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BACKGROUND
Contrast-enhanced mammography (CEM) is a functional 
imaging technique, which utilises a dual-energy subtrac-
tion method following administration of intravenous 
contrast agent to produce 2D images demonstrating lesion 
vascularity.1 During each breast compression two imag-
es—a low kV image and a high kV image—are acquired. 
As the low-energy (LE) image is below the k-edge of 
iodine, the image produced is equivalent to a standard 
mammographic view. Using digital post-processing the 
LE image is then subtracted from the high-energy image 
to produce a recombined (RC) image which demonstrates 

only the areas of enhancement. Thus, the RC image demon-
strates the vascularity of breast lesions.

Textural analysis is a radiomics technique that evaluates 
the appearance, position and pattern of pixels according 
to their grey-level intensity within a digital image.2,3 This 
allows quantitative analysis of medical images and has been 
shown to improve discrimination between benign and 
malignant lesions when applied to breast MRI. Measures of 
entropy and heterogeneity have particular merit as discrim-
inatory factors as malignant lesions tend to demonstrate 
greater complexity.4–6 Emerging evidence suggests textural 
analysis can also be applied to CEM images.7–13 However, 
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Objective: Radiomic analysis of contrast-enhanced 
mammographic (CEM) images is an emerging field. The 
aims of this study were to build classification models 
to distinguish benign and malignant lesions using a 
multivendor data set and compare segmentation tech-
niques.
Methods: CEM images were acquired using Hologic and 
GE equipment. Textural features were extracted using 
MaZda analysis software. Lesions were segmented with 
freehand region of interest (ROI) and ellipsoid_ROI. 
Benign/Malignant classification models were built using 
extracted textural features. Subset analysis according to 
ROI and mammographic view was performed.
Results: 269 enhancing mass lesions (238 patients) were 
included. Oversampling mitigated benign/malignant 
imbalance. Diagnostic accuracy of all models was high 
(>0.9). Segmentation with ellipsoid_ROI produced a 
more accurate model than with FH_ROI, accuracy:0.947 

vs 0.914, AUC:0.974 vs 0.86, p < 0.05. Regarding 
mammographic view all models were highly accurate 
(0.947–0.955) with no difference in AUC (0.985–0.987). 
The CC-view model had the greatest specificity:0.962, 
the MLO-view and CC + MLO view models had higher 
sensitivity:0.954, p < 0.05.
Conclusions: Accurate radiomics models can be built 
using a real-life multivendor data set segmentation with 
ellipsoid-ROI produces the highest level of accuracy. The 
marginal increase in accuracy using both mammographic 
views, may not justify the increased workload.
Advances in knowledge: Radiomic modelling can be 
successfully applied to a multivendor CEM data set, 
ellipsoid_ROI is an accurate segmentation technique 
and it may be unnecessary to segment both CEM views. 
These results will help further developments aimed at 
producing a widely accessible radiomics model for clin-
ical use.
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individual study numbers are small and research to date has been 
restricted to single site, single vendor CEM image data sets which 
then limits the findings generaliseability.14 Furthermore, there is 
a dearth of evidence regarding the best technique for segmen-
tation— whether it is necessary to segment an exact region of 
interest (ROI) outlining the lesion or whether more time-efficient 
techniques such as an ellipsoid ROI produce similar results. 
Finally, the majority of prior studies require segmentation of 
both LE images and RC images, often using both views.7–11,13 
There is little evidence for the efficacy of modelling based on RC 
features only.

As CEM becomes more widespread in clinical practice, it may 
offer an alternative to MRI in certain clinical settings. However, 
recent evidence indicates that whilst CEM has a higher speci-
ficity, MRI remains the more sensitive technique.15 Quantitative 
assessment of CEM images, derived from textural feature model-
ling has the potential to improve diagnostic accuracy of CEM 
with extensive clinical implications. This novel study paves the 
way for a ‘real-world’ tool, with the aims to investigate the accu-
racy of a radiomics model that can be applied to textural features 
derived from a multivendor data set of RC images. We compare 
the accuracy of models according to the method of segmentation 
and mammographic views required, to establish the most time-
efficient method whilst maintaining model accuracy.

