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Abstract
1.	 Studying animal behaviour allows us to understand how different species and indi-

viduals navigate their physical and social worlds. Video coding of behaviour is con-
sidered a gold standard: allowing researchers to extract rich nuanced behavioural 
datasets, validate their reliability, and for research to be replicated. However, in prac-
tice, videos are only useful if data can be efficiently extracted. Manually locating 
relevant footage in 10,000 s of hours is extremely time-consuming, as is the manual 
coding of animal behaviour, which requires extensive training to achieve reliability.

2.	 Machine learning approaches are used to automate the recognition of patterns 
within data, considerably reducing the time taken to extract data and improving 
reliability. However, tracking visual information to recognise nuanced behaviour 
is a challenging problem and, to date, the tracking and pose-estimation tools used 
to detect behaviour are typically applied where the visual environment is highly 
controlled.

3.	 Animal behaviour researchers are interested in applying these tools to the study 
of wild animals, but it is not clear to what extent doing so is currently possible, or 
which tools are most suited to particular problems. To address this gap in knowl-
edge, we describe the new tools available in this rapidly evolving landscape, sug-
gest guidance for tool selection, provide a worked demonstration of the use of 
machine learning to track movement in video data of wild apes, and make our 
base models available for use.

4.	 We use a pose-estimation tool, DeepLabCut, to demonstrate successful training 
of two pilot models of an extremely challenging pose estimate and tracking prob-
lem: multi-animal wild forest-living chimpanzees and bonobos across behavioural 
contexts from hand-held video footage.

5.	 With DeepWild we show that, without requiring specific expertise in machine 
learning, pose estimation and movement tracking of free-living wild primates in 
visually complex environments is an attainable goal for behavioural researchers.
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1  |  INTRODUC TION

Studying animal behaviour allows us to understand how different in-
dividuals navigate their physical and social worlds, and cross-species 
comparisons can provide insight into the evolutionary trajectory of 
behavioural capacities. Video recordings provide particularly abun-
dant and robust data collection, allowing the extraction of many kinds 
of behaviour: from social organisation, to communication, to move-
ment and so forth. Unlike direct observation, there is the opportu-
nity to repeatedly revisit the same events—allowing researchers to 
explore new questions, and to improve or validate data collection on 
existing ones. As a result, video coding is considered a gold standard: 
allowing rich nuanced behavioural datasets, on which research can 
be conducted and replicated by others now and in the future. As well 
as targeted novel video data collection, many research groups have 
established large video archives from which we can extract data 
(e.g. Arandjelovic et al., 2016; Bain et al., 2021; Burton et al., 2015; 
Hobaiter et al., 2021; Schofield et al., 2019). These archives repre-
sent data arks: stable, long-term resources that help us continue to 
address scientific questions in taxon, such as primates, who are in 
catastrophic population decline (Estrada et al.,  2017). In addition, 
these digital resources help address the systemic financial and phys-
ical barriers related to collecting behavioural data in the wild, open-
ing up scientific research to a more diverse pool of researchers.

However, in practice, these videos are only useful if data can be 
efficiently extracted from them. Manually locating relevant footage 
in hundreds or thousands of hours of archival material is extremely 
time-consuming, as is the subsequent manual coding of animal be-
haviour, which requires extensive training to achieve reliability and 
limit coder error and bias (Munch et al., 2019; Pathak et al., 2003). 
Where the time-burden and its associated financial costs outweighs 
those of novel data collection, these potentially invaluable archives 
sit unused.

Machine learning approaches are used to automate the recogni-
tion of patterns within data (Hastie et al., 2001) and can considerably 
reduce the time taken to extract data, while improving the reliability 
of results (Schofield et al., 2019). They have been successfully em-
ployed across diverse behavioural datasets from acoustics (Bianco 
et al., 2019), to taxonomy (Wäldchen & Mäder, 2018), to movement 
(e.g. flies: Günel et al., 2019; robots and humans: Islam et al., 2021; 
fish: Mei et al., 2021; mice: Sheppard et al., 2022). More recently, 
there has been considerable success extending these to visual data, 
with a sudden explosion of tools for automating pattern recognition 
within photographic and video data. While early algorithms focused 
on photographic data (for a thorough review, see Weinstein, 2017), 
their extension to video data is particularly relevant for behavioural 
research, allowing the capture of information over time.

One widespread use of machine learning with video data is 
for species recognition, for example from camera-trap data (see 
Table S1 for examples). Camera-traps can be deployed in large num-
bers, across wide areas, and left to capture data 24 h a day. With the 
appropriate considerations (Swann et al., 2011), they allow for the 
monitoring of species and individuals who are typically not easily 

observable in-person: populations not habituated to direct observa-
tion, or who are sparse or nocturnal. Camera-traps are an effective 
means to address questions investigating species presence, abun-
dance, and diversity, as well as to monitor distribution and density 
over time within and between locations (Steenweg et al.,  2016). 
However, when used at scale, they create vast amounts of video 
data that can be extremely time-consuming to decode. In one exam-
ple, manually sorting camera trap data on wolf monitoring had a lag 
of approximately 5 years (Tuia et al., 2022). With the use of machine 
learning (Microsoft AI4Earth MegaDetector: Beery et al., 2019) all 
data were labelled within 12 months, allowing data to be reviewed 
before the start of the next monitoring season (Tuia et al., 2022). In 
another model, identification of individual primates across species 
could be processed with 94% accuracy at over 30 images per second 
(Guo et al., 2020).

