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Abstract

"There are certain Phænomena of this scatter’d Light, which when
I first observed them, seem’d very strange and surprizing to me."

– Isaac Newton, Optiks

Speckle patterns are grainy intensity patterns resulting from the random inter-
ference of light. They often arise from the interaction of light with systems that have
a complex structure at the scale of the wavelength. As most ordinary objects have
this property, speckle patterns are a somewhat universal phenomenon, although not
easily observable under ordinary circumstances due to the lack of coherence of nat-
ural light. Since the invention of lasers however, the production of speckle patterns
has become extremely simple, and a whole field of optics has emerged from it.

Speckle patterns are an excellent tool for metrology. Where intuition says that
precise control over all aspects of a setup is required, it is found that introduc-
ing some disorder can lead to very powerful techniques, with considerably simpler
implementations.

In this thesis, we explore new theoretical aspects of speckle patterns and de-
velop new metrology techniques. We pay particular attention to the case of speckle
patterns produced by an integrating sphere, which has only recently been used in
this field of study. In this geometry, we develop a general model that predicts the
amount of change in the resulting speckle, as a result of an arbitrary transformation.
This model gives explicit results for various physical effects that can be solved from
first principles, such as a variation in wavelength, refractive index, temperature, and
position. We use this model in the context of metrology, and improve the state of
the art by several orders of magnitude in the case of refractive index variations and
displacement. We also explore the relationship between speckle and polarisation,
and describe new mathematical techniques for the design of speckle patterns with
custom properties (i.e. with maximal and minimal sensitivity to a measurand of
interest) using light shaping.
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Chapter 1

Introduction

List of symbols and abbreviations

E complex field
N number of scatterers
ρ amplitude of the field from one scatterer
φ phase of the field from one scatterer
a global amplitude of the field
θ global phase of the field
R real part of the field
I imaginary part of the field
σ standard deviation of R and I
f probability density function
I intensity of light

1.1 What are speckle patterns?

Speckle patterns are random interference patterns, characterised by a grainy struc-
ture. The simplest illustration of a speckle phenomenon is the following. Take a
laser pointer (preferably green1), shine it on an optically rough2 surface (such as
paper, plastic, or wood), and observe the diffused light, as projected onto a wall for
example. The diffused light does not appear uniform, but has a granular structure:
this is a speckle pattern. An example of speckle produced in this way is shown in
Fig. 1.1, along with an example of higher quality speckle obtained in the laboratory,

1A green laser is ideal to observe the effect with the naked eye, as the eye has a peak of
sensitivity in the green, if we assume most laser pointers have similar powers.

2Microscopically, rough means that the surface fluctuations are large compared to the wave-
length. Empirically, it means any surface that does not produce a specular reflection.
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whose details of production will be discussed in Chapter 2.

5 cm

2 mm
1 mm

1 mm

Figure 1.1: Left: an "everyday life" speckle pattern, obtained by shining a
green laser pointer on a piece of white plastic. The picture shows the diffused
light projected onto a wall. The granular structure of the intensity profile is a
characteristic feature of speckle patterns. Right: an example of speckle pattern
obtained in the laboratory.

The explanation of this effect lies in the combination of two factors: the coherence
of the light, and the roughness of the surface. When illuminated, each point of
the surface acts as a source of secondary spherical waves. The coherence implies
that those secondary waves interfere with each other, and the roughness implies
that each of them leaves the surface with a phase randomly distributed on the
interval [0, 2π]. What we have on the wall then is a superposition of many spherical
waves with random phases and slightly different directions of propagation, which
produces a random interference pattern, as illustrated in Fig. 1.2. In some points the
interference is constructive, producing bright spots, in others destructive, producing
dark spots. This results in the typical granular structure shown in Fig. 1.1. Both
coherence and roughness are essential. If we have non coherent light shining on a
rough surface, we obtain a uniform diffused light. If we have coherent light shining
on a non rough (smooth) surface, we obtain a specular reflection.

1.2 Historical retrospective

The observation of speckle patterns became inevitable after the invention of lasers,
the first of which was built in 1960 [1]. Three nearly simultaneous papers published
between 1962 and 1963 [2–4] describe the phenomenon.

However, observations of speckle phenomena precede the invention of lasers. In-
deed, the required coherence of the source mentioned in the previous section can
be either temporal or spatial. Lasers have a high temporal coherence, which makes
speckle production simplest, but speckles can also be observed with spatially coher-
ent light instead, although in much more delicate conditions. This can be observed

2



light source

observation plane

ρ 1e
iϕ 1

ρ 2e
iϕ 2

ρ 3e
iϕ 3

zi

zk

zj

constructive  
interference

surface 
 luctuations

≳ λ

destructive  
interference

f

Figure 1.2: When illuminated, each point of a rough surface acts as a source of
spherical waves. These interfere in the far field, forming randomly distributed
regions of constructive and destructive interference, resulting in the typical
granular structure of speckle. The input beam is not represented for clarity.

in everyday life, by using a small and bright source of white light (such as an LED)
illuminating a shiny rough surface (such as aluminium foil or brushed metal). When
the eye is placed approximately in the specular direction, where the diffused light
is brightest, the surface glitters with coloured speckle patterns. An example of such
pattern is shown in Fig. 1.3. Sunlight is also a good source for this observation, and
with a trained eye, this can be seen on all sorts of surfaces such as wood or even
skin.

5 cm 2 mm

2 mm

Figure 1.3: An example of speckle pattern which arises from the spatial co-
herence of light, rather than temporal coherence. The image shows the surface
of brushed metal illuminated by an LED from a distance of about 1 m, observed
in the specular direction.

Unfortunately the historical aspects surrounding these early (pre-laser) observa-
tions are rather disjointed. A few books and articles [5–7], as well as on the reputable
Wikipedia [8], state that speckle phenomena were first reported by Newton, without
however giving references to attest it. It took me some personal research to find the
first occurrence of this statement, which seems to be in a chapter written by Françon
in 1975 in "Laser speckle and related phenomena" [9], one of the first comprehensive
books on the subject (according to Goodman [10, Chapter 1.1]). In this chapter the

3



reference is simply Opticks by Newton (1704) [11], with no more details. The inter-
ested reader of the time would have to wait 4 years before learning more. In 1979
Françon wrote his own book "Laser Speckle and Applications in Optics" (one of
the other few comprehensive books on speckle, still according to Goodman), where
he refers to the work of Newton in Opticks, Book II, Part IV, titled "Observations
concerning the Reflexions and Colours of thick transparent polish’d Plates". There
Newton reports observations on the interference of light scattered by impurities on
the surface of a concave mirror, forming irregular coloured rings at the focal point
of the mirror. At the very start of this chapter can be read "There are certain
Phænomena of this scatter’d Light, which when I first observed them, seem’d very
strange and surprizing to me". This might be the first written record of the won-
ders of random light, from one of the great figures of physics, and for that reason
deserved to serve as an inspirational quote in the abstract of this thesis.

In a much more recent book from 2009, Gustavo and Pomarico [12] argue that
Newton made another observation of speckle-like phenomena in Opticks. In Book I,
Part I, Prop. VIII, titled "To shorten Telescopes", Newton reports on the effect of a
turbulent atmosphere on the image of a star, in relation to the length and aperture
size of the telescope, and describes observations that are reminiscent of a stellar
speckle.

Concerning the work made in the 256 years between Newton and the first laser,
there seems to be different versions of history. According to Françon [13], Young
(1802) used the wave theory of light to explain the phenomena observed by Newton,
as well as Stokes who gave a more general theory in 1851. He notes that Herschel
also studied speckle phenomena (1830). Another paper by Hariharan [14] gives a
historical retrospective, and mentions other works. According to them, the first
observation of speckle was made by Exner in 1877, while studying diffraction from
randomly distributed particles, and the first theoretical description made by von
Laue in 1914.

1.3 Modelling speckle patterns

In this section we describe a simple approach to model speckle patterns, from which
we will derive a few fundamental properties that will be useful later.

Consider a source of temporally coherent light impinging on a rough surface and
scattered onto an observation plane, as shown in Fig. 1.4. This is essentially a
continuous problem that would involve some delicate maths to model the diffusion
of the incident field. However, we shall for the moment only consider the statistical

4
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observation plane

ρ1e iϕ1
ρ2eiϕ2

ρ3e
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zk

zj

observation plane

Figure 1.4: In order to infer the statistical properties of speckle patterns, we
can make a simple model where we consider a set of discrete scatterers randomly
distributed on the rough surface. Any point of the observation plane receives
a contribution from each scatterer (three of which are shown), modelled as a
complex number, which add coherently.

properties of speckle. To this end, a great simplification is to make a discrete model
where we only consider discrete scatterers randomly distributed on the rough surface.
By this choice of description we lose all information on the detailed spatial properties
of the scattered field, but retain all the statistical information. For now, let us use a
scalar model of light, where the field is described by a single complex number ρeiφ,
with ρ the amplitude and φ the phase (two real numbers). For completeness, the use
of complex numbers in this context is discussed in Appendix A. One single complex
number describes a speckle pattern that is fully polarised3, for example a speckle
that goes through a polariser before reaching the observation plane. Each point of
the observation plane receives the sum of the contributions of each scatterer, so that
the resulting field can be expressed as

E(r, t) =
1√
N

N∑
n=1

ρn(r)eiφn(r,t), (1.1)

where each term of the sum corresponds to the contribution of one scatterer, with
a total of N scatterers. All quantities are functions of position on the observation
plane r (in the rest of this thesis, bold fonts designate vectors), and as we consider
monochromatic light, only the phase contains a time dependence in the form of
a ωt term. This time dependence is not important here and we shall omit it for
clarity. The factor 1/

√
N is a normalisation constant to ensure that the intensity

(proportional to |E|2) is finite whenN goes to infinity, so that our model is consistent
with a real situation.