METHODS AND MATERIALS
This is an ethically approved, hypothesis generating, retrospec-
tive, multicentre image analysis study (IRAS project ID: 266560). 
Consecutive CEM images were reviewed from two centres. 
At Site 1, images were acquired as part of ethically approved 
prospective imaging studies. CONTEST (ISRCTN12691785) 
is a study in which patients where there was high index of 
suspicion for cancer on clinical examination (P4-5) and/or 

ultrasound imaging (U4-5) had CEM performed prior to biopsy 
and CONDOR (researchregistry5895) a study which included 
females with biopsy-proven breast cancer. In the second study, 
images were acquired as part of routine clinical care for females 
over 40 years with a P4-5 examination and for younger females 
with suspicious ultrasound imaging (U4-5) or biopsy-proven 
malignancy without a recent standard mammogram. All CEM 
studies were performed prior to treatment. Details of image 
acquisition protocols and technical differences between the CEM 
systems are shown in Tables 1 and 2 respectively. Figure 1 illus-
trates a CEM study in the left CC position.

Inclusion criteria were as follows; females aged 18 years or older, 
mass lesion on CEM images—craniaocaudal (CC), mediolateral 
oblique (MLO) or both—with the corresponding pathology. 
Images with no abnormal enhancement or purely non-mass 
enhancement were excluded. Core biopsy results and final 
pathological diagnosis (where available), were retrieved from 
the patients records at the local site. In the case of multifocal or 
bilateral disease, all lesions with corresponding pathology were 
included.

Image segmentation
Image segmentation was performed on all RC images with a 
lesion present. Each lesion, on each view, was segmented using 
both a free-hand ROI (FH_ROI) and an ellipsoid ROI (ellip-
soid_ROI). Both segmentation techniques were manually drawn 
by a radiologist with experience in breast imaging. The FH_
ROI encompassed the entire lesion but did not extend beyond 
the lesion. Foreign bodies such as marker clips were carefully 
excluded from the ROI. The ellipsoid_ROI was drawn to cover 
the largest possible area of the lesion whilst excluding foreign 
bodies. The segmentation techniques are illustrated in Figure 2.

Table 1. Imaging protocols for CEM image acquisition

Site CEM system
Contrast 
medium

Vol. of 
contrast Flow rate

Time to 
imaging

Imaging 
duration

Order of image 
acquisition

1 Selenia 
Dimensions 
system (Hologic)

Omnipaque 300 1.5 mg/kg 2–3 ml/s 
automated

3 min 5 min Index MLO
Index CC
Contralateral MLO
Contralateral CC

2 Senographe 
Essential system 
(GE Healthcare)

Niopam 300 100 ml 3 ml/s 
automated

2 min 5 min Variable

CC, craniocaudal; CEM, contrast-enhanced mammography; MLO, mediolateral oblique.

Table 2. Technical differences between CEM systems

CEM system Mode

Low energy 
kV and target / 
filtera

High energy 
kV and target 
/ filtera

GE Senographe 
Essential16

SenoBright 26 – 31kV
Mo/Mo, Mo/Rh & 
Rh/Rh

45 – 49kV
Mo/Cu or Rh/Cu

Hologic selenia 
dimensions17

I-View 25 – 33kV
W/Rh & W/Ag

45 & 49kV
W/Cu

CEM, contrast-enhanced mammography.
aTypical ranges covering 2–9 cm compressed breast thicknesses.

