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Abstract
Standard occupancy models enable unbiased estimation of occupancy by accounting 
for observation errors such as missed detections (false negatives) and, less commonly, 
incorrect detections (false positives). Occupancy models are fitted to data from re-
peated site visits in which surveyors record evidence of species presence. Use of 
indirect sign (e.g., scat, tracks) as evidence of presence can vastly improve survey ef-
ficiency for inconspicuous species but can also introduce additional sources of error. 
We developed a “multi-sign” occupancy approach to model the detection process 
separately for unique sign types and used this method to improve estimates of occu-
pancy dynamics for an inconspicuous species, the American pika (Ochotona princeps). 
We investigated how estimates of pika occupancy and environmental drivers differed 
under four increasingly realistic representations of the observation process: (1) per-
fect detection (commonly assumed for modeling pika occupancy), (2) standard oc-
cupancy model (single observation process without possibility of false detection), (3) 
multi-sign with no false detections (non-false positive model), and (4) multi-sign with 
false detections (full model). For the multi-sign occupancy models, we modeled the 
detection of each sign type (fresh scat, fresh haypiles, pika calls, and pika sightings) 
separately as a function of climatic and environmental covariates. Estimates of occu-
pancy processes and inferences about environmental drivers were sensitive to differ-
ent detection models. Simplified representations of the detection processes generally 
resulted in higher occupancy estimates and higher turnover rates than the full multi-
sign model. Environmental drivers also varied in their influence on occupancy models, 
where (e.g.) forb cover was estimated to more strongly influence occupancy in the full 
multi-sign model than the simpler models. As has been reported previously in other 
contexts, unmodeled heterogeneity in the observation process can lead to biases in 
occupancy processes and uncertainty in the relationships between occupancy and 
environmental covariates. Overall, our multi-sign approach to dynamic occupancy 
modeling, which accounts for spatio-temporal variation in reliability among sign types, 
has strong potential to generate more realistic estimates of occupancy dynamics for 
inconspicuous species.
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1  |  INTRODUC TION

Dynamic occupancy models have emerged as one of the most 
powerful tools to investigate species responses to global change 
at regional and range-wide scales (MacKenzie,  2002; Nichols 
et al., 2008; Royle, 2006). These models use binary detection sur-
veys to assess occupancy rates, changes, and drivers of occupancy. 
Because occupancy models rely on noninvasive survey designs that 
can be replicated over large areas at relatively low cost, this tool 
has gained popularity as research questions in conservation biology 
and ecology have increased in their geographic scope of inference. 
Occupancy modeling relies on direct (aural or visual) or indirect (e.g., 
scat, tracks) sign to determine the presence or absence of a species 
at each survey location. These models are used to advance important 
conservation and management goals across a wide range of taxa and 
geographic scales including investigating metapopulation dynam-
ics of potentially climate-sensitive species (Hanski & Gilpin,  1991; 
Moilanen et al., 1998), determining habitat use of a range of imper-
iled tropical avian species (Ruiz-Gutie'rrez et al., 2010), and under-
standing the breeding status of potentially threatened amphibians in 
the Greater Yellowstone Area (Gould et al., 2019).

Most occupancy surveys are prone to detection errors, includ-
ing failing to detect a species when it is present (false negative) or, 
perhaps less commonly, falsely detecting a species when it is in fact 
not present (false positive). If not correctly accounted for, detec-
tion errors can result in incorrect conclusions regarding occupancy 
processes (Berigan et al., 2019; MacKenzie et al., 2003; McClintock 
et al., 2010). Standard occupancy models are able to produce unbi-
ased estimates of occupancy by explicitly modeling the observation 
process and treating occupancy status as an unobserved or partially 
observed latent process within a hierarchical modeling framework 
(Royle & Dorazio,  2008). To effectively tease apart the detection 
and occupancy processes, these models rely on surveyors conduct-
ing repeated visits to a site (one or more resurveys) within a time 
horizon short enough to assume no change in occupancy status 
(MacKenzie, 2002). In this framework, both the detection process 
and the occupancy process can be modeled separately as functions 
of distinct sets of covariates, thereby allowing researchers to con-
trol for detection errors when estimating the drivers of occupancy 
(MacKenzie et al., 2003).

In occupancy modeling, many analyses lack sufficient data to 
inform robust estimates of false-positive errors. As a result, it re-
mains common practice to ignore or make unrealistic simplifying as-
sumptions about false-positive error rates when modeling species 
occurrence probabilities. However, this type of detection error can 
occur if surveyors misidentify a species via visual or auditory cues, or 

misidentify indirect sign (scat, tracks, and other species-specific sign) 
as indicators of presence. False-positive detection errors are known 
to occur in standard wildlife surveys (McClintock et al., 2010). For 
example, use of presence–absence data for 10 anuran species across 
the Northeastern United States revealed that when false-positive 
error was not accounted for, occupancy estimates were biased by up 
to 70% for four of the 10 species studied (Ruiz-Gutierrez et al., 2016). 
Other studies have documented similar biases resulting from failure 
to account for false-positive errors (Clement et al.,  2014; Royle & 
Link, 2006). As such, it is critical to model these potential detection 
errors.

For inconspicuous species, occupancy models tend to rely on in-
direct signs of presence. For example, Karanth et al. (2011) assessed 
the distribution of a population of tigers in India using indirect sign 
such as scat and tracks to inform occupancy models. It is increas-
ingly common for researchers to infer occupancy status on the basis 
of tracks, scat, hair/fur middens, and even eDNA (Da Silva Neto 
et al., 2020; Nichols et al., 2008; Schmidt et al., 2013). In addition to 
these methods being low cost and noninvasive, it is important to use 
indirect sign where species may be missed if relying on direct sign 
alone. However, potential for quick decay of sign can add difficulty 
to assigning an occupied or unoccupied status at a given site and 
easily leads to higher risk of detection errors. On the other hand, 
long-term preservation of sign can lead surveyors to mistakenly 
classify formerly occupied sites as currently occupied. Furthermore, 
misidentification of indirect sign by surveyors may result in either 
false-positive or false-negative errors. Finally, additional biases 
may be induced if environmental drivers differentially influence the 
reliability of sign types (e.g., precipitation or temperatures may af-
fect scat decay rates), or if geographic regions differ in prevalence 
of reliable sign types. A “multi-sign” occupancy modeling approach 
accounting for different detection rates and responses to environ-
mental drivers across sign types may help reduce these sources of 
bias. Because both direct and indirect sign type detection can vary 
by region, accounting for each observation process separately as a 
function of a set of climatic and environmental covariates may allow 
for a more realistic representation of occupancy.

