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Abstract

This thesis studies two decision problems for finitely presented groups. Using a standard RAM
model of computation, in which the basic arithmetical operations on integers are assumed to
take constant time, in Part I we develop an algorithm IsConjugate, which on input a (finite)
presentation defining a hyperbolic group G, correctly decides whether w1 2 X⇤ and w2 2 X⇤

are conjugate in G, and if so, then for each i 2 {1, 2}, returns a cyclically reduced word ri

that is conjugate in G to wi, and an x 2 X⇤ such that r2 =G x�1r1x (hence if w1 and w2 are
already cyclically reduced, then it returns an x 2 X⇤ such that w2 =G x�1w1x). Moreover,
IsConjugate can be constructed in polynomial-time in the input presentation hX |Ri, and
IsConjugate runs in time O((|w1|+ |w2|) ·min{|w1|, |w2|}).

IsConjugate has been implemented in the MAGMA software, and our experiments show
that the run times agree with the worst-case time complexities. Thus, IsConjugate is the most
efficient general practically implementable conjugacy problem solver for hyperbolic groups.

It is undecidable in general whether a given finitely presented group is hyperbolic. In Part
II of this thesis, we present a polynomial-time procedure VerifyHypVertex which on input
a finite presentation for a group G, returns true only if G is hyperbolic. VerifyHypVertex

generalizes the methods from [34], and in particular succeeds on all presentations on which
the implementation from [34] succeeds, and many additional presentations as well. The algo-
rithms have been implemented in MAGMA, and the experiments show that they return a positive
answer on many examples on which other comparable publicly available methods fail, such as
KBMAG.
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I, Šimon Jurina, have obtained any third-party copyright permissions that may be required in order to
allow such access and migration, or have requested the appropriate embargo below.
The following is an agreed request by candidate and supervisor regarding the publication of this thesis:
PRINTED COPY
No embargo on print copy
ELECTRONIC COPY
No embargo on electronic copy

Date: .......................

Signature of candidate: Signature of supervisor:

09/03/2023

Colva Roney-Dougal
13/3/2023

Colva Roney-Dougal
13/3/2023



Underpinning Research Data or Digital Outputs

Candidate’s declaration
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Chapter 1

Introduction

In this thesis we study two problems for finitely presented groups. In the description of these
problems, an algorithm is a computational method consisting of finitely many steps that always
returns a definite answer, while a procedure is a computational method that might consist of
infinitely many steps, and is not guaranteed to return a definite answer. Furthermore, a finitely
presented group is hyperbolic if and only if its Dehn function is linearly bounded, and if X is
a finite set, then X⇤ denotes the set of all words over X .

1. Given a finite presentation hX |Ri defining a hyperbolic group G, develop an algorithm
that decides in finite time, whether or not two words w1 2 X⇤ and w2 2 X⇤ are conju-
gate in G.

2. Given a finite presentation hX |Ri of a group G, produce a procedure that returns in
finite time a positive answer only if G is hyperbolic, else it returns fail – meaning that
G might be hyperbolic, but the procedure is unable to prove it.

In both Problems 1-2, we further want our algorithms to be at worst polynomial-time (in partic-
ular in Problem 1 quadratic time), and to be practically implementable. We emphasize that we
assume the RAM model of computation, in which the basic arithmetical operations on integers
can be performed in constant time. This is a common assumption when analysing complexity
of algorithms. For example, in [2] it is used as default. The assumption is reasonable as long as
we are not working with integers outside of range that can be represented with a given number
of digits, so on a typical machine, integers with absolute value larger than 231. For example in
Problem 1, it is a reasonable assumption for input words not longer than about 231.

There are at least two types of decision problems for groups. Type one: given a (finite)
presentation of a group G, does G have some property P ? Type two: given a (finite) group
presentation P and a finite list of words wi in the generators of P , does the list have a property
P ? We say that a decision problem is decidable if and only if there exists an algorithm to solve
it.

The following three decision problem proposed by Max Dehn in 1911 (see [15]) turned out
to be fundamental in group theory.

1



2 Chapter 1: Introduction

Dehn 1 Given a group G with a finite presentation hX |Ri and a word w, is w equal to the
identity in G (the Word Problem)?

Dehn 2 Given a group G with a finite presentation hX |Ri, and two word w1 and w2, are w1 and
w2 conjugate in G (the Conjugacy Problem)?

Dehn 3 Given two finite presentations G1 = hX1 |R1i and G2 = hX2 |R2i, are G1 and G2

isomorphic (the Isomorphism Problem)?

In 1912 (see [16]) he developed an algorithm that solves both the word and the conjugacy prob-
lem for fundamental groups of closed orientable two-dimensional manifolds of genus greater
or equal to two. In 1950s and 1960s several authors extended Dehn’s algorithm to solve the
word and the conjugacy problem for group presentations satisfying various small cancellation
conditions (see [30, 41, 50]). Both the word problem and the conjugacy problem, are however,
undecidable in general. Novikov in 1955 (see [46]) proved that there exists a finitely presented
group for which the word problem is undecidable. It follows immediately that the conjugacy
problem is also undecidable, since we cannot decide whether a given element is conjugate to
the identity. In 1958, Boone independently provided a different proof of the undecibility of the
word problem (see [5]).

The undecidability of the word and the conjugacy problem is an instance of a more general
and surprising phenomenon that most ‘reasonable’ properties of finitely presented groups are
undecidable.

Definition 1.0.1. A property P is a Markov property of finitely presented groups if P satisfies
the following 3 conditions.

1. P is preserved by isomorphism.

2. There exists a finitely presented group with property P .

3. There exists a finitely presented group that does not embed into any finitely presented
group with property P .

The Adian-Rabin theorem states that Markov properties are undecidable:

Theorem 1.0.2. (The Adian-Rabin Theorem) Let P be a Markov property of finitely presented
groups. Then there does not exist an algorithm that, given a finite presentation hX |Ri, decides
whether or not the group defined by hX |Ri has property P .

The Adian-Rabin theorem was first proved by Adian in 1955 (see [1]), and independently,
by Rabin in 1958 (see [48]). Examples of Markov properties are: being trivial, being finite,
being abelian, being finitely presented with solvable word problem, being hyperbolic.

Thus, it is undecidable in general whether a given finitely presented group is hyperbolic.
That is why our goal in Problem 2 is to develop a procedure that returns a positive answer
on as many group presentations as possible that define hyperbolic groups, but to not develop
an algorithm, since that is impossible in general. Also, note that as being a trivial group is
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a Markov property, the isomorphism problem is also undecidable in general. However, many
important decision problems are decidable for hyperbolic groups, even for the more general
class of relatively hyperbolic groups. In his seminal article (see [31]) Gromov showed that the
word and the conjugacy problem are decidable for hyperbolic groups. In more recent papers
(see [13, 14]) Dahmani and Guirardel proved that the isomorphism problem for hyperbolic
groups is also decidable. Thus, all Dehn’s important decision problems have been positively
resolved for hyperbolic groups.

Let G be a hyperbolic group relative to a collection of its subgroups H1, . . . , Hm. Farb
in [25] proved that the word problem is solvable for G provided that it is solvable for each
of the subgroups H1, . . . , Hm. More generally, in the influential monograph on relatively
hyperbolic groups (see [47]), Osin showed that the membership problem is solvable for each
Hi (the membership problem for a subgroup K of a group H is to decide whether a given
element h 2 H satisfies h 2 K). At around the same time, Bumagin (see [9]) showed that the
conjugacy problem for G is solvable if it is solvable for each Hi.

Compressed decision problems for hyperbolic and relatively hyperbolic groups have also
been studied recently. The classical decision problems for groups such as the word and the
conjugacy problem are often challenging as huge intermediate words might arise during the
computation. These words are sometimes highly compressible, and one can try to compute
with these condensed representatives instead of the words themselves. Many authors success-
fully developed theories of the compression techniques in group theory in recent years (see
[18, 21, 35, 36, 40, 44, 45]). In particular, Holt et al. in [35] showed that the compressed word
problem for hyperbolic groups is solvable in polynomial-time. Finally, in [36] Holt and Rees
showed that the compressed word problem in a group that is hyperbolic relative to a collection
of free abelian subgroups is also solvable in polynomial time.

One of the main ideas in our solutions to Problems 1-2 is representing groups via finite
pregroup presentations (first defined in [34], see Definition 2.3.14). The concept of pregroups
was introduced by Stallings in [53]. The work of Rimlinger (see [49]) provides an extension
of the theory that enables us to view a group G, given by a finite pregroup presentation, as a
quotient of a virtually free group, and not just as a quotient of a free group. We can then ignore
any failure of small cancellation on a certain subset of relators of G, leading to a generalisation
of small cancellation theory (see for example [42, Chapter 5]).

Part I of this thesis studies Problem 1. The first solution to the conjugacy problem for hy-
perbolic groups was published by Gromov in the aforementioned article [31], the second by
Gersten and Short [27] in the more general context of biautomatic groups. Both of these algo-
rithms run in exponential time in the length of the input words. In [7], Bridson and Haefliger
developed a polynomial-time conjugacy problem solver (as it is given its complexity is O(n3),
where n is the length of the input words, but it can be improved to O(n2)). Finally, Epstein and
Holt describe a linear-time solution in [24] (the second author together with Buckley provided
a linear time solution for finite lists of group elements in [8]).

However, even though these algorithms are great accomplishments, only the solution of



4 Chapter 1: Introduction

Gersten and Short has been implemented (by Wakefield, see [55, Chapters 5 & 6]). In [43],
Marshall developed and implemented a more efficient algorithm, but it provides a solution
only for elements with infinite order and despite the fact it runs fast on typical examples, it
is not theoretically a linear-time algorithm. Moreover, both of these algorithms as well as the
algorithm of Epstein and Holt assume that we can precompute an automatic structure of the
input group, but the time complexity of the currently best known algorithm KBMAG (see [33])
for finding these automatic structures is not bounded in the size of the input.

We give a new method for solving the problem, which gives a quadratic time solution, and
as far as we know it is currently the most efficient general practically implementable conjugacy
problem solver for hyperbolic groups. (See Definition 2.6.14 of a valid pregroup presentation –
we shall see that groups defined by valid pregroup presentations are hyperbolic, and Definition
3.1.15 of a cyclically P-reduced word).

Theorem 1.0.3. Let G be a group defined by a valid pregroup presentation P = hX� | VP [Ri,
and let r := max{|R| : R 2 R} be the length of the longest relator in R. Then it is possi-
ble to construct in time O(r4|R2||X|9 + r2|R||X|11) an algorithm IsConjugate, which
correctly decides whether w1 2 X⇤ and w2 2 X⇤ are conjugate in G and, if so, then for
each i 2 {1, 2}, returns a cyclically P-reduced word ri that is conjugate in G to wi, and
an x 2 X⇤ such that r2 =G x�1r1x (hence if w1 and w2 are already cyclically P-reduced,
then it returns an x 2 X⇤ such that w2 =G x�1w1x). Moreover, IsConjugate runs in time
O((|w1|+ |w2|) ·min{|w1|, |w2|}).

We shall prove Theorem 1.0.3 in Section 6.4 by using new theory developed in Chapters
3-6. Furthermore, we implemented IsConjugate in the MAGMA software (see [6]), and the
reported run times (see Chapter 7) agree with Theorem 1.0.3.

In Part II of this thesis, we describe a new polynomial-time procedure VerifyHypVertex

that seeks to find a linear bound on the Dehn function of a finitely presented group. VerifyHyp

Vertex is the most general polynomial-time procedure for proving hyperbolicity of finitely
presented groups, and our experiments show that it returns a positive answer on all presenta-
tions on which the RSymVerify procedure developed by Holt et al. in [34] succeeds. Ad-
ditionally we show that there are many presentations on which it succeeds but either RSym

Verify or (other comparable publicly available method) KBMAG fails. Also, the iterative
nature of VerifyHypVertex allows the user to choose how much work the algorithm will
do.

We build on the theory of [34], and work with a new type of van Kampen diagrams (defined
over pregroup presentations). The general idea used in our algorithms is to assign curvature to
vertices, edges and faces of a van Kampen diagram � in such a way that the overall curvature
of � sums to 1; vertices, edges and the external face of � have curvature 0; faces of � labelled
by a pre-determined subset of the relators have also curvature 0; and faces of � labelled by
other relators, that are sufficiently far from the boundary of � have curvature smaller than �"
for some " 2 R>0. If we can achieve this for a suitable set of van Kampen diagrams, then we
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obtain a linear bound on the Dehn function, thus proving that the input presentation defines a
hyperbolic group.

The following theorem is the main result of Part II (see Definition 2.3.20 for the meaning
of I(R)).

Theorem 1.0.4. Let G be a group given by a finite pregroup presentation P = hX� | VP | Ri
such that I(R) = R for all R 2 R, and let h � 1.

If VerifyHypVertex returns true on input P on iteration i for some i  h, then G is
hyperbolic, and an explicit bound on the Dehn function of G can be calculated. Moreover, the
time complexity of VerifyHypVertex is O(r9|R|9|X|9), where r := max{|R| : R 2 R}.

Theorem 1.0.4 will be proved in Section 11.3 by applying new results presented in Chapters
9-11. VerifyHypVertex has been implemented in MAGMA, and our experiments (see Chapter
12) confirm that there are many presentations on which it succeeds but either RSymVerify

or KBMAG fails.



Chapter 2

Preliminaries and notation

In this chapter we give definitions and notation that we shall use throughout this thesis. We split
the chapter into 6 sections: Section 2.1 recalls basic concepts from the theory of metric spaces,
Section 2.2 gives two equivalent definitions of hyperbolicity of a finitely generated group,
Section 2.3 presents the concept of pregroups and pregroup presentations, Section 2.4 presents
a new result that the universal group (see Definition 2.3.4) of a finite pregroup satisfying a
certain technical condition is isomorphic to a free product of finitely many factors, with each
factor a finite or an infinite cyclic group, Section 2.5 presents definitions of coloured diagrams
over pregroup presentations, and Section 2.6 presents the concept of curvature distributions
schemes.

2.1 Metric spaces

In this section we present the elementary theory of metric spaces that we shall use in this thesis.
We took the definitions mostly from [11].

We start by recalling the definition of a metric space.

Definition 2.1.1. [11, Definition 1.1.1 & Example 1.1.2] A metric space is a pair (X, d) where
X is a set, and d : X ⇥X ! [0,1) is a function, called a metric, that satisfies the following
conditions, for all x, y, z 2 X:

(a) d(x, y) = d(y, x);

(b) d(x, y) = 0 if and only if x = y;

(c) d(x, z)  d(x, y) + d(y, z).

If Y ✓ X , then the pair (Y, d0) with d0 : Y ⇥ Y ! [0,1) such that d0(x, y) = d(x, y) for all
x, y 2 Y is a metric space, called a sub-space of (X, d).

We shall work extensively in this thesis with objects embedded in Euclidean spaces:

6



2.1. Metric spaces 7

Example 2.1.2. The n-dimensional Euclidean space Rn is equipped with the Euclidean metric
d defined as follows, for all x = (pi)ni=1, y = (qi)ni=1 2 Rn:

d(x, y) =

vuut
nX

i=1

(pi � qi)2.

When n = 1, the subset (0, 1) ✓ R is called the open unit interval.

Definition 2.1.3. [11, Definition 1.1.6] Let (X, d) be a metric space. The open ball of radius
r centred at a point x 2 X , denoted by BX(x, r), is defined as

BX(x, r) = {y 2 X | d(x, y) < r}.

A subset Y ✓ X is open if for every y 2 Y there exists an r > 0 such that BX(y, r) ✓ Y .
A subset Y ✓ X is closed if its complement X \ Y is open.

Example 2.1.4. The ball BR2(0, 1) is called the open unit disc.

Definition 2.1.5. [11, Definition 1.1.12] Let Y be a subset of a metric space (X, d). The
interior of Y , denoted by Y �, is the set

Y � =
[

{G : G is open and G ✓ Y }.

The closure of Y , denoted by Y , is the set

Y =
\

{F : F is closed and F ◆ Y }.

Finally, the boundary of Y , denoted by @(Y ), is the set

@(Y ) = Y \X \ Y

.

Definition 2.1.6. [11, [Definitions 1.3.1 & 1.3.11] Let (X, d1) and (Y, d2) be metric spaces. A
function f : X ! Y is said to be continuous at a point x 2 X if for every " > 0 there exists
a � > 0 such that if d(x, a) < �, then d(f(x), f(a)) < ". The function f is continuous if it is
continuous at every point of X .

A function f : X ! Y is said to be a homeomorphism if f is bijective and both f and f�1

are continuous. Two metric spaces are homeomorphic if there exists a homeomorphism from
one to the other.

We shall use the following terminology (based on [42, Chapter 5]) in Part 1 of this thesis
when working with coloured diagrams defined in Section 2.5.

Definition 2.1.7. A vertex is a point of R2. An edge is a bounded subset of R2 homeomorphic
to the open unit interval. A region is a bounded subset of R2 homeomorphic to the open unit
disc.
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A path is a sequence p = v0, e1, v1, . . . , vn�1, en, vn of vertices vi and edges ei such that
for 1  i  n, we have @(ei) = {vi�1} [ {vi}. A path can be empty, or consist of a single
vertex. The vertices v0 and vn are the endpoints of p. If v0 = vn, then we say that p is closed, or
sometimes, that p is a cycle (we emphasize that a cycle may have a repeating vertex that is not
its endpoint). The inverse path of p, denoted by p�1, is the path p�1 = vn, en, . . . , e1, v0. We
write |p| for the length of p, which is the number of edges of p (note that |p| = 0 if p contains
no edge). To simplify notation, if a path p = v0, e1, v1, . . . , vn�1, en, vn satisfies |p| � 1,
then we often just write p = e1e2 . . . en. Then a sub-path q of p is either a path ei . . . ej for
1  i  j  n, or a single vertex of p. A path v0, e1, v1, . . . , vn�1, en, vn is simple if it does
not have repeating vertices other than the endpoints, i.e. vi = vj and i < j implies that i = 0

and j = n. If we say that a closed path p is of the form p1p2 . . . pn, then p is a sequence of
simple sub-paths pi.

Lemma 2.1.8. Suppose that p = e1 . . . en is a path. Then (1, . . . , n) contains a non-empty
sub-sequence (i1, . . . , im) such that q = ei1 . . . eim is a simple path with the same endpoints
as p.

Proof. The proof is by induction on n. If n = 1, then p is simple, so take q = p. Assume that
the lemma holds for n�1. If p is simple, then we can take q = p, so assume that p is not simple.
Then there exists a closed sub-path r = ei . . . ej 6= p of p. Consider a path p0 obtained by
deleting the whole of r except its endpoints from p, i.e. the path p0 = e1 . . . ei�1 . . . ej+1 . . . en.
By induction (1, . . . , i� 1, . . . , j + 1, . . . , n) contains a non-empty sub-sequence (i1, . . . , im)

such that q = ei1 . . . eim is a simple path with the same endpoints as p0. But note that p0 has
the same endpoints as p, and (i1, . . . , im) is a sub-sequence of (1, . . . , n), so we are done. ⌅

In [11, Definition 1.5.1] connected metric spaces are defined. We extend the definition and
include familiar definitions of simply-connected and annular subsets of R2.

Definition 2.1.9. A metric space (X, d) is connected if there are no subsets of X that are both
simultaneously open and closed other than X and ;. If Y ✓ X , then Y is connected if (Y, d)
is connected. If Y is connected and is properly contained in no other connected subset, then
we say that Y is a component. If Y is not connected, then we say that Y is disconnected.

A connected subset X ✓ R2 is called

1. simply-connected if R2 \X is connected;

2. annular if R2 \X is comprised of two components.

We conclude this section with the definition (taken from [37]) of a geodesic metric space
and the concept of a graph metric defined on a Cayley graph of a group (taken from [3, Chapter
0]) that we shall use in Section 2.2 to define a hyperbolic group.

Definition 2.1.10. A metric space (X, d) is called geodesic if for all x, y 2 X there exists
a distance preserving bijection f : [0, k] ! X such that f(0) = x and f(k) = y, where
k = d(x, y). The image of f is called a geodesic path from x to y, written as [xy].
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Example 2.1.11. Let G be a group generated by a finite set X , and let � = �(G,X) be the
Cayley graph of G. Define the graph metric d on � by assigning length 1 to each edge, and
defining the distance between two points to be the length of the shortest path between them.
Then as G is finitely generated and � is connected, (�, d) is a geodesic metric space.

2.2 Hyperbolic groups

The notion of hyperbolic groups was introduced and developed by Mikhail Gromov in 1987
(see [31]). There are a number of good sources for an introduction into theory of hyperbolic
groups. Beside [31] classic texts include for example [12] and [28]. For the development
of basic properties of hyperbolic groups, we recommend [3]. Another good reference is [37,
Chapter 6], which presents some useful results for our work in this thesis.

Let G be a group generated by a finite set X , and let � = �(G,X) be the Cayley graph
of G. Recall from Example 2.1.11 that � equipped with the graph metric d defines a geodesic
metric space. So we let a geodesic triangle xyz in � consist of three points x, y, z with geodesic
paths [xy], [yz], [zx]. The hyperbolicity of � (and hence of G) can be defined in terms of
‘slimness’ of geodesic triangles.

Definition 2.2.1. We say that G (and �) is �-hyperbolic if each geodesic triangle xyz of � is
�-slim: there exists a � > 0 such that for any point p on one of the sides of xyz, there is a point
q in the union of the other two sides of xyz with d(p, q) < �.

Crucially, in [31] Gromov showed that hyperbolicity is independent of the choice of gen-
erators.

Theorem 2.2.2. (Gromov) If G is hyperbolic and � is a Cayley graph of G, then � is �-
hyperbolic for some � > 0.

Moreover, it was proved by Rips that every hyperbolic group is finitely presented, see [12,
Theorem 2.3, Chapter 5].

There are several equivalent definitions of hyperbolicity of a finitely generated group. The
one that we shall use is defined with respect to the linearity of the Dehn function.

Definition 2.2.3. [37, Chapter 3] Let G be a group defined by a finite presentation Q =

hX |Ri, and let F = F (X) be the free group on X . A word w over X satisfies w =G 1

if and only if there exist Ri 2 R±1 and ui 2 F (X), 1  i  k, such that

w =F u�1
1 R1u1 · · ·u�1

k Rkuk.

We call the expression on the right-hand side a factorisation of w of length k over Q (so a
factorisation of w of length k is a product of k conjugates of relators in R±1). The area of w
with respect to Q, written as Area(w,Q), is the length of the shortest factorisation of w over
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Q. The Dehn function of Q is defined as follows:

f : N ! N

n 7! max{Area(w,Q) : |w|  n}.

It is a standard result that the linearity of the Dehn function is independent of the choice of
the presentation for a given group G. It has also been shown (for example, see [37, Theorem
6.5.3]) that there are no groups with sub-quadratic Dehn functions that are greater than linear,
i.e. of the form n 7! An↵ +B with A,B > 0 and ↵ 2 (1, 2).

The key result is that linearity of the Dehn function implies hyperbolicity.

Theorem 2.2.4. [37, Theorem 6.6.1] For a finitely generated group G with a Cayley graph
� = �(G,X) the following are equivalent, and hence each provides a definition of hyperbol-
icity.

1. There exists a � > 0 such that each geodesic triangle in � is �-slim.

2. G has a linear Dehn function.

2.3 Pregroups and their presentations

A significant downside of methods that are applicable only under small cancellation conditions
is that they are often not satisfied when short relators are present, e.g. xn where n is small and
x is a generator. But many of the most important group presentations contain such relators.
The theory of pregroups will enable us to replace short relators with other relators of length
three (the pregroup relators), which we will then ignore in our methods generalizing small
cancellation theory.

In this section we shall present definition of pregroups, and then collect some elementary
statements about them and explain how one can present any quotient of a virtually free group
by finitely many additional relators with a finite pregroup presentation. The section is based
entirely on [34], where pregroup presentations were first defined.

Definition 2.3.1. [34, Definition 2.1] A pregroup is a set P with a distinguished element 1 2 P

and equipped with a partial multiplication (x, y) ! [xy], which is defined for (x, y) 2 D(P ) ✓
P ⇥ P , and an involution � : P ! P, x 7! x�, satisfying the following axioms, for all
x, y, z, t 2 P :

(P1) (x, 1), (1, x) 2 D(P ) and [1x] = [x1] = x

(P2) (x, x�), (x�, x) 2 D(P ) and [xx�] = [x�x] = 1

(P3) if (x, y) 2 D(P ) then (y�, x�) 2 D(P ) and [xy]� = [y�x�]

(P4) if (x, y), (y, z) 2 D(P ) then ([xy], z) 2 D(P ) if and only if (x, [yz]) 2 D(P ),

in which case [[xy]z] = [x[yz]]

(P5) if (x, y), (y, z), (z, t) 2 D(P ) then at least one of ([xy], z), ([yz], t) 2 D(P ).
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Lemma 2.3.2. We have 1� = 1, and if [xy] = 1, then y = x�.

Proof. By Axioms P1-P2 we have 1 = [11�] = 1�, so the first statement holds.
Suppose that [xy] = 1. Then (x, y) 2 D(P ), by Axiom P2, (y, y�) 2 D(P ) and [yy�] = 1,

and by Axiom P1, (x, 1), (1, y�) 2 D(P ), so (x, [yy�]), ([xy], y�) 2 D(P ). Therefore, by
Axioms P1, P2 and P4 we have

x = [x1] = [x[yy�]] = [[xy]y�] = [1y�] = y�,

as required. ⌅

Example 2.3.3. The following multiplication table defines a pregroup P = {1, A,B,C,D,E, F,

G,H, I} (a blank space means that the product is undefined).

Table 2.1: Pregroup multiplication table

1 A B C D E F G H I
A G D B C 1
B C 1 A G D
C D G 1 A B
D B A G 1 C
E H 1
F 1
G 1 C D B A
H 1 E
I 1

Definition 2.3.4. [34, Definition 2.1] Let P be a pregroup. We denote by X� the set X =

P \ {1} equipped with the involution �, but will sometimes omit the � when the meaning is
clear. We shall write F (X�) to denote the group defined by the monoid presentation hX |xx� :

x 2 Xi.
Let VP be the set of all length three words over X of the form {xy[xy]� : x, y 2 X, (x, y) 2

D(P ), x 6= y�}. The universal group U(P ) of P is the group given by

hX | {xx� : x 2 X} [ VP i = F (X�)/hhVP ii,

where hhVP ii denotes the normal closure of VP in F (X�).

The fact that the presentation of U(P ) is over an inverse-closed set of monoid generators
allows us to write the elements of U(P ) as words over X . Also, we shall often write x� to
mean the inverse of x in F (X�) rather than x�1. More generally, for w = x1x2 . . . xn 2 X⇤

(recall that X⇤ denotes the set of all words over X), we shall write w� = x�nx
�
n�1 . . . x

�
1 2 X⇤.

Then if w 2 F (X�), then w�1 =F (X�) w
�.
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Remark 2.3.5. If � has cycle structure 1k2l on X , then F (X�) is the free product of k copies
of C2 and l copies of Z.

Also, if xy[xy]� 2 VP , then xy =U(P ) [xy], hence x =U(P ) [xy]y
�, so ([xy], y�) 2 D(P ),

and [xy]y�x� 2 VP . In other words, if R 2 VP , then R�1 2 VP .

Example 2.3.6. [34, Example 2.4] We can construct a pregroup P such that U(P ) = F (X�)

is a free group of rank n by letting X be a set with |X| = 2n, letting x� 6= x for all x 2 X ,
and letting the only products be xx� = 1, 1x = x1 = x, and 1 · 1 = 1, for all x 2 X .

Example 2.3.7. [34, Example 2.5] A construction of a pregroup P for which U(P ) is the free
product of finite groups G and H is: we let P be equal to the disjoint union of {1}, G \ {1}
and H \ {1}; define 1� = 1 and for g 2 G, h 2 H , define g� to be the inverse of g in G and
h� to be the inverse of h in H; and finally let D(P ) = (G ⇥ G) [ (H ⇥ H), and define all
products as in G and H .

Definition 2.3.8. [34, Definition 3.13] We say that x 2 X is a V �-letter if and only if x� = x

or x is a letter of a relator in VP .

The following definition extends the notion of a freely (cyclically) reduced word in a free
group.

Definition 2.3.9. [34, Definition 2.6] Let w = x1x2 . . . xn 2 X⇤. If w contains no sub-words
xx� with x 2 X , then we say that w is �-reduced. We say that w is cyclically �-reduced if w
is �-reduced and not of the form x�w0x for some x 2 X and w0 2 X⇤.

More generally, the word w is P -reduced if either n  1, or n > 1 and no pair (xi, xi+1)

lies in D(P ). The word w is cyclically P -reduced if either (i) n  1; or (ii) w is P -reduced,
n > 1, and (xn, x1) 62 D(P ).

There is an equivalence relation ⇡ defined (by Stallings, see [53]) on the set of P -reduced
words:

Definition 2.3.10. [34, Definition 2.7] Let v = x1x2 . . . xn 2 X⇤ be a P -reduced word and
let w = y1y2 . . . ym be any word over X . We write v ⇡ w if n = m and there exist 1 =

s0, s1, s2, . . . , sn�1, sn = 1 2 P such that (s�i�1, xi), (xi, si), ([s
�
i�1xi], si]) 2 D(P ) for all i,

and yi = [s�i�1xisi]. We say that w is an interleave of v. In the case where si 6= 1 for a single
value of i, we call a transformation from v to w a single rewrite.

By Axiom P4 (see Definition 2.3.1) it follows that if (s�i�1, xi), (xi, si), ([s
�
i�1xi], si]) 2

D(P ), then (s�i�1, [xisi]) 2 D(P ), and that yi = [s�i�1xi]si = s�i�1[xisi].

Theorem 2.3.11. [53, 3.A.2.7, 3.A.2.11, 3.A.4.5 & 3.A.4.6] Let P be a pregroup and let
X = P \ {1}. Let u, v 2 U(P ) such that u is P -reduced. Then

(i) if u ⇡ v then v is P -reduced;

(ii) interleaving is an equivalence relation on the set of P -reduced words over X;
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(iii) each element g 2 U(P ) can be represented as a P -reduced element over X⇤;

(iv) if v is P -reduced, then u and v represent the same element of U(P ) if and only if u ⇡ w.
In particular, P embeds into U(P ).

Corollary 2.3.12. [34, Corollary 2.10] Let P be a finite pregroup. Then the word problem in
U(P ) can be solved in linear time.

Proof. Let w 2 X⇤. By Theorem 2.3.11 w =U(P ) 1 if and only if the P -reduced form of w
is the empty word. Hence if w =U(P ) 1; w has length |w| � 1 and w is �-reduced, then w

cannot be P -reduced, so a length-reducing rewrite derived from VP applies to w. Thus, U(P )

is a finitely generated group (as P is finite) and Dehn’s algorithm solves the word problem in
U(P ). ⌅

Definition 2.3.13. [34, Definition 4.14] Let a, b 2 X . We say that (a, b) is an intermult pair
and that a intermults with b if b 6= a�, and either (a, b) 2 D(P ) or there is x 2 X such that
(a, x), (x�, b) 2 D(P ).

Note that by the definition of VP , if ab[ab]� 2 VP , then (a, b) is an intermult pair.
We now present the definition of a pregroup presentation.

Definition 2.3.14. [34, Definition 2.11] Let P be a pregroup, let X = P \ {1}, let � be the
involution that gives inverses in X , and let R be a set of cyclically P -reduced words over X .
We define the pregroup presentation to be the group presentation

P = hX | {xx� : x 2 X} [ VP [Ri

on the set X of monoid generators, and write P = hX� |VP |Ri.

Observe that R \ VP = ; since each word in R is cyclically P -reduced.

Assumption 2.3.15. We assume throughout this thesis that there is no x 2 X such that x2 2 R,
that no R 2 R has length |R| 2 {1, 2}, and that no two distinct cyclic conjugates of relators
R,S 2 R± have a common prefix consisting of all but one letter of R or S.

Before running our algorithms, we shall always assume that the preprocessing from [34,
Section 7.1] has been done to the input pregroup presentation P = hX� |VP |Ri. This process
ensures that P satisfies Assumption 2.3.15.

Theorem 2.3.16. [49, Corollary to Theorem B] A finitely generated group is virtually free if
and only if it is a universal group of a finite pregroup.

It is well-known that all amalgamated free products of finite groups and HNN extensions
with finite base groups are virtually free – these classes provide many useful examples for
the algorithmic solutions in this thesis. More generally, Serre in [51, Proposition 11] classifies
virtually free groups as fundamental groups of finite graphs of groups with finite vertex groups.
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We shall be working with groups given by finite pregroup presentations. The following
corollary to Theorem 2.3.16 states that these are precisely the quotients of virtually free groups
by finitely many additional relators.

Corollary 2.3.17. [34, Corollary 2.15] Let G have a pregroup presentation P = hX� |VP |Ri.
Then G ⇠= U(P )/ hhRii, where hhRii denotes the normal closure of R in U(P ). Moreover,
any group that is a quotient of a virtually free group by finitely many additional relators has a
finite pregroup presentation.

In [34, Section 4.1] a coarser relation than interleaving (see Definition 2.3.10) was intro-
duced on the set of cyclically P -reduced words, where the condition s0 = 1 = sn was replaced
by s0 = sn.

Definition 2.3.18. Let w = x1x2 . . . xn 2 X⇤ be cyclically P -reduced, and let v = y1y2 . . . yn

be any word over X . We say that v is a cyclic interleave of w, and write w ⇡c v if either
n  1 and w = v, or if n > 1 and there exist s0, s1, s2, . . . , sn�1, sn = s0 2 P such that
(s�i�1, xi), (xi, si), ([s

�
i�1xi], si]) 2 D(P ) for 1  i  n, and yi = [s�i�1xisi].

Theorem 2.3.19. [34, Theorem 4.4] Let w 2 X⇤ be cyclically P -reduced. If v 2 X⇤ satisfies
v ⇡c w, then v is cyclically P -reduced. Moreover, ⇡c is an equivalence relation on the set of
all cyclically P -reduced words.

Definition 2.3.20. [34, Definition 4.5] Let w 2 X⇤ be cyclically P -reduced. The cyclic
interleave class of w is the set I(w) defined as

I(w) := {v 2 X⇤ : w ⇡c v}.

We further write I(R) for [R2RI(R).

Lemma 2.3.21. Let w = x1 · · ·xn 2 X⇤ be P -reduced and n � 2. If either

(a) w0 is an interleave of w, or

(b) w is cyclically P -reduced and w0 2 I(w),

then we can obtain w0 from w by applying a sequence of at most n single rewrites.

Proof. The proof is the same as the proof of [34, Lemma 4.6], but we include it for complete-
ness. If Assumptions (b) holds, then the lemma is precisely [34, Lemma 4.6]. So suppose that
Assumption (a) holds. By Definition 2.3.10 there exist sequences 1 = s0, s1, s2, . . . , sn�1, sn =

1 2 P and y1, y2, . . . , yn 2 X such that w0 = y1 . . . yn, (s�i�1, xi), (xi, si), ([s
�
i�1xi], si]) 2

D(P ) for all i, and yi = [s�i�1xisi]. By Theorem 2.3.11 ⇡ is an equivalence relation on the set
of P -reduced words. Therefore, we can construct a sequence w0 = wm, wm�1, . . . , w0 = w

of P -reduced words such that wi+1 can be obtained from wi by replacing a (cyclic sub-word)
y0jy

0
j+1 of wi with a length 2 word [y0jsj ][s

�
j y

0
j+1] with sj 6= 1. There are at most n� 1 letters

sj with sj 6=P 1, so we are done. ⌅
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The following terminology was introduced in [23].

Definition 2.3.22. A group is plain if it is isomorphic to a free product of finitely many factors,
with each factor a finite group or an infinite cyclic group.

We shall consider groups given by finite pregroup presentations P = hX� |VP |Ri such
that I(R) = R. This is a common case – combining the constructions from Examples 2.3.6-
2.3.7, we deduce that all quotients of plain groups by finitely many additional relators can be
defined in this way. E.g. the pregroup P from Example 2.3.3 satisfies U(P ) ⇠= S3 ⇥ C3 ⇥ Z,
so we can define P with I(R) = R by adding additional relators to the presentation defining
U(P ).

Definition 2.3.23. Let P be a pregroup, and let P = hX� |VP |Ri be a pregroup presentation
with X = P \{1}. We say that P and P satisfy trivial-interleaving if whenever (a, b) 2 P ⇥P

is an intermult pair, then (a, b) 2 D(P ). In particular, we have I(R) = R.

2.4 Finite pregroups satisfying trivial-interleaving

In this section we shall give an example of a finite pregroup satisfying trivial-interleaving that
has a different form than the standard constructions for obtaining free groups (see Example
2.3.6) and free products of finite groups (see Example 2.3.7), and prove that if P is a finite
pregroup satisfying trivial-interleaving, then U(P ) is a plain group. All uncited results in this
section are new.

Example 2.4.1. Consider a pregroup P = {1, x, y, z, t, s,m,X, Y, Z, T, S,M} given by Ta-
ble 2.2, where a blank space means that the product is undefined. Then P satisfies trivial-
interleaving (we used the GAP package Walrus to produce the pregroup multiplication table
and check that P satisfies trivial-interleaving, see [26]). Since (X,Y ) 2 D(P ); [XY ] = T ;
and (↵,↵) 62 D(P ) for all ↵ 2 X , we deduce that P has different form than the constructions
from Examples 2.3.6-2.3.7. In the next proposition we show that U(P ) is in fact a free group.

Proposition 2.4.2. Let P be the pregroup from Example 2.4.1. Then U(P ) is a free group.

Proof. It was shown by Stallings in [54] that every torsion-free virtually free group is free.
Hence by Theorem 2.3.16 it suffices to show that U(P ) is torsion-free. Let w 2 X⇤ with
w 6=U(P ) 1. Since w 6=U(P ) 1, there exists a cyclically P -reduced U(P )-conjugate w0 of w
with w0 6=U(P ) 1. It suffices to show that w0 has infinite order.

Write w0 = w1 . . . wn with wi 2 X� for all 1  i  n. Suppose first that n = 1. Then
from Table 2.2 we have (w0, w0) 62 D(P ). Hence for every k � 1, the word w0k = wk

1 is
P -reduced. If k = 1, then by Theorem 2.3.11 we have w0k 6=U(P ) 1. Otherwise, w0k has
length |w0k| � 2, so by Definition 2.3.10 we have w0k 6⇡ 1, hence again by Theorem 2.3.11
w0k 6=U(P ) 1. Thus, w0 has infinite order.

Suppose instead that n � 2. Then as by Definition 2.3.9 we have (wn, w1) 62 D(P ) and
(wi, wi+1) 62 D(P ) for 1  i  n�1, it follows that for every k � 1, w0k is P -reduced. So by
Definition 2.3.10 w0k 6⇡ 1, and by Theorem 2.3.11 w0k 6=U(P ) 1. The proposition follows. ⌅
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Table 2.2: Pregroup multiplication table

1 X Y Z T S M x y z t s m
X T M 1
Y S 1 x
Z 1 y t
T M X 1
S Y 1 x
M T X 1
x 1 Y S
y 1 Z t
z 1 s m
t y 1 Z
s z 1 m
m s z 1

For the rest of this section our aim is to show that if P is a finite pregroup satisfying trivial-
interleaving, then U(P ) is a plain group. The next two definitions were taken from [23].

Definition 2.4.3. A rewriting system is a pair (⇣, T ), where ⇣ is a finite alphabet of symbols,
and T ✓ ⇣⇤ ⇥ ⇣⇤ is a set of rewriting rules.

Let w 2 ⇣⇤. If l, r 2 T and l is a sub-word of w, then we can replace l by r in w to obtain
a word v. Then w

⇤! v means that v can be obtained from w by applying a finite sequence of
rewrites. If w can be transformed into v by a sequence consisting of a single rewrite, then we
write w ! v. If we further define, for all w, v 2 ⇣⇤: w ⇤! w, and w

⇤! v if and only if v ⇤! w,
then ⇤! becomes an equivalence relation on ⇣⇤.

Now if v1, w1, v2, w2 2 ⇣⇤ are such that [v1] ⇤! = [w1] ⇤! and [v2] ⇤! = [w2] ⇤!, then
v1v2

⇤! w1v2
⇤! w1w2, hence [v1v2] ⇤! = [w1w2] ⇤!. Thus, the operation of concatenation

of representatives gives us a well-defined product on the set of equivalence classes, and it turns
this set into a monoid: we will restrict our focus on rewriting systems that define universal
groups of finite pregroups.

Definition 2.4.4. [23, Definitions 2.1 & 2.2]. A rewriting system (⇣, T ) is called

1. finite if both ⇣ and T are finite;

2. confluent if, for all u, v, w 2 ⇣⇤ such that w ⇤! u and w
⇤! v, there exists q such that

u
⇤! q and v

⇤! q;

3. strongly-confluent if, for all u, v, w 2 ⇣⇤ such that w ⇤! u and w
⇤! v, there exists q

such that u ! q and v ! q;

4. terminating if every rewriting sequence terminates in a finite number of steps;

5. convergent if it is both confluent and terminating;
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6. length-reducing if |r| < |l| for every (l, r) 2 T ;

7. monadic if |r|  1 for every (l, r) 2 T .

Let P be a pregroup. The next definition gives us two rewriting systems for obtaining
U(P ).

Definition 2.4.5. [17, Definition 3.1]

1. The rewriting system S1 ✓ P ⇤ ⇥ P ⇤ is defined as follows:

1 ! ⌘ (= the empty word)

ab ! [ab] (if (a, b) 2 D(P ))

ab ! [ax][x�b] (if (a, x), (x�, b) 2 D(P )).

2. Let X = P \ {1}. The rewriting system S(P ) ✓ X⇤ ⇥X⇤ is defined as follows:

ab ! ⌘ (if (a, b) 2 D(P ) and [ab] = 1)

ab ! [ab] (if (a, b) 2 D(P ) and [ab] 6= 1)

ab ! [ax][x�b] (if (a, x), (x�, b) 2 D(P ) and (a, b) 62 D(P )).

It was shown in [17] that U(P ) is given by

X⇤/{(l, r) | (l, r) 2 S1}

and
X⇤/{(l, r) | (l, r) 2 S(P )}.

In the proof of [19, Theorem 8.4] the following is shown.

Lemma 2.4.6. The system S1 is strongly-confluent.

Subsequently, in [19, Remark 8.6] it was noted that S(P ) is confluent.

Proposition 2.4.7. Let P be a finite pregroup satisfying trivial-interleaving. Then S(P ) is a
finite, convergent, length-reducing, monadic rewriting system.

Proof. Since P is finite, so is S(P ). Observe that the third rewriting rule never applies since P
satisfies trivial-interleaving, hence S(P ) is both length-reducing and monadic. A finite length-
reducing rewriting system is terminating, so as S(P ) is confluent, S(P ) is convergent. ⌅

Furthermore, in [23, Theorem 5.3] Eisenberg and Piggott provided a positive answer to
Gilman’s conjecture (see [29]).

Theorem 2.4.8. (Gilman’s conjecture) Let G be a group. Then G admits a presentation by a
finite, convergent, length-reducing, monadic rewriting system if and only if G is a plain group.
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Combining Proposition 2.4.7 with Theorem 2.4.8 we obtain our desired result.

Theorem 2.4.9. Let P be a finite pregroup satisfying trivial-interleaving. Then U(P ) is a plain
group.

2.5 Coloured diagrams over pregroups

In this section we present a natural generalisation of van Kampen diagrams for finite pregroup
presentations, coloured van Kampen diagrams, that were first defined in [34]. We also give
the definition of coloured annular diagrams, which will be extensively studied in Part I of this
thesis. We use the standard terminology for maps and diagrams given in [42, Chapter 5], and
this section presents definitions from [42] that we shall use throughout our work. Otherwise,
most definitions in this section are from [34].

Recall Definition 2.1.5 of the closure of a subset of a metric space, Definition 2.1.7 of a
vertex, an edge, a region and a path, and Definition 2.1.9 of connected, simply-connected, and
annular subsets of R2.

Definition 2.5.1. A map M is a finite collection of vertices, edges, and regions which are
pairwise disjoint and satisfy the following conditions.

(i) If e is an edge of M , then there are (not necessarily distinct) vertices a and b in M such
that e = e [ {a} [ {b}.

(ii) The boundary, @(R), of each region R of M is connected and there is a set of edges
e1, . . . , en in M such that @(R) = e1 [ . . . [ en.

We shall call the regions of M internal faces of M , and the components of R2 \ M external
faces of M . We shall also use M to denote the set-theoretic union of its vertices, edges,
and internal faces. Then the boundary of M is denoted as @(M). If e is an edge with e =

e[ {a}[ {b}, the vertices a and b are called the endpoints of e. An edge with equal endpoints
is a loop.

We shall always assume that M is connected. Note also that the boundaries of faces of M
are paths.

Definition 2.5.2. Let M be a map with subsets A and B consisting of vertices, edges and
internal faces of M . We say that A is incident with B if A \ B 6= ;. We say that A is
edge-incident with B if A \B contains an edge of M .

Suppose that x is a vertex or an edge of M . If x 2 A\B, then we say that A shares x with
B, and that x is common to A and B.

Definition 2.5.3. Let M be an annular map, let O be the unbounded component of R2 \ M ,
and let I be the bounded component of R2 \M . We call @(M) \ @(O) the outer boundary of
M , which will be denoted by !, and @(M) \ @(I) the inner boundary of M , which will be
denoted by ⌧ .
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Definition 2.5.4. The maps will be oriented. Let M be a map. If M is annular, then we orient
the external face with boundary ! counter-clockwise, and all other faces (including the external
face with boundary ⌧ ) clockwise. Otherwise, all (including external) faces of M are oriented
clockwise. Each edge of M is composed of two half-edges. Each half-edge is associated with
the face on one of the sides distinct from the one associated with the other half-edge, and
inherits its orientation from that face. If F is a face of M with the given orientation, any cycle
↵ of minimal length which includes all the edges of @(F ) is a boundary cycle of F .

We now present the definition of diagrams and coloured diagrams, which extends [34,
Definition 3.2] and defines (coloured) diagrams over pregroup presentations that are not nec-
essarily simply-connected. For the rest of this section fix a finite pregroup presentation P =

hX� |VP |Ri such that I(R) = R (see Definition 2.3.20), and let G be defined by P .

Definition 2.5.5. A diagram over P is a map � and a function � assigning to each half-edge of
� a label from X�. If F is a face of � with the given orientation, then a label of F is a word
resulted from concatenating the labels of half-edges of some boundary cycle of F oriented by
F . The labels of the external faces of � are called the boundary words of �.

A coloured diagram over P is a diagram � over P in which labels of internal faces are
from VP [R±1. The internal faces of � labelled by relators from VP are coloured red, and the
ones labelled by relators from R±1, together with each external face, are coloured green. Each
half-edge inherits beside its orientation also its colour from that face. The red faces of � are
called red triangles.

A coloured van Kampen diagram is a coloured diagram that is simply-connected, and a
coloured annular diagram is simply an annular coloured diagram.

The next definition summarizes terminology for coloured diagrams that we shall use through-
out this thesis. It is based on [34, Definition 3.1].

Definition 2.5.6. Let � be a coloured diagram. If an element x 2 X satisfies x� = x, then
x has order 2 in U(P ), and we will identify x with x�, so than an edge may have label x
on both sides. If F, F 0 ✓ � are faces, we write |@(F ) \ @(F 0)| for the number of edges in
@(F )\ @(F 0) (note that |@(F )\ @(F 0)| = 0 if @(F )\ @(F 0) contains no edge). Similarly, we
write |@(F )\@(�)| for the number of edges in @(F )\@(�). A consolidated edge between (not
necessarily internal) faces F and F 0 is a non-empty path of maximal length that is a sub-path
of both @(F ) and @(F 0). We write

Area(�) := the number of internal faces of�.

Vertices and edges contained in @(�) are called boundary vertices and boundary edges. An
internal face F of � is a boundary face if and only if @(F ) \ @(�) contains an edge. Vertices,
edges and internal faces which are not boundary are called interior.

All incidences are counted with multiplicities, so for example a vertex v can be incident
more than once with the same face F (note that F is incident n � 1 times with v if and only



20 Chapter 2: Preliminaries and notation

Figure 2.1: �-reducion of w0, see the proof of Lemma 2.5.7.

if @(F ) passes through v n times). We denote by �(v,�) the degree of v in �, �G(v,�) for
the green degree of v in �: the number of green faces of � incident with v, �IG(v,�) for the
internal green degree of v in �: the number of internal green faces of � incident with v, and
�R(v,�) for the red degree of v in �: the number of red faces of � incident with v. When it is
clear which coloured diagram � is considered, we omit the �.

Finally, � is green-rich if every vertex v 2 � satisfies �G(v,�) � 2.

Lemma 2.5.7. Let w = x1 . . . xn 2 X⇤. Then both of the following statements hold.

1. Suppose that w is a boundary word of a simply-connected diagram � over P . Then the
following holds.

(i) There exists a simply-connected diagram over P with a �-reduced boundary word
equal to w in F (X�).

(ii) There exists a simply-connected diagram over P with a P -reduced boundary word
equal to w in U(P ).

2. Suppose that either

(a) w is P -reduced and there exists a simply-connected diagram � over P with boundary
word w0 that is an interleave of w; or

(b) w is cyclically P -reduced and there exists a simply-connected diagram � over P
with boundary word w0 2 I(w).



2.5. Coloured diagrams over pregroups 21

Then w is a boundary word of a simply-connected diagram over P of area at most
Area(�) + 2n.

Proof. Part 1. Let �0 be a simply-connected diagram over P , and let w0 be the label of some
boundary cycle of �0 with endpoint v0. Suppose first that w0 contains a sub-word xx�. Then as
in the case of free reduction (see [42, Chapter 5, Section 1]), we can fold the edges (or delete
the sub-diagram of �0 enclosed by them, see Figure 2.1) with labels x and x� to produce a
simply-connected diagram with boundary cycle beginning at v0 and labelled by a word equal
to w0 in F (X�), but in which the sub-word xx� was deleted from w.

Suppose instead that w0 contains two consecutive letters x, y with x 6= y� and (x, y) 2
D(P ), and let e, f ✓ @(�0) be the edges labelled x and y respectively. Then we attach a
red triangle T to �0 (labelled by xy[xy]�) at the path ef . This produces a simply-connected
diagram with boundary cycle beginning at v0 and labelled by a word equal to w0 in U(P ), but
in which the sub-word xy was replaced by [xy].

As by Corollary 2.3.12 we can solve the word problem in U(P ) in linear time, by the
previous two paragraphs we can obtain both diagrams in finitely many steps. Hence Part 1
follows.

Part 2. We prove the lemma under the Assumption (a) as the proof under the Assump-
tion (b) is very similar. If w = w0, then � satisfies the lemma. So suppose that w0 6= w.
Then by Definition 2.3.10 |w| � 2. Hence by Lemma 2.3.21 we can obtain w from w0

by applying a sequence of at most n single rewrites. Therefore, there is a sequence w =

wm, wm�1, . . . , w0 = w0 = y1 . . . yn (with 1  m  n) of P -reduced words such that for
each j, wj+1 can be obtained from wj by replacing a (cyclic sub-word) y0iy

0
i+1 of wj with a

length 2 word [y0isi][s
�
i y

0
i+1] with si 6= 1. Hence we can obtain a simply-connected diagram

�0 with boundary word w by constructing a sequence �0 = �m,�m�1, . . . ,�0 = � of simply-
connected diagrams with boundary words wi, where �j+1 is obtained from �j by attaching
two triangles Ti and T 0

i at edges labelled by y0i and y0i+1 respectively to �j , such that Ti and
T 0
i share an edge labelled si, and have labels y0isi[y

0
isi]

� and s�i y
0
i+1[s

�
i y

0
i+1]

� respectively. In
particular, Area(�0)  Area(�) + 2n, so we are done. ⌅

The following theorem is a standard result which shows that coloured van Kampen dia-
grams are a great tool for studying the word problem and for showing hyperbolicity. In its
proof, we use the ideas from the proofs of [42, Chapter 5, Theorem 1.1 & Lemma 1.2].

Theorem 2.5.8. (van Kampen’s lemma) Let w 2 X⇤. Then all of the following statements
hold.

1. Suppose that w is P -reduced and w =G 1. Then there exists a coloured van Kampen
diagram � over P with boundary word w.

2. Suppose that w is �-reduced and w =U(P ) 1. Then there there exists a coloured van
Kampen diagram � over P with boundary word w and with no green faces.
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3. Suppose that w is a boundary word of a coloured van Kampen diagram � over P that
contains m internal faces F1, . . . , Fm. Then there exist labels Ri of Fi and ui 2 F (X�),
1  i  m, such that

w =F (X�) u
�1
1 R1u1 · · ·u�1

m Rmum.

Hence w =G 1, and if F1, . . . , Fm are all red, then w =U(P ) 1.

Proof. Part 1. If w =U(P ) 1, then by Theorem 2.3.11 w is the empty word and we take � to
consist of a single vertex. Otherwise, by Corollary 2.3.17 there exist Ri 2 R±1 and ui 2 U(P ),
1  i  k, such that

w =U(P ) u
�1
1 R1u1 · · ·u�1

k Rkuk.

We construct � as follows. First, let v be a vertex. Then attach paths pi to v with endpoints
v and vi such that |pi| = |ui|, and such that (p1, p2, . . . , pk) is a cyclic tuple when reading
counter-clockwise around v. Now for each vertex vi, attach an internal green face Fi with label
R�1

i , where R�1
i is the label of the boundary cycle of Fi with endpoint vi. Call the resulting

map �0. Next label the half-edges of pi so that the boundary cycle of �0 with endpoint v has
label ⇧k

i=1(u
0
i)
�1Riu0i, where each u0i is a P -reduced word representing ui. Then by Lemma

2.5.7 there exists a simply-connected diagram over P with a P -reduced boundary word w0

with w0 =U(P ) ⇧
k
i=1(u

0
i)
�1Riu0i =U(P ) w, and such that all its internal faces are labelled by

elements from VP [ R±1. By Theorem 2.3.11 w0 is an interleave of w, so applying Lemma
2.5.7 again shows that � exists.

Part 2. If w =F (X�) 1, then w is the empty word and we take � to consist of a sin-
gle vertex. Otherwise, there exist Ri 2 VP and ui 2 F (X�), 1  i  k, such that
w =F (X�) ⇧

k
i=1u

�1
i Riui. Hence we proceed as in Part 1 and construct a simply-connected

diagram �0 with boundary word ⇧k
i=1u

�1
i Riui and with internal faces F1, F2, . . . , Fk labelled

by R�1
1 , . . . , R�1

k respectively. By Remark 2.3.5 we have R�1
i 2 VP , so by Lemma 2.5.7

there exists a simply-connected diagram over P with a �-reduced boundary word w0 equal
to ⇧k

i=1u
�1
i Riui in F (X�) and with all internal faces labelled by relators from VP . As w is

�-reduced, we have w = w0, so Part 2 follows.
Part 3. The proof is by induction on m. Base case m = 0. There is nothing to prove, but �

is a tree, so w =F (X�) 1, and hence w =G 1. So suppose that m � 1, and let l be the boundary
cycle of � with label w. Now there exists an internal face F with an edge e on @(�). Let x be
the letter of w that labels e, write w = s1xs2 for some s1, s2 2 X⇤, and let x�s be a label of
F . Delete e from � to obtain a coloured diagram �0. Then �0 is simply-connected, with m� 1

internal faces, and there is a boundary cycle of �0 with the same endpoints as l, and with label
s1ss2. By induction we can list the internal faces of �0 as F1, . . . , Fm�1 to obtain

s1ss2 =F (X�) u
�1
1 R1u1 · · ·u�1

m�1Rm�1um�1,

where Ri is a label of Fi and ui 2 F (X�) for 1  i  m � 1. Now note that w =

s1xs2 =F (X�) (s1ss2)(s
�1
2 s�1xs2), and s�1x is the inverse in F (X�) of the label of F .
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Figure 2.2: A coloured diagram � (in black) and its dual �⇤ (in red), see Definition 2.5.12.

By Remark 2.3.5 s�1x is a cyclic conjugate of some R 2 VP [R±1. Therefore, there exists
u 2 X⇤ such that s�1x =F (X�) u

�1Ru, and hence s�1
2 s�1xs2 =F (X�) s

�1
2 u�1Rus2. Thus,

Part 2 follows by taking um =F (X�) us2 and Rm = R. ⌅

We extend [34, Definition 3.4] and define a coloured area for coloured diagrams.

Definition 2.5.9. Let � be a coloured diagram. We define the coloured area of �, denoted as
CArea(�), to be an ordered pair (a, b), where a is the number of internal green faces of � and b

is the number of red triangles. Suppose that� is a coloured diagram with CArea(�) = (c, d).
We say that CArea(�)  CArea(�) if a < c (in which case CArea(�) < CArea(�)) or
if a = c and b  d (if b < d then we say CArea(�) < CArea(�)).

We next define sub-diagrams ([34, Definition 3.5]) and islands ([42, Chapter 5, page 257]).

Definition 2.5.10. Let � be a coloured diagram. A sub-diagram of � is a subset of the edges,
vertices and internal faces of � which, together with new external faces coloured green, form a
coloured diagram in its own right.

An island of a coloured annular diagram �A is a sub-diagram of �A bounded by a closed
path of the form !1⌧1, where !1 ✓ !; ⌧1 ✓ ⌧ ; and |!1|, |⌧1| � 1. The endpoints of !1 are
called the endpoints of E. A bridge is an edge in ! \ ⌧ . We say that �A is island-free if �A
contains no islands.

Remark 2.5.11. We shall encounter cases where �A is a single island.

The next definition considers a special kind of sub-diagrams, consisting entirely of red
triangles, that as we shall see have a great impact on the overall structure of diagrams that will
study.

Definition 2.5.12. [34, Definition 4.11] A red blob in a coloured diagram � is a non-empty
subset B of the set of closures of red triangles of �, with the property that any non-empty
proper subset C of B has at least one edge in common with B \ C. Equivalently, the induced
sub-graph B⇤ of the dual graph �⇤ of � (see Figure 2.2 for an example of a dual graph) on those
vertices that correspond to the triangles in B is connected. In particular, B is a sub-diagram of
�. To simplify our statements, if Area(B) = 1, then we often say that B is a red triangle, but
we always mean that B is the closure of the triangle contained in it.
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Semi-�-reduction

Figure 2.3: Two faces making the ambient diagram not semi-�-reduced, see Definition 2.5.15.

A red blob B is simply-connected if its interior is homeomorphic to a disc: its boundary
may pass more than once through a vertex. Furthermore, B is annular if B� is annular.

Recall Definition 2.3.13 of an intermult pair, and Definition 2.3.23 of trivial-interleaving.
Part 1 of the next result ([34, Lemma 4.16]) is stated only for coloured simply-connected dia-
grams, but the proof does not assume it.

Lemma 2.5.13. Let � be a coloured diagram over P with a red blob B. Suppose that a, b 2 X

and ab is a sub-word of a boundary word of B. Then both of the following statements hold.

1. If b 6= a�, then a intermults with b.

2. If, in addition, P satisfies trivial-interleaving, then (a, b) 2 D(P ).

Proof. Part 1. This is ([34, Lemma 4.16]).
Part 2. If b = a�, then by Axiom P2 we have (a, b) 2 D(P ). Otherwise, by Part 1, (a, b)

is an intermult pair, so as P satisfies trivial-interleaving, we have (a, b) 2 D(P ). ⌅

Definition 2.5.14. Let � be a coloured diagram. The 1-skeleton of � is a graph �1 defined as

�1 :=
[

F is a face of�

@(F ).