Note that in this model, and in the rest of this thesis, light is described by an

3Or more precisely, that has a constant state of polarisation across the observation plane.
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underlying physical quantity simply denoted as “the field”. This imprecise denomi-
nation is intentional, since the knowledge of the actual nature of light is unnecessary
to perform wave optics derivations. This is in fact the elegant power of wave optics,
where the mere assumption of a wave nature is sufficient to provide the formal basis
of modelling. As a matter of fact, the foundational works on wave optics by Young
and Fresnel (1807 and 1818 respectively) preceded by about 50 years the synthesis
of electromagnetism by Maxwell (1865). From our modern knowledge of the nature
of light we will only keep one letter, E for electric4, to designate the field.

Let us now introduce some common assumptions that will greatly simplify the
derivations:

• The amplitude ρn(r) and phase φn(r) are statistically independent.

• The amplitudes ρn(r) and ρm(r) are statistically independent (for n 6= m) and
similarly for φn(r) and φm(r).

• The phase φn(r) is uniformly distributed on a 2π-interval.

A speckle pattern verifying these assumptions is called a fully developed speckle.
These three assumptions have direct consequences on the statistics of the field on the
observation plane. To better appreciate them, we introduce the following notations:
E(r) = a(r)eiθ(r) = R(r) + iI(r), where a(r) is the global amplitude and θ(r) the
global phase, R(r) the real part and I(r) the imaginary part of the field. The
average value of a quantity across the observation plane is denoted by an overbar.
The consequences are the following

1. The average field is zero. We haveR(r) = 0, I(r) = 0, and E(r) = 0. Also,
we have R(r)I(r) = 0, which means that R(r) and I(r) are uncorrelated.

2. R(r) and I(r) are Gaussian random variables of the same statistics.
R(r) and I(r) have the same variance, that we shall denote σ2 (σ2

R = σ2
I = σ2),

whose precise value depends on the initial probability density of ρ in (1.1).
Moreover, as R(r) and I(r) are both sums of a large number of independent
random variables, the central limit theorem implies that they are Gaussian
random variables, with mean 0 and variance σ2. Taking N to infinity, the
joint probability density of R and I is given by

f(R, I) =
1

2πσ2 e
−R2

+I2

2σ
2 . (1.2)

4Note however that light can equally be described by its magnetic component, although this
is an often forgotten truth. In fact, the total energy density (or flux) of an electromagnetic wave
is equally divided between its electric and magnetic components.
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When plotting this density in theR−I plane, it is circularly symmetric around
the origin. For this reason E is said to be a circular complex Gaussian random
variable, or just circular Gaussian5.

3. The global amplitude of the field is Rayleigh-distributed, and the
global phase is uniformly distributed. Using the relationship between
(a, θ) and (R, I), namely (R = a cos θ, I = a sin θ), we can find the prob-
ability density of a and θ from that of R and I (Eq. (1.2)) using variable
transformation rules. We find

f(a, θ) =
a

2πσ2 e
− a

2

2σ
2 . (1.3)

As f(a, θ) does not depend on θ, it means that the probability density of θ
is uniform, just like the phase of each individual component of (1.1). The
probability density of a is then

f(a) =
a

σ2 e
− a

2

2σ
2 , (1.4)

which is called a Rayleigh distribution.

Let us now turn our attention to the statistics of intensity, which is what is most
commonly measured. The intensity is power per unit area. It is proportional to the
time average of the field’s square modulus

I(r) ∝ 〈|E(r, t)|2〉, (1.5)

where the angled brackets denote time averaging. We do not give the exact propor-
tionality constant implied6, as, again, in the spirit of wave optics, we do not need to
know what the field actually is. Here we simply invoke a general property of waves,
which is that the energy density is proportional to the field’s square modulus. In
the case of monochromatic light, the time dependence can be fully factored out in a
complex exponential of the form E(r, t) = E0(r)eiωt, and therefore disappears when
taking the square modulus. We can then omit the time averaging and simply write
I(r) ∝ |E(r)|2.

4. The probability density of intensity of a polarised speckle is an ex-
ponential function. Using our previous notations, we have I(r) = a2(r).

5Or in fact any combination of the words complex, circular, and Gaussian.
6Actually, it is cnε0/2.
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Using this relation, we can find the probability density of I by again using the
rules of variable transformation, and we find

f(I) =
1

2σ2 e
− I

2σ
2 , (1.6)

which is an exponential distribution, expressed in terms of σ which is a prop-
erty of the underlying field. From this we find that the average intensity is
I = 2σ2, we can then rewrite f(I) in terms of intensity only

f(I) = (1/I)e−I/I . (1.7)

So far we have assumed a scalar model of light, where light is described by a
single complex number. In the general case, however, the field has two independent
components. Indeed, the field most often reaches a detector in a paraxial geometry
and close to normal incidence, and has two components within the observation plane.
The field is then described by a 2D vector containing the components of the field
along two perpendicular axes, say x and y:

E(r) =

(
ax(r)e

iθx(r)

ay(r)e
iθy(r)

)
. (1.8)

If the diffusion process does not favour one particular polarisation of light, each
component of E(r) has the same properties as the scalar field described above, and
E(r) is said to be non-polarised. The intensity is now defined as I(r) ∝ |E(r)|2 =

E∗(r) ·E(r) = E†(r)E(r), where we can either use the dot product of the field with
its complex conjugate, or use the language of matrices and use a matrix product
with the conjugate transpose (denoted by †).

5. The intensity of a non-polarised speckle is gamma-distributed. For a
fully vector speckle field, we then have I(r) = a2

x(r) + a2
y(r), where a

2
x(r) and

a2
y(r) are the intensities corresponding to the x and y component of the field

(it is a simple sum, as both components are perpendicular). We derived above
the statistics of each individual component. The sum of two such components
give the following probability density

f(I) = 1/
(
Ix − Iy

) (
e−I/Ix − e−I/Iy

)
, (1.9)

where Ix = a2
x(r) and Iy = a2

y(r) are the average speckle intensities on the x
and y component, assuming Ix > Iy. In the general case Ix and Iy can be
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different, for example if the scattering surface is conductive, one component
may be favoured. If both are equal however, as obtained when using a non-
conductive surface (such as paper), the probability density simplifies to

f(I) = 4I/I
2
e−2I/I , (1.10)

where I is now the average total speckle intensity (I = Ix+ Iy). This is known
as a gamma distribution of shape parameter 2.

Those are the main statistical properties of speckle patterns. The detailed deriva-
tion of each point can be found in [10, Chapters 2, 3.2.1, 3.3.3]. It is worth keeping
those properties in mind, as misconceptions exist on this matter in the optics com-
munity, and have been source of confusion in a few interactions I had with other
researchers of the field.

1.4 What is the point of speckle?

The advantages of speckle patterns mainly lie in two aspects. First, they are very
simple to produce and observe. For example, a speckle produced by reflection on
a rough surface can be observed using a camera7 directly in free space, positioned
anywhere within the illuminated area, without the need of any fine alignment. The
diffusion process has the effect of spreading light in space and making it more readily
observable. Second, depending on the diffusion process involved, speckle can display
a very high sensitivity to some physical parameters of interest. This is typically the
case when the diffusion process implies multiple reflections. We will exploit this
extensively by use of the integrating sphere in the coming chapters.

In this line of thought, speckle patterns have been applied to a variety of prob-
lems: the measurement of velocity fields in fluids [15], the detection of heartbeat [16]
and blood pressure [17], the measurement of vibration [18, 19], spacial mapping of
blood flow in tissues [20, 21], spectroscopy [22–25], the detection of cracks in art
pieces [26], and velocimetry for robotics [27] and autonomous vehicles [28]. In a
different vein, speckle patterns are also important in astronomy, where techniques
exploit them to circumvent the effect of the atmosphere to achieve diffraction limited
imaging of astronomical objects [29, 30].

7By camera I mean a chip (CCD or CMOS) directly exposed to the light, without any inter-
mediate lens.
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1.5 Structure of this thesis

In this thesis, we will explore new ideas in the field of speckle patterns, both theo-
retical and experimental.

Chapter 2 describes the key experimental aspects for the production of speckle
patterns, and give a summary of the experimental parameters found in the rest of
this thesis.

Chapter 3 is devoted to the analytical study of speckle patterns produced by an
integrating sphere, which is a new and largely unexplored way of producing speckles,
for which a general theory is lacking. We will develop a model that predicts the
change occurring in the speckle pattern as a result of an arbitrary transformation.

Chapter 4 is devoted to the experimental verification of the model in the partic-
ular case of a wavelength variation, where excellent agreement if found. Analytical
results are also found along the way that are of importance for the field of speckle-
based measurement of wavelength and spectra.

In Chapter 5 we apply the model to the case of refractive index variations in a
metrological perspective. We describe a new method that allows the measurement
of refractive index variations as small as 4.5×10−9, which is a 3 orders of magnitude
improvement over the previous best speckle-based method.

In Chapter 6 we apply the model to the case of displacement measurement, where
we demonstrate the measurement of 17 pm amplitude motion, or 6 times smaller
than a hydrogen atom. This might constitute one of the simplest interferometric
setups, as it requires no fine alignment, and contains only 3 simple elements: a laser,
an integrating sphere, and a camera.

In Chapter 7 we explore the relationship between the polarisation of an incident
laser beam and the speckle pattern it produces. We find that the speckle image is
linearly related to the Stokes parameters of the incident beam. We derive this in an
original way and exploit it in a metrological perspective to measure the polarisation
of the incident beam. The method utilises a set of reference polarisation states to
estimate that of the incident beam, which is based on simple linear algebra, and is
generalisable to multiple beams.

