Paradinas et al.,
2020; Tolimieri et al., 2020) and producing unbiased popu-
lation trends (Maunder and Punt, 2004; Thorson and Ward,
2013; Thorson et al., 2015) that may later be used for stock
assessment.

Fishery-independent (FI) surveys collect high-quality data
that are often used to estimate population trends but have
limited coverage in space and time due to their high eco-
nomic cost. The establishment of on-board sampling pro-
grams has produced extensive new fishery-dependent (FD)
spatial data that could complement the spatial and tem-
poral coverage of FI data (Pennino et al., 2016; Paradi-
nas et al., 2021; Rufener et al., 2021). FD data are gen-
erally regarded as lower quality data since sampling loca-
tions are not randomly selected, species are often identified
to a higher taxonomic level, and fish are caught using dif-
ferent commercial vessels and different gear types. The inte-
gration of FI and FD data may be a way to improve our un-
derstanding and prediction of EFHs and population trends,
but integrating different fish distribution data may not be
straightforward.

In isolation, each dataset provides estimates of species’ rel-
ative abundance and can provide a characterization of their
habitat and spatial distribution. However, when we seek to
integrate two or more datasets, we may need to combine
different species-at-length catchability coefficients (gear ef-
ficiency in what follows) and different types of data (e.g.
biomass, abundance, and occurrence). A number of SDM
studies have proposed different approaches to integrate data
(Fletcher et al., 2019; Alglave et al., 2022).

Data pooling

The most simple approach pools data together without ex-
plicitly considering the different sources and their specific
sampling issues. Data pooling is depicted on the left panel
of Figure 1. This method assumes that the nature of the re-
sponse variable is the same across all sources. If the two data
sources are not of the same type, one of the datasets needs
to be transformed, which may result in some loss of infor-
mation (Isaac et al., 2020) (e.g. degrading abundance data to
presence–absence or presence only data).

Ensemble modelling

The middle panel of Figure 1 illustrates the use of ensemble
modelling to combine predictions based on FI and FD data
sets. Independent models are fitted for each dataset and predic-
tions are then combined. This procedure is frequently applied
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2 I. Paradinas et al.

Figure 1. Three major approaches to combining different datasets. Data pooling occurs when different data sources are combined and a single model is
fit. Ensembled modelling fits separate models to each dataset and results are then combined. ISDMs use joint modelling to integrate different datasets
by explicitly accounting for the differences in the sampling process.

in order to combine predictions or fitted effects from different
modelling algorithms (Araújo and New, 2007). However, it
may be difficult to formally combine parameter estimates un-
less both datasets are sampled at a similar spatial resolution
(Fletcher et al., 2019) and follow the same type of response
variable (and link functions if we were to combine model ef-
fects, e.g. temporal trends).

Integrated modelling

The right panel of Figure 1 illustrates integrated modelling.
It refers to modelling different datasets together by explic-
itly describing the differences in the sampling process. The
strength of ISDMs lies in combining information from dif-
ferent datasets to estimate shared parameters across mod-
els using joint-likelihood procedures. In other words, it al-
lows combining different data sources, each using a different
response variable, while estimating the common model pa-
rameters. This allows a better informed parameter estimation
than using individual models and, as opposed to data pool-
ing and ensembled modelling, allows a formal combination
of different types of data (i.e. response variables) and link
functions.

This article focuses on the use of ISDMs for integrating fish-
ery data in order to accommodate different gear efficiencies
and types of response variables. The “Integrating fishery data
through ISDMs” section describes the use of ISDMs to inte-
grate different datasets, sampling methods and types of data
together. The “Data weighting” section follows by describing
data weighting and the reasons for using this approach. Then
the “Simulation study” section presents a simulation study
that tests the performance of ISDMs to integrate three dif-
ferent data sources that collect different types of data. Next,
the “Case study” section presents a common sole (Solea solea)
case study in northern Iberian Atlantic waters, followed by a
“Results” section and we finish by providing a discussion in
the “Discussion” section.

