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Abstract
Standard	occupancy	models	enable	unbiased	estimation	of	occupancy	by	accounting	
for	observation	errors	such	as	missed	detections	(false	negatives)	and,	less	commonly,	
incorrect	detections	(false	positives).	Occupancy	models	are	fitted	to	data	from	re-
peated	 site	 visits	 in	which	 surveyors	 record	 evidence	 of	 species	 presence.	 Use	 of	
indirect	sign	(e.g.,	scat,	tracks)	as	evidence	of	presence	can	vastly	improve	survey	ef-
ficiency	for	inconspicuous	species	but	can	also	introduce	additional	sources	of	error.	
We	 developed	 a	 “multi-	sign”	 occupancy	 approach	 to	model	 the	 detection	 process	
separately	for	unique	sign	types	and	used	this	method	to	improve	estimates	of	occu-
pancy	dynamics	for	an	inconspicuous	species,	the	American	pika	(Ochotona princeps).	
We	investigated	how	estimates	of	pika	occupancy	and	environmental	drivers	differed	
under	four	increasingly	realistic	representations	of	the	observation	process:	(1)	per-
fect	 detection	 (commonly	 assumed	 for	modeling	 pika	 occupancy),	 (2)	 standard	 oc-
cupancy	model	(single	observation	process	without	possibility	of	false	detection),	(3)	
multi-	sign	with	no	false	detections	(non-	false	positive	model),	and	(4)	multi-	sign	with	
false	detections	(full	model).	For	the	multi-	sign	occupancy	models,	we	modeled	the	
detection	of	each	sign	type	(fresh	scat,	fresh	haypiles,	pika	calls,	and	pika	sightings)	
separately	as	a	function	of	climatic	and	environmental	covariates.	Estimates	of	occu-
pancy	processes	and	inferences	about	environmental	drivers	were	sensitive	to	differ-
ent	detection	models.	Simplified	representations	of	the	detection	processes	generally	
resulted	in	higher	occupancy	estimates	and	higher	turnover	rates	than	the	full	multi-	
sign	model.	Environmental	drivers	also	varied	in	their	influence	on	occupancy	models,	
where	(e.g.)	forb	cover	was	estimated	to	more	strongly	influence	occupancy	in	the	full	
multi-	sign	model	than	the	simpler	models.	As	has	been	reported	previously	in	other	
contexts,	unmodeled	heterogeneity	in	the	observation	process	can	lead	to	biases	in	
occupancy	processes	and	uncertainty	 in	 the	 relationships	between	occupancy	and	
environmental	 covariates.	 Overall,	 our	 multi-	sign	 approach	 to	 dynamic	 occupancy	
modeling,	which	accounts	for	spatio-	temporal	variation	in	reliability	among	sign	types,	
has	strong	potential	to	generate	more	realistic	estimates	of	occupancy	dynamics	for	
inconspicuous	species.
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1  |  INTRODUC TION

Dynamic	 occupancy	 models	 have	 emerged	 as	 one	 of	 the	 most	
powerful	 tools	 to	 investigate	 species	 responses	 to	 global	 change	
at	 regional	 and	 range-	wide	 scales	 (MacKenzie,	 2002; Nichols 
et	al.,	2008;	Royle,	2006).	These	models	use	binary	detection	sur-
veys	to	assess	occupancy	rates,	changes,	and	drivers	of	occupancy.	
Because	occupancy	models	rely	on	noninvasive	survey	designs	that	
can	 be	 replicated	 over	 large	 areas	 at	 relatively	 low	 cost,	 this	 tool	
has	gained	popularity	as	research	questions	in	conservation	biology	
and	ecology	have	increased	in	their	geographic	scope	of	inference.	
Occupancy	modeling	relies	on	direct	(aural	or	visual)	or	indirect	(e.g.,	
scat,	tracks)	sign	to	determine	the	presence	or	absence	of	a	species	
at	each	survey	location.	These	models	are	used	to	advance	important	
conservation	and	management	goals	across	a	wide	range	of	taxa	and	
geographic	 scales	 including	 investigating	 metapopulation	 dynam-
ics	 of	 potentially	 climate-	sensitive	 species	 (Hanski	&	Gilpin,	1991; 
Moilanen	et	al.,	1998),	determining	habitat	use	of	a	range	of	imper-
iled	tropical	avian	species	 (Ruiz-	Gutie'rrez	et	al.,	2010),	and	under-
standing	the	breeding	status	of	potentially	threatened	amphibians	in	
the	Greater	Yellowstone	Area	(Gould	et	al.,	2019).

Most	occupancy	surveys	are	prone	to	detection	errors,	 includ-
ing	failing	to	detect	a	species	when	it	is	present	(false	negative)	or,	
perhaps	less	commonly,	falsely	detecting	a	species	when	it	is	in	fact	
not	 present	 (false	 positive).	 If	 not	 correctly	 accounted	 for,	 detec-
tion	errors	can	result	in	incorrect	conclusions	regarding	occupancy	
processes	(Berigan	et	al.,	2019;	MacKenzie	et	al.,	2003;	McClintock	
et	al.,	2010).	Standard	occupancy	models	are	able	to	produce	unbi-
ased	estimates	of	occupancy	by	explicitly	modeling	the	observation	
process	and	treating	occupancy	status	as	an	unobserved	or	partially	
observed	 latent	process	within	a	hierarchical	modeling	 framework	
(Royle	&	Dorazio,	2008).	 To	 effectively	 tease	 apart	 the	 detection	
and	occupancy	processes,	these	models	rely	on	surveyors	conduct-
ing	 repeated	visits	 to	a	 site	 (one	or	more	 resurveys)	within	a	 time	
horizon	 short	 enough	 to	 assume	 no	 change	 in	 occupancy	 status	
(MacKenzie,	2002).	 In	 this	 framework,	both	 the	detection	process	
and	the	occupancy	process	can	be	modeled	separately	as	functions	
of	distinct	sets	of	covariates,	thereby	allowing	researchers	to	con-
trol	for	detection	errors	when	estimating	the	drivers	of	occupancy	
(MacKenzie	et	al.,	2003).

In	 occupancy	 modeling,	 many	 analyses	 lack	 sufficient	 data	 to	
inform	 robust	 estimates	of	 false-	positive	 errors.	As	 a	 result,	 it	 re-
mains	common	practice	to	ignore	or	make	unrealistic	simplifying	as-
sumptions	 about	 false-	positive	error	 rates	when	modeling	 species	
occurrence	probabilities.	However,	this	type	of	detection	error	can	
occur	if	surveyors	misidentify	a	species	via	visual	or	auditory	cues,	or	

misidentify	indirect	sign	(scat,	tracks,	and	other	species-	specific	sign)	
as	indicators	of	presence.	False-	positive	detection	errors	are	known	
to	occur	 in	standard	wildlife	surveys	 (McClintock	et	al.,	2010).	For	
example,	use	of	presence–	absence	data	for	10	anuran	species	across	
the	Northeastern	United	 States	 revealed	 that	when	 false-	positive	
error	was	not	accounted	for,	occupancy	estimates	were	biased	by	up	
to	70%	for	four	of	the	10	species	studied	(Ruiz-	Gutierrez	et	al.,	2016).	
Other	studies	have	documented	similar	biases	resulting	from	failure	
to	 account	 for	 false-	positive	errors	 (Clement	et	 al.,	2014;	Royle	&	
Link,	2006).	As	such,	it	is	critical	to	model	these	potential	detection	
errors.