Definition 2.5.15. [34, Definition 3.6] Let � be a coloured diagram over P . We say that � is
semi-�-reduced if no two distinct incident faces are labelled by w1w2 and w�1

2 w�1
1 for some

relator w1w2 2 VP [R± and have a common consolidated edge labelled by w1 and w�1
1 (see

Figure 2.3). It is �-reduced if the same holds for a single face edge-incident with itself (see
Figure 2.4).

A natural generalization of semi-�-reduction is the following definition.

Definition 2.5.16. [34, Definition 3.7] We say that a coloured diagram � over P is semi-P -
reduced if no two distinct incident green faces are labelled by w1w2 and w�1

3 w�1
1 and have a

common consolidated edge labelled by w1 and w�1
1 , where w2 =U(P ) w3 (see Figure 2.5).
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�-reduction

Figure 2.4: A face making the ambient diagram not �-reduced. The words w1, v1, v2 satisfy
v1w

�1
1 v2 =F (X�) (v2w1v1)�1 = v�1

1 w�1
1 v�1

2 , see Definition 2.5.15.

Semi-P -reduction

Figure 2.5: Two green faces making the ambient diagram not semi-P -reduced. The words w2

and w3 satisfy w2 =U(P ) w3, see Definition 2.5.16.

We conclude this section by presenting an important set D of coloured van Kampen dia-
grams, proven fruitful for showing hyperbolicity of groups defined by finite pregroup presen-
tations. These will later inspire us to define new sets of annular diagrams with very similar
properties that enable us to solve the conjugacy problem in quadratic time.

Definition 2.5.17. [34, Definition 6.1] We define D to be the set of all coloured van Kampen
diagrams � over P with the following properties.

1. The boundary word of � is cyclically P -reduced (see Definition 2.3.9).

2. � is �-reduced and semi-P -reduced (see Definitions 2.5.15-2.5.16).

3. � is green-rich (see Definition 2.5.6).

4. No proper sub-word of the (cyclic) boundary word of a simply-connected red blob of �
is equal to 1 in U(P ).

2.6 Curvature distribution schemes

Similarly as in [34, Sections 5 & 6], we shall now explain ways of assigning curvature to
coloured annular and simply-connected diagrams. Throughout this section, let P = hX� |VP |Ri
be a finite pregroup presentation such that I(R) = R (see Definition 2.3.20), and let G be the
group defined by P .
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The next two definitions extend [34, Definitions 5.1 & 5.2] and define curvature distribu-
tions and curvature distributions schemes on coloured diagrams that are not necessarily simply-
connected.

Definition 2.6.1. Let � be a coloured diagram over P with vertex set V (�), edge set E(�), and
set F (�) of internal faces. A curvature distribution on � is a function ⇢� : V (�) [ E(�) [
F (�) ! R such that

⇢�(�) =

8
>><

>>:

P
x2V (�)[E(�)[F (�)

⇢�(x) = 0 if � is annular,

P
x2V (�)[E(�)[F (�)

⇢�(x) = 1 if � is simply-connected.

Definition 2.6.2. Let K be a non-empty set of coloured annular and simply-connected diagrams
over P . A curvature distribution scheme on K is a map Y : K ! {⇢� : � 2 K} that associates
a curvature distribution to every diagram in K.

Example 2.6.3. For an annular or simply-connected coloured diagram �, define a function ⇢�
by setting ⇢(v) := +1 for each vertex v 2 V (�), ⇢(e) := �1 for each edge e 2 E(�) and
⇢(F ) := 1 for each internal face F of �. Euler’s formula then tells us that if � is simply-
connected, then ⇢�(�) = 1, and if � is annular, then ⇢�(�) = 0. Thus, ⇢� is a curvature
distribution. It follows that the map  : K ! {⇢� : � 2 K} is a curvature distribution scheme
for any non-empty set K of coloured annular or simply-connected diagrams over P .

We shall now describe a key curvature distribution scheme, RSym (see [34, Defini-
tion 6.4]), that is computed by the algorithm ComputeRSym (see [34, Algorithm 6.3]).
ComputeRSym as given in [34] operates on diagrams in D (see Definition 2.5.17). How-
ever, we need more flexibility for our work, hence we allow ComputeRSym to take as input
any coloured annular or simply-connected diagram � over P . Apart from that, the algorithm re-
mains unchanged. In particular, ComputeRSym returns (see Proposition 2.6.6) a curvature
distribution � : �! R.

ComputeRSym assigns and alters curvature on the vertices, edges and faces of � in
several successive steps, where the external face has curvature 0 throughout. As in the descrip-
tion of [34, Algorithm 6.3], when we say (for example) that a half-edge e gives curvature c to
a vertex v, we mean that the curvature of e is reduced by c, and that of v is increased by c.
When we say that a vertex v distributes its curvature equally among green faces F1, . . . , Fk,
we mean that, if k > 0, then the current curvature c of v is replaced by 0, and c/k is added to
the curvature of each of F1, . . . , Fk.

Algorithm 2.6.4. ComputeRSym(�):
// �: a coloured simply-connected or annular diagram.

Step 1 Initially, each vertex, red triangle, and internal green face of � has curvature +1, and
each half-edge has curvature �1/2.

Step 2 Each green half-edge gives curvature �1/2 to its end vertex, and each red half-edge
gives curvature �1/2 to its triangle.
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Step 3 Each vertex distributes its curvature equally amongst its incident internal green faces,
counting incidences with multiplicity.

Step 4 Each red blob B such that @(B) 6✓ @(�) sums the curvatures of its red triangles, to get
the blob curvature �(B). A red blob with b := |@(B) \@(�)| > 0 then gives curvature
�(B)/b across each edge of @(B) \ @(�) to the (internal) green face on the other side.

Step 5 Return the function � : V (�) [ E(�) [ F (�) ! R, where �(x) is the current
curvature of x.

Definition 2.6.5. Let K be a non-empty set of coloured annular and simply-connected dia-
grams over P . We define RSym to be the map from K to {�(x) : � 2 K} evaluated by
ComputeRSym. We shall omit the � from �(x) and write just (x) when the meaning is
clear.

If B is a red blob of an annular or a simply-connected diagram �, then we define

�(B) =
X

T : a red triangle ofB

�(T ).

Proposition 2.6.6. Let K be a non-empty set of coloured annular and simply-connected dia-
grams over P . Then RSym is a curvature distribution scheme on K.

Proof. Note that the curvature in Step 1 is precisely the curvature distribution from Exam-
ple 2.6.3. Since curvature is neither created nor destroyed by ComputeRSym, the proposi-
tion follows. ⌅

Definition 2.6.7. Let � be a coloured annular or simply-connected diagram with a green face
F . We say that a vertex v is curvature incident with F if v is incident with F , and that a red
blob B is curvature incident with F if B is edge-incident with F .

Definition 2.6.8. Let x be a vertex or a red blob of an annular or simply-connected diagram �,
and let F ✓ � be a green face. We let

1. ⇣(x,�) be the total curvature that x gives to internal green faces of � in Steps 3 and 4 of
ComputeRSym(�);

2. �(x,�) be the curvature that x gives to a single internal green face of � across each
curvature incidence in Steps 3 and 4 of ComputeRSym(�);

3. �(x, F,�) be the total curvature that x gives to F in Steps 3 and 4 of ComputeRSym(�).

The following two lemmas are important for the work in this thesis. They were proved in
[34] under the assumption that the vertex v is a vertex of a diagram in D, but the proofs used
only the fact that as the diagrams in D are green-rich, v has green degree at least 2. Hence they
can be stated as follows.

Lemma 2.6.9. [34, Lemma 6.7] Let v be a vertex in a coloured annular or simply-connected
diagram �. Assume that v is incident k times with external faces, and that �G(v,�) � 2. Then
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Table 2.3: Vertex curvature �(v,�).

�G(v,�) v 62 @(�) v 2 @(�)
2 0 0
3 �1/6 �1/4
4 �1/4 �1/3
5 �3/10 �3/8
6 �1/3 �2/5

� 7  �5/14  �5/12

(i) �(v)  0 and �(v) = 0 if k 6= �G(v,�);

(ii) If �G(v,�) 6= k, then �(v,�) = 2��G(v,�)
2·(�G(v,�)�k) (hence if k = 2, then �(v,�) = �1/2);

(iii) If �G(v,�) > 2 and �G(v,�) 6= k then �(v,�)  �1/6.

Lemma 2.6.10. [34, Lemma 7.5] Let v be a vertex in a coloured annular or simply-connected
diagram � incident with an internal green face, and such that �G(v,�) � 2.

If v is incident k times with external faces for some k > 1, then �(v,�)  �1/2. Other-
wise, the curvature �(v,�) is as in Table 2.3.

Definition 2.6.11. [34, Definition 6.6] We say that RSym succeeds with a constant " > 0 on
a diagram � 2 D if �(F )  �" for all interior green faces F of �.

We say that RSym succeeds on P with constant " if this is true for every � 2 D, and
RSym succeeds on P if there exists an " > 0 for which RSym succeeds.

In [34, Section 7] the authors describe a polynomial-time procedure RSymVerify(P, ")

([34, Procedure 7.19]) with input P (the procedure assumes that the preprocessing from [34,
Section 7.1] has been done to P , so that it satisfies Assumption 2.3.15) and a constant " > 0,
such that if RSymVerify(P, ") returns true, then RSym succeeds on P with " (see [34,
Theorem 7.16]). Hence by [34, Theorem 6.13] G is then hyperbolic, and an explicit linear
bound on the Dehn function of G can be calculated (see Definition 2.2.3 and Theorem 2.2.4).

The success of RSym on P also implies the following useful result, which is stated only
for V �-letters, but the proof does not assume it.

Proposition 2.6.12. [34, Theorem 6.12] Assume that P satisfies Assumption 2.3.15, and that
RSym succeeds on P . Then no x 2 X� is trivial in G.

In [34, Section 8] the following condition on P is introduced, which enables one to solve
the word problem in G in linear time.

Definition 2.6.13. RSym verifies a solver for P if, for any boundary green face F in any
� 2 D with �(F ) > 0, the removal of F shortens @(�).
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In [34, Section 8] a polynomial-time procedure VerifySolver (see [34, Procedure 8.3
& Procedure 8.5]) is described, such that if VerifySolver(P) returns true, then RSym

verifies a solver for P (see [34, Theorem 8.4]). Subsequently, an algorithm RSymSolve is
given (see [34, Algorithm 8.8]), which gives a linear-time solution to the word problem in
G if RSym succeeds on P and VerifySolver(P) returns true (see [34, Theorem 8.6]).
RSymSolve is a highly technical algorithm, but we shall use it only when the input pregroup
presentation satisfies trivial-interleaving (see Definition 2.3.23): in Chapter 6 for development
of IsConjugate. Section 6.1 gives the complete description of this simplified version.

We conclude this section with several useful definitions for working with pregroup presen-
tations.

Definition 2.6.14. We say that P is sound if P satisfies trivial-interleaving; RSym succeeds
on P; and VerifySolver(P) returns true, and that P is proper if no R 2 R is conjugate in
F (X�) to R�1.

We say that P is valid if P is sound and proper.

Remark 2.6.15. If P is sound, then G is hyperbolic, and RSymSolve solves the word prob-
lem in G.

Moreover, by [34, Remark 8.10] we can solve the word problem in G by the standard
Dehn algorithm using the length reducing rewrite rules derived from VP [R, i.e. P is a Dehn
presentation.
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Conjugacy problem in hyperbolic
groups
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Brief Outline

Part I of this thesis is structured as follows. In Chapter 3, we define two subsets of coloured
annular diagrams (called T and S) that we shall use for development of IsConjugate.

Definition 2.6.16. Let � be a coloured diagram with dual �⇤, and let f1 ✓ � and f2 ✓ � be
faces corresponding to vertices v1 and v2 of �⇤. The dual distance from f1 to f2 in � is the
distance from v1 to v2 in �⇤.

In Chapters 4-5 we study the structure of diagrams �A 2 T , and prove that for any edge e

that lies on a boundary ⇢ of �A, there is an internal face F with e\@(F ) 6= ; that is either at dual
distance (when treating each red blob of �A as a single face) at most three from the external
face with boundary ⇢0 6= ⇢, or @(F ) \ ⇢0 6= ; (this will enable us to make IsConjugate

quadratic).
In Chapter 6 we describe IsConjugate, and prove Theorem 1.0.3 stated in Chapter 1,

which is the main result of Part I. In Chapter 7 we present experiments with our implementation,
and show that the reported run times agree with Theorem 1.0.3. Finally, Chapter 8 includes
suggestions for improvements and generalizations of IsConjugate.
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Chapter 3

Conjugacy diagrams over pregroups

In this chapter we give a procedure for obtaining the subsets T and S of coloured annular dia-
grams. Throughout this whole chapter, let P = hX� |VP |Ri be a finite pregroup presentation
for a group G such that I(R) = R (see Definition 2.3.23).

3.1 Preliminaries

In this section we introduce the set T , and determine some elementary properties of coloured
annular diagrams. Throughout the whole section let w1, w2 2 X⇤.

In the proof of the next theorem we use the following concept (recall Definition 2.5.14 of
the 1-skeleton of a coloured diagram).

Definition 3.1.1. Let �A be a coloured annular diagram with a path p 2 �1A intersecting both
boundaries of �A. A process of cutting �A open along p results in creating a coloured simply-
connected diagram � (see Figure 3.1), where two disjoint copies p1, p2 ✓ � of p are created,
and where each point of �A \ p is mapped to precisely one point of �.

Let �A be an annular diagram, with the external face O with boundary !. Recall from
Definition 2.5.4 that O is oriented counter-clockwise, that all other faces of �A are oriented
clockwise, and that all faces of a simply-connected diagram are oriented clockwise.

Figure 3.1: Cutting �A open along p, see Definition 3.1.1.
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Theorem 3.1.2. Both of the following statements hold.

1. Suppose that w1 and w2 are cyclically P -reduced, non-trivial in G, and G-conjugate but
not U(P )-conjugate. Then w1 and w2 are boundary words of some coloured annular
diagram over P .

2. Suppose that w1 and w2 are boundary words of some coloured annular diagram �A over
P . Then w1 and w2 are G-conjugate; and if w1 and w2 are not U(P )-conjugate, then
CArea(�A) � (1, 0).

In particular, if w1 and w2 are cyclically P -reduced, non-trivial in G, and not U(P )-conjugate,
then w1 and w2 are G-conjugate if and only if they are boundary words of some coloured
annular diagram over P .

Proof. Part 1. We use the ideas from the proof of [42, Chapter 5, Lemma 5.2]. By the assump-
tions on w1 and w2 and Corollary 2.3.17, there exist ↵ 2 U(P ), and relators Ri 2 R±1 and
ui 2 U(P ), 1  i  k, such that

↵�1w2↵w
�1
1 =U(P ) u

�1
1 R1u1 · · ·u�1

k Rkuk,

hence w1 =U(P ) (⇧
k
i=1u

�1
i Riui)�1↵�1w2↵. We proceed as in the proof of Theorem 2.5.8 and

construct a balloon diagram �0 with base point v such that reading counter-clockwise around
v, we obtain a cyclic tuple (p0, p1, . . . , pk) of paths (starting at v) with labels (↵0)�1, (u01)

�1,

. . . , (u0k)
�1 (where ↵0 is a P -reduced word representing ↵ and each u0i is a P -reduced word

representing ui) and endpoints v and vi respectively, and a cyclic tuple of internal faces (F0, F1,

. . . , Fk), where each Fi is attached to pi at vi, F0 is labelled by w2, and each Fi 6= F0 is green
and labelled by R�1

i . By Lemma 2.5.7 there exists a simply-connected diagram �0 with P -
reduced boundary word w0

1 (when reading counter-clokwise around @(�0)) such that w0
1 =U(P )

(⇧k
i=1(u

0
i)
�1Riu0i)

�1(↵0)�1w2↵0 =U(P ) w1, and in which all internal faces other than F0 are
labelled by elements from VP [ R±1. By Theorem 2.3.11 w0

1 is an interleave of w1, hence
applying Lemma 2.5.7 again shows there exists a simply-connected diagram � with boundary
word w1.

If in the construction of � the face F0 was deleted, then by Theorem 2.5.8 w1 =G 1, a
contradiction. Hence F0 ✓ �. Now delete F0 from �. The obtained diagram is a coloured
annular diagram with the outer boundary labelled by w1, and the inner boundary labelled by
w2, as required.

Part 2. By relabelling, if necessary, we can without loss of generality assume that w1 labels
the outer boundary of �A. Since �A is connected there exists a simple path p with label some
↵ 2 X⇤ such that cutting �A open along p gives us a coloured van Kampen diagram � with
boundary word W = ↵w2↵�w�

1 . By Theorem 2.5.8 we have W =G 1; and if � has no green
faces, then W =U(P ) 1, so we are done.

The last statement follows directly from Parts 1-2. ⌅
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Definition 3.1.3. Let �A be a coloured annular diagram over P , with boundary words w1 and
w2. We say that �A has minimal coloured area if for every coloured annular diagram�A over
P with boundary words w1 and w2 we have CArea(�A)  CArea(�A).

Similarly, we say that a coloured simply-connected diagram � over P with boundary word
w has minimal coloured area if CArea(�) is minimal among all simply-connected diagrams
over P with boundary word w.

Definition 3.1.4. A minimal coloured conjugacy diagram for w1 and w2 is a coloured annular
diagram with boundary words w1 and w2 of minimal coloured area.

Proposition 3.1.5. If w1 and w2 are cyclically P -reduced, non-trivial in G and not U(P )-
conjugate, then w1 and w2 are G-conjugate if and only if there exists a minimal coloured
conjugacy diagram for w1 and w2.

Proof. Suppose that w1 and w2 are G-conjugate, and let S be the set of all coloured annular
diagrams with boundary words w1 and w2. By Theorem 3.1.2 S is non-empty, so let �A 2 S,
and let CArea(�A) = (a, b). Now using Definition 2.5.9 define an equivalence relation ⇠ on
S as follows, for all �0A,�A 2 S: �0A ⇠ �A if and only if CArea(�0A) = CArea(�A). Let
P be the set of all equivalence classes, and for 0  k  a, let Pk be the set of all equivalence
classes containing diagrams with exactly k internal green faces. Note that the coloured area
gives us a total order on P , and each set Pk contains a minimal element. Hence as there are
only finitely many such elements, one of them is a minimal element of P . Thus, there exists a
minimal coloured conjugacy diagram for w1 and w2.

Suppose instead that there exists a minimal coloured conjugacy diagram for w1 and w2.
Then by Theorem 3.1.2 w1 and w2 are G-conjugate. ⌅

Recall that a loop is an edge with equal endpoints, and Definition 2.5.3 that ! and ⌧ denote
the outer and the inner boundary of an annular diagram respectively.

Definition 3.1.6. Let �A be a coloured annular diagram. We say that �A is loop-minimal if �A
satisfies the following condition.

(*) If l is a loop in �A labelled by a V �-letter (see Definition 2.3.8), then l 2 {!, ⌧}.

A layer of �A is an annular sub-diagram of �A that does not contain interior loops. A boundary
layer � of �A is a layer of �A such that ⇢ ✓ @(�) for some ⇢ 2 {!, ⌧}.

The next result will be frequently used in our work (recall Definition 2.6.14 of a valid
pregroup presentation).

Lemma 3.1.7. Let �A be a coloured annular diagram, defined over a valid pregroup presen-
tation. Suppose that �A contains a loop l, and let C be the bounded component of R2 \ l. Then
C\�A is an annular sub-diagram of �A. Hence �A is a face-disjoint union of layers

Sn
j=1 �j ,

and there is i such that l is one of the boundaries of �i.
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Proof. Suppose for a contradiction that C \ �A is not annular. Then C \ �A is simply-
connected. Hence the label of l is a single letter trivial in G, which by Proposition 2.6.12
contradicts our assumption that �A is defined over a valid pregroup presentation. ⌅

We now define T .

Definition 3.1.8. Assume that P is valid. We define T to be the set of all coloured annular
diagrams �A over P that satisfy all of the following axioms.

(T1) The boundaries of �A are simple closed paths, and no internal green face has more than
1/2 of its length on a single boundary of �A.

(T2) �A is �-reduced and semi-P -reduced (see Definitions 2.5.15 and 2.5.16).

(T3) �A is green-rich (see Definition 2.5.6).

(T4) No proper sub-word of the (cyclic) boundary word of a simply-connected red blob of �A
is equal to 1 in U(P ).

(T5) �A is loop-minimal (see Definition 3.1.6).

(T6) Each internal green face F of �A contains a boundary edge and �A(F ) = 0.

Recall Definition 2.6.8 that �(x,�A) is the curvature that x gives to a single internal green
face of �A across each curvature incidence.

Lemma 3.1.9. Let �A 2 T have a vertex v incident with an internal green face. If v 2 ! \ ⌧ ,
then �(v,�A) = �1/2, else �(v,�A) > �1/2.

Proof. By Axiom T1, the boundaries of �A are simple closed paths. Hence if v 2 ! \ ⌧ , then
v is incident exactly twice with external faces of �A, else v is incident exactly once with them.
So the lemma follows from Lemma 2.6.9. ⌅

Recall Definition 2.5.10 of an island and a bridge.

Lemma 3.1.10. Let �A 2 T contain an island. Then �A is a union of islands and bridges.
Suppose further that �A contains at least two islands, and let �A be a diagram resulted from
deleting some island of �A and identifying its endpoints. Then �A 2 T , and �A is a union of
islands and bridges.

Proof. By Axiom T1, the boundaries of �A are simple closed paths, hence �A is a union of
islands and bridges.

To prove the second statement of the lemma, first note that �A is also a union of islands
and bridges. Hence�A is annular, the boundaries !1 and ⌧1 of�A are simple closed paths, and
each internal green face and each red blob of�A is contained in some island of �A. Therefore,
no internal green face has more than 1/2 of its length on a single boundary of �A, so �A

satisfies Axiom T1;�A is �-reduced and semi-P -reduced (Axiom T2); each vertex v 62 !1\⌧1
satisfies �G(v,�A) = �G(v,�A) � 2 and each vertex v 2 !1\⌧1 also satisfies �G(v,�A) � 2,
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hence �A satisfies Axiom T3; �A satisfies Axiom T4; and �A is loop-minimal. Thus, �A

satisfies Axioms T1-T5. Moreover, as �A satisfies Axiom T6, each internal green face F of�A

contains a boundary edge.
So it remains to show that �A(F ) = 0. Assume that B is a red blob of �A edge-incident

with F . Then Area(B) and the number of edge-incidences with F remained unchanged,
and |@(B) \ @(�A)| = |@(B) \ @(�A)|, so by the description of ComputeRSym (see
Algorithm 2.6.4) we have �(B,F,�A) = �(B,F,�A). Suppose that v is a vertex of �A

incident with F . If v 2 !1 \ ⌧1, then since !1 and ⌧1 are simple closed paths, v is incident
exactly twice with external faces of �A, hence by Lemma 2.6.9 �(v,�A) = �1/2. Suppose
further that v resulted from identifying two endpoints v1 and v2 of some islands of �A. Since
v1, v2 2 ! \ ⌧ , we have �(v1,�A) = �1/2 = �(v2,�A). Moreover, the sum of the numbers
of incidences of v1 and v2 with F in �A is equal to the number of incidences of v with F

in �A. Hence �(v, F,�A) = �(v1, F,�A) + �(v2, F,�A). Otherwise, we have v 2 ! \
⌧ , so �(v,�A) = �1/2, and the number of incidences with F remained unchanged, hence
�(v, F,�A) = �(v, F,�A). If v 62 !1\⌧1, then the green degree of v, the internal green degree
of v (see Definition 2.5.6), and the number of incidences with F remained all unchanged, so
�(v, F,�A) = �(v, F,�A). Thus, as by Axiom T6 we have �A(F ) = 0, it follows that
�A(F ) = 0, hence �A 2 T . ⌅

Using the techniques from [34], we now prove several auxiliary results that will help us to
show that minimal conjugacy diagrams share many properties with diagrams in T .

Lemma 3.1.11. Let �A be a coloured annular diagram with cyclically �-reduced boundary
words. Then there are no vertices of degree 1 in �A.

Proof. The proof is essentially the same as the proof of [34, Lemma 3.12]. If v is a vertex of �A
with degree 1, then xx� is a sub-word of some label w of the face containing v, where x labels
the unique edge incident with v. This is a contradiction since w is cyclically �-reduced. ⌅

In the proof of the next lemma we use the ideas from the proof of [34, Proposition 3.8].

Lemma 3.1.12. Let �A be a minimal coloured conjugacy diagram. Then �A is semi-P -reduced
(hence also semi-�-reduced).

Proof. Suppose not. Since �A is not semi-P -reduced, by Definition 2.5.16 there are internal
green faces labelled by w1w2 and w�1

3 w�1
1 that have a common consolidated edge labelled by

w1 and w�1
1 , where w2w

�1
3 =U(P ) 1. Therefore, we can delete the consolidated edge labelled

w1 from �A and identify consecutive edges with inverse labels. The resulted region has a
cyclically �-reduced boundary word equal to 1 in U(P ), so by Theorem 2.5.8 we can fill in
it with red triangles. The obtained diagram has the same boundary words as �A, but strictly
smaller coloured area, a contradiction. ⌅

Definition 3.1.13. Let � be a coloured annular/simply-connected diagram over P . A smaller
sibling of � is a coloured annular/simply-connected diagram� over P with the same boundary
words/word as �, with the same green faces as �, and satisfying CArea(�)  CArea(�).
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The next result is stated only for coloured simply-connected diagrams, but its proof does
not assume it.

Lemma 3.1.14. [34, Lemma 3.15] Let �A be a coloured annular or simply-connected dia-
gram. Assume that � contains a vertex v with three consecutive edge-incident red triangles,
and that none of the edges in any red triangle incident with v is a loop based at v. Then there
exists a smaller sibling of � in which v is incident with at least one fewer red triangle than it is
in �, and in which none of the edges of any of the red triangles incident with v is a loop based
at v.

Recall Definition 2.3.9 of a (cyclically) �/P -reduced word.

Definition 3.1.15. A word w 2 X⇤ is R-reduced if w does not contain a sub-word s such that
there exists a cyclic conjugate R of some R0 2 R±1 that can be written as R = usv for some
u, v 2 X⇤ and |s| > |R|/2. We define cyclically R-reduced similarly.

A word w is (cyclically) P-reduced if w is both (cyclically) P -reduced and (cyclically)
R-reduced.

Lemma 3.1.16. Let �A be a coloured annular diagram with a cyclically P-reduced boundary
word w that labels ⇢ 2 {!, ⌧}. Then no internal green face of �A has more than 1/2 of its
length on ⇢.

Proof. This is immediate from Definition 3.1.15 since w is cyclically R-reduced. ⌅

3.2 Loop-free minimal conjugacy diagrams

This section studies minimal coloured conjugacy diagrams (see Definition 3.1.4) that contain
no loops labelled by V �-letters (see Definition 2.3.8).

Definition 3.2.1. Let �A be a coloured annular diagram over P . We say that �A is loop-free if
�A contains no loops labelled by V �-letters.

The following theorem is the main result of this section (recall Definition 2.6.14 of a valid
pregroup presentation and Definition 3.1.8 of the set T ).

Theorem 3.2.2. Assume that P is valid, and let �A be a minimal coloured conjugacy diagram
with cyclically P-reduced boundary words. If �A is loop-free, then �A 2 T .

Remark 3.2.3. Let w1, w2 2 X⇤ be cyclically P-reduced and G-conjugate. Assume that P is
valid, and that no cyclically P-reduced w 2 X⇤ with |w| � 2 is G-conjugate to a V �-letter.
Then by Theorem 3.2.2, unless |w1| = 1 = |w2|, all minimal coloured conjugacy diagrams �A
for w1 and w2 are guaranteed to satisfy �A 2 T . Hence to solve the conjugacy problem for G,
it suffices to solve three problems.

1. Finding conjugacy classes of single letters.
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2. Testing if any cyclically P-reduced word w with |w| � 2 is G-conjugate to a V �-letter.

3. For cyclically P-reduced words w0
1 and w0

2, testing if there exists a diagram �A 2 T
with boundary words w0

1 and w0
2.

Recall that a consolidated edge between faces F and F 0 is a non-empty path of maximal
length that is a sub-path of both @(F ) and @(F 0). In the statement of the next lemma we treat
the red blob B as a single face.

Lemma 3.2.4. Let � be a green-rich coloured diagram over P that contains a red blob B.
Then all consolidated edges between B and any green face of �A have length at most one.

Proof. Assume for a contradiction that there is a consolidated edge l with |l| � 2 between B

and some green face of �. Then l contains a vertex v with �G(v) = 1, a contradiction as � is
green-rich. ⌅

Recall the notation �G(v,�) from Definition 2.5.6. The next proof is inspired by the proof
of [34, Theorem 3.16].

Lemma 3.2.5. Assume that P is valid, and let �A be a minimal conjugacy diagram over P
with cyclically P-reduced boundary words. Assume that �A contains a vertex v that is not
incident with any loop labelled by a V �-letter. Then �G(v,�A) � 2.

Hence if �A is loop-free, then is is green-rich.

Proof. We first show that �G(v,�A) � 1. Assume for a contradiction that �G(v,�A) = 0. By
Lemma 3.1.11 we have �(v,�A) � 2. Suppose first that �(v,�A) = 2. Then v is incident with
two red triangles edge-incident by two edges meeting at v, and labelled ab[ab]� and b�a�[ab]

respectively for some a, b 2 X . Hence �A is not semi-�-reduced, contradicting Lemma 3.1.12.
So suppose that �(v,�A) � 3. Then by Lemma 3.1.14 there exists a smaller sibling of �A in
which v is incident with at least one fewer red triangle than it is in �A, and in which none of the
edges of any of the red triangles incident with v is a loop based at v. By repeating this process
we obtain a smaller sibling �A of �A in which �(v,�A) = 2, and in which none of the edges
of any of the red triangles incident with v is a loop based at v. So �A is a minimal conjugacy
diagram, and as before�A is not semi-�-reduced, contradicting Lemma 3.1.12.

It remains to show that �G(v,�A) 6= 1. Suppose otherwise. Let F be the unique green face
incident with v, and let e and f be the edges of F with v 2 e \ f , and with labels a and b

respectively. Since there is no loop labelled by a V �-letter based at v, from �(v,�A) � 2 we
have e 6= f . Hence ef is a sub-path of @(F ), so ab is a sub-word of some label S of F , and
e and f are edges of some (not necessarily distinct) red faces F1 and F2 of �A respectively.
If F1 = F2, then (a, b) 2 D(P ), so S is not cyclically P -reduced, a contradiction. Hence
suppose that F1 6= F2. Then since F is the only green face incident with v and F is incident
once with v, we deduce that ef is a sub-path of a consolidated edge between F and the red
blob B with v 2 B, so by Lemma 2.5.13 (a, b) 2 D(P ), a contradiction.

The last statement follows from the first. ⌅
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The next result is again stated only for coloured simply-connected diagrams, but the proof
does not assume it.

Lemma 3.2.6. [34, Lemma 4.12] Let B be a red blob in a coloured diagram � over P with
boundary length l and area t. Then l  t+2, and l  t if B is not simply-connected. Moreover,
if B is simply-connected, and every vertex of B lies on @(B) (which holds in particular if all
vertices of � have green degree at least 1), then l = t+ 2.

Using Lemma 3.2.6 we obtain:

Lemma 3.2.7. Let � be a coloured annular or simply-connected diagram over P of minimal
coloured area and in which all vertices have green degree at least 1. Then no proper sub-word
of the (cyclic) boundary word of a simply-connected red blob of � is equal to 1 in U(P ).

Hence the same holds for a loop-free minimal conjugacy diagram defined over a valid
pregroup presentation P 0 that has cyclically P 0-reduced boundary words.

Proof. We use the ideas from the proof of [34, Proposition 4.13]. Assume that there is a
simply-connected red blob B of � that does not have the stated properties. Since all vertices
of � have green degree at least 1, we deduce that all vertices of B lie on @(B). Suppose
first that B has a boundary word w such that w = w0xx�. Since B is simply-connected, we
have w =U(P ) 1, so w0 =U(P ) 1. Hence we can identify the vertex at beginning of the edge
with label x with the vertex at the end of the edge labelled x�, and replace B with a red blob
B0 with boundary label w0 and with a single edge added to the boundary. By Lemma 3.2.6
Area(B0) = |@(B0)|� 2 < |@(B)|� 2 = Area(B). Hence the diagram with the red blob B0

is a smaller sibling of �, and with a strictly smaller coloured area, a contradiction.
Now suppose that B has a boundary word w such that w = w1w2 with |w1|, |w2| > 2 and

w1 =U(P ) 1 =U(P ) w2. Then we can identify the vertices at the beginning and the end of w1,
and replace B by two blobs B1 and B2 with boundary words w1 and w2, and with

Area(B1) +Area(B2) = |@(B1)|� 2 + |@(B2)|� 2 = |@(B)|� 4 = Area(B)� 2.

So we again obtained a smaller sibling of � with a strictly smaller coloured area.
Now note that the final statement follows from the first statement and Lemma 3.2.5. ⌅

In the next result we derive the formula for calculating �(B,�A) (see Definition 2.6.8) of
a simply-connected red blob B.

Lemma 3.2.8. Let B be a red blob composed of t triangles in a green-rich coloured annular
diagram �A. If B is not simply-connected, then �(B,�A)  �1/2.

Let d = |@(B) \ @(�A)|. If B is simply-connected then

�(B,�A) =
�t

2(t� d) + 4
. (3.1)

In particular, for small values of t, the curvature values are as in Table 3.1.
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Proof. First note that from the description of ComputeRSym (see Algorithm 2.6.4) it fol-
lows that

�(B,�A) =
�t

2|@(B) \ @(�A)|
. (3.2)

Let l = |@(B)|. By Lemma 3.2.6 l  t if B is not simply-connected, hence by (3.2)
�(B,�A)  �1/2.

Suppose that B is simply-connected. Since �A is green-rich, by Lemma 3.2.6 l = t + 2.
Thus, from (3.2) we deduce that (3.1) holds for �(B,�A). ⌅

Table 3.1: Red blob curvature

Area(B) @(B) \ @(�A) �(B,�A)
� 1 � 2  �1/2
1 0 �1/6
1 1 �1/4
2 0 �1/4
2 1 �1/3
3 0 �3/10
3 1 �3/8
4 0 �1/3
4 1 �2/5
5 0 �5/14
5 1 �5/12

Proposition 3.2.9. Assume that P is valid. Let �A be a green-rich coloured annular diagram
over P that has a cyclically P-reduced boundary word w that labels ⇢ 2 {!, ⌧}. Then ⇢ is a
simple closed path. In particular, if E is the external face with boundary ⇢, then no boundary
vertex v of �A is incident more than once with E.

Proof. Assume for a contradiction that ⇢ is not a simple closed path. Then either ⇢ contains
a vertex with degree 1, or it contains a closed path l such that l 6= ⇢. By green-richness of
�A we deduce that the latter holds. Now l encloses a coloured simply-connected sub-diagram
of �A with boundary word u, such that u is a contiguous sub-word of a cyclic conjugate of
w. By Remark 2.6.15 P is a Dehn presentation. Hence as w is cyclically P -reduced, u is not
R-reduced, so w is not cyclically P-reduced, a contradiction. ⌅

Recall Definition 2.5.10 of an island.

Lemma 3.2.10. Let E be an island of a green-rich annular diagram �A with endpoints v1 and
v2, and bounded by the closed path !1⌧1. Then CArea(E) � (1, 0).

Hence if �A is a green-rich annular diagram whose boundaries are simple closed paths,
then �A(T ) = 0 for each red triangle T .

Proof. Suppose that E has no green faces. Then E is a simply-connected red blob. Since �A
is green-rich, by Lemma 3.2.4 all consolidated edges between E and any external face of �A
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have length at most 1. Hence as by Definition 2.5.10 !1 6= ⌧1, we have |@(E)| = 2, so by
Lemma 3.2.6 Area(E) = 0, a contradiction.

For the final statement, suppose that B ✓ �A is a red blob that is not edge-incident with
any internal green face of �A. Then as �A is green-rich and its boundaries are simple closed
paths, B is an island of �A, contradicting the lemma. So �A(T ) = 0 for each triangle T . ⌅

Conjugacy in U(P ) was studied in [17], where the following was proved.

Theorem 3.2.11. Let w1 = x1x2 . . . xn, w2 2 X⇤ be cyclically P -reduced and U(P )-conjugate.
If n = 1, then there exists c 2 P such that w2 = [c�wc], where (c�w), (w, c), ([c�w], c) 2
D(P ).

Otherwise, for some i, we have

w2 = [c�xi]xi+1 . . . xnx1 . . . [xi�1c] 2 U(P ),

where c, [c�xi], [xi�1c] 2 P .

Proof. The case n = 1 is [17, Corollary 4.5]. The rest is [17, Theorem 4.6]. ⌅

For the case n � 2, we can improve this result when P satisfies trivial-interleaving (see
Definition 2.3.23):

Corollary 3.2.12. Assume that P satisfies trivial-interleaving, and that w1 = x1x2 . . . xn, w2 2
X⇤ are cyclically P -reduced and U(P )-conjugate. If |w1| � 2, then for some i, we have

w2 = xixi+1 . . . xnx1 . . . xi�1.

Proof. By Theorem 3.2.11 we have w2 2 I(xi . . . xnx1 . . . xi�1) (see Definition 2.3.20) for
some i. Hence as P satisfies trivial-interleaving, the corollary follows. ⌅

Proposition 3.2.13. Assume that P is valid. Then all coloured semi-�-reduced annular dia-
grams over P are �-reduced. In addition, we can test whether P is proper in time O(r|R|),
where r := max{|R| : R 2 R}.

Proof. Let �A be a coloured annular diagram over P and suppose that f is a face edge-incident
with itself in such a way that �A is not �-reduced. First note that the only way that a red
triangle could be edge-incident with itself is when some element of X is trivial in U(P ),
which contradicts Theorem 2.3.11. Hence f is green. Now f is edge-incident with itself by a
consolidated edge l with label w1, say. By our assumption reading @(f) from the side of l gives
w1w2, and from the other side gives w =F (X�) w

�1
1 w�1

2 (see Figure 2.4). Hence w is a cyclic
conjugate of w1w2 and of w�1

2 w�1
1 =F (X�) (w1w2)�1. So w1w2 is an F (X�)-conjugate of its

inverse in F (X�), and hence R contradicts our assumption that P is proper (since P is valid).
Now if R 2 R and R�1 are conjugate in F (X�), then they are cyclic conjugates as they

are cyclically �-reduced. So R is a contiguous sub-word of (R�1)2, and by [2, Section 9.1] we
can test this in time O(r) by the Knuth-Morris-Pratt (KMP) string-searching algorithm. The
final complexity claim follows from this. ⌅
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Lemma 3.2.14. Let �A be a green-rich coloured annular diagram of area greater than 1 that
contains a boundary green face F . If �A(F ) > 0 then the following statements hold.

1. The consolidated edges and vertices in @(F ) \ @(�A) form a single path p, and at most
three of the vertices in p lie on @(�A). If there are three such vertices, let v be the middle
one. Then �G(v,�A) � 4, and F is incident with no red blobs at v.

2. F does not have an edge on both boundaries of �A.

Proof. Since �A is green-rich, Lemmas 2.6.9 and 3.2.8 hold, which are analogues of [34,
Lemma 6.7 & 6.8] that are applicable to coloured annular diagrams. Hence the proof of [34,
Lemma 6.9] shows Part 1.

To prove Part 2, assume for a contradiction that F contains an edge on both boundaries of
�A. Let e and f be consolidated edges of F with |e|, |f | � 1 and e ✓ !, f ✓ ⌧ . By Part 1 we
have @(F ) \ @(�A) = e [ f , and @(e) \ @(f) contains a vertex v with v 2 ! \ ⌧ . By Lemma
2.6.10 we have �(v, F,�A)  �1/2.

Let v and v1 be the endpoints of e, and let v and v2 be the endpoints of f . Let x 2 {vi}2i=1.
If �G(x) � 3, then by Lemma 2.6.10 �(x, F,�A)  �1/4. If �G(x) = 2, then there is
a red blob B edge-incident with F at x, and with an edge g ✓ @(�A) such that x 2 g.
Hence by Lemma 3.2.8 we have �(B,F,�A)  �1/4. We deduce that for each 1  i  2,
there is xi such that either xi = vi and �(xi, F,�A)  �1/4, or xi is a red blob with edges
g ✓ @(F ), h ✓ @(�A) such that vi 2 g \ h, and �(xi, F,�A)  �1/4. Hence if x1 6= x2 and
x1 6= v 6= x2, then

�A(F )  1 + 2 · (�1/4)� 1/2 = 0,

a contradiction. Otherwise, at least one of the following cases holds.

(a) xi = v for some i 2 {1, 2} and v is incident at least twice with F .

(b) x1 = x2 and x1 is a vertex with x1 2 ! \ ⌧ .

(c) x1 = x2 and x1 is a red blob with edges on both boundaries of �A.

Assume first that Case (a) holds. Then �(v, F,�A)  �1, so �A(F )  0, a contradic-
tion. Assume that Case (b) holds instead. Then by Lemma 2.6.10 �(x1, F,�A)  �1/2, so
�A(F )  1 + 2 · (�1/2) = 0, a contradiction. Finally, assume that Case (c) holds. Then by
Lemma 3.2.8 we have �(x1, F,�A)  �1/2, so again �A(F )  0. ⌅

Proof of Theorem 3.2.2. Let w1 and w2 be the boundary words of �A. By Lemma 3.2.5
�A satisfies Axiom T3. Hence as w1 and w2 are cyclically P-reduced, by Lemma 3.1.16
and Proposition 3.2.9 �A satisfies Axiom T1. Furthermore, by Lemma 3.1.12 and Proposition
3.2.13 �A satisfies Axiom T2; by Lemma 3.2.7 �A satisfies Axioms T4; and as �A is loop-free,
�A satisfies Axiom T5.

So it remains to show that �A satisfies Axiom T6. Hence we can assume that �A contains at
least one green face, as otherwise there is nothing to prove. Since P is valid, there exists " > 0
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such that RSym(P, ") succeeds. Now if there is an interior green face F with �A(F ) > �✏,
then there is a decomposition of the label of F into steps representing red blobs edge-incident
with F and vertices incident with F that makes RSymVerify(P, ") fail, a contradiction.
Hence �A(F )  �✏.

We have �A(e) = 0 for each edge e 2 �A. By Axiom T1, ! and ⌧ are simple closed
paths, hence each vertex v 2 �A is incident at most twice with external faces. By Lemma 2.6.9
we therefore have �A(v) = 0. Moreover, by Axioms T1 and T3, �A satisfies assumptions
of Lemma 3.2.10, hence by Lemma 3.2.10 �A(T ) = 0 for each red triangle T . Thus, as
(�A) = 0 and all non-zero curvature is on the internal green faces of �A, if �A contains
precisely one green face F , then �A(F ) = 0. So from above F contains a boundary edge.
Hence we can assume that �A contains at least two green faces.

Suppose that F is a boundary green face labelled by R and �A(F ) > 0. By Lemma
3.2.14 either @(F ) \ @(�A) = l, where l is a single consolidated edge with l ✓ ⇢ 2 {!, ⌧}, or
@(F )\@(�A) = l[{v}, where l has properties as before and v is a vertex. Hence by Axiom T1,
F does not have more than 1/2 of its length on @(�A). Therefore, we can find a decomposition
of R into steps representing red blobs edge-incident with F and vertices incident with F that
makes VerifySolver(P) return fail, a contradiction since P is valid. Thus, as (�A) = 0

and all interior green faces F have �A(F )  �✏, we conclude that �A has no interior green
faces, and all boundary green faces F satisfy �A(F ) = 0. ⌅

3.3 Conjugacy diagrams containing loops labelled by V �-letters

This subsection analyses the case where a minimal coloured conjugacy diagram is not loop-free
(see Definitions 3.1.4 and 3.2.1). Recall Definition 3.1.6 of a (boundary) layer. Throughout this
section, assume that P is valid, and let w1, w2 2 X⇤ be cyclically P-reduced and G-conjugate.

Definition 3.3.1. Let � be a coloured annular diagram over P . We say that � is decomposable
if � is a face-disjoint union of non-empty annular sub-diagrams �1 [ �1 or �1 [ �1 [ �2,
where CArea(�1) = (0, 3) = CArea(�2), and the length 1 boundary of �i is a boundary
of �.

We call �i a boundary red blob of �, and �1 the core of �.

Definition 3.3.2. We define S to be the set of all coloured annular diagrams �A over P each of
which is a face-disjoint union of layers � with area at least 1 and such that: for non-boundary
layers �, both boundaries of � have length 1, and one of the following 3 statements holds for
�.

1. The boundary words of � are single letters G-conjugate by some single letter.

2. � 2 T .

3. � is decomposable, where

(i) the core �1 of � satisfies �1 2 T ;
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(ii) the label of the length 2 boundary of each boundary red blob B of � is non-trivial in
P , is not P -reduced, and is not equal to the other boundary word of B in P -reduced
form.

For boundary layers � the same holds, but at least one of the boundaries of � is a boundary of
�A, so may have length greater than 1.

Our aim is to show the following theorem (recall Definition 3.1.13 of a smaller sibling).

Theorem 3.3.3. Assume that w1 and w2 are non-trivial in G and are not U(P )-conjugate, and
that �mA is a minimal conjugacy diagram for w1 and w2. Then there exists a smaller sibling �A
of �mA (hence �A is a minimal conjugacy diagram for w1 and w2) such that �A 2 S . Moreover,
if �mA is a single layer, then �A is a single layer.

Assume that w1 and w2 are non-trivial in G and are not U(P )-conjugate. Since w1 and
w2 are cyclically P-reduced and G-conjugate, by Proposition 3.1.5 there exists a minimal
conjugacy diagram �mA for w1 and w2. Assume that �mA contains a loop l. Then by Lemma
3.1.7 �mA is a face-disjoint union of annular sub-diagrams�1 and�2, where�1 is bounded by
! and l, and �2 is bounded by l and ⌧ . Note that �1 and �2 can have area 0.

The next lemma considers the degrees of the endpoint v of l. Recall that �G(v0,�) (and
�R(v0,�)) is the number of green (and red) faces incident with a vertex v0 in a coloured diagram
�, and that �IG(v

0,�) is the number of internal green faces incident with v0 in �.

Lemma 3.3.4. For i 2 {1, 2}, one of the following statements holds.

1. We have �G(v,�i) � 2.

2. We have �G(v,�i) = 1 and �R(v,�i) � 3.

Proof. Since v is a boundary vertex of �i, we have �G(v,�i) � 1. Assume that �G(v,�i) =

1. Then �IG(v,�i) = 0 and �R(v,�i) � 1. In fact, the unique triangle of �i containing l is
incident more than once with v, hence �R(v,�i) � 2. Assume that �R(v,�i) = 2. Then as by
Lemma 3.1.11 each vertex v0 2 �mA has �(v0,�mA ) � 2, it follows that v is incident with both
external faces of �i, contradicting �G(v,�i) = 1, so �R(v,�i) � 3. ⌅

Theorem 3.3.5. Assume that w1 and w2 are non-trivial in G and are not U(P )-conjugate, and
that �mA contains a loop l. Then �mA is a face-disjoint union of n layers for some n, and there
exists a smaller sibling �A of �mA such that �A is a face-disjoint union of layers

Sn
j=1 �j with

area at least 1. Furthermore, for some i, the closure l is one of the boundaries of �i, and �i
satisfies one of the following 3 statements.

1. The boundary words of �i are single letters that are G-conjugate by some single letter.

2. �i satisfies Axioms T1 � T5.

3. �i is decomposable, where
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Figure 3.2: The sub-diagram ⇥ of �i, see the proof of Theorem 3.3.5.

(i) the core of �i satisfies Axioms T2 � T5;

(ii) the label of the length 2 boundary of each boundary red blob B of �i is non-trivial
in P , is not P -reduced, and is not equal to the other boundary word of B in P -
reduced form.

Proof. By Lemma 3.1.7 �mA is a face-disjoint union of layers
Sn

j=1�j , and for some i, the
closure l is one of the boundaries of�i. Since w1 and w2 are not U(P )-conjugate, by Theorem
3.1.2 CArea(�mA ) � (1, 0). Hence for all 1  j  n we can assume Area(�j) � 1. Without
loss of generality assume that �i is contained in the annular sub-diagram with boundaries l

and !. Let v be the endpoint of l, let @(�i) = {l, ⇢}, and let t and w3 be the labels of l and ⇢
respectively when oriented by external faces of �i. Assume that t and w3 are single letters G-
conjugate by some single letter. Then �A = �mA satisfies the theorem. So suppose throughout
the rest of the proof that t and w3 are not single letters G-conjugate by any single letter.

Assume first that Case 1 of Proposition 3.3.4 holds for v, and that either |⇢| � 2, or ⇢
is a loop and the endpoint v1 of ⇢ also satisfies �G(v1,�i) � 2. By Assumption 2.3.15 all
R 2 R satisfy |R| � 3, hence the boundary words of �i are cyclically P-reduced. Since
by Lemma 3.1.12 and Proposition 3.2.13 �mA satisfies Axiom T2, so does �i. The fact that
�mA is a minimal conjugacy diagram implies that the same holds for �i. Hence by Lemma
3.2.5 all vertices v0 2 �i that are not incident with any loop labelled by a V �-letter satisfy
�G(v0,�i) � 2. Therefore, �i satisfies Axiom T3, so by Lemma 3.2.7 �i satisfies Axiom T4;
and as the boundary words of �i are cyclically P-reduced, by Lemma 3.1.16 and Proposition
3.2.9 �i satisfies Axiom T1. Thus, as �i is loop-minimal (see Definition 3.1.6), �i satisfies
Axioms T1 � T5.

Next assume that v1 satisfies Case 2 of Proposition 3.3.4. We first show that there exists
a smaller sibling �A of �mA with layers �1, . . . ,�n as in the statement of the theorem, and
such that @(�i) = {l, ⇢}, �i is decomposable, and the label of the length 2 boundary of each
boundary red blob B of �i is non-trivial in P , is not P -reduced, and is not equal to the other
boundary word of B in P -reduced form.

There is a unique (red) face T of�i with l ✓ @(T ). Hence we can let⇥ be the annular sub-
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diagram of �i bounded by ⇢ and the edges e1 and e2 of T with e1 6= l 6= e2 (see Figure 3.2).
Now e1 and e2 meet at v, and a vertex u, say. Let a and b be labels of e1 and e2 respectively
when oriented by T .

We first show that there is no other loop l2 in �i incident with v. Suppose for a contradic-
tion that such a loop exists. Then as �IG(v,�i) = 0, Theorem 2.3.11 implies that the labels of l
and l2 are equal in P . So we can identify l and l2 and delete the sub-diagram bounded by l and
l2 from �mA . This yields a coloured annular diagram �A with boundary words w1 and w2 and
with CArea(�A) < CArea(�mA ), contradicting Definition 3.1.4. Hence no such l2 exists in
�i.

Next we show that without loss of generality �R(v,�i) = 4. Suppose first that �R(v,�i) =

3. Then as there is no loop l2 6= l in �i incident with v, there is a loop l0 based at u with label
t0. Hence t and t0 are U(P )-conjugate by b. Since �i contains no interior loops, we have
l0 = ⇢, contradicting our assumption on t and w3 from the first paragraph. Now suppose that
�R(v,�i) � 5. Then �R(v,⇥) � 3. Hence as there are no loops labelled by V �-letters based
at v in ⇥, we can repeatedly use Lemma 3.1.14 to reduce �R(v,�i) to four.

Hence as �R(v,�i) = 4, there are two red triangles T1 ✓ ⇥ and T2 ✓ ⇥ distinct from
T and incident with both v and u. Let � be the annular sub-diagram of ⇥ such that ⇥ =

� [ T1 [ T2. It follows that @(�) = {⇢, e3e4}, where e2i+1 ✓ @(Ti). Let c and d be inverses
of labels of e3 and e4 when oriented by T1 and T2, and let x be the label of the common edge
of T1 and T2 when oriented by T1 (see Figure 3.3). Now bcdb� =U(P ) t =U(P ) xdcx

�. Hence
if c = d� or d = c�, then t =U(P ) 1, contradicting Theorem 2.3.11. So c 6= d� and d 6= c�. In
addition, by Lemma 2.5.13 we have (c, d), (d, c) 2 D(P ) since P satisfies trivial-interleaving
and both cd and dc are boundary words of the red blob T [ T1 [ T2. Suppose that [cd] =P t.
Then we can delete the triangles T, T1, T2 from �mA , and add a new triangle with label d�c�t to
�mA as in Figure 3.4. The obtained annular diagram has boundary words w1 and w2 and strictly
smaller coloured area than �mA , contradicting Definition 3.1.4. Hence [cd] 6=P t, and similarly
[dc] 6=P t.

Suppose first that |⇢| � 2. Then�i is decomposable, T [ T1 [ T2 is the boundary red blob
of �i, and � is the core of �i. Furthermore, by the previous paragraph the label of the length
2 boundary of T [ T1 [ T2 is non-trivial in P , is not P -reduced, and is not equal to t.

Suppose instead that ⇢ is a loop. Let w be the vertex incident with e3 and e4 distinct from
u. We show that there is no loop based at u or w. If there are loops based at both u and w,
then one of these loops contradicts Lemma 3.1.7. If there is precisely one loop l0 with label t0

based at u or w, then t0 is G-conjugate to t by b or x. Hence as �i contains no interior loops,
we have ⇢ = l0, contradicting our assumption on t and w3 from the first paragraph. Hence the
endpoint v1 2 ⇢ satisfies u 6= v1 6= w, so applying Proposition 3.3.4 and the arguments above
shows that either �G(v1,�i) � 2, or without loss of generality we can assume �G(v1,�i) = 1

and �R(v1,�i) = 4. Thus,�i is decomposable, and the label of the length 2 boundary of each
boundary red blob B of �i is non-trivial in P , and is not P -reduced, and is not equal to the
other boundary word of B in P -reduced form. Hence we showed that there exists a diagram
�A with properties as in the third paragraph.
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Case �R(v,�i) = 4.

Figure 3.3: A boundary red blob comprised of three triangles T, T1, T2, see the proof of Theo-
rem 3.3.5.

Figure 3.4: Reducing the coloured area of �mA , see the proof of Theorem 3.3.5.

Let � be the core of �i, and note that the boundary words of �i are cyclically P-reduced.
Since CArea(�A) = CArea(�mA ), �i and � are minimal conjugacy diagrams. Therefore,
by Lemma 3.1.12 � is semi-P -reduced, hence by Proposition 3.2.13 � satisfies Axiom T2. By
Lemma 3.2.5 all vertices v0 2 �i that are not incident with any loop labelled by a V �-letter
satisfy �G(v0,�i) � 2. Therefore, � satisfies Axiom T3, so by Lemma 3.2.7 � satisfies Axiom
T4. Thus, as � is loop-minimal, � satisfies Axioms T2-T5.

Finally, assume that �G(v,�i) � 2, that ⇢ is a loop, and that the endpoint v1 of ⇢ satisfies
�G(v1,�i) = 1. Then applying arguments from the previous case shows that there exists a
smaller sibling of �mA with layers �1, . . . ,�n as in the statement of the theorem, such that �i
is decomposable with precisely one boundary red blob B, and B and the core of �i satisfy
Statement 3. The theorem follows. ⌅

Proof of Theorem 3.3.3. Since w1 and w2 are not U(P )-conjugate, by Theorem 3.1.2
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CArea(�mA ) � (1, 0). So if CArea(�mA ) contains no loops, then �mA is a single layer with
area at least 1, and by Theorem 3.2.2 we have �mA 2 T , so �mA 2 S . Hence we can assume that
�mA contains a loop. Then applying Theorem 3.3.5 repeatedly shows that there exists a smaller
sibling �A of �mA (hence �A is a minimal conjugacy diagram for w1 and w2) such that �A is a
face-disjoint union of n layers, where each layer satisfies one of the Statements 1-3 of Theorem
3.3.5. In particular, if �mA is a single layer, then �A is a single layer.

So it remains to prove that if a layer � ✓ �A satisfies Statement 2 of Theorem 3.3.5, then
� satisfies Axiom T6; and if � satisfies Statement 3 of Theorem 3.3.5, then the core �1 of �
satisfies Axioms T1 and T6. Suppose first that � satisfies Statement 2 of Theorem 3.3.5. Then
as P is valid, we can use the same arguments as in the proof of Theorem 3.2.2 to deduce that
� satisfies Axiom T6.

Assume instead that � satisfies Statement 3 of Theorem 3.3.5. Since we can assume that �
does not satisfy Statement 1 of Theorem 3.3.5, by Theorem 3.2.11 it follows that CArea(�) �
(1, 0). Let ⇢ be a length 2 boundary of some boundary red blob of �, and let F ✓ �1 be a green
face. Suppose that ⇢ is a sub-path of @(F ). Then as �1 is green-rich, we contradict Lemma
3.2.4. Hence if ⇢ ✓ @(F ), then the label R of F satisfies |R| � 4. Else F contains at most
one edge of ⇢. Therefore, since by Assumption 2.3.15 we have |R| � 3, it follows that F does
not have more than 1/2 of its length on ⇢. Now the boundaries of each boundary red blob of
� are simple closed paths (see Figure 3.3), so in particular, ⇢ is a simple closed path. Also, as
the boundary words of �A are cyclically P-reduced, the label of every boundary ⇢0 of �1 that
is not a boundary of any boundary red blob of � is cyclically P-reduced. Hence by Lemma
3.1.16 no internal green of �1 has more than 1/2 of its length on ⇢0; and as �1 is green-rich,
by Proposition 3.2.9 ⇢0 is a simple closed path. It follows that �1 satisfies Axiom T1. Thus,
applying the arguments of the proof of Theorem 3.2.2 again shows that �1 satisfies Axiom
T6. ⌅



Chapter 4

Foundational theory for diagrams in T

4.1 Introduction and statement of the Three Face Theorem

We study diagrams in the set T from Definition 3.1.8. Recall Definition 2.5.3 that ! and ⌧
denote the outer and the inner boundary of an annular diagram respectively, and Definition
2.6.16 of dual distance.

Theorem 1. (Three Face Theorem) Let �A 2 T . Treat each red blob of �A as a single face.
Then for all edges e ✓ !, at least one of the following statements holds.

1. There is a vertex v 2 ⌧ incident with e.

2. There is an internal face F with e \ @(F ) 6= ; such that either @(F ) \ ⌧ 6= ;, or F is at
dual distance at most three from the external face with boundary ⌧ . Furthermore, either
e ✓ @(F ); or e is red, F is green and F has an edge e1 ✓ ! incident with e.

We shall prove Theorem 1 in Section 5.6. Theorem 1 will enable us to make our conjugacy
problem solver quadratic.

Since our analysis is extensive, let us define a subset U ✓ T of diagrams satisfying two
conditions that will help us to split the proofs into simpler cases.

Definition 4.1.1. Let �A be a coloured annular diagram with a red blob B. We say that B is
bad if B is annular and �A \B� decomposes as a disjoint union of two annular diagrams. We
say that B is good if B is not bad.

Recall Definition 2.6.7 of curvature incidence.

Definition 4.1.2. Let U be the set of all diagrams �A 2 T satisfying the following conditions.

1. Every vertex and every red blob of �A is curvature incident with each internal green face
of �A at most once.

2. There are no bad red blobs in �A.

We always assume that �A 2 T contains at least one internal green face unless stated
otherwise.

