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Abstract
In this paper, a sponge in ℝ𝑑 is the attractor of an iter-
ated function system consisting of finitely many strictly
contracting affine maps whose linear part is a diago-
nalmatrix. A suitable separation condition is introduced
under which a variational formula is proved for the 𝐿𝑞

spectrum of any self-affine measure defined on a sponge
for all 𝑞 ∈ ℝ. Apart from some special cases, even the
existence of their box dimension was not proved before.
Under certain conditions, the formula has a closed form
which in general is an upper bound. The Frostman and
box dimension of these measures is also determined.
The approachunifies several existing results and extends
them to arbitrary dimensions. The key ingredient is the
introduction of a novel pressure function which aims to
capture the growth rate of box counting quantities on
sponges. We show that this pressure satisfies a varia-
tional principle which resembles the Ledrappier–Young
formula for Hausdorff dimension.
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1 INTRODUCTION

The𝐿𝑞 spectrum𝑇(𝜈, 𝑞) ∶ ℝ → ℝ of a compactly supportedBorel probabilitymeasure 𝜈 quantifies
the global fluctuations of 𝜈, and thus, knowledge of it provides valuable information about the
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2 KOLOSSVÁRY

multi-fractal properties of 𝜈 and also about the dimension of its support, see Section 1.2. As such,
it is a basic tool in fractal geometry that has a rich literature concerning measures supported by
different fractal sets.
It was shown by Peres and Solomyak [46] that the 𝐿𝑞 spectrum of any self-conformal measure

exists for 𝑞 > 0 and extended to graph-directed self-conformal measures by Fraser [23]. When
the support is a self-similar set, a closed-form expression for the 𝐿𝑞 spectrum is known [37, 48, 50]
under different separation conditions on the cylinder sets. We do not pursue this direction further
since the focus of this paper is on the more general self-affine setting.
Self-affine sets and measures are important building blocks in the study of smooth non-

conformal dynamical systems and have thus gained a lot of attention lately. The study of these
systems is more challenging than the conformal case, and therefore, there are far fewer results
especially in dimensions 𝑑 ⩾ 3. In one line of research, the 𝐿𝑞 spectrum of specific systems are
considered. Feng and Wang [21] calculated the 𝐿𝑞 spectrum of self-affine measures on the plane
supported on attractors of iterated function systems (IFS) given by orientation-preserving diag-
onal matrices satisfying a suitable separation condition. This was extended by Fraser [23] to
include reflections and rotations by 90◦. Ni and Wen [41] considered a class of graph-directed
self-affine measures. In higher dimensions, self-affine measures have only been studied on
Bedford–McMullen (also called Sierpiński) sponges by Olsen [43], and [27, 44] in a random set-
ting. In the other direction, ‘generic’ systems were considered in [8, 14]. The main objective of
this paper is to build a general framework to study box counting quantities and in particular to
determine the 𝐿𝑞 spectrum of self-affine measures supported on higher dimensional self-affine
sponges where very little is known. These sets constitute a fundamental family of self-affine sets
showcasing a number of interesting properties that set them apart from the ‘generic’ systems.

1.1 Main contribution

In this paper, the linear part of all the strictly contracting affine maps defining a sponge in ℝ𝑑
is a diagonal matrix. The separation of principal projections condition (SPPC) is introduced, see
Definition 3.1 and [25], which gives extra grid alignment for the first-level cylinder sets of the
sponge. Roughly speaking, the entries of the diagonal matrices determine ‘relevant’ orderings
of the coordinates and the SPPC assumes that all orthogonal projections of the first-level cylin-
ders onto subspaces determined by these ‘relevant’ orderings satisfy the, more familiar, open set
condition. On the plane, the much-studied Lalley–Gatzouras [29] and Barański [1] (hence also
Bedford–McMullen [9, 38]) carpets are precisely the sets which satisfy the SPPC. Therefore, it
naturally unifies the Lalley–Gatzouras and Barański classes; moreover, in higher dimensions, it
extends to a much wider class of sponges than simply these two classes.
The main result, see Theorem 3.3, states that if the self-affine measure 𝜈𝝁 (defined by the

probability vector𝝁) is fully supported on a self-affine sponge inℝ𝑑 which satisfies the SPPC, then

𝑇(𝜈𝝁, 𝑞) = 𝑃(𝝍
𝝁
𝑞) for all 𝑞 ∈ ℝ,

where 𝑃 is a novel pressure-like functional defined in (2.7) and 𝝍𝝁𝑞 is a family of potentials
defined in (3.3) that depend on 𝑞 and 𝝁. The key contribution is to use ideas from thermo-
dynamic formalism to define 𝑃 in a way that is specifically tailored to capture the polynomial
growth rate of box counting quantities such as the 𝐿𝑞 spectrum on sponges. The main tech-
nical result of the paper, see Theorem 2.1, is to show that 𝑃 satisfies a variational principle. It
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THE 𝐿𝑞 SPECTRUM OF SELF-AFFINE MEASURES ON SPONGES 3

shows resemblance to the Ledrappier–Young formula for Hausdorff dimension. However, since
the box and Hausdorff dimension of such sponges is ‘typically’ different, there is a clear distinc-
tion between the two variational principles. Generalising this variational principle further could
be of independent interest.
We point out a few important aspects and advantages of our approach:

∙ the result for𝑇(𝜈𝝁, 𝑞) is valid for all 𝑞 ∈ ℝ. Handling negative 𝑞 is known to be very challenging,
in particular, in the non-conformal case, we are only aware of the result of Olsen [43] about
Bedford–McMullen spongeswhich are a very special case of the oneswe consider. The potential
𝝍
𝝁
𝑞 is just a specific choice in our more general Theorem 2.1.

∙ The separation condition is weaker than the one considered in [43].
∙ The box dimension of the sponge is given by choosing 𝑞 = 0. Apart from the planar case, some
three-dimensional cases and Lalley–Gatzouras sponges [32], even the box dimension of these
sponges was not known before to exist.

∙ Introducing ‘relevant’ orderings of the coordinates is the key ingredient in the definition of 𝑃.
The necessity of this is demonstrated on an example in Section 4.2.

Section 4 details related literature and includes two worked out examples showing how our
approach is able to go beyond previous methods.
Further contribution is to calculate the Frostman and box dimension of any self-affinemeasure

supported by a sponge satisfying the SPPC, see Theorem 3.8. These dimensions give the slope of
the asymptotes of the 𝐿𝑞 spectrum as 𝑞 tends to +∞ and −∞, respectively. To the best of our
knowledge, these have only been calculated for Bedford–McMullen sponges [43].
We provide sufficient conditions under which the variational formula translates into a closed-

form expression, see Corollary 2.3. This is the case for sponges in the Lalley–Gatzouras class.
In general, the closed form gives an upper bound for the pressure. A natural direction for further
research could be to get a better understanding of the relationship between the variational formula
and the closed form.

1.1.1 Structure of paper

We continue the section with the formal introduction of the 𝐿𝑞 spectrum and then the self-affine
sponges and measures. In Section 2, we set up symbolic notation in order to define the pressure
𝑃(𝝋) in (2.7) and state all our results regarding it. Section 3 begins with the definition of the SPPC
followed by the statements about the 𝐿𝑞 spectrum and the Frostman and box dimensions of the
self-affine measure. Section 4 gives further context to our results. Sections 5–8 contain the proofs
of our results.

1.2 The 𝑳𝒒 spectrum

A collection of closed balls {𝐵(𝑥𝑖, 𝛿)}𝑖 is a centred packing of a set 𝐹 ⊂ ℝ𝑑 if the balls are disjoint
and all 𝑥𝑖 ∈ 𝐹. Given a probability measure 𝜈 with compact support supp(𝜈), for 𝛿 > 0 and 𝑞 ∈ ℝ,
let

𝑇𝛿(𝜈, 𝑞) ∶= sup

{∑
𝑖

(𝜈(𝐵(𝑥𝑖, 𝛿)))
𝑞 ∣ {𝐵(𝑥𝑖, 𝛿)}𝑖 is a centred packing of supp(𝜈)

}
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4 KOLOSSVÁRY

and define the 𝐿𝑞 spectrum of 𝜈 to be

𝑇(𝜈, 𝑞) ∶= lim
𝛿→0

log 𝑇𝛿(𝜈, 𝑞)

− log 𝛿

provided the limit exists, otherwise one takes lower and upper limits denoted by 𝑇(𝜈, 𝑞) and
𝑇(𝜈, 𝑞), respectively. Various definitions exist in the literature, see, for example, [46, Section 4]
or [23, Section 1.1] for some comparisons. The main reason for our choice is that 𝑇(𝜈, 𝑞) is well
defined for all 𝑞 ∈ ℝ. Technical issues can arise for other definitions when 𝑞 < 0, see the remark
after [37, proof of Proposition 3.1] or after [48, Proposition 2]. The 𝐿𝑞 dimension of 𝜈 is the ratio

𝐷(𝜈, 𝑞) ∶=
𝑇(𝜈, 𝑞)

1 − 𝑞
for 𝑞 ≠ 1.

In case 𝑞 = 1, the entropy dimension is used instead defined by

dime 𝜈 ∶= lim
𝛿→0

inf
∑
𝐵∈𝛿

𝜈(𝐵) log(1∕𝜈(𝐵))

− log 𝛿
,

where the infimum is taken over all finite Borel partitions of supp(𝜈)with sets of diameter at most
𝛿. One takes lower and upper limits if the limit does not exist. Let dimH, dimB and dimP denote
the Hausdorff, box and packing dimensions, respectively, see [15] for basic definitions.
Knowledge of the 𝐿𝑞 spectrum of a measure provides valuable information about the measure

and its support. It follows from the definitions that

dim
B
supp(𝜈) = 𝑇(𝜈, 0) and dimB supp(𝜈) = 𝑇(𝜈, 0).

Furthermore, if 𝑇(𝜈, 𝑞) is differentiable at 𝑞 = 1, then Ngai [40] showed that

dimH 𝜈 = dimP 𝜈 = dime 𝜈 = −𝑇
′
(1).

The value −𝑇(𝜈, 2) is often called the correlation dimension or Rényi entropy. The asymptotes of
𝑇(𝜈, 𝑞) as 𝑞 tends to +∞ and −∞ are related to the Frostman and box dimension of the measure,
respectively. Defined in [16], the Frostman dimension of 𝜈 gives the decay rate of the ball with
largest 𝜈 measure, more precisely,

dimF 𝜈 ∶= sup{𝑠 ⩾ 0 ∶ there exists a constant 𝐶 ⩾ 1 such that

𝜈(𝐵(𝑥, 𝛿)) ⩽ 𝐶𝛿𝑠 for all 𝑥 ∈ 𝑋 and 0 < 𝛿 < 1},

and the dual notion of upper box (or Minkowski) dimension of 𝜈 is

dimB 𝜈 ∶= inf {𝑠 ⩾ 0 ∶ there exists a constant 𝑐 > 0 such that

𝜈(𝐵(𝑥, 𝛿)) ⩾ 𝑐𝛿𝑠 for all 𝑥 ∈ 𝑋 and 0 < 𝛿 < 1}.

For the lower box dimension of 𝜈, denoted as dim
B
𝜈, only a sequence 𝛿𝑛 → 0 needs to exist for

which 𝜈(𝐵(𝑥, 𝛿𝑛)) ⩾ 𝑐𝛿𝑠𝑛. If dimB 𝜈 = dim
B
𝜈, then the common value is called the box dimension
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THE 𝐿𝑞 SPECTRUM OF SELF-AFFINE MEASURES ON SPONGES 5

of 𝜈 denoted by dimB 𝜈. Heuristically, if 𝑞 is a very large positive number, then 𝑇𝛿(𝜈, 𝑞) is domi-
nated by the ball(s) with largest mass; hence, 𝑇𝛿(𝜈, 𝑞) roughly behaves like 𝛿𝑞⋅dimF 𝜈 and one can
expect 𝐷(𝜈, 𝑞) → dimF 𝜈 as 𝑞 → +∞. See [16, Proposition 4.2] for a precise statement of the dual
claim that 𝐷(𝜈, 𝑞) → dimB 𝜈 as 𝑞 → −∞. It was recently shown in [3] that dimB 𝜈 determines the
convergence rate of the chaos game.
The 𝐿𝑞 spectrum is also intimately connected to multi-fractal analysis, see [15, Chapter 17] for

some background. In one direction, the coarse multi-fractal spectrum 𝑓𝐶(𝛼) ∶ ℝ+ → ℝ+ gives,
roughly speaking, the power law exponent of the number of 𝛿-mesh cubeswith 𝜈measure approx-
imately 𝛿𝛼. Riedi [48] showed that the Legendre transform of 𝑓𝐶(𝛼) is always equal to the 𝐿𝑞
spectrum, and vice versa, if 𝑇(𝜈, 𝑞) is differentiable everywhere, then its Legendre transform is
equal to 𝑓𝐶(𝛼) (otherwise it gives the convex hull of 𝑓𝐶(𝛼)). In the other direction, the fine multi-
fractal spectrum 𝑓𝐻(𝛼) gives the Hausdorff dimension of the set of points in the support of 𝜈 with
local dimension equal to 𝛼. As a heuristic, it is said that themulti-fractal formalism holds if 𝑓𝐻(𝛼)
is given by the Legendre transform of the 𝐿𝑞 spectrum. This fails in general, but was shown to
hold, for example, for self-similar sets satisfying the strong separation condition [10, 48]. Olsen
introduced generalised Hausdorff measures to serve as an alternative to the 𝐿𝑞 spectrum [42] and
showed that this formalism works for self-affine measures on Bedford–McMullen sponges [43].

1.3 Self-affine sponges and measures

Given a finite index set , an affine IFS on ℝ𝑑 is a finite family  = {𝑓𝑖}𝑖∈ of affine contract-
ing maps 𝑓𝑖 ∶ ℝ𝑑 → ℝ𝑑 of the form 𝑓𝑖(𝑥) = 𝐴𝑖𝑥 + 𝑡𝑖 . The IFS determines a unique, non-empty
compact set 𝐹, called the attractor, that satisfies the relation

𝐹 =
⋃
𝑖∈

𝑓𝑖(𝐹).

In case the linear part 𝐴𝑖 of each 𝑓𝑖 is a diagonal matrix with main diagonal (𝑎
(1)
𝑖
, … , 𝑎

(𝑑)
𝑖
), we

call 𝐹 a (self-affine) sponge. For 1 ⩽ 𝑛 ⩽ 𝑑 and 𝑖 ∈ , let 𝜆(𝑛)
𝑖

∶= |𝑎(𝑛)
𝑖

| ∈ (0, 1). Without loss of
generality, we assume that 𝑓𝑖([0, 1]𝑑) ⊂ [0, 1]𝑑 and that there is no 𝑖 ≠ 𝑗 such that 𝑓𝑖(𝑥) = 𝑓𝑗(𝑥)

for every 𝑥 ∈ [0, 1]𝑑. We also assume that there exists 𝑟0 = 𝑟0(𝐹) > 0 such that for every 1 ⩽ 𝑛 ⩽ 𝑑
and 𝑢 ∈ {0, 1}, there exists 𝑘(𝑛)𝑢 ∈  such that

dist
(
{(𝑥1, … , 𝑥𝑑) ∈ [0, 1]𝑑 ∶ 𝑥𝑛 = 𝑢}, 𝑓

𝑘
(𝑛)
𝑢
([0, 1]𝑑)

)
⩾ 𝑟0. (1.1)

In other words, for each face of the unit hypercube, there is a map which sends the hypercube at
least 𝑟0 distance away from the face. Otherwise, 𝐹 is a subset of that face and is not ‘genuinely’
𝑑-dimensional.
More generally, 𝐹 can be referred to as a sponge also if the diagonal matrix is composed with

a permutation matrix, see [22] for 𝑑 = 2 and [24] for 𝑑 = 3. Sponges on the plane are generally
called self-affine carpets or box-like sets and have a rich literature compared to the case 𝑑 ⩾ 3. We
give a more detailed account of relevant related literature in Section 4.
The orthogonal projections of 𝐹 onto the principal 𝑛-dimensional subspaces play a vital role

in the arguments. Let 𝑑 be the symmetric group on the set {1, … , 𝑑}. For a permutation 𝜎 =
{𝜎1, … , 𝜎𝑑} ∈ 𝑑 of the coordinates, let 𝐸𝜎𝑛 denote the 𝑛-dimensional subspace spanned by the
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6 KOLOSSVÁRY

coordinate axes indexed by 𝜎1, … , 𝜎𝑛. Let Π𝜎𝑛 ∶ [0, 1]
𝑑 → 𝐸𝜎𝑛 be the orthogonal projection onto

𝐸𝜎𝑛 . For 𝑛 = 𝑑, Π𝜎
𝑑
is simply the identity map. We say that 𝑓𝑖 and 𝑓𝑗 overlap exactly on 𝐸𝜎𝑛 if

Π𝜎𝑛(𝑓𝑖(𝑥)) = Π𝜎𝑛(𝑓𝑗(𝑥)) for every 𝑥 ∈ [0, 1]𝑑.

Observe that if𝑓𝑖 and𝑓𝑗 overlap exactly on𝐸𝜎𝑛 , then they also overlap exactly on𝐸
𝜎
𝑚 for all 1 ⩽ 𝑚 ⩽

𝑛 but may not overlap exactly on any 𝐸𝜎′𝑛 for some other 𝜎′ ∈ 𝑑. The definition of the separation
condition we require is postponed to Definition 3.1.
Given an affine IFS  with attractor 𝐹 and a probability vector 𝝁 = (𝜇(𝑖))𝑖∈ with strictly

positive entries, there exists a unique probability measure 𝜈𝝁 fully supported by 𝐹 which satisfies

𝜈𝝁 =
∑
𝑖∈

𝜇(𝑖) 𝜈𝝁◦𝑓
−1
𝑖 .

The self-affinemeasure 𝜈𝝁 has an equivalent characterisation as the push-forward of the Bernoulli
measure by the natural projection from the symbolic space to the attractor. Formally, given 𝝁, the
Bernoulli measure on the symbolic space Σ = ℕ is the product measure 𝜈𝝁 = 𝝁ℕ. The natural
projection 𝜋 ∶ Σ → 𝐹 is given by

𝜋(𝐢) = 𝜋(𝑖1, 𝑖2, … , 𝑖𝑘, …) ∶= lim
𝑘→∞

𝑓𝑖1𝑖2…𝑖𝑘 (0),

where 𝑓𝑖1𝑖2…𝑖𝑘 = 𝑓𝑖1◦𝑓𝑖2◦… ◦𝑓𝑖𝑘 . Then 𝜈𝝁 = 𝜈𝝁◦𝜋
−1.

2 VARIATIONAL PRINCIPLE FOR BOX COUNTING QUANTITIES

The classical variational principle for topological pressure, pioneered by the works of Ruelle [49]
andWalters [52], is an essential tool in the thermodynamic formalismof dynamical systems.Given
a dynamical system (𝑋, 𝑇), the topological pressure 𝑃(𝑇, 𝜑) of a continuous potential 𝜑 ∶ 𝑋 → ℝ

satisfies the variational principle

𝑃(𝑇, 𝜑) = sup
𝜈∈M𝑇(𝑋)

(
ℎ𝜈(𝑇) + ∫𝑋 𝜑 d𝜈

)
, (2.1)

where M 𝑇(𝑋) denotes the set of 𝑇-invariant Borel probability measures on 𝑋 and ℎ𝜈(𝑇) is the
measure-theoretic entropy of 𝜈 with respect to 𝑇, see [53] for definitions and background. More
recently,motivated by the study of self-affine carpets and sponges, amore generalweighted notion
of pressure for factor maps between general topological dynamical systems was introduced [7, 20,
51]. Given𝑎1 > 0,𝑎2 ⩾ 0 and two dynamical systems (𝑋, 𝑇) and (𝑌, 𝑆)with a factormap𝑓 between
them (i.e. 𝑓 is a continuous surjection with 𝑓◦𝑇 = 𝑆◦𝑓), there is a meaningful way to define the
weighted pressure 𝑃(𝑎1,𝑎2)(𝑇, 𝜑) of the potential 𝜑 such that the following variational principle
holds:

𝑃(𝑎1,𝑎2)(𝑇, 𝜑) = sup
𝜈∈M𝑇(𝑋)

(
𝑎1ℎ𝜈(𝑇) + 𝑎2ℎ𝜈◦𝑓−1(𝑆) + ∫𝑋 𝜑 d𝜈

)
. (2.2)
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THE 𝐿𝑞 SPECTRUM OF SELF-AFFINE MEASURES ON SPONGES 7

The formula can be extended to a sequence of factor maps. The definition of the pressure resem-
bles the Hausdorff dimension. For example, for a particular choice of (𝑎1, 𝑎2) and 𝜑 ≡ 0, the
Hausdorff dimension of a Bedford–McMullen carpet can be recovered from (2.2). Olsen’s for-
malism for multi-fractal analysis mentioned at the end of Section 1.2 is related to this weighted
pressure. However, the sponges considered in this paper ‘typically’ have different Hausdorff and
box dimension. Therefore, these results cannot be used directly to calculate the 𝐿𝑞 spectrum.
Instead, themain technical contribution of the paper is to set up anovel formalism that attempts

to capture box counting quantities such as the 𝐿𝑞 spectrum. We keep the setting as simple as
possible that still accommodates our goal. Generalising this formalism to more general contexts
could be of independent interest.