For	inconspicuous	species,	occupancy	models	tend	to	rely	on	in-
direct	signs	of	presence.	For	example,	Karanth	et	al.	(2011)	assessed	
the	distribution	of	a	population	of	tigers	in	India	using	indirect	sign	
such	as	scat	and	 tracks	 to	 inform	occupancy	models.	 It	 is	 increas-
ingly	common	for	researchers	to	infer	occupancy	status	on	the	basis	
of	 tracks,	 scat,	 hair/fur	 middens,	 and	 even	 eDNA	 (Da	 Silva	 Neto	
et	al.,	2020;	Nichols	et	al.,	2008;	Schmidt	et	al.,	2013).	In	addition	to	
these	methods	being	low	cost	and	noninvasive,	it	is	important	to	use	
indirect	sign	where	species	may	be	missed	if	relying	on	direct	sign	
alone.	However,	potential	for	quick	decay	of	sign	can	add	difficulty	
to	 assigning	 an	occupied	or	 unoccupied	 status	 at	 a	 given	 site	 and	
easily	 leads	 to	higher	 risk	of	detection	errors.	On	 the	other	hand,	
long-	term	 preservation	 of	 sign	 can	 lead	 surveyors	 to	 mistakenly	
classify	formerly	occupied	sites	as	currently	occupied.	Furthermore,	
misidentification	of	 indirect	 sign	by	 surveyors	may	 result	 in	either	
false-	positive	 or	 false-	negative	 errors.	 Finally,	 additional	 biases	
may	be	induced	if	environmental	drivers	differentially	influence	the	
reliability	of	sign	types	 (e.g.,	precipitation	or	temperatures	may	af-
fect	scat	decay	rates),	or	 if	geographic	regions	differ	 in	prevalence	
of	reliable	sign	types.	A	“multi-	sign”	occupancy	modeling	approach	
accounting	for	different	detection	rates	and	responses	to	environ-
mental	drivers	across	sign	types	may	help	reduce	these	sources	of	
bias.	Because	both	direct	and	indirect	sign	type	detection	can	vary	
by	region,	accounting	for	each	observation	process	separately	as	a	
function	of	a	set	of	climatic	and	environmental	covariates	may	allow	
for	a	more	realistic	representation	of	occupancy.

Nichols	et	al.	 (2008)	was	among	the	first	 to	discuss	 the	use	of	
multiple	 sign	 types	 for	 fitting	 occupancy	 models.	 More	 recently,	
several	 studies	have	harnessed	multiple	detection	methods	 to	en-
able	 robust	 estimation	 of	 false	 detection	 rates	 (Guillera-	Arroita	
et	 al.,	 2017;	 Miller	 et	 al.,	 2011).	 Other	 studies,	 such	 as	 Clement	
et	 al.	 (2014),	 have	 also	 allowed	 for	 false	 detections,	 but	 have	 not	
estimated	 unique	 false	 detection	 rates	 across	multiple	 sign	 types,	
nor	 have	 they	 investigated	 how	 environmental	 drivers	 differen-
tially	affect	detection	or	false	detection	rates	for	each	unique	sign	
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type.	Furthermore,	Chambert	et	al.	 (2015)	and	others	(e.g.,	Kéry	&	
Royle,	2021)	have	reinforced	the	importance	of	accounting	for	false	
detections	 and	 provided	 a	 framework	 and	 lexicon	 for	 building	 hi-
erarchical	 false-	positive	models.	Our	multi-	sign	 approach	 expands	
upon	previous	studies	by	modeling	the	detection	process	(both	true	
and	false	detection	probabilities)	for	each	sign	type	as	independent	
functions	of	unique	covariate	sets	(e.g.,	environmental	drivers).	Our	
approach	enables	us	to	evaluate	the	shifting	reliability	of	each	sign	
type	across	space	and	time,	and	thereby	help	to	develop	more	 in-
formed	and	robust	survey	protocols.

While	 this	 approach	 can	 be	 applied	 to	 any	 species	 for	 which	
surveys	 rely	 on	multiple	 sign	 types	 as	 evidence	of	 occupancy,	we	
test	 this	 approach	using	American	pika	 (Ochotona princeps),	 an	 in-
conspicuous	 species	 thought	 to	 be	 vulnerable	 to	 climate	 change	
across	portions	of	 its	 range	due	 to	potential	 upslope	 range	 shifts,	
subsequent	vegetation	availability,	and	sensitivity	to	extreme	tem-
perature	changes	(Beever	et	al.,	2010;	Erb	et	al.,	2011,	2014;	Jeffress	
et	al.,	2013).	As	such,	occupancy	models	are	critical	 to	monitoring	
these	potentially	 vulnerable	 populations	 and	 assessing	 the	 role	 of	
environmental	and	climatic	factors	as	drivers	of	shifting	occupancy	
patterns	 and	 range	margins.	 Pika	 are	 an	 excellent	 test	 case	 for	 a	
multi-	sign	occupancy	modeling	approach,	as	surveys	 for	American	
pika	typically	monitor	multiple	indirect	sign	types—	notably,	scat	and	
haypiles	(piles	of	vegetation	thought	to	serve	as	a	key	winter	food	
resource;	Dearing,	1997;	Millar	&	Zwickel,	1972)	in	addition	to	direct	
observations	of	pika	and	auditory	detections	of	the	unique	call	pro-
duced	by	this	species	(Conner,	1985).	These	sign	types	differ	in	re-
gional	prevalence—	for	example,	direct	observations	are	common	in	
some	areas	and	rare	in	others—	and	are	also	likely	to	vary	in	reliabil-
ity.	Since	scat	and	haypiles	can	persist	in	the	environment	for	over	
400 years	 (Castillo	 et	 al.,	2016;	Nichols,	2010),	 surveyors	must	 be	
able	to	discriminate	between	fresh	and	old	observations	of	indirect	
sign	types	in	order	to	use	these	observations	to	infer	current	occu-
pancy	status.	Fresh	haypiles	can	be	difficult	to	accurately	distinguish	
from	old	haypiles,	especially	in	lower	elevations	(Shinderman,	2015)	
where	a	few	freshly	browsed	sprigs	on	an	old	pika	haypile	may	be	
deposited	 by	 other	 sympatric	 herbivore	 species	 such	 as	marmots	
or	 woodrats,	 raising	 the	 potential	 for	 false	 detections.	 Although	
previous	evidence	(Nichols,	2010)	 indicates	fresh	scat	 is	easily	dis-
tinguishable	from	old	scat	using	color	and	consistency,	anecdotal	ev-
idence	suggests	fresh	scat	decays	quickly	in	the	sun	and	especially	at	
lower	elevation	sites	and	that	determining	the	apparent	age	of	scat	
may	 be	 regionally	 and	 even	 patch	 dependent	 (M.	 Jeffress	 and	M.	
Shinderman,	 Personal	 communication,	 November	 2021).	 Because	
scat	 is	 typically	 the	most	 abundant	 sign	 detected	 in	 pika	 surveys,	
accurately	assessing	the	age	of	scat	detections	and	being	able	to	dis-
tinguish	fresh	from	old	is	crucial	for	generating	precise	and	unbiased	
occupancy	estimates.

In	this	study,	we	model	occupancy	dynamics	for	American	pika	
using	multiple	direct	and	indirect	indicators	of	pika	presence	(fresh	
scat,	fresh	haypiles,	calls,	and	sightings)	collected	from	2010	to	2021	
at	five	national	parks	in	the	Pacific	Northwest.	Furthermore,	we	in-
vestigate	how	estimates	of	pika	occupancy	trends	and	environmental	

drivers	differ	under	four	increasingly	realistic	representations	of	the	
pika	observation	process:	(1)	perfect	detection	(a	common	assump-
tion	 for	modeling	 pika	 occupancy),	 (2)	 standard	 occupancy	model	
(single	observation	process	with	no	possibility	of	false	detection),	(3)	
a	multi-	sign	occupancy	model	with	no	false	positive	detections	(non-	
false	positive	model),	and	(4)	a	multi-	sign	occupancy	model	with	false	
positive	detections	(full	model).	For	the	multi-	sign	occupancy	mod-
els,	we	modeled	each	observation	process	separately	as	a	function	
of	 climatic	 and	 environmental	 covariates	 including	 substrate	 com-
plexity,	 season,	 survey	 period,	 and	 vegetation	 cover.	 In	 addition,	
we	modeled	each	occupancy	process	 (initial	patch	occupancy,	col-
onization,	and	extinction)	separately	as	a	function	of	covariates	in-
cluding	temperature,	precipitation,	forb,	rock,	and	shrub	cover.	Our	
primary	objective	was	to	model	occupancy	using	both	false-	positive	
and	 false-	negative	 detection	 probabilities	 for	 individual	 sign	 type.	
We	also	predicted	that	our	“multi-	sign”	approach	for	modeling	ob-
servation	error	would	alter	estimates	of	occupancy	processes	(e.g.,	
colonization,	 extinction)	 and	 its	 environmental	 drivers	 relative	 to	
more	standard	occupancy	models	in	complex	and	unexpected	ways.	
We	 also	 sought	 to	model	 occupancy	 dynamics	 of	 pika	 across	 our	
study	region	as	a	function	of	climatic	and	environmental	covariates	
and	 to	 assess	 how	 these	 estimates	 change	 under	 our	 four	 differ-
ent	treatments	of	observation	error.	We	expected	that	accounting	
for	 false-	positive	detection	errors	 across	 sign	 types	would	 reduce	
estimates	of	mean	occupancy	because	 failure	 to	account	 for	 false	
detections	typically	 results	 in	upward	bias	 in	occupancy	estimates	
(Royle,	2006).	We	anticipate	that	the	results	of	this	study	will	have	
broad	implications	for	other	systems	in	which	multiple	sign	types	are	
used	to	assess	regional	occupancy	dynamics	for	other	inconspicuous	
species.