Automated species identification tools split videos into dis-
crete frames and then examine each one to perform initial triage 
by filtering out blank images (AIDE: Kellenberger et al.,  2020; 
Wildlife Insights: Ahumada et al.,  2019; Microsoft AI4Earth 
MegaDetector: Beery et al.,  2019), followed by the identifica-
tion of species (e.g. Narouzzadeh et al.,  2018; Willi et al.,  2018; 
Yu et al., 2013; AIDE: Kellenberger et al., 2020; Wildlife Insights: 
Ahumada et al.,  2019; Whytock et al.,  2021) and even individu-
als, known as ‘individual reidentification’ (Wildbook: Berger-Wolf 
et al.,  2017; Guo et al.,  2020; Schofield et al.,  2019) that were 
captured. Current automated tools perform this work so quickly 
that they are used to send out real-time alerts if humans or un-
known vehicles are unexpectedly present in protected areas, of-
fering rapid-response opportunities for conservation teams on the 
ground (wpsWatch: Tuia et al., 2022). Similar systems inform local 
communities of the approach of potentially dangerous wildlife, 
such as elephants (Premarathna et al.,  2020). Individual identifi-
cation can present a particularly challenging problem for human 
coders. In a study of 23 chimpanzees containing approximately a 
million images, human annotators given 1–2 h of exposure reached 
only 20% (novices) and 42% (experts) accuracy. A model trained 
on the same data took only a matter of seconds to achieve 84% 
accuracy (Schofield et al., 2019), let alone subsequent savings in 
processing of the vast data set. Similarly accurate models for in-
dividual identification are now available for a growing number of 
taxa (tigers: Li et al., 2020, elephants: Körschens & Denzler, 2019, 
cattle: Bergamini et al., 2018, primates: Guo et al., 2020; for a re-
view see: Schneider et al., 2018). Nevertheless, there is typically 
a need for substantial upfront investment in the development of 
training sets, and subsequent tools are typically population-, and 
even site-, specific limiting their generalisability.

While analysing photographs (or discrete frames from a video) 
already provides a powerful approach, the study of many behaviours 
requires the extraction of data across video frames—restoring the 
component of time. One recent application of this in wild chimpan-
zees employs a pipeline that moves from detection and tracking of 
chimpanzees, to individual identification, to identification of be-
havioural categories, such as feeding (Bain et al., 2021). However, 
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doing so requires a choice, in advance, of the behaviour of interest, 
and—to date—has only been demonstrated in two behaviours with 
distinctive auditory, as well as visual, signatures (nut cracking and 
drumming). An alternative approach to behaviour categorisation 
is pose estimation and movement tracking: here, individual points 
are marked on the body and their relative location is tracked across 
frames. These too require a decision in advance, here the number and 
placement of the landmarks on the body, but the same base model 
can be used to generate coordinate data for kinematic analyses of 
tool use movements and gestural actions, although doing so would 
likely require separate behavioural segmentation tools in a subse-
quent step. A potentially powerful approach is to combine them 
using spatiotemporal action CNNs (Convolutional Neural Networks; 
Achour et al., 2020), which retain some information on the broader 
visual context in which behaviour is situated, with pose-estimation 
approaches that provide refined kinematic analysis of particular ac-
tions. A full list of machine learning based tracking tools, with infor-
mation on their uses and functionality, is available in Table S2.

In some cases, these tools track the location of individual an-
imals relative to each other and their environment, allowing, for 
example, the detailed study of group movements of hundreds of 
individuals in synchrony (Walter & Couzin, 2021). The most recent 
generation of tracking tools provides pose estimation by tracking 
multiple points on an individual (for a full list of pose estimation 
tools, their usability, and their functionality, see Table S3). Doing so 
offers flexibility in which behaviour are tracked, and the opportu-
nity to analyse movement within behaviour in substantial detail (see 
Panadeiro et al., 2021 for an in-depth summary). For example, allow-
ing the study of facial expressions (Wang & Lien, 2009) or gait anal-
ysis (Rohan et al., 2020) in humans (Khan & Wan, 2018; Sarafianos 
et al., 2016). But with the recent arrival of ‘plug and play’ software 
that incorporates user-friendly non-coding-based interfaces, there 
has been an explosion of interest in the wider field of animal be-
haviour (Panadeiro et al., 2021; Tuia et al., 2022).

There are obvious reasons why—while the use of video-based 
data extraction is a powerful method for robust studies of animal 
behaviour, manual coding is extremely time consuming, and—even 
with substantial training periods—experienced researchers are still 
subject to some human error. Even relatively ‘simple’ problems, such 
as the marking of two points (e.g. in lip-smacking; Pereira, Kavanagh, 
et al., 2020) still requires that these points are manually marked on 
every frame, and with typical frame rates of 25fps and behaviour that 
are measured in minutes, doing so is a substantial time investment—
often months of work. With an appropriate model, machine learning 
tools can extract the same data in a matter of minutes or seconds. 
There are of course substantial caveats—appropriate models are 
rarely available ‘off the shelf’ (although cf. the DeepLabCut ‘model 
zoo’, Kane et al., 2020). And, as in the case of manual coding, these 
models typically provide you with raw data output (x-y coordinates 
for each marked point within the frame) that need substantial fur-
ther processing to be translated into behavioural categories or mea-
sures. For example: performing gait analysis on the co-ordinates to 
extract walking rhythm (Prakash et al., 2018). However, open-source 

machine learning tools that classify behaviour from coordinates are 
emerging from laboratory-work (e.g. Hsu & Yttri,  2021), and may 
soon have the potential to be expanded to wild data.

Tracking visual information in such detail is a challenging problem, 
and, to date, tracking algorithm tools are typically applied within labo-
ratory studies where the environment is fixed and/or controlled, and 
tend to have been developed for model animal species in widespread 
use such as mice (e.g. drosophila: Yu et al.,  2011; rodents: Geuther 
et al., 2019; ants: Gal et al., 2020; worms: Kiel et al., 2018; fish: Xu & 
Cheng, 2017; for a summary of currently available software tools see 
Table S2). Recent advances include 3-dimensional descriptions of an 
individual's movements in its environment. Doing so requires at least 
two static camera angles that can be used to provide the depth esti-
mation needed to re-create objective distances (without this the dis-
tance between any two points in a single frame is arbitrary; are they 
small or are they far away? Although, cf. Haucke et al., 2021). The range 
of species has also started to expand, moving from laboratory model 
species, e.g. mice (Gosztolai et al., 2021; Karashchuk et al., 2021), flies 
(Gosztolai et al., 2021; Günel et al., 2019; Karashchuk et al., 2021) to 
include primates and larger mammals (macaques: Bala et al.,  2020; 
Gosztolai et al., 2021; Marks et al., 2022; cheetahs: Nath et al., 2019).

