SUPPLEMENTARY MATERIALS

Scoring Molecular Wires Subject to Ultra-Fast Laser Irradiation for Molecular Electronic Devices

Hui Lu ${ }^{1}$, Alireza Azizi ${ }^{2}$, Xiao Peng Mi ${ }^{1}$, Yu Wenjing ${ }^{1}$, Yuting Peng ${ }^{1}$, Tianlv Xu ${ }^{1}$, Herbert Früchtl ${ }^{\mathbf{3}}$, Tanja van Mourik ${ }^{3}$,
Steven R. Kirk ${ }^{* 1}$ and Samantha Jenkins ${ }^{* 1}$

${ }^{1}$ Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research and Key Laboratory of Resource National and Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.
${ }^{2}$ State Key Laboratory of Powder Metallurgy, School of Materials Science \& Engineering, Central South University, Changsha, Hunan 410083, China
${ }^{3}$ EaStCHEM School of Chemistry, University of Saint Andrews, North Haugh, St Andrews, Fife KY16 9ST, Scotland, United Kingdom.
email: steven.kirk@cantab.net
email: samanthajsuman@gmail.com

1. Supplementary Materials S1. Tabulated excitation frequencies ω for excited states and populations of the states of selected laser pulse frequencies of ethene.
2. Supplementary Materials S2. Time variations of the laser pulse frequencies for ethene.
3. Supplementary Materials S3. Distance measures for the C-H $B C P$ bond-path.
4. Supplementary Materials S4. The variation of the precession \mathbb{K}, \mathbb{K} ' along the $\mathrm{C} 1-\mathrm{C} 2 B C P$ bond-paths.
5. Supplementary Materials S5. Ethene bond-path framework set \mathbb{B} with $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets.

1. Supplementary Materials S1.

Table S1. Excitation frequencies ω for excited states from initial time dependent density functional theory (TDDFT) zero electric field calculations in atomic units (au).

Electronic State	Excitation frequenc
S_{0}	0.0000000
$\mathrm{~S}_{1}$	0.2583882
$\mathrm{~S}_{2}$	0.2799563
$\mathrm{~S}_{3}$	0.2816762
$\mathrm{~S}_{4}$	0.2843111
$\mathrm{~S}_{5}$	0.3030937
$\mathrm{~S}_{6}$	0.3126559
$\mathrm{~S}_{7}$	0.3220600
$\mathrm{~S}_{8}$	0.3260951
$\mathrm{~S}_{9}$	0.3380092
$\mathrm{~S}_{10}$	0.3529111

(a)

(c)

(b)

(d)

Figure S1. The variations of population of electronic states, that are non-zero, with time for the laser pulse frequencies $0.26917 \mathrm{au}, 0.28081 \mathrm{au}, 0.283 \mathrm{au}$, and 0.290 au are provided in sub-figures (a)-(d) respectively.
2. Supplementary Materials S2. Time variations of the laser pulse frequencies for ethene.

Figure S2. Time variations of the laser pulse frequencies $0.26917 \mathrm{au}, 0.28081 \mathrm{au}, 0.283 \mathrm{au}$, and 0.290 au are provided in sub-figures (a)-(d) respectively.

3. Supplementary Materials S3. Distance measures for the C-H $B C P$ bond-path.

Table S3. The values of the partial bond-path lengths (BPL) (in a.u). Each entry for the \mathbf{E}_{x} is in units of $\mathrm{x} 10^{-4}$ a.u.

Pulse (fs) $\pm \mathbf{E}_{\boldsymbol{x}}$	Index	
$5.224+107.0$	0232	
4.944	-98.2	0220
$9.742+199.6$	0433	
10.022	-200.0	0445
$14.821+105.6$	0658	
15.101	-96.8	0671

After pulse (fs)		
20.0	---	0888
40.0	--	1777
60.0	--	2665
80.0	--	3553
100.0	---	4451
Pulse (fs)	$\pm \mathbf{E}_{\boldsymbol{x}}$ Index	