2  |  METHODS

2.1  |  Study species

The	American	pika	is	a	small	lagomorph	inhabiting	patchy	talus	slopes	
across	diverse	ecosystems	of	the	western	US	American	pika	do	not	
hibernate	and	are	generalist	herbivores	that	often	store	vegetation	
caches	called	“haypiles”	for	winter	food	(Smith,	1974).	Food	caches	
serve	as	both	winter	diet	and	insulation	in	talus	and	are	considered	
the	major	source	of	food	for	pika	during	winter	(Dearing,	1997;	Millar	
&	Zwickel,	1972).	American	pika	have	long	been	considered	to	exhibit	
classical	metapopulation	dynamics	(Hanski	&	Gilpin,	1991;	Kreuzer	
&	Huntly,	2003;	Moilanen	et	al.,	1998;	Peacock	&	Smith,	1997).	 In	
2010,	American	pika	were	considered	for	 listing	under	 threatened	
or	endangered	status	by	the	United	States	Fish	and	Wildlife	Service	
(Wolf	et	al.,	2007),	but	were	subsequently	denied	listing	in	2010	due	
to	both	 insufficient	evidence	of	decline	across	known	populations	
and	a	lack	of	survey	data	across	much	of	their	range.	As	such,	con-
siderable	attention	has	been	given	to	addressing	how	pika	respond	
to	climatic	changes	(Beever	et	al.,	2003,	2011;	Jeffress	et	al.,	2013; 
Schwalm	 et	 al.,	 2016;	 Wolf	 et	 al.,	 2007)	 across	 their	 range.	 This	
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species	 is	 a	 highly	 sensitive	 thermoregulator	 and	may	 adjust	 their	
activity	 levels	 based	 on	 heat	 and	 cold	 exposure	 (MacArthur	 &	
Wang,	1973;	 Smith,	1974).	While	 they	 are	more	 commonly	 found	
above	 2500 m,	 American	 pika	 metapopulations	 are	 also	 present	
in	 habitat	 below	2500 m	 (Ray	 et	 al.,	2016;	 Rodhouse	 et	 al.,	2010; 
Shinderman,	2015;	Simpson,	2009).	A	wide	range	of	factors,	operat-
ing	at	different	spatial	scales,	may	promote	or	inhibit	the	persistence	
of	 pika	 populations	 including	 climate,	 substrate	 complexity,	 and	
available	vegetation.

2.2  |  Occupancy survey and study area

We	modeled	American	pika	occupancy	dynamics	using	two	related	
datasets:	The	first	is	a	2010–	2014	monitoring	dataset	established	by	
the	US	National	Park	Service	and	the	second	a	2017–	2021	dataset	
established	by	the	Oregon	State	University	Cascades	HERS	Lab	with	
support	from	the	National	Park	Service.	Surveys	occurred	between	
2010	and	2021	across	five	park	units	within	the	states	of	Oregon,	
Idaho,	and	California	in	the	Pacific	Northwest,	including:	Crater	Lake	
National	Park	(CRLA),	Craters	of	the	Moon	National	Monument	and	
Preserve	(CRMO),	Lassen	Volcanic	National	Park	(LAVO),	Lava	Beds	
National	 Monument	 (LABE),	 and	 Newberry	 National	 Monument	
(NEWB;	Figure 1).	Survey	plots	were	designed	to	represent	a	typical	
pika	 territory	 size	 (Smith	&	Weston,	1990)	 and	 comprised	 a	 12-	m	
radius	 circular	 surveyed	 area	 (following	 Jeffress	 et	 al.	 (2010);	 also	
used	by	Rodhouse	et	al.	(2010)	and	Ray	et	al.	(2012)).	An	average	of	
100	plots	 (hereafter	referred	to	as	“sites”)	per	park	were	surveyed	
each	 year.	Resurveys	were	 conducted	 for	 30%	of	 the	 sites	within	
1 month	of	original	surveys	each	year	to	assess	detection	probability	
(Rodhouse	et	 al.,	2010).	 Surveyors	 spent	up	 to	30 min	 searching	a	
site	 and	 recorded	 up	 to	 10	 sign	 observations	 per	 survey	 (with	 10	
being	considered	a	reasonable	cap	based	on	the	density	of	sign	typi-
cally	observed	within	the	sites	and	the	time	it	takes	to	complete	the	

survey).	Observations	comprised	fresh	or	old	scat	(FS/OS),	fresh	or	
old	haypiles	(FH/OH),	pika	calls	(PC),	and	pika	sightings	(PS).	In	prac-
tice,	there	were	very	few	observations	in	any	park	with	10	or	more	
instances	of	sign	at	a	site	within	a	single	survey.	Furthermore,	given	
the	amount	of	time	spent	in	sites	observing	sign,	it	is	very	unlikely	
that	any	haypiles	present	would	not	have	been	detected	if	they	were	
visible.	The	most	 likely	scenario	 in	those	cases	 is	 that	 there	either	
were	no	haypiles	or	they	were	not	detectable	(deep	below	the	sur-
face).	For	sites	with	multiple	surveyors,	 independent	blind	surveys	
or	 double	 observer	 surveys	 that	 communicated	 results	 together	
for	a	combined	“up	to	30	min”	were	conducted.	With	two	or	more	
surveyors,	surveys	were	not	considered	complete	until	both	observ-
ers	 searched	all	 large	crevices	and	beneath	 large	 rocks.	Surveyors	
ranged	in	experience	level	from	newly	trained	to	experienced.	Only	
sign	that	observers	felt	they	could	confidently	identify	as	pika	were	
recorded.	If	a	pika	call	was	heard	near	the	boundary	of	the	site	and	
not	clearly	within	the	site,	it	was	determined	to	be	outside	the	site.	
Observations	of	old	sign	were	not	included	in	our	analyses.

In	 addition	 to	 collecting	 records	 of	 pika	 sign,	 surveyors	 also	
classified	 each	 survey	 site	 according	 to	 three	 levels	 of	 rock	 (talus	
or	 lava)	 complexity:	 low,	 intermediate,	 and	 high	 (Figure 2).	 Lastly,	
surveyors	used	Daubenmire's	 (1959)	method	to	estimate	site-	level	
percent	cover	of	rock,	bare	ground	(dirt,	mineral	soil,	and	litter),	forbs	
(non-	graminoid	 flowering	 herbaceous	 plants),	 grasses	 (graminoids	
[grasses	 and	 sedges]),	 shrubs	 (woody	 plants),	 and	 trees	 (Jeffress	
et	al.,	2010).	A	complete	description	of	survey	methods	can	be	found	
in	Jeffress	et	al.	(2010)	and	Rodhouse	et	al.	(2010).

To	 enable	 identifiability	 of	 false	 detection	 rates	 (we	 assume	
identifiability	 issues	 would	 arise	 if	 unambiguous	 detections	 were	
not	 available;	Guillera-	Arroita	 et	 al.	 (2017)),	we	 classified	 sign	 ob-
servations	 as	 ambiguous	 (potentially	misidentified)	 and	unambigu-
ous	(whereby	a	false	detection	was	virtually	 impossible;	Rodhouse	
et	al.,	2018).	We	used	written	notes	recorded	by	surveyors	in	2019–	
2021	 surveys	 (during	which	 note-	taking	was	 consistent	 across	 all	

F I G U R E  1 US	Pacific	Northwest	map	
identifying	2010–	2021	American	pika	
survey	areas	within	Newberry	National	
Monument,	Crater	Lake	National	Park,	
Lava	Beds	National	Monument,	Lassen	
National	Volcanic	Park	and	Craters	of	the	
Moon	National	Monument.
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    |  5 of 13GOLDMAN et al.

surveyors)	 to	 classify	 each	 sign	 observation	 as	 ambiguous	 or	 un-
ambiguous.	 All	 fresh	 scat	 observations	 indicating	 the	 presence	 of	
fresh	mucous	holding	scat	 together	 (stuck, pyramid, tower, perched, 
stacked, teepee, cluster)	 were	 designated	 as	 unambiguous,	 as	 such	
observations	are	necessarily	fresh	and	are	uniquely	characteristic	of	
pika	scat.	Fresh	scat	detections	containing	none	of	these	keywords	
were	considered	ambiguous	(some	possibility	of	false	detection	i.e.,	
mistaken	for	scat	deposited	by	pika	in	a	prior	year	before	a	site	be-
came	extirpated).	Fresh	haypiles	were	also	treated	as	an	ambiguous	
sign	type	given	the	difficulty	of	knowing	whether	the	vegetation	was	
browse	from	another	species	(marmot	or	woodrat)	and	uncertainty	
around	the	quantity	of	browse	that	is	to	be	considered	a	haypile.	All	
pika	sightings	were	treated	as	unambiguous.	Pika	have	a	distinctive	
size	and	shape	relative	to	other	small	mammals	 in	the	study	areas,	
and	 observers	 only	 recorded	 a	 pika	 sighting	 for	 high-	confidence	

observations;	if	an	observer	saw	a	small	mammal	in	the	site	but	could	
not	confirm	it	was	a	pika,	the	observation	was	not	recorded	as	a	pika	
sighting.	In	addition,	we	designated	as	unambiguous	all	observations	
of	 fresh	 scat	 in	which	 one	 or	more	 fresh	 haypiles	were	 observed	
during	 the	same	survey	 (M.	 Jeffress	and	M.	Shinderman,	Personal	
communication,	November	2021).