Studying social behaviour requires tracking of more than one 
individual—doing so requires more than a simple extension of the 
single individual method. The model must be able to not only track 
body parts, but also keep track of to whom those body parts belong 
to (i.e. elbow A belongs to individual A, even when they swap places 
with individual B or C). As a result, additional time investments are 
needed in training to manually correct accidental body part swaps 
(Mathis et al., 2018; Pereira et al., 2019; Pereira, Tabris, et al., 2020), 
however, these may be more than offset by the subsequent ability to 
automate rapid data generation across many individuals. Some tools, 
such as TRex (Walter & Couzin, 2021), focus on tracking across very 
large numbers of individuals, for example looking at flock, herd, or 
school movements; others, such as the multi-animal tracking options 
in SLEAP, can track discrete body parts across moderate numbers of 
individuals (i.e. <100; Pereira et al., 2019; Pereira, Tabris, et al., 2020).

Until recently, pose estimation software was limited to laboratory 
and, increasingly, for domestic animals and pets (Kane et al., 2020), 
and in captive environments such as zoos (Hayden et al.,  2021; 
Marks et al., 2022). In these environments the ‘visual noise’ is both 
relatively low and stable across videos. Just as for humans, it is much 
easier for machine learning tools to detect an animal moving when 
nothing else in the frame is moving, or an animal on a plain back-
ground with good lighting. However, with increasingly sophisticated 
software capable of learning across multiple individuals and in more 
variable conditions, pose-estimation tools could finally be extended 
to wild populations. Doing so offers substantial power to research-
ers exploring behavioural variation across a wide variety of disci-
plines: from ecology to cognition, from conservation to culture.

While there appears to be significant interest in trying to do 
so, with so many different machine learning tools available, it can 
be overwhelming to know which are suitable for different types of 
data and questions. Recent summaries are available for laboratory 
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(Panadeiro et al., 2021) and conservation (Tuia et al., 2022) applica-
tions, but less information is available for behavioural scientists who 
work with wild populations. The decision on which tool to employ 
can be approached by considering a few key questions (Figure 1; for 
an up-to-date list of available software see Tables S2 and S3).

In this paper we take one of the leading tools currently available, 
DeepLabCut (Mathis et al., 2018), and provide a worked example of 
its functionality with a particularly challenging dataset: that of wild 
chimpanzee and bonobo video. We do so from the perspective of a 
group of animal behaviour researchers, with substantial experience 
in working with manual coding of nuanced behaviour extraction 
from video, but only basic skills in machine learning.

Initially developed for use in mouse and drosophila behavioural 
tracking (Mathis et al., 2018), DeepLabCut has since been applied to a 
wide range of other species (rats, Clemensson et al., 2020; fish, Habe 
et al., 2021; cheetahs, Joska et al., 2021; horses, Tsuruo et al., 2020). 
DeepLabCut offers multi-animal pose estimation, a straightfor-
ward user-friendly graphical interface, and example tracking videos. 
Extracting visual data from video of wild, forest-living apes may be 
among the most challenging of tasks for machine learning: the apes 
move freely in all three dimensions of their environment, we move 
as we follow the apes, our hand-held cameras move, the lighting is 
often dark but can include dramatic contrast—with dark apes, in a 
dark forest, backlit against bright skies. And finally, the forests them-
selves are visually dense—with many visual obstacles (branches, 
trees, leaves, other apes) that themselves move. In addition, here we 
train a model that includes individuals from two closely related but 
physically distinct species: bonobos and chimpanzees, including two 

subspecies of chimpanzee (East and West African) and individuals 
of all age sex classes, as well as populations living in different hab-
itat types. A typical decision researchers must make is whether to 
increase the training set size in a set time frame by having multiple 
people mark frames. While doing this increases the size of the train-
ing set, it introduces a new aspect of noise in the data: inter-marker 
variation. We provide a basic example of this trade-off by training a 
second model. Model 2 replicates Model 1, but includes additional 
frames in the training set (27% increase) marked by a second marker. 
We provided what would be considered minimalistic training sets 
(<2000 frames; cf with, for example, 195,228 frames used to cre-
ate OpenMonkeyStudio, a pose estimator for captive primates; Bala 
et al., 2020), representing ~100–140 human coder hours to produce. 
As a result, our data and findings likely represent an outlier in terms 
of task difficulty: in essence, if our model, trained on a minimalist 
set of frames, can perform basic tracking despite the high level of 
diverse forms of visual noise in these data, it suggests similar models 
could work for most other primate behavioural video datasets.

2  |  MATERIAL S AND METHODS

2.1  |  DeepLabCut use

Multiple user guides are available for DeepLabCut, including those 
from the developers (see: DeepLabCut Github,  2021a, 2021b), as 
well as from users (e.g. Gadea, 2021). Download and installation of 
DeepLabCut and initial use of the Graphical User Interface (GUI) 

F I G U R E  1 Decision tree for software selection. Software are numbered and linked to Table S2, which provides a description of each tool, its 
previous uses and functionality. Further detailed assessment of the subset of tracking tools that provide pose estimation can be found in Table S3.
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requires that users first instal Python. The Anaconda distribution 
of Python is recommended as it includes useful pre-installed pack-
ages. While the DeepLabCut developers do provide instructions 
for installing Python and DeepLabCut from scratch (DeepLabCut 
Github, 2021c), it is useful to have a basic understanding of Python 
or the command terminal of your chosen operating system.

DeepLabCut can be used with or without specialised hardware. 
A Graphics Processing Unit (GPU) is recommended and decreases 
training time. However, standard modern computing hardware can 
be used. Alternatively, Google Colaboratory can be used to access 
a free cloud-hosted GPU. The DeepLabCut GUI is not available if 
using Google Colaboratory, and users will need a more substantive 
knowledge of Python, but example workbooks and tutorials are 
available on the DeepLabCut Youtube (https://www.youtu​be.com/
chann​el/UC2HE​bWpC_1v6i9​RnDMy​-dfA).