49
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4.2 Structural properties of red blobs and internal green faces

In this section we collect some foundational results about internal green faces and red blobs of
diagrams in the set T . We start by proving that certain pathological cases do not arise.

Recall that if we say that a closed path p is of the form p1p2 . . . pn, then p is a sequence of
simple sub-paths pi.

Definition 4.2.1. Let �A be a coloured annular diagram with a non-empty sequence F =

(D1, D2, . . . , Dn) consisting of internal green faces and red blobs such that Di 6= Dj for
i 6= j, and with an external face I with boundary ⌧ .

A sub-diagram of �A bounded by F is equal to C \ I for some bounded component C of
R2 \[D2FD that is bounded by a closed path of the form p1 . . . pn with pi ✓ Di and |pi| � 1,
and (possibly) ⌧ .

It is worth noting that by Definition 4.2.1 a sub-diagram K of �A bounded by F has
K ✓ �A, hence K is a sub-diagram of �A in the sense of Definition 2.5.10.

Lemma 4.2.2. Let �A 2 T , and let F be a non-empty sequence consisting of at most one
internal green face and at most one red blob of �A. If K is a sub-diagram of �A bounded by
F , then K contains an edge of @(�A).

Proof. Suppose for a contradiction that there is a sub-diagram K of �A bounded by F that
does not contain a boundary edge. Let p = @(K). Suppose first that F consists of a single
internal green face F . As |p| � 1, it follows that p is comprised of at least one sub-path of
@(F ) that contains an edge of F . Since K does contain any boundary edge, we have that K
does not contain ⌧ , so K is simply-connected. Now if K contains an internal green face F1,
then F1 contradicts Axiom T6. Hence K is a simply-connected red blob.

Suppose first that p is a sub-path of @(F ). Then Lemma 3.2.4 implies |p| = 1, contradicting
Theorem 2.3.11 since P embeds into U(P ).

Next suppose that p is comprised of two sub-paths p1 and p2 of @(F ) with |p1|, |p2| � 1.
By applying Lemma 3.2.4 again we have |p1| = 1 = |p2|. But by Lemma 3.2.6 we then have
Area(K) = 0, a contradiction.

Finally, suppose that for some n � 3: p = p1, p2, . . . , pn, where each pi is a sub-path
of @(F ) with |pi| � 1. Since F is homeomorphic to a disc, R2 \ F contains besides K� at
least two bounded components C such that @(C) is a simple closed path in �1A (see Definition
2.5.14) with |@(C)| � 1, and is a sub-path of @(F ). Now the closure K 0 of one of these two
components does not contain ⌧ , so K 0 has no edge of @(�A). Thus, as @(K 0) is a sub-path of
@(F ), we have a contradiction as before.

Now suppose that F contains a blob B. Since K contains no edge of @(�A), it follows
from |p \ @(B)| � 1 that K contains an internal green face F . But F contradicts Axiom
T6. ⌅

Lemma 4.2.3. Let x be an internal green face or a simply-connected red blob of �A 2 T .
Then all of the following statements hold.
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Figure 4.1: Possible cases when @(x) passes more than once through some vertex, and x is
either a simply-connected red blob B or an internal green face F of �A 2 T , see Lemma 4.2.3.

1. No vertex is incident more than twice with x.

2. Suppose that x is a red blob B. Then @(B) passes more than once through at most one
vertex (see Figure 4.1).

3. Suppose that x is a green face F . Then there are at most two vertices of degree at least
three incident more than once with F , and if there are two such vertices v 6= w, then F

is edge-incident with itself by a consolidated edge e with @(e) = {v} [ {w} (see Figure
4.1). Hence if @(F ) passes through some vertex more than once, then @(�A) \ (F )�

decomposes as an edge-disjoint union of two annular diagrams whose boundaries are
simple closed paths.

Proof. For Part 1, suppose for a contradiction that v exists. Then as x� is homeomorphic to
a disc, there are at least two bounded components C1 and C2 of R2 \ x such that @(Ci) is a
simple closed path with |@(Ci)| � 1. Now one of these components Ci has ⌧ 6✓ Ci, so Ci

contradicts Lemma 4.2.2.
For Part 2, suppose for a contradiction that @(B) passes more than once through at least

two vertices. Since B� is homeomorphic to a disc, R2 \ B contains at least two bounded
components with properties as in the previous paragraph, a contradiction.

For Part 3, assume for a contradiction that such an x exists. Then by Part 1 there are either
at least three vertices of degree at least three incident twice with F , or there are precisely two
such vertices and F is not edge-incident with itself by any consolidated edge. Hence as F is
homeomorphic to a disc, R2 \ F contains at least two bounded components with properties as
in the first paragraph, a contradiction.

To prove the final statement, assume that @(F ) passes more than once through some vertex,
but that @(�A) \ (F )� does not decompose as stated. By Axiom T1, ! and ⌧ are simple
closed paths, hence by the previous paragraph R2 \ F contains again a bounded component
that contradicts Lemma 4.2.2. ⌅

Lemma 4.2.4. Let B be an annular red blob. Then @(B) is comprised of the outer boundary
!1 and the inner boundary ⌧1, which are simple closed paths with !1 \ ⌧1 = ;.
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Hence �A 2 T contains at most one bad red blob, and if �A contains such a blob, then �A
is island-free.

Proof. By Definition 2.5.12 B⇤ is connected and R2 \B� is comprised of two components, so
the first statement follows.

Suppose that �A 2 T contains a bad red blob B. Then by Definition 4.1.1 �A \ B�

decomposes as a disjoint union of two annular diagrams. Hence by Lemma 3.1.10 �A is island-
free. Since by Axiom T6 each internal green face of �A contains a boundary edge, it follows
that B is the only bad red blob of �A. ⌅

Lemma 4.2.5. Let �A 2 T contain a red blob B. Then

1. B is good if and only if B is simply-connected;

2. if B is simply-connected and @(B) passes through some vertex more than once, then �A\
B� decomposes as an edge-disjoint union of two annular diagrams whose boundaries
are simple closed paths.

Proof. For Part 1, note that the reverse implication follows directly from Definition 4.1.1. So
assume that B is good, and suppose first that B is annular. Then by Definition 2.5.12 R2 \B�

is comprised of two components; and as B is good, by Definition 4.1.1 �A \ B� does not
decompose as a disjoint union of two annular diagrams. Hence there is a bounded component
C of R2 \ B such that C contains no edge of @(�A), and @(C) is a simple closed path with
|@(C)| � 1, contradicting Lemma 4.2.2.

Now assume that B is not annular. Since B is not simply-connected, R2 \ B� contains at
least 3 components, hence there is at least one bounded component of R2 \ B with properties
as in the previous paragraph, a contradiction.

For Part 2, suppose for a contradiction that �A \B� does not decompose as stated. By Ax-
iom T1, ! and ⌧ are simple closed paths, hence by Lemma 4.2.3 there is a bounded component
of R2 \B with properties as in the first paragraph, a contradiction. ⌅

Lemma 4.2.6. Let �A 2 T contain an internal green face F and a red blob B such that
@(F )\ @(B) contains a path p 2 �1A with |p| > 1. Then @(F ) or @(B) passes more than once
through each vertex of p common to two edges of p.

Proof. Suppose for a contradiction that p contains a vertex v common to two edges of p such
that @(F ) and @(B) does not pass through v more than once. Then there is a consolidated edge
between F and B of length at least two. But this contradicts Lemma 3.2.4. ⌅

Lemma 4.2.7. Let �A 2 T contain an internal green face F and a simply-connected red blob
B edge-incident n times with F for some n � 2. Then R2 \ (F [ B) contains at least n � 1

bounded components.

Proof. By Lemma 4.2.3 @(B) does not pass more than twice through any vertex of �A, and
there is at most one vertex v such that @(B) passes through v twice.
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Suppose there is such a v. By Lemma 4.2.5 �A \B� decomposes as an edge-disjoint union
of two annular diagrams. Now precisely one of the diagrams in this decomposition contains F ,
call it �. Assume that @(F ) does not pass more than once through any vertex. Then @(F ) is
a simple closed path. Hence since v is the only vertex such that @(B) passes through v twice,
by Lemma 4.2.6 @(F ) \ @(B) contains at most one path p 2 �1A with |p| > 1; and if such a p

exists, then p cannot be closed and |p| = 2. Hence as @(F )\@(B) contains n edges, it follows
that R2 \ (F [B) contains at least n� 1 bounded components.

Now suppose that @(F ) passes more than once through some vertex. By Part 3 of Lemma
4.2.3 �A \ (F )� decomposes as an edge-disjoint union of two annular diagrams, so R2 \ F

contains a bounded component C; and @(F ) passes more than once through at most one vertex
of @(F ) \ @(B). Hence @(F ) \ @(B) contains at most two vertices through which @(F ) or
@(B) passes more than once, so by Lemma 4.2.6 @(F ) \ @(B) contains at most two paths
p 2 �1A with |p| > 1; and if such a p exists, then |p|  3, |p| = 2 if p is closed, and if |p| = 3

or if p is closed, then p is the only path of @(F )\ @(B) with |p| > 1. Therefore, as F ✓ �, we
deduce that R2 \ (F [B) contains at least n� 2 bounded components distinct from C, so the
lemma follows.

Now the case where @(F ) passes more than once through some vertex and @(B) is a simple
closed path is similar to the case analysed in the second paragraph, so it remains to consider
the case where @(F ) and @(B) are both simple closed paths. By Lemma 4.2.6 all paths p 2 �1A
with p ✓ @(F ) \ @(B) satisfy |p|  1, so the lemma follows as @(F ) \ @(B) contains n

edges. ⌅

The following proposition provides a useful restriction.

Proposition 4.2.8. Let �A 2 T contain an internal green face F and a red blob B 2 SF .
Then R2 \ (F [B) contains at most one bounded component (and if such a component exists,
then it contains the external face of �A with boundary ⌧ ); B is edge-incident at most twice
with F ; and if B is simply-connected and edge-incident twice with F , then �A is island-free
and �A \ (F [ B)� decomposes as an edge-disjoint union of two annular diagrams whose
boundaries are simple closed paths.

In particular, for every internal green face F , every element of SF is curvature incident at
most twice with F .

Proof. Suppose first that R2\(F[B) contains more than one bounded component, or precisely
one bounded component, which does not contain the external face E with boundary ⌧ . Then the
closure of at least one of these components contradicts Lemma 4.2.2. Hence the first statement
of the lemma holds.

Next assume that B is edge-incident more than twice with F . By Lemma 4.2.5 B is simply-
connected. So by Lemma 4.2.7 R2 \ (F [ B) contains at least two bounded components,
contradicting the first statement of the lemma. Therefore, B is edge-incident at most twice
with F , and by Lemma 4.2.3 the last statement of the lemma holds.

Finally, suppose that B is simply-connected and edge-incident twice with F . Let e and f

be the distinct edges of @(B)\@(F ). By Lemma 4.2.7 and the first statement of the lemma R2\
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(F [B) contains precisely one bounded component, which contains E. Hence �A \ (F [B)�

decomposes as an edge-disjoint union of annular diagrams �1 and �2, where @(�1) = {!, ⌧1}
and @(�2) = {!1, ⌧}. By Axiom T1, ! and ⌧ are simple closed paths. We show that !1 and ⌧1
are also simple closed paths. Let ⇢ 2 {!1, ⌧1}, and suppose first that ⇢ ✓ @(x) for some x 2
{F,B} such that @(x) passes through some vertex more than once. By Lemmas 4.2.3 and 4.2.5
�A \(x)� decomposes as an edge-disjoint union of two annular diagrams whose boundaries are
simple closed paths. Hence ⇢ is a simple closed path. Otherwise, since e, f ✓ @(B) \ @(F ),
we deduce that ⇢ is a simple closed path of the form p1p2, where p1 ✓ @(F ) and |p1| � 1, and
p2 ✓ @(B) and |p2| � 1.

It remains to show that �A is island-free. Suppose not. By Lemma 3.1.10 F is contained
in some island E of �A (see Definition 2.5.10). Let v1 and v2 be the endpoints of E. Since
! ✓ @(�1) and ⌧ ✓ @(�2), we have v1 = v2, and either v1 2 @(F ) or v1 2 @(B). But then
as R2 \ (F [B) contains at most one bounded component, ef is a path and there is a vertex of
ef common to e and f that contradicts Lemma 4.2.6. ⌅

4.3 Curvature neighbourhoods

The next two definitions introduce sets containing both vertices and red blobs. These may
seem unintuitive, but these are the objects that give non-zero curvature to its curvature incident
internal green faces in Steps 3 and 4 of ComputeRSym (see Algorithm 2.6.4), so are crucial.

Definition 4.3.1. For an internal green face F of an annular diagram �A, we define the curva-
ture neighbourhood of F to be

SF :={Red blobs and vertices giving F non-zero curvature in Steps 3 and 4

of ComputeRSym(�A).}

Lemma 4.3.2. Let F be an internal green face of a green-rich coloured annular diagram �A.
Then the curvature neighbourhood of F is the set of all red blobs edge-incident with F and
vertices v of F with �G(v) � 3.

Hence for all vertices v of F with �(v,�A) � 3, either v 2 SF , or v is incident with a red
blob in SF .

Proof. For the first statement it suffices to show that all vertices v of F with �G(v) = 2 give F
curvature 0 in Step 3 of ComputeRSym, which follows from Lemma 2.6.10. For the second
statement, since �A is green-rich, either �G(v) � 3, so v 2 SF , or �G(v) = 2 and �R(v) � 1,
hence v is incident with a red blob in SF . ⌅

Definition 4.3.3. For an internal green face F of an annular diagram �A, we define the bound-
ary curvature neighbourhood of F to be the set BF consisting of all vertices v and all red blobs
B of �A that satisfy the following conditions.

1. v is incident with F ; v is boundary; and �G(v) � 3.
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Figure 4.2: A red blob B with B 2 BF , see Definition 4.3.3.

2. There are edges e and f such that e and f are consecutive on @(B); e ✓ @(�A); and
f ✓ @(F ) (see Figure 4.2).

From Lemma 4.3.2 it follows that BF ✓ SF . Recall Definition 2.5.14 of the 1-skeleton of
a coloured diagram.

Lemma 4.3.4. Let F be an internal green face of �A 2 T . Then all of the following statements
hold.

1. All boundary vertices v of F of degree at least 3 are either in BF , or there is a red blob
in BF edge-incident with F at v; and if v lies on precisely one boundary ⇢ of �A, then
any red blob in BF edge-incident with F at v has an edge on ⇢.

2. Each element of BF gives F curvature of at most �1/4 across each curvature incidence
in Steps 3 and 4 of ComputeRSym(�A).

3. |BF | � 1, and if |BF | = 1, then the element in BF is curvature incident exactly twice
with F .

4. The elements of BF collectively give F curvature of at most �1/2 in Steps 3 and 4
of ComputeRSym(�A). In particular, the elements of SF \ BF collectively give F

curvature �1/2  �  0 in Steps 3 and 4 of ComputeRSym(�A).

Proof. To prove Part 1, let v be a boundary vertex of F with �(v,�A) � 3. If �G(v,�A) � 3,
then v 2 BF . Otherwise, �G(v,�A) = 2, so �R(v,�A) � 1 and there is a red blob in BF

edge-incident with F at v. The second statement follows directly from Definition 4.3.3.
Part 2 follows from Lemmas 2.6.10 and 3.2.8 as all elements of BF are curvature incident

with an external face and F .
By Axiom T6, F has a boundary consolidated edge e with |e| � 1. Let v and w be the

endpoints of e, and let ⇢ 2 {!, ⌧} be such that e ✓ ⇢. By Part 1, each t 2 {v, w} is either in BF ,
or is incident with a red blob in BF . Hence |BF | � 1. Suppose that |BF | = 1. If BF contains
a vertex, then v = w, and by Lemma 4.2.3 v is incident exactly twice with F . If BF contains
a red blob, then there is a red blob B 2 BF incident with v and w; �G(v) = 2 = �G(w);
and @(F ) \ ⇢ = e. We show that B is edge-incident more than once with F . Suppose not.
Then F is contained in a sub-diagram K of �A bounded by a closed path ee0, where e0 is the
common edge of F and B. In particular, ee0 is a sub-path of @(F ). Hence if K contains ⌧ or
if F is not contained in the bounded component of R2 \ ee0, then F is not simply-connected,
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Figure 4.3: Configurations of a sub-diagram K of �A well-bounded by x and ⇢. The notation
x = F used in the top left picture of the figure means that x is an internal green face F of �A,
see Definition 4.4.2.

a contradiction. Therefore, K is simply-connected and in fact K = F , so @(F ) = ee0. By
Axiom T1, the label R of F does not have more than 1/2 of its length on ⇢. Thus, |R| = 2,
which contradicts Assumption 2.3.15 that no R 2 R has |R| 2 {1, 2}. Hence by Proposition
4.2.8 B is edge-incident exactly twice with F , so Part 3 follows.

By Axiom T6 we have �A(F ) = 0, so Part 4 is immediate from Parts 2-3. ⌅

4.4 Tricky boundaries of red blobs and internal green faces

Let x be a red blob or an internal green face of �A 2 T , and let ⇢ 2 {!, ⌧}. In this section we
introduce concepts fruitful for studying cases when @(x) \ ⇢ is complicated.

Recall that a consolidated edge between two faces F1, F2 ✓ �A is a non-empty path of
maximal length that is a sub-path of both @(F1) and @(F2), and that a path can consist of a
single vertex, in which case has length zero.

Definition 4.4.1. Let x be a red blob or an internal green face of �A 2 T , and let ⇢ 2 {!, ⌧}.
We say that x is tricky for �A with respect to ⇢ if @(x) \ ⇢ 6= ; and @(x) \ ⇢ is not a single
consolidated edge.

Recall Definition 2.5.10 of a sub-diagram in a coloured diagram, and Definition 2.5.14 of
the 1-skeleton of a coloured diagram. Recall also that if we say that a closed path p is of the
form p1p2 . . . pn, then p is a sequence of simple sub-paths pi.

We shall work extensively with the concepts presented in the next two definitions.
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Definition 4.4.2. Let x be a red blob or an internal green face of an annular diagram �A, and
let ⇢ 2 {!, ⌧}. A sub-diagram of �A well-bounded by x and ⇢ is a sub-diagram K of �A with
K ✓ �A \ (x)� that is bounded by a closed path p 2 �1A of the form p1p2, where p1 ✓ @(x)

and |p1| � 1; p2 ✓ ⇢; and K� is contained in some bounded component of R2 \ p (see Figure
4.3). The endpoints of p1 are called the corners of K.

We say that K is trivial if CArea(K) < (1, 0), and that K is well-connected if either K
is simply-connected, or is annular and consisting of a single island with boundaries p1 and p2

(so that K is not of a form as shown in the bottom right picture of Figure 4.3).

Definition 4.4.3. Let x be a red blob or an internal green face of �A 2 T , and let ⇢ 2 {!, ⌧}.
A sub-diagram K of �A well-bounded by x and ⇢ is well-contained if K is non-trivial, K is
well-connected, and @(x) does not pass more than once through any vertex of @(K) \ ⇢.

We shall show in Sections 4.5-4.6 that if x is a tricky green face or a tricky red blob for �A
with respect to ⇢, then there exists a well-contained sub-diagram of �A given by x and ⇢.

Let � be a coloured annular or simply-connected diagram. Recall Definition 2.6.8 that
�(x,�) is the curvature that x gives to a single internal green face across each curvature inci-
dence, and that ⇣(x,�) is the total curvature that x gives to internal green faces. Recall also
that by Algorithm 2.6.4, if e ✓ � is an edge, then �(e) = 0; and if F ✓ � is a green face,
then �(F ) = 1 +

P
v2@(F ) �(v, F,�) +

P
B �(B,F,�), where the last sum is over all red

blobs edge-incident with F .

Definition 4.4.4. Let K be a sub-diagram of a coloured annular or simply-connected diagram
�. We let K� be the subset of � that is equal to K but excluding any external faces.

If K� contains an internal green face, then we define

(K�) =
X

F : a green face ofK�

�(F ).

Finally, if x 2 � is a red blob or a vertex, then we let ⇣(x,K�) be the total curvature that x
gives to internal green faces of K in Steps 3 and 4 of ComputeRSym(�).

Note that (K�) = N +
P

x2� ⇣(x,K
�), where N is the number of internal green faces

of K. Furthermore, by Definition 4.4.3 if K is a well-contained sub-diagram of �A 2 T ,
then (K) and (K�A) are defined. We now present several useful results that analyse well-
contained sub-diagrams given by red blobs and ⇢.

Throughout the rest of this section we shall use the following notation.

Notation 4.4.5. Let K be a well-contained sub-diagram of �A given by a red blob B and some
⇢ 2 {!, ⌧}. Let p1 and p2 be as in Definition 4.4.2, and let v1 and v2 be the corners of K. Write
p1 = e1e2 . . . en, where v1 2 e1 and v2 2 en. Further, let wi = ei \ ei+1 for 1  i  n � 1,
and let Di be the green face of K with ei ✓ @(Di).

Lemma 4.4.6. Let �A 2 T contain a red blob B and a well-contained sub-diagram K given
by B and ⇢. Let v1 and v2 be the corners of K, and let n = |p1|.
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Suppose that @(D) \ ⇢ is a single consolidated edge for all green faces D ✓ K. Then

1/2 +
2X

i=1

�(vi,�A) = �n · (�(B,�A) + 1/2). (4.1)

Proof. First note that by Axiom T6, �A(F ) = 0 for all green faces F ✓ K�A and all internal
green face of �A contain a boundary edge, hence (K�A) = 0; and as K is well-connected,
all internal green faces of K have an edge on p2. We will prove the lemma by deriving a
closed-form expression of ⇣(x,K�A) for each each x 2 �A with ⇣(x,K�A) 6= 0 and x 62 K;
by finding for each x 2 K, an m 2 Z such that ⇣(x,K) � ⇣(x,K�A) = m; and by showing
that if x ✓ K is a red blob or a vertex, then K(x) = 0: from which we have (K) =

N +
P

x2K ⇣(x,K), where N is the number of internal green faces of K, and so

(K)� (K�A) = N +
X

x2K
⇣(x,K)�N �

X

x2�A

⇣(x,K�A)

=
X

x2K
⇣(x,K)�

X

x2�A

⇣(x,K�A).

Suppose that B0 ✓ �A is a red blob with ⇣(B0,K�A) 6= 0. Then either B0 = B, or B0 ✓
K; and if B0 = B, then B0 gives each Di curvature �(B,�A) across ei, hence �(B0,K�A) =

n · �(B,�A). Now suppose that B0 ✓ K is a red blob. Since N � 1, B0 is edge-incident
with some internal green face of K, so K(B) = 0. Also, all internal green faces of �A
edge-incident with B0 are contained in K, hence ⇣(B0,K)� ⇣(B0,K�A) = 0.

If v 2 �A is a vertex with ⇣(v,K�A) 6= 0, then v 2 K. So for each vertex v 2 K, let
us find m 2 Z such that ⇣(v,K) � ⇣(v,K�A) = m, and show K(v) = 0. First suppose
that v 2 K \ p1. Then all internal green faces of �A incident with v are contained in K and
�G(v,K) = �G(v,�A) � 2, hence by Lemma 2.6.9 K(v) = 0, and ⇣(v,K)�⇣(v,K�A) = 0.
Next suppose that v 2 {wi}n�1

i=1 . Since @(B) does not pass more than once through any vertex
of p1 \ p2, we deduce that p1 is a sub-path of @(B), so all green faces of �A incident with v are
contained in K. Now v 2 @(K)\@(�A), hence �G(v,K) = �G(v,�A)+1 � 3, so K(v) = 0

and ⇣(v,K)� ⇣(v,K�A) = �1/2.

Finally, suppose that v 2 {v1, v2}. First note that as K is well-connected, v1 6= v2 if and
only if K is simply-connected, and if v1 = v = v2, then K is annular and v is incident precisely
twice with external faces of K. Now as @(D)\⇢ is a single consolidated edge for all green faces
D ✓ K and D has an edge on p2, we have that {D1, Dn} is the set of all internal green face
of K incident with v1 or v2. Moreover, D1 and Dn are incident precisely once with v1 and v2

respectively unless v1 = v2 and D1 = Dn, in which case D1 is incident precisely twice with v1;
and if v1 = v2 and D1 6= Dn, then v1 is incident with both D1 and Dn. Hence �G(v,K) � 2

and K(v) = 0. Moreover, if v1 6= v2 then �G(v,K) = 2, so �(v,K) = 0 = ⇣(v,K);
and ⇣(v,K�A) = �(v,�A). Otherwise, ⇣(v,K�A) = 2 · �(v,�A) =

P2
i=1 �(vi,�A) and

⇣(v,K) = 2 · �(v,K); and as v is incident precisely twice with external faces of K and v is
incident with D1, by Lemma 2.6.9 we have �(v,K) = �1/2, so ⇣(v,K) = �1.
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Suppose that K is simply-connected, so v1 6= v2. By Proposition 2.6.6 we have (K) = 1.
Hence by using the observations from the previous 4 paragraphs we deduce that

1 = (K)� (K�A) = �(n� 1) · 1/2� n · �(B,�A)�
2X

i=1

⇣(vi,K
�A)

= �n · (�(B,�A) + 1/2) + 1/2�
2X

i=1

�(vi,�A).

Hence 1/2 +
P2

i=1 �(vi,�A) = �n · (�(B,�A) + 1/2), and the result follows.
Now suppose that K is not simply-connected. So v1 = v2 and K is annular, and by

Proposition 2.6.6 we have (K) = 0. Hence by the first 4 paragraphs we have

0 = (K)� (K�A) = �(n� 1) · 1/2 + ⇣(v1,K)� n · �(B,�A)� ⇣(v1,K
�A)

= �n · (�(B,�A) + 1/2) + 1/2 + ⇣(v1,K)� ⇣(v1,K
�A)

= �n · (�(B,�A) + 1/2) + 1/2� 1�
2X

i=1

�(vi,�A)

= �n · (�(B,�A) + 1/2)� 1/2�
2X

i=1

�(vi,�A).

So 1/2 +
P2

i=1 �(vi,�A) = �n · (�(B,�A) + 1/2). ⌅

Lemma 4.4.7. Let �A 2 T contain a red blob B and a well-contained sub-diagram K given
by B and ⇢, and assume that @(D)\⇢ is a single consolidated edge for all green faces D ✓ K.
Then |p1| � 2.

Proof. Suppose for a contradiction that |p1| = 1. By assumption, @(D1)\⇢ is a single consol-
idated edge, so @(D1) = e [ p1, where e is the boundary consolidated edge of D1. By Axiom
T1, the label R of D1 does not have more than 1/2 of its length on ⇢. So |R| = 2, which
contradicts Assumption 2.3.15 that no R 2 R has |R| 2 {1, 2}. ⌅

Lemma 4.4.8. Let �A 2 T contain a red blob B and a well-contained sub-diagram K given
by B and ⇢. Let v1 and v2 be the corners of K.

Assume that v1, v2 62 ! \ ⌧ , and that @(D) \ ⇢ is a single consolidated edge for all green
faces D ✓ K. Then for i 2 {1, 2}: if �G(vi,�A) � 3, then �G(v3�i,�A) � 3.

Proof. By symmetry, it suffices to deduce a contradiction when �G(v1,�A) � 3 and �G(v2,�A) =
2. Since �G(v2,�A) = 2, we have �(v2,�A) = 0. Hence by Lemma 4.4.6

1/2 + �(v1,�A) = �n · (�(B,�A) + 1/2).

By Lemma 3.1.9 we have �(v1,�A) > �1/2, hence �(B,�A) < �1/2. By Axiom T6 all
internal green faces F of �A have �A(F ) = 0, hence B is edge-incident at most once with
each such F .
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Note that by assumption v1 6= v2, so as @(D) \ ⇢ is a single consolidated edge for all
internal green faces D of K and by Axiom T6, D has an edge on p2, it follows that D1 is the
only internal green face of K incident with v1. By Lemma 4.4.7, n � 2, so there is a vertex
v3 incident with e1 such that v3 6= v1, and v3 2 p2 \ p1 implies that v3 is interior. Hence
�G(v1,�A) � 3 implies B 2 SD1 \ BD1 . Let e ✓ p2 be the boundary consolidated edge of D1

with |e| � 1. As v1 6= v2, there is a vertex v4 incident with e such that v4 6= v1. By Lemma
4.3.4, D1 receives curvature of at most �1/4 from v4, or a red blob B4 2 BD1 incident with
v4. Combining this curvature with �(v1, D1,�A)  �1/4 and �(B,D1,�A) < �1/2 we have
�A(D1) < 0, a contradiction. ⌅

Lemma 4.4.9. Let �A 2 T contain a red blob B and a well-contained sub-diagram K given
by B and ⇢. Let v1 and v2 be the corners of K.

Assume that v1, v2 62 ! \ ⌧ , and that @(D) \ ⇢ is a single consolidated edge for all green
faces D ✓ K. If �G(v1,�A) = 2 = �G(v2,�A), then |p1| = 2 and �(B,�A) = �3/4.

Proof. Since �G(vi,�A) = 2 for i 2 {1, 2}, we have �(vi,�A) = 0. Hence Lemma 4.4.6
shows that

1/2 = �n · (�(B,�A) + 1/2), (4.2)

so �(B,�A) < �1/2. Therefore, by Axiom T6, B is edge-incident with each internal green
face of �A at most once.

By Lemma 4.4.7 we have n � 2. Suppose that n � 3. Since @(D) \ ⇢ is a single
consolidated edge for all internal green faces D of K and by Axiom T6, D has an edge on p2,
we deduce that {D1, Dn} is the set of all internal green face of K incident with v1 or v2. Hence
there is 1 < i < n such that v1, v2 62 @(Di). This means B 62 BDi . But �(B,Di,�A) < �1/2,
contradicting Part 4 of Lemma 4.3.4.

Hence n = 2. Then from (4.2) we have �(B,�A) = �3/4. ⌅

4.5 Intersection of boundaries of internal green faces with @(�A)

Let F be an internal green face of �A 2 T , and let ⇢ 2 {!, ⌧}. Axiom T6 motivates us to
study @(F ) \ ⇢. The main result (see Theorem 4.5.13) in this section gives us the complete
description of @(F ) \ ⇢.

Let us first prove two useful results when �A contains an island (see Definition 2.5.10)
that we shall use in the proof of Theorem 4.5.13. Recall Definition 4.1.2 of the set U , and
Definitions 4.3.1 and 4.3.3 of the (boundary) curvature neighbourhood of an internal green
face.

Proposition 4.5.1. Let �A 2 T \ U contain an island E, with endpoints v1 and v2. Then
�A = E, and E contains a green face incident with v1 and v2.

Proof. By Lemma 4.2.4 all red blobs of �A are good (see Definition 4.1.1), so by Lemma 4.2.5
they are all simply-connected. So as �A 2 T \ U and by Lemma 3.1.10 �A is a union of
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islands and bridges, we can without loss of generality assume that there is an internal green
face F ✓ E that is curvature incident more than once with some element of SF .

By Proposition 4.2.8 this element is a vertex v, and by Lemma 4.2.3 �A\(F )� decomposes
as an edge-disjoint union of annular diagrams �1 and �2. Since each �i contains one of the
boundaries of �A, we have v1 = v = v2, so �A = E. ⌅

Lemma 4.5.2. Let �A 2 T . Assume that �A contains an island E with endpoints v1 and v2,
bounded by the closed path !1⌧1, and with an internal green face F1 such that v1, v2 2 @(F1).
Then one of the following statements holds.

1. E = F1, hence @(F1) \ ! = !1 and @(F1) \ ⌧ = ⌧1.

2. There is an internal green face F2 6= F1 such that E = F1 [ F2, and the following
statements hold.

(i) @(F1) \ @(F2) is a single consolidated edge e with @(e) = {v1} [ {v2}.

(ii) For i 2 {1, 2} we have @(Fi)\ @(E) 2 {!1, ⌧1} and @(Fi) = (@(Fi)\ @(E))[ e.

Proof. By Lemma 2.6.9 we have �(v1,�A) = �1/2 = �(v2,�A). So as v1, v2 2 @(F1) and
by Axiom T6 we have �A(F1) = 0, it follows that SF1 = {v1, v2}. Hence either E = F1

and Case 1 holds, or there is an internal green face F2 such that @(F1) \ @(F2) is a single
consolidated edge e with @(e) = {v1} [ {v2}. Similarly as for F1 we deduce that SF2 =

{v1, v2}. Hence as by Axiom T6, F2 contains a boundary edge, we deduce that E = F1 [ F2

and Case 2 holds. ⌅

Recall Definition 4.4.3 of a well-contained sub-diagram given by an internal green face and
⇢ 2 {!, ⌧}.

Lemma 4.5.3. Let F be a tricky green face for �A with respect to ⇢. Then there exists a
well-contained sub-diagram of �A given by F and ⇢.

Proof. We first show that there is a sub-diagram K of �A well-bounded by F and ⇢ (see
Definition 4.4.2) that is well-connected, and such that @(F ) does not pass more than once
through any vertex of @(K) \ ⇢.

Assume first that @(F ) does not pass more than once through any vertex. Then @(F ) is a
simple closed path; and since F is tricky, @(F )\⇢ 6= ; and @(F )\⇢ is not a single consolidated
edge, so @(F )\⇢ is disconnected. Hence there is a simply-connected sub-diagram that is well-
bounded by F and ⇢.

Suppose instead that @(F ) passes more than once through some vertex v. By Lemma
4.2.3 @(F ) passes through v twice, and �A \ (F )� decomposes as an edge-disjoint union of
annular diagrams �1 and �2 with ⇢ ✓ �1, where �1 contains precisely one vertex w incident
more than once with F . Since @(F ) \ ⇢ 6= ; and @(F ) \ ⇢ is not a single consolidated edge,
there is a path p 2 @(�1) \ @(F ) with |p| � 1 intersecting ⇢ only at its endpoints, hence by
Lemma 2.1.8 there is a simple path p1 ✓ @(�1) \ @(F ) with |p1| � 1 intersecting ⇢ only at its
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Figure 4.4: A case where @(F ) passes more than once some vertex of @(K) \ ⇢, see the proof
of Lemma 4.5.3.

endpoints. Now there is a sub-path p2 of ⇢ with the same endpoints as p1, and the sub-diagram
K bounded by the closed path p1p2 satisfies K ✓ �1 (so in particular K� is contained in
some bounded component of R2 \p1p2). Hence K is well-bounded by F and ⇢, and K is well-
connected. Suppose that w 2 @(K)\⇢. Then as w is the only vertex of �1 through which @(F )

passes more than once and @(F ) \ ⇢ is not a single consolidated edge, there is a simple path
p0 2 @(�1)\@(F ) with |p0| � 1 distinct from p1 intersecting ⇢ only at its endpoints. It follows
that there is a sub-diagram K1 ✓ �1 well-bounded by F and ⇢ with @(K1)\⇢ = p0 (see Figure
4.4), and such that @(F ) does not pass more than once through any vertex of @(K1) \ ⇢. Since
K1 ✓ �1, we deduce that K1 is well-connected. Hence we showed that there is a sub-diagram
K of �A well-bounded by F and ⇢ that is well-connected, and such that @(F ) does not pass
more than once through any vertex of @(K) \ ⇢.

It remains to show that K is non-trivial. Suppose not. Then as K is well-connected, K
is a simply-connected red blob. As @(F ) does not pass more than once through any vertex of
@(K) \ ⇢, from Lemma 3.2.4 we have |@(K)|  2. Hence by Lemma 3.2.6 Area(K)  0, a
contradiction. ⌅

Using Lemma 4.5.3 we can now present the following definition.

Definition 4.5.4. Let F be a tricky green face for �A with respect to ⇢, and let X be such that
if �A is island-free, then X = �A, else X is the island containing F . By Lemma 4.5.3 there is
a well-contained sub-diagram of �A given by F and ⇢. Then F is called a minimal tricky green
face for �A with respect to ⇢ if there is a well-contained sub-diagram K of �A given by F and
⇢ of minimal area among all well-contained sub-diagrams given by tricky green faces F 0 ✓ X

(for �A with respect to ⇢) and ⇢.

K is called a minimal well-contained sub-diagram given by F and ⇢.

Before proving Theorem 4.5.13, let us prove several useful results that consider minimal
well-contained sub-diagrams given by tricky green faces and ⇢. These sub-diagrams play a
central role in the proof of Theorem 4.5.13.
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Lemma 4.5.5. Let F be a minimal tricky green face for �A with respect to ⇢, and let K be a
minimal well-contained sub-diagram given by F and ⇢. Then @(D)\⇢ is a single consolidated
edge for all internal green faces D of K.

Proof. Suppose that there is an internal green face D of K such that @(D) \ ⇢ is not a single
consolidated edge. By Axiom T6 we have @(D)\⇢ 6= ;, hence D is tricky for �A with respect
to ⇢. Therefore, by Lemma 4.5.3 there is a well-contained sub-diagram L given by D and ⇢.
Since D is contained in K, we have L ✓ K. But D 6✓ L, hence Area(L) < Area(K), a
contradiction. ⌅

Definition 4.5.6. Let K be a sub-diagram of an annular diagram �A well-bounded by an inter-
nal green face F and ⇢. A curvature corner of K is an x 2 K satisfying one of the following
two statements.

1. x is a corner of K incident with some internal green face of K.

2. x is a red blob in BF \K edge-incident with F at some corner of K.

Lemma 4.5.7. Let �A 2 T contain a well-contained sub-diagram K given by an internal
green face F and ⇢, and let v1 and v2 be the corners of K. Then both of the following two
statements hold.

1. If v 2 {v1, v2} is a curvature corner of K, then v 2 BF \K.

2. The set S of curvature corners of K is one of the following:

(i) S = {v1, v2};

(ii) S = {v,B}, where v 2 {v1, v2}, and B is a red blob;

(iii) S = {B1, B2}, where B1 and B2 are both red blobs.

Proof. Since K is well-contained, by Definition 4.4.3 K is well-connected and CArea(K) �
(1, 0), hence by Axiom T6 we have |@(K) \ ⇢| � 1.

Part 1. By Definition 4.5.6 v is incident with some internal green face of K, so as v is
incident with F and v 2 ⇢, we have �G(v) � 3, hence v 2 BF \K.

Part 2. Suppose first that v1 6= v2, and let v0 2 {v1, v2}. If v0 62 S, then no internal green
face of K is incident with v0. So as K is well-connected, there is a red blob B 2 BF \K edge-
incident with F at v0, and there is precisely one such blob. Otherwise, some internal green face
of K is incident with v0, and hence no blob B ✓ �A is edge-incident with F at v0 and satisfies
B 2 BF \K. So Part 2 follows.

Suppose instead that v1 = v2. If v1 62 S, then since K is well-connected, there is a red
blob B 2 BF \K edge-incident with F at v1, and there are at most two such blobs. Otherwise,
there is at most one blob in S. ⌅

Throughout the rest of this section if we say that the intersection @(B)\@(F ) of a red blob
B and a green face F is a single edge, we mean that @(B)\@(F ) is a single consolidated edge
with |@(B) \ @(F )| = 1.
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Figure 4.5: Depiction of the sub-diagram K well-bounded by B and ⇢, where L = B[K [L0

and ⇢ = !, see the proof of Lemma 4.5.9.

Figure 4.6: Depiction of the sub-diagram K well-bounded by B and ⇢, where L = B [ K,
⇢ = ⌧ and v0 2 ! \ ⌧ , see the proof of Lemma 4.5.9.

Lemma 4.5.8. Let �A 2 T contain a red blob B contained in a sub-diagram K of �A and
edge-incident with an internal green face F 2 �A \K such that @(F )\ @(K) is a sub-path of
@(F ). Suppose that either

(a) K is simply-connected, or

(b) is well-bounded by F and ⇢ 2 {!, ⌧} and well-connected.

Then @(B) \ @(F ) is a single edge.

Proof. Suppose that there is a bounded component C of R2 \ (F [B) such that @(C) is of the
form p1p2, where p1 ✓ @(B) and |p1| � 1, and p2 ✓ @(F ). As K is either simply-connected,
or is well-bounded by F and ⇢ and well-connected, we deduce that C contains no edge of
@(�A), hence C contradicts Lemma 4.2.2. So no such component C exists.

Therefore, if @(B) \ @(F ) is not a single edge, then @(F ) \ @(B) is a single path p with
|p| � 2; and as @(F ) \ @(K) is a sub-path of @(F ), by Lemma 4.2.6 @(B) passes more than
once through some vertex of p common to two edges of p. In particular, by Lemma 4.2.5
�A \B� decomposes as an edge-disjoint union of two annular diagrams. But this is impossible
since B ✓ K and K satisfies at least one of the Assumptions (a)-(b). ⌅

Lemma 4.5.9. Let F be a minimal tricky green face for �A with respect to ⇢, let L be a minimal
well-contained sub-diagram of �A given by F and ⇢, and let x be a curvature corner of L.
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If x is a red blob B, then B is simply-connected, @(B) \ @(F ) is a single edge, @(B)

contains no edge on the boundary ⇢0 of �A distinct from ⇢, and @(B) \ ⇢ is a single edge.

Proof. Suppose that x = B. By Definition 4.4.3 L is well-bounded by F and ⇢ and well-
connected, and @(F ) does not pass more than one through any vertex of @(L) \ ⇢, so @(F ) \
@(L) is a sub-path of @(F ). Hence by Lemma 4.5.8 @(B) \ @(F ) is a single edge, and as
B ✓ L, we deduce that B is good: so by Lemma 4.2.5 B is simply-connected; and @(B)

contains no edge on ⇢0.
It remains to prove that @(B) \ ⇢ is a single edge. Suppose not. Let u be a corner of

L with u 2 B, and let e be an edge of @(B) \ ⇢ with u 2 e. By Definition 4.4.3 we have
CArea(L) � (1, 0), hence as L is well-connected, by Axiom T6, @(L) \ ⇢ contains a green
edge. So we can let v be the endpoint of e distinct from u. By Lemma 3.2.4 all consolidated
edges between B and the external faces of �A have length at most one, hence there is a path
p 2 �1A \ @(B) with |p| � 1, intersecting ⇢ only at its endpoints v, v0 2 ⇢. By Lemma 2.1.8
there is a simple path p1 ✓ �1A \ @(B) with |p1| � 1 intersecting ⇢ only at v and v0. Hence
there is a sub-diagram K well-bounded by B and ⇢, and with corners v and v0 (see Figure 4.5).

We show that K is well-contained. Since L is well-connected, it follows that K is simply-
connected. Hence as |@(B) \ @(K)| � 1, we have CArea(K) � (1, 0). If @(B) passes more
than once through some vertex w, then by Lemma 4.2.3 w is unique, and by Lemma 4.2.5
�A \B� decomposes as an edge-disjoint union of two annular diagrams. Hence as B ✓ L, we
deduce that w is a corner of L, so w 2 ⇢. Thus, @(B) does not pass more than once through
any vertex of @(K) \ ⇢, so K is well-contained.

As K is simply-connected, Axiom T6 and CArea(K) � (1, 0) imply that |@(K)\⇢| � 1.
So v 62 ! \ ⌧ since v 2 e. As by Lemma 4.5.5 @(D) \ ⇢ is a single consolidated edge for
all internal green faces D of L, the same holds for K. In particular, since by Axiom T6 they
all have an edge on @(K) \ ⇢, we have �G(v) = 2. Suppose first that v0 2 ! \ ⌧ . Then
@(L) \ ⇢ = e [ (@(K) \ ⇢). Hence v0 is a corner of L, and e is the only boundary edge of B
(see Figure 4.6). Therefore, by Lemma 3.2.8 we have �(B,�A) > �1/2. Further, by Lemmas
2.6.10 and 3.1.9 we have �(v,�A) = 0 and �(v0,�A) = �1/2, so applying Lemma 4.4.6
shows that

0 = 1/2 + �(v0,�A) = �|@(B) \ @(K)| · (�(B,�A) + 1/2) < 0,

a contradiction.
Suppose instead that v0 62 ! \ ⌧ . Then K satisfies assumptions of Lemmas 4.4.8-4.4.9.

Since �G(v) = 2, by Lemma 4.4.8 �G(v0) = 2, hence Lemma 4.4.9 gives �(B,�A) = �3/4.
Now as �G(v) = 2 = �G(v0) and @(F )\⇢ is not a single consolidated edge, by Part 1 of Lemma
4.3.4 there is y 62 K with y 2 BF . By Part 2 of Lemma 4.3.4 we have �(y, F,�A)  �1/4.
Since �A(F ) = 0 and �(B,F,�A) = �3/4, we deduce that SF = {B, y} = BF , that B is
edge-incident once with F , and that y is either a red triangle edge-incident once with F that
contains one boundary edge, or a vertex with �G(y) = 3 incident once with F and such that
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y 62 ! \ ⌧ . In particular, B is the only element of SF contained in K.
Suppose first that y is a red triangle. Then all vertices of F have green degree 2, hence

as y is edge-incident once with F and |@(y) \ @(�A)| = 1, we deduce that F is contained
in a sub-diagram K1 of �A well-bounded by y and ⇢ such that @(K1) = e0p0, where e0 is the
common edge of F and y, p0 is a sub-path of ⇢, and ⇢\K1 is the boundary edge b of y. But then
e0b is a sub-path of @(y), so y is not simply-connected, a contradiction as y is a red triangle.

Assume instead that y is a vertex. Then SF contains no red blob outside K, hence as y is
incident once with F , it follows that SF contains at least two distinct vertices, contradicting
SF = {B, y}. ⌅

The following configuration appears multiple times in our proofs.

Definition 4.5.10. Let F be an internal green face of a coloured annular diagram �A, and
let ⇢ 2 {!, ⌧}. Assume that for each i 2 {1, 2}, there is xi such that xi is either a simply-
connected red blob edge-incident with F containing at most two boundary edges, or a boundary
vertex incident with F and with xi 2 ⇢.

Then F, x1, x2 are called a neighbourhood of ⇢ if �A\(F[x1[x2)� contains a sub-diagram
K of �A that satisfies the following 3 conditions.

1. CArea(K) � (1, 0).

2. @(K) is a closed path in �1A of the form p1p3p2p4 satisfying the following conditions.

(i) p4 is a sub-path of ⇢.

(ii) If xi is a vertex, then pi = xi and xi is incident with some internal green face of
K, else pi is a sub-path of @(xi) with |pi| � 1 and with the following properties:

(a) for the vertex v 2 pi \ p4: the external face with boundary ⇢ is the only green
face of �A incident with v that is not contained in K, and is incident precisely
once with v;

(b) For all vertices v 2 p�i : all green faces of �A incident with v are contained in
K.

(iii) p3 is a sub-path of @(F ) such that if x1 and x2 are both vertices, then |p3| � 1,
and for all vertices v 2 p3 \ p4 the only green face of �A incident with v that is not
contained in K is F , which is incident precisely once with v.

3. If K is not simply-connected then x1 and x2 are both vertices, and K is annular and
consisting of a single island with boundaries p3 and p4.

We call K a sub-diagram of �A bounded by F, x1, x2 and ⇢.

By Definition 4.5.10 it follows that (K) and (K�A) are defined (see Definition 4.4.4).
Even though Definition 4.5.10 may seem complicated, the following lemma provides a useful
restriction.
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Lemma 4.5.11. Let �A 2 T contain a neighbourhood F, x1, x2 of ⇢ 2 {!, ⌧}, and let K be a
sub-diagram of �A bounded by F, x1, x2 and ⇢. Assume that @(D)\ ⇢ is a single consolidated
edge for all internal green faces D of K. Then each of x1 and x2 is either a vertex of ! \ ⌧ , or
is a red blob with two boundary edges.

Proof. By Axiom T6 all green faces F ✓ K�A satisfy �A(F ) = 0 and all internal green
faces of �A contain a boundary edge, hence (K�A) = 0; and Condition 3 of Definition 4.5.10
implies that all internal green faces of K have an edge on p4, so as CArea(K) � (1, 0), we
have |p4| � 1. The strategy of the proof is deriving a closed-form expression of ⇣(x,K�A) (see
Definition 4.4.4) for each x 2 �A with ⇣(x,K�A) 6= 0 and x 62 K; finding for each x 2 K,
an m 2 Z such that ⇣(x,K) � ⇣(x,K�A)  m; and showing that if x ✓ K is a red blob or a
vertex, then K(x) = 0, from which it follows that (K) = N +

P
x2K ⇣(x,K), where N is

the number of internal green faces of K, and hence

(K)� (K�A) = N +
X

x2K
⇣(x,K)�N �

X

x2�A

⇣(x,K�A)

=
X

x2K
⇣(x,K)�

X

x2�A

⇣(x,K�A).

Using this we show that �(xi,�A)  �1/2 for 1  i  2, and then apply Lemmas 3.1.9 and
3.2.8 to deduce the lemma.

Suppose that B ✓ �A is a red blob with ⇣(B,K�A) 6= 0. Then either B = xi for
some i 2 {1, 2}, or B ✓ K; and if B = xi, then B gives curvature �(xi,�A) across each
edge of pi to precisely one internal green face of K, so �(B,K�A) = |pi| · �(xi,�A). Now
suppose that B ✓ K is a red blob. Since N � 1, B is edge-incident with some internal
green face of K, so K(B) = 0, and note that ⇣(B,K) = ⇣(B,�A). If B has an edge on
p3, then by Condition (iii) of Definition 4.5.10, F is the only internal green face of �A edge-
incident with B that is not contained in K. Now B gives F some of its negative curvature
in �A, hence ⇣(B,K) � ⇣(B,K�A) < 0. Otherwise, as ⇣(B,K) = ⇣(B,�A), we have
⇣(B,K)� ⇣(B,K�A) = 0. Thus, ⇣(B,K)� ⇣(B,K�A)  0.

If v 2 �A is a vertex with ⇣(v,K�A) 6= 0, then v 2 K. So for each vertex v 2 K, let
us find m 2 Z such that ⇣(v,K) � ⇣(v,K�A)  m, and show K(v) = 0. First suppose
that v 2 K \ (p1 [ p2 [ p3). Then �G(v,K) = �G(v,�A) � 2, and all internal green faces
of �A incident with v are contained in K. Hence by Lemma 2.6.9 we have K(v) = 0, and
⇣(v,K) � ⇣(v,K�A) = 0. Next suppose that v 2 p3 \ p4. Then v 2 @(K) \ @(�A), so
from Condition (iii) of Definition 4.5.10 it follows that �G(v,K) = �G(v,�A) � 2 and v is
incident with some internal green face of K, hence K(v) = 0 and ⇣(v,K) � ⇣(v,�A) =

0. Furthermore, if �G(v,�A) � 3, then v gives F some of its negative curvature in �A, so
⇣(v,K)� ⇣(v,K�A) < 0, and hence ⇣(v,K)� ⇣(v,K�A)  0.

Next suppose that xi is a red blob for some i 2 {1, 2}, and suppose that v 2 pi \ p4. Since
v 2 @(K), from Definition 4.5.10 (ii) we have �G(v,K) = �G(v,�A) � 2 and v is incident
with some internal green face of K, hence K(v) = 0 and ⇣(v,K) � ⇣(v,K�A) = 0. Now
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suppose that v 2 p�i , and note that there are |pi| � 1 vertices lying on p�i . We have v 2 @(K),
hence applying Definition 4.5.10 (ii) shows that �G(v,K) = �G(v,�A)+1 � 3, so K(v) = 0

and ⇣(v,K)� ⇣(v,K�A) = �1/2.

Finally, suppose that xi is a vertex for some i 2 {1, 2}, and that v = xi. First note that by
Condition 3 of Definition 4.5.10, x1 = v = x2 if and only if K is not simply-connected; and
if K is not simply-connected, then it is annular, and v is incident precisely twice with external
faces of K. Now by Condition (ii) of Definition 4.5.10 v is incident with some internal green
face of K, so �G(v,K) � 2, and hence K(v) = 0. By assumption, @(D) \ ⇢ is a single
consolidated edge for all internal green faces D of K. Therefore, as they all have an edge on
p4, if x1 6= x2, then there is precisely one internal green face Di in K incident with xi, and Di

is incident precisely once with xi. Otherwise, x1 is incident with at most two internal green
faces D1, D2 ✓ K; and x1 is incident precisely once with both D1 and D2 unless D1 = D2,
in which case x1 is incident precisely twice with D1. Hence if x1 6= x2, then ⇣(v,K�A) =

�(v,�A) and ⇣(v,K) = �(v,K); and �G(v,K) = 2, so �(v,K) = 0 = ⇣(v,K). Otherwise,
⇣(v,K�A) = 2 · �(v,�A) and ⇣(v,K) = 2 · �(v,K).

We are ready to prove the lemma. Suppose first that x1 and x2 are both vertices, and
assume further that K is simply-connected. By Proposition 2.6.6 we have (K) = 1, and by
the previous paragraph we have x1 6= x2 and �(xi,K) = 0 = ⇣(xi,K). Hence by the above
observations we have

1 = (K)� (K�A)  �
2X

i=1

⇣(xi,K
�A) = �

2X

i=1

�(xi,�A).

So
P2

i=1 �(xi,�A)  �1. Thus, by Lemma 3.1.9 x1, x2 2 ! \ ⌧ .

Now assume that K is not simply-connected, so by the fifth paragraph x1 = x2; K is
annular: so by Proposition 2.6.6 (K) = 0; and x1 is incident precisely twice with external
faces of K: hence as x1 is incident with D1, by Lemma 2.6.9 �(x1,K) = �1/2, and so
⇣(x1,K) = �1. It follows that

0 = (K)� (K�A)  ⇣(x1,K)� ⇣(x1,K
�A) = �1� (2 · �(x1,�A)).

So 2·�(x1,�A)  �1, which implies �(x1,�A)  �1/2, and the lemma follows from Lemma
3.1.9.

Next suppose that x1 is a red blob, and x2 is a vertex. Then by the fifth paragraph K is
simply-connected, so (K) = 1. Hence letting n = |p1| and using the observations from the
first 5 paragraphs we have

1 = (K)� (K�A)  �(n� 1) · 1/2 + ⇣(x2,K)� n · �(x1,�A)� ⇣(x2,K
�A)

= �n · (�(x1,�A) + 1/2) + 1/2 + ⇣(x2,K)� ⇣(x2,K
�A)

= �n · (�(x1,�A) + 1/2) + 1/2 + 0� �(x2,�A)

= �n · (�(x1,�A) + 1/2) + (1/2� �(x2,�A)).
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Figure 4.7: A case where x1 is a red blob, and x2 is a vertex, see Lemma 4.5.12.

Figure 4.8: A case where x1 and x2 are both red blobs, see Lemma 4.5.12.

By Lemma 3.1.9 we have �(x2,�A) � �1/2, hence �n · (�(x1,�A) + 1/2) � 0, which
implies �(x1,�A)  �1/2. Since x1 contains at most two boundary edges, by Lemma 3.2.8
�(x1,�A) � �1/2, so �(x1,�A) = �1/2, and therefore �(x2,�A) = �1/2. Hence x1

contains two boundary edges, and x2 2 ! \ ⌧ .
Finally, suppose that x1 and x2 are both red blobs. By the fifth paragraph K is simply-

connected, so (K) = 1. Let n = |p1|, m = |p2|. By the first 5 paragraphs we have

1 = (K)� (K�A)

 �(n� 1) · 1/2� (m� 1) · 1/2� n · �(x1,�A)�m · �(x2,�A)

= 1� n · (1/2 + �(x1,�A))�m · (1/2 + �(x2,�A)).

Hence 0  �n·(1/2+�(x1,�A))�m·(1/2+�(x2,�A)). Since by Lemma 3.2.8 �(xi,�A) �
�1/2 for each i 2 {1, 2}, we have �(xi,�A) = �1/2, and the lemma follows. ⌅

In the statement of the next lemma we allow tracing boundaries of faces in both directions.

Lemma 4.5.12. Let �A 2 T . Assume that the following statements hold.

1. �A contains an internal green face F , and for each i 2 {1, 2}, it contains xi such that
xi is either a simply-connected red blob containing at most two boundary edges, or a
boundary vertex incident with F and with xi 2 ⇢ 2 {!, ⌧}.

2. There is a sub-diagram K that satisfies the following 3 conditions.

(i) CArea(K) � (1, 0).
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(ii) K is bounded by a closed p 2 �1A of the form p1p3p2p4 satisfying the following
conditions (see Figures 4.7 and 4.8).

(a) p4 is a sub-path of ⇢.

(b) If xi is a vertex, then pi = xi and xi is incident with some internal green face
of K, else pi is a sub-path of @(xi) with |pi| � 1.

(c) p3 is a sub-path of @(F ) such that if at most one of x1 or x2 is a red blob, then
|p3| � 1; and if |p3| < 1, then F is incident precisely once with p3.

(d) If xi is a red blob for some i 2 {1, 2}, then @(xi) \ ⇢ contains an edge gi such
that gipi is a sub-path of @(xi), and @(F ) \ @(xi) contains an edge ei such
that piei is a sub-path of @(xi), and eip3 is a sub-path of @(F ). Moreover, the
common endpoint of gi and pi (which lies on pi \ p4) does not lie on ! \ ⌧ .

(iii) If K is not simply-connected then x1 and x2 are both vertices, and K is annular
and consisting of a single island with boundaries p3 and p4.

Then F, x1, x2 are a neighbourhood of ⇢, and K is a sub-diagram bounded by F, x1, x2 and ⇢.

Proof. Suppose first that x1 and x2 are both vertices. As p3 is a sub-path of @(F ), for all
vertices v 2 p3 \ p4: F is the only green face of �A incident with v that is not contained in K,
and is incident precisely once with v. Hence the lemma follows.

Next assume that xi is a red blob for exactly one i 2 {1, 2}. As the vertex v 2 pi \ p4

satisfies v 62 ! \ ⌧ , and gipi is a sub-path of @(xi), it follows that the external face E with
boundary ⇢ is the only green face incident with v that is not contained in K. Furthermore,
since by Axiom T1, ! and ⌧ are simple closed paths, E is incident precisely once with v. Note
also that as pi is a sub-path of @(xi), for all vertices v 2 p�i : all green faces incident with v

are contained in K. Similarly, as p3 and eip3 are sub-paths of @(F ), and piei is a sub-path of
@(xi), it follows that for all vertices v 2 p3 \ p4: the only green face of �A incident with v

that is not contained in K is F , which is incident precisely once with v. So the lemma follows
again.

Finally, assume that xi is a red blob for each i 2 {1, 2}. Then similarly as in the previous
case we deduce that p1 and p2 satisfy Condition (ii) of Definition 4.5.10. Now since p3 is a
sub-path of @(F ), and for each i 2 {1, 2}, piei is a sub-path of @(xi), and eip3 is a sub-path of
@(F ), we deduce that for all vertices v 2 p3: F is the only green face incident with v and not
contained in K, and is incident precisely once with v. Hence we are done. ⌅

We can now present the main result of this section.

Theorem 4.5.13. Let D be an internal green face of �A 2 T , and let ⇢ 2 {!, ⌧}. Then one of
the following statements holds.

1. @(D) \ ⇢ = ;.

2. @(D) \ ⇢ is a single consolidated edge.
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Figure 4.9: The sub-diagram K1 bounded by r1r3r4, see the proof of Theorem 4.5.13.

3. @(D)\@(�A) is a single consolidated edge with endpoints v1 and v2 with v1, v2 2 !\⌧
and @(D)\⇢ = {v1, v2}: hence D is contained in an island E with CArea(E) = (2, 0)

that satisfies Lemma 4.5.2.