Nichols et al.  (2008) was among the first to discuss the use of 
multiple sign types for fitting occupancy models. More recently, 
several studies have harnessed multiple detection methods to en-
able robust estimation of false detection rates (Guillera-Arroita 
et al.,  2017; Miller et al.,  2011). Other studies, such as Clement 
et al.  (2014), have also allowed for false detections, but have not 
estimated unique false detection rates across multiple sign types, 
nor have they investigated how environmental drivers differen-
tially affect detection or false detection rates for each unique sign 
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type. Furthermore, Chambert et al.  (2015) and others (e.g., Kéry & 
Royle, 2021) have reinforced the importance of accounting for false 
detections and provided a framework and lexicon for building hi-
erarchical false-positive models. Our multi-sign approach expands 
upon previous studies by modeling the detection process (both true 
and false detection probabilities) for each sign type as independent 
functions of unique covariate sets (e.g., environmental drivers). Our 
approach enables us to evaluate the shifting reliability of each sign 
type across space and time, and thereby help to develop more in-
formed and robust survey protocols.

While this approach can be applied to any species for which 
surveys rely on multiple sign types as evidence of occupancy, we 
test this approach using American pika (Ochotona princeps), an in-
conspicuous species thought to be vulnerable to climate change 
across portions of its range due to potential upslope range shifts, 
subsequent vegetation availability, and sensitivity to extreme tem-
perature changes (Beever et al., 2010; Erb et al., 2011, 2014; Jeffress 
et al., 2013). As such, occupancy models are critical to monitoring 
these potentially vulnerable populations and assessing the role of 
environmental and climatic factors as drivers of shifting occupancy 
patterns and range margins. Pika are an excellent test case for a 
multi-sign occupancy modeling approach, as surveys for American 
pika typically monitor multiple indirect sign types—notably, scat and 
haypiles (piles of vegetation thought to serve as a key winter food 
resource; Dearing, 1997; Millar & Zwickel, 1972) in addition to direct 
observations of pika and auditory detections of the unique call pro-
duced by this species (Conner, 1985). These sign types differ in re-
gional prevalence—for example, direct observations are common in 
some areas and rare in others—and are also likely to vary in reliabil-
ity. Since scat and haypiles can persist in the environment for over 
400 years (Castillo et al.,  2016; Nichols,  2010), surveyors must be 
able to discriminate between fresh and old observations of indirect 
sign types in order to use these observations to infer current occu-
pancy status. Fresh haypiles can be difficult to accurately distinguish 
from old haypiles, especially in lower elevations (Shinderman, 2015) 
where a few freshly browsed sprigs on an old pika haypile may be 
deposited by other sympatric herbivore species such as marmots 
or woodrats, raising the potential for false detections. Although 
previous evidence (Nichols, 2010) indicates fresh scat is easily dis-
tinguishable from old scat using color and consistency, anecdotal ev-
idence suggests fresh scat decays quickly in the sun and especially at 
lower elevation sites and that determining the apparent age of scat 
may be regionally and even patch dependent (M. Jeffress and M. 
Shinderman, Personal communication, November 2021). Because 
scat is typically the most abundant sign detected in pika surveys, 
accurately assessing the age of scat detections and being able to dis-
tinguish fresh from old is crucial for generating precise and unbiased 
occupancy estimates.

In this study, we model occupancy dynamics for American pika 
using multiple direct and indirect indicators of pika presence (fresh 
scat, fresh haypiles, calls, and sightings) collected from 2010 to 2021 
at five national parks in the Pacific Northwest. Furthermore, we in-
vestigate how estimates of pika occupancy trends and environmental 

drivers differ under four increasingly realistic representations of the 
pika observation process: (1) perfect detection (a common assump-
tion for modeling pika occupancy), (2) standard occupancy model 
(single observation process with no possibility of false detection), (3) 
a multi-sign occupancy model with no false positive detections (non-
false positive model), and (4) a multi-sign occupancy model with false 
positive detections (full model). For the multi-sign occupancy mod-
els, we modeled each observation process separately as a function 
of climatic and environmental covariates including substrate com-
plexity, season, survey period, and vegetation cover. In addition, 
we modeled each occupancy process (initial patch occupancy, col-
onization, and extinction) separately as a function of covariates in-
cluding temperature, precipitation, forb, rock, and shrub cover. Our 
primary objective was to model occupancy using both false-positive 
and false-negative detection probabilities for individual sign type. 
We also predicted that our “multi-sign” approach for modeling ob-
servation error would alter estimates of occupancy processes (e.g., 
colonization, extinction) and its environmental drivers relative to 
more standard occupancy models in complex and unexpected ways. 
We also sought to model occupancy dynamics of pika across our 
study region as a function of climatic and environmental covariates 
and to assess how these estimates change under our four differ-
ent treatments of observation error. We expected that accounting 
for false-positive detection errors across sign types would reduce 
estimates of mean occupancy because failure to account for false 
detections typically results in upward bias in occupancy estimates 
(Royle, 2006). We anticipate that the results of this study will have 
broad implications for other systems in which multiple sign types are 
used to assess regional occupancy dynamics for other inconspicuous 
species.