Once installed and opened, the GUI uses tabs to guide users 
through the process of creating new projects or opening existing 
ones. It does not, as yet, offer features such as a ‘loss graph’ that 
allows users to track model training progress (cf. SLEAP, Pereira, 
Tabris, et al.,  2020). But a simple bespoke version can be easily 
generated to assess loss once training is completed (example code 
available here: https://github.com/Wild-Minds/​DeepWild). Loss 
graphs help users to understand when to terminate model training, 
as overtraining can lead to overfitting, reducing model performance. 
DeepLabCut recommends terminating training when the loss pla-
teaus, thus the visual aid of a graph is useful.

2.2  |  Data and study subjects

We extracted video data from the Great Ape Dictionary Database 
(Hobaiter et al.,  2021). Videos were recorded between 2013 and 
2020, were all originally recorded as either high-definition or 4 K 
footage using handheld Panasonic video camcorders with a frame 
rate of 25fps (e.g. HCV770 or HCVX-F1). Original video data were 
collected from one bonobo Pan paniscus and four chimpanzee Pan 
troglodytes communities from two subspecies (East African chim-
panzees: Pan troglodytes schweinfurthi, West African chimpanzees: 
Pan troglodytes verus). While very closely related, the different Pan 
species nevertheless show characteristic differences in morphology 
and movement (Doran, 1993; Jungers & Susman, 1984).

The bonobo population included was Wamba in the Luo 
Scientific Reserve in the Democratic Republic of Congo, from which 
we included two neighbouring groups of bonobos E1- and P-group, 
who have overlapping ranges and encounter each other frequently. 
The Wamba communities' habitat is characterised by dry first 
and secondary forest (Hashimoto et al., 1998; Terada et al., 2015) 
within anthropogenic habitat (Terada et al., 2015). Three of the four 
chimpanzee communities were East African chimpanzee communi-
ties: Sonso and Waibira are both in the Budongo Forest Reserve, 
Uganda, and the M-group in the Kalinzu Central Forest Reserve, 
Uganda. Their habitats are characterised by dense medium-altitude, 
semi-deciduous, secondary-rainforest growth (Eggeling,  1947). 

The fourth chimpanzee community was Bossou, in Guinea, a West 
African chimpanzee community living in forest fragments within 
anthropogenic habitat and are filmed at an open cleaning that they 
regularly visit to crack open nuts (Matsuzawa et al., 2011).

2.3  |  Ethics

Ethical approval for original data collection and use of the Great 
Ape Dictionary Database (Hobaiter et al.,  2021) was provided by 
the University of St Andrews Animal Welfare and Ethics Committee 
(Approval code: PS15842). Ethical approval was provided by both 
the Uganda Wildlife Authority and the Ugandan National Council 
for Science and Technology (NS179) for the original data collection 
of chimpanzee video in Uganda, by the Ministère de la Recherche 
Scientifique et Technologie, for original data collection of bonobo 
video in the Democratic Republic of the Congo, and by the Ministre 
de l'Enseignement Supérieur et de la Recherche Scientifique, and 
Direction Générale de la Recherche Scientifique et de l'Innovation 
Technologique for original data collection of chimpanzee video in 
Guinea.

2.4  |  Video selection

Videos were chosen to include as much visual ‘noise’ as possible. 
‘Noise’ refers to variation that increases the difficulty in discrimi-
nating the visual input available for learning, for example noise is 
generated by variation in behaviour, and the species, age, and sex of 
the individuals. Noise is also generated by variation such as: uneven 
lighting, poor lighting, strong contrast, shadows, similarity of colour 
or texture between individual of interest and the environment, over-
lapping individuals, occluded body parts, movement of the camera, 
movement of the individual, movement of the environment. All these 
increase difficulties in the recognising and tracking of body parts for 
pose estimation. Given that our data are subject to all of these, often 
many at once, we trained our model to incorporate representative 
variation in our training set.

A typical problem researchers face is how many training frames 
are needed. In a controlled laboratory environment, DeepLabCut 
can begin tracking with just a few hundred marked frames (Lauer 
et al., 2021; Mathis et al., 2018), with successful models being cre-
ated on a few thousand frames for laboratory-based videos (e.g. 
1080 frames for dark mice on a plain white background, Mathis 
et al., 2018). However, the number of training frames needed largely 
reflects the amount of visual noise in your data. Therefore, large 
numbers of frames are required for more visually noisy data (e.g. 
>13,000 frames for macaques in an open zoo-like environment: 
Labuguen et al.,  2021; 7600 frames for multi-animal zoo-housed 
marmosets: Lauer et al., 2021; 7588 Frames for cheetahs in open 
savannah, Joska et al., 2021). However, manually marking frames re-
quires a substantial upfront investment in developing the training 
sets, and there are likely—after a point—diminishing returns in the 
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trade-off between time invested and increased model accuracy. A 
second issue is whether to use multiple human coders in establishing 
the training set—this can substantially reduce the lead-time needed 
to develop the training set, but can introduce further noise in terms 
of differences between coders (even trained coders rarely achieve 
perfect inter-observer reliability, e.g. human variability in pixel 
RMSE on marking DeepLabCut frames in mice was 3 to 4; Mathis 
et al., 2018). Here, we provide the models with a minimalist train-
ing set (<2000 frames), and train two models to investigate whether 
increased training set size was offset by multi-coder variability (see 
Table 1 for summary).

Model 1 contained 1375 training frames from 55 videos. These 
included two species (bonobos and chimpanzees) from a total of 
5 ape communities (Wamba-E1, Wamba-P, Sonso, Waibira, and 
Bossou), and all training frames were marked by one researcher. 
Model 2 was an extension of Model 1, with an additional 825 frames 
from 55 new videos, including marking by a second coder and an ad-
ditional East African chimpanzee community, Kalinzu M-group (total 
training set: 2200 frames, 110 videos, 6 ape communities).