Proof. Suppose that there is a green face D ✓ �A such that @(D) \ ⇢ 6= ; and @(D) \ ⇢

is not a single consolidated edge. Then D is tricky for �A with respect to ⇢ (see Definition
4.4.1). By Lemma 4.5.3 there exists a well-contained sub-diagram of �A given by D and ⇢
(see Definition 4.4.3). Hence we can let F be a minimal tricky green face for �A with respect
to ⇢ (see Definition 4.5.4), and let K be a minimal well-contained sub-diagram given by F and
⇢. We show that Statement 3 of the theorem holds for F , and from that we deduce it also holds
for D.

Let p1 = @(K) \ @(F ) and p2 = @(K) \ ⇢. Since @(F ) does not pass more than once
through any vertex of p1\p2, we have that p1 is a sub-path of @(F ). By Lemma 4.5.5 @(D0)\⇢
is a single consolidated edge for all internal green faces D0 of K, and by Lemma 4.5.7 we can
let x1 and x2 be (not necessarily distinct) curvature corners of K. Then by Definition 4.5.6 for
each i 2 {1, 2}, if xi is a vertex, then xi is incident with some internal green face of K.

Suppose first that x1 is a red blob, and x2 is a vertex. Let

K1 := K \ x1.

Since K is well-connected, it follows that K1 is simply-connected; and CArea(K) �
(1, 0) implies that CArea(K1) � (1, 0). By Lemma 4.5.9 x1 is simply-connected, and
@(x1) \ @(F ) and @(x1) \ ⇢ are single edges e1 and g1 respectively. Hence as K1 is simply-
connected, CArea(K1) � (1, 0), and by Axiom T6 each internal green face of �A contains
a boundary edge, we deduce that K1 is bounded by a closed path p 2 �1A of the form r1r3r4,
where r1 is a sub-path of @(x1) with |r1| � 1, r3 is a sub-path of p1 with |r3| � 1, and r4

is a sub-path of p2 with |r4| � 1 (see Figure 4.9). Moreover, we have that g1r1 and r1e1 are
sub-paths of @(x1), e1r3 is a sub-path of @(F ), and the common endpoint of g1 and r1 does
not lie on ! \ ⌧ , since g1 ✓ ⇢ and |r4| � 1. Hence as by the second paragraph x2 is incident
with some internal green face of K (with is contained in K1), by Lemma 4.5.12 F, x1, x2 are
a neighbourhood of ⇢, and K1 is a sub-diagram of �A bounded by F, x1, x2 and ⇢. Lemma
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Figure 4.10: The sub-diagram K1 bounded by r1r3r2r4, see the proof of Theorem 4.5.13.

4.5.11 then implies that x1 contains two boundary edges, contradicting Lemma 4.5.9.
Assume next that x1 and x2 are both red blobs. Let

K1 := K \ (x1 [ x2).

Then similarly as in the previous case, K1 is simply-connected, CArea(K1) � (1, 0), and for
each i 2 {1, 2}: xi is simply-connected, and @(xi) \ @(F ) and @(xi) \ ⇢ are single edges ei
and gi respectively. Therefore, as K1 is simply-connected, CArea(K1) � (1, 0), and each
internal green face of �A contains a boundary edge, it follows that K1 is bounded by a closed
path p 2 �1A of the form r1r3r2r4, where for each i 2 {1, 2}, ri is a sub-path of @(xi) with
|ri| � 1; r3 is a sub-path of p1 such that if |r3| < 1, then F is incident precisely once with r3;
r4 is a sub-path of p2 with |r4| � 1 (see Figure 4.10); and the edges ei, gi satisfy Condition (d)
of Lemma 4.5.12 (replace pi by ri in the statements). Therefore, by Lemma 4.5.11 F, x1, x2

are a neighbourhood of ⇢, and K1 is a sub-diagram of �A bounded by F, x1, x2 and ⇢. So by
Lemma 4.5.12 x1 contains two boundary edges, a contradiction.

Hence x1 and x2 are both vertices. Then since K is well-contained, p1 is a sub-path of
@(F ) and by the second paragraph x1 and x2 are incident with some internal green face of K,
by Lemma 4.5.12 F, x1, x2 are a neighbourhood of ⇢, and K is a sub-diagram of �A bounded
by F, x1, x2 and ⇢. Hence by Lemma 4.5.11 we have x1, x2 2 ! \ ⌧ , and so by Lemma 4.5.2
Statement 3 of the theorem holds for F .

Hence D is contained in some island E of �A. By above the minimal tricky green face F 0

for �A with respect to ⇢ contained in E satisfies Statement 3 of the theorem, hence D = F 0, as
required. ⌅

Theorem 4.5.13 is a powerful result. We finish this section with four results whose proofs
rely on it.

Corollary 4.5.14. Let F be an internal green face of �A 2 T . Then for any ⇢ 2 {!, ⌧}
and any red blob B edge-incident once with F , F is not contained in a sub-diagram K of �A
well-bounded by B and ⇢, where @(K)\ @(B) is the closure of the common edge of F and B.
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Proof. Suppose for a contradiction that such a K exists. Since @(K) \ @(B) is the closure of
the common edge of F and B, we have @(F ) \ ⇢ 6= ;, hence by Theorem 4.5.13 @(F ) \ ⇢
is a single consolidated edge. So @(F ) \ ⇢ = @(K) \ ⇢, and @(K) \ ⇢ is the consolidated
edge between F and the external face with boundary ⇢. Hence @(K) is a sub-path of @(F ).
So if K is not well-connected, then F is not simply-connected, a contradiction. Therefore,
we can use the same argument as in the proof of Part 3 of Lemma 4.3.4 to deduce that the
label R of F satisfies |R| = 2, which contradicts Assumption 2.3.15 that no R 2 R satisfies
|R| 2 {1, 2}. ⌅

Corollary 4.5.15. Let F be an internal green face of �A 2 T . Assume that F contains a
consolidated edge e ✓ ⇢ 2 {!, ⌧} with |e| � 1 and with endpoints v and w. Then there are
x, y 2 BF that lie on or are incident with e such that x and y collectively give F curvature of at
most �1/2. Moreover, if z 2 {x, y} is a red blob incident with t 2 {v, w} such that t 62 ! \ ⌧ ,
then z has an edge on ⇢.

Proof. If v = w, then v is incident twice with F , so by Lemma 2.6.10 we have �(v, F,�A) 
�1/2. Hence assume that v 6= w. By Part 1 of Lemma 4.3.4 there are x, y 2 BF that lie on
or are incident with e, and x and y satisfy the second statement of the corollary. Suppose that
x 6= y. Then by Part 2 of Lemma 4.3.4 we have �(x, F,�A) + �(y, F,�A)  �1/4� 1/4 =

�1/2.
So suppose that x = y. Then as v 6= w, it follows that x is a red blob B. By Lemma 2.6.10

we can further assume that �G(v) = 2 = �G(w). If |@(B) \ @(F )| > 1, then by Part 2 of
Lemma 4.3.4 we have �(B,F,�A)  �1/2. So suppose that B is edge-incident once with F .
If |@(B) \ @(�A)| � 2 or if B is not simply-connected, then the lemma follows from Lemma
3.2.8. Hence assume that |@(B) \ @(�A)| = 1 and that B is simply-connected.

By Theorem 4.5.13 we have @(F ) \ ⇢ = e. Hence since �G(v) = 2 = �G(w), we have
⇢ = ef , where f is the boundary edge of B. So as |@(B)\@(F )| = 1, Corollary 4.5.14 implies
that B is contained in a simply-connected diagram K of �A well-bounded by F and ⇢ and such
that @(K) = fe0 = @(B), where e0 is the common edge of F and B. But then Lemma 3.2.6
implies Area(B) = 0, a contradiction. ⌅

Lemma 4.5.16. Let F be an internal green face of �A 2 T , and let ⇢ 2 {!, ⌧}. Assume that
there is a vertex v 2 BF incident at least twice with F , and v is incident with a consolidated
edge e of F with |e| � 1 and e ✓ ⇢. Then ⇢ = e.

Proof. Since v is incident at least twice with F , we have �A 2 T \U (see Definition 4.1.2), so
if F is contained in an island E of �A, then by Proposition 4.5.1 E = �A and some green face
contained in E is incident with both of its endpoints, hence by Lemma 4.5.2 ⇢ = e. So assume
that �A is island-free. By Theorem 4.5.13 we have @(F ) \ ⇢ = e. Now there can be at most
two boundary edges of F that lie on ⇢ and are incident with v, and if there are two such edges
or if e is a loop, then the lemma holds. Hence assume for a contradiction that there is precisely
one boundary edge of F incident with v and that e is not a loop.
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Figure 4.11: Configuration of a green face incident twice with a boundary vertex, see the proof
of Lemma 4.5.16.

By Lemma 4.2.3 @(F ) passes through v twice, and �A \ (F )� decomposes as an edge-
disjoint union of two annular diagrams whose boundaries are simple closed paths. Let � be
the one with ⇢ ✓ �. Since the boundaries of � are simple and e ✓ ⇢, � is a union of islands
and bridges (see Definition 2.5.10). Hence by the assumption from the previous paragraph �
contains a simply-connected sub-diagram K of �A well-bounded by F and ⇢ (see Figure 4.11
with ⇢ = !). But then @(F ) \ ⇢ 6= e, a contradiction. ⌅

Corollary 4.5.17. Let v be a boundary vertex of �A 2 T such that v 62 !\⌧ . If �G(v) � 4, then
there is an internal green face F incident with v and with an edge on the opposite boundary
from that on which v lies, and v is not incident with any boundary edge of F .

Proof. Without loss of generality assume that v 2 !. Now there are at most two internal green
faces of �A that contain an edge of ! incident with v, and by Lemma 4.5.16 if such face F is
incident at least twice with v, then F is the only internal green face that contains an edge of !
incident with v. By Lemma 4.2.3 no vertex is incident more than twice with an internal green
face, hence as �G(v) � 4, there is an internal green face F incident with v and such that v is
not incident with any boundary edge of F .

By Axiom T6, F contains a boundary consolidated edge f with |f | � 1. If f ✓ ⌧ , then
the lemma holds. So assume that f ✓ !. Then @(F ) \ ! is not a single consolidated edge,
contradicting Theorem 4.5.13. ⌅

4.6 More on red blobs

In this section we continue to study red blobs of diagrams in T . In Section 4.6.1 we shall
describe simply-connected red blobs that contain at least two boundary edges, in Section 4.6.2
we shall characterize the structure of diagrams containing bad red blobs (see Definition 4.1.1),
and in Section 4.6.3 we shall show that even when a diagram in T contains a red blob with a
complicated structure, its boundary words are conjugate by a word of length at most 2r + 1,
where r is the length of the longest green relator.
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Figure 4.12: The structure of components in �A \B, see Theorem 4.6.2.

4.6.1 Simply-connected red blobs

Definition 4.6.1. Let B be a simply-connected red blob of an annular diagram �A. Then B is
called complicated if B contains at least two edges on ! or on ⌧ .

The main result of this subsection is the following theorem. Recall Definition 2.5.10 of an
island of a coloured annular diagram, and that an endpoint of an island is a vertex on ! \ ⌧ .
Recall also Definitions 4.3.1 and 4.3.3 of the (boundary) curvature neighbourhood of an internal
green face.

Theorem 4.6.2. Let B be a complicated red blob of �A 2 T . Then there exists an island E

with B ✓ E, and E \ B is a disjoint union of components T1, . . . , Tk for some k with the
following properties (see Figure 4.12). For all i:

1. Ti is homeomorphic to a disc and @(Ti) intersects at most one of the boundaries of �A;

2. Ti contains precisely two internal green faces Fi and F 0
i with @(Fi) \ @(F 0

i ) 6= ; and
B 2 BFi \ BF 0

i
;

3. Either T = Fi [ F 0
i or T = Fi [ F 0

i [Bi, where in the second case Bi is a red triangle
with Bi 2 BFi \ BF 0

i
.

In particular, no internal green face of E is incident with any endpoint of E, the red blob B

has an edge on both boundaries of �A, and in E, no ⇢ 2 {!, ⌧} contains two consecutive red
edges.

Recall Definition 2.6.8 that �(B,�) is the curvature that a red blob B gives to a single
internal green face across each edge-incidence, and that if we say that a closed path p is of the
form p1p2 . . . pn, then p is a sequence of simple sub-paths pi. Recall also Definition 4.4.3 of a
well-contained sub-diagram given by a red blob and ⇢ 2 {!, ⌧}.

Lemma 4.6.3. Let �A 2 T contain a red blob B and a well-contained sub-diagram K given
by B and ⇢. Suppose that K contains a corner v that lies on an edge of @(B) \ ⇢, and that
@(B) does not pass more than through v. Then �G(v) = 2 and �(B,�A)  �1/2.
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Proof. Let p = @(K) \ ⇢ and n = |@(K) \ @(F )|. Since K contains an internal green face
and K is well-connected (see Definition 4.4.2), by Axiom T6 we have |p| � 1. Now B has an
edge on ⇢ at v, and so does K, hence v 62 !\ ⌧ , and the other corner w of K is distinct from v.
Furthermore, by Axiom T6 and Theorem 4.5.13 every green face F ✓ K has an edge on p and
@(F ) \ ⇢ is a single consolidated edge. Hence as @(B) does not pass more than once through
v, we have �G(v) = 2, and therefore by Lemma 2.6.10 we have �(v,�A) = 0. By Lemma
4.4.6 we have

1/2 + �(v,�A) + �(w,�A) = 1/2 + �(w,�A) = �n · (�(B,�A) + 1/2).

From Lemma 3.1.9 we have �(w,�A) � �1/2. Hence

0  1/2 + �(w,�A) = �n · (�(B,�A) + 1/2),

and the lemma follows. ⌅

Lemma 4.6.4. Let B be a simply-connected red blob of �A 2 T . Suppose that B is tricky
for �A with respect to ⇢ 2 {!, ⌧}, and that B contains an edge on ⇢. Then the following
statements hold.

1. There is a sub-diagram of �A well-bounded by B and ⇢ that is well-connected, and with
a corner lying on an edge of @(B) \ ⇢.

2. If �A contains an island and B contains at least two edges on ⇢, then there is a sub-
diagram satisfying Part 1 with no corner on ! \ ⌧ .

Proof. Part 1. First note that by Lemma 3.2.4 all consolidated edges between B and the ex-
ternal faces of �A have length at most 1, and by definition of a tricky red blob @(B) \ ⇢ is
not a single consolidated edge. Hence as B has an edge on ⇢, it follows that there is a path
p 2 �1A \ @(B) (see Definition 2.5.14) with |p| � 1 intersecting ⇢ only at its endpoints, where
one of the endpoints of p is a vertex v lying on an edge of @(B) \ ⇢. So by Lemma 2.1.8 there
is a simple path p1 2 �1A \ @(B) with |p1| � 1 intersecting ⇢ only at its endpoints, and with
v 2 p1. Now there is a sub-path p2 of ⇢ with the same endpoints as p1, and the sub-diagram K

bounded by the closed path p1p2 is well-bounded by B and ⇢.
If K is well-connected, then K satisfies Part 1, so suppose not. Then as K is well-bounded

by B and ⇢, it follows that ⌧ ✓ K and ⇢ = !. Therefore, as B contains an edge on ⇢ and
@(B) \ ⇢ is not a single consolidated edge, there is a path p0 2 �1A \ @(B) distinct from p

that intersects ⇢ only at its endpoints, and one of the endpoints of p0 is a vertex v0 lying on
an edge of @(B) \ ⇢. Hence similarly as in the previous paragraph we deduce that there is
a sub-diagram K1 6= K well-bounded by B and ⇢ (see Figure 4.13); with v0 2 K1; and as
K1 6= K, it follows that K1 is well-connected. Hence Part 1 follows.

Part 2. By Lemma 3.1.10 B is contained in an island of �A. As all consolidated edges
between B and the external faces of �A have length at most 1, there is a path p 2 �1A \ @(B)
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with |p| � 1 intersecting ⇢ only at its endpoints v and w, where w 62 ! \ ⌧ , and v lies on an
edge of @(B) \ ⇢, so v 62 ! \ ⌧ . By Lemma 2.1.8 there is a simple path p1 2 �1A \ @(B) with
|p1| � 1 intersecting ⇢ only at v and w, so we can use similar arguments as in Part 1 to deduce
that there is a sub-diagram K well-bounded by B and ⇢ and with corners v and w. As K is
contained in an island, K is well-connected, so we are done. ⌅

The next lemma gives precise value of �(B,�A) when B is complicated.

Lemma 4.6.5. Let B be a simply-connected red blob of �A 2 T . Then both of the following
statements hold.

1. Suppose that B is tricky for �A with respect to ⇢ 2 {!, ⌧}, and that B contains an
edge on ⇢. Then �(B,�A)  �1/2, and if B contains at least two edges on ⇢, then
�(B,�A) = �3/4.

2. If B0 is a complicated red blob, then �(B0,�A) = �3/4.

Proof. Part 1. By Lemma 4.6.4 there is a sub-diagram K of �A well-bounded by B and ⇢
that is well-connected, with corners v and w, where v lies on an edge e of @(B) \ ⇢, and
if B contains at least two edges on ⇢, then without loss of generality we can assume that
v, w 62 ! \ ⌧ . Note that |@(K) \ @(B)| � 1 implies CArea(K) � (1, 0), so by Axiom T6,
|@(K) \ ⇢| � 1; and by Axiom T6 and Theorem 4.5.13, @(F ) \ ⇢ is a single consolidated
edge for all green faces F ✓ K. Suppose that @(B) does not pass more than once through
any vertex of (@(K) \ ⇢) [ {v}. Then K is well-contained, so by Lemma 4.6.3 �G(v) = 2

and �(B,�A)  �1/2. Suppose further that B contains at least two edges on ⇢, so that
v, w 62 ! \ ⌧ . Then from �G(v) = 2 and Lemma 4.4.8 we have �G(w) = 2, and so Lemma
4.4.9 gives �(B,�A) = �3/4. Hence Part 1 holds for B.

Suppose instead that @(B) passes more than once through some vertex u 2 (@(K) \ ⇢) [
{v}. By Lemma 4.2.3 u is the only vertex through which @(B) passes more than once, and
by Lemma 4.2.5 �A \ B� decomposes as an edge-disjoint union of annular diagrams �1 and
�2 (with ⇢ ✓ �1, say) whose boundaries are simple closed paths. In particular, �1 contains all
sub-diagrams well-bounded by B and ⇢.

Suppose first that u 6= v. By definition of a tricky red blob @(B) \ ⇢ is not a single
consolidated edge, hence as B contains an edge on ⇢, there is a path p 2 @(�1) \ @(B) with
|p| � 1 and K \ ⇢ 6✓ p, and intersecting ⇢ only at its endpoints v0 and w0, where v0 lies on
an edge of @(B) \ ⇢. Hence by Lemma 2.1.8 there is a simple path p1 2 @(�1) \ @(B) with
|p1| � 1 and p1 6= K \ ⇢, and intersecting ⇢ only at v0 and w0. Now note that there is a
sub-path p2 of ⇢ with endpoints v0 and w0, so the sub-diagram K1 ✓ �1 bounded by p1p2 is
well-bounded by B and ⇢ (see Figure 4.14). Since K1 ✓ �1 and B is simply-connected, K1

is well-connected, and @(K1) does not intersect both ! and ⌧ , so v0, w0 62 ! \ ⌧ . Also, as
p1 6= K \ ⇢ and u is the only vertex through which @(B) passes more than once, the simply-
connectedness of B implies that @(B) does not pass more than once through any vertex of
@(B) \ @(K1). Now |@(K1) \ @(B)| � 1 implies CArea(K1) � (1, 0), hence K1 is well-
contained; and Axiom T6 and Theorem 4.5.13 imply that @(F ) \ ⇢ is a single consolidated
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Figure 4.13: A case where K is not well-connected, see the proof of Lemma 4.6.4.

edge for all green faces F ✓ K1. By Lemma 4.6.3 we have �G(v0) = 2. Therefore, by Lemma
4.4.8 �G(w0) = 2, so by Lemma 4.4.9 �(B,�A) = �3/4. Hence Part 1 holds for B.

Suppose instead that u = v. Then �G(v) � 3; and since |@(K)\⇢| � 1 and e ✓ @(B)\⇢,
we have w 6= v. Therefore, as v is the only vertex through which @(B) passes more than
once, @(B) does not pass more than once through any vertex of @(K) \ ⇢ [ {w}, so K is
well-contained.

Suppose first that @(B)\ ⇢ = e. It suffices to show �(B,�A)  �1/2. We have w 2 e, so
as @(B) does not pass more than one through w, by Lemma 4.6.3 �G(w) = 2 and �(B,�A) 
�1/2. Hence B satisfies Part 1.

Finally, suppose that @(B) \ ⇢ 6= e. As e ✓ ⇢ and the boundaries of �1 are simple closed
paths, �1 is a union of islands and bridges. Therefore, there is a simply-connected sub-diagram
K1 ✓ �1 \K� that is well-bounded by B and ⇢ and with corners v0 and w0 such that v0 2 e.
Since B is simply-connected and v is the only vertex through which @(B) passes more than
once, K1 does not intersect both ! and ⌧ : so v0, w0 62 ! \ ⌧ ; and @(B) does not pass more
than once through any vertex of @(B) \ @(K1). Now note that from |@(K1) \ @(B)| � 1

we have CArea(K1) � (1, 0): so K1 is well-contained, by Axiom T6 and Theorem 4.5.13
@(F ) \ ⇢ is a single consolidated edge for all green faces F ✓ K1, and by Lemma 4.6.3 we
have �G(v0) = 2. Hence by Lemmas 4.4.8-4.4.9 we have �(B,�A) = �3/4. Thus, Part 1
follows.

Part 2. Suppose that B0 is a complicated red blob, with at least two edges on ⇢ 2 {!, ⌧}.
As by Lemma 3.2.4 all consolidated edges between B0 and the external faces of �A have length
at most one, B0 is tricky for �A with respected to ⇢, so �(B0,�A) = �3/4. ⌅

The next few results consider blobs that are not assumed to be simply-connected.

Lemma 4.6.6. Suppose that B is a red blob of �A 2 T with �(B,�A) = �3/4 that is edge-
incident with an internal green face F . Then

1. SF = {B, x} = BF has size two, B is edge-incident once with F , and x is either a
red triangle edge-incident once with F that contains one edge of @(�A), or a boundary
vertex incident once with F and such that �G(x) = 3 and x 62 ! \ ⌧ ;

2. @(F ) \ @(�A) is a single consolidated edge e with |e| � 1, and with endpoints t1 and
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Figure 4.14: A case where @(B) passes more than once through some vertex of @(K) \ ⇢, see
the proof of Lemma 4.6.5.

t2, where t1 lies on the common edge f of F and B, �G(t1) = 2 and �G(t2)  3, and if
t2 2 @(B), then �G(t2) = 3;

3. the other endpoint t3 of f satisfies t3 62 @(�A) and �G(t3) = 2.

Proof. By Axiom T6, F has a boundary consolidated edge e with |e| � 1. Assume without a
loss of generality that e ✓ !, and let @(e) = {t1, t2}. By Theorem 4.5.13 we have @(F )\! =

e. Since �(B,F,�A) = �3/4 and �A(F ) = 0, we have that B is edge-incident once with F .
Also, by Part 2 of Lemma 4.3.4 every element of BF curvature incident more than once with
F gives F curvature of at most �1/2. Hence no such element exists, so by Part 3 of Lemma
4.3.4 we have |BF | > 1. Therefore, since �(B,F,�A) = �3/4, by Lemmas 2.6.10 and 3.2.8
Part 1 follows.

To prove Part 2, we first show that t1 lies on f , that �G(t1) = 2 and �G(t2)  3, and if
t2 2 @(B), then �G(t2) = 3. By Corollary 4.5.15 there are ↵,� 2 BF that are equal to or
are incident with t1 and t2 such that ↵ and � collectively give F curvature of at most �1/2.
Suppose first that no t 2 {t1, t2} lies on f . Then B 62 {↵,�}, hence by Part 1 we have
↵ = x = �, and x gives F curvature �1/4, a contradiction.

Assume next that t1, t2 2 @(B) and �G(t1) = 2 = �G(t2). Then t1 and t2 are endpoints of
f . Furthermore, as t1, t2, B are all curvature incident once with F , we have t1 6= t2, and from
@(F ) \ ! = e we deduce that ef is a sub-path of @(F ). Hence since F is simply-connected,
we deduce that F is contained in a sub-diagram bounded by the closed path ef , which is
in particular well-bounded by B and ! (see Definition 4.4.2), contradicting Corollary 4.5.14.
Hence if t1, t2 2 @(B), then either �G(t1) � 3 or �G(t2) � 3, so by Part 1, either �G(t1) = 3

or �G(t2) = 3.
By the second paragraph there exists i 2 {1, 2} such that ti 2 f . If ti is unique, then

as t1 6= t2, by Part 1 of Lemma 4.3.4 there is y 2 BF \ {B, ti} equal to or incident with
tj 2 {t1, t2} \ {ti}. So by Part 1 we have �G(ti) = 2 and �G(tj)  3. If t1, t2 2 @(B), then by
the previous paragraph there exists i 2 {1, 2} such that �G(ti) = 3, and therefore by Part 1 the
tj 2 {t1, t2} \ {ti} satisfies �G(tj) = 2, so tj 2 f . Hence by relabelling, if necessary, we can
assume that t1 lies on f and �G(t1) = 2, so �G(t2)  3, and if t2 2 @(B), then �G(t2) = 3.
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It remains to show @(F )\@(�A) = e and prove Part 3. If all endpoints of f are in {t1, t2},
then as t1, t2, B are all curvature incident once with F and @(F ) \ ! = e, we deduce that ef
is a sub-path of @(F ), and so we get a contradiction as in the third paragraph. So let t3 be the
endpoint of f such that t3 62 {t1, t2}.

Suppose for a contradiction that t3 2 @(�A). If t3 2 !, then as t3 2 f and @(F ) \ ! = e,
we have t3 2 {t1, t2}, a contradiction. Hence t3 2 ⌧ . Let h ✓ ⌧ be the boundary consolidated
edge of F with t3 2 h. As by Part 1, B is edge-incident once with F , by Part 1 of Lemma
4.3.4 there exists y 2 BF \ {B} curvature incident with F at some endpoint of h (note that if
|h| = 0, then the only endpoint of h is t3), and as by Part 1 we have @(F )\ (!\ ⌧) = ;, either
y 2 ⌧ \ !, or y is a red blob with an edge on ⌧ . In particular, by Part 1 we have �G(t2) = 2, so
t2 62 @(B) and �R(t2) � 1. Therefore, there is a red blob B1 6= B edge-incident with F at t2,
and with an edge on !. By Part 1, B1 is a red triangle with precisely one boundary edge, hence
B1 6= y, and so |SF | � 3, a contradiction. Hence t3 is interior. So by Part 1 we have t3 62 SF ,
and therefore �G(t3) = 2.

Finally, suppose for a contradiction that @(F )\⌧ 6= ;. Then as @(F )\(!\⌧) = ;, by Part
1 of Lemma 4.3.4 either SF contains a vertex on ⌧ \ !, or a red blob edge-incident with F at a
vertex on ⌧ \ !, and with an edge on ⌧ . Hence as t3 is interior, there exists y 2 SF \ {B, t2}.
Hence by Part 1 we have �G(t2) = 2, so t2 62 @(B) and �R(t2) � 1, and as in the previous
paragraph we deduce that there is a red triangle edge-incident with F at t2, and with precisely
one boundary edge, on !. Hence again |SF | � 3, a contradiction. So as @(F ) \ ⌧ = ;, we
have @(F ) \ @(�A) = e, as required. ⌅

Lemma 4.6.7. Suppose that B is a red blob of �A 2 T with �(B,�A) = �3/4 that is edge-
incident with an internal green face F . Then F is contained in a component T of �A \ B that
satisfies Statements 1-3 of Theorem 4.6.2.

Proof. Since B and F satisfy assumptions of Lemma 4.6.6, we can let t1, t2, t3, e, f and x

be as in Lemma 4.6.6. Without loss of generality assume that e ✓ !. As t3 is interior and
�G(t3) = 2, there is precisely one internal green face F 0 incident with F , and F 0 is incident
with t3 and edge-incident with B. Since B is edge-incident with F 0, Lemma 4.6.6 holds for
F 0.

Assume first that �G(t2) = 2. Then x is a red blob B1. As �G(t3) = 2, F and F 0 share a
consolidated edge p2 with endpoints t3 and a vertex t4 with t4 2 @(B1). Since SF = {B,B1},
we have �G(t4) = 2, so B1 is edge-incident with F 0. By Part 1 of Lemma 4.6.6 we therefore
have BF 0 = {B,B1}, and B and B1 are edge-incident once with F 0. So @(F 0) \ ! 6= ;. Let
t5 be the vertex of F 0 lying on @(B1) \ !, and let p3 ✓ ! be the consolidated edge of F 0 with
t5 2 p3. By Part 2 of Lemma 4.6.6 we have @(F 0) \ @(�A) = p3 and |p3| � 1.

Since SF 0 = {B1, B} = BF 0 , and B and B1 are edge-incident once with F 0, it follows
that p3 is incident with a boundary edge of B. Let p4 and p5 be the common edges of F 0

and B and of F 0 and B1 respectively. Since SF 0 = {B1, B} = BF 0 , all vertices v 2 @(F 0)

satisfy �G(v) = 2. Hence @(F 0) = p2p4p3p5. Let p6 be the common edge of F and B1. From
SF = {B,B1} = BF we deduce that that all vertices v 2 @(F ) satisfy �G(v) = 2. Hence
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@(F ) = efp2p6. Let p7 be the boundary edge of B1. It follows that F , F 0, B�
1 are contained in

a component T of �A \B bounded by the closed path efp4p3p7. Hence T = F [ F 0 [B1. In
particular, T is homeomorphic to a disc and @(T ) \ ⌧ = ;, so the lemma follows.

Assume instead that �G(t2) = 3. Then x = t2. As t3 is interior and �G(t3) = 2, from
BF = {B, t2} = SF it follows that there is a consolidated edge p2 common to F and F 0

incident with t2 and t3. Hence by Part 1 of Lemma 4.6.6 we have BF 0 = {B, t2} = SF 0 , B is
edge-incident once with F 0, and t2 is incident once with F 0. In particular, F 0 has a consolidated
edge p3 on ! with t2 2 p3. By Part 2 of Lemma 4.6.6 we have @(F 0) \ @(�A) = p3 and
|p3| � 1, and from BF 0 = {B, t2} = SF 0 we have that p3 is incident with a boundary edge of
B.

By applying SF = BF = {B, t2} = BF 0 = SF 0 once again we deduce that all vertices
v 2 (@(F ) [ @(F 0)) \ {t2} satisfy �G(v) = 2. So @(F ) = efp2 and @(F 0) = p2p4p3, where
p4 is the common edge of F 0 and B. Therefore, F and F 0 are contained in a component T of
�A \B bounded by the closed path efp4p3. So T = F [F 0, and hence T is homeomorphic to
a disc and @(T ) \ ⌧ = ;. ⌅

Proof of Theorem 4.6.2. By Lemma 4.6.5 we have �(B,�A) = �3/4 since B is compli-
cated. Assume that some ⇢ 2 {!, ⌧} is equal to e for some edge e ✓ B. Let v be the endpoint
of e. If there is an internal green face F incident with v and edge-incident with B, then by
Axiom T6, F contains an edge on ⇢0 2 {!, ⌧} with ⇢0 6= ⇢, so @(F ) \ ! 6= ; 6= @(F ) \ ⌧ ,
contradicting Lemma 4.6.6. Hence �A contains an island.

Recall that we assume CArea(�A) � (1, 0), and by Lemma 3.2.10 B is not an island of
�A. By Lemma 4.6.7 each internal green face of �A edge-incident with B is contained in some
component T of �A \B that satisfies Statements 1-3 of the theorem. Hence as by Lemma 3.2.4
all consolidated edges between any red blob and any green face of �A have length at most one,
B contains edges on both boundaries of �A, and by the previous paragraph either �A is island-
free and �A \B is a disjoint union of components T1, . . . , Tk that satisfy Statements 1-3 of the
theorem; or B ✓ E for some island E of �A, and E \ B is a disjoint union of components
T1, . . . , Tk that satisfy Statements 1-3 of the the theorem. In particular, if B is contained in
the island E, then no internal green face of E is incident with any endpoint of E, and as each
internal green face of �A contains a boundary edge and all consolidated edges between any red
blob and any green face of �A have length at most one, we deduce that in E, no ⇢ 2 {!, ⌧}
contains two consecutive red edges.

Suppose for a contradiction that �A is island-free. Let t = Area(B), d = |@(B)\@(�A)|,
and k = |@(B)|. By the previous paragraph for each boundary edge e with e ✓ @(B) we can
associate two distinct interior edges f1 and f2 with f1 \ e 6= ; 6= f2 \ e, and such that
f1 ✓ @(B) \ @(T1) and f2 ✓ @(B) \ @(T2), where T1 and T2 are components of �A \ B.
Observe that for distinct boundary edges e1 and e2 with e1, e2 ✓ @(B) the sets of edges
associated to e1 and e2 respectively as above are pairwise disjoint. Thus d  k/3. Since B is
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simply-connected, by Lemma 3.2.8 we have

�(B,�A) = �3/4 =
�t

2(t� d) + 4
,

rearranging gives d = t/3 + 2. By Lemma 3.2.6 we have k = t+ 2, hence

k/3 � d = t/3 + 2 > t/3 + 2/3 = k/3,

a contradiction. The theorem follows. ⌅

Definition 4.6.8. Let B be a simply-connected red blob of an annular diagram �A. Then B is
called highly hyperbolic if B contains precisely two boundary edges e1 and e2, with e1 ✓ !

and e2 ✓ ⌧ .

Lemma 4.6.9. Suppose that �A 2 T contains a simply-connected red blob B that is not
complicated. Then �(B,�A) � �1/2, and �(B,�A) = �1/2 if and only if B is highly
hyperbolic.

Proof. Since B is not complicated, B has at most one edge on a single boundary of �A. Hence
by Lemma 3.2.8 we have �(B,�A) � �1/2, and �(B,�A) = �1/2 if and only if B is highly
hyperbolic ⌅

In the next chapter we shall use extensively the following proposition to simplify cases
where a simply-connected red blob contains at most one boundary edge.

Proposition 4.6.10. Let B be a simply-connected red blob of �A 2 T , and let ⇢ 2 {!, ⌧}.
Suppose that B has an edge on ⇢, and that B is tricky for �A with respect to ⇢. Then B contains
at least two boundary edges.

Hence if B0 is a simply-connected red blob with exactly one boundary edge, on ⇢ say, then
@(B0) \ ⇢ is a sub-path of @(B0).

Proof. By Lemma 4.6.5 we have �(B,�A)  �1/2, hence by Lemma 3.2.8 B contains at
least two boundary edges. For the second statement, note that by the first statement of the
lemma B0 is not tricky with respect to ⇢, hence @(B0) \ ⇢ is a single consolidated edge. So
@(B0) \ ⇢ is a sub-path of @(B0). ⌅

Lemma 4.6.11. Let B be a highly hyperbolic red blob of �A 2 T , and assume that all red
blobs of �A are simply-connected. Then |@(B)|  6.

Proof. Let e1 and e2 be the edges of B with e1 ✓ ! and e2 ✓ ⌧ . We claim that there are two
distinct simple sub-paths l and r of @(B) that contain no edge of @(�A), and the endpoints of
l and r lie on e1 and e2. To prove the claim, suppose first that @(B) does not pass more than
once through any vertex. Then @(B) is a simple closed path, so @(B) = e1le2r, where l and r

have the stated properties.
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Suppose instead that @(B) passes through some vertex v more than once. Then by Lemma
4.2.3 v is the only vertex with this property, @(B) passes through v twice, and by Lemma
4.2.5 �A \ B� decomposes as an edge-disjoint union of two annular diagrams. Hence again
@(B) = e1le2r, where l and r have the required properties.

Note that it suffices to show |l|, |r|  2, so suppose for a contradiction that |l| > 2. Let v1
and v2 be the endpoints of l with v1 2 e1. Then there is an internal green face F that shares
an edge e with B such that e ✓ l and e \ ({v1} [ {v2}) = ;. By Axiom T6, F contains a
boundary edge. Without loss of generality assume that it lies on !. Let p be the sub-path of l
with endpoints v1 and v 2 e, where v is such that e ✓ p. Let F1 be the internal green face such
that @(F1)\ @(B) contains the edge incident with v1, and let F2 be an internal green face with
an edge on p distinct from F1.

Suppose that B is edge-incident more than once with F2. By Proposition 4.2.8 B is edge-
incident twice with F2, hence by Lemma 4.6.9 we have �(B,F2,�A) = �1. By Axiom T6 we
have �A(F2) = 0, so SF2 = {B}. By Proposition 4.2.8 �A \ (F2 [ B)� decomposes as an
edge-disjoint union of two annular diagrams. Hence as e\ ({v1}[{v2}) = ; and SF2 = {B},
it follows that F2 has no boundary edge, contradicting Axiom T6. So B is edge-incident once
with F2, hence e \ ({v1} [ {v2}) = ; implies B 2 SF2 \ BF2 .

Since B contains edges on the opposite boundaries of �A, by Part 3 of Lemma 4.2.3 no
vertex of SF2 is incident more than once with F2; and as all red blobs of �A are simply-
connected, by Proposition 4.2.8 no red blob of SF2 is edge-incident more than once with F2.
Hence by Part 3 of Lemma 4.3.4 we have |BF2 | � 2. By Part 2 of Lemma 4.3.4 each element
of BF2 gives F2 curvature of at most �1/4. Hence |SF2 | = 3, and each x 2 BF2 is either a
red triangle that contains one boundary edge, or a vertex with �G(x) = 3 and x 62 ! \ ⌧ . In
particular, all interior vertices v2 2 @(F2) satisfy �G(v2) = 2.

Since @(F1) \ ⇢ 6= ;, by Theorem 4.5.13 @(F1) \ ⇢ is a single consolidated edge. Hence
by the previous paragraph we have SF1 = {B, x} = BF1 , where B is edge-incident once with
F1, and x is either a red triangle edge-incident once with F1 that contains one boundary edge,
or a vertex of green degree 3 incident once with F1 and not on ! \ ⌧ . Hence

�A(F1) = 1 + �(B,F1,�A) + �(x, F1,�A) = 1� 1/2� 1/4 = 1/4 > 0,

contradicting Axiom T6. So |l|  2, and similarly |r|  2. The lemma follows. ⌅

4.6.2 Bad red blobs

In this subsection we characterize structure of diagrams in T that contain bad red blobs (see
Theorems 4.6.13-4.6.14). This will enable us to solve the conjugacy problem in quadratic time.
Recall that a red blob B is annular if R2 \B� is comprised of two components.

Lemma 4.6.12. Let B be an annular red blob of �A 2 T with boundary length l and Area(B) =
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t. Then l = t. Hence letting d = |@(B) \ @(�A)|, we have

�(B,�A) =
�t

2(t� d)
.

In particular, �(B,�A)  �1/2.

Proof. We use ideas from the proof of [34, Lemma 4.12]. Let B⇤ be the induced sub-graph of
the dual graph �⇤A of �A on those vertices that corresponds to triangles in B. Note that a vertex
of degree one in B⇤ corresponds to a triangle of B having two edges on @(B). If we delete
this triangle from B, then we decrease both the number of triangles in B and the number of
edges in @(B) by one while B⇤ remains connected. Furthermore, the vertices of degree two
correspond to triangles of B with exactly one edge on @(B).

Let B⇤
1 be the graph obtained from B⇤ by repeatedly removing vertices of degree 1. By

graph duality the vertices of B� correspond to cycles of B⇤. Hence as B is annular and by
Axiom T3 all vertices of B lie on @(B), it follows that B⇤

1 is a cycle graph. Let B1 be the
sub-diagram of �A consisting of the closures of the red triangles of B that correspond to the
vertices of B⇤

1 . By the previous paragraph |@(B1)| = Area(B1), hence l = t.
Now by the description of ComputeRSym (see Algorithm 2.6.4) we have

�(B,�A) =
�t

2|@(B) \ @(�A)|
,

so the second statement follows from l = t. ⌅

Theorem 4.6.13. Let B be a bad red blob of �A 2 T with an edge on @(�A). Then �A \ B

is a disjoint union of components Ti (see Figure 4.12) that satisfy Statements 1-3 of Theorem
4.6.2. Moreover, B contains an edge on both boundaries of �A, and each ⇢ 2 {!, ⌧} satisfies
|⇢| � 2.

Proof. Let B have an edge e on ⇢ 2 {!, ⌧}. By Lemma 4.2.4 �A is island-free, B is the only
bad red blob of �A, and by definition of a bad red blob there exist annular diagrams S and S0

such that �A \ B� = S [ S0 and S \ S0 = ;, where ⇢ ✓ S (say). If S has no internal green
faces then S has area 0. Hence as by Lemma 3.2.4 all consolidated edges between B and the
external faces of �A have length at most one, we deduce that ⇢ = e; and the endpoint v of e
has �G(v) = 1, contradicting Axiom T3. So CArea(S) � (1, 0). By Axiom T6 each internal
green face of �A contains a boundary edge, hence |⇢| � 2.

We next show that �(B,�A) = �3/4. By Axiom T1 and Lemma 4.2.4 the boundaries of S
are simple closed paths, hence as B contains an edge on ⇢, S is a union of islands and bridges.
Therefore, there is a sub-diagram K of �A well-bounded by B and ⇢ that is well-connected
(see Definition 4.4.2), with corners v and w such that v lies on an edge of @(B) \ ⇢, and @(B)

does not pass more than once through any vertex of @(B) \ @(K). Since |@(K) \ @(B)| � 1,
we have CArea(K) � (1, 0), hence K is well-contained (see Definition 4.4.3). By Axiom
T6 and Theorem 4.5.13 @(F ) \ ⇢ is a single consolidated edge for all green faces F ✓ K;
and as @(B) does not pass more than once through any vertex of @(B) \ @(K), by Lemma
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Figure 4.15: A bad red blob B with no boundary edge, see Theorem 4.6.14.

4.6.3 �G(v) = 2. So Lemma 4.4.8 implies �G(w) = 2, and therefore Lemma 4.4.9 gives
�(B,�A) = �3/4, as claimed.

Hence Lemma 4.6.7 holds for all internal green faces edge-incident with B, so B has an
edge on both boundaries of �A. Therefore, similarly as for S we can show that CArea(S0) �
(1, 0), and that the ⇢0 2 {!, ⌧} with ⇢0 6= ⇢ has |⇢0| � 2. Hence as all consolidated edges
between B and the external faces of �A have length at most one, and Lemma 4.6.7 holds for
all internal green faces edge-incident with B, �A \B is a disjoint union of components Ti that
satisfy Statements 1-3 of Theorem 4.6.2, as required. ⌅

Theorem 4.6.14. Let B be a bad red blob of �A 2 T . Then both of the following two state-
ments hold.

1. Suppose that B contains no edge of @(�A). Then all internal green faces F of �A satisfy
the following 3 statements (see Figure 4.15).

(i) SF = {B, x, y} = {B} [ BF .

(ii) B is edge-incident once with F .

(iii) Each element z 2 BF is either a red triangle that contains one boundary edge, or
a vertex with �G(z) = 3 and z 62 ! \ ⌧ .

Furthermore, each of ! and ⌧ contains a green edge.

2. Each internal green face of �A is edge-incident with B, no ⇢ 2 {!, ⌧} contains two
consecutive red edges, and either |⇢| � 2, or ⇢ contains a green edge.

Proof. Part 1. By Lemma 4.2.4 �A is island-free, and B is the only bad red blob of �A, hence
by Lemma 4.2.5 all red blobs of �A other than B are simply-connected. By definition of a bad
red blob there exist annular diagrams S and S0 such that �A \ B� = S [ S0 and S \ S0 = ;,
where ! ✓ S (say). By symmetry, it suffices to show that CArea(S) � (1, 0) (as then by
Axiom T6, ! contains a green edge), and that the theorem holds for all internal green faces of
S.

Since B contains no edge of @(�A), it follows that S contains an internal green face F

edge-incident with B, and note that B 2 SF \ BF . We first show that the theorem holds for
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F . By Lemma 4.6.12 we have �(B,�A) = �1/2. Suppose that B is edge-incident more than
once with F . By Axiom T6 we have �A(F ) = 0, hence SF = {B}. But by Part 3 of Lemma
4.3.4 we have |BF | � 1, a contradiction. Hence B is edge-incident once with F .

By Axiom T6, F has a consolidated edge e ✓ ! with |e| � 1. Let v and w be the endpoints
of e. By Part 1 of Lemma 4.3.4 there are x, y 2 BF that are curvature incident with F at v and
w respectively. Suppose first that x = y is a red blob. As �A is island-free, by Theorem 4.6.2
x is not complicated. Hence as S \ S0 = ;, x contains one boundary edge, so by Proposition
4.6.10 @(x) \ ! is a single consolidated edge f with |f | = 1. By Theorem 4.5.13 we have
@(F ) \ ! = e. Hence �G(v) = 2 = �G(w) and ! = ef . Therefore, we have BF = {x}, so
by Part 3 of Lemma 4.3.4 x is edge-incident exactly twice with F , and thus by Lemma 3.2.8
the theorem holds for F . Next assume that v = x = w is a vertex. Then x is incident more
than once with F , hence by Lemma 2.6.10 F satisfies the theorem. Finally, assume that x 6= y.
Then by Part 2 of Lemma 4.3.4 we have �(x, F,�A),�(y, F,�A)  �1/4, so apply Lemmas
2.6.10 and 3.2.8 to deduce that the theorem holds for F .

Therefore, all interior vertices v 2 @(F ) satisfy �G(v) = 2. So if |@(B) \ @(S)| = 1, then
the theorem holds for all internal green faces of S. Otherwise, there are two (not necessarily
distinct) internal green faces F1 and F2 incident with F , and F1 and F2 are edge-incident with
B. Since F1 and F2 are edge-incident with B, similarly as for F we deduce that the theorem
holds for F1 and F2. Hence by induction we can show that all internal green faces of S satisfy
the theorem. By symmetry the same holds for S0. So Part 1 holds.

Part 2. By Theorem 4.6.13 and Part 1 each internal green face of �A is edge-incident
with B. Let ⇢ 2 {!, ⌧}. Since each internal green face of �A contains a boundary edge and by
Lemma 3.2.4 all consolidated edges between any red blob and any green face of �A have length
at most one, by Theorem 4.6.13 and Part 1, ⇢ does not contain two consecutive red edges. By
Theorem 4.6.13 |⇢| � 2 if B contains a boundary edge, else by Part 1, ⇢ contains a green edge,
so we are done. ⌅

4.6.3 Thickness of complicated and bad red blobs

Throughout this whole subsection we label all edges of the boundary of a red blob B with
respect to the orientation from B, and we let P = hX� |VP |Ri be a valid pregroup presen-
tation (see Definition 2.6.14) for a group G. We shall show that if a diagram in T contains a
complicated or a bad red blob (see Definitions 4.1.1 and 4.6.1), then its boundary words are
conjugate in G by an element of X⇤ of length at most 2r + 1, where r = max{|R| : R 2 R}
(see Proposition 4.6.18).

Recall Definition 3.1.3 of a minimal coloured area of an annular and simply-connected
diagram. The next lemma holds only under valid pregroup presentations.

Lemma 4.6.15. Let � be a coloured van Kampen diagram over P with a simply-connected red
blob B. Suppose that both of the following statements hold.

(a) � has minimal coloured area.
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Figure 4.16: Retriangulation of � at v, see the proof of Lemma 4.6.17.

(b) All vertices of B lie on @(B).

Then all of the following statements hold.

1. No proper sub-word of any (cyclic) boundary word w of B is equal to 1 in U(P ), w is
cyclically �-reduced, and if a, b 2 X� and ab is a sub-word of w, then (a, b) 2 D(P ).

2. For each vertex v 2 @(B), there exists a retriangulation B1 of B with precisely one
triangle incident with v.

Proof. Since � has minimal coloured area and each vertex of B lies on @(B), the proof of
Lemma 3.2.7 shows that no proper sub-word of w is equal to 1 in U(P ); by Lemma 3.2.6 we
have |@(B)| � 3: so combining this with the previous statement we deduce that w is cyclically
�-reduced; and as P satisfies trivial-interleaving, by Lemma 2.5.13 we have (a, b) 2 D(P ).
Hence Part 1 follows.

For Part 2, if there is a single triangle of B incident with v, then take B1 = B. So assume
that there are at least two triangles of B incident with v. Let e and f be consecutive edges on
@(B), meeting at v, and labelled by a and b respectively. Since RSym succeeds on P , by
Proposition 2.6.12 � contains no loops, so the vertices of each red triangle of � are pairwise
distinct. Also, as � has minimal coloured area, by [34, Proposition 3.8] � is semi-�-reduced.
Therefore, as the edges of B incident with v other than e and f are all interior to B (since ef

is a sub-path of @(B)), by the proof of [34, Lemma 3.15] we can retriangulate B at v, without
changing its boundary and area, to reduce the number of triangles of B incident with v to two.
So let � be the sub-diagram of � equal to the union of the two triangles of B incident with v.
Then � has boundary word w := abcd. By Part 1 we have a 6= b� and (a, b) 2 D(P ). Now
w =U(P ) 1, and by Theorem 2.3.11 [ab] 6=U(P ) 1, so c 6= d�, and cd =P [ab]�. By Axiom P2
we have (b�, a�), (d�, c�) 2 D(P ), and hence we can retriangulate � at v (see Figure 4.16),
without changing its boundary and area, to reduce the number of triangles of B incident with
v to one, as required. ⌅

Recall Definition 3.1.1 of cutting an annular diagram �A open along a path p, resulting in
a simply-connected diagram �. From the definition it follows that an image of a bad red blob
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of �A is a simply-connected red blob of �; that if p passes through the interior of a simply-
connected red blob B ✓ �A, then the image of B are two simply-connected red blobs of �;
and that the labels of the images of all edges not lying on p do not change. If x 2 �A, then we
shall denote its image in � by x0 (we shall never work with more than one object in the image
of x). Recall Definition 2.5.14 of the 1-skeleton of a coloured diagram.

Lemma 4.6.16. Let �A be an annular diagram of minimal coloured area defined over a finite
pregroup presentation, with boundary words w1 and w2, and with a path p 2 �1A intersecting
both ! and ⌧ . Let � be the simply-connected diagram resulted by cutting �A open along p.
Then � has minimal coloured area.

Proof. Since p intersects both ! and ⌧ , it follows that p has label some ↵ 2 X⇤ such that �
has boundary word W↵ := ↵w2↵�w�

1 . Suppose that � does not have minimal coloured area.
Then there exists a coloured simply-connected diagram � with boundary word W↵ such that
CArea(�) < CArea(�). Let ⇡↵ and ⇡↵� be sub-paths of @(�) that make up ↵ and ↵�

respectively. Then it is possible to identify ⇡↵ with ⇡↵� to obtain a coloured annular diagram
�A with boundary words w1 and w2. But

CArea(�A) = CArea(�) < CArea(�) = CArea(�A),

a contradiction. ⌅

Lemma 4.6.17. Let �A be a green-rich coloured annular diagram over P , with boundary
words w1 and w2, and of minimal coloured area. Assume that the following statements hold.

(a) The boundaries of �A are simple closed paths.

(b) �A contains a red blob B satisfying one of the following statements.

(i) B is bad, so �A \B� decomposes as a disjoint union of annular diagrams S and S0.

(ii) B is simply-connected, B is contained in an island E of �A, B contains both end-
points of E, and E \ B� decomposes as an edge-disjoint union of two annular or
simply-connected diagrams S and S0 such that @(B) \ @(S) and @(B) \ @(S0) are
simple paths.

Then for each vertex v 2 @(B) \ @(S), there exists a retriangulation B1 of B with an internal
edge e such that v 2 @(e) and e \ @(S0) 6= ;.

Proof. First note that since �A is green-rich, all vertices of B lie on @(B). We claim that there
is an internal edge of B meeting both @(S) and @(S0). Suppose first that B is bad. Then since
�A is connected and S \ S0 = ;, there is such an edge.

Now assume that B is simply-connected. Let v1 be an endpoint of E. Since B contains both
endpoints of E and E\B� decomposes as S and S0, we have v1 2 @(B) and v1 2 @(S)\@(S0).
Since �A is green-rich and B is simply-connected, by Lemma 3.2.6 we have |@(B)| � 3, hence
either |@(S) \ @(B)| � 2 or |@(S0) \ @(B)| � 2. It follows that if v1 is incident with exactly
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one triangle T of B, then T contains an internal edge in B, as required. So suppose that v1 is
incident with at least two triangles of B. Then there is an internal edge e in B with endpoints
v1 and some vertex of @(S) [ @(S0). So as v1 2 @(S) \ @(S0), e meets both @(S) and @(S0).

Let v 2 @(B)\ @(S) be a vertex. By our claim there is a vertex of @(B)\ @(S) for which
B1 = B satisfies the lemma. The proof is by induction on the length n of a path in @(B)\@(S)
from v to such a v1. The base case is n = 0, so v = v1. Assume that the lemma holds for
n� 1, and that there is a vertex v1 of @(B) \ @(S) such that there is a path p ✓ @(B) \ @(S)
of length n between v and v1, and such that there is a retriangulation B1 of B with an internal
edge e such that v1 2 @(e) and e \ @(S0) 6= ;. Let�A be the diagram with B replaced by B1.
Since S and S0 are connected, there is a path r 2 �1

A meeting both boundaries of �A, such
that r \ B�

1 = e, and cutting �A open along r gives us a coloured simply-connected diagram
�. Let B0

1 ✓ � be the red blob in the image of B1 that contains p0. Let v01 be the image of v1
with v01 2 B0

1, let e0 be the image of e with e0 ✓ B0
1, and let f 0 ✓ p0 be an edge incident with

v01. If @(B)\@(S) is a loop, then v = v1, so we can assume that |@(B)\@(S)| � 2. Then note
that f is an edge incident with e, and since by Lemma 4.2.4 and Condition (ii) of the lemma
@(B) \ @(S) is a simple path, from r \ B�

1 = e we deduce that e0f 0 or f 0e0 is a sub-path of
@(B0

1).

Now�A has minimal coloured area, so by Lemma 4.6.16 � has also minimal coloured area;
and as all vertices of B lie on @(B), the same holds for B1 and B0

1. Thus, by Lemma 4.6.15 we
can without loss of generality assume that there is precisely one triangle of B0

1 incident with
v01. Hence as e0f 0 or f 0e0 is a sub-path of @(B0

1), the pre-image v2 of the endpoint of f 0 distinct
from v01 satisfies the lemma, and as f 0 ✓ p0, it follows that v2 is at distance at most n� 1 from
v in (@(B) \ @(S))1, so by induction the lemma holds. ⌅

We can now present the main result of this subsection. Recall that we label all edges of the
boundary of a red blob B with respect to the orientation from B.

Proposition 4.6.18. Let �A 2 T be defined over P , and of minimal coloured area. Assume
that �A contains a bad or complicated red blob B, and B is edge-incident with an internal
green face F with an edge on !.

Then there exists a retriangulation B1 of B in which there is an internal edge f incident
with a common edge e of F and B, where the labels y of f and x� of e satisfy both of the
following statements.

1. ef is a path, and x 6= y� and (x, y) 2 D(P ).

2. If the other endpoint of f is not on ⌧ , then there is an internal green face F1 with an
edge g ✓ @(B), such that fg is a path, the label z� of g satisfies (y, z) 2 D(P ), and no
sub-word of xyz is trivial in U(P ). Moreover, F1 has an edge on ⌧ .

In particular, there is a path between ! and ⌧ of length at most 2r + 1, where r = max{|R| :
R 2 R} is the length of the longest green relator.
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Proof. By Theorems 4.6.2, 4.6.13 and 4.6.14 @(B)\@(F ) is a single edge e (labelled x�, say),
and B satisfies Condition (b) of Lemma 4.6.17. Hence as by Axiom T1 the boundaries of �A
are simple closed paths, by Lemma 4.6.17 there exists a retriangulation B1 of B in which there
is an internal edge f incident with e such that ef is a path, and f meets the boundary of the
diagram of the decomposition of Y \ B� (for some Y 2 {�A, E}) that does not contain F .
Let �A be the diagram with B replaced by B1. Applying Theorems 4.6.2, 4.6.13 and 4.6.14
again shows that there is a path pef 2 �1

A, where p ✓ @(F ) and p \ ! 6= ;; and if f \ ⌧ = ;,
then there is a path p1 2 �1

A such that fp1 is a path, and p1 \ @(B) and p1 \ ⌧ are both single
vertices.

Suppose first that f \ ⌧ 6= ;. Cut �A open along pef to obtain a simply-connected
diagram �. Then there is a simply-connected red blob B0

1 ✓ � in the image of B1 that contains
e0. Hence let y be the label of f such that xy is a sub-word of a boundary word of B0

1. Since
�A is green-rich, all vertices of B1 lie on @(B1), and the same holds for B0

1. Also, as �A

has minimal coloured area, by Lemma 4.6.16 � has also minimal coloured area, so by Lemma
4.6.15 we have x 6= y� and (x, y) 2 D(P ), as required.

Now assume that f \⌧ = ;. Since p1\@(B) and p1\⌧ are both single vertices, there is an
internal green face F1 with edges g ✓ @(B) and h ✓ ⌧ , such that fg is a path; and cutting�A

open along pefp1 results in a simply-connected diagram �, where there is a red blob B0
1 ✓ �

in the image of B1 that contains e0 and g0. Then similarly as in the previous paragraph we can
show that � and B0

1 satisfy assumptions of Lemma 4.6.15, hence by Lemma 4.6.15 no proper
sub-word of any (cyclic) boundary word of B0

1 is equal to 1 in U(P ). Since e and g lie on
internal green faces, we have |@(B0

1)| � 4. So letting y and z� be the labels of f and g such
that xyz is a sub-word of a boundary word of B0

1, we have that no sub-word of xyz is trivial in
U(P ). The proposition follows. ⌅
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Thickness of diagrams in T

5.1 Results and key definitions

Recall Definitions 4.6.1 and 4.6.8 of what it means for a red blob to be complicated, or highly
hyperbolic. Recall also Definitions 4.3.2 and 4.3.4 of the curvature neighbourhoods SF and
BF of an internal green face. Our main goal in this chapter is to prove the following theorem.
Throughout this chapter we will prove results about boundaries that are symmetric in ! and ⌧ ,
so we let {⇢, ⇢0} = {!, ⌧}.

Theorem 5.1.1. Let F be an internal green face of �A 2 T with an edge on ⇢, and suppose
that all red blobs of �A are simply-connected, and none of them are complicated. Then at least
one of the following statements holds.

1. @(F ) \ ⇢0 6= ;.

2. F is edge-incident with a red blob B with an edge on ⇢0. Moreover, either B is highly
hyperbolic and |@(B)|  6, or B contains precisely one boundary edge and |@(B)|  5.

3. There is an internal green face F 0 with @(F 0)\@(F ) 6= ;, with an edge on ⇢0, and either
F 0 and F are edge-incident, or SF 0 \ SF contains a red blob B with no boundary edge
and |@(B)|  4.

Throughout this chapter we shall study faces that satisfy the following two definitions.

Definition 5.1.2. Let �A 2 T . We say that a face F of �A is thin with respect to ⇢ if F is an
internal green face, F has an edge on ⇢, and both of the following conditions hold:

(a) @(F ) \ ⇢0 = ;.

(b) F is not edge-incident with any red blob that has an edge on ⇢0.