5.011	+100.2	0232
4.741	-91.7	0220
$9.882+199.7$	0459	
10.151	-199.8	0471
14.752	+107.7	0685
15.022	-99.3	0698
20.0	---	0929
40.0	---	1857
60.0	---	2786
80.0	---	3715
100.0	---	4643

Pulse (fs) $\pm \mathbf{E}_{\boldsymbol{x}}$ Index $4.968+99.00233$ 5.235-107.4 0245
$9.797+199.60459$
$10.064-199.60471$
$15.171+94.60710$
$14.904-103.0 \quad 0698$

20.0	---	0936
40.0	--	1872
60.0	---	2808
80.0	---	3744
100.0	---	4679

	$\omega=0.26917 \mathrm{au}$		
$\mathrm{C} 1-B C P, B C P-\mathrm{H} 4$	$\mathrm{H} 5-B C P, B C P-\mathrm{C} 2$	$\Delta(\mathrm{C} 1-B C P, B C P-\mathrm{H} 4)$	$\Delta(\mathrm{H} 5-B C P, B C P-\mathrm{C} 2)$
$1.310,0.731$	$0.740,1.301$	$0.005,-0.005$	$0.005,-0.005$
$1.301,0.740$	$0.731,1.310$	$-0.005,0.005$	$-0.005,0.005$
$1.311,0.730$	$0.740,1.301$	$0.005,-0.005$	$0.005,-0.005$
$1.302,0.739$	$0.731,1.310$	$-0.004,0.004$	$-0.005,0.005$
$1.309,0.732$	$0.738,1.303$	$0.003,-0.003$	$0.003,-0.003$
$1.302,0.739$	$0.731,1.310$	$-0.004,0.004$	$-0.004,0.004$
		$-0.003,0.003$	$-0.003,0.003$
$1.303,0.738$	$0.732,1.309$	$-0.004,0.004$	$-0.004,0.004$
$1.302,0.739$	$0.731,1.310$	$-0.003,0.003$	$-0.003,0.003$
$1.303,0.738$	$0.732,1.309$	$-0.002,0.002$	$-0.002,0.002$
$1.304,0.737$	$0.733,1.308$	$-0.003,0.003$	$-0.003,0.003$
$1.303,0.738$	$0.732,1.309$		

$$
\omega=0.28081 \mathrm{au}
$$

$$
\mathrm{C} 1-B C P, B C P-\mathrm{H} 4 \quad \mathrm{H} 5-B C P, B C P-\mathrm{C} 2 \quad \Delta(\mathrm{C} 1-B C P, B C P-\mathrm{H} 4) \Delta(\mathrm{H} 5-B C P, B C P-\mathrm{C} 2)
$$

$1.306,0.735$	$0.735,1.306$	$0.000,0.000$	$0.000,0.000$
$1.305,0.736$	$0.734,1.307$	$-0.001,0.001$	$-0.001,0.001$
$1.307,0.734$	$0.736,1.305$	$0.001,-0.001$	$0.001,-0.001$
$1.306,0.735$	$0.735,1.306$	$0.000,0.000$	$0.000,0.000$
$1.306,0.735$	$0.735,1.305$	$0.000,0.000$	$0.000,0.000$
$1.305,0.735$	$0.735,1.306$	$0.000,0.000$	$0.000,0.000$
$1.299,0.742$	$0.728,1.313$	$-0.007,0.007$	$-0.007,0.007$
$1.299,0.742$	$0.728,1.313$	$-0.007,0.007$	$-0.007,0.007$
$1.300,0.741$	$0.730,1.311$	$-0.006,0.005$	$-0.005,0.006$
$1.303,0.738$	$0.732,1.309$	$-0.003,0.003$	$-0.003,0.003$
$1.305,0.736$	$0.734,1.307$	$-0.001,0.001$	$-0.001,0.001$