In Chapter 8, we explore new ways of customising the properties of a speckle
pattern by shaping the structure of the incident beam. In particular, we give a set
of original methods to minimise and maximise the sensitivity of the speckle pattern
to a physical parameter of interest.
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Chapter 2

A short guide to speckle production

In this chapter we give a short review of the key parameters involved in speckle
experiments, as well as some aspects of the experimental implementation that are
common throughout this thesis.

List of symbols and abbreviations

λ wavelength of light
ω angular frequency of light
E complex field
I intensity of light
N number of scatterers
D distance between scatterer and observation plane
A area of the input beam
Wbeam width of the input beam
Ac correlation area of the speckle field
Wgrain average width of a speckle grain
NA numerical aperture
a fibre core size

2.1 Different ways of producing speckle patterns

At the start of Chapter 1 we introduced the simplest way to produce speckle pat-
terns, which is reflection on a rough surface. The two other most commonly used
diffusers are ground glass (which can be used in reflection or transmission) and mul-
timode optical fibres. These are shown in Fig. 2.1. Multimode fibres are a non
trivial example as they do not themselves contain disorder. Yet, when laser light is
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coupled into the input facet of a multimode fibre, a speckle is formed at the output.
This happens because the different modes of the fibre acquire different phases along
propagation due to their different phase velocities [10, Chapter 7.1]. This destroys
the structure of the input field and creates a random interference pattern. Another
less common way of producing speckles is by the multiple reflections of light inside
an integrating sphere. This was used extensively throughout this thesis and Chapter
3 is dedicated to the theory of speckle produced in this way.

1. 2. 3. 4.

3 mm 3 mm 8 mm1 mm

Figure 2.1: Different systems used to generate speckles and examples of ob-
tained speckles. 1. Rough surface, 2. ground glass, 3. integrating sphere,
4. multimode fibre. The inset red square (or line for 4.) shows the expected
speckle grain size, as computed from Eq. (2.2).

The speckle patterns shown in Fig. 2.1 were produced in the following way.
Speckle 1: Reflection on a rough surface, made of a 1 mm thick spectralon-like
white diffuse reflective material (Thorlabs SM05CP2C), recorded at a distance of
20 cm. Speckle 2: Transmission through a piece of ground glass (DG05-220-MD),
recorded at a distance of 20 cm. Speckle 3: Multiple reflections of light inside an
integrating sphere, the light escapes the sphere via a 3 mm diameter hole, situated
20 cm away from the camera. Speckle 4: Light is coupled into the input facet of a
multimode fibre (Thorlabs M115L01) in free space, and the output facet is placed
10 cm away from the camera. In all cases, the input light was a 1 mm width laser
beam of 780 nm wavelength and 10 mW, and the light was shone directly onto the
CMOS chip without any intermediate lens.

2.2 Speckle grain size

An experimental parameter of importance is the speckle grain size. Consider a
simple diffusion geometry such as the reflection on a rough surface or transmission
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through a rough diffuser, with a distance of propagation large compared to the
wavelength and the spot size. The geometry is depicted in Fig. 2.2 for the case of
transmission. The speckle grain size can be estimated analytically by computing
the autocorrelation of the speckle intensity profile [10, section 4.4.1], from which we
infer the correlation correlation area Ac, given by

transmissive di  user observation plane

A

ff

Ac

D

Figure 2.2: Diffusion geometry. A laser beam of cross-sectional area A im-
pinges on a transmissive diffuser, and a speckle is formed at a distance D with
a typical grain size Ac. The relationship between A, D, and Ac is given by Eq.
(2.1).

Ac =
(λD)2

A
, (2.1)

with λ the wavelength of the input beam, A its cross-sectional area, and D the
distance between the diffuser and the observation plane. This expression is for an
input beam of uniform intensity and any shape. For an arbitrary input beam, we
have an additional factor of the order of unity. We can use Ac as a measure of the
speckle grain area, and a corresponding measure of the one-dimensional width of a
speckle grain is given by the square root:

Wgrain =
λD

Wbeam

, (2.2)

where Wgrain is the typical width of a speckle grain and Wbeam is the beam width.
For the speckles 1 and 2 of Fig. 2.1, the parameters are Wbeam = 1 mm, λ = 780
nm, and D = 20 cm, which gives Wgrain = 156 µm. An inset red square shows this
length in Fig. 2.1.

We can apply the same relation to the case of speckle patterns produced by an
integrating sphere. In this case A in Eq. (2.1) has to be taken equal to the area of
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the output port, with D the distance between the output port and the observation
plane. Alternatively, one can take A equal to the area of the region at the back
surface of the sphere "visible" from the observation plane, with D the distance
between the back surface and the observation plane. This leads to the same result
as the two surfaces vary in the same proportion as D2. In fact, any intermediate
plane can be chosen as the source of speckle field. For a port diameter of 3 mm, λ =

780 nm, and D = 20 cm, we find Wgrain = 52 µm. An inset red square shows this
length in Fig. 2.1.

For the case of fibres, we can estimate the speckle grain size from the total number
of speckle grains and the size of the illumination area. The number of speckle grains
is approximately equal to the number of modes supported by the fibre, which is
given by 2π(NA)a/λ, with NA the numerical aperture, a the core radius, and λ the
wavelength. The illumination area is approximately πD2(NA)2, with D the distance
from the output facet. The ratio gives a speckle grain area of (NA)λD2/(2a). The
square root gives the speckle grain sizeWgrain =

√
(NA)λ/(2a)D. For the fibre used

in Fig. 2.1, we have NA = 0.2, a = 50 µm, λ = 780 nm, and D = 10 cm, which gives
Wgrain = 4 mm. An inset red line shows this length in Fig. 2.1.

Similarity (see section 3.2) is the main computation performed with speckle
images in this thesis. In this particular case, the result is found to be very little
dependent on speckle grain size. Empirically, the speckle grain size can be taken
down to a few pixels without observing any significant change in the similarity.
Small speckle grains are obtained when the camera is close to the speckle source,
allowing to collect more power, which is generally desirable.

2.3 Recording speckle patterns

When recording speckle patterns using a camera, two parameters must be adjusted
to obtain recordings of good quality: the exposure time and the black level. The
exposure time must be chosen so as to maximise the global intensity, while at the
same time minimising saturation. The black level (which applies a global shift to
the intensity) must be adjusted to eliminate background light, while not discarding
any speckle light. Both parameters can be adjusted by looking at the intensity
distribution of the speckle image: the exposure time is adjusted by looking at the
saturation peak in the intensity distribution, and the black level is adjusted such
that the start of the distribution coincides with the origin. An example of correct
intensity distribution is shown in Fig. 2.3, which is that obtained from speckle
3 of Fig. 2.1, together with the theoretical gamma distribution 1.10. Note that
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the reason for deviation of the observed distribution from the gamma distribution
around zero is unknown.

If any computation is performed on the speckle images, the variance of the final
output decreases as the size of the images increases. However, as the image size
increases, the computation time also increases. A balance must be found between
the variance of the final output and computation time. In the context of this thesis
we found that 200×200-pixel images offer a good compromise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
intensity

0

0.5

1

1.5

2

2.5

3

3.5

d
is

tr
ib

u
ti

o
n

distribution starts  
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Figure 2.3: Black: example of a measured intensity distribution with correct
values of exposure time and black level, where the distribution starts at the ori-
gin and shows no saturation peak (1 is the saturation value). Red: theoretical
gamma distribution for a non-polarised speckle.

2.4 Experimental parameters common throughout

this thesis

To avoid repetition, we compile here a few experimental parameters that are common
to the experiments involved in this thesis.

The source of light is a Toptica DL Pro laser, which is a tunable diode laser with
a mode-hop free tuning range of about 20GHz. Its specifications are: wavelength of
780 nm, linear polarisation with > 100:1 extinction ratio, and coherence length of
the order of kilometres (linewidth down to 10 kHz). It is used with a typical power
of 10 mW.

The source of speckle patterns is either an integrating sphere (Chapters 4, 5,
and 6), or a rough surface (Chapter 7), and in either case the camera is located
20 cm away from it, which is the same conditions as used in the examples of Fig.
2.1. The rough surface is a Thorlabs SM05CP2C, and the integrating sphere is a
custom made spherical cavity carved in a 3 cm edge aluminium cube, with a radius
R = 1.25 cm and a reflectivity ρ = 0.918. The inner surface of the sphere is coated
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with several layers of Spectraflect, applied manually with a paintbrush, to give a
near Lambertian reflectance. The sphere is made of two separate hemispheres, and
bears two 3 mm diameter holes, located at 90° from each other. One hole is used to
inject light while the other is used for collection. The hole receiving the input light
must be different from the hole by which light escapes, otherwise direct reflections
can dominate the output field. A detailed description of integrating spheres and
their properties is given in the next chapter.

2.5 Camera noise analysis

The camera used throughout this thesis is a CMOS Mikrotron MotionBLITZ EoSens
mini2, which has 8 µm×8 µm pixels, with which 200×200-pixel images are recorded.
At several occasions we will need to know what noise source dominates, and we
shall show here that it is Poisson noise in our experimental conditions, i.e. the noise
which originates from the photon shot noise converted to digital.

Each pixel converts a number of photons into a "grey" value, on a scale of 256
divisions that we shall call digital units. An uncertainty analysis including the
photon shot noise, dark noise, rounding error, and neglecting readout noise, shows
that the variance of the final output (in digital units) is given by [31]:

σ2
y = K2σ2

d + σ2
q +K(µy − µyd), (2.3)

where σ2 designates the variance, µ the average, y the final grey value from 0 to
255, K the overall system gain (which converts the initial number of electrons into
a grey value, in digital unit per electron), q is the rounding error (coming from the
quantisation of y into 256 levels), and yd the amount of output grey value coming
from the dark signal.