We say that F is thin if F is thin with respect to some ⇢ 2 {!, ⌧}.
If F is a thin face with respect to ⇢, then a a boundary link of F is an internal green face

F 0 with @(F 0) \ @(F ) 6= ; and @(F 0) \ ⇢0 6= ;.

91
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Definition 5.1.3. Let �A 2 T . We say that an internal green face F is pre-neighbourly with
respect to ⇢ if F is thin with respect to ⇢, no element of SF is curvature incident more than
once with F , and each vertex of BF has green degree 3.

We say that F is neighbourly with respect to ⇢ if F is thin with respect to ⇢, and F has no
boundary links.

We say that F is (pre-)neighbourly if F is (pre-)neighbourly with respect to some ⇢ 2
{!, ⌧}.

The chapter is structured as follows. In Section 5.2 we prove some auxiliary results about
faces F curvature incident more than once with some element of SF . Suppose that all red blobs
of �A 2 T are simply-connected, and that none of them are complicated. In Section 5.3 we
describe curvature neighbourhoods of neighbourly and pre-neighbourly faces of �A, and prove
that all neighbourly faces of �A are pre-neighbourly. In Section 5.4 we prove that �A has no
neighbourly faces. In Section 5.5 we prove Theorem 5.1.1. Finally, we apply Theorem 5.1.1 to
prove the Three Face Theorem in Section 5.6.

5.2 Faces which are curvature incident more than once with a blob
or vertex

In this section we collect several preliminary results that we shall use throughout this chapter.

Lemma 5.2.1. Let F be an internal green face of �A 2 T . Then the following statements hold.

1. Suppose that F is incident more than once with a vertex v. By Lemma 4.2.3 �A \ (F )�

decomposes as an edge-disjoint union of annular diagrams �1 and �2. Assume further
that for some i 2 {1, 2}, the only face in �i incident with v is a red blob B. Then B is
edge-incident twice with F .

2. Suppose that F satisfies at least one of the following two conditions.

(i) F is edge-incident with itself.

(ii) @(F )\@(B) contains two edges that are consecutive on @(B) for some blob B, or
F is incident more than once with a vertex of green degree 3.

Then F is curvature incident more than once with at least two elements of SF .

Proof. For Part 1, by Proposition 4.2.8 B is edge-incident at most twice with F . So suppose
for a contradiction that B is edge-incident once with F . Then as all faces of �i incident with
v are contained in B, the common edge of F and B is an interior loop labelled by a V �-letter,
contradicting Axiom T5. Hence Part 1 follows.

For Part 2, assume first that F is a edge-incident with itself. Then by Lemma 4.2.3 there
is a consolidated edge f ✓ @(F ) with distinct endpoints v1 and v2 that are incident twice with
F . Now for 1  i  2, either vi 2 SF , or �G(vi) = 2, and by Part 1 there is a red blob incident
with vi and edge-incident twice with F , so we are done.
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Figure 5.1: The face F1 with SF1 = SF , see the proof of Lemma 5.2.3.

Now assume that F is not edge-incident with itself. By Part 1 if F is incident more than
once with a vertex of green degree 3, then Part 2 holds. So assume that @(F ) \ @(B) contains
two edges that are consecutive on @(B) for some blob B. Then by Lemma 4.2.6 F is incident
more than once with some vertex v 2 @(B). Hence if �G(v) � 3, then the lemma holds, so
assume �G(v) = 2. Then by Part 1 there is a red blob B1 6= B edge-incident twice F . ⌅

Lemma 5.2.2. Suppose that F is an internal green face of �A 2 T that is curvature incident
more than once with some x 2 SF \BF , and no element of BF is curvature incident more than
once with F . Then |BF | = 2.

Proof. Since no element of BF is curvature incident more than once with F , Part 3 of Lemma
4.3.4 shows that |BF | � 2. By Axiom T6 we have �A(F ) = 0. Hence as by Part 2 of
Lemma 4.3.4 each y 2 BF has �(y, F,�A)  �1/4, and by Lemmas 2.6.10 and 3.2.8 we have
�(x, F,�)  �1/3, it follows that |BF |  2. ⌅

Lemma 5.2.3. Let �A 2 T . Suppose that all red blobs of �A are simply-connected, and that
�A contains an internal green face F edge-incident more than once with some red blob. Then
there is at least one element of BF curvature incident exactly twice with F .

Proof. Let B be the blob from the statement. By Axiom T6, F has a boundary (consolidated)
edge l on ⇢ 2 {!, ⌧} with |l| � 1. By Proposition 4.2.8 �A is island-free: so by Theorem
4.5.13 we have @(F )\⇢ = l; and every element of SF is curvature incident at most twice with
F . Hence suppose for a contradiction that all elements of SF that are curvature incident twice
with F are in SF \ BF , so in particular B 2 SF \ BF . Then Part 4 of Lemma 4.3.4 implies
�(B,F,�A) � �1/2, and Lemma 3.2.8 gives Area(B)  2.

By Proposition 4.2.8 �A \ (F [B)� decomposes as an edge-disjoint union of two annular
diagrams. Let �1 be the diagram that contains ⇢, and let � = �1 [ F [ B. By Lemma 5.2.2
we can let BF = {x, y}, and let e and f be the common edges of B and F . Assume first that
Area(B) = 2. Then by Lemmas 3.2.6 and 3.2.8 we have |@(B)| = 4 and �(B,F,�A) 
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Figure 5.2: The face F1 with SF1 ✓ {v, x, y}, see the proof of Lemma 5.2.4.

�1/2. Since �A(F ) = 0, by Lemmas 2.6.10 and 3.2.8 we have

SF = {x, y,B},

B contains no boundary edge, and each z 2 {x, y} is either a red triangle with one boundary
edge, or a vertex of green degree 3. In particular, by Part 1 of Lemma 4.3.4 z lies on or is
incident with l. Suppose first that e and f are not consecutive edges on @(B), and let g be an
edge of @(B) with g ✓ �� distinct from e and f . Note that g is unique since |@(B)| = 4.
Let F1 be the green face that shares g with B. We have F1 ✓ �1, so by Axiom T6, F1 has a
consolidated edge l1 on ⇢ with |l1| � 1. By Theorem 4.5.13 we have @(F1) \ ⇢ = l1. Hence
as each z 2 {x, y} is either a red triangle, or a vertex with �G(z) = 3, we have SF1 = SF (see
Figure 5.1). But B is edge-incident only once with F1, so

�A(F1) = 1� 1/4� 1/4� 1/4 = 1/4 < 0,

a contradiction.
Hence e and f are consecutive on @(B). Then by Lemma 5.2.1 F is curvature incident more

than once with at least two elements of SF , contradicting SF = {x, y,B}. This concludes the
argument when Area(B) = 2.

Suppose that B is a red triangle. Then e and f are consecutive on @(B), so by Lemma
5.2.1 F is curvature incident more than once with at least two elements of SF \ BF . But these
give F curvature of at most �1/3� 1/3 = �2/3, contradicting Part 4 of Lemma 4.3.4. ⌅

Lemma 5.2.4. Let �A 2 T . Suppose that all red blobs of �A are simply-connected, and that
�A contains an internal green face F curvature incident more than once with some element of
SF . Then at least one element of BF is curvature incident exactly twice with F .

Proof. By Axiom T6, F has a boundary (consolidated) edge l on ⇢ 2 {!, ⌧} with |l| � 1.
Now �A 2 T \ U , so if �A contains an island E, then by Proposition 4.5.1 E = �A and
some green face contained in E is incident with both of its endpoints, hence by Lemma 4.5.2
the lemma holds. So we may assume that �A is island-free. Hence by Theorem 4.5.13 we
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Figure 5.3: K bounded by the path p1p2, see the proof of Lemma 5.2.6.

have @(F ) \ ⇢ = l. By Proposition 4.2.8 every element of SF is curvature incident at most
twice with F , so suppose for a contradiction that no element of BF is curvature incident twice
with F . Then by Lemma 5.2.3 no red blob is edge-incident twice with F . So our assumption
and Part 4 of Lemma 4.3.4 imply that there is an interior vertex v incident twice with F and
with �(v, F,�A) � �1/2, so by Lemma 2.6.10 �G(v)  4. By Lemma 5.2.2 we can let
BF = {x, y}.

By Lemma 4.2.3 �A\(F )� decomposes as an edge-disjoint union of two annular diagrams,
so let �1 be the one with ⇢ ✓ �1, and let � = �1 [ F . Suppose that �G(v) = 2. Then by
Lemma 5.2.1 there is a red blob edge-incident twice with F , contradicting the last paragraph.
So �G(v) 2 {3, 4}.

Assume next that �G(v) = 4. Then �(v, F,�A) = �1/2. Since �A(F ) = 0, by Lemmas
2.6.10 and 3.2.8 we have SF = {v, x, y}, and each z 2 {x, y} is either a red triangle or a vertex
of green degree 3. Suppose that v is the only vertex incident twice with F . Since �G(v) = 4,
there is an internal green face F1 ✓ �1 incident with v. As each z 2 {x, y} is either a red
triangle or a vertex of green degree 3, we deduce that SF1 ◆ {v, x, y} (see Figure 5.2). By
Theorem 4.5.13 @(F1) \ ⇢ is a single consolidated edge, hence SF1 = {v, x, y}. But v is
incident only once with F1, so

�A(F1) = 1� 1/4� 1/4� 1/4 = 1/4 > 0,

a contradiction.
Assume instead that there exists a vertex v1 6= v incident twice with F . By Lemma 4.2.3

F is edge-incident with itself. Hence by Lemma 5.2.1 F is curvature incident more than once
with at least two elements of SF , contradicting SF = {v, x, y}.

Finally, suppose that �G(v) = 3. Then by Lemma 5.2.1 F is curvature incident more than
once with at least two elements of SF \ BF , which give F curvature of at most �1/3� 1/3 =

�2/3, contradicting Part 4 of Lemma 4.3.4. ⌅

Recall that if we say that a closed path p is of the form p1p2 . . . pn, then p is a sequence of
simple sub-paths pi. Recall also Definition 2.5.14 of the 1-skeleton of a coloured diagram.

In the statement of the next lemma we allow tracing boundaries of faces in both directions.
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Figure 5.4: Depiction of a case where @(F )\ ⇢ is not a single consolidated edge, see the proof
of Lemma 5.2.6.

Lemma 5.2.5. Let �A 2 T . Suppose that all red blobs of �A are simply-connected, that none
of them are complicated, and that �A contains an internal green face F and a red blob B 2 SF

satisfying all of the following conditions.

1. F contains a consolidated edge l ✓ ⇢ 2 {!, ⌧}, and B contains at most two boundary
edges.

2. �A \ (F [B)� contains a simply-connected sub-diagram K with CArea(K) � (1, 0),
that is bounded by a closed path p 2 �1A of the form p1p2p3, where p1 is a sub-path of
@(F ) with |p1| � 1, p2 is a sub-path of @(B) with |p2| � 1, and p3 is a sub-path of ⇢
such that p1\p3\ l contains an endpoint of l (see Figure 5.5 with p1, p2 and p3 replaced
by r1, r2 and p2 respectively).

3. @(B) \ ⇢ contains an edge g such that p2g is a sub-path of @(B), and @(F ) \ @(B)

contains an edge e such that p1e is a sub-path of @(F ) and ep2 is a sub-path of @(B).

Then B contains two boundary edges.

Proof. Let v be an endpoint of l with v 2 p1 \ p3 \ l. Since K is simply-connected and
CArea(K) � (1, 0), by Axiom T6 we have |p3| � 1. Hence as g ✓ ⇢, the common endpoint
of g and p2 does not lie on !\⌧ ; and if there is no red blob in BF \K edge-incident with F at v,
then v is incident with some internal green face of K, and �G(v) � 3. In particular, there is an
x 2 BF \K curvature incident with F at v. We first show that F,B, x are a neighbourhood of
⇢ (see Definition 4.5.10). Suppose first that x = v. Then K satisfies all assumptions of Lemma
4.5.12, hence by Lemma 4.5.12 F,B, v are a neighbourhood of ⇢, and K is a sub-diagram
bounded by F,B, v and ⇢.

Now suppose that x is a red blob B1. Since B1 2 K, we deduce that B1 is not highly
hyperbolic. Hence as B1 is not complicated, B1 contains at most one boundary edge, so by
Proposition 4.6.10 @(B1) \ ⇢ is a single edge g1. Furthermore, since K is simply-connected
and p1 = @(K) \ @(F ) is a sub-path of @(F ), by Lemma 4.5.8 @(B1) \ @(F ) is a single edge
e1. Let

K1 := K \B1.
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Note that K1 is simply-connected, and CArea(K) � (1, 0) implies that CArea(K1) �
(1, 0). So as by Axiom T6 each internal green face contains a boundary edge and @(B1) \ ⇢
and @(B1) \ @(F ) are single edges, it follows that K1 is bounded by a closed path p0 2 �1A
of the form r1r2p2r3, where r1 is a sub-path of @(B1) with |r1| � 1, r2 is a sub-path of p1
such that if |r2| < 1, then F is incident precisely once with r2, and r3 is a sub-path of p3 with
|r3| � 1. Furthermore, g1r1 and r1e1 are sub-paths of @(B1), e1r2 and r2e are sub-paths of
@(F ), and the common endpoint of g1 and r1 does not lie on ! \ ⌧ , since g1 ✓ ⇢ and |r3| � 1.
So we can apply Lemma 4.5.12 to deduce that F,B,B1 are a neighbourhood of ⇢, and that K1

is a sub-diagram bounded by F,B,B1 and ⇢.
Since the sub-diagram L bounded by F,B, x and ⇢ is simply-connected, by Axiom T6 and

Theorem 4.5.13 @(D) \ ⇢ is a single consolidated edge for all green faces D ✓ L. Thus, by
Lemma 4.5.11 B contains two boundary edges. ⌅

Lemma 5.2.6. Let F be an internal green face of �A. Assume that the following statements
hold.

1. All red blobs of �A are simply-connected, and none of them are complicated.

2. There is a red blob B 2 BF edge-incident exactly twice with F , and with one boundary
edge.

Let g ✓ ⇢ be the boundary edge of B. Then ⇢ = g [ l, where l is a single consolidated edge of
F .

Proof. Since B contains one boundary edge and B 2 BF , we have @(F ) \ ⇢ 6= ;. Hence by
Theorem 4.5.13 @(F ) \ ⇢ is a single consolidated edge l. By Proposition 4.2.8 �A is island-
free, and �A \ (F [B)� decomposes as an edge-disjoint union of two annular diagrams whose
boundaries are simple closed paths. Let � be the one with ⇢ ✓ �. Suppose for a contradiction
that ⇢ 6= g [ l. Since g ✓ ⇢ and the boundaries of � are simple, � is a union of islands and
bridges (see Definition 2.5.10). Hence by assumption on ⇢ it follows that Area(�) > 0, so
� contains a simply-connected sub-diagram K bounded by a closed path p 2 �1A of the form
p1p2, where p1 ✓ @(F ) [ @(B) and |p1| � 1, and p2 is a sub-path of ⇢ such that p1 \ p2 \ l

contains an endpoint of l (see Figure 5.3).
As B contains at most one boundary edge, by Proposition 4.6.10 @(B) \ ⇢ = g, and

@(B) \ ⇢ is a sub-path of @(B). Hence |p1 \ @(F )| � 1. Also, if |p1 \ @(B)| < 1 (see Figure
5.4), then @(F ) \ ⇢ 6= l, a contradiction. So write p1 = r1r2, where r1 is a sub-path of @(F )

with |r1| � 1, and r2 is a sub-path of @(B) with |r2| � 1.
By Proposition 4.2.8 R2 \(F [B) contains at most one bounded component, hence @(F )\

@(B) contains an edge e such that r1e is a sub-path of @(F ) and er2 is a sub-path of @(B) (see
Figure 5.5). Since |r2| � 1 and K is simply-connected, we have CArea(K) � (1, 0). Also,
as @(B)\⇢ = g and @(B)\⇢ is a sub-path of @(B), we deduce that r2g is a sub-path of @(B).
So by Lemma 5.2.5 B contains two boundary edges, a contradiction. ⌅
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Figure 5.5: K bounded by the path r1r2p2, see the proof of Lemma 5.2.6.

5.3 Neighbourly and pre-neighbourly faces

We will prove Theorem 5.1.1 by describing curvature neighbourhoods of a pre-neighbourly
face (see Definition 5.1.3). Let us therefore dedicate this section to their analysis: our main
result is Theorem 5.3.8. Recall Definition 2.6.8 that �(x,�) is the curvature that x gives to a
single internal green face across each curvature incidence.

Lemma 5.3.1. Let �A 2 T contain a thin face F with respect to ⇢. Then the following
statements hold.

1. @(F ) \ @(�A) is a single consolidated edge l with |l| � 1, and F is not incident with
any vertex of ⇢ \ ⇢0.

2. If F is curvature incident more than once with some element of SF , then �A is island-
free.

3. If all red blobs of �A are simply-connected and none of them are complicated, then each
red blob B of SF contains at most one boundary edge; if B contains an edge g on
⇢1 2 {!, ⌧}, then @(B) \ ⇢1 = g and @(B) \ ⇢1 is a sub-path of @(B); and all x 2 SF

satisfy �(x,�A) > �1/2.

Proof. Part 1. Follows immediately from Theorem 4.5.13 and definition of a thin face (see
5.1.2).

Part 2. Suppose for a contradiction that �A contains an island E. Then by Proposition 4.5.1
�A = E, and E contains a green face incident with both of its endpoints. But then by Lemma
4.5.2 F is incident with an endpoint of E, so F is not thin, a contradiction.

Part 3. Assume that B 2 SF is a red blob. Since F is thin, B is not highly hyperbolic.
Hence as B is not complicated, B contains at most one boundary edge; and if B contains an
edge on ⇢1 2 {!, ⌧}, then by Proposition 4.6.10 @(B)\ ⇢1 is a single edge. The last statement
follows by Lemmas 3.1.9 and 4.6.9. ⌅
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Lemma 5.3.2. Let �A 2 T contain a thin face F with respect to ⇢. Suppose that all red
blobs of �A are simply-connected, that none of them are complicated, and that BF contains an
element x curvature incident more than once with F .

Then for some consolidated edge l of F we have ⇢ = l if x is a vertex, else ⇢ = l[g, where
g is a boundary edge of x. In particular, F is the only internal green face with an edge on ⇢.

Proof. By Lemma 5.3.1 @(F ) \ @(�A) = @(F ) \ ⇢ is a single consolidated edge l. Assume
first that x is a vertex v. Then v is an endpoint of l, so by Lemma 4.5.16 ⇢ = l. Now assume
that x is a red blob B. By Proposition 4.2.8 B is edge-incident exactly twice with F , and
by Lemma 5.3.1 B contains at most one boundary edge. So the lemma follows from Lemma
5.2.6. ⌅

Lemma 5.3.3. Let F be a neighbourly face of �A 2 T , and suppose that all red blobs of �A
are simply-connected, and that none of them are complicated. Then F is pre-neighbourly.

Proof. We first show that no element of BF is curvature incident more than once with F .
Suppose a contradiction that there is such an x 2 BF . Since F is thin, by Lemma 5.3.1 �A
is island-free. Now F has an edge on ⇢ 2 {!, ⌧}, and by Lemma 5.3.2 F is the only internal
green face with an edge on ⇢, so as F is neighbourly, F is not incident with any other internal
green face.

Assume that x is a vertex. Then by Lemma 4.2.3 �A \ (F )� decomposes as an edge-
disjoint union of two annular diagrams. Hence since �A is island-free and F is not incident
with any other internal green face, it follows that F is edge-incident with an annular red blob,
a contradiction.

Now suppose that x is a red blob B. By Proposition 4.2.8 �A \ (F [ B)� decomposes as
an edge-disjoint union of two annular diagrams. Hence as @(F ) \ ⇢0 = ;, F is incident with
an internal green face F 0 6= F , a contradiction.

Thus, no element of BF is curvature incident more than once with F , so by Lemma 5.2.4
no element of SF is curvature incident more than once with F . Now if v is a vertex in BF , then
as F is neighbourly, Corollary 4.5.17 shows that �G(v) = 3. ⌅

Lemma 5.3.4. Let F be a pre-neighbourly face of �A 2 T , and suppose that all red blobs of
�A are simply-connected, and that none of them are complicated. Then |BF | = 2; |SF | � 3;
and no red blob of SF \ BF contains a boundary edge.

Proof. Since F is thin, by Lemma 5.3.1 @(F ) \ @(�A) is a single consolidated edge l ✓ ⇢ 2
{!, ⌧} with endpoints v, w 62 ⇢0. As by assumption no element of SF is curvature incident
more than once with F , we have that @(F ) does not pass more than once through any vertex.
Hence as @(F ) \ @(�A) ✓ ⇢ \ ⇢0, we have |BF |  2. Furthermore, by Part 3 of Lemma 4.3.4
we have |BF | � 2, so |BF | = 2. By Lemma 5.3.1 �(x, F,�A) > �1/2 for all x 2 SF , and by
Axiom T6 we have �A(F ) = 0, hence |SF | � 3.

To prove the last statement, suppose for a contradiction that there is such a blob B. By
Lemma 5.3.1 B contains precisely one boundary edge, and @(B) \ ⇢ is a single edge g. By
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Figure 5.6: A case where @(B) passes more than once through some vertex, see the proof of
Lemma 5.3.4.

Lemma 4.2.3 @(B) does not pass more than twice through any vertex, and it passes more than
once through at most one vertex. Suppose first that such a vertex w exists. Then by Lemma
4.2.5 �A \ B� decomposes as an edge-disjoint union of two annular diagrams �1 and �2 with
F ✓ �1 (say), and the boundaries of �1 are simple closed paths. Since @(B) \ ⇢ = g, �1
is a union of islands and bridges (see Definition 2.5.10), so as @(F ) does not pass more than
once through any vertex; @(B) \ ⇢ is a single edge; and @(F ) \ @(�A) = l, we deduce that
�A \ (F [ B) contains two components C such that C is a simply-connected sub-diagram
of �A bounded by a closed path p 2 �1A (see Definition 2.5.14) of the form p1p2p3, where
p1 is a sub-path of @(F ) with |p1| � 1, p2 ✓ @(B) and |p2| � 1, and p3 is a sub-path of
⇢ such that p1 \ p3 \ l contains an endpoint of l (see Figure 5.6). Now the closure of one
of these components C does not contain w, hence for this C the path p2 is in fact a sub-path
of @(B). Moreover, since by Proposition 4.2.8 R2 \ (F [ B) contains at most one bounded
component, it follows that @(F )\ @(B) contains an edge e such that p1e is a sub-path of @(F )

and ep2 is a sub-path of @(B); and as @(B) \ ⇢ is just g, p2g is a sub-path of @(B). The
simply-connectedness of C and |p2| � 1 imply that CArea(C) � (1, 0), so by Lemma 5.2.5
B contains two boundary edges, a contradiction.

Now suppose that B does not pass more than once through any vertex. Then @(B) is a
simple closed path, hence as R2 \ (F [ B) contains at most one bounded component (and
if it exists, then by Proposition 4.2.8 it contains the external face with boundary ⌧ ), we have
that �A \ (F [ B) contains a component C such that C is a simply-connected sub-diagram
of �A bounded by a closed path p 2 �1A of the form p1p2p3, where p1 and p3 have the same
properties as before, p2 is a sub-path of @(B) with |p2| � 1, p2g is a sub-path of @(B), and
@(F ) \ @(B) contains an edge e such that p1e is a sub-path of @(F ) and ep2 is a sub-path of
@(B) (see Figure 5.7). So Lemma 5.2.5 gives us a contradiction again. ⌅

Lemma 5.3.5. Let F be a pre-neighbourly face of �A 2 T . Suppose that all red blobs of �A
are simply-connected, that none of them are complicated, and that BF contains a red blob B
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Figure 5.7: A case where @(B) is a simple closed path, see the proof of Lemma 5.3.4.

with Area(B) � 2. Then @(B) does not pass more than once through any vertex, Area(B) =

2, and there is an internal green face F1 with the following properties.

1. There are edges e ✓ @(F ) and f ✓ @(F1) such that ef or fe is a sub-path of @(B).

2. B 62 BF1 .

Proof. Since F is thin, by Lemma 5.3.1 @(F ) \ @(�A) is a single consolidated edge l ✓ ⇢ 2
{!, ⌧} with |l| � 1. Suppose for a contradiction that @(B) passes more than once through
some vertex v. By Lemma 4.2.3 v is unique and @(B) passes through v twice, and by Lemma
4.2.5 �A \ B� decomposes as an edge-disjoint union of annular diagrams �1 and �2, with
F ✓ �1 (say). By Lemma 5.3.1 B contains one boundary edge and @(B) \ ⇢ is a single edge
h. Since B 2 BF , @(B) \ @(F ) contains an edge e such that eh or he is a sub-path of @(B)

(without loss of generality assume that it is eh), and as F is pre-neighbourly, e is the only edge
of @(B) \ @(F ). By Lemma 3.2.6 we have |@(B)| � 4.

Suppose that |@(B)| = 4. By Lemma 5.3.4 we have SF \ BF 6= ;. Hence there is an edge
g ✓ @(B)\@(�1) with g 62 {e, h}. Since |@(B)| = 4 and |@(B)\@(�2)| 6= 0, we deduce that
@(B) \ @(�2) is a single edge g1; and as F is thin, g1 6✓ ⇢0. So g1 is an interior loop labelled
by a V �-letter, contradicting Axiom T5.

Hence |@(B)| � 5, so Area(B) � 3. Suppose that v 2 @(F ). There is an internal green
face F 0 ✓ �2 such that @(F 0)\ @(B) contains an edge with endpoint v (see Figure 5.8). Since
F 0 ✓ �2, by Axiom T6, F 0 has an edge on ⇢0, so by Theorem 4.5.13 we have @(F 0) \ ⇢0 = l0,
where l0 is a consolidated edge of F 0 with |l0| � 1. As |@(B)\@(F )| = 1 and SF \BF 6= ;, we
have �G(v) � 3. Now by Corollary 4.5.15 there are elements in BF 0 that lie on or are incident
with l0 that collectively give F 0 curvature of at most �1/2; and as v 62 ⇢0 and B has no edge
on ⇢0, none of these elements are v or B. Hence by Lemmas 2.6.10 and 3.2.8 we have

�A(F
0)  1 + �(B,F 0,�A) + �(v, F 0,�A)� 1/2

 1� 3/8� 1/6� 1/2 = �1/24,
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contradicting Axiom T6.
Hence v 62 @(F ). Since |@(B) \ @(F )| = 1 and SF \ BF 6= ;, by our choice that eh

is a sub-path of @(B), we deduce that there is an internal green face F 0 ✓ �1 and an edge
f ✓ @(F 0) \ @(B) such that fe is a sub-path of @(B). Suppose that B 62 BF 0 . Since fe is a
sub-path of @(B) and SF \ BF 6= ;, there is an x 2 SF 0 \ (SF \ BF ). By Lemma 5.3.4 we
have x 62 BF 0 . Hence as B 62 BF 0 and

�(B,F 0,�A) + �(x, F 0,�A)  �3/8� 1/6 = �13/24 < �1/2,

B and x contradict Part 4 of Lemma 4.3.4.
So B 2 BF 0 . As F 0 ✓ �1, it follows that F 0 cannot have any edge on ⇢0, hence by Axiom

T6, F 0 has an edge on ⇢, and by Theorem 4.5.13 @(F 0) \ ⇢ is a single consolidated edge l0.
Assume first that F 0 is edge-incident once with B. Then as fe is a sub-path of @(B) and
B 2 BF 0 , it follows that hf is a sub-path of @(B). So since eh is a sub-path of @(B), we have
@(B) \ @(�1) = ehf , and ehf is a sub-path of @(B) (see Figure 5.9). But then @(B) cannot
pass through v more than once, a contradiction. So by Proposition 4.2.8 F 0 is edge-incident
exactly twice with B. But then since B contains one boundary edge, Lemma 5.2.6 implies
⇢ = h [ l0, contradicting @(F ) \ @(�A) = l.

Hence the first statement of the lemma holds, so @(B) is a simple closed path. Applying
SF \BF 6= ; again shows that there is an internal green face F1 and an edge f ✓ @(F1)\@(B)

such that ef or fe is a sub-path of @(B). Assume for a contradiction that B 2 BF1 . Since
|@(B)| � 4 and B contains one boundary edge, we have |@(B) \ @(�A)| � 3. Therefore, as
ef or fe is a sub-path of @(B), by Proposition 4.2.8 B is edge-incident exactly twice with F1.
Hence as B contains one boundary edge, Lemma 5.2.6 gives us a contradiction. So B 62 BF1 .
As ef or fe is a sub-path of @(B), there is an x 2 SF1 \ (SF \ BF ), and by Lemma 5.3.4 we
have x 62 BF1 . Hence applying Part 4 of Lemma 4.3.4 to F1, B, x shows that Area(B) = 2.
The lemma follows. ⌅

Lemma 5.3.6. Let �A 2 T . Suppose that all red blobs of �A are simply-connected, that none
of them are complicated, and that �A contains green faces F and F1 satisfying both of the
following conditions.

1. F is pre-neighbourly with respect to ⇢.

2. (SF \ BF ) \ SF1 = {x, y} has size two, and x and y are curvature incident precisely
once with F1 and satisfy �(x, F1,�A) + �(y, F1,�A) = �1/2.

Then |BF1 | = 2, and each element of BF1 is curvature incident once with F1, and is either a
red triangle containing one boundary edge, or a boundary vertex of green degree 3 that is not
on ⇢ \ ⇢0.

Proof. By Lemma 5.3.4 we have x, y 62 BF1 . Hence as by Axiom T6 we have �A(F1) = 0,
by Part 2 of Lemma 4.3.4 we have |BF1 |  2. So assume for a contradiction that |BF1 | = 1,
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Figure 5.8: A case where F 0 ✓ �2: the red curves are the boundaries of �1, and the blue curve
is the inner boundary of �2, see the proof of Lemma 5.3.5.

Figure 5.9: A case where F 0 ✓ �1 and B is edge-incident once with F 0: the red curve depicts
the path ehf , see the proof of Lemma 5.3.5.
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and let BF1 = {z}. Then by Part 3 of Lemma 4.3.4 z is curvature incident exactly twice with
F1. Hence SF1 = {x, y, z} and �(z, F1,�A) = �1/2, and z is either a red triangle or a vertex
of green degree 3. Therefore, F1 satisfies Condition (ii) of Lemma 5.2.1, so F1 is curvature
incident more than once with at least two elements of SF1 , contradicting SF1 = {x, y, z}.

Hence |BF1 | = 2, so by Part 2 of Lemma 4.3.4 each z 2 BF1 has �(z, F1,�A) = �1/4,
and thus the lemma follows from Lemmas 2.6.10 and 3.2.8. ⌅

The next lemma characterizes red blobs in the boundary curvature neighbourhood of a
pre-neighbourly face.

Lemma 5.3.7. Let �A 2 T . Suppose that all red blobs of �A are simply-connected, that none
of them are complicated, and that �A contains a pre-neighbourly face F such that BF contains
a red blob B. Then B is a red triangle.

Proof. Assume for a contradiction that Area(B) � 2. By Lemma 5.3.1 B contains one
boundary edge, on ⇢ say. By Lemma 5.3.5 @(B) does not pass more than once through any
vertex; Area(B) = 2; and there exists an internal green face F1 such that B 62 BF1 , and there
are edges e ✓ @(F ) and f ✓ @(F1) such that ef or fe is a sub-path of @(B): hence there is an
x 2 SF1 \ (SF \ BF ). By Lemmas 3.2.8 and 5.3.4 we have �(B,�A) = �1/3 and x 62 BF1 ,
hence applying Part 4 of Lemma 4.3.4 shows that B and x are curvature incident once with F1,
and that x is a red triangle or a vertex of green degree 3. So �(B,F1,�A) + �(x, F1,�A) =

�1/2, and hence by Lemma 5.3.6 |BF1 | = 2, and each element of BF1 is either a red triangle
containing one boundary edge, or a boundary vertex of green degree 3 that is not on ⇢ \ ⇢0. In
particular, SF1 = BF1 [ {B, x}. By Lemma 3.2.6 |@(B)| = 4, hence |@(B) \ @(�A)| = 3. So
as B is curvature incident once with F1 and ef or fe is a sub-path of @(B), there is an internal
green face F2 62 {F, F1} edge-incident with B, and B 2 BF2 . In particular, @(F2) \ ⇢ 6= ;, so
by Theorem 4.5.13 @(F2) \ ⇢ is a single consolidated edge l. Now as each element of BF1 is
either a red triangle containing one boundary edge, or a vertex of green degree 3 that is not on
⇢ \ ⇢0, there is a y 2 BF1 \ BF2 . Suppose that F1 has an edge on ⇢. Then from @(F2) \ ⇢ = l

we have SF2 = {B, y}. Hence �A(F2) = 1 � 1/3 � 1/4 = 5/12 > 0, contradicting Axiom
T6.

So F1 has an edge on ⇢0. Since y 2 BF1 \BF2 , we have @(F2)\⇢0 6= ;, hence by Theorem
4.5.13 @(F2) \ ⇢ is a single consolidated edge l0. From Part 1 of Lemma 4.3.4 we therefore
deduce that at least one of the following cases holds.

(i) BF2 contains a vertex on ⇢ \ ⇢0.

(ii) |BF2 \ {B, y})| � 2.

(iii) BF2 contains a highly hyperbolic red blob.

But since SF2 ◆ {B, y}, by Lemmas 2.6.10 and 3.2.8 in all Cases (i)-(iii) we have

�A(F2)  1� 1/3� 1/4� 1/2 = �1/12 < 0,

a contradiction. ⌅
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Figure 5.10: Depiction of ceiling neighbours, see Definition 5.4.1.

We are now ready prove the main result of this section.

Theorem 5.3.8. Let �A 2 T . Suppose that all red blobs of �A are simply-connected, that
none of them are complicated, and that �A contains a pre-neighbourly face F . Then |BF | =
2, no x 2 BF is a red blob with Area(x) � 2, and no red blob of SF \ BF contains a
boundary edge. Furthermore, the multiset of curvature values of SF \BF is {�1/4,�1/4}, or
{�1/6,�1/6,�1/6}, or {�1/3,�1/6}.

Proof. By Lemma 5.3.4 we have |BF | = 2 and no red blob of SF \ BF contains a boundary
edge. By Lemma 5.3.7 each red blob of BF is a red triangle.

So it remains to prove the final statement. By definition of a pre-neighbourly face, each
vertex of BF has green degree 3. Hence the elements of BF collectively give F curvature
precisely �1/2. By Lemma 5.3.1 each x 2 SF has �(x,�A) > �1/2, so the lemma follows
from Lemmas 2.6.10 and 3.2.8. ⌅

5.4 Two face thickness

The main result of this section is Proposition 5.4.11, which plays a central part in the proof of
Theorem 5.1.1. Recall that a consolidated edge between faces F and F 0 is a non-empty path
of maximal length that is a sub-path of both @(F ) and @(F 0), and that a path may consist of a
single vertex.

In the next definition we allow tracing boundaries of faces in both directions.

Definition 5.4.1. Let F be an internal green face of �A 2 T . A corner of F is a green face
F 0 6= F such that BF 0 \ BF 6= ;.

Suppose that |SF \ BF | � 2. A ceiling of F is a green face F1 such that SF1 \ (SF \ BF )

contains distinct elements x and y, and F1 and F are incident by a consolidated edge e that has
the following properties (see Figure 5.10).

1. e contains or is incident with each of x and y.

2. If x and y are vertices, then |e| � 1.

3. If some z 2 {x, y} is a red blob, then there are edges f ✓ @(F ) and g ✓ @(F1) such
that ef is a sub-path of @(F ), eg is a sub-path of @(F1), and fg is a sub-path of @(z).
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We shall call x and y ceiling neighbours of F and F1.

Lemma 5.4.2. Let F be an internal green face of �A 2 T . Suppose that @(F )\! and @(F )\⌧
are single consolidated edges. Then the elements of BF collectively give F curvature of at most
�3/4.

Proof. By Axiom T6, F contains a boundary edge, so without loss of generality assume that
|@(F ) \ !| � 1. By Part 1 of Lemma 4.3.4 there are x, y 2 BF that lie on or are incident with
@(F )\!. Suppose first that x = y. If F is incident with some vertex v on !\⌧ distinct from x,
then by Lemmas 2.6.10 and 3.2.8 we have �(x, F,�A)+�(v, F,�A)  �1/4� 1/2 = �3/4.
So we may assume that no such v exists. Then since @(F ) \ ⌧ 6= ;, x is curvature incident
more than once with F . Hence by Part 2 of Lemma 4.3.4 �(x, F,�A)  �1/2. If x is a red
blob with at least two boundary edges, or a vertex on ! \ ⌧ , then by Lemmas 2.6.10 and 3.2.8
we have �(x, F,�A)  �1. Hence we may assume that x is either a red blob with exactly
one boundary edge, or a vertex on ! \ ⌧ . If x is a red blob with an edge on ⌧ , then by Part
1 of Lemma 4.3.4 some endpoint of @(F ) \ ! lies on ! \ ⌧ , a contradiction. Hence we can
assume that x is not a red blob with an edge on ⌧ . Hence there is z 2 BF \ {x} such that z is
either a red blob that meets F with an edge on ⌧ , or a vertex on ⌧ . By Part 2 of Lemma 4.3.4
�(z, F,�A)  �1/4, so the lemma follows.

Now assume that x 6= y. If x or y is a red blob with at least two boundary edges, or a vertex
on ! \ ⌧ , then �(x, F,�A) + �(y, F,�A)  �1/2� 1/4 = �3/4; and if x or y is a red blob
with an edge on ⌧ , then some endpoint of @(F ) \ ! lies on ! \ ⌧ . So we may assume that x
and y are either red blobs with precisely one boundary edge that lies on ! \ ⌧ , or vertices on
! \ ⌧ . Then there is z 2 BF \ {x, y} with the same properties as in the previous paragraph, so
we are done. ⌅

Definition 5.4.3. Let F be an internal green face of �A 2 T . We denote by TF a cyclic tuple
of elements of SF .

Lemma 5.4.4. Let F be a pre-neighbourly face of �A 2 T with respect to ⇢, and suppose that
all red blobs of �A are simply-connected, and that none of them are complicated. Then the
following statements hold.

1. F has a ceiling.

2. Let F1 be a ceiling of F . Then the following statements hold.

(i) @(F1) intersects exactly one of the boundaries of �A.

(ii) If @(F1)\⇢ 6= ;, then all elements of SF \BF are curvature incident once with F1.

Proof. By Theorem 5.3.8 |SF \ BF | � 2, and no red blob of SF \ BF contains a boundary
edge. Let x and y be distinct elements of SF \ BF that are adjacent in TF . Since x and y are
either interior vertices or red blobs with no boundary edge, there is an internal green face F1

such that F1 and F are incident by a consolidated edge e that contains or is incident with each
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of x and y, and since x and y are adjacent in TF and x 6= y, we can choose F1 such that if x
and y are vertices, then |e| � 1; and such that if some z 2 {x, y} is a red blob, then Condition
3 of Definition 5.4.1 holds. So Part 1 follows.

For Part 2 (i), let F1 be a ceiling of F . By Axiom T6, F1 has an edge on @(�A), so suppose
for a contradiction that @(F1) intersects both boundaries of �A. Applying Theorem 4.5.13
shows that both @(F1)\! and @(F1)\ ⌧ are single consolidated edges, hence by Lemma 5.4.2
the elements of BF1 give F1 curvature of at most �3/4. Let x and y be ceiling neighbours of F
and F1, so that x, y 2 SF \BF . As neither x nor y is a red blob with a boundary edge, we have
x, y 62 BF1 . By Lemmas 2.6.10 and 3.2.8 �(x, F1,�A) + �(y, F1,�A)  2 · (�1/6) = �1/3,
hence �A(F1)  1� 3/4� 1/3 = �1/12, contradicting Axiom T6. Hence Part 2 (i) follows.

For Part 2 (ii), assume for a contradiction that @(F1) \ ⇢ 6= ;, and that some z 2 SF \ BF

is curvature incident more than once with F1. Since F1 is a ceiling, we have (SF1 \ (SF \
BF )) \ {z} 6= ;, so by Lemmas 2.6.10 and 3.2.8 the elements of SF1 \ (SF \ BF ) collectively
give F1 curvature of at most 3 · (�1/6) = �1/2, and as no red blob of SF \ BF contains
a boundary edge, we have (SF \ BF ) \ BF1 = ;. Hence by Part 4 of Lemma 4.3.4 we have
SF1 = {x, y}[BF1 , where x and y are ceiling neighbours of F and F1, x and y are red triangles
or vertices of green degree 3, and the element of {x, y} \ {z} is curvature incident once with
F1. In particular, F1 is curvature incident more than once with a vertex of green degree 3 or
a red triangle, so F1 satisfies Condition (ii) of Lemma 5.2.1, hence by Lemma 5.2.1 there is
t 2 SF1 \ {z} curvature incident more than once with F1, and so t 2 BF1 .

Applying Part 2 of Lemma 4.3.4 shows that �(t, F1,�A)  �1/2. By the previous
paragraph the elements of SF1 \ BF1 collectively give F1 curvature of at most �1/2, hence
�(t, F1,�A) = �1/2, and so t is a red triangle or a vertex with green degree 3. It follows that
SF1 = {x, y, t}. Hence as z and t are red triangles or vertices with green degree 3, F is inci-
dent with itself by a consolidated edge that contains or is incident with z and t. Hence by Part
3 of Lemma 4.2.3 �A \ (F1)� decomposes as an edge-disjoint union of two annular diagrams,
so either t is a red triangle with an edge on ⇢0, or a vertex on ⇢0. But then since t 2 BF1 , we
have @(F1) \ ⇢0 6= ;, contradicting Part 2 (i) of the lemma. The result follows. ⌅

Lemma 5.4.5. Suppose that all red blobs of �A 2 T are simply-connected, that none of them
are complicated, and that �A contains a pre-neighbourly face F with respect to ⇢, so that by
Lemma 5.4.4 F has a ceiling F1. If F1 has an edge on ⇢, then F has distinct corners F2 and
F3, and F1 62 {F2, F3}.

In particular, if F 0 is a neighbourly face with respect to ⇢, then F 0 has two distinct corners,
and a ceiling, and any ceiling of F 0 is not a corner of F 0.

Proof. We first prove that F has (not necessarily) distinct corners F2 and F3 and that F1 62
{F2, F3}, and then apply F1 62 {F2, F3} to show that F2 and F3 are in fact distinct. As F is
pre-neighbourly, F is thin: so no red blob of BF has an edge ⇢0, and no vertex of BF lies on
⇢0; and all elements of SF are curvature incident once with F . Hence as by Theorem 5.3.8 we
have |BF | = 2 and the elements of BF are red triangles or vertices of green degree 3, there are
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Figure 5.11: Depiction of F3 contained in the sub-diagram K. The blue curves are the bound-
aries of �, see the proof of Lemma 5.4.5.

green faces F2 6= F and F3 6= F with BFi \ BF 6= ; for 2  i  3; so @(Fi) \ ⇢ 6= ;; each
element of BF is curvature incident at most once with Fi; and for each z 2 BFi \ BF , there is
an element z⇤ 2 SFi \ (SF \ BF ) adjacent to z in TF .

Let x and y be ceiling neighbours of F and F1. Since F1 has an edge on ⇢ and @(F ) \
⇢0 = ;, by Theorem 4.5.13 @(F1) \ ⇢ is a single consolidated edge l with |l| � 1. Suppose
that F1 = F2. If some t 2 {x, y} is adjacent in TF to an element of BF1 \ BF , then by
Definition 5.4.1 F1 is curvature incident more than once with t, contradicting Lemma 5.4.4
since @(F1) \ ⇢ 6= ;. So if F2 = F3, then |BF1 \ BF | = 2, and by the previous paragraph we
have |SF1 \ (SF \ BF )| � 4. But by Theorem 5.3.8 |SF \ BF |  3, a contradiction.

Hence F1 6= F3. Then |BF1 \ BF | = 1, say BF1 \ BF = {z}, and l contains or is
incident with z. By the first paragraph there exists z⇤ 2 SF1 that is adjacent in TF to z. As no
element of SF \BF is curvature incident more than once with F1, we have z⇤ 62 {x, y}. Hence
|SF1 \ (SF \ BF )| � 3, and therefore by Theorem 5.3.8 we have SF \ BF = {z⇤, x, y}, so

TF = (z, z⇤, x, y, w),

say, and all elements of SF are red triangles or vertices of green degree 3. Since |l| � 1

and z is curvature incident once with F1, there is t 2 BF1 \ {z} that lies on or is incident
with l. As by Theorem 5.3.8 no red blob of {z⇤, x, y} contains a boundary edge, we have
{z, t} \ {z⇤, x, y} = ;. By Part 2 of Lemma 4.3.4 we have �(t, F1,�A)  �1/4, so as by
Axiom T6 we have �A(F1) = 0, we deduce that SF1 = {z, z⇤, x, y, t}, and �(t, F1,�A) =

�1/4. In particular, all elements of SF1 are curvature incident once with F1, and are red
triangles or vertices of green degree 3.

Since {z, z⇤, x, y} ✓ SF1 and all elements of SF1 are curvature incident once with F1, it
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follows that R2\(F [F1) contains a bounded component C. Suppose that ⇢ = ⌧ . As F1 6= F3,
we have F3 ✓ C. Now assume that ⇢ = !. Then as all elements of SF \BF are interior vertices
or red blobs with no boundary edge, we deduce that CArea(C) � (1, 0). Hence we showed
that C contains an internal green face F 0. By Axiom T6, F 0 contains a boundary edge, hence
C contains the external face with boundary ⌧ . Therefore, �A \ (F [ F1)� contains an annular
sub-diagram � with @(�) = {⇢, ⇢1}, where ⇢1 ✓ @(F ) [ @(F1) and |⇢1| � 1. In particular,
F3 ✓ �. By Axiom T1, ⇢ is a simple closed path. Since F and F1 are not incident more than
once with any vertex, @(F ) and @(F1) are simple closed paths, so ⇢1 is also a simple closed
path. Hence as F has an edge on ⇢, � is a union of islands and bridges (see Definition 2.5.10),
and therefore F3 is contained in a simply-connected sub-diagram K ✓ �A\(F [F1)� bounded
by a closed path p 2 �1A (see Definition 2.5.14) of the form p1p2, where p1 ✓ @(F ) [ @(F1)

and |p1| � 1, and p2 is a sub-path of ⇢ (see Figure 5.11 with ⇢ = !).
Since F3 6= F1, we have |BF3 \ BF | = 1, so BF3 \ BF = {w}; and as @(F3) \ ⇢ 6= ;

and @(F )\ ⇢0 = ;, by Theorem 4.5.13 @(F3)\ ⇢ is a single consolidated edge l1 that contains
or is incident with w. Since TF = (z, z⇤, x, y, w), by the first paragraph y 2 SF3 , and as y

is a red triangle or a vertex of green degree 3, F1 and F3 are incident by a consolidated edge
l2 that contains or is incident with y. Since SF1 = {z, z⇤, x, y, t} and all elements of SF1 are
red triangles or vertices of green degree 3 curvature incident once with F1, we deduce from
F3 ✓ K and t 2 l that l2 contains or is incident with t. Therefore, as @(F3) \ ⇢ = l1, we have
SF3 = {w, y, t}. Hence all elements of SF3 are red triangles or vertices of green degree 3, and
therefore they are all curvature incident once with F3. So

�A(F3) = 1� 1/4� 1/4� 1/6 = 1/3 > 0,

a contradiction. Hence we showed that F1 62 {F2, F3}.
Now if F2 = F3, then by Theorem 4.5.13 F1 cannot have any edge on ⇢, a contradiction.
Finally, suppose that F 0 is a neighbourly face with respect to ⇢. By Lemma 5.3.3 F 0 is pre-

neighbourly with respect to ⇢, and as F 0 has no boundary links (see Definition 5.1.2), every
ceiling of F 0 has an edge on ⇢, so the result follows. ⌅

Corollary 5.4.6. Let F be a pre-neighbourly face of �A 2 T with respect to ⇢, and suppose
that all red blobs of �A are simply-connected, and that none of them are complicated. Then for
any ceiling F1 of F that has an edge on ⇢, we have SF1 \ SF = {x, y}, where x and y are the
ceiling neighbours of F and F1.

Proof. By Theorem 5.3.8 all elements of BF are red triangles or vertices of green degree 3,
hence as by Lemma 5.4.5 F1 is not a corner of F , we have SF1 \ BF = ;. So suppose for
a contradiction that |SF1 \ (SF \ BF )| � 3. Then by Theorem 5.3.8 |SF \ BF | = 3, and
each element of SF is either a red triangle or a vertex of green degree 3. But then the middle
element of SF \ BF in TF is curvature incident twice with F1, contradicting Part 2 (ii) of
Lemma 5.4.4. ⌅

Recall that two internal faces F and F are incident if and only if F \ F 0 6= ;.
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Figure 5.12: Depiction of the ceiling sub-diagram C2. The blue curve is @(C2), see the proof
of Lemma 5.4.9.

Definition 5.4.7. Let F be a neighbourly face of �A 2 T with respect to ⇢, and let KF be
the sub-diagram of �A which is the union of all internal green faces incident with F . The
neighbourly sub-diagram NF of F is the union of KF and all components C of �A \KF such
that C \ ⇢0 = ;.

In the next definition we allow tracing boundaries of faces in both directions.

Definition 5.4.8. Suppose that all red blobs of �A 2 T are simply-connected, that none of
them are complicated, and that �A contains a pre-neighbourly face F with respect to ⇢, and a
ceiling F1 of F that has an edge on ⇢. Since @(F ) \ ⇢0 = ;, by Theorem 4.5.13 @(F ) \ ⇢ and
@(F1)\ ⇢ are single consolidated edges l and l1 respectively. Then a ceiling sub-diagram of F
by F1 is the closure CF of some component of �A \ (F [F1) that satisfies all of the following
statements (see Figure 5.12 with CF = C2, and Figure 5.13 with CF = C).

1. CF is simply-connected and CF contains precisely one corner of F .

2. The concatenation of l and @(CF ) \ @(F ) is a sub-path of @(F ), and the concatenation
of @(CF ) \ @(F1) and l1 is a sub-path of @(F1).

3. Either F and F1 are edge-incident by a consolidated edge e such that the concatenation of
@(CF )\@(F ) and e is a sub-path of @(F ) and the concatenation of e and @(CF )\@(F1)

is a sub-path of @(F1), or some ceiling neighbour z of F and F1 is a red blob, and there
are edges e ✓ @(F ) and f ✓ @(F1) such that the concatenation of @(CF ) \ @(F )

and e is a sub-path of @(F ), ef is a sub-path of @(z), and the concatenation of f and
@(CF ) \ @(F1) is a sub-path of @(F1).

Lemma 5.4.9. Let F be an internal green face of �A 2 T , and suppose that all red blobs of �A
are simply-connected, and that none of them are complicated. Then the following statements
hold.

1. Assume that F is pre-neighbourly with respect to ⇢, and that F has a ceiling F1 with an
edge on ⇢. Then F1 defines a ceiling sub-diagram CF .
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Let F2 be the corner of F with F2 ✓ CF . Then CF [F [F1 contains all internal green
faces incident with F2. In particular, F2 is neighbourly with respect to ⇢, and if the
neighbourly sub-diagram of F2 is simply-connected, then it is contained in CF [F [F1.

2. Assume that F is neighbourly with respect to ⇢. Then every ceiling of F defines a ceiling
sub-diagram, and every ceiling sub-diagram of F is contained in the neighbourly sub-
diagram NF of F .

Let CF be a ceiling sub-diagram of F given by F1, and containing a corner F2 of F .
Then every ceiling sub-diagram of F2 is contained in CF , and if NF is simply-connected,
then the neighbourly sub-diagram of F2 is also simply-connected and is contained in
CF [ F [ F1.

Proof. Part 1. We have @(F )\⇢0 = ;, and by Lemma 5.4.4 @(F1)\⇢0 = ;. Hence by Theorem
4.5.13 @(F ) \ ⇢ and @(F1) \ ⇢ are single consolidated edges l and l1 with |l|, |l1| � 1. By
Lemma 5.4.5 F has distinct corners F2 and F3, and F1 62 {F2, F3}. Let KF2 be the sub-
diagram of �A which is the union of all internal green faces incident with F2, and let x and y

be ceiling neighbours of F and F1. Since F1 has an edge on ⇢, by Lemma 5.4.4 x and y are
curvature incident once with F1, and by Corollary 5.4.6 we have SF1 \ SF = {x, y}.

Suppose first that @(F1) passes more than once through some vertex. By Part 3 of Lemma
4.2.3 �A \ (F1)� decomposes as an edge-disjoint union of annular diagrams �1 and �2 with
F ✓ �1 (say), the boundaries of �1 are simple closed paths, and �1 contains precisely one
vertex incident more than once with F1. Since F1 has an edge on ⇢, �1 is a union of islands
and bridges. Hence for each i 2 {2, 3}: there is a component Ci of �A \ (F [ F1) such that
Ci is a simply-connected sub-diagram of �A with Fi ✓ Ci, and Fj 6✓ Ci for j 2 {2, 3} \ {i}.
As �1 contains precisely one vertex incident more than once with F1, we deduce that one of
the Ci’s contains no vertex incident more than once with F1, say it is C2, so @(C2) \ @(F1) is
a sub-path of @(F1), and as by definition of a pre-neighbourly face no vertex is incident more
than once with F , @(C2) \ @(F ) is a sub-path of @(F ).

We show that C2 is a ceiling sub-diagram of F by F1. By the previous paragraph C2 is
simply-connected and containing precisely one corner of F . As @(F ) \ ⇢ = l and @(F1) \
⇢ = l1, we deduce that the concatenation of l and @(C2) \ @(F ) is a sub-path of @(F ), and
the concatenation of @(C2) \ @(F1) and l1 is a sub-path of @(F1). Moreover, since SF1 \
SF = {x, y}, and x and y are curvature incident once with F1, from Definition 5.4.1 of ceiling
neighbours we deduce that either F and F1 are edge-incident by a consolidated edge e such
that the concatenation of @(C2)\ @(F ) and e is a sub-path of @(F ) and the concatenation of e
and @(C2) \ @(F1) is a sub-path of @(F1) (see Figure 5.12), or some z 2 {x, y} is a red blob,
and there are edges e ✓ @(F ) and f ✓ @(F1) such that the concatenation of @(C2)\@(F ) and
e is a sub-path of @(F ), ef is a sub-path of @(z), and the concatenation of f and @(C2)\@(F1)

is a sub-path of @(F1). Hence C2 is the desired ceiling sub-diagram.
To prove the rest of Part 1, first note that if D is an internal face incident with F2 such

that D 6✓ C2, then either D 2 {F, F1}, or D is contained in some red blob of {x, y}. Hence
all internal green faces incident with F2 are contained in C2 [ F [ F1, and as C2 is simply-
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Figure 5.13: Depiction of the ceiling sub-diagram C. The blue curve is @(C), see the proof of
Lemma 5.4.9.

connected and @(F )\ ⇢0 = ; = @(F1)\ ⇢0, it follows that F2 is neighbourly with respect to ⇢.
Suppose that the neighbourly sub-diagram NF2 of F2 is simply-connected. Then by Definition
5.4.7 of a neighbourly sub-diagram, KF2\�1A (see Definition 2.5.14) contains no closed path p

such that C \�A is an annular sub-diagram of �A for each of the two components C of R2 \ p.
In particular, F2 is not incident with F1. So all components C of �A \KF2 with C \ ⇢0 = ;
satisfy C ✓ C2 [ F [ F1, and therefore NF2 ✓ C2 [ F [ F1.

Now suppose that @(F1) does not pass more than once through any vertex. Then @(F1) is a
simple closed path. Hence as F1 has an edge on ⇢, there is a component C of �A\(F[F1) such
that C is simply-connected, C contains precisely one corner of F , say F2 ✓ C, and C \ @(F1)

is a sub-path of @(F1). Since F is not incident more than once with any vertex, C \ @(F ) is
a sub-path of @(F ). So as SF1 \ SF = {x, y}; x and y are curvature incident once with F1;
and @(F ) \ ⇢ = l, @(F1) \ ⇢ = l1, we deduce that C is a ceiling sub-diagram of F by F1 (see
Figure 5.13).

So similarly as in the previous case we can show that F2 is neighbourly with respect to ⇢,
and C [ F [ F1 contains all internal green faces incident with F2. As @(F ) and @(F1) are
simple closed paths, F and F1 are simply-connected, hence all components C 0 of �A \ KF2

with C 0 \ ⇢0 = ; satisfy C 0 ✓ C [ F [ F1, and so NF2 ✓ C [ F [ F1. Hence Part 1 follows.

Part 2. By Lemma 5.3.3 F is pre-neighbourly with respect to ⇢, and since F has no bound-
ary links, by Axiom T6 every ceiling F1 of F has an edge on ⇢. So by Part 1, F1 defines a
ceiling sub-diagram CF . Let KF be the sub-diagram of �A that is the union of all internal
green faces incident with F . Since @(F ) \ ⇢0 = ; and by Lemma 5.4.4 @(F1) \ ⇢0 = ;, from
Definition 5.4.8 of a ceiling sub-diagram it follows that CF \⇢0 = ;. Hence as KF ✓ NF and
NF contains all components C of �A \KF with C \ ⇢0 = ;, we have CF ✓ NF . Let F2 be
the corner of F with F2 ✓ CF . By Part 1, F2 is neighbourly with respect to ⇢, hence similarly
as for CF we deduce that all ceiling sub-diagrams CF2 of F2 satisfy CF2 \ ⇢0 = ;. Hence
as F2 ✓ CF , we have CF2 ✓ CF . Finally, suppose that NF is simply-connected. By Part 1
all internal green faces incident with F2 are contained in CF [ F [ F1, hence the neighbourly
sub-diagram of F2 is also simply-connected, and is contained in CF [ F [ F1. The lemma
follows. ⌅
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The following definition will be used repeatedly in the next proof.

Definition 5.4.10. Let F be a neighbourly face of �A 2 T , and suppose that all red blobs of
�A are simply-connected, and that none of them are complicated. Let NF be the neighbourly
sub-diagram of F . A neighbourly region of F is a sub-diagram RF ✓ NF such that if NF is
simply-connected, then RF = NF , else CArea(RF ) is minimal subject to the following two
conditions.

1. RF contains all internal green faces incident with F .

2. RF contains a ceiling sub-diagram of F given by some ceiling of F .

Proposition 5.4.11. Suppose that all red blobs of �A 2 T are simply-connected, and that none
of them are complicated. Then �A has no neighbourly faces.

Proof. Assume for a contradiction that �A has a neighbourly face F with respect to ⇢, and
let NF and RF be the neighbourly sub-diagram and a neighbourly region of F . Furthermore,
choose F so that CArea(RF ) is minimal among all neighbourly regions corresponding to
neighbourly faces with respect to ⇢. By Lemmas 5.4.5 and 5.4.9 F has distinct corners F2 and
F3, a ceiling F1 with F1 62 {F2, F3}, and a ceiling sub-diagram CF defined by F1. By Lemma
5.3.3 F is pre-neighbourly, hence by Theorem 5.3.8 the elements of BF are red triangles or
vertices of green degree 3, so F2 and F3 are incident with F . Without loss of generality let
F2 ✓ CF . Then F3 6✓ CF , and by Lemma 5.4.9 F2 is neighbourly with respect to ⇢, so let
NF2 and RF2 be the neighbourly sub-diagram and a neighbourly region of F2.