$$
\omega=0.283 \mathrm{au}
$$

$\mathrm{C} 1-B C P, B C P-\mathrm{H} 4$	$\mathrm{H} 5-B C P, B C P-\mathrm{C} 2$	$\Delta(\mathrm{C} 1-B C P, B C P-\mathrm{H} 4)$	$\Delta(\mathrm{H} 5-B C P, B C P-\mathrm{C} 2)$
$1.306,0.735$	$0.736,1.305$	$0.000,0.000$	$0.000,0.000$
$1.307,0.734$	$0.736,1.305$	$0.001,-0.001$	$0.001,-0.001$
$1.306,0.735$	$0.735,1.306$	$0.000,0.000$	$0.000,0.000$
$1.307,0.734$	$0.736,1.305$	$0.001,-0.001$	$0.001,-0.001$
$1.306,0.735$	$0.735,1.306$	$0.000,0.000$	$0.000,0.000$
$1.306,0.735$	$0.735,1.305$	$0.000,0.000$	$0.000,0.000$
$1.304,0.737$	$0.733,1.308$	$-0.002,0.002$	$-0.002,0.002$
$1.307,0.734$	$0.736,1.305$	$0.001,-0.001$	$0.001,-0.001$
$1.309,0.732$	$0.738,1.302$	$0.004,-0.004$	$0.003,-0.003$
$1.312,0.729$	$0.741,1.300$	$0.006,-0.006$	$0.006,-0.006$
$1.312,0.729$	$0.741,1.300$	$0.006,-0.006$	$0.006,-0.006$

$\omega=0.290 \mathrm{au}$						
Pulse (fs)	$\pm \mathbf{E}_{\boldsymbol{x}}$	Index	$\mathrm{C} 1-B C P, B C P-\mathrm{H} 4$	$\mathrm{H} 5-B C P, B C P-\mathrm{C} 2$	$\Delta(\mathrm{C} 1-B C P, B C P-\mathrm{H} 4) \Delta(\mathrm{H} 5-B C P, B C P-\mathrm{C} 2)$	
4.854	+95.1	0233	$1.304,0.737$	$0.733,1.308$	$-0.002,0.002$	$-0.002,0.002$
5.115	-103.4	0246	$1.308,0.733$	$0.737,1.304$	$0.002,-0.002$	$0.002,-0.002$
10.083	+199.6	0484	$1.302,0.739$	$0.732,1.309$	$-0.004,0.004$	$-0.004,0.004$
9.823	-199.7	0471	$1.310,0.731$	$0.739,1.302$	$0.004,-0.004$	$0.004,-0.004$
$14.802+106.1$	0710	$1.303,0.738$	$0.733,1.308$	$-0.002,0.002$	$-0.002,0.002$	
15.062	-97.9	0722	$1.309,0.732$	$0.738,1.303$	$0.003,-0.003$	$0.003,-0.003$
20.0	---	0959	$1.301,0.740$	$0.730,1.311$	$-0.005,0.005$	$-0.005,0.005$
40.0	--	1918	$1.299,0.741$	$0.729,1.312$	$-0.006,0.006$	$-0.006,0.006$
60.0	--	2877	$1.299,0.742$	$0.728,1.313$	$-0.007,0.007$	$-0.007,0.007$
80.0	---	3836	$1.299,0.742$	$0.728,1.313$	$-0.007,0.007$	$-0.007,0.007$
100.0	---	4795	$1.300,0.741$	$0.730,1.311$	$-0.005,0.005$	$-0.005,0.006$

Table S3(b). Values of the Q1 corresponds to the area under the Precession \mathbb{K}^{\prime} plot in the absence of an electric field from C 1 to the $B C P, \mathrm{Q} 2$ corresponds to the area under the Precession \mathbb{K}^{\prime} plot from the $B C P$ to C 2 in atomic units (a.u).

Time (fs)	$\pm \mathbf{E}_{\boldsymbol{x}}$	$(\mathrm{Q} 1, \mathrm{Q} 2)$
0.0	---	$(0.743,0.743)$

Table S3(c). Values of the Q1 and Q2 are the areas under the corresponding Precession \mathbb{K}^{\prime} plots. The laser pulse electric field \mathbf{E}_{x} was directed along the bond-path with units of $\times 10^{-4}$ a.u, see Table 1 and Scheme 1.