2.3  |  Environmental and climatic covariates

Environmental	covariates	provided	by	the	NPS	that	were	considered	
in	the	model	included	survey	season,	site-	level	cover	class,	and	sub-
strate	complexity.	A	fourth	covariate,	 “survey	period”	was	used	to	
distinguish	between	the	2010–	2014	survey	period	and	2017–	2021	
period.	 These	 periods	 denote	 differences	 in	maximum	 number	 of	
surveyors	of	a	given	survey.	 In	 the	pre-	2017	period,	surveys	were	
conducted	by	one	observer	whereas	in	the	post-	2017	period	2–	4	ob-
servers	conducted	surveys;	however,	preliminary	models	suggested	
little	 to	 no	 effect	 of	 observer	 experience	 on	 detection	 outcomes.	
Thus,	 observer	 experience	 was	 not	 included	 in	 the	 final	 model.	
Climatic	covariates	included	in	the	model,	maximum	mean	summer	
temperature,	and	annual	sum	of	daily	precipitation	for	the	previous	
water	 year	 were	 obtained	 from	 publicly	 available	 online	 sources	
(Table 1).	Substrate	complexity	was	centered	to	zero	and	all	other	
non-	binary	covariates	were	scaled	for	comparison	across	covariates.

2.4  |  Statistical analysis

2.4.1  |  Selection	of	environmental	covariates

Prior	to	fitting	our	dynamic	occupancy	model	 (see	occupancy	pro-
cess	model	section),	we	determined	which	vegetation	and	climatic	
variables	 to	 use	 for	 modeling	 site-	level	 extinction	 and	 coloniza-
tion	 processes	 using	 an	 initial	model	 selection	 procedure	 (reverse	
step-	wise	AIC;	Akaike,	1974).	We	fitted	a	logistic	regression	model	
for	 the	 extinction	 process	 that	 included	 all	 vegetation	 cover	 and	
climatic	variables,	and	which	was	fitted	using	data	for	all	 site-	year	
combinations	 that	 were	 occupied	 in	 the	 previous	 time-	step	 (i.e.,	

F I G U R E  2 Example	of	low,	intermediate,	and	high	site-	level	complexity	in	Lava	Beds	National	Monument	(1),	Lassen	Volcanic	National	
Park	(2),	and	Crater	Lake	National	Park	(3;	Photos:	OSU-	Cascades	HERS	Lab	Unpublished	Protocol	Revision	3	Update,	June	2019).

TA B L E  1 Occupancy	and	observation	process	parameters.

Occupancy process covariates

Short name Full name Source

forb Percent	forb	cover NPS	database

rock Percent	rock	cover NPS	database

shrub Percent	shrub	cover NPS	database

cplxa Rock/substrate	
complexity

NPS	database

tmaxmean Mean	daily	max	
summer	temp	
(°C)

gridMET	
(Abatzoglou,	2013)

precip Sum	daily	precip	
over	water	yr	
(mm)

gridMET	
(Abatzoglou,	2013)

Observation	process	covariates

Survey	
period

pre-	2017	or	post-	
2017	survey

NPS	database

ssn season	(summer	or	
fall)

NPS	database

Note:	NPS	database	data	provided	by	National	Park	Service,	all	other	
covariate	data	taken	from	publicly	sourced	data	sources.
aMissing	complexity	data	for	Lava	Beds	National	Monument	(LABE).
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6 of 13  |     GOLDMAN et al.

observations	exposed	to	potential	extinction).	For	 this	preliminary	
modeling	step,	we	assumed	perfect	detection	and	no	false-	positive	
errors	(i.e.,	surveys	in	which	fresh	sign	was	observed	were	presumed	
occupied).	Similarly,	we	fitted	a	model	for	the	colonization	process	
that	included	all	vegetation	cover	and	climatic	variables,	using	data	
for	all	site-	year	combinations	that	were	unoccupied	in	the	previous	
time-	step	(i.e.,	exposed	to	potential	colonization).	For	each	of	these	
models,	we	 then	 performed	 reverse	 step-	wise	 selection	with	 AIC	
using	the	step	function	in	R	v4.0.1	(R	Core	Team,	2020)	and	incor-
porated	the	variables	remaining	in	each	model	to	fit	the	integrated	
Bayesian	 occupancy	model	 (Appendix	 S2,	 Table	 4).	We	 chose	 co-
variates	for	the	observation	model	based	on	a	combination	of	pre-
vious	studies	demonstrating	specific	 influences	on	pika	occupancy	
(Erb	et	al.,	2014;	Huntly	et	al.,	1986;	Jeffress	et	al.,	2013;	Rodhouse	
et	 al.,	 2010)	 and	 ecological	 relevance	 (Appendix	 S2,	 Table	 5).	 All	
quantitative	covariates	 included	 in	 the	Bayesian	occupancy	model	
were <75%	correlated.

2.4.2  |  Occupancy	process	model

Our	process	model	followed	a	standard	dynamic	occupancy	mode-
ling	framework	with	three	distinct	processes:	(1)	initial	occupancy,	(2)	
colonization	of	previously	unoccupied	patches,	and	(3)	extinction	of	
previously	occupied	patches	(MacKenzie,	2002;	Royle,	2004).	Initial	
occupancy	status	zi1	(where	i 	is	site)	was	modeled	as	a	Bernoulli	ran-
dom	variable,	 in	which	 the	probability	of	 initial	occupancy	Λ1	was	
a	logit-	linear	function	of	substrate	complexity	which	was	shown	to	
influence	pika	occupancy	in	(Rodhouse	et	al.,	2010).	In	subsequent	
years,	the	true	occupancy	status,	zit	was	modeled	as	a	Bernoulli	ran-
dom	variable	with	 a	 conditional	 probability	 based	upon	prior-	year	
occupancy	status	zit−1,	using:

where � it	is	the	probability	of	colonization	in	site	 i 	from	year	t − 1 to 
year	t,	and	�it	is	the	probability	of	extinction	in	site	 i 	from	year	t − 1 
to	year	t.	Probabilities	of	extinction	and	colonization	were	also	mod-
eled	 as	 logit-	linear	 functions	 of	 environmental	 covariates	 (Table 1).	
Random	 intercept	 terms	on	colonization	and	extinction	were	added	
to	allow	for	variation	among	parks	and	year.	A	random	slope	term	on	
initial	occupancy	was	added	to	allow	for	among-	park	variation	in	the	
effect	of	substrate	complexity	(fully	derived	equations	can	be	found	
in	Appendix	S1).