2.1 Symbolic setting

Recall that  denotes the finite index set of the IFS  and Σ = ℕ is the space of all one-sided
infinite words 𝐢 = 𝑖1, 𝑖2, …. For 𝛿 > 0, the 𝛿-stopping of 𝐢 ∈ Σ in the 𝑛th coordinate (for 𝑛 = 1,… , 𝑑)
is the unique integer 𝐿𝛿(𝐢, 𝑛) such that

𝐿𝛿(𝐢,𝑛)∏
𝓁=1

𝜆(𝑛)
𝑖𝓁

⩽ 𝛿 <

𝐿𝛿(𝐢,𝑛)−1∏
𝓁=1

𝜆(𝑛)
𝑖𝓁
. (2.3)

We say that 𝐢 ∈ Σ is 𝜎-ordered at scale 𝛿 if 𝐿𝛿(𝐢, 𝜎𝑑) ⩽ 𝐿𝛿(𝐢, 𝜎𝑑−1) ⩽ … ⩽ 𝐿𝛿(𝐢, 𝜎1), where to make
the ordering unique, we use the convention that if 𝐿𝛿(𝐢, 𝜎𝑛) = 𝐿𝛿(𝐢, 𝜎𝑛−1), then 𝜎𝑛 > 𝜎𝑛−1. We
introduce Σ𝜎

𝛿
∶= {𝐢 ∈ Σ ∶ 𝐢 is 𝜎-ordered at scale 𝛿}, the set𝛿 ∶= {𝜎 ∈ 𝑑 ∶ Σ𝜎𝛿 ≠ ∅} ⊆ 𝑑 and let ∶=

⋃
𝛿>0𝛿. Since the 𝜎-ordering is unique, the collection {Σ𝜎𝛿 ∶ 𝜎 ∈ 𝛿} gives a partition of

Σ for every 𝛿 > 0.
For each permutation 𝜎 = {𝜎1, … , 𝜎𝑑} ∈ , we define index sets 𝜎

𝑑
⊇ 𝜎

𝑑−1
⊇ … ⊇ 𝜎

1
with

𝜎
𝑑
∶=  as follows. Initially set 𝜎

𝑑
= 𝜎

𝑑−1
= ⋯ = 𝜎

1
. For 𝑖 < 𝑗 (𝑖, 𝑗 ∈ ), starting from 𝑛 = 𝑑 − 1

and decreasing 𝑛, we checkwhether 𝑓𝑖 and 𝑓𝑗 overlap exactly on𝐸𝜎𝑛 . If they do not overlap exactly
for any 𝑛, then we move onto the next pair (𝑖, 𝑗), otherwise, we take the largest 𝑛′ for which 𝑓𝑖
and 𝑓𝑗 overlap exactly on 𝐸𝜎𝑛′ and remove 𝑗 from 𝜎

𝑛′
,𝜎

𝑛′−1
, … ,𝜎

1
and then move onto the next

pair (𝑖, 𝑗). The sets 𝜎
𝑑−1

, … ,𝜎
1
are what remain after repeating this procedure for all pairs 𝑖 < 𝑗.

Further abusing notation, we denote by Π𝜎𝑛 ∶  → 𝜎𝑛 the ‘projection’ of 𝑗 ∈  onto 𝜎𝑛 , that is,
Π𝜎𝑛𝑗 = 𝑖, if 𝑓𝑖 and 𝑓𝑗 overlap exactly on 𝐸𝜎𝑛 and 𝑖 ∈ 𝜎𝑛 .

Defining Σ𝜎𝑛 ∶= (𝜎𝑛 )ℕ, we also let Π𝜎𝑛 ∶ Σ → Σ𝜎𝑛 by acting coordinate wise, that is, Π𝜎𝑛𝐢 =
Π𝜎𝑛𝑖1, Π

𝜎
𝑛𝑖2, …. For completeness, let Π

𝜎
𝑑
be the identity map on Σ. On each symbolic space Σ𝜎𝑛,

the dynamics is run by the left shift operator. Due to the coordinate wise definition, all maps Π𝜎𝑛
commute with the left shift; hence, all are factor maps.
We further partition each Σ𝜎

𝛿
into symbolic 𝛿-approximate cubes which play a crucial role in

covering arguments of sponges. For two (finite or infinite) words 𝐢 and 𝐣, we denote the length of
their longest common prefix by |𝐢 ∧ 𝐣| = min{𝓁 ∶ 𝑖𝓁 ≠ 𝑗𝓁} − 1. The symbolic 𝛿-approximate cube
containing 𝐢 ∈ Σ𝜎

𝛿
is

𝐵𝛿(𝐢) ∶=
{
𝐣 ∈ Σ ∶ ||Π𝜎𝑛𝐣 ∧ Π𝜎𝑛𝐢|| ⩾ 𝐿𝛿(𝐢, 𝜎𝑛) for every 1 ⩽ 𝑛 ⩽ 𝑑}. (2.4)
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8 KOLOSSVÁRY

Observe that if 𝐢 ∈ Σ𝜎
𝛿
, then for all 𝐣 ∈ 𝐵𝛿(𝐢) also 𝐣 ∈ Σ𝜎

𝛿
. Thus, we define the 𝜎-ordering of 𝐵𝛿(𝐢)

to be equal to the 𝜎-ordering of 𝐢 at scale 𝛿. As a result, the set 𝜎
𝛿
of 𝜎-ordered 𝛿-approximate

cubes forms a partition of Σ𝜎
𝛿
. The name comes from the fact that the image 𝜋(𝐵𝛿(𝐢)) ⊆ 𝐹 lies

within a cuboid of side lengths at most 𝛿 parallel to the coordinate axes. Finally, if 𝐢 ∈ Σ𝜎
𝛿
, then

the surjectivity of the maps Π𝜎𝑛 implies that 𝐵𝛿(𝐢) can be identified with a sequence of symbols of
length 𝐿𝛿(𝐢, 𝜎1) of the form

(
Π𝜎𝑛𝑖𝐿𝛿(𝐢,𝜎𝑛+1)+1, … ,Π

𝜎
𝑛𝑖𝐿𝛿(𝐢,𝜎𝑛)

)𝑑
𝑛=1

∈

𝑑⨉
𝑛=1

(𝜎𝑛 )𝐿𝛿(𝐢,𝜎𝑛)−𝐿𝛿(𝐢,𝜎𝑛+1), (2.5)

where we set 𝐿𝛿(𝐢, 𝜎𝑑+1) ∶= 0. This will be crucial in determining the number of different
approximate cubes with a fixed digit frequency.

2.2 Topological pressure and variational principle

Themain new ingredient is that rather than using just a single potential onΣ, we areworkingwith
a family of potentials 𝝋 = {𝜑𝜎𝑛}𝜎,𝑛 defined on {Σ

𝜎
𝑛}𝜎,𝑛. In order to keep arguments simple, we let

𝜑𝜎𝑛 depend on 𝐢 ∈ Σ𝜎𝑛 only through 𝑖1, that is, 𝜑
𝜎
𝑛 is essentially defined on 𝜎𝑛 . This is still sufficient

for us to obtain results about the box dimension of sponges and the 𝐿𝑞 spectrum of self-affine
measures defined on them, see Section 3.1 for statements.
For a fixed family of potentials

𝝋 = {𝜑𝜎𝑛 ∶ 𝜎𝑛 → ℝ |𝜎 ∈ , 1 ⩽ 𝑛 ⩽ 𝑑} (2.6)

and 𝐢 ∈ Σ𝜎
𝛿
, we define

Φ(𝐵𝛿(𝐢)) ∶=

𝑑∑
𝑛=1

𝐿𝛿(𝐢,𝜎𝑛)∑
𝓁=𝐿𝛿(𝐢,𝜎𝑛+1)+1

𝜑𝜎𝑛
(
Π𝜎𝑛𝑖𝓁

)
to be the value of 𝝋 on 𝐵𝛿(𝐢) at scale 𝛿. Recalling that Σ =

⨆
𝜎∈𝛿

⨆
𝐵∈𝜎

𝛿
𝐵 for every 𝛿 > 0, it is

natural to introduce the topological pressure like quantities

𝑃(𝝋) ∶= lim sup
𝛿→0

−1

log 𝛿
log

⎡⎢⎢⎣
∑
𝜎∈𝛿

∑
𝐵𝛿(𝐢)∈𝜎𝛿

exp [Φ(𝐵𝛿(𝐢))]

⎤⎥⎥⎦ (2.7)

and 𝑃(𝝋) with a lim inf𝛿→0 instead. We state in Theorem 2.1 that 𝑃(𝝋) = 𝑃(𝝋) for any choice of 𝝋
and denote this common limit by 𝑃(𝝋).
We introduce additional notation. The Shannon entropy𝐻(𝐩) of a probability vector 𝐩 = (𝑝(𝑖))𝑖

is the sum−
∑
𝑖 𝑝(𝑖) log 𝑝(𝑖). Fix 𝜎 ∈ . Let𝜎

𝑛 denote the set of probability vectors on 𝜎𝑛 (i.e. 𝐩 ∈𝜎
𝑛 if 𝑝(𝑖) ⩾ 0 for all 𝑖 ∈ 𝜎𝑛 and∑𝑖∈𝜎𝑛 𝑝(𝑖) = 1). Define 𝜎 ∶= 𝜎

𝑑
× 𝜎

𝑑−1
× … × 𝜎

1
. An element

of𝜎 is𝐏𝜎 = (𝐩𝜎𝑑 , … , 𝐩𝜎1), where𝐩𝜎𝑛 = (𝑝𝜎𝑛(𝑖))𝑖∈𝜎𝑛 . For 1 ⩽ 𝑛 ⩽ 𝑚 ⩽ 𝑑 and𝐩𝜎𝑚 ∈ 𝜎
𝑚, we denote

the Lyapunov exponent by

𝜒𝜎𝑛(𝐩𝜎𝑚) ∶= −
∑
𝑖∈𝜎𝑚

𝑝𝜎𝑚(𝑖) log 𝜆
(𝜎𝑛)

𝑖
.
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THE 𝐿𝑞 SPECTRUM OF SELF-AFFINE MEASURES ON SPONGES 9

For a fixed 𝐏𝜎 ∈ 𝜎, we define constants 𝐶(𝑑),𝜎𝑛 (𝐏𝜎) for 𝑛 = 𝑑, 𝑑 − 1,… , 1 recursively as follows:
let 𝐶(𝑑),𝜎

𝑑
(𝐏𝜎) ∶= 1∕𝜒𝜎

𝑑
(𝐩𝜎𝑑 ) and

𝐶(𝑑),𝜎𝑛 (𝐏𝜎) ∶=

(
1 −

𝑑∑
𝑚=𝑛+1

𝐶(𝑑),𝜎𝑚 (𝐏𝜎) ⋅ 𝜒
𝜎
𝑛(𝐩𝜎𝑚)

)
1

𝜒𝜎𝑛(𝐩𝜎𝑛)
. (2.8)

Note that 𝐶(𝑑),𝜎𝑛 (𝐏𝜎) may be negative for 𝑛 < 𝑑 and depends on 𝐏𝜎 only through 𝜒𝜎𝓁(𝐩𝜎𝑚) for 𝑛 ⩽
𝓁 ⩽ 𝑚 ⩽ 𝑑. Of particular importance is the subset

𝜎 ∶= {𝐏𝜎 ∈ 𝜎 ∶ 𝐶
(𝑑),𝜎
𝑛 (𝐏𝜎) ⩾ 0 for all 1 ⩽ 𝑛 ⩽ 𝑑}.

In fact, we will show that 𝜎 ∈  if and only if 𝜎 ≠ ∅, see Lemma 6.3. Slightly abusing notation
for the integral, we write

∫ 𝜑𝜎𝑛 d𝐩𝜎𝑛 ∶=
∑
𝑖∈𝜎𝑛

𝑝𝜎𝑛(𝑖) ⋅ 𝜑
𝜎
𝑛(𝑖).

Our main technical result, proved in Section 6, is the following variational principle for 𝑃(𝝋).

Theorem 2.1. For any family of potentials 𝝋 as in (2.6) the limit 𝑃(𝝋) exists, moreover,

𝑃(𝝋) = max
𝜎∈ sup

𝐏𝜎∈𝜎
𝑑∑
𝑛=1

𝐶(𝑑),𝜎𝑛 (𝐏𝜎) ⋅
(
𝐻(𝐩𝜎𝑛) + ∫ 𝜑𝜎𝑛 d𝐩𝜎𝑛

)
. (2.9)

Let 𝑡𝜎(𝐏𝜎) = 𝑡(𝐏𝜎) = 𝑡(𝐩𝜎𝑑 ; … ; 𝐩𝜎1) denote the sum in (2.9) for any 𝐏𝜎 ∈ 𝜎 .

Formula (2.9) for 𝑃(𝝋) clearly shows resemblance to the classical (2.1) and weighted (2.2) varia-
tional principle, but the differences are also apparent. Most notably, the supremum is taken over
each coordinate separately for the different orderings rather than optimising over a single vec-
tor on  with its projections onto the subsets 𝜎𝑛 . The interpretation of the formula is that for
each 𝜎 ∈ , there is a dominant type which ‘carries the pressure’ for that ordering and deter-
mines the polynomial growth rate of

∑
𝐵𝛿(𝐢)∈𝜎𝛿 exp[Φ(𝐵𝛿(𝐢))]. This rate is given by the sum in (2.9),

where for each coordinate 1 ⩽ 𝑛 ⩽ 𝑑, the constant 𝐶(𝑑),𝜎𝑛 (𝐏𝜎) is related to the length of the block
(Π𝜎𝑛𝑖𝐿𝛿(𝐢,𝜎𝑛+1)+1, … ,Π

𝜎
𝑛𝑖𝐿𝛿(𝐢,𝜎𝑛)), which is where the restriction of𝐏𝜎 ∈ 𝜎 comes into play. Further-

more,𝐻(𝐩𝜎𝑛) comes from the number of approximate cubes with this type and the ‘integral’ is the
contribution of 𝝋. Finally, the largest dominant type determines 𝑃(𝝋).
If𝝋 = 𝟎, that is,𝜑𝜎𝑛 ≡ 0 for every 𝜎 ∈  and 1 ⩽ 𝑛 ⩽ 𝑑, then𝑃(𝟎) gives the box dimension of any

sponge satisfying the SPPC, see Definition 3.1 and Theorem 3.3. With another appropriate choice
of 𝝋, see (3.3), the pressure translates to the ‘symbolic’ 𝐿𝑞 spectrum of 𝜈𝝁 which is then related
to the actual 𝐿𝑞 spectrum of 𝜈𝝁 under the same separation condition, see Theorem 3.3. We can
thus see that the big advantage of this approach is that it unifies different arguments of numerous
previous results and at the same time generalises them naturally to arbitrary dimensions.
For practical purposes, having a closed-form formula for 𝑃(𝝋) would be preferred over having

to characterise the supremum over 𝜎. We give a closed form which is always an upper bound
for 𝑃(𝝋) and equal to it in some instances. We define real numbers 𝑇𝜎

0
∶= 0, 𝑇𝜎

1
, … , 𝑇𝜎

𝑑
recursively,
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10 KOLOSSVÁRY

where 𝑇𝜎𝑛 = 𝑇(𝑑),𝜎𝑛 (𝝋) is the unique solution to the equation

∑
𝑖∈𝜎𝑛

𝑒𝜑
𝜎
𝑛(𝑖)

𝑛∏
𝓁=1

(
𝜆
(𝜎𝓁)

𝑖

)𝑇𝜎
𝓁
−𝑇𝜎

𝓁−1

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
=∶𝑝∗𝜎𝑛 (𝑖)

= 1, (2.10)

and 𝐏∗𝜎 = (𝐩∗𝜎𝑑
, … , 𝐩∗𝜎1

) ∈ 𝜎, where 𝐩∗𝜎𝑛 = (𝑝∗𝜎𝑛
(𝑖))𝑖∈𝜎𝑛 .

Proposition 2.2. For any 𝜎 ∈ , the supremum sup𝐏𝜎∈𝜎 𝑡(𝐏𝜎) = 𝑡(𝐏∗𝜎 ) = 𝑇𝜎
𝑑
.

The proposition is proved in Section 5. Theorem 2.1 and Proposition 2.2 imply the following.

Corollary 2.3. The upper bound 𝑃(𝝋) ⩽ max𝜎∈ 𝑇𝜎
𝑑
holds for all 𝝋. If 𝜎 ∈  is such that 𝐏∗𝜎 ∈𝜎, then sup𝐏𝜎∈𝜎 𝑡(𝐏𝜎) = 𝑡(𝐏∗𝜎 ) = 𝑇𝜎

𝑑
. Furthermore, if 𝜔 ∈  is such that 𝐏∗𝜔 ∈ 𝜔 and 𝑇𝜔

𝑑
=

max𝜎∈ 𝑇𝜎
𝑑
, then

𝑃(𝝋) = max
𝜎∈ 𝑇𝜎

𝑑
. (2.11)

In particular, if = {𝜎}, then 𝑃(𝝋) = 𝑇𝜎
𝑑
.

It is immediate that # = 1 if and only if there is a 𝜎 ∈ 𝑑 such that
0 < 𝜆

(𝜎𝑑)

𝑖
⩽ 𝜆

(𝜎𝑑−1)

𝑖
⩽ … ⩽ 𝜆

(𝜎1)

𝑖
< 1 for every 𝑖 ∈ . (2.12)

In this case, we say that the sponge 𝐹 satisfies the coordinate ordering condition with ordering 𝜎.
The value of 𝑇𝜎

𝑑
can be calculated by numerically solving the 𝑑 equations in (2.10). If 𝐏∗𝜎 ∈𝜎, then 𝐏∗𝜎 is the dominant type for that particular ordering 𝜎 ∈ . However, if 𝐏∗𝜎 ∉ 𝜎, then

characterising the dominant type is a difficult non-linear optimisation problem with non-linear
constraint. It is also not clear how sup𝐏𝜎∈𝜎 𝑡(𝐏𝜎) and sup𝐏𝜔∈𝜔 𝑡(𝐏𝜔) relate to each other for two
different orderings 𝜎, 𝜔 ∈ . Nevertheless, the dominant type which gives the value of 𝑃(𝝋) can
be thought of as the ‘equilibrium state’ of the system. Getting a better understanding of when
𝐏∗𝜎 ∈ 𝜎 seems a subtle issue and is a natural direction for further study.

Question 2.4. Are there further easy to check sufficient and/or necessary conditions for𝐏∗𝜎 ∈ 𝜎?
More broadly, when does (2.11) hold? If 𝐏∗𝜎 ∉ 𝜎, then is the supremum over 𝜎 attained on the
boundary of 𝜎 (where 𝐶(𝑑),𝜎𝑛 (⋅) = 0 for at least one 𝑛 ∈ {1, … , 𝑑})?

Example 2.5. The self-affine sponge 𝐹 is a self-similar set, if for each 𝑖 ∈ , there is 𝜆𝑖 ∈
(0, 1) such that 𝜆(𝑛)

𝑖
= 𝜆𝑖 for all 1 ⩽ 𝑛 ⩽ 𝑑. Clearly, 𝐿𝛿(𝐢, 𝑛) = 𝐿𝛿(𝐢,𝑚) for all 1 ⩽ 𝑛 ⩽ 𝑚 ⩽

𝑑, so  = {Id}. Let 𝐿𝛿(𝐢) denote this common value. We have 𝐵𝛿(𝐢) = (𝑖1, … , 𝑖𝐿𝛿(𝐢)) ∈ 𝐿𝛿(𝐢)
and Φ(𝐵𝛿(𝐢)) =

∑𝐿𝛿(𝐢)

𝓁=1 𝜑𝑑(𝑖𝓁). Moreover, 𝜒1(𝐩𝑛) = 𝜒2(𝐩𝑛) =⋯ = 𝜒𝑛(𝐩𝑛) for all 1 ⩽ 𝑛 ⩽ 𝑑 giving
𝐶
(𝑑)
𝑑
(𝐏) = 1∕𝜒𝑑(𝐩𝑑) and 𝐶

(𝑑)
𝑛 (𝐏) = 0 for all 1 ⩽ 𝑛 ⩽ 𝑑 − 1. As a result, (2.9) simplifies to

𝑃(𝝋) = sup
𝐩∈𝑑

𝐻(𝐩) + ∫ 𝜑𝑑 d𝐩
𝜒𝑑(𝐩)

.
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THE 𝐿𝑞 SPECTRUM OF SELF-AFFINE MEASURES ON SPONGES 11

Also, writing out (2.10) for 𝑛 = 𝑑, we obtain
∑
𝑖∈ 𝑒𝜑𝑑(𝑖)𝜆𝑇𝑑𝑖 = 1. If 𝐹 satisfies the open set con-

dition, that is, 𝑓𝑖((0, 1)𝑑) ∩ 𝑓𝑗((0, 1)𝑑) = ∅ for all 𝑖 ≠ 𝑗, then by taking 𝝋 = 𝟎, we recover the
well-known fact that dimB 𝐹 = 𝑇𝑑, often called the similarity dimension, which has the equivalent
characterisation of maximising ‘entropy over Lyapunuv exponent’. For a fixed probability vector
𝝁 on  and 𝑞 ∈ ℝ if 𝜑𝑑(𝑖) = 𝑞 log 𝜇(𝑖), then 𝑇𝑑 = 𝑇𝑑(𝝁, 𝑞) is the 𝐿𝑞 spectrum of the self-similar
measure 𝜈𝝁.