Integrating fishery data through ISDMs

Integrating different fish distribution data implies combining
data collected using different gears, and therefore different
gear efficiencies. Gear efficiency determines the fraction of the
actual number of fish in the ocean that the gear will fish, for
a given fish species and length. Generally gear efficiency con-
stitutes a non-linear function [f(s, l)] that depends on the fish
species caught (s) and the length of the fish (l) (Fraser et al.,
2007).

Gear efficiency is hard to quantify (Zhou et al., 2014) and is
most often unknown, which makes the integration of fish dis-
tribution data a difficult task. However, certain gears could be
assumed to have proportional gear efficiency curves, i.e. their
quotient at different fish-lengths is a constant value. In such
situations, ISDMs provide a way to formally integrate differ-
ent types of data. Assuming that gear efficiencies are propor-
tional across two different samplers,

f1(s, l ) = γs × f2(s, l ), (1)

the catch per unit effort (CPUE) is also proportional. Note as
well that as we narrow the size group of the population under
study, the proportionality assumption becomes more robust.
For example, if we narrowed down the population study to
single length, gear efficiencies should be proportional given
that we observe the same species f1(s) = γ s × f2(s).

ISDMs use joint-likelihood methods with which, by mod-
elling the regression coefficients hierarchically, can estimate
shared parameters across linear predictors (Hogan and Laird,
1997; Knorr-Held and Best, 2001; Paradinas et al., 2017). In
other words, it allows combining different data sources, each
using a different response variable, while estimating common
model parameters. Furthermore, ISDMs can estimate a scal-
ing parameter that accounts for the difference in gear effi-
ciency and/or types of data (e.g. presence–absence, abundance,
biomass):

CPUE1 = γs × η + ε2,

CPUE2 = η + ε1,
(2)

where η refers to any linear predictor that may be suitable
to describe the distribution of the species under study and is
shared across predictors using joint modelling. γ s is a scaling
parameter that scales the linear predictors and ε refers to white
noise. The scaling parameter is a fixed parameter that accom-
modates the differences in the sampling process and gear effi-
ciency. Note that Equation 2 uses the same scaling parameter
(γ s) as Equation 1 to stress the link between the two equa-
tions.

Note as well that when using a log or logit link, γ s could
be removed and replaced by including a different intercept to
each predictor to do the scaling. These links provide a mul-
tiplicative nature to the parameters of the linear predictor,
and therefore the intercept performs as a multiplicative scal-
ing parameter itself (Moriarty et al., 2020). Assuming that
two datasets observe the same fish population, one collect-
ing abundance data and the other biomass data, are modelled
using a Poisson and a gamma distribution respectively, with
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Combining fishery data through integrated species distribution models 3

parameters λ and μ through logarithmic links:

log(λ1) = β0,1 + βX,

log(μ2) = β0,2 + βX,
(3)

also written as:

λ1 = eβ0,1 × eβX,

μ2 = eβ0,2 × eβX,
(4)

where eβ0,1 and eβ0,2 will scale eβX , which are shared environ-
mental effects characterized in this case as linear. It is impor-
tant to note that β is the same in both predictors, i.e. shared
across the fish abundance and fish biomass predictors using
joint modelling.

Data weighting

The joint log-likelihood of an ISDM is the sum of the compo-
nent log-likelihoods:

Log(L(β, θ, γs)) =
D∑

d=1

Log(Ld (β, θd, γsd−1
)), (5)

where β are shared parameters across D different datasets,
γs are the scaling parameters across linear predictors, and θ

are the parameters associated with the different observational
processes. Note that, for identifiability reasons, γs0 is set to
one.