2.4.3  |  A	“multi-	sign”	model	of	the	
observation	process

Each	direct	and	indirect	pika	sign-	type:	fresh	scat	(FS),	fresh	hayp-
ile	 (FH),	pika	call	 (PC),	and	pika	sighting	 (PS),	hereafter,	 “sign,”	was	

treated	as	an	independent	detection	process	that	reflects	the	under-
lying	occupancy	status	of	each	site.	For	each	sign	type,	observations	
were	 summarized	 by	 survey.	We	 treated	 all	 survey-	level	 observa-
tions	as	binary	(one	or	more	observations	of	a	sign	type	in	a	given	
survey	was	classified	as	1,	otherwise	0).	We	also	constructed	and	fit	
multi-	sign	models	that	treated	FS	and	FH	as	count	data	(total	number	
of	observations	recorded	in	each	survey),	but	goodness-	of-	fit	tests	
indicated	poor	fit	and	therefore	we	did	not	interpret	these	models	
further.	Probability	of	detection	for	each	sign	type	was	modeled	as	
a	mixture	 process,	 allowing	 for	 true	 detections	 and	 false-	positive	
detections,	following	Royle	and	Link	(2006).	For	each	sign	type,	we	
modeled	 the	 survey-	specific	 probability	 of	 correct	 detection	 psign 
and	false	detection	p�

sign
	as	a	logit-	linear	function	of	covariates:

where X�sign	stands	for	a	logistic	regression	of	psign	and	p
�

sign
	for	each	

site,	year,	and	survey	as	a	function	of	multiple	covariates	X	 (with	re-
gression	 coefficient	 vector	�sign).	 Thus,	 if	 an	 observation	 is	 deemed	
“unambiguous,”	the	site	is	presumed	occupied.	We	modeled	the	uncon-
ditional	probability	of	detection	for	each	sign	type	(pdsign—	representing	
the	probability	of	either	false	or	correct	detection	of	a	given	sign	type)	
as	conditional	on	the	current	occupancy	status	following:

where	 the	 sign-	specific	 probability	 of	 detection	pdsign	 for	 each	 site,	
year,	and	survey	is	equivalent	to	the	probability	of	correct	detection	
psign	if	a	site	is	occupied	and	the	probability	of	false	detection	p

�

sign
	if	a	

site	is	unoccupied.

2.4.4  |  Prior	model

We	used	vague	normal	priors	to	define	coefficients	for	all	logit-	linear	
predictors	 for	 both	 occupancy	 and	 detection	 processes.	We	 used	
vague	gamma	priors	 to	define	variance	parameters	 (e.g.,	hyperpri-
ors	on	random	effect	terms)	and	uniform	distributions	to	initialize	all	
probability	 parameters	 (e.g.,	 initial	 occupancy	probability,	 baseline	
colonization,	and	extinction	probabilities;	Appendix	S1).

2.4.5  |  Posterior	predictive	check

Model	 goodness-	of-	fit	 was	 based	 on	 posterior	 predictive	 checks	
using	a	Bayesian	posterior	predictive	p-	value	calculating	the	sum	of	
squared	error	for	fresh	scat,	fresh	haypile,	and	pika	call	detections	
where	values	close	 to	0.5	 indicate	good	model	 fit	 (Gelman,	2014).	

(1)zit ∼

⎧
⎪⎨⎪⎩

Bernoulli
�
1−�it

�
, if zit−1 =1

Bernoulli
�
� it
�
, if zit−1 =0,

(2)logit
(
psign

)
= X�sign,

(3)
⎧
⎪⎨⎪⎩

logit
�
p
�

sign

�
=Xp��p� , if unambiguous=0

p
�

sign
=0, if unambiguous=1,

(4)pdsign ∼

⎛
⎜⎜⎝
psign, if z=1

p
�

sign
, if z=0,
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    |  7 of 13GOLDMAN et al.

This	allowed	us	to	examine	the	degree	to	which	the	dispersion	of	the	
observed	data	matched	the	dispersion	of	simulated	data.	Bayesian	p-	
values	close	to	0	or	1	indicate	poor	model	fit	and	demonstrate	weak	
support	for	interpretation	of	parameter	estimates.

2.4.6  |  Bayesian	model	implementation

We	 ran	 models	 in	 a	 Bayesian	 framework	 using	 Markov	 Chain	
Monte	 Carlo	 (Hooten	 &	 Hobbs,	 2015).	 We	 used	 the	 software	
JAGS	 (Plummer,	 2003)	 which	 was	 called	 from	 R	 using	 the	 “jag-
sUI”	wrapper	(Kellner,	2021)	for	“rjags”	(Plummer,	2021).	Samples	
were	 drawn	 from	 posterior	 distributions	 using	 three	 MCMC	
chains,	100,000	iterations	thinned	by	a	factor	of	10,	and	the	first	
50,000	iterations	were	discarded	as	a	burn-	in	period.	Chains	were	
checked	for	convergence,	and	if	R-	hat	was	> 1.1	for	any	parameter,	
the	model	was	rerun	(Brooks	&	Gelman,	1998).	We	checked	model	
convergence	 using	 Gelman-	Rubin	 diagnostics	 and	 by	 examining	
trace	plots	of	 the	MCMC	chains.	All	models	were	 run	 in	R	 soft-
ware.	Our	MCMC	results	 indicated	convergence	(R-	hat	< 1.1)	 for	
all	model	parameters	and	for	all	three	alternative	representations	
of	 detection	 probability.	 Bayesian	 p-	values	 indicated	 adequate	
model	 fit	 for	 all	 three	 detection	 models	 and	 unique	 sign	 types	
(.42 < p < .50;	Kéry,	2010).

2.4.7  |  Comparing	alternative	observation	models

To	 test	 the	 extent	 to	 which	 our	 most	 realistic	 and	 sophisticated	
model	 influenced	 the	 observation	 process	 relative	 to	 more	 con-
ventional	models,	we	ran	three	additional	models	with	increasingly	
simple	 representations	 of	 the	 observation	 process:	 (1)	 non-	false-	
positive	model:	a	“multi-	sign”	detection	model	with	no	potential	for	
false	detections	(all	direct	or	indirect	pika	observations	imply	that	a	
site	was	currently	occupied	in	a	given	year),	(2)	standard	occupancy	
model:	a	model	with	a	single	observation	process	and	no	possibility	
of	false	detection,	and	(3)	perfect	detection	model:	a	model	in	which	
all	pika	detection	events	were	assumed	to	accurately	reflect	the	un-
derlying	occupancy	status	and	all	surveys	yielding	no	pika	detections	
were	assumed	to	reflect	pika	absence.	In	general,	high	detectability	
has	been	assumed	 for	pika	and	 thus	detection	error	has	generally	
been	ignored	in	this	modeling	framework	(Jeffress	et	al.,	2013;	Ray	
et	al.,	2016;	Rodhouse	et	al.,	2010).	We	computed	site-	occupancy	
rates	for	each	park	and	year	by	dividing	the	estimated	number	of	oc-
cupied	sites	in	each	park	(determined	by	monitoring	the	binary	site-	
occupancy	status	for	each	MCMC	iteration)	by	the	total	number	of	
monitored	sites	at	each	park.	We	then	summarized	occupancy	rates	
for	each	park	and	year	as	a	posterior	mean	(point	estimate)	and	a	90%	
credible	interval.	We	then	ran	weighted	linear	regressions	of	mean	
park-	level	 occupancy	 as	 a	 function	 of	 year	 (one	 regression	model	
per	 park),	 using	 an	 inverse-	variance	weighting	 technique	 (weights	
equal	 to	 the	 inverse	 of	 posterior	 variance	 of	 each	 site-	occupancy	
estimate),	and	interpreted	significant	trends	at	alpha = 0.1.

3  |  RESULTS

Overall,	our	survey	dataset	included	a	total	of	5126	surveys	of	771	
unique	sites	across	5	parks	and	12 years	(Table 2).

Of	these	surveys,	at	least	30%	were	resurveys	conducted	within	
2 weeks	 of	 the	 original	 survey	 to	 ensure	 no	 occupancy	 turnover.	
Mean	maximum	 summer	 temperature	 (June–	August)	 at	 our	 study	
sites	ranged	between	16.44	and	30.17°C.	The	sum	of	annual	precip-
itation	ranged	from	101	to	5130 mm	(Appendix	S2,	Figure	5).

3.1  |  Pika occupancy dynamics

The	colonization	rate	was	5.8%,	and	extinction	rate	was	6.2%.	Across	
our	study	period,	we	detected	two	significant	park-	level	trends:	oc-
cupancy	 increased	from	19%	to	40%	at	LABE	and	decreased	from	
40%	to	22%	in	NEWB.	There	was	no	detectable	trend	in	occupancy	
across	 all	 parks	 and	occupancy	 ranged	 from	32	 to	40%	 (Figure 3; 
Appendix	S2,	Table	6	and	7).