2  |  METHODS

2.1  |  Study species

The American pika is a small lagomorph inhabiting patchy talus slopes 
across diverse ecosystems of the western US American pika do not 
hibernate and are generalist herbivores that often store vegetation 
caches called “haypiles” for winter food (Smith, 1974). Food caches 
serve as both winter diet and insulation in talus and are considered 
the major source of food for pika during winter (Dearing, 1997; Millar 
& Zwickel, 1972). American pika have long been considered to exhibit 
classical metapopulation dynamics (Hanski & Gilpin, 1991; Kreuzer 
& Huntly, 2003; Moilanen et al., 1998; Peacock & Smith, 1997). In 
2010, American pika were considered for listing under threatened 
or endangered status by the United States Fish and Wildlife Service 
(Wolf et al., 2007), but were subsequently denied listing in 2010 due 
to both insufficient evidence of decline across known populations 
and a lack of survey data across much of their range. As such, con-
siderable attention has been given to addressing how pika respond 
to climatic changes (Beever et al., 2003, 2011; Jeffress et al., 2013; 
Schwalm et al.,  2016; Wolf et al.,  2007) across their range. This 
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species is a highly sensitive thermoregulator and may adjust their 
activity levels based on heat and cold exposure (MacArthur & 
Wang,  1973; Smith,  1974). While they are more commonly found 
above 2500 m, American pika metapopulations are also present 
in habitat below 2500 m (Ray et al.,  2016; Rodhouse et al.,  2010; 
Shinderman, 2015; Simpson, 2009). A wide range of factors, operat-
ing at different spatial scales, may promote or inhibit the persistence 
of pika populations including climate, substrate complexity, and 
available vegetation.

2.2  |  Occupancy survey and study area

We modeled American pika occupancy dynamics using two related 
datasets: The first is a 2010–2014 monitoring dataset established by 
the US National Park Service and the second a 2017–2021 dataset 
established by the Oregon State University Cascades HERS Lab with 
support from the National Park Service. Surveys occurred between 
2010 and 2021 across five park units within the states of Oregon, 
Idaho, and California in the Pacific Northwest, including: Crater Lake 
National Park (CRLA), Craters of the Moon National Monument and 
Preserve (CRMO), Lassen Volcanic National Park (LAVO), Lava Beds 
National Monument (LABE), and Newberry National Monument 
(NEWB; Figure 1). Survey plots were designed to represent a typical 
pika territory size (Smith & Weston,  1990) and comprised a 12-m 
radius circular surveyed area (following Jeffress et al.  (2010); also 
used by Rodhouse et al. (2010) and Ray et al. (2012)). An average of 
100 plots (hereafter referred to as “sites”) per park were surveyed 
each year. Resurveys were conducted for 30% of the sites within 
1 month of original surveys each year to assess detection probability 
(Rodhouse et al., 2010). Surveyors spent up to 30 min searching a 
site and recorded up to 10 sign observations per survey (with 10 
being considered a reasonable cap based on the density of sign typi-
cally observed within the sites and the time it takes to complete the 

survey). Observations comprised fresh or old scat (FS/OS), fresh or 
old haypiles (FH/OH), pika calls (PC), and pika sightings (PS). In prac-
tice, there were very few observations in any park with 10 or more 
instances of sign at a site within a single survey. Furthermore, given 
the amount of time spent in sites observing sign, it is very unlikely 
that any haypiles present would not have been detected if they were 
visible. The most likely scenario in those cases is that there either 
were no haypiles or they were not detectable (deep below the sur-
face). For sites with multiple surveyors, independent blind surveys 
or double observer surveys that communicated results together 
for a combined “up to 30 min” were conducted. With two or more 
surveyors, surveys were not considered complete until both observ-
ers searched all large crevices and beneath large rocks. Surveyors 
ranged in experience level from newly trained to experienced. Only 
sign that observers felt they could confidently identify as pika were 
recorded. If a pika call was heard near the boundary of the site and 
not clearly within the site, it was determined to be outside the site. 
Observations of old sign were not included in our analyses.

In addition to collecting records of pika sign, surveyors also 
classified each survey site according to three levels of rock (talus 
or lava) complexity: low, intermediate, and high (Figure  2). Lastly, 
surveyors used Daubenmire's  (1959) method to estimate site-level 
percent cover of rock, bare ground (dirt, mineral soil, and litter), forbs 
(non-graminoid flowering herbaceous plants), grasses (graminoids 
[grasses and sedges]), shrubs (woody plants), and trees (Jeffress 
et al., 2010). A complete description of survey methods can be found 
in Jeffress et al. (2010) and Rodhouse et al. (2010).

To enable identifiability of false detection rates (we assume 
identifiability issues would arise if unambiguous detections were 
not available; Guillera-Arroita et al.  (2017)), we classified sign ob-
servations as ambiguous (potentially misidentified) and unambigu-
ous (whereby a false detection was virtually impossible; Rodhouse 
et al., 2018). We used written notes recorded by surveyors in 2019–
2021 surveys (during which note-taking was consistent across all 

F I G U R E  1 US Pacific Northwest map 
identifying 2010–2021 American pika 
survey areas within Newberry National 
Monument, Crater Lake National Park, 
Lava Beds National Monument, Lassen 
National Volcanic Park and Craters of the 
Moon National Monument.
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surveyors) to classify each sign observation as ambiguous or un-
ambiguous. All fresh scat observations indicating the presence of 
fresh mucous holding scat together (stuck, pyramid, tower, perched, 
stacked, teepee, cluster) were designated as unambiguous, as such 
observations are necessarily fresh and are uniquely characteristic of 
pika scat. Fresh scat detections containing none of these keywords 
were considered ambiguous (some possibility of false detection i.e., 
mistaken for scat deposited by pika in a prior year before a site be-
came extirpated). Fresh haypiles were also treated as an ambiguous 
sign type given the difficulty of knowing whether the vegetation was 
browse from another species (marmot or woodrat) and uncertainty 
around the quantity of browse that is to be considered a haypile. All 
pika sightings were treated as unambiguous. Pika have a distinctive 
size and shape relative to other small mammals in the study areas, 
and observers only recorded a pika sighting for high-confidence 

observations; if an observer saw a small mammal in the site but could 
not confirm it was a pika, the observation was not recorded as a pika 
sighting. In addition, we designated as unambiguous all observations 
of fresh scat in which one or more fresh haypiles were observed 
during the same survey (M. Jeffress and M. Shinderman, Personal 
communication, November 2021).