Different data sources may vary in size and quality. Assum-
ing equal weights to every sample may produce results dom-
inated by the larger dataset because the joint log-likelihood
function is additive (Equation 5). As a consequence, the larger
dataset has a greater contribution to the likelihood, for exam-
ple, given two datasets, one with 100 samples and the other
with 50 samples, the first dataset will contribute two-thirds of
the likelihood and the second dataset the remaining one-third.
This may not always be desirable, thus Fletcher et al. (2019)
proposed a weighted likelihood function to fit weighted IS-
DMs. Assuming the simplest scenario with two datasets:

Log(L(β,θ,γs))=w∗Log(L1(β,θ1))+(w−1)∗Log(L2(β,θ2,γs)),

(6)

where 0 < w < 1, such that w = 0.5 would be equivalent
weighting between two datasets, which in the default weight-
ing approach (i.e. equal weights) would be as if we had the
same sample size in both datasets.

Data weighting is a common practice in stock assessment
models. These are complex models that, as opposed to SDMs,
require heterogeneous sources of data (compositional data,
catch data, survey indexes, etc.) to produce the outputs. These
data sources may be inconsistent with one another, thus sci-
entists downweight the influence of certain data source(s) to
constrain their influence in the estimates (Punt, 2015; Francis,
2017; Thorson et al., 2017).

In the contrary, SDMs do not necessarily have to integrate
heterogeneous sources of information. In fact, an ISDM would
generally respond to the idea of complementing a main data
source by other accessory source(s) of data that sample the
same population. If the information contained in the accessory
data clash with the main dataset, it could suggest that they
sample a different process (e.g.,different fractions of the popu-
lation) or are biased. Different authors agree that sensitivity of

results to data weighting is driven by model misspecification
(Thorson et al., 2017; Wang and Maunder, 2017), thus ide-
ally results should be invariant to it. Similarly, one may think
that results could be sensitive to data quality. However, if data
quality is assessed in terms of variance (i.e. the observational
process) and not bias, such variance would be absorbed by the
dispersion parameter of the probability distributions used in
the ISDM and results should remain invariant to data weight-
ing.

In this regard, testing different data weightings may be use-
ful to check whether the different data sources incorporated
in the ISDM clash (i.e. outputs sensitive to data weighting),
suggesting that they sample different process. In such cases,
one should probably not integrate these data sources into an
ISDM as it may negatively impact the estimates.

Simulation study

We used a simulation study to test the suitability of ISDMs to
integrate different types of data collected over partly overlap-
ping spatial and covariate space of a common target popula-
tion.

We simulated the distribution of a species over a 100-by-
100 grid that was driven by a spatial covariate and an uniden-
tified spatial pattern that displayed different hot-spots in the
study area (as seen in the top panels of Figure 2). According to
ecological niche theory, the simulated species displayed a non-
linear unimodal relationship with the covariate (Hutchinson,
1957).

We then simulated three, partly overlapping, fish distribu-
tion datasets, each recording a different type of data: biomass
through a gamma distribution; abundance through a Poisson
distribution; and presence–absence through a Bernoulli dis-
tribution. None of the simulated datasets covered the whole
study area, and therefore sampled only fractions of the eco-
logical niche (see Figure 2).

In order to test the performance of ISDMs, we fitted SDMs
to each simulated dataset independently, as well as an ISDM
to all three datasets together and compared the results. The
models included a non-linear fish-covariate relationship (e.g.
depth) and a geostatistical effect. All the R code used to per-
form the simulation study is available in the Supplementary
Material.

Case study

Data

This study integrated 529 FI and 1522 FD Solea solea (Lin-
naeus, 1758), abundance samples (i.e. number of specimens)
collected between 2013 and 2018 using trawl nets (our FI
data) and trammel nets (our FD data) in northern Iberian At-
lantic waters (Figure 3).

Common sole is a widely distributed and highly priced flat-
fish targeted by multi-species and multi-gear fleets (Alonso-
Fernández et al., 2019; Pennino et al., 2022b, a). This species’
bathymetric niche ranges between 0 and 200 metres in Iberian
Atlantic waters (Tanner et al., 2012). The annual trawl sci-
entific survey (i.e. FI data) that collects data on demersal
species in this area was not designed to sample common sole,
and therefore only samples the deeper part of its bathymetric
range, likely resulting in a biased biomass index trend. In con-
trast, regional FD data provide samples in the shallower part
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4 I. Paradinas et al.