Rock	 complexity	 was	 positively	 correlated	 with	 initial	 occu-
pancy	 (�Λcomplexity

= 1.325,	95%	CRI:	0.773	 to	1.944,	�+ = 1.0; where 
�− or where �+	 indicate	weight	 of	 evidence	 above	 or	 below	 zero	
and	 point	 estimates	 represent	 the	 posterior	 mean).	 Percent	 forb	
cover	was	negatively	associated	with	 the	probability	of	extinction	
(��forb

= − 2.700,	95%	CRI:	−4.458	to	−1.265,	�− = 0.988)	and	weakly	
associated	with	probability	of	colonization	 (�� forb

= 0.033,	95%	CRI:	
−0.303	to	0.304,	�+ = 0.877).	Shrub	cover	(��shrub

= 0.255,	95%	CRI:	
0.044	to	0.470,	�+ = 0.989)	was	positively	correlated	with	coloniza-
tion	(Appendix	S1,	Table	7).

Correlation	 in	 among-	year	 process	 variation	 (colonization	 and	
extinction	 processes)	 between	 parks	 varied	 from	 0.63	 to	 −0.43	
(Appendix	S2,	Table	8).	The	highest	positive	correlations	 (0.63	 for	
colonization,	0.61	 for	extinction)	were	observed	between	the	 two	
parks	with	highest	average	temperatures	and	lowest	average	precip-
itation	(LABE	and	CRMO).	Other	parks	with	positively	correlated	an-
nual	colonization	rates	included	CRMO	and	CRLA	(0.564),	CRLA	and	
LAVO	(0.561),	and	CRLA	and	NEWB	(0.575;	Appendix	S2,	Table	8).

3.2  |  Observation process

Total	detection	probability	across	sign	types	was	82%.	Overall	sign	
detection	rates,	 individual	sign	type	detection	rate,	and	associated	
false-	positive	error	rates	varied	among	parks.	The	average	probabil-
ity	of	correct	detection	in	CRLA	was	the	highest	at	92.4%	and	lowest	
in	NEWB	at	77.1%	(Table 3).

Rate	of	fresh	scat	detections	(pfs = 0.801,	95%	CRI:	0.764	to	0.801)	
was	substantially	higher	than	fresh	haypiles	(pfh = 0.288 ,	95%	CRI:	0.248	
to	 0.331).	 Mean	 detection	 rate	 for	 pika	 calls	 (ppc = 0.412,	 95%	 CRI:	
0.375	to	0.451)	was	substantially	higher	than	pika	sightings	(pps = 0.134,	
95%	CRI:	0.110	to	0.160).	Survey	period	was	negatively	associated	with	
number	 of	 fresh	 scat	 detections	 (�FSsurvey period

= − 0.684,	 95%	 CRI:	
−0.927	 to	 −0.442,	�− = 1.0).	 Seasonality	 (summer	 vs.	 fall)	 affected	
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the	 probability	 of	 detecting	 pika	 calls	 (�PCseason
= − 0.544,	 95%	CRI:	

−0.749	 to	 −0.344,	�− = 1.0)	 and	 sightings	 (�PSseason = − 0.584,	 95%	
CRI:	 −0.906	 to	 −0.273,	�− = 1.0 ).	 Sites	with	 higher	 substrate	 com-
plexity	 tended	 to	 have	 fewer	 detectable	 fresh	 haypile	 detections	
(�FHcomplexity

= − 0.262,	 95%	 CRI:	 −0.494	 to	 −0.025,	 �− = 1.0),	 pika	
calls	 (�PCcomplexity

= − 0.273 ,	 95%	 CRI:	 −0.476	 to	 −0.072,	 �− = 1.0),	
and	pika	sightings	(�PScomplexity

= − 0.306 ,	95%	CRI:	−0.583	to	−0.030,	
�− = 0.985).	 Lastly,	 higher	 forb	 cover	was	 associated	with	 a	 higher	
probability	 of	 detecting	 haypiles	 (�FHforb

= 0.336,	 95%	CRI:	 0.239	 to	
0.438,	�+ = 1.0;	Appendix	S2,	Figures	8–	11;	Table	7).

The	 average	 overall	 false-	positive	 rate	was	 8.6%.	 The	 average	
false-	positive	rate	was	highest	in	NEWB	(0.117)	and	lowest	in	CRMO	
(0.028;	Table 3).	The	highest	false-	positive	error	rates	were	associ-
ated	with	pika	call	 (p�pc = 0.042,	95%	CRI:	0.031	to	0.055)	followed	
by	fresh	scat	(p�

fs
= 0.037,	95%	CRI:	0.020	to	0.055).	The	mean	false-	

positive	rate	for	fresh	haypiles	was	extremely	low	(p�
fh
= 0.020,	95%	

CRI:	 0.012	 to	 0.031).	 False-	positive	 scat	 detections	 tended	 to	 be	
higher	 during	 the	 2017–	2021	 surveys	 versus	 the	 2010–	2014	 sur-
vey	period	(��

FSseason
= − 1.139,	95%	CRI:	−2.077	to	−0.358,	�− = 1.0 ).	

False	 pika	 call	 detections	were	more	 likely	 in	 summer	 than	 in	 fall	
(��

PCseason

= − 1.069,	 95%	 CRI:	 −1.678	 to	 −0.529,	 �− = 1.0).	 Higher	
substrate	complexity	was	associated	with	fewer	false	pika	call	detec-
tions	 (��

PCcomplexity

= − 0.228,	95%	CRI:	−0.640	to	0.193,	�+ = 0.974 ).	
Lastly,	 false-	positive	 fresh	 haypile	 detections	were	more	 common	
in	 areas	with	 higher	 forb	 cover	 (��

FHforb

= 0.333,	 95%	CRI:	 0.143	 to	
0.503,	�+1.0;	Appendix	S2,	Table	7).

3.3  |  Comparing alternative observation models

Temporal	 (year	to	year)	variance	across	parks	for	mean	rate	of	ex-
tinction	tended	to	be	greatest	in	the	full	model	(��

�
= 0.65)	and	lowest	

in	the	perfect	detection	model	(��
�
= 0.40),	whereas	variance	across	

park	 for	 colonization	was	 highest	 in	 the	 non-	false-	positive	model	
(��

� = 0.65)	 and	 lowest	 in	 the	 perfect	 detection	 model	 (��
� = 0.38; 

Appendix	S2).	Variance	across	park	for	initial	occupancy	was	similar	
in	 the	 full	 (�Λ

�
= 1.13)	 and	perfect	detection	model	 (�Λ

�
= 1.14)	 and	

lowest	in	the	non-	false-	positive	model	(�Λ

�
= 0.91).	The	estimate	for	

initial	occupancy	in	the	full	model	was	28.4%,	compared	with	37.0%	
in	 the	 non-	false	 positive	 model,	 39.5%	 in	 the	 standard	 detection	
model	 and	33.2%	 in	 the	perfect	 detection	model.	Mean	 coloniza-
tion	rate	was	lowest	in	the	full	model	(8%)	and	highest	in	the	perfect	
detection	model	(16%).	Mean	extinction	rate	was	lowest	in	the	full	
model	 (6.2%)	 and	 highest	 in	 the	 perfect	 detection	model	 (26.4%;	
Appendix	S2,	Table	7,	11,	13,	14).

Percent	forb	cover	in	the	non-	false-	positive	model	indicated	an	
increased	negative	effect	on	extinction	(��forb

= − 1.948,	CRI:	−3.098	
to	−1.065,	�− = 1.0)	and	 (shrub	cover;	Figure	6	and	summarized	 in	
Appendix	S2,	Table	14).	A	notable	difference	 in	the	perfect	detec-
tion	model	included	producing	the	weakest	negative	effects	of	forb	
cover	on	extinction	(��forb

= − 0.420,	CRI:	−0.679	to	−0.185	�− = 1.0; 
Appendix	S2,	Table	14).	Compared	with	the	full	model,	the	standard	
deviation	of	 fraction	of	occupied	 sites	 across	 all	 parks	was	higher	
(�2 = 0.0527)	than	the	full	model	(�2 = 0.0351).

4  |  DISCUSSION

The	 processes	 regulating	 the	 reliability	 and	 detectability	 of	 direct	
and	indirect	sign	types	are	likely	to	vary	across	space	and	time	even	
when	identical	protocols	are	applied	to	target	organisms.	When	oc-
cupancy	 status	 is	 determined	 on	 the	 basis	 of	multiple	 sign	 types,	
these	 differences	 could	 result	 in	 biased	 estimates	 of	 occupancy	
and	 its	 environmental	 drivers.	 A	 multi-	sign	 occupancy	 modeling	

TA B L E  2 Park	surveys	by	year.