Figure 1. CEM study of left breast, CC position. a: low-energy 
image, b: high-energy image, c: recombined image. CC, crani-
ocaudal; CEM, contrast-enhanced mammography.
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Textural analysis
Textural analysis was performed on raw DICOM images using 
MaZda analysis software.18 Prior to conducting textural anal-
ysis, grey-normalisation and rebinning were conducted. Due 
to an absence of published data pertaining to textural analysis 
applied to CEM images at the time of study design, the model 
was proposed based on textural analysis work with breast MRI 
which demonstrated success using models based on grey length 
co-occurrence matrix (GLCM) textural data.19,20 Textural 
features were extracted using first-order statistics based on 
histogram analysis (HIST) and GLCM. HIST features allowed 
quantification of the degree of enhancement, GLCM statistics 
were generated to assess lesion heterogeneity.21 GLCM features 
are computed by defining both a direction (0°, 45°, 90°, 135°) 
and a distance between which the pixels are separated. As no 
directional variation in textural parameters is expected in breast 
imaging,4 the output was averaged. Separation between pixel 
pairs was set at n = 2 for fine texture and n = 5 for coarse texture. 
This resulted in a combined total of 22 textural features.

Machine learning
Classification models were developed to categorise lesions as 
benign or malignant. Two different types of model, one according 
to type of ROI (Freehand vs ellipsoid) and the other according to 

mammographic view (CC vs MLO vs both) were considered. A 
training set where the final class labels were known was used to 
construct the classifier. A four-layered artificial neural network 
(ANN) classification algorithm, a technique based on a back-
propagation learning method was employed.22

The input layer consisted of the 22 textural features generated 
from GLCM and HIST. Oversampling was performed to balance 
the class distribution at 2:1 (malignant:benign). Random samples 
for benign lesions were generated using a verified method, the 
synthetic minority oversampling technique (SMOTE).23 New 
samples similar to input samples in the feature space were gener-
ated.The data were then split into training and test sets in a ratio 
of 75:25. Subset analysis was conducted using separate models to 
compare accuracy for:

(a)	 Type of ROI: FH_ROI vs ellipsoid_ROI
(b)	 Mammographic view: CC vs MLO vs combined (CC+MLO)

Statistical analysis
The results are shown by averaging the model accuracy over 
30 runs. Diagnostic accuracy, sensitivity, specificity, positive-
predictive value (PPV), negative-predictive value (NPV) and F1 
score were calculated for each model. F1 score is a key measure of 

Figure 2. Segmentation of RC images of the right breast. Top row from left to right; 1a RCC, 1b RCC with FH_ROI, 1c RCC with 
ellipsoid_ROI. Bottom row from left to right; 2a RMLO, 2b RMLO with FH_ROI, 2c RMLO with ellipsoid_ROI. RC, recombined; ROI, 
region of interest.
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model accuracy for imbalanced data sets based on precision and 
recall relative to a specific positive class.24

Differences between models were assessed using a two-tailed 
independent sample means test for two models and ANOVA 
with Bonferroni correction. Coding analysis was performed 
using Python 3.7 on Jupyter notebooks. Effective sample size was 
not calculated as the work was primarily exploratory for hypoth-
esis generation.

RESULTS
238 patients with a total of 269 enhancing mass lesions were 
included. Of these, 14 were benign and 255 were malignant, the 
imbalance of benign/malignant lesions was mitigated through 
oversampling. Histopathological details of the malignant lesions 
are shown in Table 3, and the benign lesions in Table 4.

Type of ROI
A total of 538 lesion views were included; all had textural features 
generated from both a FH_ROI and ellipsoid_ROI. Two models 

were developed based on the ROI-type. The relative accuracy of 
the two models is detailed in Table 5 below.

Whilst the diagnostic accuracy of both models was greater 
than 0.9 which is deemed to be very good,25,26 the ellipsoid_
ROI model demonstrated significantly better results across all 
measures, including the F1 score (p < 0.05).