2.2.1 Main idea of proof

The key observation is that Φ(𝐵𝛿(𝐢)) does not depend directly on the order of symbols in the sym-
bolic representation (2.5) of 𝐵𝛿(𝐢), but rather just on the number of times a particular symbol
𝑖 ∈ 𝜎𝑛 appears in the block (Π𝜎𝑛𝑖𝐿𝛿(𝐢,𝜎𝑛+1)+1, … ,Π𝜎𝑛𝑖𝐿𝛿(𝐢,𝜎𝑛)). Therefore, we use digit frequencies to
express Φ(𝐵𝛿(𝐢)) and the ‘method of types’ to count the number of different approximate cubes
with given digit frequencies. As 𝛿 → 0, the set of different types becomes dense in the parameter
space 𝜎 (𝜎 ∈ ); however, the rate of growth of the number of different types is significantly
smaller compared to the cardinality of a type. Hence, there is a type which ‘carries the pressure’
at each scale 𝛿 and these types converge to the dominant type given by the variational princi-
ple (2.9). While the general scheme is certainly not new in the dimension theory of dynamical
systems, we are unaware of such a streamlined application in the context of determining box
counting quantities.

3 APPLICATION TO THE 𝑳𝒒 SPECTRUMOF SELF-AFFINE
SPONGES

We begin by introducing the separation condition required for most of our bounds.

Definition 3.1. A self-affine sponge 𝐹 ⊂ [0, 1]𝑑 satisfies the SPPC if for every 𝜎 ∈ , 1 ⩽ 𝑛 ⩽ 𝑑
and 𝑖, 𝑗 ∈ ,

either 𝑓𝑖 and 𝑓𝑗 overlap exactly on 𝐸𝜎𝑛 or Π
𝜎
𝑛

(
𝑓𝑖((0, 1)

𝑑)
)
∩ Π𝜎𝑛

(
𝑓𝑗((0, 1)

𝑑)
)
= ∅. (3.1)

The sponge satisfies the very strong SPPC if (0, 1)𝑑 can be replaced with [0, 1]𝑑 in (3.1).

If (3.1) is only assumed for 𝑛 = 𝑑, the rather weaker condition is known as the rectangular open
set condition in [21–23]. In particular, if 𝐹 is a self-similar set, recall Example 2.5, then the SPPC
is equivalent to assuming (3.1) only for 𝑛 = 𝑑. The SPPC was introduced simultaneously in [25]
where the Assouad and lower dimensions of the self-affine measure 𝜈𝝁 were studied. In that case,
assuming the very strong SPPC is necessary, while for all results in this paper, the SPPC suffices.

Example 3.2. The following are the natural generalisations of Barański [1], Lalley–Gatzouras [29]
and Bedford–McMullen [9, 38] carpets to higher dimensions. Assume that 0 < 𝑎

(𝑛)
𝑖

< 1 for all
1 ⩽ 𝑛 ⩽ 𝑑 and 𝑖 ∈ .
(1) A Barański sponge 𝐹 ⊂ [0, 1]𝑑 satisfies that for all 𝜎 ∈ 𝑑,

either 𝑓𝑖 and 𝑓𝑗overlap exactly on 𝐸𝜎1 or Π
𝜎
1

(
𝑓𝑖((0, 1)

𝑑)
)
∩ Π𝜎1

(
𝑓𝑗((0, 1)

𝑑)
)
= ∅.
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12 KOLOSSVÁRY

In other words, the IFSs generated on the coordinate axes by indices 𝜎
1
satisfy the open set

condition. This clearly implies the SPPC.
(2) A Lalley–Gatzouras sponge 𝐹 ⊂ [0, 1]𝑑 satisfies the SPPC and the coordinate ordering

condition (2.12) for some 𝜎 ∈ 𝑑, hence, = {𝜎}.
(3) A Bedford–McMullen sponge 𝐹 ⊂ [0, 1]𝑑 is a Barański sponge which satisfies the coordinate

ordering condition (hence, is also a Lalley–Gatzouras sponge) and

𝜆
(𝑛)
1

= 𝜆
(𝑛)
2

=⋯ = 𝜆
(𝑛)
𝑁

for all 1 ⩽ 𝑛 ⩽ 𝑑.

On the plane either # = 1 or # = 2, hence, the SPPC combines Lalley–Gatzouras (when
# = 1) and (genuine) Barański carpets (when # = 2) into a unified framework in a natural
way. Moreover, for dimensions 𝑑 ⩾ 3, it is a wider class of sponges than simply the union of the
Barański and Lalley–Gatzouras class. We give one example here and refer the interested reader
to [25, Section 4] for a complete characterisation of the sponges satisfying the SPPC in three dimen-
sions. Assume for all 𝑖 ∈  that 0 < max{𝑎

(𝑦)
𝑖
, 𝑎

(𝑧)
𝑖
} < 𝑎

(𝑥)
𝑖

< 1 and there exist 𝑗, 𝑘 ∈  such that
𝑎
(𝑦)
𝑗

< 𝑎(𝑧)
𝑗

and 𝑎(𝑦)
𝑘

> 𝑎(𝑧)
𝑘
. In this case, it is easy to see that = {(𝑥, 𝑦, 𝑧), (𝑥, 𝑧, 𝑦)}; moreover, the

projection onto both the 𝑥𝑦 and 𝑥𝑧-plane is a Lalley–Gatzouras carpet with 𝑥 being the dominant
side. Projection onto 𝑦𝑧-plane does not play a role.

3.1 Results for 𝑳𝒒 spectrum

We define the family of potentials which leads us to the 𝐿𝑞 spectrum of self-affine measures. Let
𝝁 = (𝜇(𝑖))𝑖∈ be a probability vector on  with strictly positive entries. For 𝜎 ∈  and 1 ⩽ 𝑛 ⩽ 𝑑,
we define its ‘projection’ to 𝜎𝑛 to be

𝝁𝜎𝑛 ∶=
(
𝜇𝜎𝑛(𝑖)

)
𝑖∈𝜎𝑛 , where 𝜇𝜎𝑛(𝑖) ∶=

∑
𝑗∈∶Π𝜎𝑛𝑗=𝑖

𝜇(𝑗). (3.2)

Hence, 𝝁𝜎𝑛 ∈ 𝜎
𝑛 . For 𝑞 ∈ ℝ, we introduce the family of potentials

𝝍
𝝁
𝑞 ∶= {𝜓

𝝁,𝜎
𝑞,𝑛 ∶ 𝜎𝑛 → ℝ |𝜎 ∈ , 1 ⩽ 𝑛 ⩽ 𝑑}, where 𝜓𝝁,𝜎𝑞,𝑛 (𝑖) ∶= 𝑞 ⋅ log 𝜇𝜎𝑛(𝑖). (3.3)

It follows from Theorem 2.1 that the limit 𝑃(𝝍𝝁𝑞) exists for all 𝝁 and 𝑞 ∈ ℝ. We prove in Lemma 7.1
that with this choice exp[Φ(𝐵𝛿(𝐢))] = (𝜈𝝁(𝐵𝛿(𝐢)))

𝑞 for any approximate cube. Translating this to
the 𝐿𝑞 spectrum of 𝜈𝝁 leads us to our main result.

Theorem 3.3. Let 𝜈𝝁 be a self-affine measure on the self-affine sponge 𝐹 which satisfies the SPPC.
Then

𝑇(𝜈𝝁, 𝑞) = 𝑃(𝝍
𝝁
𝑞) for all 𝑞 ∈ ℝ.

In particular, the box dimension of 𝐹 exists and dimB 𝐹 = dimP 𝐹 = 𝑃(𝝍
𝝁
0
).

Remark 3.4. Observe from (3.3) that 𝝍𝝁
0
is independent of the choice of 𝝁. The box and pack-

ing dimensions are equal because 𝐹 is compact and every open set intersecting 𝐹 contains a
bi-Lipschitz image of 𝐹, see [15, Corollary 3.9].
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THE 𝐿𝑞 SPECTRUM OF SELF-AFFINE MEASURES ON SPONGES 13

The theorem also gives a clear indication of how the 𝐿𝑞 spectrum can be non-differentiable at a
point �̂�: the maximum in (2.9) is attained for a different 𝜎 ∈ when 𝑞 → �̂�− than when 𝑞 → �̂�+.

Adapting (2.10), we define functions 𝑇𝝁,𝜎𝑛 (𝑞) ∶ ℝ → ℝ for 0 ⩽ 𝑛 ⩽ 𝑑 recursively, by first setting
𝑇
𝝁,𝜎
0
(𝑞) ≡ 0 and then defining 𝑇𝝁,𝜎𝑛 (𝑞) to be the unique solution to the equation

∑
𝑖∈𝜎𝑛

(𝜇𝜎𝑛(𝑖))
𝑞

𝑛∏
𝓁=1

(
𝜆
(𝜎𝓁)

𝑖

)𝑇𝝁,𝜎
𝓁
(𝑞)−𝑇

𝝁,𝜎

𝓁−1
(𝑞)
= 1. (3.4)

Combining Theorem 3.3 and Corollary 2.3 immediately gives the following two statements.

Corollary 3.5. Let 𝜈𝝁 be a self-affine measure on the self-affine sponge 𝐹 ⊂ ℝ𝑑 that satisfies the
SPPC. Then

𝑇(𝜈𝝁, 𝑞) ⩽ max
𝜎∈ 𝑇

𝝁,𝜎

𝑑
(𝑞) for all 𝑞 ∈ ℝ.

A better understanding of Question 2.4 would have direct implications on when 𝑇(𝜈𝝁, 𝑞) =
max𝜎∈ 𝑇

𝝁,𝜎

𝑑
(𝑞). Nevertheless, our results for the Lalley–Gatzouras class are more complete.

Corollary 3.6. If 𝐹 is a 𝜎-ordered Lalley–Gatzouras sponge, then 𝑇(𝜈𝝁, 𝑞) = 𝑇
𝝁,𝜎

𝑑
(𝑞) for all 𝑞 ∈ ℝ.

Since 𝑇𝝁,𝜎
𝑑
(𝑞) is differentiable everywhere, the result from [40] yields that

dimH 𝜈𝝁 = dimP 𝜈𝝁 = dime 𝜈𝝁 = −𝑇′(𝜈𝝁, 1).

Implicit differentiation of𝑇𝝁,𝜎
𝑑
(𝑞) gives the value of𝑇′(𝜈𝝁, 1). Theorem3.3 is proved in Section 7.

3.2 Box and Frostman dimension of self-affine measures

Given 𝝁 and 𝜎 ∈ , we define two sequences of numbers 𝑆𝝁,𝜎0 ∶= 0, 𝑆
𝝁,𝜎

1 , … , 𝑆
𝝁,𝜎

𝑑 and 𝑆𝝁,𝜎
0

∶=

0, 𝑆
𝝁,𝜎
1
, … , 𝑆

𝝁,𝜎

𝑑
by

𝑆
𝝁,𝜎

𝑛 ∶= 𝑆
𝝁,𝜎

𝑛−1 + max
𝑖∈𝜎𝑛

1

log 𝜆
(𝜎𝑛)

𝑖

(
log 𝜇𝜎𝑛(𝑖) +

𝑛−1∑
𝑚=1

(
𝑆
𝝁,𝜎

𝑚−1 − 𝑆
𝝁,𝜎

𝑚

)
log

(
𝜆
(𝜎𝑚)

𝑖

))
, (3.5)

and

𝑆
𝝁,𝜎
𝑛 ∶= 𝑆

𝝁,𝜎
𝑛−1

+ min
𝑖∈𝜎𝑛

1

log 𝜆
(𝜎𝑛)

𝑖

(
log 𝜇𝜎𝑛(𝑖) +

𝑛−1∑
𝑚=1

(
𝑆
𝝁,𝜎
𝑚−1

− 𝑆
𝝁,𝜎
𝑚

)
log

(
𝜆
(𝜎𝑚)

𝑖

))
, (3.6)

where the empty sum equals 0 in case 𝑛 = 1. Let 𝑘
𝜎

𝑛 ∈ 𝜎𝑛 denote any of the symbols which attain
themaximum in (3.5) and 𝑘𝜎

𝑛
∈ 𝜎𝑛 be any of the symbols which attain theminimum in (3.6). Also,

let 𝐊𝜎 ∶= (𝐤𝜎𝑑 , … , 𝐤𝜎1) and 𝐊𝜎 ∶= (𝐤𝜎𝑑
, … , 𝐤𝜎1

), where 𝐤𝜎𝑛 denotes the degenerate probability

vector on 𝜎𝑛 which puts all mass on 𝑘
𝜎

𝑛 and similarly 𝐤𝜎𝑛 puts mass 1 on 𝑘
𝜎
𝑛
. The quantity of
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14 KOLOSSVÁRY

interest now is

𝑆𝜎(𝐏𝜎) = 𝑆(𝐏𝜎) = 𝑆(𝐩𝜎𝑑 ; … ; 𝐩𝜎1) ∶= −

𝑑∑
𝑛=1

𝐶
(𝑑),𝜎
𝑛 (𝐏𝜎) ⋅ ∫ log 𝝁𝜎𝑛 d𝐩𝜎𝑛 ,

where ∫ log 𝝁𝜎𝑛 d𝐩𝜎𝑛 = ∑
𝑖∈𝜎𝑛 𝑝𝜎𝑛(𝑖) ⋅ log 𝜇𝜎𝑛(𝑖).

Proposition 3.7. For any 𝜎 ∈ , the supremum sup𝐏𝜎∈𝜎 𝑆(𝐏𝜎) = 𝑆(𝐊𝜎) = 𝑆
𝝁,𝜎

𝑑 and the infimum
inf𝐏𝜎∈𝜎 𝑆(𝐏𝜎) = 𝑆(𝐊𝜎) = 𝑆

𝝁,𝜎

𝑑
.

Theorem 3.8. Let 𝜈𝝁 be a self-affine measure on the sponge 𝐹 ⊂ ℝ𝑑 that satisfies the SPPC. Then

dimF 𝜈𝝁 = min
𝜎∈ inf

𝐏𝜎∈𝜎 𝑆(𝐏𝜎) = lim
𝑞→+∞

𝑇(𝜈𝝁, 𝑞)

−𝑞
⩾ max

{
0,min
𝜎∈ 𝑆

𝝁,𝜎

𝑑

}
,

and

dimB 𝜈𝝁 = max
𝜎∈ sup

𝐏𝜎∈𝜎
𝑆(𝐏𝜎) = lim

𝑞→−∞

𝑇(𝜈𝝁, 𝑞)

−𝑞
⩽ max

𝜎∈ 𝑆
𝝁,𝜎

𝑑 .

In particular, if𝐹 is a 𝜎-ordered Lalley–Gatzouras sponge, then dimF 𝜈𝝁 = 𝑆
𝝁,𝜎

𝑑
and dimB 𝜈𝝁 = 𝑆

𝝁,𝜎

𝑑 .

Proposition 3.7 is proved in Section 5 and Theorem 3.8 in Section 8.

4 DISCUSSION AND TWOWORKED OUT EXAMPLES

In this section, we give further context to our results by relating it to previous papers and demon-
strate on two worked out examples how our approach tackles problems where earlier ones fell
short. These examples can also help the reader get more comfortable with our notation.
The closest related work is due to Olsen [43], who amongst other things, calculated the 𝐿𝑞 spec-

trum of 𝜈𝝁 supported on Bedford–McMullen sponges and also both asymptotes of the spectrum.
To the best of our knowledge, this is the only result in the non-conformal higher dimensional
setting which additionally even handles the 𝑞 < 0 case. One slight drawback is that it assumes
the VSSC which is equivalent to the very strong SPPC in our setting. Our approach allows us to
weaken the separation condition to the SPPC while still obtaining the 𝐿𝑞 spectrum for the whole
range of 𝑞 ∈ ℝ, also dimF 𝜈𝝁 and dimB 𝜈𝝁 for a substantially larger class of sponges.
Existing results for the 𝐿𝑞 spectrum on the plane restrict to 𝑞 ⩾ 0 but allow for box-like sets

outside the class of Lalley–Gatzouras and Barański carpets [21, 23] evenwith non-linearmaps [17].
This is due in part to the fact that the 𝐿𝑞 spectrum of self-conformal IFSs on the line is known to
exist [46]; hence, the formulas on the plane can at least be stated depending on the 𝐿𝑞 spectrum
of the projections onto the two coordinate axes. Assuming the SPPC, Theorem 3.3 recovers the
variational formula proved by Feng and Wang [21]. It follows from Fraser’s work [23, Theorem
2.10 and 2.12] that assuming the SPPC on the plane 𝑇(𝜈𝝁, 𝑞) = max𝜎∈ 𝑇

𝝁,𝜎

𝑑
(𝑞) for 𝑞 ∈ (0, 1] and

𝑇(𝜈𝝁, 𝑞) is differentiable at 𝑞 = 1. Uncovering the connection between the variational formula
and the closed-form expression is closely connected to Question 2.4. Already on the plane, this
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THE 𝐿𝑞 SPECTRUM OF SELF-AFFINE MEASURES ON SPONGES 15

closed-form expression need not hold for 𝑞 > 1 as was shown by the example presented in [26,
Theorem 3.8] which we revisit in Section 4.1.

Question 4.1. Is it true in higher dimensions as well that for a self-affine measure supported on
a sponge satisfying the SPPC, there is an interval of 𝑞 for which 𝑇(𝜈𝝁, 𝑞) = max𝜎∈ 𝑇

𝝁,𝜎

𝑑
(𝑞)? If so,

does the interval include 𝑞 = 0? Is 𝑇(𝜈𝝁, 𝑞) always differentiable at 𝑞 = 1?

In case of the box dimension, Kenyon and Peres [35] calculated it for Bedford–McMullen
sponges. The Lalley–Gatzouras class in arbitrary dimensions was also handled independently
from our work in [32]. Recently, Fraser and Jurga [24] considered sponges in 𝑑 = 3 in the more
general settingwhere each diagonalmatrix can be composedwith a permutationmatrix. Amongst
sponges which satisfy the SPPC, their main result only covers the Lalley–Gatzouras class. More
importantly, they present an example in [24, Theorem 5.5] which shows that their bounds are not
applicable in general to the Barański class. In Section 4.2, we calculate the box dimension of this
sponge and show the qualitative difference of our pressure compared to the one in [24]. Feng and
Hu [19, Theorem 2.15] considered diagonal systems with equal matrices.
Existing results on the plane go well beyond the SPPC, though it is still an open folklore conjec-

ture that the box dimension of any self-affine set exists regardless of overlaps. It does not exist for
all sub-self-affine sets introduced in [34], see the recent example of Jurga [33]. Carpets satisfying
the rectangular open set condition are covered in [21, 23], so it would be particularly interest-
ing to look at diagonal (and anti-diagonal) systems with overlaps. There has been some progress
in this direction [28, 36, 45], where the authors consider a carpet satisfying the SPPC and then
shift complete rows and/or columns and give sufficient conditions under which dimB 𝐹 does not
drop, that is, dimB 𝐹 = max𝜎∈ 𝑇𝜎2 . Assuming the SPPC to begin with ensures that 𝑇𝜎

1
⩽ 1 and

𝑇𝜎
2
⩽ 2 also for the shifted system. It makes sense to define 𝑇𝜎

1
and 𝑇𝜎

2
for general diagonal sys-

tems using the projections of the first-level cylinders to the 𝑥 and 𝑦 coordinate axis. If 𝑇𝜎
1
> 1, then

it is appropriate to adjust the definition of 𝑇𝜎
2
to the solution of the equation

∑
𝑖∈

(
𝜆
(𝜎1)

𝑖

)min{𝑇𝜎
1
,1}(

𝜆
(𝜎2)

𝑖

)𝑇𝜎
2
−min{𝑇𝜎

1
,1}
= 1.

Question 4.2. Given an arbitrary diagonal system on the plane, under what overlapping con-
ditions is it true that dimB 𝐹 = min{max𝜎∈ 𝑇𝜎2 , 2}? Is it sufficient to assume the exponential
separation condition introduced in [30] for both projected IFSs?