We want to find an estimation of each term. From the specifications of the CMOS
chip, we estimate K = 0.0096/e−, σd = 21 e−, and the dark signal µyd = 67T , with
T the exposure time (in seconds). σ2

q is equal to 1/12, and µy is found empirically.
In our setups the average intensity is about 0.2 times the saturation value, or a grey
value of about 51. Using a typical value T = 3 ms, and conserving the same order
of the terms, we have

σ2
y = 0.04 + 0.08 + (0.49− 0.002). (2.4)

We see that in our experimental conditions the µy term (corresponding to the
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photon shot noise) dominates. This gives a noise on the grey value of σy ≈ 0.8,
although this value will not be used in the rest of this thesis.

The Value of K is found by using the full well charge (27000 e−), and the con-
version gain (39.2 µV/e−), and µyd is found from the dark signal (277 mV/s).
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Chapter 3

Speckle produced by an integrating
sphere

The work presented in this chapter was published in [32].

List of symbols and abbreviations

S speckle similarity (Pearson correlation coefficient of intensity)
C field correlation (Pearson correlation of the complex field)
I speckle intensity
σI standard deviation of speckle intensity
E 3D complex field
R, ρ radius and reflectivity of an integrating sphere
p path taken in the sphere
P power
φ phase variation applied to the field
M number of surface elements constituting the surface of the sphere
N number of chords constituting a path in the sphere
µ average phase variation of the field on a chord
σ standard deviation of the phase variation of the field on a chord
k wavenumber
HWHM half width at half maximum
T linear operator describing the transformation of the field
F Fourier transform operator
1 identity operator, or identity matrix
N number of chords constituting a path in the sphere
A absorptance (1− ρ)
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P power
R operator acting on the Jones vector (for a reflection)
J operator acting on the Jones vector (for an arbitrary transformation)
q electrical charge
~ reduced Planck’s constant
A vector potential
t0 HWHM in time of the similarity profile

3.1 Introduction

An integrating sphere is a spherical cavity whose inner surface is covered by a diffuse
reflectance coating. It is typically used to measure the power of light sources or the
reflectance properties of surfaces. The important parameters of an integrating sphere
are its radius and reflectivity1. The coating is chosen to provide a nearly Lambertian2

reflectance. A common coating is spectraflect, composed of barium sulfate, which
can provide a reflectivity up to 0.97 in the visible. The best commercial spheres
are made of spectralon, a soft thermoplastic (fluoropolymer), which can provide a
reflectivity higher than 0.99.

A integrating sphere can be used to generate speckle patterns in the following
way. A beam of laser light is inserted via a small aperture, and undergoes multiple
reflection inside the sphere. If the sphere is equipped with another small aperture,
a small fraction of the light will escape by it after each reflection (see Fig. 3.1). The
escaping light forms a speckle pattern.

This is a non-standard use of integrating spheres. Speckles produced in this way
were first studied in [33], where the first and second order statistics of speckle were
characterised. Since then, a few works mentioned the speckles encountered while
using coherent light with integrating spheres, but those were seen as nuisance or
limitations [34–36]. Before the work presented in this thesis, deliberate harnessing
of such speckle patterns had been restricted to two purposes: measuring the modu-
lation transfer function of optical systems [37, 38] and measuring small wavelength
variations [39–42] (see Chapter 4). The latter is the topic that initiated the study
of speckles in my group. Speckle patterns produced in this way were empirically

1The reflectivity of a surface is a number between 0 and 1 defined as the fraction of incident
power that is reflected by the surface

2A surface presents a Lambertian reflectance if its apparent surface brightness depends on the
direction of illumination, but not on the direction of observation.
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found to be highly sensitive to any perturbation. However, a complete theoretical
understanding of such speckles was missing. In this chapter we propose to make
a model to characterise the change of speckle patterns produced by an integrating
sphere resulting from an arbitrary transformation. The term transformation refers
to any effect that changes the intensity/phase/polarisation of light in the sphere.
This can be a deformation of the sphere, a wavelength change, or more exotic effects.
A few examples of such transformations are given in section 3.3 and are treated in
subsequent chapters of this thesis. For the moment, however, we will remain as
general as possible.

3.2 Model

Our purpose is to characterise the change occurring in the speckle as a result of a
transformation. We first need a tool to quantify this change. A natural choice is
the following quantity:

S =

〈(
I − 〈I〉
σI

)(
I ′ − 〈I ′〉
σI′

)〉
, (3.1)

with I and I ′ two speckle images (before and after the transformation), σI and
σI′ their respective standard deviation, the brackets denoting averaging over the
image. This gives a value of 1 for identical images and decreases towards 0 as they
diverge from one another. In the rest of this thesis, this quantity will be referred
to as similarity. It is formally the same as the Pearson correlation coefficient (or
normalised covariance). However as it applies to images, and not realisations of
random variables, we shall use the term similarity instead of correlation.

Our problem statement is the following. A beam of monochromatic light enters
an integrating sphere of radius R and uniform reflectivity ρ via a small aperture.
The light undergoes multiple reflections inside the sphere and escapes via another
small aperture. A schematic setup is shown in Fig. 3.1. We consider that the inner
surface is rough to the wavelength used, and presents a Lambertian reflectance. We
now apply a transformation to the system, and we want to estimate the resulting
change in the speckle, as quantified by the similarity (3.1).

Finding the answer to this question will essentially consist of expressing the
similarity in terms of the field (rather than the intensity), inserting an expression
for the field that takes into account its journey through the sphere, and do some
algebraic manipulation. This will lead us to a general expression for the similarity
(Eq. (3.14)) which depends only on the reflectivity of the sphere and some statistics
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Figure 3.1: Geometry of the problem. Laser light enters an integrating sphere
via a small aperture and undergoes multiple diffusive reflections. The diffusive
reflections imply that light takes all the possible paths through the sphere. Two
such paths, p and p′, are represented. Light exits the sphere via another small
aperture and forms a speckle pattern on the observation plane.

of the transformation.

We start by expressing the observed intensity pattern in terms of the underlying
field, modelled by a 3D complex-valued vector field:

I ∝ |E|2 = E†E, (3.2)

with I the intensity, E the 3×1 field, and † denoting the conjugate transpose. Here
we keep the full 3D nature of the field, as we work in an arbitrary coordinate system,
not necessarily one aligned with the observation plane. I and E are functions of
space in the observation plane, but we omit this dependency for clarity. We have
similarly I ′ ∝

∣∣E′∣∣2, with E′ the field after the transformation. If we assume a
fully developed speckle, it can be shown [10, section 3.3.4] that the similarity can
be expressed in terms of the field as

S =

∣∣∣∣∣∣∣∣
〈
E†E′

〉
√〈

E†E
〉√〈

E′†E′
〉
∣∣∣∣∣∣∣∣
2

. (3.3)

The quantity inside the absolute square will be denoted as the field’s correlation.
Here we conserve the term correlation in order to make it more distinct and use the
letter C, reading S = |C|2, that we shall use again many times.

This can be simplified assuming that the average intensity does not change after
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transformation, giving

S =

∣∣∣∣∣∣
〈
E†E′

〉
〈
E†E

〉
∣∣∣∣∣∣
2

. (3.4)

We can now decompose E by modelling the journey of the light between the illu-
minated region and the observation plane. For simplicity of the algebra, we make a
discrete model of the system where the inner surface is described as an assembly of
M surface elements. As light is diffused in every direction when hitting an element
of the inner surface, the field on the observation plane is the sum of the fields coming
from all possible paths inside the sphere. This can be expressed as

E =
∑
p

Ep. (3.5)

with Ep the contribution of the light going through path p. Each path is a succession
of surface elements between which light propagates in straight lines before reaching
the observation plane. The total number of paths that light can take is of course
infinite, one can think for example of an arbitrarily long alternation between the
two same elements. This decomposition assumes that the coherence length of the
light is large compared to the spread of the path-length distribution in the sphere
(equal to 4R/(3| ln ρ|)), so that the different contributions Ep add coherently. The
path-length distribution was derived in [43], and an alternative derivation is given
in Appendix B. Inserting this decomposition in (3.4), we have

S =

∣∣∣∣∣∣∣∣∣
∑
p

〈
E†pE

′
p

〉
∑
p

〈
E†pEp

〉
∣∣∣∣∣∣∣∣∣
2

, (3.6)

using the fact that the fields coming from different paths are uncorrelated. We can
now express Ep as the product of an amplitude, phase, and polarisation term, of
the form

Ep =
√
Ip e

iϕpup, (3.7)

where Ip, ϕp, and up are respectively the intensity, phase, and Jones vector3 of the
light coming from p onto the observation plane. For the field after transformation,
E′p, the change could happen in any of the three terms. However we will (for the

3The Jones vector, sometimes called the polarisation vector, is a 3D (or 2D in a paraxial
description) complex vector describing the state of polarisation. It can be simply defined as "what
is left" once the modulus and the phase of the electric field are factored out.
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moment) focus on transformations that affect the field in the phase term only, as
this covers most of the phenomena addressed in this thesis. The reason for this
will become clear when we will look at particular examples. We can then write
E′p = Epe

iφp , with φp the phase shift4 introduced by the transformation. Inserting
those expressions for Ep and E′p in (3.6), we have

S =

∣∣∣∣∣∣∣∣∣
∑
p

〈(√
Ipe
−iϕpu†p

)(√
Ipe

iϕpupe
iφp
)〉

∑
p

〈(√
Ipe
−iϕpu†p

)(√
Ipe

iϕpup

)〉
∣∣∣∣∣∣∣∣∣
2

, (3.8)

and using the fact the the Jones vector has unit norm (u†pup = 1), we find

S =

∣∣∣∣∣∣∣∣
∑
p

Ppe
iφp

∑
p

Pp

∣∣∣∣∣∣∣∣
2

, (3.9)

where intensity Ip is converted into power Pp (the total power coming from path p
onto the observation region) via the space averaging. We can recognise in (3.9) a
weighted average of the phase factors, where the weights are given by the power.
This lends itself to a visual interpretation in the complex plane (see Fig. 3.2).
Plotting each phase factor as a point in the complex plane (one for each path) forms
an infinite cluster lying on the unit circle. The similarity is the square of the distance
between the barycentre5 of this cluster and the origin. When no transformation is
applied (φp = 0 for all paths), all the points are at 1 + 0i and the similarity is
therefore 1 (no speckle change). As the effect of a transformation increases, the
points spread out on the unit circle and the barycentre approaches the origin (hence
a decreasing value of the similarity) until the points are uniformly spread, where the
similarity is close to zero.