Mammographic view
All females had imaging performed in both CC and MLO posi-
tions. The majority of lesions, 255 (95%), were visible on both CC 
and MLO views, 8 (3%) were only visible on CC and 6 (2%) were 
only visible on MLO view. Textural features generated from both 
the FH_ROI and ellipsoid_ROI were included. Three models 
were developed based on the ROI-type; one using CC_ROI only, 
one using MLO_ROI only and a third using both CC_ROI and 
MLO_ROI. The relative accuracy of the three models alongside 
a comparison of accuracy calculated using one-way analysis of 
variance (ANOVA) is detailed in Table 6 below.

Whilst all three models demonstrate high levels of diagnostic 
accuracy (>0.94), significant differences were demonstrated 
between all measures other than AUC, which was consistently 
very high (>0.98). Post-hoc analysis on all other measures was 
conducted using multiple-comparison tests with Bonferroni 
correction, as shown in Table 7.

Overall, the model using both CC_ROI and MLO_ROI produced 
the most consistently good results across all measures. The CC_
ROI model demonstrated a greater ability to detect benign lesions 
(higher specificity and NPV) whilst the MLO-ROI demonstrated 
a greater ability to detect malignant lesions (higher sensitivity 
and PPV) but overall accuracy and F1 score were lower.

DISCUSSION
The primary aim of this exploratory work was to establish whether 
radiomic modelling could be applied to CEM textural features 
derived from a multivendor data set to differentiate benign from 
malignant lesions. Subsequent to the inception of this project there 
has been a flurry of publications pertaining to textural analysis of 
CEM images.7–13 However, this remains the first study to use a 
multivendor database, with a larger data set of lesions larger than 

Table 3. Histopathology of malignant lesions

Tumour subtype
Ductal NST 220

Lobular 13

Mixed ductal/lobular 8

Tubular / tubular mixed 7

Medullary 1

Mixed ductal/mucinous 2

Mammary adenocarcinoma 2

Unavailable 2

Tumour grade

1 25

2 112

3 98

Unavailable 20

Receptor status

Oestrogen receptor

Positive 187

Negative 56

Unavailable 12

Progesterone receptor

Positive 160

Negative 83

Unavailable 12

HER-2 receptor

Positive 50

Negative 190

Unavailable 15

Table 4. Histopathology of benign lesions

Fibroadenoma 4

Chronic inflammation 2

Fat necrosis 1

Fibrocystic change 1

Benign granular cell tumour 1

Hamartoma 1

Papilloma without atypia 1

Benign phyllodes tumour 1

Unusual sclerosing lesion 1

Unknown/unspecified 1

http://birpublications.org/bjr
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those used in many published studies. Our models produce sensi-
tivities of 94.2–99.8%, considerably higher than those for CEM 
in the aforemention meta-analysis of human reader studies, and 
comparable to that of MRI.

CEM is becoming more widespread in clinical practice, with 
national guidelines supporting its use in place of MRI for local 
staging.27 However, a recent meta-analysis demonstrates that 
whilst CEM has a greater specificity and lower false-positive rate 
than MRI, it is inferior for identifying malignant lesions; sensitivity 
91 vs 97% respectively.15

We anticipate decision-support tools may be developed to provide 
additional quantitative information to the reporting radiologist, 
with the goal of increasing sensitivity and mitigating the risk of 
increased false-negative results. To maximise the benefit of such 
a tool,it will be important for it to be practicable in a real-world 
setting. Ultimately, for optimal clinical use, a radiomics package 
would be available on PACS (Picture Archiving and Communica-
tion System) workstations to allow quantifiable data to be extracted 
and used in real-time reporting, irrespective of the machine on 
which the images were acquired or the precise imaging protocol 
used. Our findings suggest that this will be possible.

Furthermore, despite the pragmatic real-world nature of our 
images, our results exceed the accuracy of many of those in the 
published literature, as illustrated in Table 8.7–13

Five of these publications come from two groups: the Mayo 
Clinic, USA9–11 and Istituto Tumori “Giovanni Paolo II”, Italy.7,8 
Interestingly, despite the overlap of the CEM images from which 
the textural features were derived, substantial variation is seen 
in model accuracy measures. This may be related to different 

modelling techniques and emphasises the need for establishing 
basic technique and consistency.