Bárány, Rams and Simon [6, Theorem B] partially answered the second question in the affir-
mative. Their result does not cover the case whenmin𝜎∈{𝑇𝜎1 } > 1, in which case it is reasonable
to suspect that the box dimension is equal to the affinity dimension introduced in [13].
The variational formula sheds some light on the differences between Hausdorff and box

dimension. To illustrate this, consider the class of 𝜎-ordered Lalley–Gatzouras sponges with
𝐏𝜎 = (𝐩𝜎𝑑 , … , 𝐩𝜎1) ∈ 𝜎 such that 𝐩𝜎𝑛 = (𝐩𝜎𝑑 )

𝜎
𝑛, that is, 𝐩𝜎𝑛 is just the ‘projection’ of 𝐩𝜎𝑑 onto 𝜎𝑛

defined in (3.2). A simple induction argument shows that in this case 𝐶(𝑑),𝜎𝑛 (𝐏𝜎) = 1∕𝜒𝜎𝑛(𝐩𝜎𝑑 ) −

1∕𝜒𝜎
𝑛+1

(𝐩𝜎𝑑 ) ⩾ 0 (due to the coordinate ordering property), hence,

𝑡(𝐏𝜎) =

𝑑∑
𝑛=1

(
1

𝜒𝜎𝑛(𝐩𝜎𝑑 )
−

1

𝜒𝜎
𝑛+1

(𝐩𝜎𝑑 )

)
⋅𝐻(𝐩𝜎𝑛) =

𝑑∑
𝑛=1

𝐻(𝐩𝜎𝑛) − 𝐻(𝐩𝜎𝑛−1)

𝜒𝜎𝑛(𝐩𝜎𝑑 )
,
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16 KOLOSSVÁRY

where 𝐻(𝐩𝜎0) ∶= 0. By [18, Theorem 1.3], this is precisely the Hausdorff dimension of the self-
affinemeasure 𝜈𝐩𝜎𝑑 . ThisLedrappier–Young formulaholds inmuchhigher generality formeasures
on self-affine sets [4, 5, 18, 19] and has been a key technical tool in recent advancements in the
dimension theory of self-affine sets and measures, see [2, 31, 39, 47] to name a few.
In particular, Lalley and Gatzouras [29] proved on the plane the variational formula

dimH 𝐹 = sup
𝐩𝜎2∈𝜎2

𝑡(𝐩𝜎2 ; (𝐩𝜎2)
𝜎
1 ), (4.1)

which is attained by a unique choice of 𝐩𝜎2 . This is to be compared with

dimB 𝐹 = max
(𝐩𝜎2 ;𝐩𝜎1 )∈𝜎2 ×𝜎1

𝑡(𝐩𝜎2 ; 𝐩𝜎1),

where the maximum is uniquely attained by (𝐩∗𝜎2 ; 𝐩
∗
𝜎1
). Therefore, we see that

dimH 𝐹 = dimB 𝐹 ⟺ (𝐩∗𝜎2
)𝜎1 = 𝐩∗𝜎1

⟺
∑

𝑗∈2∶Π𝜎1 𝑗=𝑖

(
𝜆
(𝜎2)

𝑗

)𝑇𝜎
2
−𝑇𝜎

1
= 1 for every 𝑖 ∈ 𝜎1 .

This is referred to as the uniform fibre case in the literature. In stark contrast, the main result of
Das and Simmons [11] is that the analogue of the variational formula (4.1) does not necessarily
hold in higher dimensions for shift invariant measures. In fact, the example they provide is a
Lalley–Gatzouras sponge in ℝ3. Instead, one needs to consider a wider class of measures, called
pseudo-Bernoulli measures, which are not invariant to obtain a similar variational principle. Our
variational principle (2.9) can be thought of as a Ledrappier–Young like formula for box counting
quantities on sponges satisfying the SPPC which holds regardless of the dimension.

Question 4.3. Does a Ledrappier–Young like formula hold more generally for the box dimension
of self-affine sets on the plane? What about higher dimensions?

For 𝑑 = 3, suppressing 𝜎 from the notation, the expression to be maximised for dimB 𝐹 is

𝐻(𝐩3)

𝜒3(𝐩3)
+

(
1 −

𝜒2(𝐩3)

𝜒3(𝐩3)

)
𝐻(𝐩2)

𝜒2(𝐩2)
+

[
1 −

𝜒1(𝐩3)

𝜒3(𝐩3)
−

(
1 −

𝜒2(𝐩3)

𝜒3(𝐩3)

)
𝜒1(𝐩2)

𝜒2(𝐩2)

]
𝐻(𝐩1)

𝜒1(𝐩1)
,

over the vectors (𝐩3; 𝐩2; 𝐩1) ∈ 3 × 2 × 1. The maximum is uniquely attained by (𝐩∗
3
; 𝐩∗

2
; 𝐩∗

1
).

The constants 𝐶(𝑑)𝑛 (𝐏) can be similarly expressed in terms of Lyapunov exponents for 𝑑 > 3;
however, the calculations get increasingly involved and cumbersome.

4.1 A planar Barański carpet

In [26, Theorem 3.8], the authors considered a family of Barański carpets on the plane given by
the two maps

𝑓1(𝑥, 𝑦) =

(
𝑐 0

0 𝑑

)(
𝑥

𝑦

)
and 𝑓2(𝑥, 𝑦) =

(
𝑑 0

0 𝑐

)(
𝑥

𝑦

)
+

(
1 − 𝑑

1 − 𝑐

)
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THE 𝐿𝑞 SPECTRUM OF SELF-AFFINE MEASURES ON SPONGES 17

with 𝑐 > 𝑑 > 0 and 𝑐 + 𝑑 ⩽ 1. Let 𝜎 = (1, 2) and 𝜔 = (2, 1) denote the two orderings on the plane.
Themaps are arranged so that 𝜎

1
= 𝜎

2
= 𝜔

1
= 𝜔

2
=  = {1, 2}. Thus, for any 𝝁 = (𝑢, 1 − 𝑢), def-

inition (3.4) gives that 𝑇𝝁,𝜎
1
(𝑞) = 𝑇

𝝁,𝜎
2
(𝑞) and 𝑇𝝁,𝜔

1
(𝑞) = 𝑇

𝝁,𝜔
2
(𝑞). Let 𝑇𝜎𝑢(𝑞) and 𝑇

𝜔
𝑢 (𝑞) denote these

two values, respectively. See (4.2) for the explicit formula. If 𝑢 = 1∕2, then symmetry of the system
implies that 𝑇𝜎

1∕2
(𝑞) = 𝑇𝜔

1∕2
(𝑞). The authors of [26] showed for this particular 𝝁 = (1∕2, 1∕2) that

𝑇(𝜈𝝁, 𝑞) ⩽ g(𝑞) < 𝑇𝜎
1∕2
(𝑞) for all 𝑞 > 1, where g(𝑞) is given by [26, eq. (3.2)]. Moreover, 𝑇(𝜈𝝁, 𝑞) is

differentiable at 𝑞 = 1, but not analytic in any neighbourhood of 𝑞 = 1. They ask [26, Question
3.10] how many derivatives does 𝑇(𝜈𝝁, 𝑞) have at 𝑞 = 1 for 𝝁 = (1∕2, 1∕2)? We answer this now
by giving an explicit formula for 𝑇(𝜈𝝁, 𝑞).
On the one hand, we simplify their example by choosing 𝑐 = 1∕2 and 𝑑 = 1∕4 in order to make

all calculations completely explicit. On the other hand, we handle all 𝝁 = (𝑢, 1 − 𝑢) in order to
uncover an interesting phase transition by varying the parameter 𝑢. Due to symmetry, we assume
without loss of generality that 𝑢 ∈ [1∕2, 1). Define 𝑠 to be the unique solution of (1∕2)𝑠 + (1∕4)𝑠 =
1, that is, 𝑠 = log((

√
5 − 1)∕2)∕ log(1∕2).

Proposition 4.4. The 𝐿𝑞 spectrum of the Barański carpet defined above is given by the following
formula:

∙ if 𝑢 ∈ [1
2
, 1
2𝑠
), then

𝑇(𝜈𝝁, 𝑞) =

⎧⎪⎪⎨⎪⎪⎩
𝑇𝜔𝑢 (𝑞) 𝑖𝑓 𝑞 ⩽ 0,

𝑇𝜎𝑢(𝑞) 𝑖𝑓 0 < 𝑞 ⩽
log 2

log 1−𝑢

𝑢2

,

2

3
+

log(𝑢(1−𝑢))

3 log 2
𝑞 𝑖𝑓 𝑞 >

log 2

log 1−𝑢

𝑢2

;

∙ if 𝑢 ∈ [ 1
2𝑠
, 1), then

𝑇(𝜈𝝁, 𝑞) =

{
𝑇𝜔𝑢 (𝑞) 𝑖𝑓 𝑞 ⩽ 0,

𝑇𝜎𝑢(𝑞) 𝑖𝑓 𝑞 > 0.

There is a point of non-differentiability at 𝑞 = 0 for every value of 𝑢. Moreover, if 𝑢 ∈ [1
2
, 1
2𝑠
),

then there is a further point of interest at 𝑞 = log 2

log 1−𝑢

𝑢2

, where𝑇(𝜈𝝁, 𝑞) is differentiable but no further

derivative exists. This answers [26, Question 3.10]. As 𝑢 → (1∕2)𝑠, this phase transition ‘escapes’
to∞, explaining why it ‘disappears’ for 𝑢 ⩾ (1∕2)𝑠.

Proof. Applying definition (3.4), the function 𝑇𝜎𝑢(𝑞) satisfies the equation

𝑢𝑞 ⋅
(
1

2

)𝑇𝜎𝑢(𝑞)
+ (1 − 𝑢)𝑞 ⋅

(
1

2

)2𝑇𝜎𝑢 (𝑞)
= 1,

from which after algebraic manipulations one obtains the explicit formula

𝑇𝜎𝑢(𝑞) =
−1

log 2

(
𝑞 ⋅ log

(
𝑢

1 − 𝑢

)
+ log

(
1

2

√
1 + 4

(
1 − 𝑢

𝑢2

)𝑞
−
1

2

))
. (4.2)
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18 KOLOSSVÁRY

Moreover, 𝑇𝜔𝑢 (𝑞) = 𝑇𝜎
1−𝑢

(𝑞). Some tedious calculations show that

𝑇𝜔𝑢 (𝑞) ⩽ 𝑇
𝜎
𝑢(𝑞) ⟺ 𝑞 ∈ [0, 1], with 𝑇𝜔𝑢 (𝑞) = 𝑇𝜎𝑢(𝑞) ⟺ 𝑞 ∈ {0, 1}.

The dominant types 𝐏∗𝜎,𝑢 = (𝐩∗𝜎2
, 𝐩∗𝜎1

) and 𝐏∗𝜔,𝑢 = (𝐩∗𝜔3
, 𝐩∗𝜔1

) from (2.10) are

𝐩∗𝜎1
= 𝐩∗𝜎2

=

(
𝑢𝑞 ⋅

(
1

2

)𝑇𝜎𝑢(𝑞)
, (1 − 𝑢)𝑞 ⋅

(
1

2

)2𝑇𝜎𝑢 (𝑞))
and

𝐩∗𝜔1
= 𝐩∗𝜔2

=

(
𝑢𝑞 ⋅

(
1

2

)2𝑇𝜔𝑢 (𝑞)
, (1 − 𝑢)𝑞 ⋅

(
1

2

)𝑇𝜔𝑢 (𝑞))
.

Themain task is to determine when𝐏∗𝜎,𝑢 ∈ 𝜎 and 𝐏∗𝜔,𝑢 ∈ 𝜔. Since 𝐩∗𝜎1 = 𝐩∗𝜎2
and 𝐩∗𝜔1 = 𝐩∗𝜔2

, it is
enough to consider types of the form ((𝑟, 1 − 𝑟); (𝑟, 1 − 𝑟)). Simple application of (2.8) yields that

𝐶(2),𝜎
1

(𝑟) =
(

1

2 − 𝑟
−

1

1 + 𝑟

)
1

log 2
⩾ 0 ⟺ 𝑟 ⩾

1

2

and 𝐶(2),𝜔
1

(𝑟) = −𝐶(2),𝜎
1

(𝑟) ⩾ 0 ⟺ 𝑟 ⩽ 1∕2. Therefore,

𝐏∗𝜎,𝑢 ∈ 𝜎 ⟺ 𝑢𝑞 ⋅
(
1

2

)𝑇𝜎𝑢(𝑞)
⩾
1

2
and 𝐏∗𝜔,𝑢 ∈ 𝜔 ⟺ (1 − 𝑢)𝑞 ⋅

(
1

2

)𝑇𝜔𝑢 (𝑞)
⩾
1

2
.

Using formula (4.2), we obtain the following equivalences:

𝐏∗𝜎,𝑢 ∈ 𝜎 ⟺

⎧⎪⎨⎪⎩
𝑞 ⩽

log 2

log 1−𝑢

𝑢2

, 𝑖𝑓𝑢 ∈
[
1

2
, 1
2𝑠

]
𝑞 ⩾

log 2

log 1−𝑢

𝑢2

, 𝑖𝑓𝑢 ∈
(
1

2𝑠
, 1
)

and

𝐏∗𝜔,𝑢 ∈ 𝜔 ⟺ 𝑞 ⩽
log 2

log 𝑢

(1−𝑢)2

for every 𝑢 ∈
[
1

2
, 1
)
.

We can now determine 𝑇(𝜈𝝁, 𝑞) for 𝑞 ⩽ 1. If 𝑞 ⩽ 0, then 𝑇𝜔𝑢 (𝑞) > 𝑇𝜎𝑢(𝑞) and 𝐏
∗
𝜔,𝑢 ∈ 𝜔, hence,

𝑇(𝜈𝝁, 𝑞) = 𝑇𝜔𝑢 (𝑞). If 𝑞 ∈ [0, 1], then 𝑇𝜎𝑢(𝑞) ⩾ 𝑇
𝜔
𝑢 (𝑞) and 𝐏

∗
𝜎,𝑢 ∈ 𝜎, hence, 𝑇(𝜈𝝁, 𝑞) = 𝑇𝜎𝑢(𝑞).

If 𝑞 > 1, then 𝐏∗𝜔,𝑢 ∉ 𝜔 for all 𝑢 ∈ [1∕2, 1). We abbreviate 𝑟 ∗ log 𝑢 = 𝑟 log 𝑢 + (1 − 𝑟) log(1 −

𝑢). For fixed 𝑞 > 1 and 𝑢 ∈ [1∕2, 1), we need to maximise

𝑡(𝑟) =
(
𝐶
(2),𝜔
2

+ 𝐶
(2),𝜔
1

)(
−𝑟 ∗ log 𝑟 + 𝑞 ⋅ 𝑟 ∗ log 𝑢

)
=
−𝑟 ∗ log 𝑟 + 𝑞 ⋅ 𝑟 ∗ log 𝑢

(1 + 𝑟) log 2

with respect to 𝑟 directly using types ((𝑟, 1 − 𝑟); (𝑟, 1 − 𝑟)) with 𝑟 ⩽ 1∕2. Elementary calculus
shows that 𝑡(𝑟) is strictly increasing on (0, 1∕2], so

sup
𝐏𝜔∈𝜔

𝑡(𝐏𝜔) = max
𝑟∈(0,1∕2]

𝑡(𝑟) = 𝑡(1∕2) =
2

3
+
log(𝑢(1 − 𝑢))

3 log 2
⋅ 𝑞.
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THE 𝐿𝑞 SPECTRUM OF SELF-AFFINE MEASURES ON SPONGES 19

If 1∕2 ⩽ 𝑢 ⩽ (1∕2)𝑠 and 𝑞 ⩾ log 2∕ log 1−𝑢

𝑢2
⩾ 1, then 𝐏∗𝜎,𝑢 ∉ 𝜎. An analogous calculation shows

that in this case as well sup𝐏𝜎∈𝜎 𝑡(𝐏𝜎) = 𝑡(1∕2). We leave it to the reader to check that

2

3
+
log(𝑢(1 − 𝑢))

3 log 2
⋅ 𝑞 ⩽ min{𝑇𝜎𝑢(𝑞), 𝑇

𝜔
𝑢 (𝑞)}

with equality with 𝑇𝜎𝑢(𝑞) if and only if 𝑞 = log 2∕ log 1−𝑢

𝑢2
and equality with 𝑇𝜔𝑢 (𝑞) if and only if

𝑞 = log 2∕ log 𝑢

(1−𝑢)2
. The formula for 𝑇(𝜈𝝁, 𝑞) follows. □

4.2 A Barański sponge in three dimensions

This example appeared in [24, Section 9]. Let 0 < 1∕𝑁 < 𝑐 < 𝑏 < 𝑎 < 𝑑 = 1 − 𝑏 < 1with 𝑎 + 𝑐 <
1 and consider the affine IFS with maps 𝑓𝑖(𝑥) = 𝐴𝑖𝑥 + 𝑡𝑖 , where

𝐴𝑖 = diag(𝑎, 𝑏, 1∕𝑁), 𝑡𝑖 = (0, 0, (𝑖 − 1)∕𝑁) for 𝑖 = 1, … ,𝑁;

𝐴𝑁+1 = diag(𝑐, 𝑑, 1∕𝑁), 𝑡𝑁+1 = (1 − 𝑐, 𝑏, 0).

The attractor 𝐹 is a Barański sponge, recall Example 3.2 and projection to the 𝑥𝑦-plane is a
Barański carpet.
Fraser and Jurga introduce a pressure function 𝑃 using ‘modified singular value functions’ and

show that the unique 𝑠0 which satisfies 𝑃(𝑠0) = 1 is always an upper bound for dim𝐵𝐹 which can
be strict for particular choices of parameters in this example. We now show why this happens.
Their pressure in this example is

𝑃(𝑠) = 𝑁1−𝑠 ⋅max
{
𝑁𝑎𝑡𝑏1−𝑡 + 𝑐𝑡𝑑1−𝑡, 𝑁𝑏 + 𝑑

}
, (4.3)

where 𝑡 satisfies 𝑎𝑡 + 𝑐𝑡 = 1.
Now let us apply our notation and results. Since we are only interested in the box dimension,

we simplify notation in (3.4) to 𝑇𝜎𝑛 = 𝑇
𝝁,𝜎
𝑛 (0) for 𝑛 = 0, 1, 2, 3. First observe that contraction along

the 𝑧-axis is the strongest; hence, the only two orderings in  are 𝜎 = (1, 2, 3) and 𝜔 = (2, 1, 3).
Furthermore, 𝜎

1
= 𝜎

2
= {1,𝑁 + 1} = 𝜔

1
= 𝜔

2
and 𝜎

3
=  = 𝜔

3
. Applying (3.4), we obtain 𝑇𝜎

1
=

𝑡 = 𝑇𝜎
2
and 𝑇𝜔

1
= 1 = 𝑇𝜔

2
; moreover, 𝑇𝜎

3
and 𝑇𝜔

3
are the solutions to

𝑁𝑡−𝑇𝜎
3
(
𝑁𝑎𝑡 + 𝑐𝑡

)
= 1 and 𝑁1−𝑇𝜔

3 (𝑁𝑏 + 𝑑) = 1, (4.4)

respectively. From here, we get the closed forms

𝑇𝜎3 = 𝑡 +
log(𝑁𝑎𝑡 + 𝑐𝑡)

log𝑁
and 𝑇𝜔3 = 1 +

log(𝑁𝑏 + 𝑑)

log𝑁
.

Corollary 3.5 implies that dim𝐵 𝐹 ⩽ max{𝑇𝜎
3
, 𝑇𝜔

3
}. Comparing (4.3) with (4.4), some algebraic

manipulations yield that max{𝑇𝜎
3
, 𝑇𝜔

3
} ⩽ 𝑠0. More precisely, if 𝑇𝜎3 ⩽ 𝑇

𝜔
3
, then max{𝑇𝜎

3
, 𝑇𝜔

3
} = 𝑠0;

however, if 𝑇𝜎
3
> 𝑇𝜔

3
, then max{𝑇𝜎

3
, 𝑇𝜔

3
} < 𝑠0, indicating that 𝑠0 is not the correct value. There-

fore, the qualitative difference between the two approaches is that distinguishing between the
orderings is a necessary and crucial new feature of our method.
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20 KOLOSSVÁRY

Conjecture 1. For the Barański sponge in this section, dimB 𝐹 = max{𝑇𝜎
3
, 𝑇𝜔

3
}.

We give a sketch of a possible proof of this conjecture. It is straightforward to determine the
dominant types 𝐏∗𝜎 = (𝐩∗𝜎3

, 𝐩∗𝜎2
, 𝐩∗𝜎1

) and 𝐏∗𝜔 = (𝐩∗𝜔3
, 𝐩∗𝜔3

, 𝐩∗𝜔1
) from (2.10),

𝐩∗𝜎1
= 𝐩∗𝜎2

= (𝑎𝑡, 𝑐𝑡), and 𝐩∗𝜎3
=

⎛⎜⎜⎜⎜⎝
𝑎𝑡

𝑁𝑎𝑡 + 𝑐𝑡
, … ,

𝑎𝑡

𝑁𝑎𝑡 + 𝑐𝑡
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

𝑁 times

,
𝑐𝑡

𝑁𝑎𝑡 + 𝑐𝑡

⎞⎟⎟⎟⎟⎠
,

moreover,

𝐩∗𝜔1
= 𝐩∗𝜔2

= (𝑏, 𝑑), and 𝐩∗𝜔3
=

⎛⎜⎜⎜⎜⎝
𝑏

𝑁𝑏 + 𝑑
,… ,

𝑏

𝑁𝑏 + 𝑑
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

𝑁 times

,
𝑑

𝑁𝑏 + 𝑑

⎞⎟⎟⎟⎟⎠
.