Suppose that NF is simply-connected. Then by Lemma 5.4.9 CF ✓ NF , NF2 is simply-
connected and RF2 = NF2 ✓ CF [ F [ F1. But since NF contains all internal green faces
incident with F , we have RF = NF ◆ CF [ F [ F1 [ F3, so as F3 6✓ CF , we have
CArea(RF2) < CArea(RF ), a contradiction.

Hence NF is not simply-connected. By Definition 5.4.10 RF contains a ceiling sub-
diagram C0

F given by some ceiling F 0
1 of F . Without loss of generality assume that F2 ✓ C0

F ,
so F3 6✓ C0

F . By Lemmas 5.4.5 and 5.4.9 we have F 0
1 62 {F2, F3}, F2 is neighbourly with

respect to ⇢, and C0
F [ F [ F 0

1 contains all internal green faces incident with F2. By Defini-
tion 5.4.10 RF contains all internal green faces incident with F , so as RF ◆ C0

F , we have
RF ◆ C0

F [ F [ F 0
1 [ F3.

Suppose that NF2 is simply-connected. Then by Lemma 5.4.9 we have RF2 = NF2 ✓
C0

F [ F [ F 0
1, hence CArea(RF2) < CArea(RF ), a contradiction. So NF2 is not simply-

connected. By Lemma 5.4.9 every ceiling sub-diagram CF2 of F2 satisfies CF2 ✓ C0
F . Hence

by Definition 5.4.10 RF2 ✓ C0
F [ F [ F 0

1, so CArea(RF2) < CArea(RF ). ⌅

Corollary 5.4.12. Let �A 2 T . Suppose that all red blobs of �A are simply-connected, that
none of them are complicated, and that �A contains a pre-neighbourly face F with respect to
⇢. If F1 is a ceiling of F , then F1 has an edge on ⇢0.

Proof. By Axiom T6, F1 has a boundary edge, so assume for a contradiction that it lies on ⇢.
Then by Lemma 5.4.9 some corner of F is neighbourly, contradicting Proposition 5.4.11. ⌅
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By using Proposition 5.4.11 we can strengthen Theorem 5.3.8.

Theorem 5.4.13. Let �A 2 T . Suppose that all red blobs of �A are simply-connected, that
none of them are complicated, and that �A contains a pre-neighbourly face F with respect to
⇢. Then both of the following two statements hold.

1. If |SF \ BF | = 2, then each element of SF \ BF is either a red blob with area 2 and
boundary length 4, or a vertex with green degree 4.

2. There is an internal green face F1 with an edge on ⇢0 such that either F1 and F are edge-
incident, or SF1 \ SF contains a red blob B with no boundary edge and |@(B)|  4.

Proof. First note that by Lemma 5.4.5 there is a ceiling F1 of F , and by Corollary 5.4.12 F1

has an edge on ⇢0, so by Lemma 5.4.4 @(F1) \ ⇢ = ;.
Part 1. It suffices to show that the multiset of curvature values of SF \BF is not {�1/3,�1/6}.

So assume for a contradiction that SF \ BF = {x, y}, where x is either a red blob with area 4
and boundary length 6, or a vertex with green degree 6, and y is either a red triangle, or a vertex
with green degree 3. Note that x and y are ceiling neighbours of F and F1. For 1  i  6,
reading clockwise around x, let Fi be an internal green face with x 2 SFi , and without loss of
generality assume that F6 = F . By Axiom T6 we can let li be a boundary consolidated edge
of Fi with |li| � 1, where l1 ✓ ⇢0 and l6 ✓ ⇢.

By Corollary 4.5.15 there are xi, yi 2 BFi that lie on or are incident with li that collectively
give Fi curvature of at most �1/2, and since by Theorem 5.3.8 neither x nor y is a red blob
with a boundary edge, we have x, y 62 BFi . We will work through increasing i, showing that
Fi is pre-neighbourly with respect to ⇢0 for 1  i  2, that Fi is pre-neighbourly with respect
to ⇢ for 3  i  4, and that for 1  i  4 the multiset of curvature values of SFi \BFi and BFi

is {�1/3,�1/6} and {�1/4,�1/4} respectively. Using this we will then deduce that F5 is a
ceiling of F4 with @(F5) \ ⇢ 6= ; 6= @(F5) \ ⇢0, contradicting Lemma 5.4.4.

Since �(x,�A) = �1/3 and �(y,�A) = �1/6 (see Definition 2.6.8), by Part 4 of Lemma
4.3.4 each z 2 {x, y} is curvature incident once with F1, so by Lemma 5.3.6 |BF1 | = 2, and
each element of BF1 is curvature incident once with F1, and is either a red triangle containing
one boundary edge, or a boundary vertex with green degree 3 that is not on ⇢\⇢0. In particular,
no red blob of SF1 has an edge on ⇢. So as @(F1)\⇢ = ; and all elements of SF1 are curvature
incident once with F1, we have that F1 is pre-neighbourly with respect to ⇢0, and F1 has the
properties stated in the previous paragraph.

Suppose that for some 2  i  5, @(Fi) passes more than once through some vertex v.
Then by Lemma 4.2.3 @(Fi) passes through v twice, and �A \ (Fi)� decomposes as an edge-
disjoint union of two annular diagrams. But this is impossible since l1 ✓ ⇢0, l6 ✓ ⇢, and
x and y are ceiling neighbours of F and F1. Now suppose that for some 2  i  5, Fi is
edge-incident more than once with some blob B. By Proposition 4.2.8 �A is island-free, B is
edge-incident twice with Fi, and �A \ (Fi [B)� decomposes as an edge-disjoint union of two
annular diagrams. This is only possible if B 2 {x, y}, F and F1 are incident at some vertex
v 2 {x, y} and are not edge-incident, and �A \ B� decomposes as an edge-disjoint union of
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two annular diagrams. But then the two common edges of Fi and B are consecutive on @(B).
So as Fi is not incident with any vertex more than once, we contradict Lemma 4.2.6. Hence
we showed that for all 1  i  6, all elements of SFi are curvature incident once with Fi.

By the choice of F1 and F2 there is z 2 BF1 \SF2 . Since z is a red triangle or a vertex with
�G(z) = 3, z has 3 curvature incidences, so z 2 BF2 , and F2 has a consolidated edge l02 ✓ ⇢0

that contains or is incident with z. By Theorem 4.5.13 @(F2) \ ⇢0 = l02. Since all elements of
SF2 are curvature incident once with F2 and z is a red triangle or a vertex with �G(z) = 3, we
deduce that there is t 2 BF2 \ {z} that lies on or is incident with l02. By Part 2 of Lemma 4.3.4
we further have �(t, F2,�A)  �1/4. Now �A(F2) = 0, hence as �(z, F2,�A) = �1/4 and
�(x, F2,�A) = �1/3, by Lemmas 2.6.10 and 3.2.8 there are two possible cases.

(a) We have |SF2 | = 3 and �(t, F2,�A) = �5/12.

(b) We have |SF2 | = 4, �(t, F2,�A) = �1/4, and there is w 2 SF2 with �(w,F2,�A) =

�1/6.

Assume that Case (a) holds. By Lemmas 2.6.10 and 3.2.8 t is either a vertex with �G(t) = 7

and t 62 ⇢ \ ⇢0, or a red blob with |@(t) \ @(�A)| = 1 and Area(t) = 5: and by Lemma 3.2.6
|@(t)| = 7. Since t is curvature incident once with F2, by the choice of F3 we have t 2 SF3 , so
t is curvature incident once with F3, and therefore if t is a red blob, then t 62 BF3 , and if t is a
vertex, then t 62 {x3, y3}. By Part 4 of Lemma 4.3.4 the elements of BF3 collectively give F3

curvature of at most �1/2, so as x 62 BF3 , and either t 62 BF3 or t 62 {x3, y3}, we have

�A(F3)  1 + �(x, F3,�A) + �(t, F3,�A)� 1/2

= 1� 1/3� 5/12� 1/2 = �1/4 < 0,

a contradiction.
So Case (b) holds. Hence as �(t, F2,�A) = �1/4, by Lemmas 2.6.10 and 3.2.8 t is a red

triangle containing one boundary edge or a boundary vertex with green degree 3 that is not on
⇢\⇢0. In particular, if t is a red triangle, then it has an edge on ⇢0. From �(w,F2,�A) = �1/6

we deduce that w is a red triangle with no boundary edge, or a vertex with �G(w) = 3 and
w 62 @(�A). Hence no red blob of SF2 has an edge on ⇢, and no vertex of SF2 lies on ⇢.
Suppose that @(F2)\⇢ 6= ;. Then as no vertex of SF2 lies on ⇢, there is a vertex of F2 of green
degree 2 on ⇢, so SF2 contains a red blob with an edge on ⇢, a contradiction. Hence F2 is thin
with respect to ⇢0, and since all elements of SF2 are curvature incident once with F2 and each
vertex of BF2 has green degree 3, F2 is pre-neighbourly with respect to ⇢0.

By the choice of F3 we have SF3 ✓ {x,w}, and note that F3, x, w satisfy Conditions 1-3
of Definition 5.4.1. Hence F3 is a ceiling of F2, so by Corollary 5.4.12 we have l3 ✓ ⇢, and
similarly as for F1 we deduce that the multiset of curvature values of SF3 \ BF3 and BF3 is
{�1/3,�1/6} and {�1/4,�1/4} respectively, and that F3 is pre-neighbourly with respect
to ⇢. Then similarly as for F2 we deduce that the multiset of curvature values of SF4 \ BF4

and BF4 is {�1/3,�1/6} and {�1/4,�1/4} respectively, and that F4 is pre-neighbourly with
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respect to ⇢. So similarly as for F2 and F3 we deduce that F5 is a ceiling of F4, hence by
Corollary 5.4.12 l5 ✓ ⇢0, and by Lemma 5.4.4 @(F5)\⇢ = ;. But by the choice of F5 we have
SF5 \ BF 6= ;, and as the elements of BF are red triangles or vertices with green degree 3, we
have @(F5) \ ⇢ 6= ;, a contradiction. Hence Part 1 follows.

Part 2. By Definition 5.4.1 if F1 and F are not edge-incident, then SF1\(SF \BF ) contains
a red blob B. By Theorem 5.3.8 and Part 1, B contains no boundary edge and |@(B)|  4. ⌅

5.5 Proof of Theorem 5.1.1

In this section we prove Theorems 5.1.1.

Proposition 5.5.1. Let F be a thin face of �A 2 T with respect to ⇢. Suppose that all red
blobs of �A are simply-connected, that none of them are complicated, and that no element of
SF is curvature incident more than once with F . Then there is an internal green face E with
@(E) \ @(F ) 6= ;, with an edge on ⇢0, and either E and F are edge-incident, or SE \ SF

contains a red blob B with no boundary edge and |@(B)|  4.

Proof. Assume first that each vertex of BF has green degree 3. Then F is pre-neighbourly (see
Definition 5.1.3), hence by Part 2 of Theorem 5.4.13 the proposition follows.

Now suppose that there is a vertex v 2 BF with �G(v) � 4. By Lemma 2.6.10 we have
�(v, F,�A)  �1/3, and since F is thin, we have v 62 ⇢ \ ⇢0. Hence by Corollary 4.5.17
there is an internal green face E incident with v, with an edge e on ⇢0, and v is not incident
with any boundary edge of E. Moreover, note that we can choose E so that either E and F are
edge-incident, or SE \ SF contains a red blob B. If E and F are edge-incident, then we are
done, so assume they are not.

Suppose that E contains a vertex v0 2 ⇢ \ ⇢0. Then as v is not incident with any boundary
edge of E, we have that @(E) \ ⇢ is not a single consolidated edge, contradicting Theorem
4.5.13. By Corollary 4.5.15 there are x, y 2 BE that lie on or are incident with the consolidated
edge of @(E)\⇢0 that collectively give E curvature of at most �1/2. In particular, v 62 {x, y}.
Since E is not incident with any vertex of ⇢ \ ⇢0 and F is thin, by the second statement of
Corollary 4.5.15 it follows that B 62 {x, y}. Hence as �A(E) = 0, and v, x, y collectively
give E curvature of at most �1/3 � 1/2 = �5/6, we have �(B,E,�A) � �1/6. So by
Lemma 3.2.8 B is a red triangle with no boundary edge. ⌅

The next theorem provides the main argument for the proof of Theorem 5.1.1.

Theorem 5.5.2. Let �A 2 T . Suppose that all red blobs of �A are simply-connected, that none
of them are complicated, and that �A contains a thin face F with respect to ⇢. Then there is
an internal green face E with @(E) \ @(F ) 6= ;, with an edge on ⇢0, and either E and F are
edge-incident, or SE \ SF contains a red blob B with no boundary edge and |@(B)|  4.

Proof. By Proposition 5.5.1 we may assume that there is an element of SF curvature incident
more than once with F . Then by Lemma 5.2.4 there is x 2 BF curvature incident exactly
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twice with F . By Lemma 5.3.1 @(F )\ @(�A) = @(F )\ ⇢ is a single consolidated edge l with
|l| � 1, �A is island-free, and if B 2 SF is a red blob, then B contains at most one boundary
edge.

We show that x is a red triangle or a vertex of green degree 3. Suppose not. By Lemmas
2.6.10; 3.2.8; and 5.3.1 we have

�1 < �(x, F,�A)  �2 · (1/3) = �2/3.

By Axiom T6 we have �A(F ) = 0, hence there is y 2 SF \ {x}. Now by Lemma 5.3.2 no
element of SF \ {x} is a red blob with an edge on ⇢, or a vertex on ⇢. Hence as F is thin, each
such z is either a red blob with no boundary edge, or an interior vertex.

Suppose first that �(x, F,�A) < �2/3. Since �A(F ) = 0, by Lemmas 2.6.10 and 3.2.8
we have SF = {x, y}. Now there is an internal green face F1 6= F with {x, y} 2 SF1 . Since y

is a red blob with no boundary edge, or an interior vertex, we have y 2 SF1 \ BF1 . By Axiom
T6, F1 has a boundary consolidated edge l1 with |l1| � 1, and by Corollary 4.5.15 there are
z, t 2 BF1 that lie on or are incident with l1 such that z and t collectively give F1 curvature
of at most �1/2. By Lemma 5.3.2 F is the only internal green face with an edge on ⇢, hence
l1 ✓ ⇢0. So as �A is island-free, by the second statement of Corollary 4.5.15 we have x 62 {z, t}
since x contains no edge on ⇢0. Hence

�A(F1)  1 + �(x, F1,�A) + �(y, F1,�A)� 1/2

< 1� 1/3� 1/6� 1/2 = 0,

a contradiction.

Now suppose that �(x, F,�A) = �2/3. Then by Lemmas 2.6.10 and 3.2.8 x is either
a vertex with �G(x) = 4, or a red blob with Area(x) = 2: and by Lemma 3.2.6 we have
|@(x) \ @(�A)| = 3. Since each element of SF \ {x} is either a red blob with no boundary
edge, or an interior vertex, by Lemmas 2.6.10 and 3.2.8 either there is z 2 SF \ {x, y} and
�(y, F,�A) = �1/6 = �(z, F,�A), or no such z exists and �(y, F,�A) = �1/3. Since either
�G(x) = 4 or |@(x) \ @(�A)| = 3, in both cases there is an internal green face F1 that receives
curvature �1/3 from elements of SF \ {x} and curvature �1/3 from x. Hence similarly as in
the previous case we deduce that

�A(F1)  1� 1/3� 1/3� 1/2 = �1/6 < 0,

a contradiction. Hence we showed that x is a red triangle or a vertex of green degree 3.

Now F satisfies Condition (ii) of Lemma 5.2.1, hence F is curvature incident more than
once with some element y 2 SF \ {x}. So as �A(F ) = 0 and �(x, F,�A) = �1/2, by
Lemmas 2.6.10 and 3.2.8 one of the following cases holds.
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1. SF = {x, y} has size 2 and �(y, F,�A) = �1/2.

2. SF = {x, y, z} has size 3 and �(y, F,�A) = �1/3, �(z, F,�A) = �1/6.

Assume that Case (a) holds. By the second paragraph y is either an interior vertex, or a red
blob with no boundary edge, hence by Lemmas 2.6.10 and 3.2.8 y is either a vertex of green
degree 4, or a red blob with area 2: so by Lemma 3.2.6 with boundary length 4. Hence there is
an internal green face E with y 2 SE ; which by Lemma 5.3.2 has an edge on ⇢0; and if E and
F are not edge-incident, then y is a red blob, so we are done.

Suppose that Case (b) holds instead. By Lemmas 2.6.10 and 3.2.8 y and z are red triangles
or vertices with green degree 3. So there is an internal green face E with y, z 2 SE ; with an
edge on ⇢0; and if E and F are not edge-incident, then at least one of y or z is a red blob. Hence
the theorem follows. ⌅

To prove Theorem 5.1.1 we need two additional lemmas.

Lemma 5.5.3. Let �A 2 T . Suppose that all red blobs of �A are simply-connected, and that
none of them are complicated. Then there is no green face F of �A that satisfies all of the
following statements.

1. F has an edge on at most one of the boundaries of �A.

2. SF = {B, x, y} has size 3, and each element of SF is curvature incident once with F .

3. B is a red blob with an edge on the opposite boundary from F .

4. We have �(B,F,�A) = �5/12, �(x, F,�A) = �1/3 and �(y, F,�A) = �1/4.

Proof. Assume for a contradiction that there is such an F . Since �A contains no complicated
red blobs, all red blobs of �A contain at most two boundary edges; and if a blob B0 2 SF attains
this bound, then by Lemma 3.2.8 �(B0,�A) = �1/2 (see Definition 2.6.8) and Statement 4
fails to hold. Hence all blobs B0 2 SF contain at most one boundary edge.

By Axiom T6, F has a consolidated edge l ✓ ⇢ 2 {!, ⌧} with |l| � 1, and by Corollary
4.5.15 there are t, w 2 BF that lie on or are incident with l. As by Lemma 3.1.9 each vertex
v 2 ⇢ \ ⇢0 satisfies �(v,�A) = �1/2, there is no such v in @(F ). So as B has an edge on ⇢0,
by the second statement of Corollary 4.5.15 we have B 62 {t, w}, hence {t, w} = {x, y}. By
Lemmas 2.6.10 and 3.2.8 the following statements hold.

(i) We have Area(B) = 5, so by Lemma 3.2.6 |@(B)| = 7,

(ii) x is either a vertex with �G(x) = 4, or a red blob with Area(x) = 2: so |@(x)| = 4,

(iii) y is either a vertex with �G(y) = 3, or a red triangle.

Suppose that B 2 BF . Then @(F ) \ ⇢0 6= ;. Hence by Theorem 4.5.13 @(F ) \ ⇢0 is a single
consolidated edge l0 consisting of a single vertex v. Since v 62 ⇢ \ ⇢0, we have v 62 {x, y}, and
therefore �G(v) = 2. So as all elements of SF are curvature incident once with F , it follows
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that there is a red blob B0 2 BF \ {B} incident with l0. Further, since v 62 ⇢ \ ⇢0, we have
B0 62 {x, y}, a contradiction.

Hence there are internal green faces F1 and F2 that share edges e1 and e2 with B, where
e1 and e2 are incident with the common edge of F and B, and B, x 2 SF1 and B, y 2 SF2 .
Since each element of SF is curvature incident once with F , and F and B are edge-incident
and have edges on the opposite boundaries of �A, by Part 3 of Lemma 4.2.3 no internal green
face of �A is incident more than once with a vertex; and if some internal green face of �A
is edge-incident more than once with a blob B0, then by Proposition 4.2.8 B0 = B. Hence
�(x, F1,�A) = �1/3, and if x is a blob, then x 62 BF1 . Since �A(F1) = 0, we deduce that
B is edge-incident once with F1, so all elements of SF1 are curvature incident once with F1.
Hence as by Lemmas 2.6.10 and 3.2.8 each t 2 SF1 has �(t,�A)  �1/6, we have that there
is t 2 SF1 \ {B, x} such that �(t, F1,�A) = �1/4 and SF1 = {B, x, t}.

Assume that B 62 BF1 . By Axiom T6, F1 has a consolidated edge l1 ✓ @(�A) with
|l1| � 1, and by Corollary 4.5.15 there are x1, y1 2 BF1 that lie on or are incident with l1 that
collectively give F1 curvature of at most �1/2. If x1 = y1, then �(x1, F1,�A)  �1/2, a
contradiction. So x1 6= y1. Since x1, y1 2 BF1 , we have B 62 {x1, y1}, and x 62 {x1, y1} if x is
a red blob since we deduced x 62 BF1 in that case. Hence x is a vertex. But then �G(x) = 4 and
x 62 ⇢\ ⇢0, and by above x is incident once with F1, so again x 62 {x1, y1}. Thus, |SF1 | � 4, a
contradiction.

Hence B 2 BF1 . By Statement (iii) above y has 3 curvature incidences, so y 2 BF2 and
@(F2) \ ⇢ 6= ;, and hence F2 has a consolidated edge l2 ✓ ⇢ that contains or is incident with
y. By Theorem 4.5.13 we have @(F2) \ ⇢ = l2. As by Axiom T6 we have �A(F2) = 0, and
as each vertex v 2 ⇢ \ ⇢0 has �(v,�A) = �1/2, no such v lies on @(F2). So as y is curvature
incident once with F2, there is w 2 BF2 \ {B, y} that lies on or is incident with l2. By Part 2
of Lemma 4.3.4 we have �(w,F2,�A)  �1/4. Since each t0 2 SF2 has �(t0,�A)  �1/6,
we deduce that B is edge-incident once with F2, SF2 = {B, y, w}, and �(w,F2,�A) = �1/3.
Now applying B 2 BF1 and |@(x) \ @(�A)| = 6 shows that there is an internal green face F3

that shares an edge with B incident with e2, and B,w 2 SF3 . Similarly as for F1 we deduce
that all elements of SF3 are curvature incident once with F3, and that SF3 = {B,w, r} has size
3, where �(r, F3,�A) = �1/4. In particular, B 62 BF3 , and w 62 BF3 if w is a red blob (since
then |@(w)| = 4). So by repeating the analysis from the previous paragraph we deduce that
|SF3 | � 4, a contradiction. ⌅

The next lemma will be used in the proofs of Theorems 1 and 5.1.1.

Lemma 5.5.4. Let F be an internal green face of �A 2 T . Assume that the following state-
ments hold.

• All red blobs of �A are simply-connected, and none of them are complicated.

• F has an edge on at most one of the boundaries of �A, and F is edge-incident with a red
blob B with an edge on the opposite boundary from F .
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Then either B is highly hyperbolic and |@(B)|  6, or B contains precisely one boundary
edge and |@(B)|  5.

Proof. Since no blobs are complicated, either B is highly hyperbolic, or B contains precisely
one boundary edge. If B is highly hyperbolic, then by Lemma 4.6.11 we have |@(B)|  6. So
assume that B contains precisely one boundary edge. By Axiom T6, F has a consolidated edge
l ✓ ⇢ 2 {!, ⌧} with |l| � 1.

Let v and v1 be the endpoints of l. If v, v1 2 ⇢ \ ⇢0, then by Lemma 4.5.2 SF contains no
red blobs, a contradiction. Assume that v 2 ⇢ \ ⇢0, so v1 62 ⇢ \ ⇢0. By Lemma 3.1.9 we have
�(v, F,�A) = �1/2. Since v1 62 ⇢ \ ⇢0, if �G(v1) = 2, then there is a red blob B1 2 BF

incident with v1 and with an edge on ⇢. As B contains precisely one boundary edge, which is
on ⇢0, we have B1 6= B. Otherwise, v1 2 BF \ {v,B}, hence there is x 2 BF \ {v,B}. By
Part 2 of Lemma 4.3.4 we have �(x, F,�A)  �1/4, and by Axiom T6 we have �A(F ) = 0.
Hence �(B,F,�A) � �1/4, so by Lemma 3.2.8 B is a red triangle, and the lemma follows.

Hence without loss of generality assume that v, v1 62 ⇢\⇢0. Then by Corollary 4.5.15 there
are x, y 2 BF \ {B} that lie on or are incident with l such that x and y collectively give F

curvature of at most �1/2. Assume first that SF = {B, x, y}. Since �A(F ) = 0, we have
�(B,F,�A) � �1/2, so if B is edge-incident more than once with F , then by Lemma 3.2.8
B is a red triangle, and the lemma follows. Hence we may assume that B is edge-incident
once with F . Then by Lemma 3.2.8 we have �(B,F,�A) > �1/2. So as �A(F ) = 0, by
Lemmas 2.6.10 and 3.2.8 x and y collectively give F curvature of at most �1/4 � 1/3 =

�7/12. Suppose that this upper bound is attained. Then �(B,F,�A) = �5/12, and since
�(x, F,�A) = �1/3, �(y, F,�A) = �1/4 or �(x, F,�A) = �1/4, �(y, F,�A) = �1/3,
applying Lemmas 2.6.10 and 3.2.8 shows that x and y are curvature incident once with F .
But now Lemma 5.5.3 give us a contradiction. Hence by Lemmas 2.6.10 and 3.2.8 x and y

collectively give F curvature of at most �1/4 � 3/8 = �5/8. So Area(B)  3, and by
Lemma 3.2.6 |@(B)|  5, as claimed.

Now assume that SF ) {B, x, y}. Then the elements of SF \ {B} collectively give F

curvature of at most �1/6� 1/2 = �2/3. So Area(B)  2 and |@(B)|  4. ⌅

Proof of Theorem 5.1.1. We may assume that @(F ) \ ⇢0 = ;. Suppose first that F is not
thin. Then there is a red blob B in SF with an edge on ⇢0. Hence by Lemma 5.5.4 either B is
highly hyperbolic and |@(B)|  6, or B contains precisely one boundary edge and |@(B)|  5,
so the theorem holds. Now assume that F is thin. Then by Theorem 5.5.2 there is an internal
green face F 0 with @(F 0) \ @(F ) 6= ;, with an edge on ⇢0, and either F 0 and F are edge-
incident, or SF 0 \ SF contains a red blob B with no boundary edge and |@(B)|  4, hence the
theorem follows. ⌅

5.6 Proof of the Three Face Theorem

Recall Definition 3.1.3 of the minimal coloured area of an annular diagram; and Definitions
4.1.1, 4.6.1 and 4.6.8 of what it means for a red blob to be good, complicated, or highly hyper-
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bolic. We shall now prove the Three Face Theorem (see Theorem 1). The Three Face Theorem
will follow from Theorem 5.6.1, where we describe the structure of diagrams in T in more
detail: we shall use Theorem 5.6.1 to make IsConjugate efficient. Throughout this section
let P = hX� | VP | Ri be a valid pregroup presentation (see Definition 2.6.14), and let G be
the group defined by P .

Let �A be an annular diagram with the external face O with boundary !. Recall from
Definition 2.5.4 that O is oriented counter-clockwise, and that all other faces of �A are oriented
clockwise.

Theorem 5.6.1. Let w1 = a1a2 . . . an�1an 2 X⇤ and w2 2 X⇤ be such that no cyclic permu-
tation of w2 is equal in G to w1, or to w0

1 = a2 . . . ana1. Assume that there exists a diagram
�A 2 T over P with CArea(�A) � (1, 0), and with boundaries ! and ⌧ , labelled by w1 and
w2 respectively. Then one of the following two statements holds.

1. There is an internal green face F with a consolidated edge on ! with a label containing
a1, and at least one of the following statements holds.

(i) @(F ) \ ⌧ 6= ;.

(ii) F is edge-incident with a simply-connected red blob B with an edge on ⌧ . More-
over, either B is highly hyperbolic and |@(B)|  6, or B contains precisely one
boundary edge and |@(B)|  5.

(iii) There is an internal green face F1 with an edge on ⌧ , and either F1 and F are
edge-incident, or SF1 \SF contains a simply-connected red blob B, where B does
not contain a boundary edge and |@(B)|  4.

(iv) There is a red blob B edge-incident with F , and either B is complicated, or B is
bad. Furthermore, if �A has minimal coloured area, then there exists a retriangu-
lation B1 of B as described in Proposition 4.6.18.

2. There is a red blob B with an edge on ! labelled by a1, and one of the following state-
ments holds.

(i) There is an internal green face F satisfying Statement 1, but with a1 replaced by
a2.

(ii) There is an internal green face F edge-incident with B, and with an edge on ⌧ . Fur-
thermore, B is simply-connected and either B is highly hyperbolic and |@(B)|  6,
or B contains precisely one boundary edge and |@(B)|  5.

Proof. Since no cyclic permutation of w2 is equal in G to w1 or to w0
1, the two endpoints v and

v1 of the edge e labelled by a1 satisfy v, v1 62 ! \ ⌧ .
Suppose first that there is an internal green face F with a consolidated edge on ! that con-

tains e. We show that Statement 1 of the theorem holds. Suppose first that no blobs of �A are
complicated, and assume further that �A contains a bad red blob B. Then by Theorem 4.6.14
F is edge-incident with B, hence if �A has minimal coloured area, then there is a triangulation
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B1 of B satisfying Proposition 4.6.18, so F satisfies Statement 1 (iv) of the theorem. Assume
instead that all blobs of �A are good. Then by Lemma 4.2.5 they are all simply-connected, so
by Theorem 5.1.1 at least one of the Statements 1 (i)-(iii) of the theorem holds for F . Next
suppose that F is contained in an island with a complicated red blob B. Then by Theorem 4.6.2
F is edge-incident with B, so if �A has minimal coloured area, then there is a triangulation B1

of B satisfying Proposition 4.6.18, hence F satisfies Statement 1 (iv). Finally, assume that F
is not contained in any island with a complicated red blob, and that �A contains complicated
red blobs. Then by Theorem 4.6.2 �A contains at least two islands, hence applying Lemma
3.1.10 repeatedly we can delete all islands containing complicated red blobs from �A to obtain
a diagram �A 2 T containing the island E with F ✓ E. By Lemma 4.2.4 all blobs of �A

are good, so by Lemma 4.2.5 they are all simply-connected, and therefore by Theorem 5.1.1 at
least one of the Statements 1 (i)-(iii) of the theorem holds for F in �A, so also in �A.

Now assume that no internal green face of �A contains a consolidated edge on ! that
contains e. We show that Statement 2 of the theorem holds. Since v, v1 62 ! \ ⌧ , there is a red
blob B with e ✓ B. Suppose first that |w1| = 1. If �A contains an island, then v, v1 2 ! \ ⌧ , a
contradiction. Hence by Theorem 4.6.2 no blobs of �A are complicated. If �A contains a bad
red blob, then by Theorem 4.6.14 either |!| � 2, or ! contains a green edge, a contradiction.
Hence all red blobs of �A are good, so by Lemma 4.2.5 they are all simply-connected. Suppose
that there is no internal green face incident with v and edge-incident with B. By Axiom T3 we
have �G(v) � 2, hence as by Axiom T1, ! and ⌧ are simple closed paths, we have v 2 ! \ ⌧ ,
a contradiction. So there is an internal green face F incident with v and edge-incident with
B. As the unique face with an edge on ! is red, by Axiom T6, F has an edge on ⌧ . Thus, by
Lemma 5.5.4 Statement 2 (ii) of the theorem holds.

Suppose instead that |w1| > 1, and assume further that there is an internal green face F

with a consolidated edge on ! with a label containing a2. Then by repeating the arguments
from the second paragraph we deduce that Statement 2 (i) of the theorem holds. Otherwise, as
v, v1 62 !\⌧ , there is a red blob with an edge e1 ✓ ! labelled by a2. Since e and e1 are both red
and consecutive on !, by Theorem 4.6.2 B is not contained in any island with a complicated
red blob; and by Theorem 4.6.14 all red blobs of �A are good, so by Lemma 4.2.5 they are all
simply-connected. Suppose first that no blobs of �A are complicated. Let u 2 e \ e1. Since
u 2 {v, v1} and �G(u) � 2, similarly as in the previous paragraph we deduce that there is an
internal green face F incident with u and edge-incident with B. By Theorem 4.5.13 we have
@(F )\! = {u}. Hence by Axiom T6, F has an edge on ⌧ . Now applying Lemma 5.5.4 shows
that Statement 2 (ii) holds. Assume instead that �A contains complicated red blobs. Then
�A contains at least two islands, so applying Lemma 3.1.10 repeatedly we obtain a diagram
�A 2 T with no complicated red blobs, and containing the island E with B ✓ E. Then
similarly as before we deduce that there is an internal green face F of �A edge-incident with
B and with an edge on ⌧ , and by Lemma 5.5.4 Statement 2 (ii) holds for B in �A. Hence B

and F satisfy Statement 2 (ii) in �A. ⌅

Proof of Theorem 1. Let e 2 ! be an edge, let E be the external face with boundary ⌧ ,
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and let w1 = a1 . . . an and w2 be labels of ! and ⌧ respectively. Suppose that �A has no green
faces. Then by Lemma 3.2.10 �A is island-free. Hence as by Axiom T1, ! and ⌧ are simple
closed paths, by Axiom T3, �A has no faces, so e ✓ ⌧ . Now if some cyclic permutation of
w2 is equal in G to w1, or to a2 . . . ana1, then some endpoint of e lies on ⌧ , hence e \ ⌧ 6= ;.
Therefore, without loss of generality assume that CArea(�A) � (1, 0), and that w1 and w2

satisfy assumptions of Theorem 5.6.1. Then Theorem 5.6.1 holds for �A.
Assume first that Statement 1 of Theorem 5.6.1 holds. If at least one of the Statements (i)-

(iii) holds, then there is an internal green face F that contains e such that either @(F )\⌧ 6= ;, or
F is at dual distance at most three from E. So without loss of generality assume that Statement
(iv) holds. Let F and B be as in Statement (iv). Note that e ✓ F . If B is complicated, then
by Theorem 4.6.2 B contains an edge on ⌧ , so F is at dual distance at most two from E.
Hence without loss of generality assume that B is bad. If B contains a boundary edge, then by
Theorem 4.6.13 B contains an edge on ⌧ , so we are done. Otherwise, by Theorem 4.6.14 F is
at dual distance at most three from E.

Now assume that �A satisfies Statement 2 of Theorem 5.6.1. If Statement (i) holds, then by
the previous paragraph Statement 2 of the theorem holds for e. So suppose that Statement (ii)
holds. Then there is an internal face that contains e at dual distance at most two from E. ⌅
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Conjugacy problem solver

In this chapter we describe the conjugacy problem solver IsConjugate, and prove Theorem
1.0.3. The conjugacy tests of IsConjugate run on valid pregroup presentations (see Defini-
tion 2.6.14), and all input pregroup presentations to IsConjugate are already assumed to be
by sound (see Definition 2.6.14). To check that a sound pregroup presentation P is valid, we
only need to check that P is proper (see Definition 2.6.14):

Definition 6.0.1. The procedure IsProper(P) returns true if P is proper. Otherwise, Is
Proper(P) returns false.

Throughout the rest of this chapter let P = hX� | VP [Ri be a valid pregroup presenta-
tion, and let G be defined by P . Recall that we assume the RAM model of computation, in
which the basic arithmetical operations on integers can be carried out in constant time. Fur-
thermore, we assume throughout this chapter that the products and inverses in the pregroup can
also be computed in constant time.

6.1 Cyclic P-reduction

In this section we describe a modification of RSymSolve (see [34, Section 8]), RSymSolve

Simpler, that cyclically P 0-reduces (see Definition 3.1.15) a given word when P 0 satisfies
trivial-interleaving (see Definition 2.3.23).

Since in the description of RSymSolve the subscripts are interpreted cyclically, we note
that RSymSolve is already performing cyclic P-reduction. We thus give its simplification
convenient for our purposes. Similarly as in [34, Section 8], we compute a list L1, which has
entries pairs of words (u, v) = (u1 . . . uk, v1 . . . vl) 2 X⇤ ⇥X⇤, where u1u2 . . . uk�1uk(v1v2

. . . vl�1vl)�1 is a cyclic conjugate of some R 2 (VP [R±1) and k = d(|R|+1)/2e. We allow
R 2 VP because the input word is not assumed to be cyclically P -reduced. We interpret all
subscripts cyclically, so that xn+1 = x1. Also, we let r := max{|R| : R 2 R} be the length
of the longest green relator.

Algorithm 6.1.1. RSymSolveSimpler(w = x1 . . . xn):

124
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Step 1 Store w as a doubly-linked list: each letter has a pointer to the letter before it, and the
letter after it.

Step 2 Set ↵ := 1.
Step 3 Search for ↵  i  n such that xixi+1 =F (X�) 1.

(i) Let i, u := xixi+1 be the first such found, if any. Let v := ⌘ be the empty word,
let m = 2, and go to Step 5.

(ii) If none such exists then w is already cyclically �-reduced. In that case go to Step
4.

Step 4 For each ↵  i  n do: search for m 2 {1, . . . , d(r + 1)/2e} and (u, v) 2 L1 such
that

xixi+1 . . . xi+m�2xi+m�1 =F (X�) u.

(i) Let i,m, v := v1 . . . vl be the first such found, if any.
(ii) If none such exist then w is already cyclically P-reduced. Terminate and return

w.

Step 5 Put a pointer CutStart to xi�1 and a pointer CutEnd to xi+m.
Step 6 Replace u by v in w and update the links in the list describing w so that v is inserted

into the correct place in x1 . . . xn, yielding a word w1.
Step 7 Let j be the position in w1 to which CutStart points, and let ↵ := max{1, j � d(r +

1)/2e+ 1}. Replace n by |w1|, and go to Step 3 with w1 in place of w.
Step 8 Repeat the process above until no further reductions are found, resulting with a word

w0. Return w0.

In the statement of the next proposition we treat |X|, |R| and r as constants.

Proposition 6.1.2. For all n 2 N, and for all x1 . . . xn 2 X⇤, RSymSolveSimpler(w =

x1 . . . xn) finds a cyclically P-reduced word that is G-conjugate to w in time O(n).

Proof. By Remark 2.6.15 we can solve the word problem in G by the standard Dehn algorithm
using the length reducing rewrite rules derived from VP [ R (i.e. P is a Dehn presentation).
Hence if w is not cyclically P-reduced, then at least one of the following statements holds.

1. xixi+1 =F (X�) 1 for some 1  i  n;

2. some cyclic permutation of w contains a contiguous sub-word u = u1u2 . . . uk�1uk,
such that there exists a cyclic conjugate uv = u1u2 . . . uk(v1v2 . . . vl)�1 of some R 2
(VP [R±1) and k = d(|R|+ 1)/2e.

Hence either i, or the word u will be found by RSymSolveSimpler. To find such i or u,
RSymSolveSimpler runs

(i) O(n) tests w1 =F (X�) 1, where w1 is a length two sub-word of w; and

(ii) O(n) tests of equality in F (X�) of words w1 = t1 . . . tm with m  (r + 1)/2 that are
sub-words of w, with the first entry of each pair in L1.

By Corollary 2.3.12 we can solve the word problem in U(P ) (and hence also in F (X�)) in
linear time, hence each such test takes time O(1). Moreover, after each replacement of a sub-
string of w we backtrack at most O(1) letters, and each such replacement shortens |w|, so
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at most O(n) replacements are carried out. Hence the overall complexity of RSymSolve

Simpler(w) is as stated. ⌅

Remark 6.1.3. We note that if the input word w to RSymSolveSimpler has w =G 1,
then RSymSolveSimpler(w) = ⌘. We implemented RSymSolveSimpler using the two
stack model, the principle is described for example in [22].

6.2 Algorithms for conjugacy diagrams in T

In this section we present algorithms for analysing diagrams in T . Let w1 = a1 . . . an 2 X⇤

and w2 = b1 . . . bm 2 X⇤.

Definition 6.2.1. [34, Definition 7.3] Let R 2 R±, and fix a word w = x1x2 . . . x|w| such that
R = wk with k maximal amongst such expressions for R. We call w the root of R. A location
on R is an ordered triple (i, a, b), denoted by R(i, a, b), where i 2 {1, . . . , |w|}, a = xi�1 (or
x|w| if i = 1), and b = xi.

Definition 6.2.2. [34, Definition 7.11] We call a letter x 2 X� an R-letter if x occurs in
R 2 R±. Observe that since we ignore the internal structure of red blobs, if x 2 X� is a
non-R-letter, then x can appear only on @(�A).

Throughout the rest of this section let lr be the length of the root of w2. IsConjugate

uses various auxiliary sub-routines. In this section, we present algorithms that check whether
there exists a diagram in T with boundary words w1 and w2 (see Theorem 6.2.15). We describe
them via pseudocodes (see Algorithms 6.2.3-6.2.13).

Our algorithms seek to find x 2 X⇤ such that xw0
2x

�1w�1
1 =G 1 for some cyclic permu-

tation w0
2 of w2 (note that it suffices to consider only cyclic permutations of w2 that start in

position 1  x  lr). If they succeed, then by concatenating the inverse of the appropriate
prefix of w2 with x they return x1 2 X⇤ such that x1w2x

�1
1 =G w1. We prove their correctness

at the end of this section, see Lemma 6.2.14 and Theorem 6.2.15. To check that a given word
is equal to the identity in G, we use RSymSolveSimpler as it gives the correct answer by
Remark 6.1.3.

The sub-routine CyclicConj checks (and finds a conjugating word) whether there is a
cyclic permutation of w2 equal in G to w1, or to w0

1 = a2 . . . ana1. Note that CyclicConj

checks whether w1 and w2 satisfy assumptions of Theorem 5.6.1.

Algorithm 6.2.3. CyclicConj(w1, w2 = b1b2 . . . bm):

Step 1 For each x 2 [1 . . . lr] do:

(i) Let w0
2 = bx . . . bmb1 . . . bx�1. If RSymSolveSimpler(w0

2w
�
1 ) = ⌘ then re-

turn true, (b1b2 . . . bx�1)�.
(ii) If RSymSolveSimpler(w0

2w
0�
1 ) = ⌘ then return true, a1(b1b2 . . . bx�1)�.

Step 2 Return false.

We next compute a list B of cyclic words w 2 X⇤ that satisfy all of the following condi-
tions:
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1. w is equal to 1 in U(P ).

2. 3  |w|  6.

3. No proper non-empty sub-word of w is equal to 1 in U(P ).

4. Each consecutive pair of letters in w multiply.

5. w contains at most two non-R-letters.

Lemma 6.2.4. Assume that that there exists a diagram �A 2 T with boundary words w1 and
w2 that satisfies Theorem 5.6.1.

If one of the Statements 1 (ii)-(iii), or Statement 2 (ii) of Theorem 5.6.1 holds for �A, then
the list B contains all potential boundary words of the red blob B.

Proof. Let w be the boundary word of B. Since B is simply-connected, w is equal to 1 in
U(P ), so w satisfies Condition 1. As B contains at least one red triangle, we have |w| � 3.
Hence Condition 2 holds for w.

By Axiom T4 (see Definition 3.1.8) Condition 3 also holds for w, and by Lemma 2.5.13
w satisfies Condition 4. Since a highly hyperbolic red blob (see Definition 4.6.8) contains
two boundary edges, B contains at most two boundary edges. Hence w contains at most two
non-R-letters. Thus, B satisfies the lemma. ⌅

Definition 6.2.5. [34, Definition 7.4] A potential place P is a triple (R(i, a, b), c, C), where
R(i, a, b) is a location, c 2 X , and C 2 {G,R}. A potential place is a place if it is instantiable,
in the following sense.

(i) There exists a �-reduced annular or simply-connected diagram � (see Definition 2.5.15)
with a face f labelled R, a face f2 meeting f at b, and a vertex between a and b on @(f)
of degree at least three;

(ii) the half-edge on f2 after b� is labelled c;

(ii) if C = G then f2 is green, and if C = R then f2 is a red blob.

We say that P is green if C = G and red otherwise.

We shall work only with instantiable places. If C = G, then as � is �-reduced, there exists
a location R0(j, b�, c) such that the label of R0 beginning at b� is not equal in F (X�) to the
inverse of the label of R that ends at b. If C = R, then shall work only with the case where f2

is simply-connected, hence by Axiom T4 the boundary words of f2 are cyclically �-reduced,
and therefore by Lemma 2.5.13 (b�, c) is an intermult pair (see Definition 2.3.13).

Before running the algorithms described below, we compute all instantiable places, as fol-
lows. We first compute an array of all intermult pairs, and then find all locations R(i, a, b) with
R 2 R±. For each such location R(i, a, b), each c 2 X , and each C 2 {R,G}, if C = R then
we check that b� intermults with c, else we check if there exists a location R0(j, b�, c) with the
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property that a simply-connected diagram equal to the union of faces labelled by R and R0 that
share the edge with label b is �-reduced.

We now present several sub-routines, where each of them tries to find a diagram in T with
boundary words w1 and w2 that satisfies Theorem 5.6.1. If a sub-routine returns returns false,
then there does not exist such diagram. Else it returns true; and if it returns true, then it also
returns an x 2 X⇤ such that w1 =G wx�1

2 . In our pseudocodes Rels is a record containing all
words in R±1, and the root for each R 2 R±1.

We first consider Case 1 of Theorem 5.6.1. The sub-routine EdgeWithFirstLetter

stores all R 2 R± (and their cyclic permutations) starting with a1. We are only checking
the first letter of w1 since there does not have to be longer common sub-words. Note that
EdgeWith FirstLetter stores all labels of internal green faces F satisfying Statement 1 of
Theorem 5.6.1.

Algorithm 6.2.6. EdgeWithFirstLetter(w1, Rels):

Step 1 Initialize L := [ ].
Step 2 For each R 2 R±1 do:

(i) Let w = w1 . . . w◆ be the root of R. Write R = wk.

(ii) For each 1  i  ◆ do:

(a) If wi = a1 then append wi . . . w◆wk�1w1 . . . wi�1 to L.

Step 3 Return L.

In descriptions of the remaining algorithms we let L = EdgeWithFirstLetter(w1, Rels).
The next sub-routine, BothBoundaries, checks whether there exists a diagram in T that sat-
isfies Statement 1 (i) of Theorem 5.6.1. It does so by checking whether any relator found by
EdgeWithFirstLetter has a prefix x such that w1 =G wx�1

2 .

Algorithm 6.2.7. BothBoundaries(w1, w2 = b1b2 . . . bm, L, Rels):

Step 1 For each x 2 [1 . . . lr] for each R 2 L and for each prefix c of R do:

(i) If RSymSolveSimpler(cbx . . . bx�1c�w�
1 ) = ⌘ then return true, c(b1b2 . . .

bx�1)�.

Step 2 Return false.

The function ConjByTwoLabels checks if there exists a diagram in T that satisfies
Statement 1 (ii) of Theorem 5.6.1, or a diagram in T with edge-incident green faces F and F1

that satisfy Statement 1 (iii) of Theorem 5.6.1. For all relators R (and their cyclic permutations)
that potentially label an internal green face F that satisfies Statement 1 of Theorem 5.6.1, it
checks whether any internal green face or a red blob edge-incident with F has an edge on ⌧ .
To find the boundary word of such a blob, by Lemma 6.2.4 we can use B.

Algorithm 6.2.8. ConjByTwoLabels(w1, w2, L,B, Rels):

Step 1 For each x 2 [1 . . . lr] for each R = r1r2 . . . rk 2 L and for each 2  i  k do:

(i) For each location R1(j, r�i , d) instantiating a green place (R(◆, ri�1, ri), d,G)
do:
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(a) For each letter u of R1 with bx = u� do: write R1 = s1r�i ds2us3, for some
s1, s2, s3 2 X⇤, and let c := (r1r2 . . . ri�1)ds2u.

If RSymSolveSimpler(cbx . . . bx�1c�w�
1 ) = ⌘ then return true, c(b1b2 . . .

bx�1)�.

(ii) For each red place (R(◆, ri�1, ri), d,R) and for each 3  l  6 do:

(a) For each B = dm2 . . .ml�1r�i 2 B and for each letter m of B with bx = m�

do:

Let c := (r1r2 . . . ri�1)dm2 . . .m. If RSymSolveSimpler(c bx . . . bx�1

c�w�
1 ) = ⌘ then return true, c(b1b2 . . . bx�1)�.

Step 2 Return false.

Using the same ideas as in our previous sub-routines we now present a sub-routine ConjBy

ThreeLabels, which checks if there exists a diagram in T with green faces F, F1 and a red
blob B that satisfy Statement 1 (iii) of Theorem 5.6.1.

Algorithm 6.2.9. ConjByThreeLabels(w1, w2, L,B, Rels):

Step 1 For each x 2 [1 . . . lr] for each R = r1r2 . . . rk 2 L and for each 2  i  k do:

(i) For each red place (R(◆, ri�1, ri), d,R) and for each 3  l  4 do:

(a) For each B = m1 . . .ml = dm2 . . .ml�1r�i 2 B and for each 1  j  l do:
(A) For each location R1(◆1,m�

j , e) and for each letter u of R1 with bx = u�

do:

Write R1 = s1m�
j es2us3, for some s1, s2, s3 2 X⇤, and let c :=

(r1r2 . . . ri�1)(dm2 . . .mj�1) es2u.

If RSymSolveSimpler(cbx . . . bx�1c�w�
1 ) = ⌘ then return true,

c(b1b2 . . . bx�1)�.

Step 2 Return false.

The sub-routine ComplicatedRedBlobs checks if there exists a diagram in T that
satisfies Statement 1 (iv) of Theorem 5.6.1. As we shall see later, if such a diagram ex-
ists, then we can assume that it has minimal coloured area (see Definition 3.1.3). Hence
ComplicatedRedBlobs checks if there is a word xy 2 X⇤ or xyz 2 X⇤ that satisfies
Proposition 4.6.18. ComplicatedRedBlobs uses a list L23 that contains all xy 2 X⇤ such
that x 6= y� and (x, y) 2 D(P ); and all xyz 2 X⇤ such that (x, y) 2 D(P ), (y, z) 2 D(P ),
and no sub-word of xyz is trivial in U(P ).

Algorithm 6.2.10. ComplicatedRedBlobs(w1, w2, L,L23, Rels):

Step 1 For each t 2 [1 . . . lr] for each R = r1r2 . . . rk 2 L and for each 2  i  k do:

(i) For each location R(◆, ri�1, ri) and for each w = m1 . . .mn 2 L23 with m1 = ri
do:

(a) Let c := (r1r2 . . . ri�1)w. If RSymSolveSimpler(cbt . . . bt�1c�w�
1 ) =

⌘ then return true, c(b1b2 . . . bt�1)�.
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(b) If |w| = 3 then for each location R1(◆1,m3, e) and for each letter u of R1

with bt = u� do:
(A) Write R1 = s1m3es2us3, for some s1, s2, s3 2 X⇤, and let c :=

(r1r2 . . . ri�1)(m1m2)(m3es2)u.

If RSymSolve Simpler(cbt . . . bt�1c�w�
1 ) = ⌘ then return true,

c(b1b2 . . . bt�1)�.

Step 2 Return false.

Finally, we consider Case 2 of Theorem 5.6.1. The algorithm StartAtIthLetter takes
an input 1  i  |w1| = n, and runs Algorithms 6.2.6-6.2.10 on input w0

1 and w2, where
w0
1 = ai . . . anai�1. In the case i = 2, StartAtIthLetter checks if there exists a diagram in

T that satisfies Statement 2 (i) of Theorem 5.6.1.

Algorithm 6.2.11. StartAtIthLetter(i, w2,B,L23, Rels):

Step 1 w0
1 := ai . . . anai�1; L := EdgeWithFirstLetter(w0

1, Rels) (see Algorithm 6.2.6).
Step 2 conj, c := BothBoundaries(w0

1, w2, L, Rels) (see Algorithm 6.2.7). If conj then
return true, a1 . . . ai�1c.

Step 3 conj, c := ConjByTwoLabels(w0
1, w2, L,B, Rels) (see Algorithm 6.2.8). If conj

then return true, a1 . . . ai�1c.
Step 4 conj, c := ConjByThreeLabels(w0

1, w2, L,B, Rels) (see Algorithm 6.2.9). If
conj then return true, a1 . . . ai�1c.

Step 5 conj, c := ComplicatedRedBlobs(w0
1, w2, L,L23, Rels) (see Algorithm 6.2.10).

If conj then return true, a1 . . . ai�1c.
Step 6 Return false.

It remains to consider Case 2 (ii) of Theorem 5.6.1. Using the same ideas as before the
sub-routine StartWithRedBlob checks if there exists a diagram in T with a red blob B

and a green face F that satisfy Statement 2 (ii) of Theorem 5.6.1.

Algorithm 6.2.12. StartWithRedBlob(w1, w2,B, Rels):

Step 1 For each x 2 [1 . . . lr] for each B = m1m2 . . .mt 2 B with m1 = a1 and for each
2  j  t do:

(i) For each location R(◆,m�
j , d) and for each letter u of R with bx = u� do:

(a) Write R = m�
j ds1us2, for some s1, s2 2 X⇤, and let c := m1m2 . . .mj�1

ds1u.

If RSymSolveSimpler(cbx . . . bx�1c�w�
1 ) = ⌘ then return true, c(b1b2

. . . bx�1)�.

Step 2 Return false.

Finally, we present the algorithm ConjInT that uses the sub-routines presented above to
check if there exists a diagram in T with boundary words w1 and w2.

Algorithm 6.2.13. ConjInT(w1, w2,B,L23, Rels):

Step 1 Find the length of the root of w2. conj, c := CyclicConj(w1, w2) (see Algorithm
6.2.3). If conj then return true, c.
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Step 2 conj, c := StartAtIthLetter(1, w2,B,L23, Rels) (see Algorithm 6.2.11). If conj
then return true, c.

Step 3 conj, c := StartWithRedBlob(w1, w2,B, Rels) (see Algorithm 6.2.12). If conj
then return true, c.

Step 4 If |w1| > 1 then conj, c := StartAtIthLetter(2, w2,B,L23, Rels). If conj then
return true, c.

Step 5 Return false.

We shall show that if ConjInT returns false, then there does not exist a diagram in T
with boundary words w1 and w2. Before doing so, we prove the following auxiliary lemma.

Lemma 6.2.14. Let r := max{|R| : R 2 R}. All of the following statements hold.

1. The lists L23 and B can be constructed in time O(|X|3) and O(|X|6) respectively, and
|L23| = O(|X|3), |B| = O(|X|6).

2. The length of the root of w2 can be found in time O(|w2|2).

3. If CyclicConj(w1, w2) returns true, then it returns an x 2 X⇤ such that w1 =G wx�1

2 ,
and w1 and w2 do not satisfy assumptions of Theorem 5.6.1 if and only if CyclicConj(w1, w2)

returns true.

The running time of CyclicConj(w1, w2) is O((|w1|+ |w2|) · |w2|).

4. EdgeWithFirstLetter(w1, Rels) stores a list of size O(r|R|) containing all potential
labels of internal green faces F that satisfy Statement 1 of Theorem 5.6.1.

EdgeWithFirstLetter(w1, Rels) has time complexity O(r2|R|).

Proof. Proof of 1. The proof of complexity is very similar to the proof of complexity of Step
6 of RSymVerify (see [34, Procedure 7.19]), see the proof of [34, Theorem 7.22]. Since all
w 2 L23 have |w|  3 and all w 2 B have |w|  6, it follows that |L23| = O(|X|3) and
|B| = O(|X|6).

Proof of 2. We first find w that maximises the value of k for which w2 = wk. For 2 
l  |w2|/2, we let w be the prefix of w2 of length l, and test whether w|w2|/l = w2, in time
O(|w2|2).

Proof of 3. If CyclicConj returns true, then the x 2 X⇤ returned by it satisfies w1 =G

wx�1

2 , and the cyclic permutation w0
2 of w2 is equal in G to w1 or to w0

1 = a2 . . . ana1. The
reverse implication follows similarly. The complexity statement follows from Proposition 6.1.2
since RSymSolveSimpler runs in linear time.

Proof of 4. EdgeWithFirstLetter stores all R 2 R± (and their cyclic permutations)
starting with a1, hence the first statement follows. As each of the O(r|R|) checks of equality
wi = a1 performed by EdgeWithFirstLetter takes constant time, and adding a word to
the list L takes time O(r), we see that EdgeWithFirstLetter runs in the stated time. ⌅

The following theorem constitutes the main result of this section.
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Theorem 6.2.15. Assume that there exists �A 2 T over P with boundary words w1 and
w2, with CArea(�A) � (1, 0), and of minimal coloured area. Then ConjInT(w1, w2,

B,L23, Rels) returns true; and if it returns true, then it returns an x 2 X⇤ such that
w1 =G wx�1

2 .

Let r := max{|R| : R 2 R}. The running time of ConjInT(w1, w2,B,L23, Rels) is
O((r4|R|2|X|3 + r2|R||X|5) · (|w1|+ |w2|) · |w2|).

Proof. Assume that there exists a diagram �A with properties as in the statement of the theo-
rem. By Part 3 of Lemma 6.2.14 we can without loss of generality assume that CyclicConj(w1,

w2) returns false. Then w1 and w2 satisfy assumptions of Theorem 5.6.1, hence Theorem
5.6.1 holds for �A. Furthermore, by Part 4 of Lemma 6.2.14 EdgeWithFirstLetter(w1,

Rels) stores a list L containing all potential labels of internal green faces F of �A that satisfy
Statement 1 of Theorem 5.6.1.

Suppose first that �A satisfies Statement 1 of Theorem 5.6.1. Assume that �A satisfies
Statement (i). Then by construction BothBoundaries(w1, w2, L, Rels) returns true; and
if it returns true, then it returns an x 2 X⇤ such that w1 =G wx�1

2 . Assume next that �A
satisfies Statement (ii), or that there are edge-incident green faces F and F1 that satisfy State-
ment (iii). Then by construction ConjByTwoLabels(w1, w2, L,B, Rels) returns true; and
if it returns true, then it returns an x 2 X⇤ satisfying the theorem. If �A does not sat-
isfy any of the previous two assumptions, then either: (a) There are green faces F, F1 ✓
�A and a red blob B ✓ �A that satisfy Statement (iii), or (b) �A satisfies Statement (iv).
Suppose first that Case (a) holds for �A. Then ConjByThreeLabels(w1, w2, L,B, Rels)
returns true; and if it returns true, then it returns an x 2 X⇤ with the desired proper-
ties. Now suppose that Case (b) holds for �A. Then as �A has minimal coloured area,
there exists a retriangulation B1 of B satisfying Proposition 4.6.18. Hence by construction,
ComplicatedRedBlobs(w1, w2, L,L23, Rels) returns true; and if it returns true, then it
returns an x 2 X⇤ such that w1 =G wx�1

2 . Thus, if �A satisfies Statement 1 of Theorem 5.6.1,
then StartAtIthLetter(1, w2,B,L23, Rels) returns true. Also, if StartAtIthLetter(i,

w2,B,L23, Rels) returns true, then it returns an x 2 X⇤ with w1 =G wx�1

2 .

Assume next that �A satisfies Statement 2 (i) of Theorem 5.6.1. Then by above StartAtIth

Letter(2, w2, B,L23, Rels) returns true. Finally, assume that �A satisfies Statement 2 (ii).
Then by construction StartWithRedBlob(w1, w2,B, Rels) returns true; and if it returns
true, then it returns an x 2 X⇤ with w1 =G wx�1

2 . Thus, the first statement of the theorem
holds.

To prove the second statement, first note that by Lemma 6.2.14 it suffices to analyse time
complexity of Algorithms 6.2.7-6.2.10 & 6.2.12.