2010 2011 2012 2013 2014 2017 2018 2019 2020 2021

Original	surveys	across	park

CRLAa 85 108 141 101 102 0 95 100 0 96

CRMOb 56 135 146 103 103 103 99 96 100 100

LABEc 101 101 100 100 100 99 99 100 89 50

LAVOd 76 113 75 103 103 101 100 98 49 0

NEWBe 0 0 0 0 0 100 102 102 0 100

Resurveys	across	parks

CRLA 50 30 30 41 30 0 29 29 0 0

CRMO 50 35 30 20 29 16 30 29 30 30

LABE 50 0 30 14 50 27 31 30 0 18

LAVO 41 30 0 21 20 27 29 29 0 0

NEWB 0 0 0 0 0 30 31 31 0 30

aCrater	Lake	National	Park.
bCraters	of	the	Moon	National	Monument	and	Preserve.
cLava	Beds	National	Monument.
dLassen	Volcanic	National	Park.
eNewberry	National	Monument:	surveys	began	in	2017.
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    |  9 of 13GOLDMAN et al.

approach	like	the	one	we	present	in	this	study	allows	unique	detec-
tion	processes	to	be	modeled	separately	in	order	to	more	effectively	
model	occupancy	dynamics	(MacKenzie	et	al.,	2003).	We	found	that	
distinct	sign	types	exhibited	substantial	differences	in	overall	relia-
bility,	false	positive	rates,	and	influence	of	environmental	covariates.

Although	occupancy	models	involving	surveys	of	direct	and	in-
direct	sign	types	typically	ignore	this	variation—	instead,	treating	all	
sign	 types	 equally	 in	 a	 pooled	 observation	 process—	this	 practice	

may	introduce	previously	unexplored	sources	of	bias	in	occupancy	
estimation	if	different	sign	types	vary	in	prevalence	across	sites	and	
regions.	We	found	that	overall	survey	reliability	varied	substantially	
among	 the	 parks	 included	 in	 our	 study	 despite	 survey	 protocols	
being	standardized	across	all	parks,	with	mean	true	detection	rates	
varying	from	77.1%	to	92.4%	and	mean	false	detection	rates	vary-
ing	from	2.8%	to	11.7%	for	different	parks.	This	variation	in	survey	
reliability	was	presumably	driven	by	differences	in	the	reliability	and	

F I G U R E  3 Comparison	of	posterior	site-	occupancy	rates	(filled	circles	represent	posterior	means,	error	bars	represent	90%	credible	
intervals)	through	time	for	all	parks	across	all	models.	Shaded	regions	indicate	post	hoc	linear	regression	models	with	a	90%	C.I.	(using	
inverse-	variance	weighting	to	account	for	uncertainty	of	point	estimates).	Only	those	regression	relationships	significant	at	alpha = 0.1	are	
depicted.	Points	represented	with	an	“X”	indicate	years	that	the	park	was	not	surveyed.

TA B L E  3 Detection	ratesa	across	park	and	sign	type	fresh	scat	(FS),	fresh	haypiles	(FH),	pika	calls	(PC),	and	pika	sightings	(PS):	full	model.

True detection rate False- positive detection rate

Park Overall FS FH PC PS Overall FS FH PC

CRLA 0.924 0.806 0.309 0.599 0.194 0.110 0.017 0.020 0.076

CRMO 0.785 0.722 0.366 0.091 0.016 0.028 0.007 0.017 0.004

LABE 0.764 0.719 0.150 0.014 0.004 0.065 0.045 0.015 0.005

LAVO 0.859 0.626 0.404 0.345 0.060 0.108 0.018 0.049 0.043

NEWB 0.771 0.540 0.144 0.301 0.106 0.117 0.016 0.016 0.086

AVG 0.820 0.683 0.275 0.270 0.076 0.086 0.020 0.023 0.043

aUsing	the	raw	data	of	sign	type	observations	for	each	site/year	combination,	the	probability	of	either	true	or	false	detection	was	determined	
conditional	on	the	site	being	occupied	or	unoccupied	(per	the	posterior	distribution	for	the	binary	occupancy	variable	at	each	unique	site	and	year).	
Probabilities	were	computed	as	weighted	averages	across	surveys.
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prevalence	of	different	 sign	 types	 in	 each	park	 (e.g.,	 haypiles;	 see	
below).	For	example,	detection	rates	of	pika	calls	by	park	varied	from	
1.4%	to	59.9%,	and	pika	sightings	varied	from	0.4%	to	19.4%.	By	mod-
eling	each	distinct	sign	type	separately,	our	“multi-	sign”	occupancy	
models	are	able	to	accommodate	substantial	regional	differences	in	
survey	reliability	while	producing	unbiased	estimates	of	occupancy	
processes.	For	instance,	in	the	American	pika	system,	haypiling	may	
be	particularly	sensitive	to	environmental	gradients.	If	not	modeled	
explicitly	this	could	cloud	estimates	of	occupancy	trends.

While	 false	detections	are	 ignored	under	most	 standard	occu-
pancy	 modeling	 frameworks	 (MacKenzie,	 2002),	 researchers	 are	
increasingly	 allowing	 for	 false-	positive	 errors	 within	 occupancy	
modeling	frameworks	and	acknowledging	the	important	biases	that	
can	result	 from	 ignoring	false-	positive	errors	 (Berigan	et	al.,	2019; 
Chambert	 et	 al.,	 2015;	 Clement	 et	 al.,	 2014;	 Miller	 et	 al.,	 2013; 
Royle	&	 Link,	2006).	Our	 study	 echoes	 these	 findings,	 suggesting	
that	false	detection	rates	can	have	strong	effects	on	key	inferences	
about	 occupancy	 and	 occupancy	 dynamics,	 including	mean	 occu-
pancy	 rates,	 the	magnitude	 and	 significance	of	 occupancy	 trends,	
and	 the	 environmental	 drivers	 of	 occupancy.	 Estimates	 of	 several	
key	environmental	drivers	were	also	sensitive	to	changes	in	how	the	
observation	process	was	represented.	For	example,	the	strength	of	
the	 estimated	 effect	 of	 substrate	 complexity	 on	 initial	 occupancy	
probability	was	much	stronger	 (nearly	double	 in	magnitude)	 in	 the	
full	model	versus	the	perfect	detection	model.	Finally,	the	estimated	
effect	of	forb	cover	on	patch-	level	extinction	risk	was	also	far	stron-
ger	 in	 the	full	model	versus	the	perfect	detection	model;	whereas	
the	 full	model	 suggests	 that	 forb	 cover	 ≥ca.	 65%	 implies	 a	 nearly	
100%	probability	 of	 site	 persistence,	 the	perfect	 detection	model	
implies	 that	 forb	cover	barely	 influences	 the	probability	of	extinc-
tion	(Figure 4).	Overall,	 these	results	suggest	that	estimates	of	oc-
cupancy	processes	are	sensitive	to	how	sign	types	vary	in	reliability	
across	geographic	and	environmental	space,	and	failure	to	account	
for	this	variation	may	lead	to	biased	or	incomplete	estimates	of	key	

occupancy	processes.	For	example,	forb	cover	more	strongly	influ-
enced	 occupancy	 in	 the	 full	model	 than	 in	 the	 non-	false	 positive,	
standard,	and	perfect	detection	models	(Appendix	S2,	Table	7–	14).	
Multi-	sign	 occupancy	models	 should	 yield	 a	more	 realistic	 under-
standing	of	occupancy	dynamics	in	cases	where	detection	processes	
differ	in	reliability	and	response	to	environmental	gradients	and	vary	
in	prevalence	across	study	sites	or	regions.