2.3  |  Environmental and climatic covariates

Environmental covariates provided by the NPS that were considered 
in the model included survey season, site-level cover class, and sub-
strate complexity. A fourth covariate, “survey period” was used to 
distinguish between the 2010–2014 survey period and 2017–2021 
period. These periods denote differences in maximum number of 
surveyors of a given survey. In the pre-2017 period, surveys were 
conducted by one observer whereas in the post-2017 period 2–4 ob-
servers conducted surveys; however, preliminary models suggested 
little to no effect of observer experience on detection outcomes. 
Thus, observer experience was not included in the final model. 
Climatic covariates included in the model, maximum mean summer 
temperature, and annual sum of daily precipitation for the previous 
water year were obtained from publicly available online sources 
(Table 1). Substrate complexity was centered to zero and all other 
non-binary covariates were scaled for comparison across covariates.

2.4  |  Statistical analysis

2.4.1  |  Selection of environmental covariates

Prior to fitting our dynamic occupancy model (see occupancy pro-
cess model section), we determined which vegetation and climatic 
variables to use for modeling site-level extinction and coloniza-
tion processes using an initial model selection procedure (reverse 
step-wise AIC; Akaike, 1974). We fitted a logistic regression model 
for the extinction process that included all vegetation cover and 
climatic variables, and which was fitted using data for all site-year 
combinations that were occupied in the previous time-step (i.e., 

F I G U R E  2 Example of low, intermediate, and high site-level complexity in Lava Beds National Monument (1), Lassen Volcanic National 
Park (2), and Crater Lake National Park (3; Photos: OSU-Cascades HERS Lab Unpublished Protocol Revision 3 Update, June 2019).

TA B L E  1 Occupancy and observation process parameters.

Occupancy process covariates

Short name Full name Source

forb Percent forb cover NPS database

rock Percent rock cover NPS database

shrub Percent shrub cover NPS database

cplxa Rock/substrate 
complexity

NPS database

tmaxmean Mean daily max 
summer temp 
(°C)

gridMET 
(Abatzoglou, 2013)

precip Sum daily precip 
over water yr 
(mm)

gridMET 
(Abatzoglou, 2013)

Observation process covariates

Survey 
period

pre-2017 or post-
2017 survey

NPS database

ssn season (summer or 
fall)

NPS database

Note: NPS database data provided by National Park Service, all other 
covariate data taken from publicly sourced data sources.
aMissing complexity data for Lava Beds National Monument (LABE).
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observations exposed to potential extinction). For this preliminary 
modeling step, we assumed perfect detection and no false-positive 
errors (i.e., surveys in which fresh sign was observed were presumed 
occupied). Similarly, we fitted a model for the colonization process 
that included all vegetation cover and climatic variables, using data 
for all site-year combinations that were unoccupied in the previous 
time-step (i.e., exposed to potential colonization). For each of these 
models, we then performed reverse step-wise selection with AIC 
using the step function in R v4.0.1 (R Core Team, 2020) and incor-
porated the variables remaining in each model to fit the integrated 
Bayesian occupancy model (Appendix  S2, Table 4). We chose co-
variates for the observation model based on a combination of pre-
vious studies demonstrating specific influences on pika occupancy 
(Erb et al., 2014; Huntly et al., 1986; Jeffress et al., 2013; Rodhouse 
et al.,  2010) and ecological relevance (Appendix  S2, Table 5). All 
quantitative covariates included in the Bayesian occupancy model 
were <75% correlated.

2.4.2  |  Occupancy process model

Our process model followed a standard dynamic occupancy mode-
ling framework with three distinct processes: (1) initial occupancy, (2) 
colonization of previously unoccupied patches, and (3) extinction of 
previously occupied patches (MacKenzie, 2002; Royle, 2004). Initial 
occupancy status zi1 (where i  is site) was modeled as a Bernoulli ran-
dom variable, in which the probability of initial occupancy Λ1 was 
a logit-linear function of substrate complexity which was shown to 
influence pika occupancy in (Rodhouse et al., 2010). In subsequent 
years, the true occupancy status, zit was modeled as a Bernoulli ran-
dom variable with a conditional probability based upon prior-year 
occupancy status zit−1, using:

where � it is the probability of colonization in site i  from year t − 1 to 
year t, and �it is the probability of extinction in site i  from year t − 1 
to year t. Probabilities of extinction and colonization were also mod-
eled as logit-linear functions of environmental covariates (Table  1). 
Random intercept terms on colonization and extinction were added 
to allow for variation among parks and year. A random slope term on 
initial occupancy was added to allow for among-park variation in the 
effect of substrate complexity (fully derived equations can be found 
in Appendix S1).

2.4.3  |  A “multi-sign” model of the 
observation process

Each direct and indirect pika sign-type: fresh scat (FS), fresh hayp-
ile (FH), pika call (PC), and pika sighting (PS), hereafter, “sign,” was 

treated as an independent detection process that reflects the under-
lying occupancy status of each site. For each sign type, observations 
were summarized by survey. We treated all survey-level observa-
tions as binary (one or more observations of a sign type in a given 
survey was classified as 1, otherwise 0). We also constructed and fit 
multi-sign models that treated FS and FH as count data (total number 
of observations recorded in each survey), but goodness-of-fit tests 
indicated poor fit and therefore we did not interpret these models 
further. Probability of detection for each sign type was modeled as 
a mixture process, allowing for true detections and false-positive 
detections, following Royle and Link (2006). For each sign type, we 
modeled the survey-specific probability of correct detection psign 
and false detection p�

sign
 as a logit-linear function of covariates:

where X�sign stands for a logistic regression of psign and p
�

sign
 for each 

site, year, and survey as a function of multiple covariates X (with re-
gression coefficient vector �sign). Thus, if an observation is deemed 
“unambiguous,” the site is presumed occupied. We modeled the uncon-
ditional probability of detection for each sign type (pdsign—representing 
the probability of either false or correct detection of a given sign type) 
as conditional on the current occupancy status following:

where the sign-specific probability of detection pdsign for each site, 
year, and survey is equivalent to the probability of correct detection 
psign if a site is occupied and the probability of false detection p

�

sign
 if a 

site is unoccupied.