Figure 2. Visualization of the different drivers that affect the simulated process in the top panels, and the resulting process along with the spatial
distribution of the samples for the different datasets represented in the bottom panels. Red dots represent the sampling locations of each survey.

Figure 3. Study area with FD sampling locations (red dots) and FI sampling locations (blue dots). Bathymetric lines indicate the 100 and 200 metre isobaths.

of its bathymetric range, thus by integrating both datasets, we
are able to cover the whole bathymetric niche of common sole.

FI data were collected during the scientific survey series
SP-NSGFS, which is performed every year in Iberian Atlantic

waters between September and November. Sample locations
were selected using a stratified sampling design based on three
bathymetric strata: 70–120 m, 121–200 m and 201–500 m.
The sampling consisted of 30 min trawling hauls, performing
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Combining fishery data through integrated species distribution models 5

∼115 hauls each year. However, this study only uses the first
two bathymetric strata (i.e. 70–120 m, 121–200 m) because
common sole does not occur at deeper waters. The dataset also
includes 20 samples collected randomly at depths of <70 m.
FI data were distributed throughout the study area.

FD data were collected in Galician waters (NW Spain) using
on-board observers. Fishing vessels were selected randomly
covering the western part of the study area and a wide range of
fishing gears throughout the year. Fishing vessels usually per-
form more than one haul per trip, and at each haul, observers
record all basic operational data (i.e. date, position, gear, etc.),
the number and weight of all retained and discarded taxa and
environmental variables such as the bathymetry and the pre-
dominant type of substratum in the haul. We selected trammel
net data, which is the better sampler of common sole (Alonso-
Fernández et al., 2019) and its gear efficiency should a priori
be proportional to that of the FI trawl gear. We had two po-
tential effort variables: the number of nets deployed at each
location and their soak time.

Response variable

Both sampling schemes observed count data, with a particu-
larly high number of zero observations (i.e. 17 and 32% in FD
and FI data, respectively) and some sporadic high abundances.
We modelled these processes using a zero-inflated negative bi-
nomial (ZINB) model that assumes a positive relationship be-
tween the negative binomial (NB) process and the probability
of being in the NB process. In other words, the probability of
zero inflation is higher at lower abundances and vice-versa.

P(y(s)) = p + (1 − p) × NB(y(s)), s = 1, ..., n,

where y(s) are the samples collected in location s, n is the num-
ber of samples, p is the probability of zero inflation, and (1 −
p) is the probability of being in the NB process, defined as:

(1 − p) =
(

μ

1 + μ

)κ

,

that depends on μ, i.e. the mean of the NB, and the hyperpa-
rameter κ, which shapes the relationship between the prob-
ability of presence in the zero-inflation and the mean abun-
dance of the NB.

We selected this particular model for the observation pro-
cess based on the belief that the occurrence and the abundance
processes are linked (Paradinas et al., 2015, 2021; Thorson,
2018). Alternatively, the modelling could also be conducted
in two stages (i.e. occurrence and abundance) by fitting a hur-
dle or delta model (Maunder and Punt, 2004).

Modelling

We applied Bayesian hierarchical modelling using the in-
tegrated nested Laplace approximation (INLA) approach
through the R-INLA package (Rue et al., 2009). First, we fit-
ted different models to each dataset and performed variable
selection independently. The FD model considered non-linear
relationships for soak time, bathymetry, month (cyclic effect),
and year, as well as a categorical covariate for the type of sub-
stratum. The number of nets deployed was used as an offset in
the FD model. The FI model only considered bathymetry and
year given that soak time does not apply to trawlers, trawlers
only sample muddy–sandy bottoms and that the FI survey is
performed only once per year. Every FI haul performed the
same nominal effort, thus we did not include any offset in

Table 1. Model comparison of FD and FI SDMs was based on WAIC and
LCPO scores.