The main task is to determine for which parameters (𝑎, 𝑏, 𝑐, 𝑁) is 𝐏∗𝜎 ∈ 𝜎 and 𝐏∗𝜔 ∈ 𝜔, that
is, when is 𝐶(3),𝜎𝑛 (𝐏∗𝜎 ) ⩾ 0 for 𝑛 = 1, 2, 3 and same for 𝜔. This automatically holds for 𝐶(3),𝜎

3
(𝐏∗𝜎 )

and also easy for 𝐶(3),𝜎
2

(𝐏∗𝜎 ) since 1∕𝑁 is the strongest contraction. It is much more cumbersome
to check that 𝐶(3),𝜎

1
(𝐏∗𝜎 ) ⩾ 0 and 𝐶

(3),𝜔
1

(𝐏∗𝜔) ⩾ 0. Both 𝐶
(3),𝜎
1

(𝐏∗𝜎 ) and 𝐶
(3),𝜔
1

(𝐏∗𝜔) are functions of
(𝑎, 𝑏, 𝑐, 𝑁). To prove the conjecture, it is enough to verify the following three things:

(1) {(𝑎, 𝑏, 𝑐, 𝑁) ∶ 𝐏∗𝜎 ∉ 𝜎 and 𝐏∗𝜔 ∉ 𝜔} = ∅ (otherwise dim𝐵 𝐹 < max{𝑇𝜎
3
, 𝑇𝜔

3
});

(2) if (𝑎, 𝑏, 𝑐, 𝑁) is such that 𝐏∗𝜎 ∉ 𝜎, then 𝑇𝜔
3
⩾ 𝑇𝜎

3
;

(3) if (𝑎, 𝑏, 𝑐, 𝑁) is such that 𝐏∗𝜔 ∉ 𝜔, then 𝑇𝜎
3
⩾ 𝑇𝜔

3
.

Verifying these seems possible but certainly tedious. Instead, we conducted an exhaustive search
on the parameter space to see whether we can find a counterexample. UsingMathematica 13.1, we
chose𝑁 = 100 up to 1000 with increments of 50; furthermore, 0.02 ⩽ 𝑐 ⩽ 0.49, 𝑐 + 0.01 ⩽ 𝑏 ⩽ 0.5
and 𝑏 + 0.01 ⩽ 𝑎 ⩽ 1 − 𝑐 − 0.01 all with increments of 0.01. For all instances, we found that all
three conditions are true, supporting the conjecture. We note that {(𝑎, 𝑏, 𝑐, 𝑁) ∶ 𝐏∗𝜎 ∉ 𝜎} ≠ ∅

and also {(𝑎, 𝑏, 𝑐, 𝑁) ∶ 𝐏∗𝜔 ∉ 𝜔} ≠ ∅, so (2) and (3) are not empty statements.

5 PROOF OF PROPOSITION 2.2 AND 3.7

The proof of these two propositions follows a very similar argument; therefore, we present them
side-by-side. Recall notation from Section 2 and 3. In particular,

𝑡(𝐏𝜎) = 𝑡(𝐩𝜎𝑑 ; … ; 𝐩𝜎1) =

𝑑∑
𝑛=1

𝐶
(𝑑),𝜎
𝑛 (𝐏𝜎) ⋅

(
𝐻(𝐩𝜎𝑛) + ∫ 𝜑𝜎𝑛 d𝐩𝜎𝑛

)
, (5.1)

and

𝑆(𝐏𝜎) = 𝑆(𝐩𝜎𝑑 ; … ; 𝐩𝜎1) = −

𝑑∑
𝑛=1

𝐶
(𝑑),𝜎
𝑛 (𝐏𝜎) ⋅ ∫ log 𝝁𝜎𝑛 d𝐩𝜎𝑛 . (5.2)
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THE 𝐿𝑞 SPECTRUM OF SELF-AFFINE MEASURES ON SPONGES 21

For 𝜎 ∈ , 1 ⩽ 𝑛 ⩽ 𝑑 and 𝐩𝜎𝑛 ∈ 𝜎
𝑛 , let

𝑓𝜎𝑛(𝐩𝜎𝑛) ∶=
1

𝜒𝜎𝑛(𝐩𝜎𝑛)

(
𝐻(𝐩𝜎𝑛) + ∫ 𝜑𝜎𝑛 d𝐩𝜎𝑛 −

𝑛−1∑
𝑘=1

𝜒𝜎
𝑘
(𝐩𝜎𝑛)

(
𝑇𝜎
𝑘
− 𝑇𝜎

𝑘−1

))
,

and

g𝜎𝑛 (𝐩𝜎𝑛) ∶=
−1

𝜒𝜎𝑛(𝐩𝜎𝑛)

(
∫ log 𝝁𝜎𝑛 d𝐩𝜎𝑛 +

𝑛−1∑
𝑘=1

𝜒𝜎
𝑘
(𝐩𝜎𝑛)

(
𝑆
𝝁,𝜎

𝑘 − 𝑆
𝝁,𝜎

𝑘−1

))
,

ℎ𝜎𝑛(𝐩𝜎𝑛) ∶=
−1

𝜒𝜎𝑛(𝐩𝜎𝑛)

(
∫ log 𝝁𝜎𝑛 d𝐩𝜎𝑛 +

𝑛−1∑
𝑘=1

𝜒𝜎
𝑘
(𝐩𝜎𝑛)

(
𝑆
𝝁,𝜎

𝑘
− 𝑆

𝝁,𝜎

𝑘−1

))
.

For 𝑛 = 1, the empty sum is taken to equal 0.

Lemma 5.1. For every 𝜎 ∈  and 1 ⩽ 𝑛 ⩽ 𝑑,

sup
𝐩∈𝜎𝑛

𝑓𝜎𝑛(𝐩) = 𝑓𝜎𝑛(𝐩
∗
𝜎𝑛
) = 𝑇𝜎𝑛 − 𝑇

𝜎
𝑛−1,

moreover,

sup
𝐩∈𝜎𝑛

g𝜎𝑛 (𝐩) = g𝜎𝑛 (𝐤𝜎𝑛) = 𝑆
𝝁,𝜎

𝑛 − 𝑆
𝝁,𝜎

𝑛−1 and inf
𝐩∈𝜎𝑛

ℎ𝜎𝑛(𝐩) = ℎ𝜎𝑛(𝐤𝜎𝑛
) = 𝑆

𝝁,𝜎
𝑛 − 𝑆

𝝁,𝜎
𝑛−1

.

Proof. Let 𝐩 and 𝐪 be two probability vectors of the same length with strictly positive entries. The
Kullback–Leibler divergence (or relative entropy) of 𝐩 with respect to 𝐪 is

𝐻(𝐩‖𝐪) ∶=∑
𝑖

𝑝𝑖 log(𝑝𝑖∕𝑞𝑖).

It is asymmetric and𝐻(𝐩‖𝐪) ⩾ 0 with equality if and only if 𝐩 = 𝐪.
Let 𝐩 ∈ 𝜎

𝑛 . Then using (2.10),

𝑓𝜎𝑛(𝐩) =
1

𝜒𝜎𝑛(𝐩)

⎛⎜⎜⎝−
∑
𝑖∈𝜎𝑛

𝑝(𝑖) log

(
𝑝∗𝜎𝑛

(𝑖)
𝑝(𝑖)

𝑝∗𝜎𝑛
(𝑖)

)
+ ∫ 𝜑𝜎𝑛 d𝐩 −

𝑛−1∑
𝑘=1

𝜒𝜎
𝑘
(𝐩)

(
𝑇𝜎
𝑘
− 𝑇𝜎

𝑘−1

)⎞⎟⎟⎠
= 𝑇𝜎𝑛 − 𝑇

𝜎
𝑛−1 −

𝐻(𝐩‖𝐩∗𝜎𝑛)
𝜒𝜎𝑛(𝐩)

= 𝑇𝜎𝑛 − 𝑇
𝜎
𝑛−1 ⟺ 𝐩 = 𝐩∗𝜎𝑛

,

otherwise𝑓𝜎𝑛(𝐩) < 𝑓𝜎𝑛(𝐩
∗
𝜎𝑛
) = 𝑇𝜎𝑛 − 𝑇

𝜎
𝑛−1

. Since𝐩∗𝜎𝑛 is uniformly bounded away from the boundary
of 𝜎

𝑛 and 𝑓
𝜎
𝑛(𝐩) is continuous in 𝐩, these imply that sup𝐩∈𝜎𝑛 𝑓𝜎𝑛(𝐩) = 𝑓𝜎𝑛(𝐩

∗
𝜎𝑛
).

The extreme value for g𝜎𝑛 and ℎ𝜎𝑛 is even simpler. For every 𝑖 ∈ 𝜎𝑛 , the numerator and the
denominator in both g𝜎𝑛 and ℎ𝜎𝑛 are linear in 𝑝𝜎𝑛(𝑖). Therefore, g𝜎𝑛 and ℎ𝜎𝑛 considered as one-
variable functions of 𝑝𝜎𝑛(𝑖) take their extreme values when 𝑝𝜎𝑛(𝑖) is equal to 0 or 1. So, it is enough
to consider the degenerate probability vectors putting allmass on one of the coordinates of𝜎𝑛 . Out
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22 KOLOSSVÁRY

of these vectors, by definition, 𝐤𝜎𝑛 maximises g𝜎𝑛 , while 𝐤𝜎𝑛 minimises ℎ
𝜎
𝑛 . To conclude, observe

from (3.5) and (3.6) that g𝜎𝑛 (𝐤𝜎𝑛) = 𝑆
𝝁,𝜎

𝑛 − 𝑆
𝝁,𝜎

𝑛−1 and ℎ
𝜎
𝑛(𝐤𝜎𝑛

) = 𝑆
𝝁,𝜎
𝑛 − 𝑆

𝝁,𝜎
𝑛−1

. □

Lemma 5.2. For every 1 ⩽ 𝑛 ⩽ 𝑑 − 1, 𝑡(𝐩𝜎𝑑 ; … ; 𝐩𝜎𝑛+1 ; 𝐩
∗
𝜎𝑛
; … ; 𝐩∗𝜎1

) is equal to

𝑇𝜎𝑛 +

𝑑∑
𝑘=𝑛+1

𝐶
(𝑑),𝜎
𝑘

(𝐏𝜎) ⋅

(
𝐻(𝐩𝜎𝑘 ) + ∫ 𝜑𝜎

𝑘
d𝐩𝜎𝑘 −

𝑛∑
𝓁=1

𝜒𝜎𝓁(𝐩𝜎𝑘 )
(
𝑇𝜎𝓁 − 𝑇

𝜎
𝓁−1

))
, (5.3)

moreover, 𝑡(𝐩∗𝜎𝑑 ; … ; 𝐩
∗
𝜎1
) = 𝑇𝜎

𝑑
.

Proof. The proof goes by induction. First for 𝑛 = 1, using the definition of 𝐶(𝑑),𝜎
1

(𝐏𝜎) from (2.8),
𝑡(𝐩𝜎𝑑 ; … ; 𝐩𝜎1) is equal to

𝑑∑
𝑚=2

𝐶
(𝑑),𝜎
𝑚 (𝐏𝜎) ⋅

(
𝐻(𝐩𝜎𝑚) + ∫ 𝜑𝜎𝑚 d𝐩𝜎𝑚

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

independent of 𝐩𝜎1

+

(
1 −

𝑑∑
𝑚=2

𝐶
(𝑑),𝜎
𝑚 (𝐏𝜎) ⋅ 𝜒

𝜎
1 (𝐩𝜎𝑚)

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

independent of 𝐩𝜎1

𝐻(𝐩𝜎1) + ∫ 𝜑𝜎
1
d𝐩𝜎1

𝜒𝜎
1
(𝐩𝜎1)

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
=𝑓𝜎

1
(𝐩𝜎1 )

.

From Lemma 5.1, we know that 𝑓𝜎
1
(𝐩𝜎1) ⩽ 𝑓

𝜎
1
(𝐩∗𝜎1

) = 𝑇𝜎
1
and so

𝑡(𝐩𝜎𝑑 ; … ; 𝐩𝜎1) ⩽ 𝑡(𝐩𝜎𝑑 ; … ; 𝐩𝜎2 ; 𝐩
∗
𝜎1
) = 𝑇𝜎1 +

𝑑∑
𝑘=2

𝐶
(𝑑),𝜎
𝑘

(𝐏𝜎) ⋅
(
𝐻(𝐩𝜎𝑘 ) + ∫ 𝜑𝜎

𝑘
d𝐩𝜎𝑘 − 𝜒

𝜎
1 (𝐩𝜎𝑘 )𝑇

𝜎
1

)
,

proving the assertion for 𝑛 = 1 (recalling that 𝑇𝜎
0
= 0).

Assume that (5.3) holds for 𝑛 − 1. Then using the definition of 𝐶(𝑑),𝜎𝑛 (𝐏𝜎) from (2.8) and the
induction hypothesis, 𝑡(𝐩𝜎𝑑 ; … ; 𝐩𝜎𝑛 ; 𝐩

∗
𝜎𝑛−1

; … ; 𝐩∗𝜎1
) is equal to

𝑇𝜎𝑛−1 +

𝑑∑
𝑘=𝑛+1

𝐶
(𝑑),𝜎
𝑘

(𝐏𝜎) ⋅

(
𝐻(𝐩𝜎𝑘 ) + ∫ 𝜑𝜎

𝑘
d𝐩𝜎𝑘 −

𝑛−1∑
𝓁=1

𝜒𝜎𝓁(𝐩𝜎𝑘 )
(
𝑇𝜎𝓁 − 𝑇

𝜎
𝓁−1

))
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

independent of 𝐩𝜎𝑛

+

(
1 −

𝑑∑
𝑚=𝑛+1

𝐶(𝑑),𝜎𝑚 (𝐏𝜎) ⋅ 𝜒
𝜎
𝑛(𝐩𝜎𝑚)

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

independent of 𝐩𝜎𝑛

𝐻(𝐩𝜎𝑛) + ∫ 𝜑𝜎𝑛 d𝐩𝜎𝑛 −∑𝑛−1
𝓁=1 𝜒

𝜎
𝓁(𝐩𝜎𝑛 )

(
𝑇𝜎𝓁 − 𝑇

𝜎
𝓁−1

)
𝜒𝜎𝑛(𝐩𝜎𝑛)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=𝑓𝜎𝑛(𝐩𝜎𝑛 )⩽𝑓

𝜎
𝑛 (𝐩

∗
𝜎𝑛
)=𝑇𝜎𝑛−𝑇

𝜎
𝑛−1

by Lemma 5.1

.

Hence,

𝑡(𝐩𝜎𝑑 ; … ; 𝐩𝜎𝑛 ; 𝐩
∗
𝜎𝑛−1

; … ; 𝐩∗𝜎1
) ⩽ 𝑡(𝐩𝜎𝑑 ; … ; 𝐩𝜎𝑛+1 ; 𝐩

∗
𝜎𝑛
; … ; 𝐩∗𝜎1

)

= 𝑇𝜎𝑛−1 + 𝑇
𝜎
𝑛 − 𝑇

𝜎
𝑛−1 +

𝑑∑
𝑘=𝑛+1

𝐶
(𝑑),𝜎
𝑘

(𝐏𝜎) ⋅

(
𝐻(𝐩𝜎𝑘 ) + ∫ 𝜑𝜎

𝑘
d𝐩𝜎𝑘 −

𝑛∑
𝓁=1

𝜒𝜎𝓁(𝐩𝜎𝑘 )
(
𝑇𝜎𝓁 − 𝑇

𝜎
𝓁−1

))
,

proving the assertion for 𝑛 ⩽ 𝑑 − 1.
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Finally, for 𝑛 = 𝑑, we use that 𝐶(𝑑),𝜎
𝑑

(𝐏𝜎) = 1∕𝜒𝜎
𝑑
(𝐩𝜎𝑑 ) to obtain

𝑡(𝐩𝜎𝑑 ; 𝐩
∗
𝜎𝑑−1

; … ; 𝐩∗𝜎1
) = 𝑇𝜎

𝑑−1
+
𝐻(𝐩𝜎𝑑 ) + ∫ 𝜑𝜎

𝑑
d𝐩𝜎𝑑 −

∑𝑑−1
𝓁=1 𝜒

𝜎
𝓁(𝐩𝜎𝑑 )

(
𝑇𝜎𝓁 − 𝑇

𝜎
𝓁−1

)
𝜒𝜎
𝑑
(𝐩𝜎𝑑 )

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=𝑓𝜎

𝑑
(𝐩𝜎𝑑

)⩽𝑓𝜎
𝑑
(𝐩∗𝜎𝑑

)=𝑇𝜎
𝑑
−𝑇𝜎

𝑑−1
by Lemma 5.1

.

To conclude, 𝑡(𝐩𝜎𝑑 ; 𝐩
∗
𝜎𝑑−1

; … ; 𝐩∗𝜎1
) ⩽ 𝑡(𝐏∗𝜎 ) = 𝑇𝜎

𝑑
. □

Proof of Proposition 2.2. In the process of proving Lemma 5.2, we actually showed that for any
𝜎 ∈  and 𝐏𝜎 ∈ 𝜎,

𝑡(𝐏𝜎) ⩽ 𝑡(𝐩𝜎𝑑 ; … ; 𝐩𝜎2 ; 𝐩
∗
𝜎1
) ⩽ … ⩽ 𝑡(𝐩𝜎𝑑 ; 𝐩

∗
𝜎𝑑−1

; … ; 𝐩∗𝜎1
) ⩽ 𝑡(𝐏∗𝜎 ) = 𝑇𝜎

𝑑
,

with equality throughout if and only if 𝐏𝜎 = 𝐏∗𝜎 . Since 𝐩
∗
𝜎𝑛

is uniformly bounded away from
the boundary of 𝜎

𝑛 for every 1 ⩽ 𝑛 ⩽ 𝑑 and 𝑡(𝐏𝜎) is continuous in 𝐏𝜎, these imply that
sup𝐏𝜎∈𝜎 𝑡(𝐏𝜎) = 𝑡(𝐏∗𝜎 ) = 𝑇𝜎

𝑑
. □

Lemma 5.3. For every 1 ⩽ 𝑛 ⩽ 𝑑 − 1, 𝑆(𝐩𝜎𝑑 ; … ; 𝐩𝜎𝑛+1 ; 𝐤𝜎𝑛 ; … ; 𝐤𝜎1) is equal to

𝑆
𝝁,𝜎

𝑛 −

𝑑∑
𝑘=𝑛+1

𝐶
(𝑑),𝜎
𝑘

(𝐏𝜎) ⋅

(
∫ log 𝝁𝜎

𝑘
d𝐩𝜎𝑘 +

𝑛∑
𝓁=1

𝜒𝜎𝓁(𝐩𝜎𝑘 )
(
𝑆
𝝁,𝜎

𝓁 − 𝑆
𝝁,𝜎

𝓁−1

))
, (5.4)

moreover, 𝑆(𝐤𝜎𝑑 ; … ; 𝐤𝜎1) = 𝑆
𝝁,𝜎

𝑑 . Similarly, 𝑆(𝐩𝜎𝑑 ; … ; 𝐩𝜎𝑛+1 ; 𝐤𝜎𝑛 ; … ; 𝐤𝜎1) is equal to

𝑆
𝝁,𝜎
𝑛 −

𝑑∑
𝑘=𝑛+1

𝐶
(𝑑),𝜎
𝑘

(𝐏𝜎) ⋅

(
∫ log 𝝁𝜎

𝑘
d𝐩𝜎𝑘 +

𝑛∑
𝓁=1

𝜒𝜎𝓁(𝐩𝜎𝑘 )
(
𝑆
𝝁,𝜎

𝓁 − 𝑆
𝝁,𝜎

𝓁−1

))
,

moreover, 𝑆(𝐤𝜎𝑑 ; … ; 𝐤𝜎1) = 𝑆
𝝁,𝜎

𝑑
.