2.4.4  |  Prior model

We used vague normal priors to define coefficients for all logit-linear 
predictors for both occupancy and detection processes. We used 
vague gamma priors to define variance parameters (e.g., hyperpri-
ors on random effect terms) and uniform distributions to initialize all 
probability parameters (e.g., initial occupancy probability, baseline 
colonization, and extinction probabilities; Appendix S1).

2.4.5  |  Posterior predictive check

Model goodness-of-fit was based on posterior predictive checks 
using a Bayesian posterior predictive p-value calculating the sum of 
squared error for fresh scat, fresh haypile, and pika call detections 
where values close to 0.5 indicate good model fit (Gelman, 2014). 

(1)zit ∼

⎧
⎪⎨⎪⎩

Bernoulli
�
1−�it

�
, if zit−1 =1

Bernoulli
�
� it
�
, if zit−1 =0,

(2)logit
(
psign

)
= X�sign,

(3)
⎧
⎪⎨⎪⎩

logit
�
p
�

sign

�
=Xp��p� , if unambiguous=0

p
�

sign
=0, if unambiguous=1,

(4)pdsign ∼

⎛
⎜⎜⎝
psign, if z=1

p
�

sign
, if z=0,
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    |  7 of 13GOLDMAN et al.

This allowed us to examine the degree to which the dispersion of the 
observed data matched the dispersion of simulated data. Bayesian p-
values close to 0 or 1 indicate poor model fit and demonstrate weak 
support for interpretation of parameter estimates.

2.4.6  |  Bayesian model implementation

We ran models in a Bayesian framework using Markov Chain 
Monte Carlo (Hooten & Hobbs,  2015). We used the software 
JAGS (Plummer,  2003) which was called from R using the “jag-
sUI” wrapper (Kellner, 2021) for “rjags” (Plummer, 2021). Samples 
were drawn from posterior distributions using three MCMC 
chains, 100,000 iterations thinned by a factor of 10, and the first 
50,000 iterations were discarded as a burn-in period. Chains were 
checked for convergence, and if R-hat was > 1.1 for any parameter, 
the model was rerun (Brooks & Gelman, 1998). We checked model 
convergence using Gelman-Rubin diagnostics and by examining 
trace plots of the MCMC chains. All models were run in R soft-
ware. Our MCMC results indicated convergence (R-hat < 1.1) for 
all model parameters and for all three alternative representations 
of detection probability. Bayesian p-values indicated adequate 
model fit for all three detection models and unique sign types 
(.42 < p < .50; Kéry, 2010).

2.4.7  |  Comparing alternative observation models

To test the extent to which our most realistic and sophisticated 
model influenced the observation process relative to more con-
ventional models, we ran three additional models with increasingly 
simple representations of the observation process: (1) non-false-
positive model: a “multi-sign” detection model with no potential for 
false detections (all direct or indirect pika observations imply that a 
site was currently occupied in a given year), (2) standard occupancy 
model: a model with a single observation process and no possibility 
of false detection, and (3) perfect detection model: a model in which 
all pika detection events were assumed to accurately reflect the un-
derlying occupancy status and all surveys yielding no pika detections 
were assumed to reflect pika absence. In general, high detectability 
has been assumed for pika and thus detection error has generally 
been ignored in this modeling framework (Jeffress et al., 2013; Ray 
et al., 2016; Rodhouse et al., 2010). We computed site-occupancy 
rates for each park and year by dividing the estimated number of oc-
cupied sites in each park (determined by monitoring the binary site-
occupancy status for each MCMC iteration) by the total number of 
monitored sites at each park. We then summarized occupancy rates 
for each park and year as a posterior mean (point estimate) and a 90% 
credible interval. We then ran weighted linear regressions of mean 
park-level occupancy as a function of year (one regression model 
per park), using an inverse-variance weighting technique (weights 
equal to the inverse of posterior variance of each site-occupancy 
estimate), and interpreted significant trends at alpha = 0.1.

3  |  RESULTS

Overall, our survey dataset included a total of 5126 surveys of 771 
unique sites across 5 parks and 12 years (Table 2).

Of these surveys, at least 30% were resurveys conducted within 
2 weeks of the original survey to ensure no occupancy turnover. 
Mean maximum summer temperature (June–August) at our study 
sites ranged between 16.44 and 30.17°C. The sum of annual precip-
itation ranged from 101 to 5130 mm (Appendix S2, Figure 5).

3.1  |  Pika occupancy dynamics

The colonization rate was 5.8%, and extinction rate was 6.2%. Across 
our study period, we detected two significant park-level trends: oc-
cupancy increased from 19% to 40% at LABE and decreased from 
40% to 22% in NEWB. There was no detectable trend in occupancy 
across all parks and occupancy ranged from 32 to 40% (Figure  3; 
Appendix S2, Table 6 and 7).

Rock complexity was positively correlated with initial occu-
pancy (�Λcomplexity

= 1.325, 95% CRI: 0.773 to 1.944, �+ = 1.0; where 
�− or where �+ indicate weight of evidence above or below zero 
and point estimates represent the posterior mean). Percent forb 
cover was negatively associated with the probability of extinction 
(��forb

= − 2.700, 95% CRI: −4.458 to −1.265, �− = 0.988) and weakly 
associated with probability of colonization (�� forb

= 0.033, 95% CRI: 
−0.303 to 0.304, �+ = 0.877). Shrub cover (��shrub

= 0.255, 95% CRI: 
0.044 to 0.470, �+ = 0.989) was positively correlated with coloniza-
tion (Appendix S1, Table 7).