2.5  |  Video preparation

All videos were limited to a maximum of 90 s to reduce any effect 
of video length on analysis (for test frames, marking n frames from 
a total 1000 gives a higher marked to novel ratio within videos than 
marking n frames within a total 10,000). Videos range from 6 to 88 s 
(mean = 45 s; SD = 22 s). Videos were excluded if more than 7 indi-
viduals were present to limit time investment on manual marking 
(note that even if trained on videos limited to a maximum of five 
individuals, DeepLabCut models can then track up to 100 individuals 
in novel videos).

2.6  |  Model details

Frames were marked using 18 key-points (Figure 2), which required 
an average of 2 h per video (10 or 25 frames), although this varies 
significantly with both levels of visual noise and number of individu-
als present in the frame. If a key-point was not in view of the camera, 
it was not marked for that frame.

Training was completed on a ZBook Create G7 with an Intel® 
Core™ i7-10750H (2.6 GHz base frequency, up to 5.0 GHz with 
Intel® Turbo Boost Technology, 12 MB L3 cache, 6 cores) and 32 GB 
DDR4-3200 MHz RAM. We did not deviate from the default options 

suggested for multi-animal model training. As an additional step, 
we trained a version of Model 1 on a single Nvidia Tesla V100 card 
on nodes with an Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz to 
compare training time, given additional computational power. The 
trained models from this paper are publicly available in our GitHub 
and archived in Zenodo, see Data Availability Statement for details.

2.7  |  Performance

We used mean absolute Euclidean distance to compare the model 
generated points and human-labelled points. These are produced 
by calculating the Euclidean distance between the model generated 
points and human-labelled points, for each detection. For perfor-
mance on test frames these values are reported by DeepLabCut and 
are only performed where points were predicted with a probability 
above p-cut-off of 0.6. For performance on novel video frames these 
values are reported for all detections made by the model.

2.8  |  Use 1: Performance on ‘test’ frames, DLC 
model and second human coder

DeepLabCut retains 5% of the manually marked frames users pro-
vide as a ‘test’ set. These are not included in model training and are 
used for model performance evaluation. Here performance is a com-
parison between the model derived points and those labelled by the 
human marker (in this case all marker 1). In addition to this compari-
son, we compared the performance of a second human by calculat-
ing the mean absolute Euclidean distance of the first human markers 
points with the second human markers points on the same test set.

Note that as frames are taken from some of the same videos as 
the frames that are used for model training this means the model 
has experience of the type of visual information it is being tested on. 
However, providing a model with a training set that includes a subset 
of frames from all videos that a researcher would like to code still 
represents a substantial time saving in practice (users mark a maxi-
mum of 25 frames per video in setting up training sets, the equiva-
lent of marking ~1 s of video for each video).

2.9  |  Use 2: Performance on ‘novel’ videos

Novel videos, where no frames from the video were included in 
training, represent a more challenging task. The videos may include 

TA B L E  1  Summary of training sets used in Model 1 and Model 2. We specify the number of annotators, number of videos from which 
training frames were extracted, the total number of frames marked for training, the number of species the model was trained on, and the 
test/train split used when training the model.

# Annotators # Videos # Frames # Species # Communities Train/test split

Model 1 2 55 1375 2 5 95/5

Model 2 1 110 2200 2 6 95/5
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lighting, angles, movement, distances, environments and individu-
als that the model has not encountered in training. To test perfor-
mance on novel videos, 25 frames from 9 videos (total = 250 frames) 
were manually marked by an experienced coder (CW). This gave x-y 
coordinates for each body part for each individual for each marked 
frame. We then introduced these videos to the model to generate 
the model predicted coordinates and compared performance with 
the manually marked frames. Novel videos were further categorised 
as: easy, medium and hard, depending on the amount of visual noise 
present in the video (for details see Table S4).

3  |  RESULTS

Model 1 took 28 h to train to 200,000 iterations, at which point the 
optimizer reported a loss of 0.001 on the ZBook. Training error was 
reported at 5.96 pixels, test error at 18.46 pixels (where a p cut off 

of 0.6 was applied: training error: 4.38 pixels, test error 10.12 pixels). 
A matching version of Model 1 was trained on the more computa-
tionally powerful Tesla V100 on nodes with an Intel(R) Xeon(R) Gold 
6130 CPU @ 2.10GHz. Training took a similar time frame (26.5 h) to 
train to a loss of 0.002, which occurred at 100,000 iterations.

Model 2 took 26 h to train to 200,000 iterations and a loss of 
0.001 on the ZBook. Training error was reported at 7.31 pixels, test 
error at 18.63 pixels (where a p cut-off of 0.6 was applied: training 
error: 4.6 pixels, test error 9.64 pixels).

3.1  |  Human performance

The mean absolute Euclidean distance of the second human marker 
(as compared to the original human marker) was 26.09 (SD = 14.31) 
across points. As with model performance this varied with body part 
(Table 2).

F I G U R E  2  (a) The 18 key-points marked. Each of these key points is marked, whenever visible, on each individual within the frame. 
(b) Example frame from the DeepLabCut Graphical User Interface. Here, we show 36 key-points marked on four individual East African 
chimpanzees, three adults, one infant.

(a)

(b)
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3.2  |  Model performance on test frames

Despite additional variability in coder input (2 coders) and the 
addition of a new population (Kalinzu), Model 2 (n = 2200 train-
ing frames, Figure  3a) out-performed Model 1 (n = 1375 training 
frames) across body parts (Figure 3b). Examples of Model 1 and 2 
tracking on test videos can be seen in Videos S1 and S2. Variation 
from the original human-marked training frames was substantially 
lower in both models, than that of the second human-marker, with 
mean absolute Euclidean distance values up to ~10 times smaller 
(e.g. Hip).

3.3  |  Model performance on novel videos

Examples of Model 1 and 2 tracking on novel videos can be seen 
in Videos  S5–S10 (Videos  S5–S8) represent good performance, 
videos S9 and S10 represent poor performance. Model 2 achieved 
a consistently larger number of detections across all videos than 
Model 1 (Table  3), but only achieved a smaller mean absolute 
Euclidean distance in eight of the 17 videos, although these val-
ues were typically generated from a larger number of detections 
(Table 3).