Data Linear predictor WAIC LCPO

Fishery B 1 223.72 1.16
independent B + T 1 222.91 1.16

B + W 1 052.54 1.00
B + T + W 1 047.70 0.99

Fishery B + TS 2 071.42 0.68
dependent B + TS + ST 2 085.55 0.69

B + TS + M 2 071.34 0.68
B + TS + T 2 047.42 0.67
B + TS + W 1 837.75 0.62
B + TS + T + M 2 047.41 0.67
B + TS + T + W 1 827.59 0.61
B + TS + M + W 1 837.69 0.63
B + TS + T + M + W 2 047.41 0.67

B refers to non-linear bathymetric effects, W refers to geostatistical effects, T
refers to yearly trend effects, TS refers to the type of substratum categorical
effect, M refers to a cyclic non-linear effect for month, and ST refers to soak
time. Best models are highlighted in bold.

it. Both FI and FD models included a geostatistical effect to
account for spatial autocorrelation fitted using the stochas-
tic partial differential equations approach (SPDE) (Lindgren
et al., 2011).

Finally, based on the individual models selected in the previ-
ous step (Table 1), ISDMs included joint bathymetric, spatial,
and yearly trend effects, as well as the type of substratum ef-
fect applied over the FD data. We used logarithmic links in
the modelling, thus intercepts scaled the difference in gear ef-
ficiency as mentioned in the end of Section 2.

Let s ∈ S be a location in the study area S, then we have
that

ηFI(s) = β0,FI + fD(τD) + fT (τT ) + u(σ, r),

ηFD(s) = β0,FD + fD(τD) + fT (τT ) + u(σ, r) + βTS, (7)

where ηFI(s) and ηFD(s) correspond to the linear predictors for
the FI and FD data, respectively. The coefficients β0, FI and
β0, FD are intercepts and βTS are fixed effects that quantify
the type of substratum effect over the FD data. The functions
fD and fT are shared random effects over the bathymetry and
year, defined as a Gaussian random walks of second order with
precisions τD > 0 and τT > 0. The function u is a shared SPDE
object across FI and FD predictors, with standard deviation
(σ ) and range (r), fitted over a two-dimensional triangulation
of the study area (a.k.a. mesh).

The Bayesian approach requires that every hyperparameter
of the model is given a prior distribution. Due to the lack of
prior knowledge about the behaviour of the fixed effects and
intercepts, we chose non-informative priors, set as zero-mean
Gaussian priors with a precision of 0.001 for all fixed effects
and precision equal to 0 for intercepts (i.e. improper prior).
For the remaining parameters, we used Penalized Complexity
priors (PC priors; Simpson et al., 2017). The PC prior for σ

was set so that the probability of it being bigger than 1 was
0.2 [Pr(σ > 1 = 0.2)]. The PC prior for r was set so that its
median probability was 80 km [Pr(r < 100 = 0.5)]. The PC
priors for τD and τT were set as uninformative as possible by
setting the probability of the precision being smaller than the
empirical standard deviation of the FI data is 0.01 [Pr(τ <

sd(FI) = 0.01 )]
Given that FI data are generally better quality data than

FD data, we fitted four ISDMs with different data weightings
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6 I. Paradinas et al.

Figure 4. Simulated covariate effect (row 1, left panel) and fitted covariate effects (lower panels) using separate SDMs for each dataset (row 2), or
combining all three datasets through ISDMs (row 1, right panel). Solid line represents the mean effect while dashed lines represent credibility intervals.

to assess its impact in the results. One ISDM used a default
weighting of equal weights to every sample regardless of the
source. Another ISDM assigned the same overall weight to
each dataset so that the contribution of each dataset was the
same (wFI = wFD). The last two weightings, favoured the sci-
entific survey data by assigning the FD dataset a half (0.5∗wFI

= wFD) and a quarter (0.25∗wFI = wFD) of the weight of the
FI dataset.

Finally, we also used ensemble modelling to estimate joint
temporal trend effects based on the independent FI and FD
models. This case study was particularly adequate to do so
given that both SDMs modelled abundance and used the same
link function. The ensembling was performed using the same
weights as the ISDMs.