For a radiomics tool to be clinically practical, it is important to 
minimise the additional time required to acquire the necessary 
information. This pertains both to the time taken for the images 
to be segmented and the time for the model to run. Therefore, 
unlike other studies that generated 100’s or even 1000’s of textural 
features, we built on existing work that demonstrated the impor-
tance of GLCM features of heterogeneity/entropy on breast MRI 
for differentiating benign from malignant lesions.4,5

Furthermore, previous studies—with the possible exception of 
Perek et al12—include textural feature data derived from both the 
LE and RC images. By contrast, our model only required feature 
data from RC images thereby reducing the radiologists work-
load—fewer images to segment—in addition to the required 
computing power with no loss in diagnostic accuracy.

We have sought to establish the best method of segmentation, 
by comparing the results of models built with data from free-
hand or ellipsoid ROIs. To the best of our knowledge, this is the 
first study to address this question. Existing studies use a range 
of segmentation methods; including the whole tumour outline 
(equivalent of FH_ROI)10 ; consistently sized rectangular_ROI 
either including the whole tumour and some surrounding tissue7 
or contained within the tumour—similar to ellipsoid_ROI9 ; or 
sample patches around randomly selected pixels.12 Whilst both 
ROI models in this study demonstrated high levels of accuracy, 
the ellipsoid_ROI demonstrated significantly better perfor-
mance across all measures including the F1 score higher which is 
particularly reassuring due to the imbalanced data set. This may 
be especially useful for future modelling as segmenting using an 

Table 5. ROI_model accuracy

ROI type Accuracy (SD) F1 score (SD) AUC (SD) Sensitivity (SD) Specificity (SD) PPV (SD) NPV (SD)

FH 0.914 (0.013) 0.928 (0.01) 0.974 (0.006) 0.953 (0.028) 0.891 (0.013) 0.841 (0.016) 0.969 (0.016)

Ellipsoid 0.947 (0.009) 0.955 (0.007) 0.986 (0.004) 0.998 (0.005) 0.916 (0.014) 0.878 (0.018) 0.998 (0.003)

AUC, area under the curve; NPV, negative-predictive value; PPV, positive-predictive value; ROI, region of interest; SD, standard deviation.

Table 6. Mammographic view model accuracy measures (ANOVA)

Mammographic View ANOVA
MLO CC Both F p

Accuracy (SD) 0.947 (0.015) 0.955 (0.011) 0.955 (0.006) 5.026 0.009

F1 score (SD) 0.959 (0.012) 0.964 (0.009) 0.966 (0.004) 4.855 0.010

AUC (SD) 0.985 (0.009) 0.988 (0.007) 0.987 (0.004) 1.438 0.243

Sensitivity (SD) 0.954 (0.029) 0.942 (0.009) 0.954 (0.011) 4.142 0.019

Specificity (SD) 0.944 (0.020) 0.962 (0.014) 0.956 (0.007) 12.287 0.000

PPV (SD) 0.904 (0.029) 0.935 (0.023) 0.915 (0.012) 14.683 0.000

NPV (SD) 0.974 (0.015) 0.966 (0.005) 0.977 (0.005) 3.266 0.043

AUC, area under the curve; NPV, negative-predictive value; PPV, positive-predictive value; ROI, region of interest; SD, standard deviation.
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ellipsoid ROI is substantially quicker than delineating the precise 
boundary of the lesion using a freehand technique. Future work 
is required to establish whether these findings can be applied to 
auto-segmentation techniques, thus further reducing the work-
load for the reporting radiologist.