Both models experienced some difficulty stitching detections 
(e.g. detecting an elbow) into assemblies (eg- detecting it as indi-
vidual A's elbow), causing tracking to fall short on nine videos for 
model 1 (kalinzu10, kalinzu18, sonso17, sonso3, sonso4, waibira1, 
waibira17, wamba11 and no assembly for waibira15) and eight vid-
eos for model 2 (kalinzu10, kalinzu18, kalinzu20, sonso3, sonso4, 
waibira1, waibira17, wamba11).

In contrast, when considering specific body parts, Model 2 out-
performed Model 1 more consistently, with the exception of the ear 
and shoulder (8 of 10 body parts, Table 4).

4  |  DISCUSSION

Using DeepLabCut we successfully trained two models on an ex-
tremely challenging pose estimate problem: multi-animal wild forest-
living chimpanzees and bonobos across behavioural contexts from 
hand-held video footage. We provide the first successful demon-
stration of multi-animal full body pose estimation and tracking in 
wild apes, our models are robust across the two closely related Pan 
species, across individuals of diverse ages and sexes, and across a 
wide range of socio-ecological environments—including from open 
clearings to dense forest, and from static behaviour such as groom-
ing to highly dynamic behaviour such as play.

Tracking performance on test videos, videos from which some 
frames had been used in training, was substantially better than 
inter-human coder variation on similar video frames of wild chim-
panzees. Direct comparison of performance on test and novel videos 
is challenging because the videos are themselves highly variable—
thus, whether a body part is visible (therefore potentially detect-
able) or occluded also varies. Performance on entirely novel videos 
was lower, but tracking was still frequently successful, with accu-
racy in the easier body parts (ears, eyes, nose) reaching similar levels 
to that of inter-human marker variation on harder body parts (hips, 
shoulders).

Model 2 showed an improvement in detecting body points over 
Model 1 (approximately 10% more detections). Model 2 accuracy 
within this larger set of detections showed a consistent improve-
ment across 8 of 10 body parts, with mean absolute Euclidean dis-
tance typically half to three quarters that of Model 1. In addition 
to a larger training set, Model 2 included training frames marked 
by a second human coder, and an additional chimpanzee commu-
nity. DeepLabCut prioritises precision (how accurately it detected 
points) and as a result requires relatively high confidence to indicate 
a point, which can lead to lower recall (how many points it success-
fully detected) in models with homogeneous training sets. Building 
in diversity into training sets is an essential step in developing ro-
bust models and requires careful selection of video material and an 
understanding of the content of the video sets to which the model 
will be applied.

While a significant first step, there remain several limitations to 
the use of automated tracking of wild primate pose and behaviour. 
Perhaps the most significant is the time investment needed for 
model development—our models represent a first step, but still re-
quire further development before they are sufficiently robust to no 
longer require post-hoc human coder correction. However, larger 
training sets require further substantial time investment. Both 
current DeepWild models employed minimal training sets (<2000 
frames), representing approximately 110–200 person-hours of in-
vestment to produce. Model training required an additional 26–28 h, 
with additional time invested in other work (of interest, there was 
no gain in training time—to a similar loss—in using greater computa-
tional power). Given an estimated investment of 200 h, and a human 
mark-up rate of approximately 2 h for 25 frames, use of Model 2 

TA B L E  2  Mean absolute Euclidean distance between human 
coders per body part in n = 570 frames. Note that as not all body 
parts are visible in all frames the number of points per body part 
varied and is indicated by N.

Body part
Mean absolute Euclidean 
distance (SD) N

Ankle 33.44 (27.65) 41

Ear 13.36 (9.43) 63

Elbow 43.06 (35.23) 85

Eye 7.05 (9.06) 40

Hip 48.83 (27.05) 48

Knee 23.95 (25.89) 88

Neck 27.12 (13.21) 43

Nose 5.31 (2.97) 43

Shoulder 29.81 (16.54) 66

Wrist 29.06 (22.44) 53

all 26.10 (14.31) 570
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would pay-off in terms of time investment after just 40–50 min of 
video, a fraction of that coded in many studies of animal behaviour. 
Nevertheless, training set development costs may still represent 
a barrier to initial access. Given the strong model performance on 
the test frames, one approach for behavioural researchers who 
wish to start to employ tracking in very large video datasets is to 
manually mark a small subset of frames for each video they plan to 
track. Doing so offers a relatively low-cost easy point of entry to the 
use of machine learning tools for rapidly generating highly accurate 
pose estimation and behaviour tracking data. The enhanced flexibil-
ity needed to track fully novel videos requires investment in a more 
substantial training set. One approach here is to consider carefully 
what body parts may be of interest across projects, and then mark-
ing a full set, even where only a few are required for any one project. 
While doing so increases marking time in developing any individual 
training set, subsequent training sets can be stitched together with 
existing ones to produce consecutively more powerful models. At a 
certain point model performance is likely to be such that no further 
training frames are needed. An additional benefit of this multi-set 

building approach is that the training sets can be combined in dif-
ferent ways to tailor a particular model to a specific need—for ex-
ample, particular individuals, species, or socio-ecological contexts. 
Multi-set building may be particularly effective if it can be adopted 
collaboratively across research groups—for example in research 
consortium such as ManyPrimates (Altschul et al., 2019), mitigating 
the cost for any one individual researcher or group, while rapidly 
producing large training sets and highly flexible models. A similar 
approach is taken with DeepLabCut's model zoo (Kane et al., 2020), 
where base models can be contributed and downloaded by users, 
who can then further refine them to their specific needs. Another 
means to offsetting development costs is to employ a community-
science approach—here friendly online graphical user interfaces 
allow members of the public to contribute their time to research 
projects. Already used intensively with camera-trapping work (e.g. 
Chimp&See; Arandjelovic et al.,  2016) for species identification 
and behaviour classification, platforms such as Zooniverse (www.
zooni​verse.org) provide scientists with an easy way to host online 
community science projects, including built in tools to assess the 

F I G U R E  3  Model performance across 
body parts. Mean absolute Euclidean 
distance values for Model 1 (a), and Model 
2 (b) across body parts (labelled as RMSE 
by DeepLabCut). Figure shows values 
between 0 and 25, full range was larger.