Results

Simulation study

Each simulated survey by itself did not cover the whole co-
variate range of the species, thus single survey SDMs fitted in-
complete process-covariate relationships Figure 4. The ISDM
integrated all three datasets to fit a much better characteriza-
tion of the covariate niche (top right panel in Figure 4). The
same occurred with the spatial effect, where each simulated
survey did not cover the whole spatial range of the species and

therefore single survey ISDMs fitted incomplete spatial effects
as compared to the ISDM Figure 5.

Common sole case study

Model selection was performed over the FI and FD data inde-
pendently, based on the Watanabe Akaike’s information cri-
terion (WAIC) (Watanabe, 2010) and the log-conditional pre-
dictive ordinate scores (LCPO) (Gneiting and Raftery, 2007)
to do so (Table 1). FI and FD SDM results display significant
differences in fitted effects. The bathymetry effect (Panels a
and b in Figure 6) is clearly the most different of all effects
given that FD and FI datasets sampled different bathymetric
strata. However, both display a maximum around 50 m deep.
Spatial effect differences are driven by the extent and resolu-
tion at which FD and FI datasetss sampled the study area (Pan-
els a and b in Figure 7). The FD spatial effect shows smaller
high and low density spots than the FI spatial effect due to the
smaller estimated range in the FD model (mean FD range =
23 km, mean FI range = 45 km), which may be driven by the
higher sampling intensity of the FD data. Despite the differ-
ence in range, hot and cold spot locations are consistent across
models, suggesting that both datasets observe the same spatial
pattern. Finally, temporal trends (Panels a and b in Figure 8)
are quite similar both displaying an overall decreasing trend
from 2013 to 2018 despite a peak in 2017.
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Combining fishery data through integrated species distribution models 7

Figure 5. Simulated spatial effect (row 1, left panel) and fitted spatial effects using separate SDMs for each dataset (row 2), or combining all three
datasets through ISDMs (row 1, right panel).

Figure 6. Visualization of the fitted bathymetric effects by the different models. Panels a and b represent modelled FD and FI SDM bathymetric effects,
respectively. Panel c shows ISDM bathymetric effects using different weights for the FD and FI data: default equal weight per data point, equal weight
per dataset, double weight assigned to the FI dataset, and quadruple weight assigned to the FI dataset.
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8 I. Paradinas et al.

Figure 7. Visualization of the fitted spatial effects by the different models. Panels a and b represent FD and FI SDM spatial effects, respectively. Panels c
to f show ISDM spatial effects using different weights: default equal weight per data point, equal weight per dataset, double weight assigned to the FI
dataset, and quadruple weight assigned to the FI dataset.

ISDMs produced shared bathymetric, spatial, and tempo-
ral trend effects. Different weightings of the likelihood pro-
duced very consistent results suggesting that both FD and FI
datasets sample the same fraction of the target population de-
spite using different gears (i.e. proportional catchability be-
tween gears). The joint bathymetric effects integrated both
FD and FI data to produce a much better characterization of
common sole’s bathymetric niche, with a maximum between
40 and 100 m deep (Panels c to f in Figure 6). Joint spatial ef-
fects produced hot spot sizes similar to that of the FD model
(Panels c to f in Figure 7). Estimated spatial range parame-
ter estimates vary between 27 and 18 km, which is coherent
with the higher resolution of the data obtained by integrat-
ing both datasets. While different weightings estimated simi-
lar spatial effects, there were some minor localized differences
(e.g. south-westernmost part of the study area). Lastly, ISDM
fitted temporal trends display narrower credibility intervals
than those obtained by the FI and FD SDMs. Results were
very similar across weightings (Panels c to f in Figure 8), but as
with the spatial effect, there were some minor differences (e.g.
transitions between 2013–2014 and 2015–2016). Ensembled
temporal trend results (Panels g to j in Figure 8) displayed a
slightly smaller range in mean estimates, and credibility inter-
vals were a little bigger but overall results showed remarkably
similar patterns to those fitted using ISDMs.