Time complexity of BothBoundaries(w1, w2, L, Rels). By Part 4 of Lemma 6.2.14
|L| = O(r|R|). Now for each 1  x  lr and for each R 2 L, finding c takes time
O(r). Hence as by Proposition 6.1.2 RSymSolveSimpler runs in linear time, it follows that
BothBoundaries runs in time O((r2|R|) · ((|w1|+ |w2|) · |w2|)).
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Time complexity of ConjByTwoLabels(w1, w2, L,B, Rels) and of ConjByThree

Labels(w1, w2, L,B, Rels). Each red and green place on each R 2 L can be found in time
O(r|X|), and each green place has O(r|R|) locations instantiating it. For relator R1 the letter
u can be found in time O(r). Hence as RSymSolveSimpler runs in linear time, Part (i) of
ConjByTwoLabels takes time O((r4 |R2||X|) · (|w1|+ |w2|) · |w2|)).

In Part (ii) of ConjByTwoLabels, by Part 1 of Lemma 6.2.14 the boundary word B

can be found in time O(|X|6), and there are at most O(|X|4) such words B (since the first
and the last letter of B is fixed). Furthermore, the letter m can be found in constant time
(since there are at most 6 possibilities). Hence Part (ii) of ConjByTwoLabels takes time
O((r2|R||X|5) · (|w1| + |w2|) · |w2|)). The overall complexity of ConjByTwoLabels is
therefore O((r4|R|2|X|+ r2|R||X|5) · ((|w1|+ |w2|) · |w2|)).

Using the same ideas as in the previous two paragraphs we deduce that ConjByThree

Labels has time complexity O((r4|R|2|X|3) · (|w1|+ |w2|) · |w2|).
Time complexity of ComplicatedRedBlobs(w1, w2, L,L23, Rels). Observe that we

obtain the time complexity of ComplicatedRedBlobs by analysing Part (b) of Step 1.
The word w = m1m2m3 2 L23 with m1 = ri can be found in time O(|X|3), and there
are at most O(|X|2) such words. So similarly as for Algorithms 6.2.8-6.2.9 we deduce that
ComplicatedRedBlobs runs in time O((r4|R|2|X|2) · (|w1|+ |w2|) · |w2|).

Time complexity of StartWithRedBlob(w1, w2,B, Rels). By Part 1 of Lemma 6.2.14
the word B can be found in time O(|X|6), and there are at most O(|X|5) such words. A loca-
tion R(◆,m�

j , d) can be found in time O(r|R|), and the letter u of R can be found in time O(r).
Hence RSymSolveSimpler performs at most O(r2|R||X|5) tests, so StartWithRedBlob

runs in time O((|r2|R||X|5) · ((|w1|+ |w2|) · |w2|)).
Hence as each of the Algorithms 6.2.7-6.2.10 & 6.2.12 is run a finite number of times by

ConjInT, the theorem follows. ⌅

6.3 Algorithms for conjugacy diagrams in S

This section presents procedures for analysing minimal conjugacy diagrams (see Definition
3.1.4) that contain loops labelled by single letters. We describe a procedure, ConjLetters

(see Procedure 6.3.7), which finds conjugacy classes of single letters in G.
We begin with the following observation that holds under weaker assumptions on P than

being valid.

Lemma 6.3.1. Let G be given by a finite pregroup presentation P = hX� | VP | Ri, where
P satisfies trivial-interleaving, and RSym succeeds on P . Let t1, t2 2 X� be distinct. Then
t1 6=G t2.

Proof. Suppose for a contradiction that t1 =G t2. If (t1, t�2 ) 2 D(P ), then by uniqueness of
inverses in P and Theorem 2.3.11 (iv) we have [t1, t�2 ] 6= 1, hence [t1, t�2 ] = t 2 X�. Since
RSym succeeds on P , by Proposition 2.6.12 we have [t1, t�2 ] = t 6=G 1, a contradiction.
Hence (t1, t�2 ) 62 D(P ). Similarly, (t�2 , t1) 62 D(P ). Since P satisfies trivial-interleaving (see



134 Chapter 6: Conjugacy problem solver

Definition 2.3.23), by [34, Proposition 6.10] there exists a diagram � 2 D with boundary word
t1t�2 . But by [34, Lemma 6.11] RSym does not succeed on �, so RSym does not succeed on
P , a contradiction. We conclude that t1 6=G t2. ⌅

From Lemma 6.3.1 it follows that all conjugating elements in G between distinct t1, t2 2
X� are not equal to 1 in P . Also, if t1, t2 are conjugate in U(P ), then by Theorem 3.2.11 there
exists c 2 X� such that ct2c�t�1 =U(P ) 1.

Definition 6.3.2. The array LettersArray is indexed by t1, t2 2 X� with t1 6= t2. We set
LettersArray(t1, t2) := c if there exists c 2 X� such that ct2c�t�1 =G 1. If there is no such
c, then we set LettersArray(t1, t2) := 0.

Recall Definition 2.5.14 of the 1-skeleton of a coloured diagram and Definition 3.1.6 of a
layer.

Definition 6.3.3. The procedure ConjLetters constructs a directed labelled simple graph D,
with the following properties. The vertex-set of D is X�. Let t1, t2 2 X� be distinct. There
is an arc e = (t1, t2) if there exists c 2 X⇤ such that ct2c�t�1 =G 1, and at least one of the
following two conditions holds.

1. c 2 X�.

2. There exists a minimal coloured conjugacy diagram �A for t1 and t2 such that c labels
a path p 2 (�A)1 with endpoints lying on the opposite boundaries of �A, and �A is a
single layer.

The label of e is any d 2 X⇤ such that dt2d�t�1 =G 1 (note that we may have d 6= c).

Proposition 6.3.4. The components of D are conjugacy classes in G of single letters.

Proof. Let t1 and t2 be distinct elements of X� that are conjugate in G. If there exists c 2 X�

such that ct2c�t�1 =G 1, then by Definition 6.3.3 there is an arc (t1, t2) in D. So we can assume
that no such c exists. Then by Theorem 3.2.11 t1 and t2 are not U(P )-conjugate. Moreover,
as RSym succeeds on P , by Proposition 2.6.12 t1 and t2 are non-trivial in G. Therefore, by
Proposition 3.1.5 there exists a minimal conjugacy diagram (see Definition 3.1.4) �A for t1
and t2. By Lemma 3.1.7 �A is a face-disjoint union of finitely many layers, and as �A is a
minimal conjugacy diagram, the same holds for each of its layers. Hence there is path in D

with endpoints t1 and t2.
One the other hand, if distinct t1, t2 2 X� are in the same connected component of D, then

by Definition 6.3.3 t1 and t2 are conjugate in G. ⌅

Recall Definition 3.3.1 of a decomposable annular diagram.

Lemma 6.3.5. Let �A 2 S \ T . Assume that both of the following statements hold:

• �A is a single layer.
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• The boundary words of �A are not single letters G-conjugate by any single letter.

Then �A is decomposable and �A satisfies Statements (i)-(ii) of Definition 3.3.2. Let � be the
core of �A and let B be a boundary red blob of �A. Then for the label t of the loop of B, there
exists a pair (c, d) 2 (X�)2 such that

1. cd labels @(�) \ @(B);

2. (c, d) 2 D(P ); c 6= d�;

3. there exists ↵ 2 X� such that ↵[cd]↵�t� =U(P ) 1.

Proof. By the assumptions and Definition 3.3.2 either �A 2 T , or �A is decomposable and �A
satisfies Statements (i)-(ii) of Definition 3.3.2. Hence as �A 2 S \ T , the latter holds for �A,
so we can let � and B be the core and a boundary red blob of �A respectively. Let cd be a label
of @(�) \ @(B). Then by Definition 3.3.2 we have (c, d) 2 D(P ); c 6= d�; and t 6=P [cd]:
so by Theorem 3.2.11 and Lemma 6.3.1, t is U(P )-conjugate to [cd] by some ↵ 2 X�. The
lemma follows. ⌅

Notation 6.3.6. Let D be the graph from Definition 6.3.3. We denote by ec(t1,t2) the arc in D

with initial vertex t1 and terminal vertex t2, labelled by c.

Recall the lists B, L23 and the record Rels from Section 6.2.

Procedure 6.3.7. ConjLetters(B,L23, Rels):

Step 1 Let D be the null graph on X� vertices, and construct LettersArray.
Step 2 For t1, t2 2 X� with t1 6= t2 do: if there is not an arc in D between t1 and t2 then

(i) If LettersArray(t1, t2) = �, then add arcs e�(t1,t2) and e�
�

(t2,t1)
to D and go to

the beginning of Step 2.

(ii) conj, � := ConjInT(t1, t2,B,L23, Rels) (see Algorithm 6.2.13). If conj then
add arcs e�(t1,t2) and e�

�

(t2,t1)
to D and go to the beginning of Step 2.

(iii) For c1, d1 2 (X�)2 with (c1, d1) 2 D(P ) and c1 6= d�1 do:

If there exists ↵ 2 X� such that ↵[c1d1]↵�t�1 =U(P ) 1 then

conj, � := ConjInT(c1d1, t2,B,L23, Rels). If conj then add arcs e↵�(t1,t2) and

e(↵�)
�

(t2,t1)
to D and go to the beginning of Step 2.

(a) For (c2, d2) 2 (X�)2 with (c2, d2) 2 D(P ) and c2 6= d�2 do:

If there exists � 2 X� such that �[c2d2]��t�2 =U(P ) 1 then

conj, � := ConjInT(t1, c2d2,B,L23, Rels). If conj then add arcs e��
�

(t1,t2)

and e(��
�)�

(t2,t1)
to D and go to the beginning of Step 2.

conj, � := ConjInT(c1d1, c2d2,B,L23, Rels). If conj then add arcs
e↵��

�

(t1,t2)
and e(↵��

�)�

(t2,t1)
to D and go to the beginning of Step 2.
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Step 3 Return LettersArray, D.

Proposition 6.3.8. The graph D from Definition 6.3.3 can be constructed by ConjLetters in
time O(r4|R|2|X|9 + r2|R||X|11), where r := max{|R| : R 2 R} is the length of the longest
green relator.

Proof. To prove that ConjLetters constructs D, we show that given t1, t2 2 X� with t1 6=
t2, if there is a c that satisfies Definition 6.3.3, then ConjLetters adds an arc e = (t1, t2)

with label d according to Definition 6.3.3. So assume that such a c exists. If c 2 X�, then
LettersArray(t1, t2) = d for some d 2 X�, hence in Step 2 (i) ConjLetters adds a correct
arc to D.

Now suppose that c satisfies Condition 2 of Definition 6.3.3. By the previous paragraph we
can assume that t1 and t2 are not G-conjugate by any single letter. Then by Theorem 3.2.11 t1

and t2 are not U(P )-conjugate. By Assumption 2.3.15 (which states that no R 2 R satisfies
|R| 2 {1, 2}) t1 and t2 are cyclically P-reduced, and as RSym succeeds on P , by Proposition
2.6.12 t1 and t2 are non-trivial in G. Hence as �A is a single layer, by Theorem 3.3.3 there is
a minimal conjugacy diagram �A 2 S (see Definition 3.3.2) with boundary words t1 and t2,
and consisting of a single layer. Since t1 and t2 are not U(P )-conjugate, by Theorem 3.1.2
CArea(�A) � (1, 0); and by Definition 3.1.4 �A has minimal coloured area. Assume first
that �A 2 T . Then by Theorem 6.2.15 in Step 2 (ii) ConjLetters adds a correct arc to D.

Assume instead that �A 62 T . Then by Lemma 6.3.5 �A is decomposable, �A satisfies
Statements (i)-(ii) of Definition 3.3.2, and for the label t of the loop of each boundary red blob
of �A there exists a pair (c, d) 2 (X�)2 that satisfies Statements 1-3 of the lemma. Since �A

has minimal coloured area, the same is true for its core �. Also, CArea(�A) � (1, 0) implies
CArea(�) � (1, 0), hence by Theorem 6.2.15 in Step 2 (iii) ConjLetters adds again a
correct arc to D. Thus, we showed that ConjLetters constructs D.

Note that to prove the final statement, it suffices to analyse the time complexity of Step 2
(iii). By Theorem 6.2.15 ConjInT runs in time O(r4|R|2|X|3 + r2|R||X|5) when called by
ConjLetters. Hence as ConjLetters may need to run through all pairs (c1, d1), (c2, d2) 2
(X�)2, Step 2 (iii) of ConjLetters takes time O(r4|R|2|X|7 + r2|R||X|9). Now Conj

Letters runs Step 2 at most O(|X|2) times, so the overall complexity is as stated. ⌅

Let w1, w2 2 X⇤ be cyclically P-reduced and non-trivial in G. The next algorithm checks
if there exists a minimal conjugacy diagram for w1 and w2 that contains a loop.

Algorithm 6.3.9. LoopyDiagram(w1, w2, LettersArray, D,B,L23, Rels):
// input: D – the graph from Definition 6.3.3.

Step 1 For 1  i  2 and ti 2 X� do:

(i) If RSymSolveSimpler(wit�i ) = ⌘ (see Algorithm 6.1.1) then let �i := ⌘ be
the empty word and go to the beginning of Step 1.

(ii) conj, � := ConjInT(wi, ti,B,L23, Rels). If conj then �i := � and go to the
beginning of Step 1.
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(iii) For c, d 2 (X�)2 with (c, d) 2 D(P ) and c 6= d� do:

If there exists ↵ 2 X� such that ↵[cd]↵�t�i =U(P ) 1 then

conj, � := ConjInT(wi, cd,B,L23, Rels). If conj then �i := �↵� and go to
the beginning of Step 1.

Step 2 If t1 and t2 are in the same component of D, then let �3 be the label of p, a shortest
path in D from t1 to t2. If �1 and �2 are defined, then return true, �1�3��2 .

Step 3 Return false.

Theorem 6.3.10. Suppose that LettersArray and the graph D from Definition 6.3.3 have
been constructed, and that either w1 and w2 are G-conjugate and are both equal to single
letters in G, or there exists a minimal conjugacy diagram �A for w1 and w2 that contains a
loop. Then LoopyDiagram(w1, w2, LettersArray, D,B,L23, Rels) returns true; and if
it returns true, then it returns an x 2 X⇤ such that w1 =G wx�1

2 .
Let r := max{|R| : R 2 R}. The running time of LoopyDiagram(w1, w2, Letters

Array, D,B,L23, Rels) is O((r4|R|2|X|6 + r2|R||X|8) · (max{|w1|, |w2|})).

Proof. Let i 2 {1, 2}. Assume first that wi =G t for some t 2 X�. Then by Proposition 6.1.2
in Step 1 (i) of LoopyDiagram we have RSymSolveSimpler(wit�) = ⌘.

Assume instead that wi 6=G t for all t 2 X�, so that �A exists. Since �A contains a loop,
by Lemma 3.1.7 �A is a face-disjoint union of finitely many layers. Hence for each i 2 {1, 2},
there exists ti 2 X� and a layer �i of �A with boundary words wi and ti. Since �A is a minimal
conjugacy diagram, the same holds for �i. Suppose that wi and ti are U(P )-conjugate. Then
by Theorem 3.2.11 |wi| = 1, contradicting our assumption, so they are not U(P )-conjugate.
Similarly as in the proof of Proposition 6.3.8 we can use Assumption 2.3.15 and the fact that
RSym succeeds on P to deduce that ti is cyclically P-reduced and non-trivial in G. Hence
as by the assumption the same holds for wi and �i is a single layer, by Theorem 3.3.3 there
exists a minimal conjugacy diagram �A 2 S with boundary words wi and ti, and consisting
of a single layer. Furthermore, by Theorem 3.1.2 we have CArea(�A) � (1, 0) since wi and
ti are not U(P )-conjugate; and by Definition 3.1.4�A has minimal coloured area.

Assume first that �A 2 T . Then by Theorem 6.2.15 in Step 1 (ii) of LoopyDiagram,
for some t0i 2 X� the algorithm ConjInT(wi, t0i,B,L23, Rels) returns true; and if it returns

true, then it returns �i 2 X⇤ such that wi =G t
0��1

i
i .

Assume instead that �A 62 T . Then �A satisfies assumptions of Lemma 6.3.5. Hence as
|wi| � 2, by Lemma 6.3.5 �A is decomposable with precisely one boundary red blob B, �A

satisfies Statements (i)-(ii) of Definition 3.3.2, and for the label t of the loop of B there exists a
pair (c, d) 2 (X�)2 that satisfies Statements 1-3 of the lemma. Since�A has minimal coloured
area, the same holds for its core �. Now CArea(�A) � (1, 0) implies CArea(�) � (1, 0),
hence by Theorem 6.2.15 in Step 1 (iii) for some t0i 2 X�, LoopyDiagram returns true;

and if it returns true, then it returns �i 2 X⇤ such that wi =G t
0��1

i
i .
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Thus, for each i 2 {1, 2}: in Step 1 LoopyDiagram finds ti 2 X� that is G-conjugate to
wi; and if any of the sub-routines returns true, then (for some ti 2 X�) it returns �i 2 X⇤ such
that wi =G t

��1
i

i . By Proposition 6.3.4 t1 and t2 are G-conjugate if and only if t1 and t2 are
connected in D. Hence LoopyDiagram returns true. Furthermore, if LoopyDiagram

returns true, then it also returns an x 2 X⇤ with the desired properties. Hence the first
statement follows.

Now in Step 3 of LoopyDiagram we use Dijkstra’s algorithm (see [20]) to find the
path p. This algorithm runs in time O(|V | log |V | + |E|), on a graph with |V | vertices and
|E| edges, so O(|X|2) in our case. Then note that p does not contain repeating vertices, so
we can define �3 in time O(|X|). Therefore, to prove the final statement, we need to anal-
yse the time complexity of Step 1 (iii). By Theorem 6.2.15 for each i 2 {1, 2}, ConjInT

runs in time O((r4|R|2|X|3 + r2|R||X|5) · (|wi|)) when called by LoopyDiagram. So
as LoopyDiagram may need to run through all (c, d) 2 (X�)2, Step 1 (iii) takes time
O((r4|R|2|X|5 + r2|R||X|7) · (|wi|)). Hence the theorem follows as Step 1 (iii) is computed
at most O(|X|) times. ⌅

6.4 The IsConjugate algorithm and the proof of Theorem 1.0.3

In this section we present the conjugacy problem solver, IsConjugate, and prove Theorem
1.0.3. Before running IsConjugate, we precompute data via a procedure ConjPreprocess.

ConjPreprocess takes as input a sound pregroup presentation P (see Definition 2.6.14),
and a list Rec that contains data computed by Steps 1-4 of RSymVerify (see [34, Section
7.6]) on input P: intermult table, roots of green relators, locations, places and the vertex graph.

Procedure 6.4.1. ConjPreprocess(P, Rec):

Step 1 If not IsProper(P) (see Definition 6.0.1) then return error.
Step 2 Construct B and L23 (see Section 6.2).
Step 3 LettersArray, D := ConjLetters (see Definition 6.3.3).
Step 4 Return B, L23, LettersArray, D.

Let w1, w2 2 X⇤ be cyclically P-reduced and such that |w1| = |w2|. In the description
below of IsConjugate, we write KMP(w1, w2

2) when running the Knuth-Morris-Pratt algo-
rithm on input w1 and w2

2. From [2, Section 9.1], KMP(w1, w2
2) returns true if and only if

w1 is a sub-word of w2
2, hence KMP(w1, w2

2) returns true if and only if w1 is a cyclic con-
jugate of w2. If so, then KMP(w1, w2) also returns the corresponding inverse x of a prefix
of w2 such that w1 =G wx�1

2 . Moreover, from [2, Section 9.1], KMP(w1, w2
2) runs in time

O(|w1|+ |w2|).

Algorithm 6.4.2. IsConjugate(w1, w2,B,L23, Rec):
// Input: w1, w2 – input words tested for conjugacy.

Step 1 Cyclically P-reduce w1 and w2 via RSymSolveSimpler (see Algorithm 6.1.1), and
let the resulting words be r1 and r2 respectively. If (r1 = ⌘ and r2 6= ⌘) or if (r2 = ⌘
and r1 6= ⌘) then return false. If r1 = ⌘ = r2 then return true, ⌘, ⌘, x := ⌘.

Step 2 If |r1| = |r2| then let conj, x := KMP(r1, r22). If conj then return true, r1, r2, x.
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Step 3 conj, x := LoopyDiagram(r1, r2, LettersArray, D,B,L23, Rels) (see Algo-
rithm 6.3.9). If conj then return true, r1, r2, x.

Step 4 conj, x := ConjInT(r1, r2,B,L23, Rels) (see Algorithm 6.2.13). If conj then re-
turn true, r1, r2, x.

Step 5 Return false.

We are ready to prove Theorem 1.0.3. For time complexity of IsConjugate we treat |X|,
|R| and r as constants.

Proof of Theorem 1.0.3. By Proposition 3.2.13, Lemma 6.2.14 and Proposition 6.3.8
ConjPreprocess runs in time O(r4|R|2|X|9 + r2|R||X|11). This constitutes the first claim
about construction of IsConjugate.

By Proposition 6.1.2 for each i 2 {1, 2}, ri := RSymSolveSimpler(wi) is a cyclically
P-reduced G-conjugate of wi. So to prove the correctness of IsConjugate, we need to show
that if w1 and w2 are G-conjugate, then IsConjugate returns true, else it returns false;
and if IsConjugate returns true, then it returns an x 2 X⇤ such that r2 =G rx1 .

Assume first that w1 and w2 are not G-conjugate. Then by Proposition 6.1.2 we cannot have
r1 = ⌘ = r2. Furthermore, KMP(r1, r22) returns false if |r1| = |r2|; by Theorem 6.3.10
LoopyDiagram(r1, r2, LettersArray, D,B,L23, Rels) returns false; and by Theorem
6.2.15 ConjInT(r1, r2, L,B,L23, Rels) returns false. We conclude that IsConjugate

returns false.
Now assume that w1 and w2 are G-conjugate. Then we cannot we have r1 = ⌘ and r2 6= ⌘

or r2 = ⌘ and r1 6= ⌘. If r1 = ⌘ = r2, then IsConjugate returns true in Step 1. So
assume that r1 6= ⌘ 6= r2. Then by Proposition 6.1.2 we have r1 6=G 1 6=G r2. If r1 and
r2 are cyclic conjugate or are both equal to single letters in G, then by [2, Section 9.1] and
Theorem 6.3.10 IsConjugate returns true in Steps 2 or 3. So assume that they are neither
cyclic conjugate nor both equal to the single letters in G. Then by Corollary 3.2.12 they are not
U(P )-conjugate. Hence by Proposition 3.1.5 there exists a minimal conjugacy diagram �A for
r1 and r2, and by Definition 3.1.4 �A has minimal coloured area. If �A contains a loop, then
by Theorem 6.3.10 in Step 3 IsConjugate returns true. Hence assume that �A is loop-free.
Then by Theorem 3.2.2 �A 2 T . Also, as r1 and r2 are not U(P )-conjugate, by Theorem
3.1.2 we have CArea(�A) � (1, 0). Therefore, by Theorem 6.2.15 in Step 4 IsConjugate

returns true.
Finally, assume that IsConjugate returns true. If r1 = ⌘ = r2, or if r1 and r2 are cyclic

conjugates, then in Steps 1 or 2 IsConjugate returns an x 2 X⇤ with r2 =G rx1 . Otherwise,
by Theorems 6.2.15 and 6.3.10 in Steps 3 or 4 IsConjugate returns an x 2 X⇤ with the
desired properties.

The final complexity claim follows from Proposition 6.1.2 and Theorems 6.2.15 and 6.3.10,
since for each i 2 {1, 2} we have |ri|  |wi|. ⌅
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Experiments

We implemented IsConjugate, as IsConjugate, in the computer algebra system MAGMA

(see [6]). We used the code of the implementation IsHyperbolic of RSymVerify (see
[34, Procedure 7.19]) to produce the pregroup multiplication table; to produce the lists Rec,
B and L23 from Section 6.4; to find sound pregroup presentations (see Definition 2.6.14); and
then modify it to construct RSymSolveSimpler (see Algorithm 6.1.1). The remaining sub-
routines of IsConjugate are computed by new code.

7.1 Accuracy

In this section we describe accuracy of our implementation. We want to demonstrate that on in-
put a valid (see Definition 2.6.14) pregroup presentation P = hX� | VP [Ri, IsConjugate

returns true on input w1 2 X⇤ and w2 2 X⇤ if and only if w1 and w2 are conjugate in the
group defined by P . If our implementation of IsConjugate returns true, then it should also
return a conjugating word, hence proving that the input words are indeed conjugate. Hence let
us test our implementation on input words that are conjugate, and check if it returns true and
a conjugating word.

Our aim was to come up with cases that tests the correctness of all sub-routines of IsConju

gate that perform conjugacy tests on input words. We constructed the examples by hand: in all
of them the input words are already cyclically P-reduced, so they are returned by IsConjugate.
Also, in all examples the group F (X�) is a free group, so we use x�1 to denote the inverse of
x 2 X in F (X�) instead of x� to be consistent with inputs and outputs of the implementation.
Finally, to verify that the input words w1 and w2 are conjugate, we used Derek Holt’s imple-
mentation (in GAP) of Marshall’s (see [43]) conjugacy problem solver for hyperbolic groups,
and to verify that the word c returned by IsConjugate is a conjugating word, we used the
MAGMA’s KBMAG package (by constructing an automatic structure of the input group and ver-
ifying that the product cw2c�1w�1

1 is the identity word).

Test 1: Our first example is the small cancellation group C 0(1/7)� T (4) defined as

P = ha, b, c, d | {;} | {R := [a, b][c, d]}i.

140
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Figure 7.1: The annular diagram � with the outer boundary labelled by w1 and the inner
boundary labelled by w2, see Test 2. The red curve depicts the path labelled by the conjugating
word jkheagc

.

We verified that P is valid. Let w1 = d�1cdbc�1d�1 and w2 = b�1a�1bbad�1. Checking by
hand we found that there is an annular diagram � (see Definition 3.1.4) with boundary words
w1 and w2 containing two internal green faces labelled by R and R�1 that share an edge with
label a and have edges on both boundaries of �. As expected, IsConjugate returned true,
where BothBoundaries (see Algorithm 6.2.7) found conjugating word d�1cda�1b�1ab.

Test 2 : The next example is a presentation of the form

P = ha, b, c, d, e, f, g, h, i, j, k, l | {;} |

R := {ajkhedc, e�1ldha�1fc, c�1f�1b�1ieka�1, agchbc�1d�1}i.

The reason why P is defined on so many letters is to ensure that the steps have short length,
making P sound. Let w1 = jkhldh and w2 = c�1g�1k�1e�1i�1h�1. Then there is an
annular diagram � for w1 and w2 with CArea(�) = (4, 0), where the set of labels of the four
internal faces of � is R, all internal faces share the same two interior vertices, and there are
two pairs (D,D0) of them such that D and D0 share an edge and have edges on the opposite
boundaries of � (see Figure 7.1). IsConjugate returned true on input w1 and w2, where
ConjByTwoLabels (see Algorithm 6.2.8) found jkheagc.

In the remaining examples we use the set of red relators from Example 2.4.1, and subse-
quently add additional letters and green relators to define valid pregroup presentations.

Test 3: The first presentation formed in this way satisfies

1. X = {a, b, c, d, e, f, g, h, i, j, k, l,m};
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2. VP = {abd�1, bce�1, db�1a�1, ec�1b�1, aef�1, dcf�1};

3. R = {amhdia�1lbg, c�1jbdm�1a�1ghk}.

We aimed to test the correctness of StartWithRedBlob (see Algorithm 6.2.12), so we
chose w1 = bjbdhdi and w2 = fk�1h�1g�2b�1l�1. Then there is an annular diagram for w1

and w2 that satisfies Statement 2 (ii) of Theorem 5.6.1. IsConjugate returned true on input
w1 and w2, and StartWithRedBlob returned bd�1lbg2hkf�1.

Test 4: We took a presentation with

1. X = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, r, s, t, u, v, x};

2. VP = {abd�1, bce�1, db�1a�1, ec�1b�1, aef�1, dcf�1};

3. R = {ghijkb�1, c�1lmnh�1g�1, ft�1s�1uvx, a�1oprst}.

By taking w1 = ijklmn and w2 = r�1p�1o�1x�1v�1u�1, both conjugate to the letter e,
we were able to test the correctness of LoopyDiagram (see Algorithm 6.3.9). As de-
sired, IsConjugate returned true, and LoopyDiagram returned ijkb�1a�1 opr. We
also took w5

1 and w5
2 for testing ConjByThreeLabels (see Algorithm 6.2.9). In this case

IsConjugate returned true and ConjByThreeLabels returned ijkct�1s�1uvxopr.
Test 5: Our final presentation is for testing ComplicatedRedBlobs (see Algorithm

6.2.10). We were unable to find diagrams containing bad or complicated red blobs (see Defini-
tions 4.1.1 and 4.6.1). However, we were able to test ComplicatedRedBlobs by finding an
annular diagram � containing two internal green faces that share an edge with the same red tri-
angle, and have edges on the opposite boundaries of �. (We also let ConjInT (see Algorithm
6.2.13) skip running ConjByTwoLabels and ConjByThreeLabels on input w1 and w2,
as otherwise they would find solution before running ComplicatedRedBlobs.) We took

1. X = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, r, s, t, u, v, w, x, y, z, q};

2. VP = {abd�1, bce�1, db�1a�1, ec�1b�1, aef�1, dcf�1};

3. R = {fs�1y�1tqwz�1r�1, ysoprhgijk, d�1rzlmng�1h�1uvx};

4. w1 = wlmnijktq and w2 = x�1v�1u�1r�1p�1o�1c�1.

Then IsConjugate returned true on input w1 and w2, and ComplicatedRedBlobs re-
turned wz�1r�1fc�1. We also took w1 and a cyclic permutation mnijktqwl of w1 to test
the correctness of our implementation of the Knuth-Morris-Pratt algorithm; and two cyclic
permutations lmnijktqw and ijktqwlmn of w1 to test the correctness of CyclicConj (see
Algorithm 6.2.3). In both cases the algorithms returned correctly true and correct conjugating
words q�1t�1k�1j�1i�1n�1m�1 and w�1q�1t�1k�1j�1i�1 respectively (and with run time
only 0.01 seconds).

Thus, we found examples for testing the correctness of all sub-routines of IsConjugate

that perform conjugacy tests on input words; and in addition, in all Tests 1-5, IsConjugate
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Table 7.1: Run times of Examples (a)-(e) from Section 7.1.

Example ConjPreprocess IsConjugate
Test 1 0.070s 0.010s
Test 2 0.72s 0.010s
Test 3 7.26s 2.03s

Test 4 (i) 3.83s 0.08s
Test 4 (ii) 3.83s 0.96s

Test 5 4.55s 0.29s

returned true on all pairs of cyclic conjugates of the input words, and conjugating words were
found by different sub-routines. Finally, note that in all the examples above, by taking powers
of the input words one can find conjugate words with arbitrary length.

7.2 Efficiency

In this section we report the run times of our experiments (in seconds). Tests 1-5 from Section
7.1 are described in Table 12.1. Test 4 is split into Parts (i)-(ii), where in Part (i) IsConjugate

run on input w1 and w2, while in Part (ii) it run on w5
1 and w5

2. To analyse the worst-case
complexity of IsConjugate, we used the pregroup presentations from Tests 2-5 of Section
7.1, and chose the input words as follows:

(*) For 1  i  100, we run IsConjugate on input w⇤
1 and w⇤

2, where w⇤
1 and w⇤

2 are
random freely cyclically reduced words of lengths 10i and 10i� 5 respectively.

We were interested in the growth of run times of IsConjugate against the increase of
|w⇤

1+w⇤
2|. This relationship is depicted in Figure 7.2 (where Cases 1-4 correspond to Tests 2-5

respectively). There is a large difference between the run times in Case 2 and the other cases,
however, even in Case 2 the plot suggests a low-degree polynomial time growth, quite possibly
quadratic.

To analyse this further, we assumed that the growth is quadratic, and of the form Ax2+Bx.
To estimate the constants A and B, we picked two points (xj , yj)2j=1: one for a low value
(w⇤

1 = 50; w⇤
2 = 45) of |w⇤

1 + w⇤
2| and one for a middle value (w⇤

1 = 500; w⇤
2 = 495) of

|w⇤
1 +w⇤

2|, and solved the system of equations yj = Ax2j +Bxj for 1  j  2. As we can see
in Figure 7.3, the estimated quadratic function seems to bound the run times well.

Similarly, we tried to estimate the growth with a cubic function Ax3 + Bx2 + Cx by
choosing three points (xj , yj)3j=1 and solving the system of equations yj = Ax3j +Bx2j +Cxj

for 1  j  3. However, all estimated values A0 of A had A0 < 0, which suggests that the
growth is rather quadratic than cubic. This agrees with Theorem 1.0.3.
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Figure 7.2: Growth of run times of IsConjugate against |w⇤
1 + w⇤

2|.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 7.3: Growth of run times of IsConjugate (purple dots) compared to the estimated
quadratic growth (blue line).
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7.3 Examples where IsConjugate works and existing methods do
not

Let G = ha, b | a`, bm, (ab)ni with 2  `  m  n and 1/` + 1/m + 1/n < 1. By [34,
Proposition 9.5], G can be defined by a sound pregroup presentation (see Definition 2.6.14). In
particular, consider a group G defined by a pregroup presentation

P = ha, b |VP = {b3} |R := {(ab)7}i,

where the relation a = a� is required in the pregroup. Then P is valid, so IsConjugate

solves the conjugacy problem in G.
Let w1 = (ab)5 and w1 = (ab)�2. Then as (ab)7 2 R, we have w1 =G w2 and w7

1 =G

1 =G w7
2. IsConjugate returned correctly true on input w1 and w2. However, even on

this simple example, Marshall’s (see [43]) algorithm returned an error as it does not solve the
conjugacy problem for elements with finite order.

Finally, consider a group G defined by a pregroup presentation

P = ha, b | {;} |R := {a`=100, bm=153, (ab)n=157}i.

Then P is valid, and IsConjugate solves the conjugacy problem in G. However, in both GAP

and MAGMA, the KBMAG algorithm failed to precompute an automatic structure for G (since
too many computational steps were required to be carried out), hence all previous implementa-
tions of conjugacy problem solvers for hyperbolic groups cannot be constructed on input P –
Wakefield’s implementation (see [55, Chapters 5 & 6]) of the algorithm of Gersten and Short
(see [27]) and Marshall’s algorithm.

We expect the same outcome for all `,m, n with `  m  n and ` � 100,m � 153 and
n � 157, though the construction of IsConjugate performed by ConjPreprocess (see
Procedure 6.4.1) might take a very long time for large values of `,m, n.



Chapter 8

Improvements and generalizations of
IsConjugate

The final chapter of Part 1 includes suggestions for making the construction of IsConjugate

more efficient, and for its generalizations. Let G be given by a valid pregroup presentation
P = hX� | VP [Ri (see Definition 2.6.14). Then it might be possible to simplify Definition
3.3.2 of the set S as follows.

Definition 8.0.1. We define S 0 to be the set of all coloured annular diagrams �A over P each of
which is a face-disjoint union of layers � with area at least 1 and such that: for non-boundary
layers �, both boundaries of � have length 1, and one of the following 2 statements holds for
�.

1. The boundary words of � are single letters G-conjugate by some single letter.

2. � 2 T .

For boundary layers � the same holds, but at least one of the boundaries of � is a boundary of
�A, so may have length greater than 1.

With this definition, the construction of IsConjugate takes time O(r4|R|2|X|5+r2|R||X|7)
instead of O(r4|R|2|X|9 + r2|R||X|11).

The proof of showing an existence of a diagram in S 0 would be similar as for S . Assume
that that w1 2 X⇤ and w2 2 X⇤ are cyclically P-reduced, non-trivial in G, and G-conjugate
but not U(P )-conjugate; and that �mA is a minimal conjugacy diagram for w1 and w2 that
contains a loop l. Let � be a layer of �mA with l ✓ �, and let v be the endpoint of l. Then
as in the proof of Theorem 3.3.5, we can show that either �G(v,�) = 2 or �G(v,�) = 1 and
�R(v,�) = 4, and that in the second case, the length 2 boundary of the boundary red blob of �
containing l is non-trivial in P , and is not P -reduced – using this fact, we can retriangulate one
more time at v, to reduce �R(v,�) to 3, and subsequently apply the minimality (see Definition
3.1.4) of �mA to deduce that � is a union of two layers satisfying one of the Conditions 1-2 of
Definition 8.0.1. The problem with this approach is that reducing �R(v,�) from 4 to 3 creates
an additional loop in the diagram, however, we believe one might still show that if �mA contains
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n layers, then the final diagram �A 2 S 0 with boundary words w1 and w2 contains at most 3n
layers, and is a smaller sibling of �mA (see Definition 3.1.13).

Another interesting question is the following open problem:

Question 1: Does there exist a quadratic time and practically implementable algorithm that
solves the conjugacy problem for all hyperbolic groups defined by finite pregroup presenta-
tions that do not necessarily satisfy trivial-interleaving (see Definition 2.3.23)?

We presume that the input pregroup presentation still needs to have all the other properties
of valid pregroup presentations.



Part II

A new method for showing
hyperbolicity
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Brief outline

Part II of this thesis is structured as follows. In Chapter 9 we describe a curvature distribution
scheme RSymVert. Descriptions of sub-routines of VerifyHypVertex are given in Chap-
ter 10. In Chapter 11 we prove Theorem 1.0.4 stated in Chapter 1, which is the main result of
Part II, as follows. In Section 11.1 we show that the success of RSymVert on a pregroup
presentation P establishes an explicit linear bound on the Dehn function of P , thus proving
that the group defined by P is hyperbolic. In Section 11.2 we present VerifyHypVertex,
and show that if VerifyHypVertex returns true, then RSymVert succeeds. This proves
the first statement of Theorem 1.0.4. In Section 11.3 we complete the proof of Theorem 1.0.4.
In Chapter 12 we describe experiments with our implementation. Finally, Chapter 13 includes
examples of future curvature distribution schemes that might be useful for showing hyperbol-
icity.

Throughout the whole Part II, let G be a group defined by a finite pregroup presentation
P = hX |VP [Ri such that I(R) = R (see Definition 2.3.20), let " 2 R>0, and let h 2 Z�1.
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Chapter 9

The RSymVert scheme

In this chapter we shall present the curvature distribution scheme RSymVert. We start by
defining the enhanced vertex graph E of P , which is an enhanced version of the vertex graph
G given by [34, Definition 7.6], where each green E-vertex (R(i, a, b),G) corresponds to pre-
cisely one location R(i, a, b) (see Definition 6.2.1). (Note the difference from [34, Definition
7.6] where there can be more than one location R0(j, c, d) instantiating the same green G-vertex
(c, d,G).) Before doing so, we summarize the following graph-theoretic terminology that will
be used in our work.

Definition 9.0.1. Let G be a weighted directed simple graph. A walk W = v1v2 . . . vn is a
sequence of vertices such that for all 1  i  n� 1, we have (vi, vi+1) 2 E(G). We say that
W is open if v1 6= vn, otherwise we say that W is closed or a circuit. The sum of weights of
all edges of W is denoted by !(W ).

Recall Definition 2.3.13 of an intermult pair.

Definition 9.0.2. The enhanced vertex graph E of P has two types of vertices. There is a green
E-vertex (L,G) for each location L. There is a red E-vertex (a, b,R) for each intermult pair
(a, b).

The E-edges are defined as follows. There is a (directed) E-edge from (R(i, a, b),G) to
(R0(j, b�, c),G) if a one-face or two-face diagram in which faces labelled R and R0 that share
the edge labelled b is �-reduced. There is an E-edge from (R(i, a, b),G) to each (b�, c,R).
There is an E-edge from (a, b,R) to each (R(i, b�, c),G). Since red blobs do not share edges
with other red blobs, there are no E-edges between red E-vertices. The E-edges have weight 1
if their source is green and weight 0 if it is red.

Recall Definition 2.5.17 of the set D of coloured van Kampen diagrams.

Remark 9.0.3. There is a surjection from the vertices of the enhanced vertex graph to the
vertices of the vertex graph. If (R(i, a, b),G) is a green E-vertex, the corresponding G-vertex
is (a, b,G). On the other hand, a red E-vertex ⌫ = (a, b,R) is also a G-vertex.

Also, applying Lemma 2.5.13 shows that each interior vertex v in a diagram � 2 D is
represented by a circuit in E .
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Definition 9.0.4. Let W be the set of all walks ⌫1, ⌫, ⌫2 in E of length 2, and let WR be the
set of all walks in W with middle vertex a green E-vertex with relator R. Let F be an internal
green face in a diagram � 2 D, incident with a vertex v such that �(v,�) � 3. Denote by
w(F, v,�) the multiset of all walks in W around v through a location of F – corresponding to
three consecutive faces F1, F, F2 ✓ � incident with F at v.

Let C be the set of all circuits C in E with !(C)  5 and |C| � 4. Further, for w 2 W , let
Cw be the set of all circuits in C that contain w as a sub-walk.

Note that if F ✓ � 2 D is an internal green face incident with an (interior) vertex v of
degree at least 3, or if F ✓ � 2 D is an (interior) green face incident with a vertex v with
�(v,�) � 3, then every incidence of F with v is described by some walk w 2 w(F, v,�).

In the description below of ComputeRSymVert, the functions M : R±1 ⇥ R ⇥
{1, . . . , h} ! R ⇥ {true, false} and �out : W ⇥ R ⇥ {1, . . . , h} ! R are not yet de-
fined. They are calculated by VerifyHypVertex (see Algorithm 11.2.1), and we shall give
their definitions in Sections 10.3-10.4. For now we inform the reader that if there exists � 2 D
and an interior green face F ✓ � labelled by R 2 R±1, then M(R, ", i)[2] = true, and if
M(R, ", i)[2] = true, then M(R, ", i)[1] is an upper bound over all � 2 D on ↵",i

� (F ) + ",
where ↵",i

� (F ) is the curvature of an interior face F ✓ � labelled by R after the ith iteration
of RSymVert(", h) (see Algorithm 9.0.5 below): we shall prove this in Section 11.2, see
Proposition 11.2.3. Furthermore, if M(R, ", i)[2] = false then M(R, ", i) = (0, false).

Algorithm 9.0.5. ComputeRSymVert(� 2 D, ", h):
For each iteration i 2 [1, . . . , h] do:

Step 1 If i > 1 then go to Step 2. Otherwise, let ↵",1
� := � = ComputeRSym(�) (see

Algorithm 2.6.4), and proceed to the next iteration.
Step 2 For each internal green face F of �, denote the label of F by R. If M(R, ", i�1)[1] 

0, then for each interior vertex v with �(v,�) � 3 incident with F , if there is an
interior green face incident with v with label R1 such that M(R1, ", i � 1)[1] > 0,
then let F give v curvature �out(w, ", i � 1) across each incidence described by some
walk w 2 w(F, v,�).

Step 3 For each interior vertex v of �, let F i
v be the multiset of interior green faces incident

with v and labelled by relators R that satisfy M(R, ", i � 1)[1] > 0. Distribute v’s
curvature equally amongst the faces of F i

v.
Step 4 Let ↵",i

� be the function from V (�)[E(�)[F (�) to R, such that ↵",i
� (x) is the current

curvature of x. If i = h, then return ↵",h
� .

Definition 9.0.6. We define RSymVert(", h) to be the map from D to {↵",h
� (x) : � 2 D}.

Let 2  i  h. We denote by ⌦(F,w, i) the curvature that a green face F gives to a
vertex v in Step 2 of the ith iteration of ComputeRSymVert(�, ", h) across the incidence
described by some w 2 w(F, v,�) (we emphasize that if F gives no such curvature to v,
then ⌦(F,w, i) = 0), and similarly, ⇧(v, w, i) the curvature that v gives to F in Step 3 of
the ith iteration of ComputeRSymVert(�, ", h) across the incidence described by some
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w 2 w(F, v,�). Finally, for a vertex v of degree at least 3 incident with an interior green face
F labelled by R, we define for each incidence of F with v described by some w 2 w(F, v,�):

⌘(w, i) =

8
>>><

>>>:

�⌦(F,w, i) if v is interior,M(R, ", i� 1)[1]  0, and F i
v 6= ;,

⇧(v, w, i) if v is interior and M(R, ", i� 1)[1] > 0,

0 otherwise.

We shall think of ⌘(w, i) as the curvature moved from v to F across the incidence described
by w 2 w(F, v,�) in iteration i (noting that this value can be positive), and of �(v,�) +
Pi

n=2 ⌘(w, n) (recall Definition 2.6.8 that �(v,�) is the curvature that v gives to F across
each incidence in the first iteration of ComputeRSymVert(�, ", h)) as the total curvature
moved from v to F across the incidence described by w 2 w(F, v,�) over the first i iterations.

Proposition 9.0.7. RSymVert(", h) is a curvature distribution scheme on D.

Proof. Let � 2 D. By Proposition 2.6.6 RSym is a curvature distribution scheme on D, hence
by Definition 2.6.1 we have (�) = 1. As in Steps 2 and 3 of ComputeRSymVert(�, ", h)

the curvature is neither created nor destroyed, we have ↵",h
� (�) = 1. The result follows. ⌅

Lemma 9.0.8. Let F ✓ � 2 D be a green face labelled by R and incident with an interior
vertex v with �(v,�) � 3, let w 2 w(F, v,�) be a walk describing an incidence of F with v,
and let i � 2. Suppose that M(R, ", i� 1)[1]  0. Then ⌦(F,w, i) = �out(w, ", i� 1) if and
only if F i

v 6= ;.

Proof. Suppose that ⌦(F,w, i) = �out(w, ", i � 1). Then by Step 2 of Algorithm 9.0.5, v
is incident with an interior green face with label R1 such that M(R1, ", i � 1)[1] > 0, hence
F i
v 6= ;. Suppose instead that F i

v 6= ;. Then by Step 2 of Algorithm 9.0.5 we have⌦(F,w, i) =
�out(w, ", i� 1). ⌅

Finally, we define the success of RSymVert(", h).

Definition 9.0.9. We say that RSymVert(", h) succeeds on a diagram � 2 D if ↵",h
� (F ) 

�" for all interior green faces F of �.
We say that RSymVert(", h) succeeds on P if this is true for every � 2 D.

There are infinitely many diagrams in D, hence to test each of them to see whether RSym

Vert(", h) succeeds is not possible. By using the fact that there are only finitely many elements
in R, in Chapters 10-11 we show how to test all such diagrams at once.
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The sub-routines of
VerifyHypVertex

Recall Algorithm 9.0.5 for computing RSymVert(", h). Our main procedure, VerifyHyp

Vertex (see Procedure 11.2.1), will be introduced in Section 11.2. The procedure takes as
input P , " and h, where h is the maximum number of iterations, and returns either true or
fail. If VerifyHypVertex(P, ", h) returns true, then RSymVert(", h) is guaranteed to
succeed on P . If fail is returned, then this does not mean that RSymVert(", h) does not
succeed on P . The user can test again with a smaller value of " or a larger value of h. In
this chapter we shall describe the sub-routines of VerifyHypVertex. Throughout the whole
chapter let 1  ◆  h.

Lemma 10.0.1. Let � 2 D contain an interior green face F . Then

↵",◆
� (F ) = 1 +

X

v2@(F )

X

w2w(F,v,�)

 
�(v,�) +

◆X

n=2

⌘(w, n)

!
+
X

B

n(B,F ) · �(B,�),

where the last sum is over all red blobs B that are edge-incident n(B,F ) times with F for
some n(B,F ) � 1.

Proof. Let R 2 R±1 be the label of F . By Algorithm 9.0.5 we have

↵",1
� (F ) = 1 +

X

v2@(F )

X

w2w(F,v,�)

�(v,�) +
X

B

n(B,F ) · �(B,�),

and if 2  n  ◆, the by Algorithm 9.0.5 and Definition 9.0.6, if x 2 � is not an interior vertex
of degree at least 3, then x neither gives curvature to nor receives curvature from F in iteration
n; else the curvature moved from x to F across the incidence described by w 2 w(F, x,�) is
equal to ⌘(w, n). Hence

↵",n
� (F )� ↵",n�1

� (F ) =
X

v2@(F )

X

w2w(F,v,�)

⌘(w, n),

153



154 Chapter 10: The sub-routines of VerifyHypVertex

and so

↵",◆
� (F ) = ↵",1

� (F ) +
◆X

n=2

⇣
↵",n
� (F )� ↵",n�1

� (F )
⌘

= 1 +
X

v2@(F )

X

w2w(F,v,�)

�(v,�) +
X

B

n(B,F ) · �(B,�) +
◆X

n=2

0

@
X

v2@(F )

X

w2w(F,v,�)

⌘(w, n)

1

A

= 1 +
X

v2@(F )

X

w2w(F,v,�)

 
�(v,�) +

◆X

n=2

⌘(w, n)

!
+
X

B

n(B,F ) · �(B,�).

⌅

For each R 2 R±1, VerifyHypVertex seeks to find the maximum value of the curvature
↵",◆
� (F ) over all � 2 D of an interior face F ✓ � labelled by R. By Lemma 10.0.1 it suffices to

bound ↵",◆
� (F ) by bounding �(v,�)+

P◆
n=2 ⌘(w, n) and n(B,F ) ·�(B,�), over all diagrams

in D that contain an interior green face F labelled by R.
Splitting up @(F ) into consolidated edges that F shares with its edge-incident faces induces

a decomposition R0 = w1 . . . wk, where R0 is a cyclic conjugate of R, and each wm labels the
corresponding consolidated edge of F . We attach a colour Cm 2 {G,R} to each wm, where
Cm is the colour of the adjacent region (green face or a red blob). Since diagrams in D are
green-rich, if Cm = R, then |wm| = 1.

Definition 10.0.2. If Cm = G then let ✏◆m be the maximum value of

�(vm,�) +
◆X

n=2

⌘(w, n),

considered over all possible diagrams � 2 D in which wm labels a maximal green consolidated
edge on F , vm is the vertex at the end of wm, and w 2 w(F, vm,�) is a walk determined by
faces edge-incident with F in � at vm. If Cm = R then let ✏◆m be the maximum value of

�(vm,�) +
◆X

n=2

⌘(w, n) + �(B,�),

considered over all possible diagrams � 2 D on which wm labels a red consolidated edge of
F , vm and w 2 w(F, vm,�) are as in Case G, and all possible edge-incident red blobs B at
wm.

Definition 10.0.3. [34, Definition 7.2] Let R0 = w1w2 . . . wk be a coloured decomposition. A
step consists either of a single sub-word wm, or of two consecutive sub-words wmwm+1 that
are determined as follows (interpret subscripts cyclically):

(i) If Cm = G and Cm+1 = R, then wmwm+1 is a step.

(ii) If neither wm�1wm nor wmwm+1 is a step by Condition (i), then wm is a step.
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Let ✏◆m be the curvature from Definition 10.0.2. A stepwise curvature �◆
j with respect to ◆ of a

step sj is �◆
j = ✏◆m when sj = wm and �◆

j = ✏◆m + ✏◆m+1 when sj = wmwm+1.
The length of a step is the number of letters of R0 that it comprises.

We do not allow the combination C1 = R and Ck = G: if R0 has C1 = R and Ck = G, then
we consider the decomposition w2 . . . wkw1 instead. Hence it is clear from Definition 10.0.3
that for each such decomposition R0 = w1 . . . wk, there is a decomposition R0 = s1 . . . sl,
where each sj labels a step and is equal either to a single wm, or to some wmwm+1 with wm

green and wm+1 red.

Lemma 10.0.4. We have ↵",◆
� (F )  1 +

Pl
j=1 �

◆
j .

Proof. By Definitions 10.0.2-10.0.3 we have

�◆
j �

X

v

 
�(v,�) +

◆X

n=2

⌘(w, n)

!
+
X

B

�(B,�),

where the first sum is over all vertices v that are at the end of a maximal consolidated edge
of F labelled by a sub-word of sj (and where w 2 w(F, v,�) is determined by faces edge-
incident with F in � at v), and the last sum is over all red blobs edge-incident with F at a red
consolidated edge labelled by a letter of sj (there is always at most one such blob). Hence the
lemma follows from Lemma 10.0.1. ⌅

10.1 Vertex curvature

Let R 2 R±1, let F be an interior green face labelled by R in a diagram � 2 D, incident with
a vertex v with �(v,�) � 3, and let F1, F, F2 be three consecutive faces incident with F at v.
Recall [34, Algorithm 7.7, Section 7.2] for creating the vertex function Vertex, which takes
as input three G-vertices corresponding to locations of F1, F, F2 at v, and returns an upper
bound on �(v,�). We extend this idea and create functions Y and B, which take as input a
walk w 2 w(F, v,�) (see Definition 9.0.4) determined by F1, F, F2; and ◆, and return an upper
bound on �(v, F ) +

P◆
j=2 ⌘(w, j) (see Definition 9.0.6), where Y assumes that v is interior,

and B assumes that v 2 @(�). We shall prove this in Section 11.2, see Lemma 11.2.2.

Definition 10.1.1. Let w = ⌫1, ⌫, ⌫2 2 WR. We define Y(w, 1) = Vertex(⌫ 01, ⌫
0, ⌫ 02), where

⌫ 01, ⌫
0, ⌫ 02 are the G-vertices that correspond to ⌫1, ⌫, ⌫2 (see Remark 9.0.3).

The value of B(w, 1) is: �1/3 if ⌫1 and ⌫2 are both green; �1/4 if exactly one is green;
and 0 otherwise.

In Section 10.4 we shall define Y(w, ◆) and B(w, ◆) for ◆ > 1.

Lemma 10.1.2. If v 2 @(�), then �(v,�) +
P◆

j=2 ⌘(w, j)  B(w, 1).

Proof. Assume that v 2 @(�), and let w = ⌫1, ⌫, ⌫2. By Definition 9.0.6 �(v,�)+
P◆

j=2 ⌘(w, j) =

�(v,�). Now note that if ⌫1 and ⌫2 are both green, then �G(v) � 4; �G(v) � 3 if exactly one
is green; and �G(v) � 2 otherwise. Hence by Lemma 2.6.10 �(v,�)  B(w, 1). ⌅
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Figure 10.1: Illustration of the three types of Steps. ([34, Figure 5, page 30]).

10.2 One-step reachable places and the OneStepVert lists

In this section we describe how to find all places (see Definition 6.2.5) that can be reached from
a fixed place by a single step.

Definition 10.2.1. [34, Definition 7.15] Let P be a place with location R(i, a, b). A place Q is
one-step reachable at distance l from P, where 1  l < |R|, if the following hold:

(i) Q has location R(j, s, t) for some s, t 2 X , where j = i+ l (interpreted cyclically).

(ii) If P is red, then l = 1 (and so s = b).

(iii) If P is green, then exactly one of the following occurs:

(a) there exists a green face F 0 instantiating P, and a consolidated edge between F

and F 0 of length l from the location of P to that of Q, and Q is green;

(b) there exists an intermediate place P0 whose location is R(j � 1, u, s) and whose
colour is red, there is a green face F 0 instantiating P such that there is a consoli-
dated edge between F and F 0 of length l � 1 between the locations of P and P0,
and there is a red edge between P0 and Q.

The algorithm ComputeOneStepVert(P,Y,B,Blob, ◆) takes as input a place P; the
functions Y and B (see Section 10.1); the function Blob (see [34, Algorithm 7.12, Section
7.4]), which takes as input three letters a, b, c and returns an upper bound on the curvature
�(B,�) (see Definition 2.6.8) that a red blob B with sub-word abc of its boundary word can
give (across each edge-incidence) to an internal green face F edge-incident with B at b, con-
sidered over all diagrams in D; and ◆.

ComputeOneStepVert(P,Y,B,Blob, ◆) computes a list OneStepVert(P, ◆) con-
sisting of triples (Q, l,�), where Q is a one-step reachable place at distance l from P, and
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� is an upper-bound on the stepwise curvature with respect to ◆ (see Definition 10.0.3) of the
step between P and Q.

In the description below of ComputeOneStepVert, by including an item (Q, l,�) in
OneStepVert(P, ◆), we mean append it to the list if there is no entry of the form (Q, l,�0)

already or, if there is such an entry with � > �0, then replace that entry with (Q, l,�). (If there
is such an entry with �  �0, we do nothing).

Algorithm 10.2.2. ComputeOneStepVert(P = (R(i, a, b), c, C),Y,B,Blob, ◆):

Step 1 Initialise OneStepVert(P, ◆) as an empty list.
Step 2 Case C = R. For each place Q = (R(i + 1, b, d), x, C 0), and for each y 2 X such

that y intermults with b�, proceed as follows. (See Figure 10.1(a).)
Let ⌫1 = (y, b�,R) and ⌫ = (R(i + 1, b, d),G). Let �1 := Blob(y, b�, c), and
for each out-neighbour ⌫2 of ⌫, let �2 := max{Y(⌫1, ⌫, ⌫2, ◆),B(⌫1, ⌫, ⌫2, ◆)}.
Include (Q, 1,�1 + �2) in OneStepVert(P, ◆).

Case C = G. For each location R0(k, b�, c) instantiating P, proceed as follows.
For each place P0 = (R(j, d, e), x, C 0) on R that can be reached from P by a sin-
gle (not necessarily maximal) consolidated edge ↵ of length l between R and R0,
let ⌫1 be the E-vertex corresponding to the location on R0 at the end of ↵. For each
out-neighbour ⌫2 of ⌫ = (R(j, d, e),G), compute �1 := max{Y(⌫1, ⌫, ⌫2, ◆),
B(⌫1, ⌫, ⌫2, ◆)}.

1. If P0 is green, then include (P0, l,�1) in OneStepVert(P, ◆). (See Figure
10.1(b).)

2. If P0 is red, then find all places Q that are one letter further along R than
P0. (See Figure 10.1(c).) Then proceed in a similar way as in Case R,
and compute the combined maximum curvature �2 returned by the red blob
between P0 and Q and the vertex at Q. Include (Q, l + 1,�1 + �2) in
OneStepVert(P, ◆).

Lemma 10.2.3. Let P = (R(i, a, b), c, C) and Q = (R(j, d, e), c0, C 0) be places on the same
relator R. Then the following are equivalent.

1. The place Q is one-step reachable from P at distance l.

2. There exists a coloured decomposition of a cyclic conjugate R0 of R such that a sub-word
wk or wkwk+1 of R0 between the location of P and the location of Q is a step of length
l, the face edge-incident with a face F labelled R at wk has colour C, and edge after
w�1
k labelled c, and the face edge-incident with F at the letter after the end of the step

has colour C 0 and next letter c0.

3. There exists � such that (Q, l,�) 2 OneStepVert(P, ◆).

Assume that for each interior green face F 0 ✓ � 2 D, for each vertex v 2 @(F 0) of degree at
least 3 and for each incidence of F 0 with v described by some walk w 2 w(F 0, v,�), we have

�(v,�) +
◆X

j=2

⌘(w, j)  max{Y(w, ◆),B(w, ◆)}.
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Then if (Q, l,�) 2 OneStepVert(P, ◆), then � is an upper bound on the step curvature (with
respect to ◆).

Proof. The equivalence of Statements 1-2 is [34, Lemma 7.17]. From the description of Al-
gorithm 10.2.2 it follows that ComputeOneStepVert finds all one-step reachable places,
and does not find any places that are not one-step reachable. Hence Statements 1 and 3 are also
equivalent.