(a)

(b)
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reliability of the data contributed. To aid in these efforts we have 
made the base-models used in this paper available open-access and 
have collaborated with the DeepLabCut developers to allow open-
access online marking of frames from our dataset, which will be reg-
ularly added into the base-model to improve performance (see Data 
Availability Statement for further details).

The use of pose-estimation tools for tracking movement in ani-
mal behaviour represents just a first step in analysis, generating large 
quantities of positional data that then need further analysis to detect 
particular patterns of movement, for example: a reach gesture, or 

dipping a water-tool. Several tracking and pose estimation tools now 
offer simple behavioural analyses options (see Tables S2 and S3). Once 
again, pre-existing options are typically available only for frequently 
used behaviour in model lab species (e.g. gait analysis in rodents; 
Adonias et al.,  2019), but some tools now incorporating labelling 
of behaviour during key-point marking of training sets to allow for 
more bespoke behavioural analyses (e.g. Junior et al., 2012).

The automated coding of pose and movement offers faster, more 
accurate and robust ways to support current approaches to coding 
behaviour in wild primates. Moreover, the generation of ‘big data’ 

TA B L E  3  Model performance across novel videos. Model 1 contained 1375 frames from 55 videos across 5 Pan communities labelled by 
a single coder, and Model 2 contains 2200 frames from 110 videos across 6 Pan communities labelled by two coders. Videos were classified 
for difficulty on the basis of visual noise factors present. MAED = mean absolute Euclidean distance.

Video Difficulty

Model 1 Model 2

MAED (SD) n detections MAED (SD) n detections

Bossou7 Easy 109.3 (212.1) 470 27.4 (45.0) 541

Bossou8 Easy 44.6 (74.8) 175 31.9 (55.4) 279

Kalinzu19 Easy 80.3 (71.3) 148 78.8 (71.3) 214

Sonso17 Easy 19.1 (21.2) 59 15.6 (13.1) 65

Waibira7 Easy 26.3 (40.6) 55 49.9 (123.7) 83

Wamba16 Easy 27.9 (42.3) 136 69.9 (76.6) 93

Kalinzu18 Medium 94.2 (13.1) 3 161.7 (108.7) 4

Kalinzu20 Medium 56.5 (62.8) 62 48.7 (60.4) 63

Sonso3 Medium 19.4 (23.0) 33 172.3 (258.8) 17

Sonso6 Medium 23.2 (88.3) 227 85.5 (172.6) 189

Waibira17 Medium 16.5 (22.0) 152 43.4 (130.3) 154

Kalinzu10 Hard 62.6 (47.6) 4 31.7 (57.4) 7

Sonso4 Hard 11.1 (14.4) 24 26.6 (30.1) 9

Sonso9 Hard 31.3 (80.3) 109 88.5 (93.6) 64

Waibira1 Hard 134.7 (246.1) 15 131.4 (143.3) 15

Waibira18 Hard 74.4 (142.0) 91 101.7 (165.5) 159

Wamba11 Hard 170.8 (408.0) 38 82.7 (126.1) 24

All 60.4 (144.8) 1801 54.5 (104.8) 1980

Body part

Model 1 Model 2

MAED (SD) n detections MAED (SD) n detections

Ankle 86.9 (131.6) 66 53.8 (99.7) 51

Ear 40.9 (117.1) 219 58.9 (118.5) 357

Elbow 109.5 (199.4) 143 53.0 (96.6) 247

Eye 32.8 (128.8) 389 26.9 (84.1) 247

Hip 85.4 (89.5) 38 67.0 (81.7) 105

Knee 87.7 (147.2) 103 69.8 (118.8) 77

Neck 78.2 (162.8) 154 53.6 (84.4) 170

Nose 48.7 (166.5) 222 37.4 (103.5) 140

Shoulder 47.4 (80.7) 345 70.0 (127.9) 362

Wrist 116.7 (207.2) 122 55.3 (81.6) 224

All 60.4 (144.7) 1801 54.5 (104.8) 1980

TA B L E  4  Model performance across 
body parts within novel videos. Model 1 
contained 1375 frames from 55 videos 
across 5 Pan communities labelled by a 
single coder, and Model 2 contains 2200 
frames from 110 videos across 6 Pan 
communities labelled by two coders. 
Videos were classified for difficulty on 
the basis of visual noise factors present. 
MAED = mean absolute Euclidean 
distance.
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on previously unattainable timescales together with the availability 
of collaborative large-scale primate behaviour video data-arks (e.g. 
Arandjelovic et al., 2016; or Hobaiter et al., 2021) allows us to ask 
new questions and model new processes, for example exploring 
variation in both space, across populations and species, and in time, 
across generations. For example, analyses of rhythmic movements, 
such as gait, lip-smacking, or drumming (cf. Eleuteri et al.,  2022; 
Pereira, Kavanagh, et al.,  2020; Schweinfurth et al.,  2022); analy-
ses of gestural signals would benefit from systematic descriptions 
of variation in movement patterns within and between action types, 
or features such as emphasis and arousal (cf. Graham et al., 2022; 
Grund et al., 2023); and analyses of variation in movement and the 
efficiency of motion paths could be applied to questions about the 
ontogenetic development and acquisition of tool-use. We describe 
the new tools available in this rapidly evolving landscape and suggest 
guidance for tool selection. With DeepWild we show that, without 
requiring specific expertise in machine learning, pose estimation and 
movement tracking of free-living wild primates in visually complex 
environments is now an attainable goal for behavioural researchers.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table S1. Examples of machine learning tools for automated species 
and individual identification. Twelve commonly used tools, we 
describe which species they have been used for, whether additional 
training by the user is required, and whether they can re-identify 
individuals.Table S2. A comprehensive list of machine learning tools 
currently available for automating animal tracking. We describe 
whether they are able to track multiple animals; whether they have 
been used on ‘Wild’ data, which refers to their use in free-living 
animals in non-controlled environments including large-scale natural 