We predicted the distribution of common sole in the west-
ern part of the study area for year 2016 (n Figure 9). Maps
display the consequences of the aforementioned bathymetric

and spatial effects in the ISDM, FD, and FI models. FD and FI
model predictions were constraint by their limited bathymet-
ric and spatial coverage, while ISDMs produced more coher-
ent maps. We highlighted a few areas in Figure 9 to visualize
the differences between the ISDM, FD, and FI models: area A,
shows a coastal hot-spot in the FI model, driven by the hot-
spot inferred in the spatial effect and the fitted positive bathy-
metric effect in shallow waters. In the contrary, the FD model
predicts low abundance given that there were no observations
in the area, and its bathymetric effect expects low abundances
in shallow waters. The ISDM, however, produces more sen-
sible predictions with high abundances constrained to a nar-
row band corresponding to approximately the 50–100 m deep
range, i.e. the optimum bathymetric range fitted by the ISDM;
in area B, FI data only sampled deeper waters where low spec-
imen counts were observed and therefore predicted relatively
low abundances. In the contrary, FD data collected moderately
high numbers of specimens in the shallower waters, and con-
sequently, the spatial effect inferred a small hot-spot that pro-
duced high mean predictions at its deeper part driven by the
incomplete bathymetric effect fitted by this model. The better
informed effects of the ISDM predicted a more sensibly de-
fined hot-spot in the area; in area C, both FI and FD models
inferred positive spatial effects (Panel a in Figure 5). FD model
predictions in Figure 9 display a hot-spot in the deeper wa-
ters driven by its incomplete bathymetric effect. The ISDM,
once again, predicts a more sensibly shaped hot-spot in the
area.
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Figure 8. Visualization of the fitted temporal trend effects, mean and 95% CI, by the different models. Panels A and B represent fishery dependent and
fishery independent SDM fits, respectively. Panel C shows ISDM model fit using different weights as described in each panel title, while panel d shows
SDM ensemble model results using the same weights as for the ISDMs.

Discussion

Integrating different fishery datasets is an attractive approach
to improve species distribution models. Different fishing gears
have different species-specific gear efficiencies and different
sampling schemes may collect different types of data (e.g.
biomass, abundance, occurrence), which complicates the in-
tegration of different fish distribution data sources. Different
Species Distribution Model studies have proposed different
approaches to integrate datasets (Fletcher et al., 2019), but
only ISDMs allow a formal integration of different sampling
processes, as well as types and scales of data.

ISDMs use joint-likelihood techniques to fit shared linear
predictors by integrating observations from different types of
data. If gear efficiencies are proportional across gears, we can
accommodate the difference by scaling the linear predictors.
The scaling approach will depend on the link function applied
to the linear predictors. When using identity links, linear pre-
dictors should incorporate an extra scaling parameter to do
the scaling. In contrast, the use of logarithmic and logit links
imply multiplicative effects, and therefore intercepts perform
as scalars. It is important to note that both intercepts and scal-
ing parameters are fixed values and therefore require propor-
tional gear efficiencies across gears. Non-proportional gear
efficiencies would require modelling fish length class abun-
dances and including a smooth term over length class for
each fishing gear to capture the length-specific gear selectivity
(Munro and Somerton, 2001; Fryer et al., 2003; Miller, 2013;
Gonzalez et al., 2021).

We tested the use of ISDMs through a simulation study
and a case study. The simulation study combined a Poisson,

a gamma, and a Bernoulli likelihood to integrate different
sampling processes and showed a better niche characteriza-
tion of ISDMs than that obtained through individual SDMs.
The case study integrated FD and FI data that used different
fishing gears and sampled different habitats of the same com-
mon sole population in the northern Iberian Atlantic waters.
As compared to individual SDMs, ISDMs clearly improved
the characterization of the bathymetric niche, and estimated
coherent joint temporal trend and spatial effects. Therefore,
ISDMs also produced better prediction maps than individual
SDMs.