	$\omega=0.2692 \mathrm{au}$		$\omega=0.2808$		$\omega=0.2830$		$\omega=0.290$	
Pulse (fs)	$\pm \mathbf{E}_{x}$	(Q1, Q2)						
5.224	+107.0	(0.535, 1.026)	+100.2	(0.648, 0.610)	+99.0	(0.610, 0.648)	+95.1	(0.780, 0.591)
4.944	-98.2	(1.026, 0.554)	-91.7	(0.686, 0.629)	-107.4	(0.572, 0.629)	-103.4	(0.572, 0.743)
9.742	+199.6	(0.572, 1.045)	+199.7	(0.705, 0.780)	+199.6	$(0.743,0.724)$	+199.6	(0.950, 0.572)
10.022	-200.0	(1.026, 0.535)	-199.8	(0.705, 0.686)	-199.6	(0.686, 0.743)	-199.7	(0.610, 0.969)
14.821	+105.6	(0.591, 0.894)	+107.7	(0.724, 0.761)	+94.6	(0.761, 0.743$)$	+106.1	(0.875, 0.648)
15.101	-96.8	(1.026, 0.572)	-99.3	(0.761, 0.724)	-103.0	(0.724, 0.761)	-97.9	(0.648, 0.931$)$

After pulse(fs)								
20.0	--	$(0.856,0.554)$	---	$(1.044,0.516)$	---	$(0.780,0.572)$	---	$(1.026,0.516)$
40.0	---	$(0.950,0.554)$	---	$(1.044,0.516)$	---	$(0.610,0.667)$	---	$(1.0630 .497)$
60.0	---	$(0.837,0.572)$	---	$(1.082,0.535)$	---	$(0.554,0.875)$	---	$(1.044,0.516)$
80.0	---	$(0.743,0.591)$	---	$(0.818,0.554)$	---	$(0.535,1.082)$	---	$(1.044,0.516)$
100.0	---	$(0.818,0.572)$	---	$(0.705,0.591)$	--	$(0.516,1.063)$	---	$(1.082,0.516)$

4. Supplementary Materials S4. The variation of the precession $\mathbb{K}, \mathbb{K}^{\prime}$ along the $\mathrm{C} 1-\mathrm{C} 2 B C P$ bond-paths.

Figure S4(I). The variation of the precession $\mathbb{K}, \mathbb{K}^{\prime}$ along the C1-C2 BCP bond-paths for $\mathbf{E}_{\boldsymbol{x}}=0$ au.

4. Supplementary Materials S4. Continued.

Figure S4(II). The variation of the precession $\mathbb{K}, \mathbb{K}^{\prime}$ along the $\mathrm{C} 1-\mathrm{C} 2 B C P$ bond-paths for $\omega=0.2692 \mathrm{au}$.

4. Supplementary Materials S4. Continued.

(b)

Figure S4(III). The variation of the precession $\mathbb{K}, \mathbb{K}^{\prime}$ along the C1-C2 $B C P$ bond-paths for $\omega=0.2808 \mathrm{au}$.

4. Supplementary Materials S4. Continued.

Figure S4(IV). The variation of the precession $\mathbb{K}, \mathbb{K}^{\prime}$ along the $\mathbf{C} 1-\mathrm{C} 2 B C P$ bond-paths for $\omega=0.2830$ au.

4. Supplementary Materials S4. Continued.

(a)

(c)

Figure $\mathbf{S 4}(\mathbf{V})$. The variation of the precession \mathbb{K}, \mathbb{K} ' along the $\mathrm{C} 1-\mathrm{C} 2 B C P$ bond-paths for $\omega=0.290$ au.
5. Supplementary Materials S5. Ethene bond-path framework set \mathbb{B} with $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets.