sanctuaries as well as fully wild individuals, but not those living in 
zoos or smaller open enclosures. We list the species for which the 
tool has currently been used, the Tracking Style, and additional 
comments on functionality or requirements. This list is designed to 
be used in conjunction with Figure 1, which provides decision-making 
guidance on which tool(s) may be suitable for a particular use.Table 
S3. Detailed description of the usability and functionality of the tools 
currently available for automated animal pose estimation across 
species. We consider the specific function of the tool, whether it 
provides a graphical user interface (GUI); whether users are required 
to have a understanding of coding languages such as Python; whether 
multi-animal (MA) tracking is available; the format of data output; 
whether the user specified the features to be tracked; whether it 
requires access to a specific graphics card; whether, in the absence of 
this, it is compatible with Google Colaboratory (colab); whether it has 
prior use with ‘Wild’ or free-roaming individuals in visually complex 
environments; what documentation and tutorials are currently 
available; and any other particular pros and cons associated with 
current functionality. Note that we do not include three additional 
tools that are only currently suitable for pose-estimation with specific 
species: Open Monkey Studio (macaques), AlphaTracker (mice) and 
DeepFly3d (flies).Table S4. Classification of novel videos according to 
visual noise.Video S1. Model 1 tracking of test video Sonso10. In this 
video, four East African chimpanzees sit in the undergrowth, the two 
immature individuals wrestle and play. There are movements of the 
camera and undergrowth, and the individuals move back and forth 
across one another. Some frames from this video were included in the 
training set, and tracking is very good throughout. Video is available 
here: https://tinyu​rl.com/DeepW​ildvi​deos.
Video S2. Model 2 tracking of test video Sonso10. In this video four 
East African chimpanzees sit in the undergrowth, the two immature 
individuals wrestle and play. There are movements of the camera 
and undergrowth, and the individuals move back and forth across 
one another. Some frames from this video were included in the 
training set, tracking is excellent throughout with increased stability 
of points over Model 1. Video is available here: https://tinyu​rl.com/
DeepW​ildvi​deos.
Video S3. Model 1 tracking of test video Wamba10. In this video 
three bonobos sit in dense undergrowth. The video was classified 
as ‘hard’ and some frames from this video were included in the 
training set. This is at the poor end of tracking performance, the 
main key points are well tracked throughout, but some body parts 
are occasionally missed or lost, and the model mistakes some parts 
of the environment for bonobos, adding out of place key-points that 
would require manual cleaning. Video is available here: https://tinyu​rl.​
com/DeepW​ildvi​deos.
Video S4. Model 2 tracking of test video Wamba10. As in video S3, 
three bonobos sit in dense undergrowth. The video was classified as 
‘hard’ and some frames from this video were included in the training 
set. While there are still some problems with tracking, for example 
out of place key-points, tracking performance is clearly improved 
over that of Model 1. Video is available here: https://tinyu​rl.com/
DeepW​ildvi​deos.
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Video S5. Model 1 tracking of novel video Waibira17. Two East 
African chimpanzees walk near to the camera, the video is short and 
was entirely novel to the model, tracking is very good throughout. 
Video is available here: https://tinyu​rl.com/DeepW​ildvi​deos
Video S6. Model 2 tracking of novel video Waibira17. As in video S5, 
two East African chimpanzees walk near to the camera, the video 
is short and was entirely novel to the model, tracking is excellent 
throughout with an improvement of tracking of the second partially 
obscured individual over Model 1. Video is available here: https://
tinyu​rl.com/DeepW​ildvi​deos.
Video S7. Model 1 tracking of novel video Sonso6. Three East African 
chimpanzees are in an open area near to the road. One individual 
runs quickly across, the camera pans and the two individuals are 
seen next two each other against the forest. The video was entirely 
novel to the model and tracking is very good throughout. Video is 
available here: https://tinyu​rl.com/DeepW​ildvi​deos.
Video S8. Model 2 tracking of novel video Sonso6. As in video S7, 
three East African chimpanzees are in an open area near to the 
road. One individual runs quickly across, the camera pans and the 
two individuals are seen next two each other against the forest. 
The video was entirely novel to the model and tracking is excellent 
throughout, with increased stability of detections over Model 1. 
Video is available here: https://tinyu​rl.com/DeepW​ildvi​deos.
Video S9. Model 1 tracking of novel video Sonso4. As in video S7, 
Three East African chimpanzees are on a branch in the canopy. 
The individuals are back-lit, there are obstructions to the view, 
overlapping individuals, camera angle changes and zoom. The video 
was classified as ‘hard’ and was entirely novel to the model. Tracking 
performance varied across the individuals, but was poor for the two 
on the right, there are very few out of place key-points, but some 
body parts are consistently not recognised or mis-identified. Video 

is available here: https://tinyu​rl.com/DeepW​ildvi​deos.
Video S10. Model 2 tracking of novel video Sonso4. As in video 
S7, three East African chimpanzees are on a branch in the canopy. 
The individuals are back-lit, there are obstructions to the view, 
overlapping individuals, camera angle changes and zoom. The video 
was classified as ‘hard’ and was entirely novel to the model. Tracking 
performance varied across the individuals, but was still poor for the 
two on the right; however, there is a clear improvement over Model 
1 with fewer mis-identifications and more stable key-point tracking 
of the more difficult individuals. Video is available here: https://tinyu​rl.​
com/DeepW​ildvi​deos
Video S11. Model 1 tracking of test video Sonso5. Two East African 
chimpanzees walking through a clearing in the forest. The area is 
well lit with little obstruction. Some frames from this video were 
included in the training set, tracking is satisfactory throughout. 
Video is available here: https://tinyu​rl.com/DeepW​ildvi​deos
Video S12. Model 2 tracking of test video Sonso5. Two East African 
chimpanzees walking through a clearing in the forest. The area is 
well lit with little obstruction. Some frames from this video were 
included in the training set, tracking is satisfactory throughout. 
Video is available here: https://tinyu​rl.com/DeepW​ildvi​deos.
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