Testing different data source weights may be a good data
sensitivity analysis for ISDMs. By checking whether results
change with different data weightings ,one can assess whether
the model is well specified for the different data sources. If
results are affected by data weighting, one would probably
downweight the less reliable data source(s) or simply remove
it from the model. In our case study, the FD dataset was
larger than the FI, which could produce FD dominated re-
sults and a priori FD data are thought to be less reliable
than FI data. Therefore, we tested different levels of down-
weighitng FD data, but results showed very consistent results
across the different weightings. Such consistency may reflect
that both datasets sample the same population, i.e. propor-
tional gear efficiencies between the FI trawler and the FD
trammel net, and that models are well specified for the data.
If gear efficiencies were not proportional and /or one pre-
dictor was not well specified, we could have expected larger
differences in fitted relationships across the different weight-
ings (Francis, 2011; Thorson et al., 2017; Wang and Maunder,
2017).
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Figure 9. Prediction maps for the western study area produced using ISDM, FD, and FI models for year 2016. Green dots represent the location and
abundance of the samples used in the FI and FD models. Three areas named as A, B, and C, have been highlighted to be commented in the text.

Temporal trends are particularly interesting to fisheries
management (i.e. stock assessment models), thus, we paid spe-
cial attention to them. Given that both sampling schemes ob-
served common sole abundance data, and both predictors had

the same link function, we compared ISDM temporal trends
with SDM trends as well as ensembled temporal trends based
on the FD and FI SDMs. Despite some minor differences in
the range and credibility interval of yearly estimates, patterns
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were remarkably similar across individual SDMs, ISDMs, and
ensembled models. In particular, ensemble modelling and IS-
DMs produced almost identical results suggesting that ensem-
bled modelling may be a good alternative when link functions
and the types of data are the same. We stress, however, that
ISDMs are more flexible and allow a formal integration of
different types of data and/or link functions.

Last but not least, ISDMs provide an appropriate frame-
work to improve estimates when a particular dataset is miss-
ing data. Missing data can be spatial (e.g. an area that could
not be sampled due to bad weather), temporal (e.g. a particu-
lar year where there was no budget to perform the survey), or
a covariate space gap such as hard bottom substrate in our FI
data in the case study. We did not have a type of substrate map
to perform our predictions, but if we had it, we could have
used the inferred type of substratum effects using FD data to
improve predictions over the entire study area.

This study provides an attractive approach to integrate
different sources of data; however, the model proposed in
this study could be expanded in several directions. First, one
should expand the spatial model here presented into a spatio-
temporal framework. Both the VAST (Thorson, 2019) and
INLA packages for R may be specially useful in this task.
Future extensions of ISDMs could also include preferential
sampling approaches to account for the sampling bias of op-
portunistically collected data (Pennino et al., 2018; Rufener
et al., 2021), model population size structures by partitioning
the data into different fish length classes as discussed earlier.

Conclusions

ISDMs use joint likelihoods to fit shared linear predictors
across different data sources. By increasing the amount of data
available to inform the model, ISDMs are able to improve
species niche characterization, spatial prediction, and narrow
population trend credibility intervals. Similarly, ISDMs may
be used to improve estimates when facing missing data (e.g.
unsampled area or year due to bad weather) in the main data
source (e.g. FI survey) by using accessory data source(s).

Data weighting could be used to somehow validate the
merging of the different data sources. Ideally, results should
be invariant to data weighting, which implies that integrated
data sources sample the same process and the ISDM is well
specified.

It is advisable to integrate data collected using proportional
gear efficiencies (i.e. their quotient at different fish-lengths is a
constant value), otherwise each dataset may sample different
fractions of the underlying population and therefore observa-
tions may not be proportional (i.e. scalable through a con-
stant factor). Under such circumstances, one would need to
model fish length class abundances including a function that
accommodate the length-specific gear selectivity of each fish-
ing gear included in the ISDM (Munro and Somerton, 2001;
Fryer et al., 2003; Miller, 2013; Gonzalez et al., 2021).
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