Figure S5(I). The ethene bond-path framework set \mathbb{B} displaying the $\left\{\boldsymbol{p}\right.$ (blue), \boldsymbol{p}^{\prime} (cyan) $\}$ path-packets for values of the laser pulse frequency $\omega=0.26917$ au for $\mathbf{E}_{\boldsymbol{x}}=-98.2 \times 10^{-4}$ a.u at time $=4.944$ femtoseconds (left-panel) and $\mathbf{E}_{\boldsymbol{x}}=$ $+107.0 \times 10^{-4}$ a.u. at time $=5.224$ femtoseconds (right-panel) of sub-figure (a). The $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets corresponding to the peak $\pm \mathbf{E}$-field values: $\mathbf{E}_{\boldsymbol{x}}=-200.0 \times 10^{-4}$ a.u (at 10.022 fs) and $\mathbf{E}_{\boldsymbol{x}}=+199.6 \times 10^{-4}$ a.u. (at 9.742 fs) are presented in the left and right panels respectively of sub-figure (b). The $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets for $\mathbf{E}_{x}=-96.8 \times 10^{-4}$ a.u (at 15.101 fs) and $\mathbf{E}_{x}=$ $+105.6 \times 10^{-4}$ a.u. (at 14.821 fs) are presented in the left and right panels respectively of sub-figure (c). For further details see Scheme 1.

(e)

Figure S5(II). The ethene $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets for values of the laser pulse frequency $\omega=0.26917$ au at the end of the pulse (20 fs), $40 \mathrm{fs}, 60 \mathrm{fs}$, 80 fs and 100 fs are presented in sub-figures (a)-(e) respectively, see Figure $\mathbf{1}$ for further details.

(c)

Figure S5(III). The ethene bond-path framework set \mathbb{B} displaying the $\left\{\boldsymbol{p}\right.$ (blue), \boldsymbol{p}^{\prime} (cyan) $\}$ path-packets for values of the laser pulse frequency $\omega=0.28081$ au for $\mathbf{E}_{x}=-91.7 \times 10^{-4}$ a.u at time $=4.741$ femtoseconds (left-panel) and $\mathbf{E}_{x}=$ $+100.2 \times 10^{-4}$ a.u. at time $=5.011$ femtoseconds (right-panel) of sub-figure (a). The $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets corresponding to the peak $\pm \mathbf{E}$-field values: $\mathbf{E}_{\boldsymbol{x}}=-199.8 \times 10^{-4}$ a.u (at 10.151 fs) and $\mathbf{E}_{\boldsymbol{x}}=+199.7 \times 10^{-4}$ a.u. (at 9.882 fs) are presented in the left and right panels respectively of sub-figure (b). The $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets for $\mathbf{E}_{\boldsymbol{x}}=-99.3 \times 10^{-4}$ a.u (at 15.022 fs) and $\mathbf{E}_{\boldsymbol{x}}=$ $+107.7 \times 10^{-4}$ a.u. (at 14.752 fs) are presented in the left and right panels respectively of sub-figure (c). For further details see Scheme 1.

(e)

Figure S5(IV). The ethene $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets for values of the laser pulse frequency $\omega=0.28081$ au at the end of the pulse (20 fs), $40 \mathrm{fs}, 60 \mathrm{fs}, 80 \mathrm{fs}$ and 100 fs are presented in sub-figures (a)-(e) respectively, see Figure 2 for further details.

(c)

Figure $\mathbf{S 5}(\mathbf{V})$. The ethene bond-path framework set \mathbb{B} displaying the $\left\{\boldsymbol{p}\right.$ (blue), \boldsymbol{p}^{\prime} (cyan) $\}$ path-packets for values of the laser pulse frequency $\omega=0.283$ au for $\mathbf{E}_{x}=-107.4 \times 10^{-4}$ a.u at time $=5.235$ femtoseconds (left-panel) and $\mathbf{E}_{\boldsymbol{x}}=+99.0 \times 10^{-4}$ a.u. at time $=4.968$ femtoseconds (right-panel) of sub-figure (a). The $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets corresponding to the peak $\pm \mathbf{E}$ field values: $\mathbf{E}_{\boldsymbol{x}}=-199.6 \times 10^{-4}$ a.u (at 10.064 fs) and $\mathbf{E}_{\boldsymbol{x}}=+199.6 \times 10^{-4}$ a.u. (at 9.797 fs) are presented in the left and right panels respectively of sub-figure (b). The $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets for $\mathbf{E}_{\boldsymbol{x}}=-103.0 \times 10^{-4}$ a.u (at 14.904 fs) and $\mathbf{E}_{\boldsymbol{x}}=+94.6 \times 10^{-4}$ a.u. (at 15.171 fs) are presented in the left and right panels respectively of sub-figure (c). For further details see Scheme 1.