Proof. We just sketch the proof since it is a very similar induction argument to the one in the proof
of Lemma 5.2. Firstly, 𝑆(𝐏𝜎) is equal to

−

𝑑∑
𝑚=2

𝐶
(𝑑),𝜎
𝑚 (𝐏𝜎) ⋅ ∫ log 𝝁𝜎𝑚 d𝐩𝜎𝑚

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
independent of 𝐩𝜎1

+

(
1 −

𝑑∑
𝑚=2

𝐶
(𝑑),𝜎
𝑚 (𝐏𝜎) ⋅ 𝜒

𝜎
1 (𝐩𝜎𝑚)

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

independent of 𝐩𝜎1

− ∫ log 𝝁𝜎
1
d𝐩𝜎1

𝜒𝜎
1
(𝐩𝜎1)

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
(∗)

,

where (∗) = g𝜎
1
(𝐩𝜎1) ⩽ 𝑆

𝝁,𝜎

1 by Lemma 5.1. After rearranging, we obtain (5.4) for 𝑛 = 1.
Now assume that (5.4) holds for 𝑛 − 1. Then 𝑆(𝐩𝜎𝑑 ; … ; 𝐩𝜎𝑛 ; 𝐤𝜎𝑛−1 ; … ; 𝐤𝜎1) equals
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24 KOLOSSVÁRY

𝑆
𝝁,𝜎

𝑛−1 −

𝑑∑
𝑘=𝑛+1

𝐶
(𝑑),𝜎
𝑘

(𝐏𝜎) ⋅

(
∫ log 𝝁𝜎

𝑘
d𝐩𝜎𝑘 +

𝑛−1∑
𝓁=1

𝜒𝜎𝓁(𝐩𝜎𝑘 )
(
𝑆
𝝁,𝜎

𝓁 − 𝑆
𝝁,𝜎

𝓁−1

))
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

independent of 𝐩𝜎𝑛

+

(
1 −

𝑑∑
𝑚=𝑛+1

𝐶(𝑑),𝜎𝑚 (𝐏𝜎) ⋅ 𝜒
𝜎
𝑛(𝐩𝜎𝑚)

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

independent of 𝐩𝜎𝑛

− ∫ log 𝝁𝜎𝑛 d𝐩𝜎𝑛 −∑𝑛−1
𝓁=1 𝜒

𝜎
𝓁(𝐩𝜎𝑛 )

(
𝑆
𝝁,𝜎

𝓁 − 𝑆
𝝁,𝜎

𝓁−1

)
𝜒𝜎𝑛(𝐩𝜎𝑛)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

=g𝜎𝑛 (𝐩𝜎𝑛 )⩽g
𝜎
𝑛 (𝐤𝜎𝑛 )=𝑆

𝝁,𝜎

𝑛 −𝑆
𝝁,𝜎

𝑛−1 by Lemma 5.1

.

After rearranging, we again see that (5.4) holds for 𝑛 ⩽ 𝑑 − 1.
Finally, for 𝑛 = 𝑑, we use that 𝐶(𝑑),𝜎

𝑑
(𝐏𝜎) = 1∕𝜒𝜎

𝑑
(𝐩𝜎𝑑 ) to obtain

𝑆(𝐩𝜎𝑑 ; 𝐤𝜎𝑑−1 ; … ; 𝐤𝜎1) = 𝑆
𝝁,𝜎

𝑑−1 +
− ∫ log 𝝁𝜎

𝑑
d𝐩𝜎𝑑 −

∑𝑑−1
𝓁=1 𝜒

𝜎
𝓁(𝐩𝜎𝑑 )

(
𝑆
𝝁,𝜎

𝓁 − 𝑆
𝝁,𝜎

𝓁−1

)
𝜒𝜎
𝑑
(𝐩𝜎𝑑 )

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

=g𝜎
𝑑
(𝐩𝜎𝑑

)⩽g𝜎
𝑑
(𝐤𝜎𝑑

)=𝑆
𝝁,𝜎

𝑑 −𝑆
𝝁,𝜎

𝑑−1 by Lemma 5.1

.

To conclude, 𝑆(𝐩𝜎𝑑 ; 𝐤𝜎𝑑−1 ; … ; 𝐤𝜎1) ⩽ 𝑆(𝐊𝜎) = 𝑆
𝝁,𝜎

𝑑 .
The proof for 𝑆(𝐩𝜎𝑑 ; … ; 𝐩𝜎𝑛+1 ; 𝐤𝜎𝑛 ; … ; 𝐤𝜎1) is exactly the same except that ℎ

𝜎
𝑛(𝐩𝜎𝑛) ⩾ ℎ

𝜎
𝑛(𝐤𝜎𝑛

) =

𝑆
𝝁,𝜎
𝑛 − 𝑆

𝝁,𝜎
𝑛−1

is used instead of g𝜎𝑛 . □

Proof of Proposition 3.7. In the proof of Lemma 5.3, we actually showed that

𝑆(𝐏𝜎) ⩽ 𝑆(𝐩𝜎𝑑 ; … ; 𝐩𝜎2 ; 𝐤𝜎1) ⩽ … ⩽ 𝑆(𝐩𝜎𝑑 ; 𝐤𝜎𝑑−1 ; … ; 𝐤𝜎1) ⩽ 𝑆(𝐊𝜎) = 𝑆
𝝁,𝜎

𝑑

and

𝑆(𝐏𝜎) ⩾ 𝑆(𝐩𝜎𝑑 ; … ; 𝐩𝜎2 ; 𝐤𝜎1
) ⩾ … ⩾ 𝑆(𝐩𝜎𝑑 ; 𝐤𝜎𝑑−1

; … ; 𝐤𝜎1
) ⩾ 𝑆(𝐊𝜎) = 𝑆

𝝁,𝜎

𝑑
. □

6 PROOF OF THEOREM 2.1 AND COROLLARY 2.3

6.1 Preliminaries

Fix 𝛿 > 0 and consider any 𝜎 ∈ 𝛿. Recall that the symbolic representation (2.5) of a 𝛿-
approximate cube 𝐵𝛿(𝐢) ∈ 𝜎

𝛿
is determined by the first 𝐿𝛿(𝐢, 𝜎1) symbols of 𝐢. We introduce

the type of 𝐢 ∈ Σ𝜎
𝛿
at scale 𝛿 (and also of 𝐵𝛿(𝐢)) to be the #𝜎𝑑 + #𝜎𝑑−1 +⋯ + #𝜎

1
dimensional

empirical vector

𝜏𝜎
𝛿
(𝐢) ∶= (𝜏𝛿(𝐢, 𝜎𝑑) ; 𝜏𝛿(𝐢, 𝜎𝑑−1) ; … ; 𝜏𝛿(𝐢, 𝜎1)),

where for 1 ⩽ 𝑛 ⩽ 𝑑 using the abbreviation |𝐢(𝛿, 𝑛)| ∶= 𝐿𝛿(𝐢, 𝜎𝑛) − 𝐿𝛿(𝐢, 𝜎𝑛+1),

𝜏𝛿(𝐢, 𝜎𝑛) ∶=
1|𝐢(𝛿, 𝑛)| (#{𝐿𝛿(𝐢, 𝜎𝑛+1) + 1 ⩽ 𝓁 ⩽ 𝐿𝛿(𝐢, 𝜎𝑛) ∶ Π

𝜎
𝑛𝑖𝓁 = 𝑗

})
𝑗∈𝜎𝑛 .
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Note that 𝜏𝛿(𝐢, 𝜎𝑛) is an #𝜎𝑛 -dimensional probability vector except when 𝐿𝛿(𝐢, 𝜎𝑛) = 𝐿𝛿(𝐢, 𝜎𝑛+1),
then we set 𝜏𝛿(𝐢, 𝜎𝑛) = (0, … , 0). The set of all possible 𝜎-ordered types at scale 𝛿 is

 𝜎
𝛿
∶=

{
𝐏 = (𝐩𝜎𝑑 ; 𝐩𝜎𝑑−1 ; … ; 𝐩𝜎1) ∶ there exists 𝐵𝛿(𝐢) ∈ 𝜎

𝛿
such that 𝐏 = 𝜏𝜎

𝛿
(𝐢)

}
⊂ 𝜎,

and the type class of 𝐏 ∈  𝜎
𝛿
is the set

𝑇𝜎
𝛿
(𝐏) ∶=

{
𝐵𝛿(𝐢) ∈ 𝜎

𝛿
∶ 𝜏𝜎

𝛿
(𝐢) = 𝐏

}
.

Lemma 6.1. Fix 𝛿 > 0 and 𝜎 ∈ 𝛿 . Then

# 𝜎
𝛿
⩽

𝑑∏
𝑛=1

(
max

𝐵𝛿(𝐢)∈𝜎𝛿
|𝐢(𝛿, 𝑛)| + 1)#𝜎𝑛+1

. (6.1)

Moreover, for every 𝐏 ∈  𝜎
𝛿
and 𝐢 ∈ Σ𝜎

𝛿
such that 𝜏𝜎

𝛿
(𝐢) = 𝐏,

exp

[
𝑑∑
𝑛=1

|𝐢(𝛿, 𝑛)|𝐻(𝐩𝜎𝑛)
]

𝑑∏
𝑛=1

(|𝐢(𝛿, 𝑛)| + 1)−#𝜎𝑛 ⩽ #𝑇𝜎𝛿 (𝐏) ⩽ exp
[

𝑑∑
𝑛=1

|𝐢(𝛿, 𝑛)|𝐻(𝐩𝜎𝑛)
]
. (6.2)

Proof. For each 𝐏 ∈  𝜎
𝛿
, 𝐩𝜎𝑛 is an #𝜎𝑛 -dimensional vector with components belonging to the

set {𝑘∕|𝐢(𝛿, 𝑛)| ∶ 0 ⩽ 𝑘 ⩽ |𝐢(𝛿, 𝑛)|}. Moreover, 0 ⩽ |𝐢(𝛿, 𝑛)| ⩽ max𝐵𝛿(𝐢)∈𝜎𝛿 |𝐢(𝛿, 𝑛)|. Hence, a crude
upper bound for the number of different 𝐩𝜎𝑛 is (max𝐵𝛿(𝐢)∈𝜎𝛿 |𝐢(𝛿, 𝑛)| + 1)#𝜎𝑛+1. Multiplying for
each coordinate 1 ⩽ 𝑛 ⩽ 𝑑 gives the claim for # 𝜎

𝛿
.

Let  be an arbitrary finite index set. It is well known from themethod of types, see [12, Lemma
2.1.8], that

(𝑛 + 1)−#𝑒𝑛𝐻(𝐩) ⩽ #{(𝑖1, … , 𝑖𝑛) ∈ 𝑛 ∶ the type 𝜏(𝑖1, … , 𝑖𝑛) = 𝐩} ⩽ 𝑒𝑛𝐻(𝐩). (6.3)

The claim now follows by applying (6.3) to each block (Π𝜎𝑛𝑖𝐿𝛿(𝐢,𝜎𝑛+1)+1, … ,Π
𝜎
𝑛𝑖𝐿𝛿(𝐢,𝜎𝑛)) having type

𝐩𝜎𝑛 (for 1 ⩽ 𝑛 ⩽ 𝑑). □

Lemma6.2. Fix 𝛿 > 0, 𝜎 ∈ 𝛿 and a type𝐏 = (𝐩𝜎𝑑 ; 𝐩𝜎𝑑−1 ; … ; 𝐩𝜎1) ∈  𝜎
𝛿
. Then for every 1 ⩽ 𝑛 ⩽ 𝑑,

−𝐶(𝑑),𝜎𝑛 (𝐏) ⋅ log 𝛿 ⩽ 𝐿𝛿(𝐢, 𝜎𝑛) − 𝐿𝛿(𝐢, 𝜎𝑛+1) ⩽ −
(
1 +

log 𝜆min
log 𝛿

)
⋅ 𝐶(𝑑),𝜎𝑛 (𝐏) ⋅ log 𝛿, (6.4)

where 𝐢 ∈ Σ𝜎
𝛿
is such that 𝜏𝜎

𝛿
(𝐢) = 𝐏 and 𝜆min ∶= min𝑖,𝑛 𝜆

(𝑛)
𝑖

> 0.

Proof. Recall the abbreviation |𝐢(𝛿, 𝑛)| = 𝐿𝛿(𝐢, 𝜎𝑛) − 𝐿𝛿(𝐢, 𝜎𝑛+1) and that 𝐿𝛿(𝐢, 𝜎𝑑+1) = 0. From the
definition (2.3) of the 𝛿-stopping of 𝐢 ∈ Σ𝜎

𝛿
in each coordinate 1 ⩽ 𝜎𝑛 ⩽ 𝑑,

𝑑∏
𝑚=𝑛

𝐿𝛿(𝐢,𝜎𝑚)∏
𝓁=𝐿𝛿(𝐢,𝜎𝑚+1)+1

𝜆
(𝜎𝑛)

𝑖𝓁
=

𝐿𝛿(𝐢,𝜎𝑛)∏
𝓁=1

𝜆
(𝜎𝑛)

𝑖𝓁
⩽ 𝛿 < 𝜆−1

min
⋅

𝑑∏
𝑚=𝑛

𝐿𝛿(𝐢,𝜎𝑚)∏
𝓁=𝐿𝛿(𝐢,𝜎𝑚+1)+1

𝜆
(𝜎𝑛)

𝑖𝓁
.
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26 KOLOSSVÁRY

In particular, if 𝜏𝜎
𝛿
(𝐢) = 𝐏 = (𝐩𝜎𝑑 ; 𝐩𝜎𝑑−1 ; … ; 𝐩𝜎1) ∈  𝜎

𝛿
, then after taking logarithms

𝑑∑
𝑚=𝑛

|𝐢(𝛿,𝑚)| ⋅ 𝜒𝜎𝑛(𝐩𝜎𝑚) = 𝑑∑
𝑚=𝑛

|𝐢(𝛿,𝑚)| −1|𝐢(𝛿,𝑚)|
𝐿𝛿(�̂�,𝑚)∑

𝓁=𝐿𝛿(�̂�,𝑚+1)+1

log 𝜆
(𝜎𝑛)

𝑖𝓁

⩾ − log 𝛿 > log 𝜆min +

𝑑∑
𝑚=𝑛

|𝐢(𝛿,𝑚)| ⋅ 𝜒𝜎𝑛(𝐩𝜎𝑚).
Expressing |𝐢(𝛿, 𝑛)|, we obtain

−1

𝜒𝜎𝑛(𝐩𝜎𝑛)

(
log 𝛿 +

𝑑∑
𝑚=𝑛+1

|𝐢(𝛿,𝑚)| ⋅ 𝜒𝜎𝑛(𝐩𝜎𝑚)
)

⩽ |𝐢(𝛿, 𝑛)| < −1

𝜒𝜎𝑛(𝐩𝜎𝑛)

(
log 𝛿 + log 𝜆min +

𝑑∑
𝑚=𝑛+1

|𝐢(𝛿,𝑚)| ⋅ 𝜒𝜎𝑛(𝐩𝜎𝑚)
)
.

We continue by induction on decreasing 𝑛 starting from 𝑛 = 𝑑. In this case,

− log 𝛿

𝜒𝜎
𝑑
(𝐩𝜎𝑑 )

⩽ |𝐢(𝛿, 𝑑)| < − log 𝛿

𝜒𝜎
𝑑
(𝐩𝜎𝑑 )

(
1 +

log 𝜆min
log 𝛿

)
, giving 𝐶(𝑑),𝜎

𝑑
(𝐏) =

1

𝜒𝜎
𝑑
(𝐩𝜎𝑑 )

.

Next, we assume (6.4) for𝑚 ∈ {𝑛 + 1,… , 𝑑} and prove the claim for 𝑛 ⩽ 𝑑 − 1:

|𝐢(𝛿, 𝑛)| < −1

𝜒𝜎𝑛(𝐩𝜎𝑛)

(
log 𝛿 + log 𝜆min −

𝑑∑
𝑚=𝑛+1

(
1 +

log 𝜆min
log 𝛿

)
⋅ 𝐶(𝑑),𝜎𝑚 (𝐏)𝜒𝜎𝑛(𝐩𝜎𝑚) ⋅ log 𝛿

)

=

(
1 +

log 𝜆min
log 𝛿

)(
1 −

𝑑∑
𝑚=𝑛+1

𝐶(𝑑),𝜎𝑚 (𝐏) ⋅ 𝜒𝜎𝑛(𝐩𝜎𝑚)

)
− log 𝛿

𝜒𝜎𝑛(𝐩𝜎𝑛)

(2.8)
= −

(
1 +

log 𝜆min
log 𝛿

)
𝐶
(𝑑),𝜎
𝑛 (𝐏) ⋅ log 𝛿.

The lower bound for |𝐢(𝛿, 𝑛)| is the same without the log 𝜆min. □

Lemma 6.3. For any 𝜎 ∈ 𝑑, we have 𝜎 ∈  if and only if𝜎 ≠ ∅. Moreover,  𝜎
𝛿
becomes dense in

𝜎 as 𝛿 → 0.

Proof. If 𝜎 ∈ , then for some 𝛿 > 0, there exists a 𝛿-approximate cube 𝐵𝛿(𝐢) ∈ 𝜎
𝛿
which is 𝜎-

ordered and whose type 𝜏𝜎
𝛿
(𝐢) ∈  𝜎

𝛿
. By Lemma 6.2, for this type 𝜏𝜎

𝛿
(𝐢), we have 𝐶(𝑑),𝜎𝑛 (𝜏𝜎

𝛿
(𝐢)) ⩾ 0

for all 1 ⩽ 𝑛 ⩽ 𝑑, implying 𝜏𝜎
𝛿
(𝐢) ∈ 𝜎.

Conversely, if 𝐏𝜎 ∈ 𝜎, then for 𝛿 small enough, we construct �̃�𝜎
𝛿
= (𝐩𝜎𝑑 ; … ; 𝐩𝜎1), where 𝐩𝜎𝑛 =

(𝑝𝜎𝑛(𝑖))𝑖∈𝜎𝑛 is such that �̃�𝜎
𝛿
∈  𝜎

𝛿
, implying 𝜎 ∈ . Set 𝑝𝜎𝑛(𝑖) ∶= 𝐴𝜎𝑛(𝑖)∕𝐵𝜎𝑛 , where 𝐴𝜎𝑛(𝑖) for

𝑖 ∈ 𝜎𝑛 ⧵ {1} is the unique integer for which
𝐴𝜎𝑛(𝑖)

𝐵𝜎𝑛
⩽ 𝑝𝜎𝑛(𝑖) <

𝐴𝜎𝑛(𝑖) + 1

𝐵𝜎𝑛
and 𝐴𝜎𝑛(1) = 𝐵𝜎𝑛 −

∑
𝑖∈𝜎𝑛 ⧵{1}

𝐴𝜎𝑛(𝑖), (6.5)
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THE 𝐿𝑞 SPECTRUM OF SELF-AFFINE MEASURES ON SPONGES 27

moreover, −𝐶(𝑑),𝜎𝑛 (𝐏𝜎) ⋅ log 𝛿 ⩽ 𝐵𝜎𝑛 ⩽ −𝐶
(𝑑),𝜎
𝑛 (𝐏𝜎) ⋅ log 𝛿 − 𝐶

(𝑑),𝜎
𝑛 (𝐏𝜎) ⋅ log 𝜆min is chosen by

Lemma 6.2 so that �̃�𝜎
𝛿
∈  𝜎

𝛿
. By construction, |𝑝𝜎𝑛(𝑖) − 𝑝𝜎𝑛(𝑖)| = ((− log 𝛿)−1), in particular,

�̃�𝜎
𝛿
→ 𝐏𝜎 coordinate-wise in every component as 𝛿 → 0. Since 𝐏𝜎 ∈ 𝜎 was arbitrary, we conclude

that  𝜎
𝛿
becomes dense in 𝜎 as 𝛿 → 0. □

Lemma 6.4. Fix 𝜀0 > 0. There exists 𝛿0(𝜀0) > 0 such that for all 𝜎 ∈  and 𝛿 < 𝛿0(𝜀0), there exists
�̃�𝜎
𝛿
∈  𝜎

𝛿
for which

𝑡(�̃�𝜎
𝛿
) > sup

𝐏𝜎∈𝜎
𝑡(𝐏𝜎) − 𝜀0.