Eq. (3.9) is general but not readily usable as it is. We can recast it in a more
explicit form by a series of manipulations. We first invoke the spherical geometry
and the Lambertian reflectance, which both conspire in such a way that Pp decreases
by a constant factor at every reflection along the path. To see this, consider one
surface element emitting a power P in the volume of the sphere, and another element
receiving a fraction of this power. By definition of the Lambertian reflectance, the

4As we will refer to this phase shift a lot in the following, we will sometimes call it simply
phase for concision.

5The barycentre is an extension of the notion of centre of mass, where the weighting is not
given by mass but any other quantity.
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Figure 3.2: Visual representation of equation (3.9). Each possible path is represented
by a black dot, which together form an infinite cluster on the unit circle of the complex
plane. The size and azimuthal position represent respectively the power carried through
the path (Pp) and the phase shift induced by the transformation on the path (φp).
The similarity (S) is equal to the square of the distance between the origin (O) and the
barycentre of the cluster (B). We show three stages where the effect of the transformation
increases from zero to large.

received power is P ′ = Pρ δS cos θ1 cos θ2/(πd
2) [44], with d the distance between the

elements, θ1 and θ2 the angles between their normal and the line joining them, and δS
their area. Now the spherical geometry imposes a relation between these quantities,
namely d = 2R cos θ, with θ = θ1 = θ2. Inserting this in the expression of P ′, and
considering a total number M of surface elements (which gives δS = 4πR2/M), we
are left with P ′ = Pρ/M . We can see in this factor the combined effects of the
absorption (ρ) and the distribution of the power among all surface elements (1/M).
This distribution is simplest in the case of Lambertian reflectance as the power is
equally distributed among the surface elements. It follows that the power decreases
by a factor (ρ/M)N after N reflections, independently of the details of the path,
which is a great simplification of the problem.

Inserting this in (3.9), and splitting the sums into groups of paths that contain
the same number N of reflections, we have

S =

∣∣∣∣∣∣∣∣∣
∑
N

∑
pN

( ρ
M

)N
eiφpN

∑
N

∑
pN

( ρ
M

)N
∣∣∣∣∣∣∣∣∣

2

, (3.10)

where pN designates the set of paths containing N reflections. Rearranging the
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terms gives

S =

∣∣∣∣∣∣∣∣∣∣

∑
N

ρN
(∑

pN
eiφpN

MN

)
∑
N

∑
pN

( ρ
M

)N
∣∣∣∣∣∣∣∣∣∣

2

, (3.11)

which reveals (in parenthesis) the average value of eiφpN in the set pN (as MN

also happens to be the total number of paths in pN). We can express this av-
erage explicitly using the following approximation. Assuming each reflection is a
linear process6, the phase φpN acquired on a full path is the sum of the phases
acquired on every successive single pass (or chord)7, so that we can approximate
φpN by a Gaussian random variable, as a consequence of the central limit the-
orem. Additionally, for a Gaussian random variable G(µ, σ2) with mean µ and
variance σ2, statistics tell us that the complex exponential of G(µ, σ2) has mean
〈eiG(µ,σ

2
)〉 = eiµ−σ

2
/2 [45, section 7.2.7]. Therefore, the average phase term can be

expressed as
∑

pN
eiφpN /MN = eiNµ−Nσ

2
/2, with µ and σ2 the mean and variance of

the phase induced by the transformation on a chord. Inserting this we have

S =

∣∣∣∣∣∣∣∣
∑
N

ρN
(
eiNµ−Nσ

2
/2
)

∑
N

ρN

∣∣∣∣∣∣∣∣
2

. (3.12)

Now we could solve this exactly using geometrical series, however this leads to a
cumbersome expression. We can instead approximate8 the sums by integrals:

S =

∣∣∣∣∣∣∣∣
∫ ∞

0

(
ρeiµ−σ

2
/2
)N

dN∫ ∞
0

ρNdN

∣∣∣∣∣∣∣∣
2

, (3.13)

where we set the lower limit to N = 0, which has the advantage of giving a simpler

6Which means that the field diffused by a surface element is a linear transformation of the
incident field.

7We define a single pass or chord as a straight line joining two surface elements of the sphere.
A path is a succession of single passes / chords.

8This approximation consists in treatingN as a continuous variable. This works if the summand
is sufficiently spread out over many values of N , which is the case when ρ is high. There is then
a certain value of ρ below which this approximation starts to fail. The difference between the two
solutions is of the order of (1− ρ)2 (see Appendix C), which is 0.01 for ρ = 0.9, which we shall set
as our critical value below which Eq. (3.12) should be solved using geometric series.
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form without altering significantly the solution. Performing the integrals finally
gives

S =
1(

1− σ2

2 ln ρ

)2

+

(
µ

ln ρ

)2 . (3.14)
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This expression is valid for any transformation that applies a phase shift of
average µ and variance σ2 to the field on a chord. Note that µ is the average phase
shift modulo 2π. Any effect for which the µ term dominates leads to a Lorentzian
profile in µ, and any effect for which the σ2 term dominates leads to the square
of a Lorentzian in σ2 (if we recall that ln ρ is negative). Note that a consequence
of performing the integral approximation is that µ in (3.14) is actually the average
phase modulo 2π (while σ can take any value). We shall however keep the same
symbol for simplicity, as in practice µ never exceeds 2π. We list here the different
assumptions made throughout this model:

1. The input light has a coherence length large compared to the spread of the
path-length distribution

2. The inner surface has a Lambertian reflectance with uniform reflectivity

3. The transformation changes only the phase of the light

4. The diffusion is linear

5. ρ & 0.9

Other assumptions used in the model are consequences of these, for example
the monochromaticity is implied in assumption 1, the fact that the speckle is fully
developed is implied in assumption 2, and the fact that the total intensity of the
speckle does not change after transformation is implied in assumption 3.

To conclude, it is essential to note that a statement such as "average phase" is
ambiguous if we do not specify the random process by which a random chord is
defined. This is directly analogous to the Bertrand paradox, quite known in the
mathematical culture, where different answers are obtained when different random
processes are used to define a random chord in a circle. Contrary to the Bertrand
paradox, we are in the context of a physical problem, and therefore only one answer
must be correct. The correct random process here is that of a chord whose end-
points are chosen with a uniform probability density across the inner surface. This
definition will be used implicitly in the rest of this thesis whenever averages are
computed. The reason why this random process is the correct one is hidden in Eq.
(3.11). Indeed, the notion of average arose there because we summed over all pos-
sible paths between discrete surface elements, and those surface elements uniformly
cover the inner surface by design.
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3.3 Examples of transformation

As until now the notion of transformation was purposely kept abstract, if not mys-
terious, let us see a few examples. A list of possible transformations which are all
consistent with the assumptions of our model is given in Table 3.2. We give the
phase shift φ applied to a given chord in the sphere, its mean µ = φ, and standard

deviation σ =

√
φ2 − φ2, where the bar designates averaging over the random chords

in the sphere. The expressions of µ and σ found in this way are what needs to be
inserted in (3.14) to find the similarity profile of the corresponding physical effect.
Table 3.2 provides by the same occasion a summary of the different effects studied
in this thesis.

Transformation Phase shift on a chord µ σ

Isotropic expansion k z∆R/R
4

3
k∆R

√
2

3
k∆R

Displacement (axial) ku · x s = k x cos θ s
1

3
k x

√
5

6
k x

Displacement (transverse) ku · x s = k x sin θ cosϕ s 0
1√
8
k x

Wavelength variation ∆k z
4

3
∆k R

√
2

3
∆k R

Refractive index variation ∆n k z
4

3
∆n k R

√
2

3
∆n k R

Table 3.2: Summary of the transformations studied in the different chapters
of this thesis. The columns give: the transformation, the resulting phase shift
on a given chord, and the corresponding average and standard deviation of the
phase.

The effects mentioned in Table 3.2 refer to the following. Isotropic expansion:
the material of the sphere expands isotropically, such as under the effect of a uni-
form thermal expansion. Displacement : the sphere is split into two independent
hemispheres, one of which is fixed and the other one is free to move. Displacement
refers to the motion of the free hemisphere, either away from the other hemisphere
(axial) or sideways (transverse). Wavelength variation: the wavelength of the input
light is changed. Refractive index variation: the refractive index of the medium
filling the sphere is changed. In this table, k is the wavenumber, z is the length of
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the chord considered, R is the radius of the sphere, ∆R is the radius variation, u
is a unit vector parallel to the chord, x is the displacement vector, s is a variable
determining if the chord does or does not change in length, θ and ϕ are the spherical
coordinates of u, ∆n is the refractive index variation.

The full details of the derivations will be given in their dedicated chapters. For
illustrative purposes however, let us detail one of the effects of Table 3.2, the sim-
plest, which is wavelength variation. When light propagates in the sphere along
a certain path, it acquires a phase proportional to the length of this path. More
precisely, along a path of length z, it acquires a phase k z, assuming the refractive
index of the medium in the sphere is close to 1. When the wavelength varies, the
phase varies accordingly by ∆k z, with ∆k the corresponding wavenumber change.
This phase variation is the φ we used in the model described above. In order to
apply (3.14) and find the similarity profile, we need to consider φ on a given chord
in the sphere, and compute its average µ and variance σ2. If the phase change on
a chord is φ = ∆k z, the average phase is µ = φ = ∆k z, with z the average chord
length is a sphere. This is given by geometry to be 4R/3 [46–48]9. Likewise, the
standard deviation of chord length is

√
2R/3 [47, 48].