(e)

Figure S5(VI). The ethene $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets for values of the laser pulse frequency $\omega=0.283$ au at the end of the pulse $(20 \mathrm{fs}), 40 \mathrm{fs}, 60 \mathrm{fs}, 80 \mathrm{fs}$ and 100 fs are presented in sub-figures (a)-(e) respectively, see Figure $\mathbf{3}$ for further details.

Figure S5(VII). The ethene bond-path framework set \mathbb{B} displaying the $\left\{\boldsymbol{p}\right.$ (blue), \boldsymbol{p}^{\prime} (cyan) $\}$ path-packets for values of the laser pulse frequency $\omega=0.290$ au for $\mathbf{E}_{x}=-103.4 \times 10^{-4}$ a.u at time $=5.115$ femtoseconds (left-panel) and $\mathbf{E}_{x}=+95.1 \times 10^{-4}$ a.u. at time $=4.854$ femtoseconds (right-panel) of sub-figure (a). The $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets corresponding to the peak $\pm \mathbf{E}$ field values: $\mathbf{E}_{\boldsymbol{x}}=-199.7 \times 10^{-4}$ a.u (at 9.823 fs) and $\mathbf{E}_{\boldsymbol{x}}=+199.6 \times 10^{-4}$ a.u. (at 10.083 fs) are presented in the left and right panels respectively of sub-figure (b). The $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets for $\mathbf{E}_{\boldsymbol{x}}=-97.9 \times 10^{-4}$ a.u (at 15.062 fs) and $\mathbf{E}_{\boldsymbol{x}}=+106.1 \times 10^{-4}$ a.u. (at 14.802 fs) are presented in the left and right panels respectively of sub-figure (c). For further details see scheme $\mathbf{1}$.

Figure S5(VIII). The ethene $\left\{\boldsymbol{p}, \boldsymbol{p}^{\prime}\right\}$ path-packets for values of the laser pulse frequency $\omega=0.290$ au after the pulse (20 fs), $40 \mathrm{fs}, 60 \mathrm{fs}, 80 \mathrm{fs}$ and 100 fs are presented in sub-figures (a)-(e) respectively, see Figure 4 for further details.

Figure $\mathbf{S 5}$ (IX). The ethene $\left\{\boldsymbol{q}, \boldsymbol{q}^{\prime}\right\}$ path-packets for values of the laser pulse frequency $\omega=0.26917$ au after the pulse (20 fs), $40 \mathrm{fs}, 60 \mathrm{fs}$ and 80 fs are presented in sub-figures (a)-(d) respectively, see Figure $\mathbf{1}$ for further details.

Figure $\mathbf{S 5}(\mathbf{X})$. The ethene $\left\{\boldsymbol{q}, \boldsymbol{q}^{\prime}\right\}$ path-packets for values of the laser pulse frequency $\omega=0.28081$ au after the pulse (20 fs), $40 \mathrm{fs}, 60$ fs and 80 fs are presented in sub-figures (a)-(d) respectively, see Figure $\mathbf{2}$ for further details.

Figure S5(XI). The ethene $\left\{\boldsymbol{q}, \boldsymbol{q}^{\prime}\right\}$ path-packets for values of the laser pulse frequency $\omega=0.283$ au after the pulse (20 fs), $40 \mathrm{fs}, 60$ fs and 80 fs are presented in sub-figures (a)-(d) respectively, see Figure 3 for further details.

Figure S5(XII). The ethene $\left\{\boldsymbol{q}, \boldsymbol{q}^{\prime}\right\}$ path-packets for values of the laser pulse frequency $\omega=0.290$ au after the pulse (20 fs), $40 \mathrm{fs}, 60 \mathrm{fs}$ and 80 fs are presented in sub-figures (a)-(d) respectively, see Figure $\mathbf{4}$ for further details.