Most	previous	occupancy	models	for	pika	and	other	inconspicu-
ous	species	have	ignored	false	detections	based	on	the	assumption	of	
low	false	detection	rates.	In	our	model,	misidentification	of	pika	calls	
was	surprisingly	prevalent,	averaging	4.3%	and	varying	substantially	
among	our	study	sites	(0.5%	to	8.6%).	When	ignoring	the	potential	
for	false	detections,	mean	occupancy	rates	increased	by	9%	across	
the	study	region	relative	to	the	model	that	accommodated	false	de-
tection	errors,	most	 likely	reflecting	the	upward	biases	induced	by	
treating	false	detections	as	true.	In	contrast	to	our	assumption	that	
false	detections	would	be	driven	primarily	by	indirect	sign	observa-
tions,	one	of	the	largest	sources	of	false	positive	errors	in	our	study	
was	direct	 observation	of	 pika	 calls.	Coupled	with	 the	 knowledge	
that	pika	calls	were	relatively	uncommon	relative	to	other	sign	types	
(27%,	 compared	 to	 fresh	 scat	 at	 68.3%),	 this	 suggests	 that	 future	
survey	protocols	may	wish	to	focus	on	other	sign	types	as	primary	
indicators	of	occupancy.	On	the	other	hand,	the	most	likely	explana-
tion	for	the	high	false	detection	rate	for	pika	calls	is	that	surveyors	
correctly	detected	a	pika	but	that	the	call	emerged	from	outside	the	
survey	site;	pika	calls	are	unlikely	to	be	confused	with	calls	made	by	
any	other	species.	Therefore,	ignoring	false	detections	of	pika	calls	
may	not	pose	a	severe	issue	for	occupancy	estimation	if	researchers	
are	more	interested	in	estimating	occupancy	beyond	the	level	of	the	
standard	survey	site.	Among	the	indirect	sign	types,	fresh	haypiles	
were	 associated	 with	 the	 highest	 rate	 of	 false	 detections	 (2.3%).	
These	 false	detections	 are	 likely	 the	 result	 of	mistaking	old	hayp-
iles	for	fresh,	and	such	errors	are	likely	to	induce	upward	biases	in	
estimates	of	regional	occupancy	if	not	modeled	explicitly.	Rigorous	

F I G U R E  4 Effects	plots	comparing	
the	relationships	between	occupancy	
processes	(colonization	and	extinction	
probabilities)	and	forb	cover	for	(a,	left)	
a	multi-	sign	occupancy	model	with	false	
detections	and	(b,	right)	an	otherwise-	
equivalent	model	with	false	detection	
rates	assumed	to	be	zero.	Dashed	lines	
indicate	95%	Bayesian	credible	interval.
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simulation	studies	are	needed	to	determine	thresholds	for	both	true	
and	false	detection	rates	beyond	which	these	errors	can	be	safely	
ignored.	 In	 the	meantime,	we	 suggest	 that	 researchers	 should	 in-
corporate	both	false-	negative	and	false-	positive	detection	errors	in	
occupancy	models	unless	strong	evidence	suggests	that	one	or	both	
of	these	errors	can	be	ignored.

At	 the	 site	 level,	 detection	 probabilities	 for	 this	 species	 are	
generally	 thought	 to	 be	 high	 (≥ 0.9)	 across	 their	 range	 (Beever	
et	 al.,	2008,	2010;	 Ray	 et	 al.,	2012),	 leading	many	 pika	 research-
ers	 to	 disregard	 detection	 errors	 as	 inconsequential	 sources	 of	
bias	 for	 estimating	 pika	 occupancy	 and	metapopulation	 dynamics	
(Erb	 et	 al.,	2011;	 Jeffress	 et	 al.,	2013;	 Ray	 et	 al.,	2016;	 Rodhouse	
et	 al.,	 2010;	 Shinderman,	 2015).	 This	 assumption	 has	 been	 justi-
fied	on	the	basis	of	previous	findings	that	pika	are	detectable	at	a	
rate	of	≥90%	across	their	range	(Beever	et	al.,	2008,	2011;	Jeffress	
et	 al.,	2013;	 Ray	 et	 al.,	2016;	 Rodhouse	 et	 al.,	2010;	Wilkening	&	
Ray,	2016).	Rodhouse	et	al.,	2010	is	the	only	one	of	these	studies	to	
actually	 estimate	detection	probability	with	 replicate	 survey	data.	
More	recent	research	has	suggested	that	the	assumption	of	perfect	
detection	may	 lead	 to	 biased	 results	 in	 occupancy	 and	metapop-
ulation	models	 for	 this	 species	due	 to	 imperfect	detection	as	well	
as	 occasional	 false	 detections	 (Rodhouse	 et	 al.,	 2018).	While	 our	
results	confirm	that	the	detection	rate	 is	high	(82%	true	detection	
rate)	for	pika	surveys,	our	results	also	suggest	that	failing	to	account	
for	imperfect	detection	for	pika	in	our	study	region	can	lead	to	bi-
ased	estimates	of	occupancy	trends	and	covariate	effects	and	can	
result	in	substantially	larger	inter-	annual	variance	relative	to	models	
that	account	for	imperfect	detection.	Given	our	results,	we	caution	
against	ignoring	observation	errors	and	suggest	that	it	is	critical	to	
model	the	observation	process	when	study	goals	involve	estimating	
occupancy	dynamics	and	its	environmental	drivers,	even	for	species	
with	detection	rates	approaching	or	exceeding	90%.

In	our	“multi-	sign”	occupancy	modeling	framework,	we	assumed	
that	all	unique	sign	types	represented	independent	indicators	of	the	
underlying	occupancy	status.	This	implies	that	the	probability	of	fail-
ing	to	detect	all	unique	sign	types	during	a	single	survey	(probability	
of	false	negative)	could	be	computed	as	the	product	of	the	probability	
of	failing	to	detect	each	individual	sign	type,	and	that	the	probability	
of	a	false	detection	could	be	computed	as	the	inverse	of	the	product	
of	correctly	 failing	 to	observe	each	 individual	 sign	 type.	However,	
interactions	among	sign	types	are	possible,	and	even	likely;	for	ex-
ample,	two	or	more	unique	sign	types	may	be	extremely	reliable	indi-
cators	of	occupancy	when	they	co-	occur,	whereas	neither	is	reliable	
separately.	In	our	study	system,	surveys	in	which	both	fresh	scat	and	
haypiles	co-	occur	were	considered	to	be	an	unambiguous	indicator	
of	 occupancy—	which	 we	modeled	 by	 disallowing	 false	 detections	
for	such	surveys.	However,	future	multi-	sign	occupancy	frameworks	
should	consider	modeling	 interactions	among	sign	types	explicitly.	
Such	models	may	more	realistically	describe	how	information	from	
surveys	with	multiple	distinct	sign	types	can	be	used	to	most	pre-
cisely	describe	the	underlying	observation	process.

Failure	 to	 allow	 for	 detection	 errors	 that	 can	 and	 do	 occur	 in	
real-	world	 ecological	 surveys,	 such	 as	 false	 detections	 and	 use	 of	

sign	types	that	vary	 in	reliability,	can	 lead	to	biased	or	 incomplete	
estimates	 of	 key	 occupancy	 processes.	 Building	 on	 other	 occu-
pancy	 models	 that	 handle	 false	 detections	 (Clement	 et	 al.,	 2014; 
Rodhouse	 et	 al.,	 2018),	 and	 multiple	 unique	 detection	 methods	
(Guillera-	Arroita	et	al.,	2017;	Kéry	&	Royle,	2021;	Miller	et	al.,	2011),	
we	present	 a	 flexible	approach	 for	modeling	detection	probability	
for	multiple	sign	types,	whereby	detection	probability	can	respond	
to	spatio-	temporal	environmental	gradients	uniquely	 for	each	sign	
type.	Unlike	previous	studies,	our	method	also	allows	any	sign	type	
to	be	present	in	both	ambiguous	and	unambiguous	forms,	enabling	
additional	power	to	estimate	false-	positive	detection	rates	(Guillera-	
Arroita	et	al.,	2017).	In	theory,	knowledge	of	the	degree	of	ambiguity	
of	different	sign	types	could	be	used	to	improve	survey	efficiency	by	
(e.g.)	 resurveying	sites	only	until	an	unambiguous	sign	 is	observed	
(ceasing	surveys	at	that	point),	allowing	more	effort	to	be	put	 into	
other	sites.	However,	in	the	context	of	monitoring	pika	populations,	
this	might	 not	 save	 that	much	 time,	 as	multiple	 sign	 types,	when	
present,	can	typically	be	observed	and	recorded	quickly.

We	anticipate	that	our	method	has	broad	applicability	for	other	
systems	 in	 which	 multiple	 sign	 types	 are	 used	 to	 assess	 regional	
occupancy	dynamics,	especially	for	inconspicuous	species.	As	hier-
archical	models	 (often	fitted	 in	a	Bayesian	framework)	become	 in-
creasingly	 accessible	 to	 ecologists,	 incorporation	 of	more	 realistic	
and	complex	models	of	the	observation	process,	such	as	multi-	sign	
occupancy	models,	 have	 become	 relatively	 straightforward	 to	 im-
plement.	We	believe	researchers	can	build	upon	our	framework	to	
develop	more	precise	detection	models	that	ultimately	improve	our	
ability	to	estimate	regional	occupancy	and	to	develop	more	effective	
regional	 monitoring	 protocols.	 Ultimately,	 incorporation	 of	 multi-	
sign	detection	probabilities	in	occupancy	models	has	great	potential	
to	positively	impact	management	and	conservation	decisions	for	in-
conspicuous	species.
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