Proof. Continuity of 𝑡(𝐏𝜎) for every 𝜎 ∈  implies that there exist �̂�𝜎 ∈ 𝜎 such that 𝑡(�̂�𝜎) >
sup𝐏𝜎∈𝜎 𝑡(𝐏𝜎) − 𝜀0∕2. For �̂�𝜎 ∈ 𝜎, we construct �̃�𝜎

𝛿
∈  𝜎

𝛿
as we did in (6.5). By Lemma 6.3

and continuity of 𝑡(𝐏𝜎), we can choose 𝛿0(𝜀0) > 0 such that 𝑡(�̃�𝜎
𝛿
) > 𝑡(�̂�𝜎) − 𝜀0∕2 for every 𝛿 <

𝛿0(𝜀0). □

6.2 Proof of Theorem 2.1

Recall the definition of 𝑃(𝝋) from (2.7). Fix 𝛿 > 0 and 𝜎 ∈ 𝛿. For any type 𝐏 =

(𝐩𝜎𝑑 ; 𝐩𝜎𝑑−1 ; … ; 𝐩𝜎1) ∈  𝜎
𝛿
, observe that all approximate cubes 𝐵𝛿(𝐢) in its type class 𝑇𝜎

𝛿
(𝐏)

have the same value for Φ(𝐵𝛿(𝐢)), namely

Φ(𝐵𝛿(𝐢)) =

𝑑∑
𝑛=1

𝐿𝛿(𝐢,𝜎𝑛)∑
𝓁=𝐿𝛿(𝐢,𝜎𝑛+1)+1

𝜑𝜎𝑛
(
Π𝜎𝑛𝑖𝓁

)
=

𝑑∑
𝑛=1

|𝐢(𝛿, 𝑛)| ⋅ ∫ 𝜑𝜎𝑛 d𝐩𝜎𝑛 ,

where recall |𝐢(𝛿, 𝑛)| = 𝐿𝛿(𝐢, 𝜎𝑛) − 𝐿𝛿(𝐢, 𝜎𝑛+1). Hence, grouping according to type class,

𝑍𝜎
𝛿
(𝝋) ∶=

∑
𝐵𝛿(𝐢)∈𝜎𝛿

exp [Φ(𝐵𝛿(𝐢))] =
∑
𝐏∈ 𝜎

𝛿

#𝑇𝜎
𝛿
(𝐏) ⋅ exp

[
𝑑∑
𝑛=1

|𝐢(𝛿, 𝑛)| ⋅ ∫ 𝜑𝜎𝑛 d𝐩𝜎𝑛

]
,

where 𝐢 ∈ Σ𝜎
𝛿
is such that 𝜏𝜎

𝛿
(𝐢) = 𝐏. Using Lemma 6.1 and 6.2, we bound 𝑍𝜎

𝛿
(𝝋) from above:

𝑍𝜎
𝛿
(𝝋)

(6.2)
⩽

∑
𝐏∈ 𝜎

𝛿

exp

[
𝑑∑
𝑛=1

|𝐢(𝛿, 𝑛)| ⋅(𝐻(𝐩𝜎𝑛) + ∫ 𝜑𝜎𝑛 d𝐩𝜎𝑛

)]

(6.1)
⩽

𝑑∏
𝑛=1

(
max

𝐵𝛿(𝐢)∈𝜎𝛿
|𝐢(𝛿, 𝑛)| + 1)#𝜎𝑛+1

⋅ max
𝐏∈ 𝜎

𝛿

exp

[
𝑑∑
𝑛=1

|𝐢(𝛿, 𝑛)| ⋅(𝐻(𝐩𝜎𝑛) +∫ 𝜑𝜎𝑛 d𝐩𝜎𝑛

)]
(6.4)
⩽ ((− log 𝛿)𝑑(𝑁+1)) ⋅ max

𝐏∈ 𝜎
𝛿

𝛿
−
∑𝑑
𝑛=1 (1+((− log 𝛿)−1))𝐶(𝑑),𝜎𝑛 (𝐏)⋅

(
𝐻(𝐩𝜎𝑛 )+∫ 𝜑𝜎𝑛 d𝐩𝜎𝑛

)
, (6.6)
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28 KOLOSSVÁRY

and also from below:

𝑍𝜎
𝛿
(𝝋)

(6.2)
⩾

𝑑∏
𝑛=1

(|𝐢(𝛿, 𝑛)| + 1)−#𝜎𝑛 ⋅ max
𝐏∈ 𝜎

𝛿

exp

[
𝑑∑
𝑛=1

|𝐢(𝛿, 𝑛)| ⋅(𝐻(𝐩𝜎𝑛) + ∫ 𝜑𝜎𝑛 d𝐩𝜎𝑛

)]
(6.4)
⩾ ((− log 𝛿)−𝑑𝑁) ⋅ max

𝐏∈ 𝜎
𝛿

𝛿
−
∑𝑑
𝑛=1 (1+((− log 𝛿)−1))𝐶(𝑑),𝜎𝑛 (𝐏)⋅

(
𝐻(𝐩𝜎𝑛 )+∫ 𝜑𝜎𝑛 d𝐩𝜎𝑛

)
. (6.7)

Since 𝛿−1 > 1, the type 𝐏 ∈  𝜎
𝛿
whichmaximises the expression is the same whichmaximises the

sum in the exponent.
Recall 𝑡(𝐏𝜎) from (5.1). We are now ready to bound the pressure from above,

𝑃(𝝋) = lim sup
𝛿→0

−1

log 𝛿
log

[ ∑
𝜎∈𝛿

𝑍𝜎
𝛿
(𝝋)

]
⩽ lim sup

𝛿→0

−1

log 𝛿
log

[
𝑑! ⋅ max

𝜎∈𝛿

𝑍𝜎
𝛿
(𝝋)

]
(6.6)
⩽ lim sup

𝛿→0
max
𝜎∈𝛿

max
𝐏𝜎∈ 𝜎

𝛿

𝑑∑
𝑛=1

(
1 + ((− log 𝛿)−1))𝐶(𝑑),𝜎𝑛 (𝐏𝜎) ⋅

(
𝐻(𝐩𝜎𝑛) + ∫ 𝜑𝜎𝑛 d𝐩𝜎𝑛

)

⩽ max
𝜎∈ sup

𝐏𝜎∈𝜎
𝑡(𝐏𝜎) ⋅

(
1 + lim

𝛿→0
((− log 𝛿)−1)

)
= max

𝜎∈ sup
𝐏𝜎∈𝜎

𝑡(𝐏𝜎),

where the last inequality holds because𝛿 ⊆  and  𝜎
𝛿
⊂ 𝜎. Similarly,

𝑃(𝝋) ⩾ lim inf
𝛿→0

log
[
max𝜎∈𝛿

𝑍𝜎
𝛿
(𝝋)

]
− log 𝛿

(6.7)
⩾ lim inf

𝛿→0
max
𝜎∈𝛿

max
𝐏𝜎∈ 𝜎

𝛿

(
1 + ((− log 𝛿)−1))𝑡(𝐏𝜎).

We are only interested in the limit as 𝛿 → 0; hence, we may assume that 𝛿 < 𝛿0(𝜀0) given by
Lemma 6.4. Using the type �̃�𝜎

𝛿
∈  𝜎

𝛿
constructed in Lemma 6.4, we conclude

lim inf
𝛿→0

max
𝜎∈𝛿

max
𝐏𝜎∈ 𝜎

𝛿

(
1 + ((− log 𝛿)−1))𝑡(𝐏𝜎) ⩾ lim inf

𝛿→0
max
𝜎∈𝛿

𝑡(�̃�𝜎
𝛿
) ⩾ max

𝜎∈ sup
𝐏𝜎∈𝜎

𝑡(𝐏𝜎) − 𝜀0.

Since 𝜀0 is arbitrary, this shows that 𝑃(𝝋) = 𝑃(𝝋), implying that the limit 𝑃(𝝋) exists and is equal
tomax𝜎∈ sup𝐏𝜎∈𝜎 𝑡(𝐏𝜎), which concludes the proof of Theorem 2.1.

6.3 Proof of Corollary 2.3

The upper bound𝑃(𝝋) ⩽ max𝜎∈ 𝑇𝜎
𝑑
follows fromProposition 2.2 since𝜎 ⊆ 𝜎. If = {𝜎}, then

𝜔 = ∅ for all 𝜔 ≠ 𝜎 by Lemma 6.3 which implies that 𝜎 = 𝜎. Hence, Proposition 2.2 implies
that in this case 𝑃(𝝋) = 𝑇𝜎

𝑑
. The proof is complete.

7 PROOF OF THEOREM 3.3

In what follows, we write 𝐴 ≲ 𝐵 if there exists a constant 𝑐 depending only on the sponge 𝐹 such
that 𝐴 ⩽ 𝑐𝐵. Similarly, 𝐴 ≳ 𝐵 if 𝐴 ⩾ 𝑐𝐵 and 𝐴 ≈ 𝐵 if 𝐴 ≲ 𝐵 and 𝐴 ≳ 𝐵. For example, if 𝐢 is 𝜎-
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THE 𝐿𝑞 SPECTRUM OF SELF-AFFINE MEASURES ON SPONGES 29

ordered at scale 𝛿 with type 𝜏𝜎
𝛿
(𝐢), then the conclusion of Lemma 6.2 can be written as 𝐿𝛿(𝐢, 𝜎𝑛) −

𝐿𝛿(𝐢, 𝜎𝑛+1) ≈ −𝐶(𝑑),𝜎𝑛 (𝜏𝜎
𝛿
(𝐢)) ⋅ log 𝛿 for 1 ⩽ 𝑛 ⩽ 𝑑. Recall that 𝜈𝝁 denotes the Bernoulli measure 𝝁ℕ

and 𝜈𝝁 = 𝜈𝝁◦𝜋
−1 is its push-forward.

Lemma 7.1. Assume 𝐢 is 𝜎-ordered at scale 𝛿. Then

𝜈𝝁(𝐵𝛿(𝐢)) =

𝑑∏
𝑛=1

𝐿𝛿(𝐢,𝜎𝑛)∏
𝓁=𝐿𝛿(𝐢,𝜎𝑛+1)+1

𝜇𝜎𝑛(Π
𝜎
𝑛𝑖𝓁) ≈ 𝛿𝑆(𝜏

𝜎
𝛿
(𝐢)).

If 𝐹 satisfies the SPPC, then 𝜈𝝁(𝜋(𝐵𝛿(𝐢))) = 𝜈𝝁(𝐵𝛿(𝐢)).

Proof. We start with the first equality. From definition (2.4) of𝐵𝛿(𝐢), it follows that an approximate
cube is the disjoint union of level 𝐿𝛿(𝐢, 𝜎1) cylinder sets:{

[𝑗1, … , 𝑗𝐿𝛿(𝐢,𝜎1)] ∶ Π
𝜎
𝑛𝑗𝓁 = Π𝜎𝑛𝑖𝓁 for 𝓁 = 𝐿𝛿(𝐢, 𝜎𝑛+1) + 1,… , 𝐿𝛿(𝐢, 𝜎𝑛) and 1 ⩽ 𝑛 ⩽ 𝑑

}
.

For each such cylinder, 𝜈𝝁([𝑗1, … , 𝑗𝐿𝛿(𝐢,𝜎1)]) =
∏𝐿𝛿(𝐢,𝜎1)

𝓁=1 𝜇(𝑗𝓁). Adding up and using multiplicativ-
ity, we obtain

𝜈𝝁(𝐵𝛿(𝐢)) =

𝑑∏
𝑛=1

𝐿𝛿(𝐢,𝜎𝑛)∏
𝓁=𝐿𝛿(𝐢,𝜎𝑛+1)+1

∑
𝑗∈∶Π𝜎𝑛𝑗=Π𝜎𝑛𝑖𝓁

𝜇(𝑗) =

𝑑∏
𝑛=1

𝐿𝛿(𝐢,𝜎𝑛)∏
𝓁=𝐿𝛿(𝐢,𝜎𝑛+1)+1

𝜇𝜎𝑛(Π
𝜎
𝑛𝑖𝓁).

The second relation is a direct consequence of Lemma 6.2:

𝑑∏
𝑛=1

𝐿𝛿(𝐢,𝜎𝑛)∏
𝓁=𝐿𝛿(𝐢,𝜎𝑛+1)+1

𝜇𝜎𝑛(Π
𝜎
𝑛𝑖𝓁) =

𝑑∏
𝑛=1

∏
𝑖∈𝜎𝑛

𝜇𝜎𝑛(𝑖)
(𝐿𝛿(𝐢,𝜎𝑛)−𝐿𝛿(𝐢,𝜎𝑛+1))⋅𝜏𝛿(𝐢,𝜎𝑛)(𝑖)

(6.4)
≈ 𝛿

−
∑𝑑
𝑛=1 𝐶

(𝑑),𝜎
𝑛 (𝜏𝜎

𝛿
(𝐢))

∑
𝑖∈𝜎𝑛 𝜏𝛿(𝐢,𝜎𝑛)(𝑖)⋅log 𝜇

𝜎
𝑛(𝑖) = 𝛿𝑆(𝜏

𝜎
𝛿
(𝐢)).

A detailed argument for the last claim can be found in the proof of [4, Corollary 2.8]. We present
a sketch. Let 𝐷 ∶= {𝑥 ∈ 𝐹 ∶ there exist 𝐢 ≠ 𝐣 ∈ Σ such that 𝑥 = 𝜋(𝐢) = 𝜋(𝐣)}. If 𝑥 ∈ 𝐷, then the
SPPC implies that 𝑥 must lie on the boundary 𝜕𝑓𝑖1…𝑖𝑛 ([0, 1]

𝑑) of some cylinders set and so
𝐷 ⊆

⋃∞
𝑛=0

⋃
𝑖1…𝑖𝑛

𝜕𝑓𝑖1…𝑖𝑛 ([0, 1]
𝑑). It is easy to see that 𝜈𝝁(𝜕[0, 1]𝑑) = 0, therefore, 𝜈𝝁(𝐷) = 0which

also implies 𝜈𝝁(𝜋(𝐵𝛿(𝐢))) = 𝜈𝝁(𝐵𝛿(𝐢)). □

An immediate corollary of Lemma 7.1 and definition (3.3) of the potential 𝝍𝝁𝑞 is that (when
assuming the SPPC) for any approximate cube

exp [Φ(𝐵𝛿(𝐢))] =
(
𝜈𝝁(𝐵𝛿(𝐢))

)𝑞
=
(
𝜈𝝁(𝜋(𝐵𝛿(𝐢)))

)𝑞
.

As a result, the pressure 𝑃(𝝍𝝁𝑞) can be interpreted as the ‘symbolic 𝐿𝑞 spectrum’ of 𝜈𝝁. It remains
to transfer this result to the actual 𝐿𝑞 spectrum 𝑇(𝜈𝝁, 𝑞) of 𝜈𝝁.
A Euclidean ball centred in 𝐹 can always be drawn around the image of an approximate cube

since 𝜋(𝐵𝛿(𝐢)) is contained in a hypercube of side length 𝛿. In particular, for all 𝐢 ∈ Σ and 𝛿 > 0,

𝜋(𝐵𝛿(𝐢)) ⊆ 𝐵(𝜋(𝐣),
√
𝑑 ⋅ 𝛿) with any 𝐣 ∈ 𝐵𝛿(𝐢). (7.1)
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30 KOLOSSVÁRY

However, it is not necessarily true that there exists a uniform constant 𝑐 such that for any choice
of 𝐢, the image 𝜋(𝐵𝛿(𝐢)) contains a ball centred in 𝐹 with radius 𝑐𝛿. With a small perturbation of 𝐢,
this is possible. Recall our standing assumption (1.1). We define an injective function 𝛼𝛿 ∶ Σ → Σ

as follows. If 𝐢 ∈ Σ𝜎
𝛿
, then 𝛼𝛿(𝐢) = 𝛼𝛿(𝑖)1, 𝛼𝛿(𝑖)2, … is defined by the sequence

𝑖1, … , 𝑖𝐿𝛿(𝐢,𝜎𝑑), 𝑘
(𝜎𝑑)

0
, 𝑘

(𝜎𝑑)

1
, … , 𝑖𝐿𝛿(𝐢,𝜎𝑛+1)+1, … , 𝑖𝐿𝛿(𝐢,𝜎𝑛), 𝑘

(𝜎𝑛)

0
, 𝑘

(𝜎𝑛)

1
, … , (7.2)

𝑖𝐿𝛿(𝐢,𝜎2)+1, … , 𝑖𝐿𝛿(𝐢,𝜎1), 𝑘
(𝜎1)

0
, 𝑘

(𝜎1)

1
, 𝑖𝐿𝛿(𝐢,𝜎1)+1, 𝑖𝐿𝛿(𝐢,𝜎1)+2, … . (7.2)

In other words, the pair 𝑘(𝜎𝑛)
0

, 𝑘
(𝜎𝑛)

1
is inserted after 𝑖𝐿𝛿(𝐢,𝜎𝑛) for each 𝑛 = 𝑑, 𝑑 − 1,… , 1 (even if

𝐿𝛿(𝐢, 𝜎𝑛) = 𝐿𝛿(𝐢, 𝜎𝑛+1)), otherwise 𝐢 is left unchanged. This small perturbation of 𝐢 has two useful
consequences given in the following lemma. Let 𝜋(𝐵𝛿(𝐢)) denote the smallest axis parallel hyper-
rectangle which contains 𝜋(𝐵𝛿(𝐢)).

Lemma 7.2. For every 𝛿 > 0 small enough, 𝜎 ∈  and 𝐢 ∈ Σ𝜎
𝛿
,

𝜈𝝁(𝐵𝛿(𝛼𝛿(𝐢))) ≈ 𝜈𝝁(𝐵𝛿(𝐢)), (7.3)

moreover, there exists a constant 0 < 𝐶0 = 𝐶0(𝐹) < 1 such that

𝐵(𝜋(𝐣), 𝐶0 ⋅ 𝛿) ⊂ 𝜋(𝐵𝛿(𝛼𝛿(𝐢))) for every 𝐣 with |𝐣 ∧ 𝛼𝛿(𝐢)| ⩾ 𝐿𝛿(𝐢, 𝜎1) + 2𝑑. (7.4)

Proof. We begin with (7.3). The insertion of 𝑘(𝜎𝑛)
0

, 𝑘
(𝜎𝑛)

1
implies that for each 1 ⩽ 𝑛 ⩽ 𝑑,

0 ⩽ 𝐿𝛿(𝐢, 𝜎𝑛) − 𝐿𝛿(𝛼𝛿(𝐢), 𝜎𝑛) ⩽ 2(𝑑 − 𝑛)
log 𝜆min
log 𝜆max

. (7.5)

In particular, for any 1 ⩽ 𝑚 < 𝑛 ⩽ 𝑑 − 1, if 𝐿𝛿(𝐢, 𝜎𝑛−𝑚) − 𝐿𝛿(𝐢, 𝜎𝑛) > 2(𝑑 − 𝑛 +𝑚)
log 𝜆min
log 𝜆max

, then
𝐿𝛿(𝛼𝛿(𝐢), 𝜎𝑛) < 𝐿𝛿(𝛼𝛿(𝐢), 𝜎𝑛−𝑚); hence, 𝜎𝑛−𝑚 still precedes 𝜎𝑛 in the ordering of 𝛼𝛿(𝐢) at scale 𝛿.
Therefore, two coordinates 𝑛,𝑚 ∈ {1, … , 𝑑} can potentially switch their order in the ordering of
𝐢 and the ordering of 𝛼𝛿(𝐢) at scale 𝛿 only if |𝐿𝛿(𝐢, 𝑛) − 𝐿𝛿(𝐢,𝑚)| was smaller than a uniformly
bounded constant (independent of 𝐢 and 𝛿). As a result, from Lemma 7.1, it follows that calcu-
lating 𝜈𝝁(𝐵𝛿(𝛼𝛿(𝐢))) involves multiplying the same terms as in 𝜈𝝁(𝐵𝛿(𝐢)) apart from a uniformly
bounded number of terms (that come from potentially switching orders); hence, claim (7.3)
follows.
To show (7.4), let (𝑛)

𝑢 ∶= {(𝑥1, … , 𝑥𝑑) ∈ [0, 1]𝑑 ∶ 𝑥𝑛 = 𝑢} and 𝐢|𝑘 = 𝑖1, … , 𝑖𝑘 . Since there is a
uniform upper bound on 𝐿𝛿(𝐢, 𝜎𝑛) − 𝐿𝛿(𝛼𝛿(𝐢), 𝜎𝑛) from (7.5), it follows that the hyper-rectangle
𝑓𝛼𝛿(𝐢)|(𝐿𝛿(𝐢,𝜎𝑛)+2(𝑑−𝑛))([0, 1]𝑑) has height ≈ 𝛿 in coordinate 𝜎𝑛. Therefore, the repeated insertion of
𝑘
(𝜎𝑛)

0
, 𝑘

(𝜎𝑛)

1
after 𝑖𝐿𝛿(𝐢,𝜎𝑛) implies from (1.1) that

dist

(
𝑓𝛼𝛿(𝐢)|(𝐿𝛿(𝐢,𝜎𝑛)+2(𝑑−𝑛+1))([0, 1]𝑑), ⋃

𝑛⩽𝓁⩽𝑑

𝑓𝛼𝛿(𝐢)|(𝐿𝛿(𝐢,𝜎𝓁)+2(𝑑−𝓁))
((𝜎𝓁)

0
∪(𝜎𝓁)

1

))
≳ 𝑟20 ⋅ 𝛿.