A second novel aspect of this study is that we have investigated 
whether it is necessary to segment both mammographic MLO 
and CC views. The majority of previous studies have used data 
from both views,9–12 two studies used whichever view the lesion 
was better seen on7,8 and one used CC alone.13 Our data suggest 
that whilst overall the model using ROIs on both imaging views 
produces a more accurate model; diagnostic accuracy remains 
high for models designed with single views alone, with no 
significant difference in AUC values across all three models. Of 
the models looking at single views alone, the CC_ROI model 
demonstrated higher diagnostic accuracy and F1 score and was 
more accurate at identifying benign lesions with higher speci-
ficity and PPV. The MLO_ROI model was better at detecting 
malignant lesions with a higher NPV and sensitivity. Although 
the differences between the single-view models and the two-view 

model are statistically significant, the additional time to draw 
the second ROI and compute the textural analysis figures needs 
to be considered. We suggest that the marginal gains, e.g. diag-
nostic accuracy of 0.947 vs 0.955 or F1 score of 0.959 vs 0.99 do 
not justify the additional time required for the two-view model. 
Furthermore, whilst the results suggest that the MLO model is 
preferable, if a lesion is only visible on CC, we propose that this 
should also be included. Future work to build a model using either 
CC or MLO views is recommended. Interestingly, the published 
models that have taken this approach do appear to have higher 
accuracy than those using both views or CC alone,7,8,13 but due 
to wide variation in other methodological aspects of the studies, 
direct comparison is not feasible.

The main limitation of this study is the modest sample sizes 
which limits the validity of the modelling. In particular, the 
benign lesions subset was very small, requiring mitigation 
through oversampling techniques. Whilst the consistently high 
F1 score is reassuring and supports model accuracy and stability 
despite the imbalanced data set, further validation with a larger 
data set is required. In addition, all segmentation was conducted 
by the same reader. Whilst this prevents confounding due to 
inter-reader variability, it reduces the generalisability of the data 
modelling. It will be necessary to demonstrate reproducibility of 
segmentation with consideration of both inter- and intrareader 
variability in future work.

CONCLUSION
Our work suggests that it is only necessary to segment single 
view RC images using an ellipsoid_ROI to build an accurate 
model to discriminate benign and malignant lesions. We have 
shown that this technique can be applied to multivendor images 
acquired using differing imaging protocols. These findings will 
aid progress of CEM radiomics modelling towards a clinically 
applicable tool.

Table 7. Post-hoc direct comparison of mammographic view 
model accuracy measures

Difference between mammographic 
views (p-value)
MLO vs CC MLO vs Both CC vs Both

Accuracy <0.00001 <.00001 0.869

F1 score <0.00001 <.00001 <.00001

Sensitivity 0.048 0.959 0.036

Specificity 0.020 0.024 0.457

PPV 0.001 0.036 0.025

NPV 0.035 0.089 0.029

AUC, area under the curve; CC, craniocaudal; MLO, mediolateral 
oblique;NPV, negative-predictive value; PPV, positive-predictive 
value; ROI, region of interest; SD, standard deviation.

Table 8. Diagnostic accuracy measures of published studies

Paper Model Accuracy AUC Sensitivity Specificity PPV NPV
Savaridas - 0.955 0.988 0.954 0.962 0.878 0.998

Fanizzia - 0.875 0.931 0.875 0.917 NR NR

Losurdoa Embedded STAT 0.807 NR 0.864 0.750 NR NR

Wrapper STAT 0.809 NR 0.903 0.716 NR NR

Patela - 0.90 0.95 0.88 0.92 NR NR

Gaoa - 0.85 0.84 0.89 0.80 NR NR

Danalaa RC 0.685 0.737 NR NR 0.875 0.615

Perek FT AlexNet NR 0.843 NR NR NR NR

RawNet NR 0.824 NR NR NR NR

Lin Rad-Score NR 0.868 0.700 0.800 NR NR

AUC, area under the curve; NPV, negative-predictive value; NR, not reported; PPV, positive-predictive value.
aCase overlap
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