When inserting the values of µ and σ given in Table 3.2 into 3.14, we find in
most cases that the µ term dominates, and that we can neglect the σ term, which
leaves us with a Lorentzian profile (see Appendix D). The Lorentzian profile is a
quite general feature of the integrating sphere, and we might in fact wonder what
physical effect does not produce a Lorentzian profile. For this we need an effect
such that the average phase shift µ is zero. Two effects studied in this thesis have
this property: transverse displacement and the Aharonov-Bohm effect, where the
resulting profile is a squared Lorentzian.

A parameter of importance that will be used extensively throughout this thesis is
the Half Width at Half Maximum (HWHM) of the similarity profile. This is a useful
quantity as it describes the sensitivity of the speckle to the parameter of interest.

3.4 Path-dependent vs path-independent effects

As will be shown in the next chapters, a distinctive feature of integrating spheres
is that they produce speckles with a high sensitivity to various transformations, as
compared to speckles produced by reflection on a rough surface. However, we can

9A very beautiful result of geometry shows that the average chord length of an arbitrary convex
solid is equal to 4V/S, with V the volume of the solid and S its surface area. This was originally
proven by Dirac in [49] in the context of nuclear physics, on the topic of neutron absorption in a
solid.

30



ask, is this the case for all possible transformations? The answer is no, it does so only
for path-dependent ones, that is, effects that affect light differently depending on
its path. All the effects mentioned in the previous section are such path-dependent
effects.

Let us see an example of path-independent effect, which is a change in the input
beam profile. In this case, the sensitivity is independent on the scattering process,
and the multiple-scattering does not increase it. This can be shown in the following
way. Assuming a fully developed speckle, the similarity is given by the absolute
square of the field’s correlation (see Eq. (3.3)):

S =

∣∣∣∣∣∣∣∣
〈
E†E′

〉
√〈

E†E
〉√〈

E′†E′
〉
∣∣∣∣∣∣∣∣
2

,

with E and E′ the field received on the observation plane before and after the
change. As everywhere in this thesis, we assume a linear diffusion process, which
means that the output field is a linear transformation of the incident field. We can
express this as E = TE0, where E0 is the field of the incident beam and T is a
linear operator describing the transformation. Here we are modelling a change in
the input field, therefore the output field is given by E′ = TE′0, where only the
input field changes and not T , as the diffusing medium is fixed. Inserting this in eq.
(3.3), we have

S =

∣∣∣∣∣∣∣∣
〈
E†0T

†TE′0

〉
√〈

E†0T
†TE0

〉√〈
E′†0 T

†TE′0

〉
∣∣∣∣∣∣∣∣
2

. (3.15)

We see that the effect of the linear transformation comes in the form of the
operator T †T . This operator is approximately proportional to the identity operator
under quite general assumptions. We can show this in two extreme cases:

1. First, consider an ideal geometry where the speckle is produced by a single
reflection on a rough surface and collected in the Fraunhofer region. We can
write T ∝ Feiφ, where φ is the phase mask applied by the rough surface and
F is the Fourier transform operator. The T †T term becomes (Feiφ)†(Feiφ) =

e−iφF †Feiφ = e−iφ1eiφ = 1, with 1 the identity operator, where we used the
fact that the Fourier transform is a unitary transformation (F †F = 1).

2. Second, consider a more complex geometry where light is highly randomised
(such as with an integrating sphere). In this case it is more convenient to
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adopt a discrete description o the system, that is to express E0 and E not as
continuous functions of space, but as vectors containing the values of the field
at given points of space (this is what we have in practice, one value for each
pixel). In this description T is now a matrix10, and each element of T †T can
be seen as the covariance between two columns of T . If the geometry is com-
plex enough, we expect T to be a complex random matrix with uncorrelated
columns, such that T †T is approximately proportional to 1 (now representing
the identity matrix).

In any case laying somewhere in between those two extremes, the argument is less
clear and care must be taken. Assuming T †T ∝ 1 we have

S =

∣∣∣∣∣∣∣∣
〈
E†0E

′
0

〉
√〈

E†0E0

〉√〈
E†0E

′
0

〉
∣∣∣∣∣∣∣∣
2

, (3.16)

which is the absolute square of the incident field’s correlation. In other words, the
similarity becomes independent on the properties of the scattering medium. It fol-
lows that the width of the similarity curve (i.e. the sensitivity of the speckle) cannot
be changed by a careful choice of diffusing geometry, such as multiple scattering.

At this point it is worth highlighting a few non-trivial connections that exists
between the speckle similarity and the field’s correlation (in this particular case of
a change in the input beam). These can be summarised into four points:

• The speckle similarity (S) is equal to the square modulus of the speckle field’s
correlation (C) when the speckle is fully developed.

• C is equal to the correlation of the incident field C0, if the diffusion is such
that we can assume T †T ∝ 1.

• the square modulus of C0 however is not equal to the similarity of the incident
intensity profile S0, as the incident field is not fully developed in general.

• S0 is not equal to the similarity of the speckle intensity S. This is because the
line of equalities has been broken in the previous point, but also because no
direct explicit relation exists between the two.

These points are illustrated in Fig. 3.3. Note that assuming a fully developed
speckle might also imply T †T ∝ 1 (as well as the reciprocal). This would be an

10This is commonly known as the transmission matrix, and is widely used in speckle analysis.
We will come back to this notion in Chapter 8.
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interesting point to investigate in the future, but for the moment we assume those
two conditions separately.

speckle  ield C

S0 ≠ S

|C |2 = S

C0 = C

|C0 |2 ≠ S0

if fully developed 

if random  
enough 

speckle intensityS

no direct 
relation

not fully developed 

incident intensityS0incident  ield C0

f

f

Figure 3.3: Diagrammatic summary of the relations between the incident
beam and the resulting speckle. After a change in the incident beam, C0 is
the correlation of the incident field, S0 the similarity of the incident intensity
profile, C the correlation of the speckle field, and S the similarity of the speckle
intensity profile.

The connections shown above have one interesting consequence, which is S =

|C0|2. This implies that we can access information about the change in the input field
by looking only at the resulting speckle intensity. This is notable as we can imagine
situations where changes in the input field would be undetectable by looking at its
intensity profile only. For example, if the phase profile or the polarisation profile of
the input beam is changed, the intensity profile remains the same. Scrambling the
input beam allows such phase and polarisation changes to be converted to intensity
changes in the speckle, through interference. We can get a better idea of this by
expressing Eq. (3.16) in more familiar terms. Writing the incident field as a function
of space E0(r), with r the position in the plane perpendicular to the direction of
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propagation of the incident beam, we have

S =

∣∣∣∣∣∣∣∣∣∣

∫
E∗0(r) ·E′0(r) ds√∫
|E0|

2 ds

√∫ ∣∣E′0∣∣2 ds

∣∣∣∣∣∣∣∣∣∣

2

, (3.17)

where ∗ is the complex conjugate, ds the surface element, and · is the good old
dot product. E0(r) contains the amplitude, phase, and polarisation profile of the
incident beam E0(r) = ρ(r)eiφ(r)u(r). For example, if we consider a change in
polarisation only, with a spatially constant polarisation, we simply have

S =
∣∣u∗ · u′∣∣2 .

For a linear polarisation rotated by an angle α, this is cos2(α). This last example
shows most strikingly how the similarity is independent of the scattering process,
and we cannot hope to increase the speckle sensitivity by any choice of scattering
geometry.

Another interesting consequence of Eq. (3.16) is that we can access the spatial
autocorrelation of the input field in a very simple way. Indeed a global translation
of the input beam can also be treated as a change of the input field. When a
displacement x is applied to the input beam, the similarity is given by

S =

∣∣∣∣∣∣∣∣
∫

E∗0(r) ·E0(r + x) ds∫
|E0|

2 ds

∣∣∣∣∣∣∣∣
2

, (3.18)

which is the same as the spatial autocorrelation of a complex valued signal. We have
S =

∣∣RE0E0
(x)
∣∣2, with RE0E0

(x) the autocorrelation of E0.

3.5 Analogy with a Fabry-Pérot interferometer

There is a strong analogy between the integrating sphere and a standard Fabry-Pérot
interferometer. At first approximation, which is sufficient for the present point, a
Fabry-Pérot interferometer is an arrangement where a light beam is set to bounce
indefinitely between two parallel mirrors, one of which is slightly transmissive (see
Fig. 3.4).

After each round trip, a small portion of the light goes through the transmissive
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Figure 3.4: Schematic comparison between a Frabry-Pérot interferometer and
an integrating sphere. In each case, light acquires a phase φ after each single
pass. The variance of the phase is zero in the Fabry-Pérot, as light is confined to
one path only, and is non zero in the sphere, as light has many paths accessible.

mirror and reaches a detector. We thus obtain on the detector the superposition of
an infinite number of beams, each with an ever decreasing amplitude and increasing
phase. In this simple model, the field on the detector can be expressed as

E ∝
∞∑
N=0

ρNeiNµ ≈
∫ ∞
N=0

(ρeiµ)NdN =
−1

ln ρ+ iµ
, (3.19)

with µ the phase11 acquired on a round trip between the two mirrors, and ρ the
reflectivity of the mirrors. The amplitude of the wave is reduced by √ρ after each
reflection, and two reflections are involved, hence the factor of ρ for each component.