In particular, for 𝑛 = 1, we obtain using (7.5) that there exist a uniform constant 𝐶0 such that for
every 𝐣 with |𝐣 ∧ 𝛼𝛿(𝐢)| ⩾ 𝐿𝛿(𝐢, 𝜎1) + 2𝑑,

𝐵(𝜋(𝐣), 𝐶0 ⋅ 𝛿) ⊂
⋃

1⩽𝓁⩽𝑑

𝑓𝛼𝛿(𝐢)|(𝐿𝛿(𝐢,𝜎𝓁)+2(𝑑−𝓁))
((𝜎𝓁)

0
∪(𝜎𝓁)

1

)
⊂ 𝜋(𝐵𝛿(𝛼𝛿(𝐢))). □
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THE 𝐿𝑞 SPECTRUM OF SELF-AFFINE MEASURES ON SPONGES 31

7.1 Proof of Theorem 3.3, upper bound

Let {𝐵(𝑥𝓁 , 𝛿)}𝓁 be a centred packing of the self-affine sponge 𝐹 satisfying the SPPC. Let 𝛿 be
the set of all symbolic 𝛿-approximate cubes and 𝑥

𝛿
be the set of those cubes whose image under

𝜋 intersect 𝐵(𝑥, 𝛿) ∩ 𝐹. Since each edge of 𝜋(𝐵𝛿(𝐢)) has length at least 𝜆min𝛿, moreover, 𝜋(𝐵𝛿(𝐢))
and 𝜋(𝐵𝛿(𝐣)) may intersect only on their boundary due to the SPPC, it follows that there exists a
constant𝑁0 = 𝑁0(𝐹) such that #𝑥𝛿 ⩽ 𝑁0 uniformly in 𝑥 and 𝛿. We split the proof into two parts
depending on whether 𝑞 is negative or not. Note that if 𝐴 ⊆ 𝐵, then (𝜈(𝐴))𝑞 ⩽ (𝜈(𝐵))𝑞 if 𝑞 ⩾ 0 for
any probability measure 𝜈 and (𝜈(𝐴))𝑞 ⩾ (𝜈(𝐵))𝑞 if 𝑞 < 0.
First assume 𝑞 ⩾ 0. Then for all elements of the packing

(𝜈𝝁
(
𝐵(𝑥𝓁 , 𝛿))

)𝑞
=
(
𝜈𝝁(𝜋

−1(𝐵(𝑥𝓁 , 𝛿)))
)𝑞

⩽
(
𝜈𝝁(𝑥𝓁𝛿 )

)𝑞
.

Furthermore, if we restrict to 𝑞 ∈ [0, 1] then also(
𝜈𝝁(𝑥𝓁𝛿 )

)𝑞
⩽

∑
𝐵∈𝑥𝓁

𝛿

(𝜈𝝁(𝐵))
𝑞. (7.6)

Since {𝐵(𝑥𝓁 , 𝛿)}𝓁 is a packing, there is a uniform bound 𝑁1 on the number of different 𝐵(𝑥𝓁 , 𝛿)
any one 𝛿-approximate cube 𝐵 can intersect. Therefore,∑

𝓁

(
𝜈𝝁(𝐵(𝑥𝓁 , 𝛿))

)𝑞
⩽
∑
𝓁

∑
𝐵∈𝑥𝓁

𝛿

(𝜈𝝁(𝐵))
𝑞 ⩽ 𝑁1

∑
𝐵∈𝛿

(𝜈𝝁(𝐵))
𝑞.

ByLemma 7.1 andTheorem2.1, the right-hand side after taking log and dividing by− log 𝛿 tends to
𝑃(𝝍

𝝁
𝑞) as 𝛿 → 0 giving the desired upper bound. If 𝑞 > 1, then (7.6) holds in the opposite direction;

however, we still have ≲ by Jensen’s inequality for convex functions with the implied constant
depending on #𝑥𝓁

𝛿
and 𝑞. To conclude as above, we use the uniform upper bound #𝑥𝓁

𝛿
⩽ 𝑁0.

The proof is complete for 𝑞 ⩾ 0.
Now assume 𝑞 < 0. This time we use (7.1) to inscribe an approximate cube within each ball

of the packing. Specifically, let 𝐢𝓁 ∈ Σ satisfy 𝜋(𝐢𝓁) = 𝑥𝓁 (if there is more than one, choose
arbitrarily). Then according to (7.1), we have 𝜋(𝐵

𝛿∕
√
𝑑
(𝐢𝓁)) ⊆ 𝐵(𝑥𝓁 , 𝛿) and

∑
𝓁

(
𝜈𝝁(𝐵(𝑥𝓁 , 𝛿))

)𝑞
⩽
∑
𝓁

(
𝜈𝝁(𝜋(𝐵𝛿∕

√
𝑑
(𝐢𝓁)))

)𝑞
⩽
∑
𝓁

(
𝜈𝝁(𝐵𝛿∕

√
𝑑
(𝐢𝓁))

)𝑞
⩽

∑
𝐵∈

𝛿∕
√
𝑑

(𝜈𝝁(𝐵))
𝑞,

where the second inequality holds because 𝐵
𝛿∕

√
𝑑
(𝐢𝓁) ⊆ 𝜋−1(𝜋(𝐵

𝛿∕
√
𝑑
(𝐢𝓁))). The upper bound

follows after taking log of each side, dividing by − log 𝛿 and taking the limit as 𝛿 → 0.

7.2 Proof of Theorem 3.3, lower bound

We write 𝑡𝝁𝑞 (𝐏𝜎) to indicate that in definition (5.1) of 𝑡(𝐏𝜎), we use the potential 𝝍
𝝁
𝑞 . We use the

dominant type that ‘carries’ the pressure 𝑃(𝝍𝝁𝑞) to obtain the lower bound. The proof is split into
two parts again depending on whether 𝑞 is negative or not.
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32 KOLOSSVÁRY

Firstly assume 𝑞 ⩾ 0. Fix 𝜀 > 0 and chose (any) 𝜎 ∈  which maximises sup𝐏𝜎∈𝜎 𝑡
𝝁
𝑞 (𝐏𝜎). By

Lemma 6.3 and 6.4, for every 𝛿 small enough, there exists a type 𝜏𝜎
𝛿
∈  𝜎

𝛿
such that

𝑡
𝝁
𝑞 (𝜏

𝜎
𝛿
) ⩾ 𝑃(𝝍

𝝁
𝑞) − 𝜀.

From (7.1), it follows that 𝜋(𝐵𝛿(𝐢)) ⊆ 𝐵(𝜋(𝐢),
√
𝑑 ⋅ 𝛿) for every 𝐵𝛿(𝐢) ∈ 𝑇𝜎

𝛿
(𝜏𝜎
𝛿
) (the type class

of 𝜏𝜎
𝛿
). We claim that there exists a constant 0 < 𝑐 = 𝑐(𝐹) ⩽ 1 independent of 𝛿 and a subset

𝜎
𝛿
⊆ 𝑇𝜎

𝛿
(𝜏𝜎
𝛿
) with the property that #𝜎

𝛿
⩾ 𝑐 ⋅ #𝑇𝜎

𝛿
(𝜏𝜎
𝛿
) and the balls 𝐵(𝜋(𝐢),

√
𝑑 ⋅ 𝛿) are pairwise

disjoint for 𝐵𝛿(𝐢) ∈ 𝜎
𝛿
. This is true for the same reason why #𝑥

𝛿
⩽ 𝑁0 in Section 7.1. In this case,

𝐵(𝜋(𝐢), 2
√
𝑑 ⋅ 𝛿) intersects at most �̃�0 different 𝜋(𝐵𝛿(𝐣)). The subset 𝜎𝛿 is constructed inductively

by picking an element 𝐵𝛿(𝐢) ∈ 𝑇𝜎
𝛿
(𝜏𝜎
𝛿
), placing it in 𝜎

𝛿
and removing any 𝐵𝛿(𝐣) ∈ 𝑇𝜎

𝛿
(𝜏𝜎
𝛿
) such

that 𝜋(𝐵𝛿(𝐣)) ∩ 𝐵(𝜋(𝐢), 2
√
𝑑 ⋅ 𝛿) ≠ ∅. The process is repeated until all 𝐵𝛿(𝐢) ∈ 𝑇𝜎

𝛿
(𝜏𝜎
𝛿
) have either

been placed in 𝜎
𝛿
or removed. At each step, at most �̃�0 elements are removed, hence, #𝜎𝛿 ⩾

(�̃�0)
−1 ⋅ #𝑇𝜎

𝛿
(𝜏𝜎
𝛿
). The extra factor of 2 in the radius ensures that {𝐵(𝜋(𝐢),

√
𝑑 ⋅ 𝛿) ∶ 𝐵𝛿(𝐢) ∈ 𝜎

𝛿
} is

a centred packing of 𝐹 which satisfies

𝛿−𝑃(𝝍
𝝁
𝑞 )+𝜀 ⩽ 𝛿−𝑡

𝝁
𝑞 (𝜏

𝜎
𝛿
) ≲

∑
𝐵𝛿(𝐢)∈𝜎𝛿

(
𝜈𝝁(𝐵𝛿(𝐢))

)𝑞
⩽

∑
𝐵𝛿(𝐢)∈𝜎𝛿

(
𝜈𝝁(𝐵(𝜋(𝐢),

√
𝑑 ⋅ 𝛿))

)𝑞
⩽ 𝑇√

𝑑⋅𝛿
(𝜈𝝁, 𝑞),

where the ≲ holds because #𝜎
𝛿
⩾ 𝑐 ⋅ #𝑇𝜎

𝛿
(𝜏𝜎
𝛿
). We obtained that 𝑃(𝝍𝝁𝑞) − 𝜀 ⩽ 𝑇(𝜈𝝁, 𝑞) for any 𝜀 >

0; hence, the proof is complete for 𝑞 ⩾ 0.
Now assume 𝑞 < 0 and fix 𝜀 > 0. We choose the type 𝜏𝜎

𝛿
∈  𝜎

𝛿
with 𝑡𝝁𝑞 (𝜏𝜎𝛿 ) ⩾ 𝑃(𝝍

𝝁
𝑞) − 𝜀 the

same way. This time we want to inscribe balls within the image of each approximate cube
𝐵𝛿(𝐢) ∈ 𝑇𝜎

𝛿
(𝜏𝜎
𝛿
). This may not be possible; however, we can use the map 𝛼𝛿(⋅) defined in (7.2)

to obtain another set of approximate cubes with the nice properties given in Lemma 7.2. More
specifically, consider the collection 𝜎

𝛿
= {𝐵𝛿(𝛼𝛿(𝐢)) ∶ 𝐵𝛿(𝐢) ∈ 𝑇𝜎

𝛿
(𝜏𝜎
𝛿
)}. Since 𝛼𝛿(⋅) is an injection,

it follows from the SPPC and (7.4) that {𝐵(𝜋(𝛼𝛿(𝐢)), 𝐶0 ⋅ 𝛿) ∶ 𝐵𝛿(𝐢) ∈ 𝑇𝜎
𝛿
(𝜏𝜎
𝛿
)} is a centred packing

of 𝐹. We use this packing to bound the 𝐿𝑞 spectrum from below

𝑇𝐶0⋅𝛿(𝜈𝝁, 𝑞) ⩾
∑

𝐵𝛿(𝛼𝛿(𝐢))∈𝜎𝛿

(
𝜈𝝁(𝐵(𝜋(𝛼𝛿(𝐢)), 𝐶0 ⋅ 𝛿))

)𝑞 (7.4)
⩾

∑
𝐵𝛿(𝛼𝛿(𝐢))∈𝜎𝛿

(
𝜈𝝁(𝜋(𝐵𝛿(𝛼𝛿(𝐢))))

)𝑞
=

∑
𝐵𝛿(𝛼𝛿(𝐢))∈𝜎𝛿

(
𝜈𝝁(𝐵𝛿(𝛼𝛿(𝐢)))

)𝑞 (7.3)
≈

∑
𝐵𝛿(𝐢)∈𝑇

𝜎
𝛿
(𝜏𝜎
𝛿
)

(
𝜈𝝁(𝐵𝛿(𝐢))

)𝑞
⩾ 𝛿−𝑃(𝝍

𝝁
𝑞 )+𝜀,

by the choice of 𝜏𝜎
𝛿
∈  𝜎

𝛿
, which completes the proof of the lower bound.

8 PROOF OF THEOREM 3.8

Using Lemma 7.1, we give uniform bounds on the 𝜈𝝁 measure of approximate cubes.

Lemma 8.1. Assuming the SPPC, any symbolic 𝛿-approximate cube 𝐵𝛿(𝐢) satisfies

𝛿max𝜎∈ sup𝐏𝜎∈𝜎 𝑆(𝐏𝜎) ≲ 𝜈𝝁(𝜋(𝐵𝛿(𝐢))) ≲ 𝛿min𝜎∈ inf𝐏𝜎∈𝜎 𝑆(𝐏𝜎).
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Proof. From Lemma 7.1, we know that 𝜈𝝁(𝜋(𝐵𝛿(𝐢))) ≈ 𝛿𝑆(𝜏
𝜎
𝛿
(𝐢)) assuming that 𝐢 is 𝜎-ordered at

scale 𝛿, where 𝜏𝜎
𝛿
(𝐢) ∈  𝜎

𝛿
. From Lemma 6.3, we also know that  𝜎

𝛿
becomes dense in𝜎 as 𝛿 → 0.

Therefore, inf𝐏𝜎∈𝜎 𝑆(𝐏𝜎) ⩽ 𝑆(𝜏𝜎𝛿 (𝐢)) ⩽ sup𝐏𝜎∈𝜎 𝑆(𝐏𝜎), completing the proof. □

In the following lemma, we write 𝑡𝝁𝑞 (𝐏𝜎) to indicate that in definition (5.1) of 𝑡(𝐏𝜎) we use the
potential 𝝍𝝁𝑞 .

Lemma 8.2. We have

lim
𝑞→+∞

−1

𝑞
max
𝜎∈ sup

𝐏𝜎∈𝜎
𝑡
𝝁
𝑞 (𝐏𝜎) = min

𝜎∈ inf
𝐏𝜎∈𝜎 𝑆(𝐏𝜎)

and

lim
𝑞→−∞

−1

𝑞
max
𝜎∈ sup

𝐏𝜎∈𝜎
𝑡
𝝁
𝑞 (𝐏𝜎) = max

𝜎∈ sup
𝐏𝜎∈𝜎

𝑆(𝐏𝜎).

Proof. The uniform bounds 0 ⩽ 𝐻(𝐩𝜎𝑛) ⩽ log# and 0 ⩽ 𝐶(𝑑),𝜎𝑛 (𝐏𝜎) ⩽ −1∕ log 𝜆min hold for all
𝐏𝜎 ∈ 𝜎. Using these, we can bound

max
𝜎∈ sup

𝐏𝜎∈𝜎
−𝑞 ⋅ 𝑆(𝐏𝜎) ⩽ max

𝜎∈ sup
𝐏𝜎∈𝜎

𝑡
𝝁
𝑞 (𝐏𝜎) ⩽ max

𝜎∈ sup
𝐏𝜎∈𝜎

−𝑞 ⋅ 𝑆(𝐏𝜎) + 𝑑
log#

− log 𝜆min
.

First assume 𝑞 > 0 and divide through by −𝑞. We obtain that

min
𝜎∈ inf

𝐏𝜎∈𝜎 𝑆(𝐏𝜎) ⩾
−1

𝑞
max
𝜎∈ sup

𝐏𝜎∈𝜎
𝑡
𝝁
𝑞 (𝐏𝜎) ⩾ min

𝜎∈ inf
𝐏𝜎∈𝜎 𝑆(𝐏𝜎) −

𝑑

𝑞
⋅

log#
− log 𝜆min

.

Taking the limit as 𝑞 → +∞ proves the first assertion.
Now assume 𝑞 < 0 and again divide through by −𝑞. We now obtain that

max
𝜎∈ sup

𝐏𝜎∈𝜎
𝑆(𝐏𝜎) ⩽

−1

𝑞
max
𝜎∈ sup

𝐏𝜎∈𝜎
𝑡
𝝁
𝑞 (𝐏𝜎) ⩽ max

𝜎∈ sup
𝐏𝜎∈𝜎

𝑆(𝐏𝜎) −
𝑑

𝑞
⋅

log#
− log 𝜆min

.

Taking the limit as 𝑞 → −∞ completes the proof. □

Lemma 8.3. Let 𝜈𝝁 be a self-affine measure on the sponge 𝐹 that satisfies the SPPC. Then

dimF 𝜈𝝁 = min
𝜎∈ inf

𝐏𝜎∈𝜎 𝑆(𝐏𝜎).

Proof. Let 𝑥 ∈ 𝐹 and 0 < 𝛿 < 1 be arbitrary. Recall fromSection 7.1 that𝑥
𝛿
denotes the set of those

symbolic 𝛿-approximate cubes whose image under 𝜋 intersects 𝐵(𝑥, 𝛿) ∩ 𝐹. Using that #𝑥
𝛿
≈ 1,

we obtain from Lemma 8.1 that

𝜈𝝁(𝐵(𝑥, 𝛿) ∩ 𝐹) ≲ max
𝐵∈𝑥

𝛿

𝜈𝝁(𝜋(𝐵)) ≲ 𝛿min𝜎∈ inf𝐏𝜎∈𝜎 𝑆(𝐏𝜎),

which shows that dimF 𝜈𝝁 ⩾ min𝜎∈ inf𝐏𝜎∈𝜎 𝑆(𝐏𝜎).
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34 KOLOSSVÁRY

For the other direction, fix 𝜀 > 0 and choose (any) 𝜎 ∈  which minimises inf𝐏𝜎∈𝜎 𝑆(𝐏𝜎). By
Lemma 6.3,  𝜎

𝛿
becomes dense in 𝜎, moreover, 𝑆(𝐏𝜎) is continuous in 𝐏𝜎, therefore, for every 𝛿

small enough, there exists an 𝐢 ∈ Σ𝜎
𝛿∕

√
𝑑
such that 𝜏𝜎

𝛿∕
√
𝑑
(𝐢) ∈  𝜎

𝛿∕
√
𝑑
,

𝜋(𝐵
𝛿∕

√
𝑑
(𝐢)) ⊆ 𝐵(𝜋(𝐢), 𝛿) and 𝑆(𝜏𝜎

𝛿∕
√
𝑑
(𝐢)) ⩽ inf

𝐏𝜎∈𝜎 𝑆(𝐏𝜎) + 𝜀.

As a result, Lemma 8.1 again implies that

𝜈𝝁(𝐵(𝜋(𝐢), 𝛿) ∩ 𝐹) ≳ 𝜈𝝁

(
𝜋(𝐵

𝛿∕
√
𝑑
(𝜋(𝐢)))

)
≈ 𝛿

𝑆(𝜏𝜎
𝛿∕

√
𝑑
(𝐢))

≳ 𝛿min𝜎∈ inf𝐏𝜎∈𝜎 𝑆(𝐏𝜎)+𝜀.

Since 𝜀 > 0 was arbitrary, the proof is complete. □

Lemma 8.4. Let 𝜈𝝁 be a self-affine measure on the sponge 𝐹 that satisfies the SPPC. Then

dimB 𝜈𝝁 = max
𝜎∈ sup

𝐏𝜎∈𝜎
𝑆(𝐏𝜎).

Proof. Let 𝑥 ∈ 𝐹 and 0 < 𝛿 < 1 be arbitrary, furthermore, 𝐢 ∈ Σ such that 𝜋(𝐢) = 𝑥. Then
𝜋(𝐵

𝛿∕
√
𝑑
(𝐢)) ⊆ 𝐵(𝑥, 𝛿) ∩ 𝐹, hence, by Lemma 8.1,

𝜈𝝁(𝐵(𝑥, 𝛿) ∩ 𝐹) ≳ 𝜈𝝁(𝜋(𝐵𝛿∕
√
𝑑
(𝐢))) ≳ 𝛿max𝜎∈ sup𝐏𝜎∈𝜎 𝑆(𝐏𝜎),

which shows that dimB𝜈𝝁 ⩽ max𝜎∈ sup𝐏𝜎∈𝜎 𝑆(𝐏𝜎).
For the other direction, fix 𝜀 > 0 and choose (any) 𝜎 ∈ whichmaximises sup𝐏𝜎∈𝜎 𝑆(𝐏𝜎). For

𝛿 small enough, there exists 𝐢 ∈ Σ𝜎
𝛿
such that 𝑆(𝜏𝜎

𝛿
(𝐢)) ⩾ sup𝐏𝜎∈𝜎 𝑆(𝐏𝜎) − 𝜀. Using Lemmas 7.1

and 7.2,

𝜈𝝁(𝐵(𝜋(𝛼𝛿(𝐢)), 𝐶0 ⋅ 𝛿)) ∩ 𝐹) ⩽ 𝜈𝝁(𝜋(𝐵𝛿(𝛼𝛿(𝐢)))) ≈ 𝜈𝝁(𝜋(𝐵𝛿(𝐢))) ≲ 𝛿max𝜎∈ sup𝐏𝜎∈𝜎 𝑆(𝐏𝜎)−𝜀.

Since 𝜀 > 0 was arbitrary, the proof is complete. □

Proof of Theorem 3.8. The claims about dimF 𝜈𝝁 follow directly from Theorem 3.3, Proposition 3.7
and Lemmas 8.2 and 8.3. The claims about dimB 𝜈𝝁 follow directly from Theorem 3.3, Proposi-
tion 3.7 and Lemmas 8.2 and 8.4. If 𝐹 is a 𝜎-ordered Lalley–Gatzouras sponge, then = {𝜎} and
𝜎 = 𝜎, so the claims follow from Proposition 3.7. □
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