To prove the last statement, note that the step curvature is the sum of the total curvature
moved (across a single incidence) to F from at most two (not necessarily distinct) vertices (of
degree at least 3), and the curvature given (across a single edge-incidence) to F by at most
one red blob. By the assumption the Y and B functions return an upper bound on �(v,�) +
P◆

j=2 ⌘(w, j), and by [34, Lemma 7.13] the Blob function returns an upper bound on �(B,�).
Hence � is an upper bound on the step curvature. ⌅

10.3 Finding an upper bound on curvature of green relators

For each R 2 R±1, we shall check whether there exists � 2 D and an interior green face
F ✓ � labelled by R. For those R for which the answer is positive, we shall find an upper
bound on ↵",◆

� (F ) (see Algorithm 9.0.5) over all such � 2 D.
The procedure VertexVerifyAtPlace(P, ", ◆) takes as input a place P on a relator R 2

R±1; "; and ◆. If there exists a coloured decomposition R0 = s1 . . . sl of some cyclic conjugate
R0 of R beginning at P such that each sj labels a step, then VertexVerifyAtPlace(P, ", ◆)

returns a real number cmax = �max+(1+"), where �max is the largest possible total curvature
over all coloured decompositions p of a cyclic conjugate of R beginning at P arising from the
steps of p; and true. Otherwise, the procedure returns 0 and false.

VertexVerifyAtPlace(P, ", ◆) creates a list L whose elements are quadruples (Q, l, k, ).
The first three components describe a place Q at distance l from P along R that can be reached
from P in k steps. The fourth component  is (1+ ")l/|R|+�, where � is an upper bound on
the total curvature arising from these k steps.

Similarly to Algorithm 10.2.2, by including an entry (Q, l + l0, i,�1) in a list L, we mean
appending it to L if there is no entry (Q, l + l0, j,�2) in L or, if there is such an entry with
�1 > �2, then replacing it by (Q, l + l0, i,�1).

Procedure 10.3.1. VertexVerifyAtPlace(P = (R(i, a, b), c, C), ", ◆):
Step 1 Initialise L := [(P, 0, 0, 0)] and Curvs(◆) := [ ].
Step 2 For each i := 1 to |R| do:

(*) For each (P, l, i � 1, ) in L with l < |R|, and for each (Q, l0,�) 2 OneStep

Vert(P, ◆) with l + l0  |R| do:

(i) Let  0 :=  + �+ (1 + ")l0/|R|.
(ii) If l + l0 = |R| and Q 6= P, then do nothing.
(iii) Else if l + l0 = |R| and Q = P, then append  0 to Curvs(◆).
(iv) Else include (Q, l + l0, i, 0) in L.
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Step 4 If Curvs(◆) = [ ], then return 0, false. Else return max{x : x 2 Curvs(◆)}, true.

Even though VerifyHypVertex(P, ", h) (see Procedure 11.2.1) might not compute all
h iterations, we purposefully let ◆ be the input to its sub-routines, so that we can work over all
i 2 {1, . . . , h}.

Lemma 10.3.2. Let R 2 R±1. Then the following holds.

1. Suppose that there exists an interior green face F ✓ � 2 D labelled by R. Then for
1  i  h, there exists a place P on R such that VertexVerifyAtPlace(P, ", i)[2] =

true.

2. Suppose that there is a place P on R such that VertexVerifyAtPlace(P, ", i)[2] =

true for some 1  i  h. Then for all 1  k  h we have VertexVerifyAtPlace

(P, ", k)[2] = true.

Proof. Part 1. Let R0 = w1w2 . . . wk be a coloured decomposition of some cyclic conjugate R0

of R, such that each wj labels a consolidated edge ej of F with |ej | � 1, and has an associated
colour Cj 2 {G,R}, which is the colour of the face edge-incident with F at ej . Since we do
not allow the combination C1 = R, Ck = G, there is a decomposition R0 = s1s2 . . . sl, where
each sm labels a step and is equal either to a single wj , or to some wjwj+1 with wj green and
wj+1 red. Let P be the place on R at the beginning of R0, and note that P is instantiable since
F is interior and � 2 D. By Lemma 10.2.3 each step sm corresponds to a pair P,Q of places
on R, and there exist l,� such that (Q, l,�) 2 OneStepVert(P, i). Hence by the description
of Procedure 10.3.1 we have VertexVerifyAtPlace(P, ", i)[2] = true.

Part 2. Let P0 = P. Since VertexVerifyAtPlace(P0, ", i)[2] = true, by the descrip-
tion of Procedure 10.3.1, there exists a sequence (Pj , lj ,�j)cj=0 satisfying

(*) (Pj , lj ,�j) 2 OneStepVert(Pj�1, i),
Pc

m=1 lm = |R|, and Pc = P0.

Furthermore, if a sequence (Pj , lj ,�j)cj=0 satisfies Statement (*), then by Lemma 10.2.3 for
all 1  j  c, the place Pj is one-step reachable from Pj�1 at distance lj . Hence Part 2
holds. ⌅

We now define the function M(R, ", ◆) from the description of ComputeRSymVert.
Since ◆we chosen to be arbitrary, we emphasize that we define M(R, ", i) for all i 2 {1, . . . , h}.

Definition 10.3.3. Let R 2 R±1. If there exists a place P on R such that VertexVerifyAt

Place(P, ", ◆)[2] = true, then define

M(R, ", ◆) := (max{VertexVerifyAtPlace(Q, ", ◆)[1] : Q 2 R and VertexVerifyAt

Place(Q, ", ◆)[2] = true}, true).

Else define M(R, ", ◆) := (0, false).

Corollary 10.3.4. Let R 2 R±1. The both of the following holds.
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1. Suppose that M(R, ", i)[2] = true for some 1  i  h. Then for all 1  k  h we
have M(R, ", k)[2] = true.

2. Suppose that there exists an interior green face F ✓ � 2 D labelled by R. Then for all
1  k  h we have M(R, ", k)[2] = true.

Proof. Part 1. By Definition 10.3.3 there exists a place P on R such that VertexVerifyAtPlace

(P, ", i)[2] = true. Hence by Lemma 10.3.2 for all 1  k  h we have VertexVerifyAtPlace

(P, ", k)[2] = true. So M(R, ", k)[2] = true.
Part 2. By Lemma 10.3.2 for all 1  k  h, there exists a place P on R such that

VertexVerifyAtPlace(P, ", k)[2] = true, hence M(R, ", k)[2] = true. ⌅

The procedure VertexVerify(", ◆) runs VertexVerifyAtPlace(P, ", ◆) at each place
P. If no call returns m with m[1] > 0, then VertexVerify(", ◆) returns true, 0, 0. Other-
wise, VertexVerify(", ◆) calculates values M(R, ", ◆) for the given ◆, and returns fail, the
function M, and set SRich = {⌫ = (R(j, c, d),G) 2 V (E) : M(R, ", ◆)[1]  0}.

In the description below, by including an item (R,�) in LMaxCurvs, we mean appending it
to LMaxCurvs if there is no entry (R,�0) 2 LMaxCurvs or, if there is such an entry with � > �0,
then replacing it by (R,�). (If there is such an entry with �  �0, we do nothing).

Procedure 10.3.5. VertexVerify(", ◆):
Step 1 Initialise SRich = ; and LMaxCurvs := [ ].
Step 2 For each P = (R(i, a, b), c, C), let m = VertexVerifyAtPlace(P, ", ◆).

(*) If m[2] = true, then include (R,m[1]) in LMaxCurvs.

Step 3 If (LMaxCurvs = [ ]) or (LMaxCurvs 6= [ ] and {(R,�) 2 LMaxCurvs : � > 0} = ;), then
return true, 0, 0.

Step 4 Initialize S = ;. For each (R,�) 2 LMaxCurvs, S := S [ {R}, and set

M(R, ", ◆) := (�, true).

Step 5 For each R 2 R±1 \ S, set M(R, ", ◆) := (0, false).
Step 6 For each location R(i, a, b), if M(R, ", ◆)[1]  0, then

SRich := SRich [ (R(i, a, b),G).

Step 7 Return fail, M, SRich.

10.4 Updating the vertex curvature

Throughout the whole section let R 2 R±1, and assume that h � 2 and ◆  h�1. In Definition
10.1.1 we defined values Y(w, 1) and B(w, 1) for each w 2 WR. In this section we shall define
Y(w, i) and B(w, i) for all i 2 {2, . . . , h}.

We first define the function �out(w, ", ◆) (where w 2 WR) from the description of Compute

RSymVert (see Algorithm 9.0.5). We emphasize that �out(w, ", ◆) is defined only in cases
M(R, ", ◆)[1]  0: we shall use it to define Y(w, ◆+ 1) and B(w, ◆+ 1) for such cases.
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Definition 10.4.1. Let w 2 WR. Assume that M(R, ", ◆)[1]  0. If M(R, ", ◆)[2] = false

and ◆ = 1, then define
�out(w, ", ◆) := Y(w, 1),

and if ◆ > 1, then define �out(w, ", ◆) := 0.

If M(R, ", ◆)[2] = true, then let m � 1 be minimal subject to M(R, ",m)[1]  0, so
1  m  ◆. If m = ◆, then define

�out(w, ", ◆) := max{M(R, ", ◆)[1]

|R| ,Y(w, 1)},

else if ◆ > m and Y(w, ◆)  Y(w,m)� Y(w, 1), then define

�out(w, ", ◆) := max{M(R, ", ◆)[1]

|R| ,Y(w, ◆)� (Y(w,m)� Y(w, 1))},

else define
�out(w, ", ◆) := 0.

Finally, in all cases define

Y(w, ◆+ 1) := Y(w, ◆)� �out(w, ", ◆)

and
B(w, ◆+ 1) := B(w, ◆)� �out(w, ", ◆).

By Lemma 9.0.8, if F ✓ � 2 D is a green face labelled by R with M(R, ", ◆)[◆]  0 that
is incident with an interior vertex v such that F ◆+1

v 6= ;, then �⌦(F,w, ◆+1) = ��out(w, ", ◆)

(see Definition 9.0.6) for each incidence of F with v described by some walk w 2 w(F, v,�).
Hence that is why we define Y(w, ◆+ 1) and B(w, ◆+ 1) as in Definition 10.4.1.

Recall Definition 9.0.4 of C and of Cw. We now define Y(w, ◆+1) and B(w, ◆+ 1) for the
case M(R, ", ◆)[1] > 0. To do so, we define auxiliary functions ⇠ : W⇥C⇥R⇥{1, . . . , h} !
R and �in : W ⇥ R⇥ {1, . . . , h} ! R, such that ⇠(w,C, ", ◆) and �in(w, ", ◆) return an upper
bound on ⌘(w, ◆+1) over all � 2 D that contain an interior green face F labelled by R, incident
with an interior vertex v such that w 2 w(F, v,�), where ⇠(w,C, ", ◆) requires correspondence
between locations of the faces around v and the E-vertices of C, and �in(w, ", ◆) requires
�G(v,�)  5.

Definition 10.4.2. Let w 2 WR, and assume that M(R, ", ◆)[1] > 0, so M(R, ", ◆)[2] = true.
Define

B(w, ◆+ 1) := B(w, ◆).

Let C 2 Cw, with m green E-vertices with relators R1 such that M(R1, ", ◆)[1] > 0. If
there is no green E-vertex on C with relator R1 such that M(R1, ", ◆)[1]  0, then define
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⇠(w,C, ", ◆) = 0. Otherwise, define

⇠(w,C, ", ◆) :=
X

w12C

�out(w1, ", ◆)

m
.

Next define
�in(w, ", ◆) := max

C2Cw
⇠(w,C, ", ◆).

Finally, define
Y(w, ◆+ 1) := Y(w, ◆) + �in(w, ", ◆).

We now present a procedure that calculates Y(w, i) and B(w, i) for i 2 {2, . . . , h}.

Procedure 10.4.3. VertCurvsModify(WG,M,Y,B, SRich, C, ◆):

// Input: WG – the set of all walks in W with green middle vertex.
// M: the function M(R, ", i) with already defined values for each
// R 2 R±1 and each i  ◆.
// Y , B: the functions Y(w, i) and B(w, i) with already defined values
// for each w 2 WG and each i  ◆.
// SRich = VertexVerify(", ◆)[3] (see Procedure 10.3.5).

Step 1 For each w 2 WG with the middle vertex in SRich, use the M, Y and B functions to
set

Y(w, ◆+ 1) := Y(w, ◆)� �out(w, ", ◆)

and

B(w, ◆+ 1) := B(w, ◆)� �out(w, ", ◆).

Step 2 For each w 2 WG with the middle vertex not in SRich do:

(i) Set
B(w, ◆+ 1) := B(w, ◆)

and initialise
Y(w, ◆+ 1) := Y(w, ◆).

(ii) Let L1 be a list of all C 2 C containing w as a sub-walk.
(iii) If L1 6= [ ], then initialize InCurvs = ;, and for each C 2 L1 do:

(A) Use the M, Y and B functions to calculate ⇠(w,C, ", ◆) as in Definition
10.4.2.

(B) InCurvs := InCurvs [ {⇠(w,C, ", ◆)}.
(iv) If InCurvs 6= ;, then update

Y(w, ◆+ 1) := Y(w, ◆) + max{x : x 2 InCurvs}.

Step 3 Return Y,B.

Proposition 10.4.4. Let R 2 R±1. Assume that M(R, ", i)[2] = true and M(R, ", i)[1]  0

for some 1  i  h� 1. If i < j  h, then M(R, ", j)[1]  0.
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Proof. Let m � 1 be minimal subject to M(R, ",m)[1]  0, and let w 2 WR. By Definition
10.4.1 one of the following statements hold.

1. �out(w, ", i) = max{M(R,",i)[1]
|R| ,Y(w, 1)} � M(R,",i)[1]

|R| .

2. �out(w, ", i) = max{M(R,",i)[1]
|R| ,Y(w, i)� (Y(w,m)� Y(w, 1))} � M(R,",i)[1]

|R| .

3. �out(w, ", i) = 0 � M(R,",i)[1]
|R| .

Hence �out(w, ", i) � M(R,",i)[1]
|R| , so by Definition 10.4.1 we have

max{Y(w, i+ 1),B(w, i+ 1)}  max{Y(w, i),B(w, i)}� M(R, ", i)[1]

|R| . (10.1)

By Corollary 10.3.4, M(R, ", i+1)[2] = true, so let P be a place on R such that VertexVerify

AtPlace(P, ", i + 1)[2] = true. Let  2 Curvs(i + 1) (see Procedure 10.3.1). Then  is
calculated by finding a sequence (Pj , lj ,�j)cj=0 satisfying

(*) (Pj , lj ,�j) 2 OneStepVert(Pj�1, i+ 1),
Pc

n=1 ln = |R|, and Pc = P0 = P,

and setting

 =
cX

j=1

�j + (1 + ") · lj
|R| = (1 + ") · (

Pc
j=1 lj

|R| ) +
cX

j=1

�j = 1 + "+
cX

j=1

�j .

By Lemma 10.2.3 for all 1  j  c, the place Pj is one-step reachable from Pj�1 at distance
lj , hence there is a sequence (Pj , lj ,�0

j)
c
j=0 satisfying Statement (*) when replacing i + 1 by

i; and  0 2 Curvs(i) with  0 = 1 + "+
Pc

j=1 �
0
j . By Algorithm 10.2.2 for all 1  j  c,

�j =
X

w2Sj✓WR

max{Y(w, i+ 1),B(w, i+ 1)}+
X

(a,b,d)2S0
j✓X3

Blob(a, b, d),

where |Sj |  lj ; and �0
j � �00

j , where

�00
j =

X

w2Sj

max{Y(w, i),B(w, i)}+
X

(a,b,d)2S0
j

Blob(a, b, d).

Hence by (10.1) we have

�j  �00
j �

lj
|R|M(R, ", i)[1]  �0

j �
lj
|R|M(R, ", i)[1].
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So

 = 1 + "+
cX

j=1

�j  1 + "+
cX

j=1

(�0
j �

lj
|R|M(R, ", i)[1])

= 1 + "+
cX

j=1

�0
j �

Pc
j=1 lj

|R| M(R, ", i)[1]

= 1 + "+
cX

j=1

�0
j �

|R|
|R|M(R, ", i)[1]

=  0 �M(R, ", i)[1].

By Procedure 10.3.1 and Definition 10.3.3 we have

 0  VertexVerifyAtPlace(P, ", i)[1]  M(R, ", i)[1],

and so    0 � M(R, ", i)[1]  0. Since  was arbitrary, by Procedure 10.3.1 we have
VertexVerifyAtPlace(P, ", i + 1)[1]  0. So as P was arbitrary, by Definition 10.3.3 we
have M(R, ", i+ 1)[1]  0. By induction the lemma holds for j. ⌅

The next lemma shows that the curvatures �out(w, ", ◆) are always non-positive. This will
enable us to prove that for each � 2 D and for each interior green face F ✓ � with ↵",◆

� (F ) >

�", we have ↵",◆+1
� (F )  ↵",◆

� (F ).

Lemma 10.4.5. Let R 2 R±1, and assume that M(R, ", ◆)[1]  0. Then for all w 2 WR,
both of the following two statements hold.

1. Assume that M(R, ", ◆)[2] = true, and let m 2 Z be minimal subject to M(R, ",m)[1] 
0, so 1  m  ◆. Then for all m  j  ◆ + 1  h we have Y(w, j)  Y(w,m) �
Y(w, 1).

2. We have �out(w, ", ◆)  0.

Proof. By Definition 10.1.1 and [34, Algorithm 7.7, Section 7.2] we have Y(w, 1)  0.

Part 1. Proof is by induction on j. Base case j = m. We have Y(w, j) = Y(w,m) 
Y(w,m)�Y(w, 1). Assume by induction that ◆+1 � j > m and Y(w, j � 1)  Y(w,m)�
Y(w, 1). By Proposition 10.4.4 we have M(R, ", s)[1]  0 for all s 2 {m+ 1, . . . , ◆+ 1}. If
j � 1 = m, then by Definition 10.4.1

�out(w, ", j � 1) = max{M(R, ", j � 1)[1]

|R| ,Y(w, 1)} � Y(w, 1)

and

Y(w, j) = Y(w, j � 1)� �out(w, ", j � 1)  Y(w,m)� Y(w, 1),
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or j � 1 > m, and again by Definition 10.4.2

�out(w, ", j � 1) = max{M(R, ", j � 1)[1]

|R| ,Y(w, j � 1)� (Y(w,m)� Y(w, 1))}

� Y(w, j � 1)� (Y(w,m)� Y(w, 1))

and

Y(w, j) = Y(w, j � 1)� �out(w, ", j � 1)

 Y(w, j � 1)� (Y(w, j � 1)� (Y(w,m)� Y(w, 1))

= Y(w, j � 1)� Y(w, j � 1) + Y(w,m)� Y(w, 1) = Y(w,m)� Y(w, 1).

So Part 1 holds.
Part 2. Suppose first that M(R, ", ◆)[2] = false. If ◆ = 1, then by Definition 10.4.1 we

have �out(w, ", ◆) = Y(w, 1)  0, and if ◆ > 1, then by Definition 10.4.1 �out(w, ", ◆) = 0. So
Part 2 holds.

Assume instead that M(R, ", ◆)[2] = true, and let m 2 Z be minimal subject to M(R, ",m)[1] 
0. If ◆ = m, then by Definition 10.4.1 we have

�out(w, ", ◆) = max{M(R, ", ◆)[1]

|R| ,Y(w, 1)}.

So �out(w, ", ◆)  0 since M(R, ", ◆)[1]  0 by assumption, and Y(w, 1)  0. By Part 1 we
have Y(w, ◆)  Y(w,m)� Y(w, 1), so if ◆ > m, then by Definition 10.4.1 we have

�out(w, ", ◆) = max{M(R, ", ◆)[1]

|R| ,Y(w, ◆)� (Y(w,m)� Y(w, 1))},

so as Y(w, ◆)  Y(w,m) � Y(w, 1) implies Y(w, ◆) � (Y(w,m) � Y(w, 1))  0, we have
�out(w, ", ◆)  0. ⌅



Chapter 11

Proof of Theorem 1.0.4

In this chapter we shall prove Theorem 1.0.4. Recall that G is a group given by a finite pregroup
presentation P such that I(R) = R (see Definition 2.3.20), that " 2 R>0, and that h 2 Z�1.

11.1 The success of RSymVert shows hyperbolicity

In this section we shall show that if RSymVert(", h) succeeds on P (see Algorithm 9.0.5 and
Definition 9.0.9), then G is hyperbolic. Recall Definition 2.6.8 that �(x,�) is the curvature that
x gives to a single internal green face across each curvature incidence in the first iteration of
ComputeRSymVert(�, ", h), and that �(x, F,�) is the total curvature that x gives to an
internal green face F in the first iteration of ComputeRSymVert(�, ", h).

Lemma 11.1.1. Let � 2 D. Then

1. if T ✓ � is a red triangle, then ↵",h
� (T )  0;

2. if Area(�) > 1, and F is a boundary green face of �, then ↵",h
� (F )  1/2.

Proof. Since the curvature of T is not altered in Steps 2 and 3 of ComputeRSymVert(�, ",

h), we have ↵",h
� (T ) = �(T ), so Part 1 follows from [34, Lemma 6.8].

For Part 2, let R 2 R±1 be the label of F . By Algorithm 9.0.5, F gives no curvature to its
edge-incident red blobs and incident boundary vertices. Let �1 be the total curvature given to
F by them. By Algorithm 9.0.5, we have

�1 =
X

v2@(F )\@(�)

�(v, F,�) +
X

B

�(B,F,�),

where the last sum is over all red blobs edge-incident with F . Therefore, we can apply the
same arguments as in the first two paragraphs of the proof of [34, Lemma 6.9] to show that
�1  �1/2. Hence since F gives no curvature to its edge-incident red blobs and incident
boundary vertices, if there is no interior vertex v such that v 2 @(F ) and �(v,�) � 3, then
by Algorithm 9.0.5, ↵",h

� (F ) = �(F )  1 + �1  1 � 1/2 = 1/2. So assume that such a

166
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v exists, and let w 2 w(F, v,�) (see Definition 9.0.4) be a walk describing an incidence of F
with v.

By Definition 10.1.1 Y(w, 1) = Vertex(⌫1, ⌫, ⌫2), where ⌫1, ⌫, ⌫2 are the G-vertices that
correspond to the E-vertices of w (see Remark 9.0.3). Hence by [34, Lemma 7.8] we have
�(v,�)  Y(w, 1). If h = 1 then ↵",h

� (F ) = �(F ); and as F is boundary, if h � 2

and M(R, ", i)[1] > 0 for all 1  i  h � 1, then by Algorithm 9.0.5 in each iteration
i 2 {2, . . . , h}, no x 2 � gives F curvature, and no such x receives curvature from F , so
again ↵",h

� (F ) = �(F ). Hence assume that h � 2, and that there is 1  i  h � 1 such that
M(R, ", i)[1]  0. Let m 2 Z be minimal subject to M(R, ",m)[1]  0, so 1  m  h� 1.
Let �(w, h) =

Ph
j=m+1⌦(F,w, j) (see Definition 9.0.6). We show that�(w, h) � �(v,�).

For each m + 1  j  h, by Lemma 9.0.8 we have ⌦(F,w, j) = �out(w, ", j � 1) if
and only if F j

v 6= ;, and by Lemma 10.4.5 we have �out(w, ", j � 1)  0. Hence �(w, h) =
Ph

j=m+1⌦(F,w, j) �
Ph�1

j=m �out(w, ", j).
Case M(R, ", 1)[2] = false. Suppose that M(R, ", j)[2] = true for some 2  j  h.

Then by Corollary 10.3.4 M(R, ", 1)[2] = true, a contradiction. Hence M(R, ", j)[2] =

false for all 1  j  h (and note that m = 1). So by Definition 10.4.1 we have �out(w, ", 1) =

Y(w, 1) and �out(w, ", j) = 0 if 2  j  h� 1. Therefore, by the previous two paragraphs

�(w, h) �
h�1X

j=m

�out(w, ", j) = Y(w, 1) � �(v,�).

Case M(R, ", 1)[2] = true. By Corollary 10.3.4 we have M(R, ", j)[2] = true for all
1  j  h, hence by Proposition 10.4.4 M(R, ", j)[1]  0 for all j 2 {m + 1, . . . , h}.
Therefore, by Definition 10.4.1

Y(w, h) = Y(w,m) +
h�1X

j=m

Y(w, j + 1)� Y(w, j)

= Y(w,m) +
h�1X

j=m

(��out(w, ", j)),

so
Ph�1

j=m �out(w, ", j) = Y(w,m)� Y(w, h). Hence

�(w, h) �
h�1X

j=m

�out(w, ", j) = Y(w,m)� Y(w, h).

By Lemma 10.4.5
Y(w, h)  Y(w,m)� Y(w, 1),

hence

�(w, h) � Y(w,m)� (Y(w,m)� Y(w, 1))

= Y(w, 1) � �(v,�),
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where the last inequality follows from the third paragraph. Hence we showed that �(w, h) �
�(v,�).

By Algorithm 9.0.5, for i 2 {2, . . . , h}, v gives F no curvature in iteration i, and in no
iteration i 2 {1, . . . ,m}, F gives v curvature. Hence as both v and w 2 w(F, v,�) were
chosen to be arbitrary; by Lemma 2.6.9 �(v,�)  0 since �G(v) � 2 (because � 2 D); and
F gives no curvature to its edge-incident red blobs and incident boundary vertices, we have
↵",h
� (F )  1 + �1  1/2, as required. ⌅

Lemma 11.1.2. Assume that no R 2 R±1 has length 1 or 2 and that no two distinct cyclic
conjugates of relators R,S 2 R± have a common prefix consisting of all but one letter of R or
S. Let � be a diagram in D with boundary length 2. Then RSymVert(", h) does not succeed
on �.

Proof. Suppose that RSymVert(", h) succeeds on �. Since each R 2 R±1 has |R| � 3,
we have Area(�) > 1. By Lemma 11.1.1 each boundary face F has ↵",h

� (F )  1/2 if F
is green, and ↵",h

� (F )  0 if it is red. Since RSymVert(", h) succeeds on �, all positive
curvature of ↵",h

� lies on the boundary green faces, and sums to at least 1. Hence � has exactly
two boundary faces, F1 and F2 say, both green and such that ↵",h

� (F1) = 1/2 = ↵",h
� (F2).

As any other internal green face F satisfies ↵",h
� (F ) < 0, no such face exists. Hence by

Algorithm 9.0.5, if h � i > 1, then no curvature is redistributed through any interior vertex of
� in iteration i, so ↵",h

� = � = ComputeRSym(�). Therefore, as by [34, Lemma 6.11]
RSym does not succeed on �, it follows that RSymVert(", h) does not succeed on �, a
contradiction. ⌅

Theorem 11.1.3. Assume that no R 2 R±1 has length 1 or 2 and that no two distinct cyclic
conjugates of relators R,S 2 R± have a common prefix consisting of all but one letter of R or
S. If RSymVert(", h) succeeds on P , then no V �-letter is trivial in G.

Proof. Suppose for a contradiction that there exists such a V �-letter x, and let � be a coloured
van Kampen diagram over P with boundary word x, and with smallest possible coloured area
for simply-connected diagrams with boundary word a single V �-letter. We do not assume that
� 2 D. We show that � does not exist.

In the proof of [34, Theorem 6.12] (which shows that under the same assumptions as in
this theorem, if RSym succeeds on P , then no V �-letter is trivial in G), the only facts about
RSym that are used are that RSym is a curvature distribution scheme on D; that each bound-
ary green face F of �0 2 D satisfies �0(F )  1/2 if Area(�0) > 1; and that RSym does not
succeed on �0 2 D if |@(�0)| = 2. Now Proposition 9.0.7; Lemma 11.1.1 and Lemma 11.1.2
give us the analogous results for RSymVert(", h). Hence the proof of [34, Theorem 6.12]
shows that � does not exist, a contradiction. ⌅

Definition 11.1.4. [34, Definition 5.5] The pregroup Dehn function PD(n) : Z�0 ! Z of P is
defined as follows. For each �-reduced word w 2 X⇤ with w =G 1, let A(w) be the smallest
number of internal faces of a coloured van Kampen diagram over P with boundary word w.
Then PD(n) := max{A(w) : w 2 X⇤, w =G 1, |w|  n}.
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We now present the main result of this section.

Theorem 11.1.5. Assume that no R 2 R has length 1 or 2 and that no two distinct cyclic
conjugates of relators R,S 2 R± have a common prefix consisting of all but one letter of R or
S. Let r be the maximum length of a relator in R.

If RSymVert(", h) succeeds on P , then the pregroup Dehn function of P is bounded
above by

f(n) = n

✓
6 + r +

3 + r

2"

◆
� 3 + r

"
.

In particular, G is hyperbolic, and an explicit linear bound on the Dehn function of G can
be calculated.

Proof. We prove the theorem by showing that RSymVert(", h) satisfies all conditions of
[34, Theorem 5.9]. By Proposition 9.0.7 RSymVert(", h) is a curvature distribution on D.
Let � 2 D, and let FR(�) be the set of all red faces of �. We first show that ↵",h

� (x)  0

for all x 2 V (�) [ E(�) [ FR(�). By Lemma 11.1.1 ↵",h
� (x)  0 for each x 2 FR(�),

and clearly ↵",h
� (x) = 0 for each x 2 E(�). So let x 2 V (�). If only the first iteration

of ComputeRSymVert(�, ", h) is computed, then ↵",h
� (x)  0 by Lemma 2.6.9 since

�G(x,�) � 2 (because � 2 D). Otherwise, in Step 2, x receives curvature only if x is interior
and F i

x 6= ;, and in Step 3, x gives all its curvature to the faces of F i
x, so after Step 3, x has

curvature 0. Hence ↵",h
� (x)  0, as claimed. Thus, RSymVert(", h) satisfies Condition (a)

of [34, Theorem 5.9].

As RSymVert(", h) succeeds on P , it satisfies Condition (b). By Lemma 11.1.1 RSym

Vert(", h) satisfies Condition (c) with m = 1/2. By Theorem 11.1.3 no V �-letter is trivial
in G, hence all coloured van Kampen diagrams over P are loop-minimal (see [34, Definition
3.13]), so by [34, Proposition 3.17] all diagrams in D satisfy Condition (d) with � = 3 + r

and µ = 1. We can thus apply [34, Theorem 5.9 & Corollary 5.10] to show that if � 2 D has
boundary length n and Area(�) > 1, then

Area(�)  n

✓
4 + r +

3 + r

2"

◆
� 3 + r

"
.

Since all R 2 R satisfy |R| � 3, a diagram of area 1 has boundary length n � 3. Now for
n � 3, the above bound evaluates to at least 1, hence this area bound holds for all diagrams in
D.

By [34, Proposition 6.10] if w =G 1, then some w0 2 I(w) (see Definition 2.3.20) is a
boundary word of a diagram � in D, and by Lemma 2.5.7 there exists a coloured van Kampen
diagram over P with boundary word w of area at most Area(�) + 2n. Therefore, the given
formula gives the desired bound on the pregroup Dehn function of P .

Since we have an explicit linear bound on the pregroup Dehn function of G, [34, Lemma
5.8] gives us such a bound on the standard Dehn function of G. Thus, G is hyperbolic. ⌅
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11.2 The main VerifyHypVertex algorithm

In this section we shall assume that all preprocessing steps from [34, Section 7.1] have been
performed on P , so that P satisfies assumptions of Theorem 11.1.5. Our aim is to show that
if VerifyHypVertex(P, ", h) returns true, then RSymVert(", h) (see Algorithm 9.0.5)
succeeds on P . This together with Theorem 11.1.5 proves the first statement of Theorem 1.0.4.

We shall now present VerifyHypVertex(P, ", h). In each iteration i and for each
R 2 R±1, VerifyHypVertex(P, ", h) finds an upper bound on ↵",i

� (F ) over all � 2 D
of an interior face F ✓ � labelled by R. If all these bounds are smaller than �", then
VerifyHypVertex(P, ", h) returns true. Otherwise, VerifyHypVertex(P, ", h) either
returns fail, or it proceeds to the next iteration.

In the description below, FindCircuits is a sub-routine that constructs C (see Definition
9.0.4) on input E and 5.

Procedure 11.2.1. VerifyHypVertex(P, ", h):

Step 1 Compute Steps 1-3 & 5-6 from the description of RSymVerify in [34, Section 7.6]
to compute the intermult table, roots of green relators, locations, places, and to create
the Vertex and Blob functions.

Step 2 Construct the enhanced vertex graph E (see Definition 9.0.2).
Step 3 Construct the set WG of all walks in W (see Definition 9.0.4) with a green middle

vertex.
Step 4 For all w 2 WG, define Y(w, 1) and B(w, 1) (see Definition 10.1.1).
Step 5 For i in [1, . . . , h] do:

(i) For each place P, run ComputeOneStepVert(P,Y,B,Blob, i) (see Algo-
rithm 10.2.2). Store the list OneStepVert(P, i), for each such place P.

(ii) Let b,M, SRich = VertexVerify(", i) (see Procedure 10.3.5). If b = true,
then return true. Otherwise, if i = h or if SRich = ;, then return fail.

(iii) If i = 1, then compute C := FindCircuits(E , 5).
(iv) Let Y,B = VertCurvsModify(WG,M,Y,B, SRich, C, i) (see Procedure 10.4.3).

The next lemma shows that the Y and B functions provide correct bounds on the vertex
curvature. Recall Definition 10.3.3 of M(R, ", i), and Definition 9.0.4 that given an internal
green face F ✓ � 2 D and a vertex v 2 @(F ) of degree at least 3, w(F, v,�) is the multiset
of all walks in W around v through a location of F that correspond to three consecutive faces
F1, F, F2 ✓ � incident with F at v.

Lemma 11.2.2. Let F ✓ � 2 D be an interior green face incident with a vertex v of degree at
least 3, let w 2 w(F, v,�) be a walk describing an incidence of F with v, and let 1  i  h.
Then

�(v,�) +
iX

j=2

⌘(w, j)  max{Y(w, i),B(w, i)}. (11.1)

Proof. If v 2 @(�), then setting ◆ = 1 in the statement of Lemma 10.1.2 gives �(v,�) 
B(w, 1). If v is interior, then by Definition 10.1.1 Y(w, 1) = Vertex(⌫1, ⌫, ⌫2), where
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⌫1, ⌫, ⌫2 are the G-vertices that correspond to the E-vertices of w (see Remark 9.0.3). Hence
by [34, Lemma 7.8] �(v,�)  Y(w, 1), and so (11.1) holds for i = 1.

Hence let i � 2. Let R 2 R±1 be the label of F . By Corollary 10.3.4 M(R, ", j)[2] =

true for all 1  j  h.

Case M(R, ", i�1)[1] > 0. If j < i�1 and M(R, ", j)[1]  0, then by Proposition 10.4.4
M(R, ", i � 1)[1]  0, a contradiction. So M(R, ", j)[1] > 0 for all j  i � 1. Hence by
Definition 10.4.2 B(w, j) = B(w, 1) for all j  i. So if v is boundary, then the lemma holds by
Lemma 10.1.2. Hence assume that v is interior. By Definition 9.0.6 for each 2  j  i we have
⌘(w, j) = ⇧(v, w, j). By Lemma 10.4.5 for each R1 2 R±1 and each length 3 walk w1 we
have �out(w1, ", j � 1)  0. Hence as by the description of ComputeRSymVert(�, ", h)

(see Algorithm 9.0.5), ⇧(v, w, j) is a sum of finitely many values �out(w1,",j�1)
m with m > 0,

we have ⇧(v, w, j)  0. So if �G(v,�) � 6, then by Lemma 2.6.10 and Definition 10.1.1 we
have

�(v,�) +
iX

j=2

⇧(v, w, j)  �(v,�)  �1/3  B(w, 1) = B(w, i),

so we can assume that �G(v,�)  5. Then by Remark 9.0.3 there exists C 2 Cw with E-
vertices corresponding to locations of faces around v.

Let 2  j  i, and suppose that there is a face F1 incident with v in location L such that
M(R1, ", j � 1)[1]  0. Let w1 2 w(F1, v,�) be the sub-walk of C around v through L.
Further, let m be the number of green E-vertices of C with relators R0 such that M(R0, ", j �
1)[1] > 0. In Step 2 of the jth iteration of ComputeRSymVert(�, ", h), F1 gives v curva-
ture �out(w1, ", j�1) across the incidence described by w1. On the other hand, in Step 3 of the
jth iteration of ComputeRSymVert(�, ", h), we have |F j

v |  m since F j
v contains only

interior green faces. Hence in Step 3 of the jth iteration of ComputeRSymVert(�, ", h),
v gives at most �out(w1,",j�1)

m of curvature to F across the incidence described by w. So by
Definition 10.4.2

⇧(v, w, j) 
X

w12C

�out(w1, ", j � 1)

m

= ⇠(w,C, ", j � 1),

and therefore by Definition 10.4.2

Y(w, j)� Y(w, j � 1) = �in(w, ", j � 1)

= max
C02Cw

⇠(w,C 0, ", j � 1)

� ⇠(w,C, ", j � 1)

� ⇧(v, w, j).

If there is no face F1 with M(R1, ", j � 1)[1]  0, as above, then ⇧(v, w, j) = 0, and by
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Definition 10.4.2 ⇠(w,C, ", j � 1) = 0, so by 10.4.2

Y(w, j)� Y(w, j � 1) = max
C02Cw

⇠(w,C 0, ", j � 1)

� ⇠(w,C, ", j � 1) = 0 = ⇧(v, w, j).

Hence as by the first paragraph �(v,�)  Y(w, 1), we have

�(v,�) +
iX

j=2

⌘(w, j) = �(v,�) +
iX

j=2

⇧(v, w, j)

 Y(w, 1) +
iX

j=2

(Y(w, j)� Y(w, j � 1))

= Y(w, i),

as required.

Case M(R, ", i � 1)[1]  0. Let m 2 Z be minimal subject to M(R, ",m)[1]  0, so
1  m  i� 1. The fact that the result is proved for M(R, ", k)[1] > 0 shows that

�(v,�) +
mX

j=2

⌘(w, j)  max{Y(w,m),B(w,m)}.

By Proposition 10.4.4 we have M(R, ", j � 1)[1]  0 for all j 2 {m + 1, . . . , i}, so by
Definition 9.0.6 either ⌘(w, j) = 0, or v is interior and F j

v 6= ;, and by Lemma 9.0.8

⌘(w, j) = �⌦(F,w, j) = ��out(w, ", j � 1).

Hence as by Lemma 10.4.5 �out(w, ", j � 1)  0, by Definition 10.4.1

Y(w, j)� Y(w, j � 1) = B(w, j)� B(w, j � 1)

= ��out(w, ", j � 1)

� ⌘(w, j).

So if Y(w,m) � B(w,m), then

�(v,�) +
iX

j=2

⌘(w, j) = �(v,�) +
mX

j=2

⌘(w, j) +
iX

j=m+1

⌘(w, j)

 Y(w,m) +
iX

j=m+1

(Y(w, j)� Y(w, j � 1))

= Y(w, i)  max{Y(w, i),B(w, i)}.
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Similarly, if B(w,m) � Y(w,m), then

�(v,�) +
iX

j=2

⌘(w, j)  B(w, i)  max{Y(w, i),B(w, i)}.

The lemma follows. ⌅

Proposition 11.2.3. Let F ✓ � 2 D be an interior green face with label R 2 R±1, and let
1  i  h. Then M(R, ", i)[1] � ↵",i

� (F ) + ".

Proof. As in the proof of Lemma 10.3.2 we can let R0 = s1s2 . . . sl, where R0 is a cyclic
conjugate of R, and each sm labels a step. Let P be the instantiable place on R at the beginning
of R0, let �i

m be the stepwise curvature with respect to i given to F by the step corresponding to
sm, and let lm be the length of sm. By Lemma 10.2.3 each step sm corresponds to a pair P,Q

of places on R; and as by Lemma 11.2.2 the Y and B functions satisfy assumptions of Lemma
10.2.3, by 10.2.3 there exists �m such that (Q, lm,�m) 2 OneStepVert(P, i) and �m �
�i
m. Hence from the description of VertexVerifyAtPlace(P, ", i) (see Procedure 10.3.1)

we have VertexVerifyAtPlace(P, ", i)[2] = true, and by Lemma 10.0.4 and Definition
10.3.3 we have

M(R, ", i)[1] � VertexVerifyAtPlace(P, ", i)[1] �
lX

m=1

�m + (1 + ") · lm
|R|

�
lX

m=1

�i
m + (1 + ") · lm

|R| = (

Pl
m=1 lm
|R| +

lX

m=1

�i
m) + " ·

Pl
m=1 lm
|R|

= (
|R|
|R| +

lX

m=1

�i
m) + " · |R|

|R| = (1 +
lX

m=1

�i
m) + " � ↵",i

� (F ) + ",

as required. ⌅

The following theorem proves the first statement of Theorem 1.0.4.

Theorem 11.2.4. If VerifyHypVertex(P, ", h) returns true, then RSymVert(", h) suc-
ceeds on P . Hence G is hyperbolic, and an explicit linear bound on the Dehn function of G
can be calculated.

Proof. We first show that RSymVert(", h) succeeds on P . Let � 2 D. We show that
RSymVert(", h) succeeds on �. Suppose that � contains no interior green faces. Then if
h � i > 1, then by Algorithm 9.0.5, no curvature is redistributed through any interior vertex
of � in iteration i. Hence ↵",h

� = �, and RSymVert(", h) succeeds on �. Therefore,
we can assume that � contains an interior green face, so let F be such face. We show that
↵",h
� (F )  �".

Let R 2 R±1 be the label of F . Since VerifyHypVertex(P, ", h) returns true, there
exists 1  i  h such that VertexVerify(", i) return true. Hence by Step 3 of Procedure
10.3.5 one of the following statements holds.
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1. LMaxCurvs = [ ].

2. LMaxCurvs 6= [ ] and {(R0,�) 2 LMaxCurvs : � > 0} = ;.

Suppose that Statement 1 holds. Then there is no place P such that VertexVerifyAtPlace

(P, ", i)[2] = true (see Procedure 10.3.1), hence by Lemma 10.3.2, � contains no interior
green faces, a contradiction.

So Statement 2 holds. Therefore, for each place P on R we have VertexVerifyAtPlace

(P, ", i)[1]  0, hence by Definition 10.3.3 we have M(R, ", i)[1]  0. By Corollary
10.3.4 we have M(R, ", i)[2] = true, so if i < h, then by Proposition 10.4.4 we have
M(R, ", h)[1]  0. Thus, by Proposition 11.2.3 we have ↵",h

� (F ) + "  0, so ↵",h
� (F )  �",

as required. Hence RSymVert(", h) succeeds on every � 2 D, so RSymVert(", h) suc-
ceeds on P .

The final statement follows directly from Theorem 11.1.5. ⌅

11.3 Complexity of VerifyHypVertex

Recall that P is a finite pregroup presentation such that I(R) = R (see Definition 2.3.20),
and that we assume the RAM model of computation, in which the basic arithmetical op-
erations on integers can be computed in constant time. In this section we shall show that
VerifyHypVertex(P, ", h) runs in time O(r9|R|9|X|9), where r := max{|R| : R 2 R} is
the length of the longest green relator. We shall assume that all preprocessing steps from [34,
Section 7.1] have been performed on P . This process involves comparing sub-words of cyclic
conjugates of the relators, and any simplification reduces the total length of the presentation,
so takes polynomial time.

Before presenting our complexity results, we shall describe the algorithm FindCircuits

(D, k), which constructs C (see Definition 9.0.4) on input the enhanced vertex graph E and
5. It uses a modified depth-first search, where we use a trivial fact that any walk W =

(v1, v2, . . . , vm) is composed of the walk W 0 = (v1, v2, . . . , vm�1) and the edge (vm�1, vm).
Hence we can generate all walks of length m from walks of length m� 1.

Algorithm 11.3.1. FindCircuits(D, k):

// Input: D – a directed weighted simple graph, with all weights non-negative,
// and no circuits of weight zero.
// k: positive integer.
// Output: a list Lk of all circuits C in D with !(C)  k and |C| � 4.

Step 1 Initialize Lk := [ ].
Step 2 Find all connected components of D.
Step 3 For each connected component C do:

(i) Let Q := [v1, . . . , vn] be the vertices of C, considered as walks of length 0.
(ii) While Q 6= [ ] do:

(a) Let W := (vi1 , . . . , vim) be a walk in Q, set Q := Q \ {W}.
(b) If !(W )  k then
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(A) if (vim , vi1) 2 E(D) and !(W )+!(vim , vi1)  k, then add (vi1 , . . . , vim ,
vi1) to Q, and if m � 3, then add (vi1 , . . . , vim) to Lk.

(B) Let S := OutNeighbours(vim) \ {vj | j  i1}. For all vim+1 2 S, if
!(W ) + !(vim , vim+1)  k, then add (vi1 , . . . , vim , vim+1) to Q.

Step 5 Return Lk.

Let C 2 Lk have vi1 as its lowest numbered vertex. Then FindCircuits(D, k) only
produces cyclic rotations of C starting at vi1 . Furthermore, by Remark 9.0.3 we have that
FindCircuits(E , 5) finds all interior vertices v 2 � 2 D with �G(v,�)  5 and �(v,�) � 3.

Lemma 11.3.2. FindCircuits(E , 5) runs in time O(r7|R|7|X|6 + r6|R|6|X|8), where r :=

max{|R| : R 2 R} is the length of the longest green relator, and |C|  O(r6|R|6|X|5 +

r5|R|5|X|7).

Proof. By Definition 9.0.2 E contains O(r|R|) green and O(|X|2) red E-vertices. Then there
are O(r2|R|2) E-edges between green E-vertices, O(r|R||X|) E-edges from a green and to a
red E-vertex, and O(r|R||X|2) E-edges from a red to a green E-vertex

We first find, for all v 2 V (E), the set of out-neighbours of v. We store E as an adjacency
matrix M , so this takes time O(|V (E)|2) = O(r2|R|2+r|R||X|2+ |X|4). The time complex-
ity of finding connected components of an undirected graph D is O(|V (D)| + |E(D)|) (see
[38]). Since we store E as M , we can construct the underlying undirected graph by defining
an adjacency matrix M 0 with |V (E)| rows and |V (E)| columns, and such that M 0[i][j] = 1 if
and only if M [i][j] = 1 or M [j][i] = 1. Hence Step 2 takes time O(|V (E)|2 + |E(E)|) =

O(r2|R|2+ r|R||X|2+ |X|4). For Step 3, we may assume that E is connected. Then the com-
plexity is bounded by O(t), where t is the number of (closed or open) walks in E of weight at
most 6. Since there are no edges between red E-vertices, every walk W in E with !(W )  m

contains at most m + 1 green (if it starts at a green E-vertex, then it might have m + 1 green
E-vertices; else it has at most m such vertices) and at most m+ 1 red E-vertices (if it starts at
a red E-vertex, then it might have m + 1 red E-vertices; else it has at most m such vertices),
and if it attains this bound, then the colours of the vertices of W alternate. Now each green
E-vertex has at most |X| red out-neighbours (since one letter is fixed), and each E-vertex has
at most O(r|R|) green out-neighbours (since there are at most O(r|R|) locations). Hence as
every walk starts at a green or a red E-vertex, we have

t =O(r|R| · (r6|R|6|X|6) + |X|2 · (r6|R|6|X|6))

=O(r7|R|7|X|6 + r6|R|6|X|8),

So Step 3 takes time O(r7|R|7|X|6 + r6|R|6|X|8). Hence the overall complexity of Find
Circuits(E , 5) is as stated.

Finally, as |C| is bounded by the number of (closed or open) walks in E of weight at most
5, applying the arguments from the previous paragraph shows that |C|  O(r6|R|6|X|5 +

r5|R|5|X|7). ⌅
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The next theorem proves the second statement of Theorem 1.0.4. In its proof we assume
that the products and inverses in the pregroup can be computed in constant time.

Theorem 11.3.3. Let P = hX |VP [Ri be a finite pregroup presentation such that I(R) = R,
let " 2 R>0, and let h 2 Z�1. Then VerifyHypVertex(P, ", h) runs in time O(r9|R|9|X|9),
where r := max{|R| : R 2 R} is the length of the longest green relator.

Proof. From the proof of [34, Theorem 7.22] Step 1 can be computed in time O(|X|5 +

r2|R|2|X|). Now |V (E)| = O(r|R|+ |X|2) and |E(E)| = O(r2|R|2 + r|R||X|2), so Step 2
takes time O(r2|R|2+ r|R||X|2). (We store E as an adjacency matrix and V (E) as an indexed
set.)

In Step 3, since |V (E)| = O(r|R|+|X|2) and each E-vertex has E-degree at most O(r|R|+
|X|), we deduce that |W| = O((r|R|+ |X|2) · (r|R|+ |X|)2), so O(r3|R|3 + r2|R|2|X|2 +
r|R||X|3 + |X|4) is the time complexity of Step 3. Furthermore, |WG| = O(r|R| · (r|R| +
|X|)2) = O(r3|R|3 + r2|R|2|X| + r|R||X|2). (We store each w 2 WG as a sequence of
indices of elements of V (E)).

In Step 4, for each of the O(r3|R|3+ r2|R|2|X|+ r|R||X|2) walks w 2 WG, we can look
up the corresponding walk in G in time O(1). We then define Y(w, 1) and B(w, 1) in constant
time. Hence Step 4 takes time O(r3|R|3 + r2|R|2|X|+ r|R||X|2).

In Step 5 (i) the only difference compared to the proof of [34, Theorem 7.22] when deriving
the time complexity of Step 7 of RSymVerify is that instead of performing O(|X|) calls to
the Vertex function, we need to perform O(|X|), or O(r|R|) calls to Y and B functions
when the newly found E-vertex is red, or green. Hence the time complexity of Step 5 (i) is
O(r3|R|2|X|3 · (r|R|+ |X|)) = O(r4|R|3|X|3 + r3|R|2|X|4).

For each place P, the length of the list L constructed by VertexVerifyAtPlace(P, ", i)

(see Procedure 10.3.1) is at most O(r|X|), and each item on L is considered at most r times
by VertexVerifyAtPlace(P, ", i). Hence as VertexVerify (see Procedure 10.3.5) runs
VertexVerifyAtPlace at each of the O(r|R||X|) places, Step 2 of VertexVerify takes
time O(r3|R||X|2). Now there are at most O(|R|) elements in the list LMaxCurvs and at most
O(r|R|) locations, hence Step 5 (ii) has time complexity O(r3|R||X|2).

By Lemma 11.3.2 Step 5 (iii) takes time O(r7|R|7|X|6 + r6|R|6|X|8). (We store each
C 2 C as a sequence of indices of elements of V (E)).

Step 5 (iv). We use the M function to check whether a given E-vertex lies in SRich. Each
such look-up takes time O(1), hence Step 1 of VertCurvsModify (see Procedure 10.4.3)
takes time O(|WG|). To check whether w 2 WG is a sub-walk of C 2 C, we use the Knuth-
Morris-Pratt (KMP) string-searching algorithm, by noting that if S and T are two sequences
of integers, then S is a (cyclic) contiguous sub-sequence of T if and only if S is a contiguous
sub-sequence of T 2, where T 2 is the concatenation of T with itself. Therefore, by [2, Section
9.1], KMP(S, T 2) returns true on input S and T 2 if and only if S is a (cyclic) contiguous sub-
sequence of T . Hence KMP(w,C2) returns true if and only if w is a sub-walk of C. Now
by [2, Section 9.1], KMP(w,C2) runs in time O(|w|+ |C|). So as every circuit in C contains
at most 11 vertices (since there are no edges between red E-vertices), for a given w 2 WG:
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Part (ii) of VertCurvsModify (see Procedure 10.4.3) takes time O(|C|). Let C 2 C, and
assume that w 2 WG is a sub-walk of C. As we use the M function to check whether a given
E-vertex lies in SRich, and C contains at most 11 vertices, we can find the number of E-vertices
of C with relators R such that M(R, ", i)[1] > 0 in time O(1). So we can use the M, Y and
B functions to calculate ⇠(w,C, ", ◆) (see Definition 10.4.2) also in time O(1). Hence for a
given w 2 WG: Part (iii) of VertCurvsModify runs in time O(|C|). Thus, as by Lemma
11.3.2 we have |C|  O(r6|R|6|X|5 + r5|R|5|X|7), Step 2 of VertCurvsModify has time
complexity

O(|WG||C|) = O((r|R| · (r|R|+ |X|)2) · (r6|R|6|X|5 + r5|R|5|X|7))

= O(r9|R|9|X|9).

So O(r9|R|9|X|9) is the overall complexity. ⌅

Proof of Theorem 1.0.4. Follows directly from Theorems 11.2.4 and 11.3.3.
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Implementation

We implemented VerifyHypVertex, in the computer algebra system MAGMA (see [6]). We
used the code of the implementation IsHyperbolic of RSymVerify (see [34, Procedure
7.19]) to produce the pregroup multiplication table and to compute Step 1 of VerifyHypVertex

(see Procedure 11.2.1), and then modify it to compute Steps 2-4 and Step 5 (i)-(ii). Parts (iii)-
(iv) of Step 5 are computed by new code.

In this chapter we describe experiments with our implementation, and report the run times.
Since in the first iteration VerifyHypVertex uses the same vertex and blob curvature bounds
as RSymVerify, on all examples on which IsHyperbolic returns true, VerifyHyp

Vertex succeeds in the first iteration. Hence we are particularly interested in examples on
which VerifyHypVertex succeeds in the ith iteration for some i > 1. We used " = 1/100

and h = 4 in our tests. To test the correctness of our implementation, on the examples on
which VerifyHypVertex succeeds and RSymVerify fails, we run KBMAG to check
whether the input presentation defines a hyperbolic group: we found that on examples on which
RSymVerify fails, KBMAG often succeeds, and VerifyHypVertex seems to shrink this
gap by succeeding in higher iterations. We have not found a better way to test the accuracy of
our implementation, and we are aware of this limitation of it.

The first example on which IsHyperbolic returned fail and VerifyHypVertex suc-
ceeded is the presentation of the form P = ha, b, c, d, e, x | abcde, axbxcxdxex, x2i, con-
structed as a quotient of the free group of rank 6, where {abcde, axbxcxdxex} is the set of
green relators, and the relation x = x� is required in the pregroup. Using KBMAG we verified
that the group defined by P is hyperbolic. The reason for failure of IsHyperbolic is that an
interior green face F labelled by abcde might have five interior vertices of green degree 3, each
giving F curvature �1/6, resulting in (F ) = 1/6. VerifyHypVertex, however, succeeded
on P in the second iteration, with run time 0.13 seconds.

Next we considered presentations with randomly chosen relators. For random quotients
of free groups, we choose random, freely cyclically reduced words of a given length as green
relators, and leave the set of red relators to be empty. For random quotients of free products of
two groups we choose random non-trivial group elements alternating between the two factors.
Finally, for random quotients of three finite groups, we choose a factor at random (other than
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the previous factor) and then a random non-trivial element from that factor.
Interesting examples were found when the random quotients were over the free groups

of ranks 10 and 20. The results are described in Table 12.1, where i = k means success in
iteration k, the numbers represent the number of random presentations with given properties,
the penultimate entry (success for i = 1) is the average run time for successes in the first
iteration, and the last entry is the average run time over all other cases. The table demonstrates
that there exist presentations on which VerifyHypVertex succeeds but RSymVerify fails.

We also tried to run KBMAG on them and found that, for example, for random quo-
tients over the free group of rank 20, there are 29 (out of 140) presentations P on which
VerifyHypVertex succeeds, but KBMAG (with default input values) fails to precompute
an automatic structure of P , hence fails to show that P is hyperbolic; and 33 (out of 140) pre-
sentations on which KBMAG succeeds but VerifyHypVertex fails. This suggests that the
two methods complement each other well. Furthermore, there was only one random quotient
presented in Table 12.1 on which VerifyHypVertex succeeded but both RSymVerify and
KBMAG failed, hence all but one quotients from Table 12.1 on which VerifyHypVertex

succeeds in higher iterations have been verified to be hyperbolic by KBMAG.
We are confident that there are many additional presentations on which VerifyHypVertex

succeeds but RSymVerify fails. For example, we found at least 20 such presentations over
the free product of three cyclic groups of order 3. However, the presentations were very large
and on each of them the procedure returned true after several days. The implementation in
MAGMA would stop earlier and return fail, hence we have decided not to present the results
here.
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Table 12.1: Run times and successes of VerifyHypVertex on random presentations.

A free group of rank 20 with m relators of length n
m = 10 & n = 5

Total i = 1 i = 2 i > 2 Fails Success for i = 1 Else
20 17 1 0 2 0.03 seconds 0.38 seconds

m = 20 & n = 6
Total i = 1 i = 2 i > 2 Fails Success for i = 1 Else
20 7 4 1 8 0.29 seconds 79.25 seconds

m = 30 & n = 7
Total i = 1 i = 2 i > 2 Fails Success for i = 1 Else
20 8 9 0 3 1.13 seconds 2218.12 seconds ⇡ 37 minutes

m = 34 & n = 8
Total i = 1 i = 2 i > 2 Fails Success for i = 1 Else
20 17 3 0 0 2.62 seconds 8152.15 seconds ⇡ 2 hours & 15 minutes

A free group of rank 10 with m relators of length n
m = 10 & n = 8

Total i = 1 i = 2 i > 2 Fails Success for i = 1 Else
20 16 3 1 0 0.14 seconds 268 seconds ⇡ 4 minutes & 28 seconds

m = 10 & n = 20
Total i = 1 i = 2 i > 2 Fails Success for i = 1 Else
20 20 0 0 0 1 second NA

m = 10 & n = 30
Total i = 1 i = 2 i > 2 Fails Success for i = 1 Else
20 20 0 0 0 1 second NA

m = 20 & n = 10
Total i = 1 i = 2 i > 2 Fails Success for i = 1 Else
20 11 9 0 0 1.07 seconds 93089 seconds ⇡ 25 hours & 52 minutes

m = 20 & n = 20
Total i = 1 i = 2 i > 2 Fails Success for i = 1 Else
20 20 0 0 0 1 second NA



Chapter 13

Future curvature distributions
schemes for showing hyperbolicity

The final chapter of Part 2 includes examples of several curvature distributions schemes that
might be useful for showing hyperbolicity, but that we were unable to develop completely.
The reader might notice that RSymVert (see Algorithm 9.0.5) redistributes curvature only
through interior vertices.

Question 2: Could we come up with an (iterative) curvature distribution scheme that allows
redistribution of curvature through boundary vertices?

In that case we will not obtain analogous result to Lemma 11.1.1 since the final curvature of
a boundary green face might be greater than 1/2. For this reason, we were unable to show that
the curvature distribution scheme fails on diagrams with boundary length two (the analogous
result to Lemma 11.1.2), and hence unable to show that its success implies non-triviality of
V �-letters (as in Theorem 11.1.3): essential result for proving hyperbolicity.

Let " > 0. Similarly as for vertices, we can redistribute curvature through red blobs: each
interior green face with curvature less than �" and each boundary green face gives some of
its negative curvature to edge-incident red blob B, and then B gives its negative curvature to
edge-incident interior green faces with curvature greater than �". However, we expect that
such scheme would not be more general then RSymVert, and finding green faces with the
aforementioned properties edge-incident with B is computationally significantly more expen-
sive than for green faces incident with a given vertex, so we did not proceed with this idea.

We also tried to redistribute curvature across consolidated edges (see Definition 2.5.6):
given a consolidated edge e common to internal green faces F1 and F2, if F1 is boundary or the
curvature of F1 is less than �", and if F2 is interior and the curvature of F2 is greater than �",
let F1 give some of its negative curvature to F2. The same problem occurred as for boundary
vertices: since F1 might be boundary, we were unable to ensure that a boundary green face has
final curvature of at most 1/2, hence unable to guarantee non-triviality of V �-letters.

We chose to present RSymVert in this thesis because it can be tested in polynomial time,
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but if one is willing to accept a higher degree polynomial cost, or perhaps an exponential cost
in the length of the longest green relator, then one might come up with schemes that show
hyperbolicity of a much wider classes of finite presentations.
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