The corresponding intensity I(µ), proportional to |E|2, is maximal for µ = 0.
Let us call this maximal intensity Imax. If we normalise I(µ) to Imax, we have

I(µ)

Imax
=

1

1 +

(
µ

ln ρ

)2 . (3.20)

This is a Lorentzian profile, of the same form as what we found in (3.14) for a
negligible σ term. The analogy then stands between the normalised intensity of the
Fabry-Pérot, and the similarity of the speckle patterns produced by an integrating
sphere. This relatively simple derivation shines new light12 on the more tedious
one we carried out in section 3.2. Indeed, we saw that the combination of the
Lambertian reflectance and the spherical geometry reduces the intensity of light

11µ is actually the phase modulo 2π, just as in (3.14). The modulo introduces a discontinuity,
but this discontinuity occurs at µ = 2π, which is far beyond the width of the intensity profile I(µ)
(at least for a high reflectivity, which is already assumed).

12Pun unintended.
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rays by a constant factor after each reflection, independently of their actual path.
This property is identical to what we have here with the Fabry-Pérot. This simple
observation could have led us to expect some similarity12 between the two functional
forms. The difference between the two situations is that, in the sphere, each ray can
take different paths in a volume, while in the Fabry-Pérot each ray is constrained
to only one, which is the round trip between the two mirrors. This introduces
variability in the phase carried by the rays, which is represented by the σ term in
Eq. (3.14). The Fabry-Pérot acts as a sphere with σ = 0.

Another interesting fact is that the Fabry-Pérot shows a periodic output inten-
sity, while the sphere does not show a periodic similarity. This periodicity appears
if we solve exactly the first step of (3.19) using geometrical series, instead of using
an integral approximation. In this case we find E ∝ 1/(1−ρeiµ), which is very close
to −1/(ln ρ + iµ) for a high reflectivity, but repeats13 every multiple of 2π. Both
forms are very close for µ of the order of the HWHM of I(µ), that is for µ ≈ ln ρ.
The exact solution of the Fabry-Pérot keeps the memory of the phase, so to speak,
and shows a revival for every integer multiple of 2π.

We may wonder however, could the similarity not also be periodic? After all, we
also used the integral approximation in the derivation of (3.14). If we used geometric
series instead, would we obtain a periodic similarity? It is not immediately clear
which would dominate between the return of µ to zero and the effect of the σ term.
We can easily answer this with the following argument. We start by solving (3.12)
by geometric series, which gives

S =

∣∣∣∣∣ 1− ρ

1− ρeiµ−σ
2
/2

∣∣∣∣∣
2

. (3.21)

In most of the effects studied in this thesis, the ratio σ/µ is a constant of the order of
unity. Assuming this and setting µ = 2π (where we expect the revival of similarity)
and σ ≈ 2π, we find

S ≈

∣∣∣∣∣ 1− ρ

1− ρe−2π
2

∣∣∣∣∣
2

. (3.22)

The factor e−2π
2

is about 10−9, so for a reflectivity close to 1 such that 1− ρ = A << 1,
we have S ≈ A2. This shows that no significant revival of similarity is found at
µ = 2π. The σ term does indeed dominate, and the similarity is not periodic.

13Note that this periodicity is already present in the integral approximation of (3.19) because
of the modulo, although somehow in an artefactual way as it comes with a discontinuity.
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3.6 Other exotic effects

In the derivation of (3.14), we considered only effects that change the phase of light
along propagation. This, in fact, allows us to model all of the phenomena addressed
in this thesis. Here we consider effects that produce a change in the two other
properties of light: amplitude and polarisation. These turn out to be more "exotic"
in the sense that they would be more difficult to investigate experimentally, and we
treat them here for the sake of curiosity.

1. A change in reflectivity

One effect that would change the amplitude of a ray in the sphere is a change
in reflectivity. This breaks assumption 3 and we have to work back from (3.3).
Applying the path decomposition (3.5) to (3.3), we find

S =

∣∣∣∣∣∣∣∣∣∣∣∣

∑
p

〈
E†pE

′
p

〉
√√√√(∑

p

〈
E†pEp

〉)(∑
p

〈
E′†pE

′
p

〉)
∣∣∣∣∣∣∣∣∣∣∣∣

2

, (3.23)

which is the assumption-3-free version of (3.6). As a reflectivity change would only
affect the final intensity of a ray, we use Ep =

√
Ip e

iϕpup and E′p =
√
I ′p e

iϕpup.

Inserting this in Eq. (3.23) and using I ∝ ρN we have

S =

∣∣∣∣∣∣∣∣∣∣∣∣

∑
N

√
ρNρ′N√√√√(∑

N

ρN
)(∑

N

ρ′N
)
∣∣∣∣∣∣∣∣∣∣∣∣

2

(3.24)

≈

∣∣∣∣∣∣∣∣∣∣
−1/ ln

√
ρρ′√(

−1

ln ρ

)(
−1

ln ρ′

)
∣∣∣∣∣∣∣∣∣∣

2

(3.25)

=

∣∣∣∣∣∣
√

ln ρ ln ρ′

ln

√
ρρ′

∣∣∣∣∣∣
2

(3.26)

=
4 ln ρ ln ρ′(
ln ρ+ ln ρ′

)2 , (3.27)

37



where similar decompositions as in (3.10-3.11) are used. Ideally we would like to
have the similarity expressed in terms of some measure of change in the variable of
interest, rather than the start and end value as it is the case here. This is more
subtle to achieve with reflectivity than it was with phase, but it can be done in the
following way. If we define A = 1− ρ (sometimes called the absorptance), we have
A ≈ − ln ρ for a high reflectivity (low absorptance). Expressed in terms of A, the
similarity is

S =
4AA′

(A+ A′)2 . (3.28)

If the reflectivity change taking place is such that A′ = rA (while remaining within
the approximation of low absorptance), the similarity becomes a function of r only:

S =
4r

(1 + r)2 . (3.29)

This function is shown in Fig. 3.5. This is a quite heavy-tailed function, and we
have S = 1/2 for r = 3±

√
8, that is for r ≈ 6 and r ≈ 0.17. That means that the

absorptance must be multiplied by 6 or 0.17 to obtain a significant speckle change.
Note that the asymmetry of the function around 1 is misleading. Indeed we can
observe that multiplying by 3 +

√
8 is equal to dividing by 3 −

√
8. This fact is

found for any value of r: multiplying the absorptance by r gives the same similarity
as dividing it by r. This is reflected by the fact that (3.29) is invariant under the
transformation r → 1/r (this is left as a very joyful exercise to the interested reader).
With this in mind, (3.29) may also be plotted between 1 and infinity, with r being
defined as either a multiplicative or dividing factor.

However, it is difficult to imagine a physical process by which we could modify
the reflectivity without also changing the microscopic profile of the inner surface.
If the microscopic profile were to change, the effect on the phase would greatly
dominate the effect of the reflectivity change.

There is however an effect that can produce an effective change in reflectivity
without altering the surface, which is gas absorption. If the gas present in the
integrating sphere absorbs light, the intensity of a light ray will decrease along its
propagation path, in addition to the absorption that comes with each reflection.
According to the Beer-Lambert law, the absorption would take the form of a factor
exp (−αz), with α the absorption coefficient. Using this, we find that the effect of
absorption is equivalent to taking ρ′ = ρ exp (−αz) in (3.27), with z the average
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Figure 3.5: Similarity as a function of reflectivity change, as a function of a
multiplicative (or dividing) factor r applied to the absorptance.

distance in the sphere, neglecting the variance of z. The similarity is then

S =

1− αz

log ρ(
1− αz

2 log ρ

)2 . (3.30)

The effect of absorption in integrating spheres was studied in [43], where the change
in output power was measured, instead of a change in the speckle. The ratio of
the power before (P0) and after (P ) introducing an absorbent gas in the sphere was
found to be

P

P0

=
1

1− αz

log ρ

. (3.31)

The graphs of (3.30) and (3.31) are shown in Fig. 3.6 for comparison. We can
see that the output power varies more strongly than the similarity, and presents
a non-zero gradient at zero. This indicates that, in a metrological perspective,
output power may be a better tool for measuring small absorption variations than
speckle similarity. This is mainly for the fact that for small absorption variations,
the response of the output power is linear, while the similarity only varies at second
order. The presence of a zero derivative at zero is an intrinsic feature of the similarity,
that we will encounter again at several occasions.
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Figure 3.6: Comparison of the similarity change and fractional output power
change as a function of gas absorption in the sphere.

2. A change in polarisation

Consider a hypothetical experiment where a speckle would be recorded before and
after a transformation that changes the polarisation of light along its propagation
in the sphere. The field coming from path p before and after the transformation
would be Ep =

√
Ip e

iϕpup and E′p =
√
Ip e

iϕpu′p, with the change happening only
in the Jones vector. Inserting this in (3.6) we have

S =

∣∣∣∣∣∣∣∣
∑
p

Ppu
†
pu
′
p∑

p

Pp

∣∣∣∣∣∣∣∣
2

, (3.32)

which is the polarisation version of Eq. (3.9). Now we need to describe the evolution
of the Jones vector along the propagation from that of the incident beam (u) to its
final state (up and u′p). The first thing that affects the Jones vector is the reflections
along the path. We can describe the effect of each reflection with an operator R (for
reflection). When the transformation is applied, an additional polarisation change
takes place along propagation, between each reflection. We can describe this effect
with an operator J (for Jones). With this, we can express the Jones vectors as

up = RN . . .R2R1u (3.33)

u′p = JNRN . . .J2R2J1R1u. (3.34)
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The Jones vector after transformation u′p is obtained by inserting one J operator
between each pair of reflections (the choice of inserting one at the end or at the start
matters little). The R and J operators also have a p dependence but we omit it for
clarity. Using the same decomposition as in Eq. (3.11), we have

S =

∣∣∣∣∣∣∣∣∣∣

∑
N

ρNu†
(
R†1R

†
2 . . .R

†
NJNRN . . .J2R2J1R1

)
u∑

N

ρN

∣∣∣∣∣∣∣∣∣∣

2

, (3.35)

where the bar denotes averaging over all paths containing N reflections. How can
we simplify this? Both the R and J operators are unitary, as they do not change
the amplitude of the light, therefore we have R†R = 1 and J†J = 1. We can be
very tempted to rearrange the operators so as to annihilate all the R operators by
pairs, but this is not possible, as they do not commute. However, the final result
for S should not depend on the R operators neither on the initial Jones vector u,
but only on the properties of J. One step towards a possible solution is to notice
that averaging over all paths containing N reflections can be split into averaging
over each successive chord, as all chords are independent. The term in parenthesis
can be recast as (

R†1 . . .R
†
N−1R

†
NJNRNJN−1RN−1 . . .J1R1

)
, (3.36)

where each bar denotes averaging over one chord. From this we see that if the central
block can be simplified to a matrix proportional to 1, with a proportionality constant
depending on the statistics of J, then the whole edifice would collapse iteratively
and give an expression depending only on the statistics of J. Whether this is the
case or not however must depend on the particular transformation considered, and
we cannot make any general statement at this point.