Correlation in among-year process variation (colonization and 
extinction processes) between parks varied from 0.63 to −0.43 
(Appendix S2, Table 8). The highest positive correlations (0.63 for 
colonization, 0.61 for extinction) were observed between the two 
parks with highest average temperatures and lowest average precip-
itation (LABE and CRMO). Other parks with positively correlated an-
nual colonization rates included CRMO and CRLA (0.564), CRLA and 
LAVO (0.561), and CRLA and NEWB (0.575; Appendix S2, Table 8).

3.2  |  Observation process

Total detection probability across sign types was 82%. Overall sign 
detection rates, individual sign type detection rate, and associated 
false-positive error rates varied among parks. The average probabil-
ity of correct detection in CRLA was the highest at 92.4% and lowest 
in NEWB at 77.1% (Table 3).

Rate of fresh scat detections (pfs = 0.801, 95% CRI: 0.764 to 0.801) 
was substantially higher than fresh haypiles (pfh = 0.288 , 95% CRI: 0.248 
to 0.331). Mean detection rate for pika calls (ppc = 0.412, 95% CRI: 
0.375 to 0.451) was substantially higher than pika sightings (pps = 0.134, 
95% CRI: 0.110 to 0.160). Survey period was negatively associated with 
number of fresh scat detections (�FSsurvey period

= − 0.684, 95% CRI: 
−0.927 to −0.442, �− = 1.0). Seasonality (summer vs. fall) affected 
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the probability of detecting pika calls (�PCseason
= − 0.544, 95% CRI: 

−0.749 to −0.344, �− = 1.0) and sightings (�PSseason = − 0.584, 95% 
CRI: −0.906 to −0.273, �− = 1.0 ). Sites with higher substrate com-
plexity tended to have fewer detectable fresh haypile detections 
(�FHcomplexity

= − 0.262, 95% CRI: −0.494 to −0.025, �− = 1.0), pika 
calls (�PCcomplexity

= − 0.273 , 95% CRI: −0.476 to −0.072, �− = 1.0), 
and pika sightings (�PScomplexity

= − 0.306 , 95% CRI: −0.583 to −0.030, 
�− = 0.985). Lastly, higher forb cover was associated with a higher 
probability of detecting haypiles (�FHforb

= 0.336, 95% CRI: 0.239 to 
0.438, �+ = 1.0; Appendix S2, Figures 8–11; Table 7).

The average overall false-positive rate was 8.6%. The average 
false-positive rate was highest in NEWB (0.117) and lowest in CRMO 
(0.028; Table 3). The highest false-positive error rates were associ-
ated with pika call (p�pc = 0.042, 95% CRI: 0.031 to 0.055) followed 
by fresh scat (p�

fs
= 0.037, 95% CRI: 0.020 to 0.055). The mean false-

positive rate for fresh haypiles was extremely low (p�
fh
= 0.020, 95% 

CRI: 0.012 to 0.031). False-positive scat detections tended to be 
higher during the 2017–2021 surveys versus the 2010–2014 sur-
vey period (��

FSseason
= − 1.139, 95% CRI: −2.077 to −0.358, �− = 1.0 ). 

False pika call detections were more likely in summer than in fall 
(��

PCseason

= − 1.069, 95% CRI: −1.678 to −0.529, �− = 1.0). Higher 
substrate complexity was associated with fewer false pika call detec-
tions (��

PCcomplexity

= − 0.228, 95% CRI: −0.640 to 0.193, �+ = 0.974 ). 
Lastly, false-positive fresh haypile detections were more common 
in areas with higher forb cover (��

FHforb

= 0.333, 95% CRI: 0.143 to 
0.503, �+1.0; Appendix S2, Table 7).

3.3  |  Comparing alternative observation models

Temporal (year to year) variance across parks for mean rate of ex-
tinction tended to be greatest in the full model (��

�
= 0.65) and lowest 

in the perfect detection model (��
�
= 0.40), whereas variance across 

park for colonization was highest in the non-false-positive model 
(��

� = 0.65) and lowest in the perfect detection model (��
� = 0.38; 

Appendix S2). Variance across park for initial occupancy was similar 
in the full (�Λ

�
= 1.13) and perfect detection model (�Λ

�
= 1.14) and 

lowest in the non-false-positive model (�Λ

�
= 0.91). The estimate for 

initial occupancy in the full model was 28.4%, compared with 37.0% 
in the non-false positive model, 39.5% in the standard detection 
model and 33.2% in the perfect detection model. Mean coloniza-
tion rate was lowest in the full model (8%) and highest in the perfect 
detection model (16%). Mean extinction rate was lowest in the full 
model (6.2%) and highest in the perfect detection model (26.4%; 
Appendix S2, Table 7, 11, 13, 14).

Percent forb cover in the non-false-positive model indicated an 
increased negative effect on extinction (��forb

= − 1.948, CRI: −3.098 
to −1.065, �− = 1.0) and (shrub cover; Figure 6 and summarized in 
Appendix S2, Table 14). A notable difference in the perfect detec-
tion model included producing the weakest negative effects of forb 
cover on extinction (��forb

= − 0.420, CRI: −0.679 to −0.185 �− = 1.0; 
Appendix S2, Table 14). Compared with the full model, the standard 
deviation of fraction of occupied sites across all parks was higher 
(�2 = 0.0527) than the full model (�2 = 0.0351).

4  |  DISCUSSION

The processes regulating the reliability and detectability of direct 
and indirect sign types are likely to vary across space and time even 
when identical protocols are applied to target organisms. When oc-
cupancy status is determined on the basis of multiple sign types, 
these differences could result in biased estimates of occupancy 
and its environmental drivers. A multi-sign occupancy modeling 

TA B L E  2 Park surveys by year.

2010 2011 2012 2013 2014 2017 2018 2019 2020 2021

Original surveys across park

CRLAa 85 108 141 101 102 0 95 100 0 96

CRMOb 56 135 146 103 103 103 99 96 100 100

LABEc 101 101 100 100 100 99 99 100 89 50

LAVOd 76 113 75 103 103 101 100 98 49 0

NEWBe 0 0 0 0 0 100 102 102 0 100

Resurveys across parks

CRLA 50 30 30 41 30 0 29 29 0 0

CRMO 50 35 30 20 29 16 30 29 30 30

LABE 50 0 30 14 50 27 31 30 0 18

LAVO 41 30 0 21 20 27 29 29 0 0

NEWB 0 0 0 0 0 30 31 31 0 30

aCrater Lake National Park.
bCraters of the Moon National Monument and Preserve.
cLava Beds National Monument.
dLassen Volcanic National Park.
eNewberry National Monument: surveys began in 2017.
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    |  9 of 13GOLDMAN et al.

approach like the one we present in this study allows unique detec-
tion processes to be modeled separately in order to more effectively 
model occupancy dynamics (MacKenzie et al., 2003). We found that 
distinct sign types exhibited substantial differences in overall relia-
bility, false positive rates, and influence of environmental covariates.

Although occupancy models involving surveys of direct and in-
direct sign types typically ignore this variation—instead, treating all 
sign types equally in a pooled observation process—this practice 

may introduce previously unexplored sources of bias in occupancy 
estimation if different sign types vary in prevalence across sites and 
regions. We found that overall survey reliability varied substantially 
among the parks included in our study despite survey protocols 
being standardized across all parks, with mean true detection rates 
varying from 77.1% to 92.4% and mean false detection rates vary-
ing from 2.8% to 11.7% for different parks. This variation in survey 
reliability was presumably driven by differences in the reliability and 

F I G U R E  3 Comparison of posterior site-occupancy rates (filled circles represent posterior means, error bars represent 90% credible 
intervals) through time for all parks across all models. Shaded regions indicate post hoc linear regression models with a 90% C.I. (using 
inverse-variance weighting to account for uncertainty of point estimates). Only those regression relationships significant at alpha = 0.1 are 
depicted. Points represented with an “X” indicate years that the park was not surveyed.

TA B L E  3 Detection ratesa across park and sign type fresh scat (FS), fresh haypiles (FH), pika calls (PC), and pika sightings (PS): full model.

True detection rate False-positive detection rate

Park Overall FS FH PC PS Overall FS FH PC

CRLA 0.924 0.806 0.309 0.599 0.194 0.110 0.017 0.020 0.076

CRMO 0.785 0.722 0.366 0.091 0.016 0.028 0.007 0.017 0.004

LABE 0.764 0.719 0.150 0.014 0.004 0.065 0.045 0.015 0.005

LAVO 0.859 0.626 0.404 0.345 0.060 0.108 0.018 0.049 0.043

NEWB 0.771 0.540 0.144 0.301 0.106 0.117 0.016 0.016 0.086

AVG 0.820 0.683 0.275 0.270 0.076 0.086 0.020 0.023 0.043

aUsing the raw data of sign type observations for each site/year combination, the probability of either true or false detection was determined 
conditional on the site being occupied or unoccupied (per the posterior distribution for the binary occupancy variable at each unique site and year). 
Probabilities were computed as weighted averages across surveys.
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10 of 13  |     GOLDMAN et al.

prevalence of different sign types in each park (e.g., haypiles; see 
below). For example, detection rates of pika calls by park varied from 
1.4% to 59.9%, and pika sightings varied from 0.4% to 19.4%. By mod-
eling each distinct sign type separately, our “multi-sign” occupancy 
models are able to accommodate substantial regional differences in 
survey reliability while producing unbiased estimates of occupancy 
processes. For instance, in the American pika system, haypiling may 
be particularly sensitive to environmental gradients. If not modeled 
explicitly this could cloud estimates of occupancy trends.

While false detections are ignored under most standard occu-
pancy modeling frameworks (MacKenzie,  2002), researchers are 
increasingly allowing for false-positive errors within occupancy 
modeling frameworks and acknowledging the important biases that 
can result from ignoring false-positive errors (Berigan et al., 2019; 
Chambert et al.,  2015; Clement et al.,  2014; Miller et al.,  2013; 
Royle & Link,  2006). Our study echoes these findings, suggesting 
that false detection rates can have strong effects on key inferences 
about occupancy and occupancy dynamics, including mean occu-
pancy rates, the magnitude and significance of occupancy trends, 
and the environmental drivers of occupancy. Estimates of several 
key environmental drivers were also sensitive to changes in how the 
observation process was represented. For example, the strength of 
the estimated effect of substrate complexity on initial occupancy 
probability was much stronger (nearly double in magnitude) in the 
full model versus the perfect detection model. Finally, the estimated 
effect of forb cover on patch-level extinction risk was also far stron-
ger in the full model versus the perfect detection model; whereas 
the full model suggests that forb cover ≥ca. 65% implies a nearly 
100% probability of site persistence, the perfect detection model 
implies that forb cover barely influences the probability of extinc-
tion (Figure 4). Overall, these results suggest that estimates of oc-
cupancy processes are sensitive to how sign types vary in reliability 
across geographic and environmental space, and failure to account 
for this variation may lead to biased or incomplete estimates of key 

occupancy processes. For example, forb cover more strongly influ-
enced occupancy in the full model than in the non-false positive, 
standard, and perfect detection models (Appendix S2, Table 7–14). 
Multi-sign occupancy models should yield a more realistic under-
standing of occupancy dynamics in cases where detection processes 
differ in reliability and response to environmental gradients and vary 
in prevalence across study sites or regions.

Most previous occupancy models for pika and other inconspicu-
ous species have ignored false detections based on the assumption of 
low false detection rates. In our model, misidentification of pika calls 
was surprisingly prevalent, averaging 4.3% and varying substantially 
among our study sites (0.5% to 8.6%). When ignoring the potential 
for false detections, mean occupancy rates increased by 9% across 
the study region relative to the model that accommodated false de-
tection errors, most likely reflecting the upward biases induced by 
treating false detections as true. In contrast to our assumption that 
false detections would be driven primarily by indirect sign observa-
tions, one of the largest sources of false positive errors in our study 
was direct observation of pika calls. Coupled with the knowledge 
that pika calls were relatively uncommon relative to other sign types 
(27%, compared to fresh scat at 68.3%), this suggests that future 
survey protocols may wish to focus on other sign types as primary 
indicators of occupancy. On the other hand, the most likely explana-
tion for the high false detection rate for pika calls is that surveyors 
correctly detected a pika but that the call emerged from outside the 
survey site; pika calls are unlikely to be confused with calls made by 
any other species. Therefore, ignoring false detections of pika calls 
may not pose a severe issue for occupancy estimation if researchers 
are more interested in estimating occupancy beyond the level of the 
standard survey site. Among the indirect sign types, fresh haypiles 
were associated with the highest rate of false detections (2.3%). 
These false detections are likely the result of mistaking old hayp-
iles for fresh, and such errors are likely to induce upward biases in 
estimates of regional occupancy if not modeled explicitly. Rigorous 

F I G U R E  4 Effects plots comparing 
the relationships between occupancy 
processes (colonization and extinction 
probabilities) and forb cover for (a, left) 
a multi-sign occupancy model with false 
detections and (b, right) an otherwise-
equivalent model with false detection 
rates assumed to be zero. Dashed lines 
indicate 95% Bayesian credible interval.
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simulation studies are needed to determine thresholds for both true 
and false detection rates beyond which these errors can be safely 
ignored. In the meantime, we suggest that researchers should in-
corporate both false-negative and false-positive detection errors in 
occupancy models unless strong evidence suggests that one or both 
of these errors can be ignored.

At the site level, detection probabilities for this species are 
generally thought to be high (≥ 0.9) across their range (Beever 
et al.,  2008, 2010; Ray et al.,  2012), leading many pika research-
ers to disregard detection errors as inconsequential sources of 
bias for estimating pika occupancy and metapopulation dynamics 
(Erb et al.,  2011; Jeffress et al.,  2013; Ray et al.,  2016; Rodhouse 
et al.,  2010; Shinderman,  2015). This assumption has been justi-
fied on the basis of previous findings that pika are detectable at a 
rate of ≥90% across their range (Beever et al., 2008, 2011; Jeffress 
et al.,  2013; Ray et al.,  2016; Rodhouse et al.,  2010; Wilkening & 
Ray, 2016). Rodhouse et al., 2010 is the only one of these studies to 
actually estimate detection probability with replicate survey data. 
More recent research has suggested that the assumption of perfect 
detection may lead to biased results in occupancy and metapop-
ulation models for this species due to imperfect detection as well 
as occasional false detections (Rodhouse et al.,  2018). While our 
results confirm that the detection rate is high (82% true detection 
rate) for pika surveys, our results also suggest that failing to account 
for imperfect detection for pika in our study region can lead to bi-
ased estimates of occupancy trends and covariate effects and can 
result in substantially larger inter-annual variance relative to models 
that account for imperfect detection. Given our results, we caution 
against ignoring observation errors and suggest that it is critical to 
model the observation process when study goals involve estimating 
occupancy dynamics and its environmental drivers, even for species 
with detection rates approaching or exceeding 90%.

In our “multi-sign” occupancy modeling framework, we assumed 
that all unique sign types represented independent indicators of the 
underlying occupancy status. This implies that the probability of fail-
ing to detect all unique sign types during a single survey (probability 
of false negative) could be computed as the product of the probability 
of failing to detect each individual sign type, and that the probability 
of a false detection could be computed as the inverse of the product 
of correctly failing to observe each individual sign type. However, 
interactions among sign types are possible, and even likely; for ex-
ample, two or more unique sign types may be extremely reliable indi-
cators of occupancy when they co-occur, whereas neither is reliable 
separately. In our study system, surveys in which both fresh scat and 
haypiles co-occur were considered to be an unambiguous indicator 
of occupancy—which we modeled by disallowing false detections 
for such surveys. However, future multi-sign occupancy frameworks 
should consider modeling interactions among sign types explicitly. 
Such models may more realistically describe how information from 
surveys with multiple distinct sign types can be used to most pre-
cisely describe the underlying observation process.

Failure to allow for detection errors that can and do occur in 
real-world ecological surveys, such as false detections and use of 

sign types that vary in reliability, can lead to biased or incomplete 
estimates of key occupancy processes. Building on other occu-
pancy models that handle false detections (Clement et al.,  2014; 
Rodhouse et al.,  2018), and multiple unique detection methods 
(Guillera-Arroita et al., 2017; Kéry & Royle, 2021; Miller et al., 2011), 
we present a flexible approach for modeling detection probability 
for multiple sign types, whereby detection probability can respond 
to spatio-temporal environmental gradients uniquely for each sign 
type. Unlike previous studies, our method also allows any sign type 
to be present in both ambiguous and unambiguous forms, enabling 
additional power to estimate false-positive detection rates (Guillera-
Arroita et al., 2017). In theory, knowledge of the degree of ambiguity 
of different sign types could be used to improve survey efficiency by 
(e.g.) resurveying sites only until an unambiguous sign is observed 
(ceasing surveys at that point), allowing more effort to be put into 
other sites. However, in the context of monitoring pika populations, 
this might not save that much time, as multiple sign types, when 
present, can typically be observed and recorded quickly.

We anticipate that our method has broad applicability for other 
systems in which multiple sign types are used to assess regional 
occupancy dynamics, especially for inconspicuous species. As hier-
archical models (often fitted in a Bayesian framework) become in-
creasingly accessible to ecologists, incorporation of more realistic 
and complex models of the observation process, such as multi-sign 
occupancy models, have become relatively straightforward to im-
plement. We believe researchers can build upon our framework to 
develop more precise detection models that ultimately improve our 
ability to estimate regional occupancy and to develop more effective 
regional monitoring protocols. Ultimately, incorporation of multi-
sign detection probabilities in occupancy models has great potential 
to positively impact management and conservation decisions for in-
conspicuous species.
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