An example of such transformation is the Faraday effect. The Faraday effect
is a rotation of the polarisation occurring when light propagates in a medium in
the presence of a magnetic field. This rotation is proportional to the length of
propagation, and to the component of the magnetic field along the direction of
propagation. We could not investigate however if the Jones matrix of the Faraday
effect has the property R†JR ∝ 1, by lack of time.

41



3. The Aharonov-Bohm effect

To finish this section, we return to the case of phase change, but this time we consider
a very peculiar sort of phase, the one found in the Aharonov-Bohm effect. This is
a quantum mechanical effect encountered in electron waves [50, Section 15.5]. Here
we leave the realm of light to explore a different kind of wave, which is permissible
as the model we developed in section 3.2 is independent of the nature of the wave,
and we are free to consider any effect found in other types of waves.

Let us give a short review of the Aharonov-Bohm effect before turning to its
speckle version. Consider an electron wave propagating along a certain path p and
ending its journey with a certain arrival phase. If we now turn on electric currents
such that a vector potential A is produced, the wave acquires an additional phase
given by

φp =
q

~

∫
p

A · dl, (3.37)

where q is the electron’s charge, ~ the reduced Planck’s constant, and dl the ele-
mentary displacement vector along path p.

The Aharonov-Bohm effect arises when considering this phase in the arrangement
shown in Fig. 3.7. An electron wave is shone on a screen with two narrow slits,
producing a familiar interference pattern in the far field. We now add a source of
vector potential, which is a thin solenoid placed between the slits after the screen.
When the solenoid is turned on, the wave acquires the additional phase (3.37). One
way to determine the effect this has on the final interference pattern is to compute
the difference between the phase acquired by the wave coming from the top slit
(path p1) and the bottom slit (path p2). This difference is given by

φp2 − φp1 =
q

~

∫
p2

A · dl− q

~

∫
p1

A · dl (3.38)

=
q

~

∮
A · dl. (3.39)

Taking the difference has the advantage of "closing the integral" of the vector po-
tential, which can be simplified using the Stokes theorem:

φp2 − φp1 =
q

~
Φ, (3.40)

with Φ the flux of the magnetic field through the loop formed by the two paths. It
follows that the resulting effect is a global shifting of the interference fringes, because
the relative phase between the two paths is changed by the amount given by (3.40),
which is constant across the observation screen.
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The peculiarity of this effect is that the magnetic field outside a solenoid is zero
(or at least can be made arbitrarily small), while the vector potential is non-zero.
This means that the electrons are influenced by the vector potential, and not the
magnetic field. This is often cited to discuss what is most physically fundamental
between the magnetic field and the vector potential. Quantum mechanics tells us
that the vector potential is more fundamental, as particles can feel it even where
there is no magnetic field, while in classical electromagnetism the vector potential
is considered as a mathematical convenience with no physical reality. The same
discussion exists between the electric field and the electric potential.
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Figure 3.7: Left: in the Aharonov-Bohm effect, an electron wave is shone
on two narrow slits, which produces an interference pattern. A thin solenoid
is placed between the two slits, which generates a vector potential around it,
although the magnetic field outside the solenoid is zero. This introduces a
phase shift to the different wave paths and results in a shift of the interference
fringes. Right: we imagine a speckle version where an electron wave speckle
is produced after multiple reflection in a spherical cavity, with a thin solenoid
along one diameter of the sphere (its orientation is arbitrary). The effect of the
vector potential is now a structural change of the (electron wave) speckle.

Let us now imagine a speckle version of this arrangement, as shown in Fig. 3.7.
We consider the geometry of the integrating sphere, which is now made of a surface
that reflects electron waves with a Lambertian reflectance. We also introduce a thin
solenoid along one diameter of the sphere. We ask now: what is the similarity profile
of the resulting electron wave speckle pattern as a function of the magnetic flux Φ?
To answer this, we might want to use directly Eq. (3.37), and find its mean and
variance, as we did in section 3.3. However, this promises to be a dreadful exercise.
Instead, we can use again the trick of "closing the integral", by subtracting the
phase of a reference path p0. This is allowed as, looking back at Eq. (3.9), we see
that S in invariant under a constant phase shift applied to all the paths. We can
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write this formally as:

S =

∣∣∣∣∣∣∣∣
∑
p

Ppe
iφp

∑
p

Pp

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
∑
p

Ppe
i(φp−φp0 )

∑
p

Pp

∣∣∣∣∣∣∣∣
2

, (3.41)

with φp0 the phase on the reference path p0. As φp0 is a constant, this is equivalent
to multiplying the whole numerator by a phase factor exp (−iφp0), which does not
change S because of the absolute square. By taking p0 as a path that does not make
any winding around the solenoid (say, the shortest path), we have

φp − φp0 = m
q

~
Φ, (3.42)

with m the number of windings of path p around the solenoid. We can model m by
expressing the total angle formed by the path around the solenoid as

∑N
n=1 θn, with

N the number of reflections in the path, and θn the nth angular step around the
solenoid. Each θn is uniformly distributed on [−π, π] by symmetry. We can then
approximate m by

m =
1

2π

N∑
n=1

θn, (3.43)

which has mean 0 and varianceN/12. The mean and variance of the phase associated
with one single pass are then given by

µ = 0 σ2 =
q2

12~2 Φ2. (3.44)

Inserting this in (3.14), we find the similarity profile

S =
1(

1− q2

24 ~2 ln ρ
Φ2

)2 . (3.45)

We find again a square Lorentzian, as in the case of transverse displacement (see
section 3.3 and Chapter 3), which is another effect with µ = 0.

Beyond the mere curiosity, this thought experiment might find some use in the
investigation of the Aharonov-Bohm effect. Indeed the Aharonov-Bohm effect is
notoriously difficult to measure, given the short wavelength of electron waves, which
imposes very close slits and therefore very small solenoids. The setup imagined here
might relax this constraint. Note that the similarity profile is independent of the
size of the sphere, therefore miniaturised versions of this arrangement are possible,
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which might mitigate against the possibly limited coherence length of the electron
wave. A gain in sensitivity could also be obtained if high values of ρ are achievable.
The feasibility of a spherical cavity with a Lambertian reflectance to electron waves
should also be explored.

3.7 Heating effect

We finish this chapter with a particular effect encountered in practice when using
integrating spheres. When the speckle pattern produced by an integrating sphere is
recorded on a long period of time, without applying any transformation and using
a continuous illumination at a fixed power, we observe a slow change of the speckle.
When quantifying this change using the similarity, we obtain a curve which is very
well fitted by a Lorentzian profile of the form

S(t) =
1

1 +

(
t

t0

)2 , (3.46)

with t0 an empirical parameter corresponding to the HWHM of the curve. An
example of obtained similarity profile is shown in Fig. 3.8, with the experimental
parameters of section 2.4.
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Figure 3.8: Similarity of the speckle pattern produced by an integrating
sphere over time, with no transformation applied. Black: measured similarity.
Red: Lorentzian fit with a HWHM of 7.6 min.

The fact that the similarity profile can be fitted by a Lorentzian suggests that
this effect is not due to random perturbations but follows from a simple underlying
process. One hypothesis that may explain this observation is heating due to the
input laser power. Let us explore this idea.
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When the laser first hits the inner surface of the sphere, a power (1 − ρ)P is
absorbed in the region of the laser spot (with P the power of the laser), and the
remaining power ρP is absorbed uniformly on the rest of the inner surface. With the
sphere most commonly used in this thesis, this represents 8% of power absorbed on
the laser spot and 92% on the rest of the inner surface. The resulting temperature
increase, in the surface coating, can then either diffuse to the sphere’s material or
to the air contained inside the sphere.

In the case of the material, an order of magnitude estimation shows that the tem-
perature diffusion time is very short (of the order of seconds). We can then neglect
the non uniformity of the heating and make the assumption that the temperature
increase is uniform throughout the material. A uniform temperature increase im-
plies an isotropic thermal expansion of the sphere. The effect of such an expansion
can be found analytically. The phase acquired by light on a given path of length z is
kz, with k the wavenumber (assuming that the refractive index of the medium in the
sphere is close to 1). The effect of an isotropic expansion is to increase all lengths by
the same factor which, when expressed in terms of the sphere’s radius R, is given by
∆R/R, with ∆R the variation of radius resulting from the expansion. The average
phase shift on a chord is then µ = 4k∆R/3. Assuming in a first approximation that
the heat remains stored in the sphere’s material, the temperature increases linearly
with time, and so does the radius of the sphere. We then have µ ∝ t, which inserted
in (3.14) leads indeed to a Lorentzian profile in time.

We could expect that the increase in temperature of the sphere’s material in
turn induces a heat flux from the sphere to the surrounding air, leading to thermal
equilibrium and stopping the thermal expansion. However we observed that t0
does not change significantly in a period of 80 minutes, meaning that no thermal
equilibrium is reached in that time. This indicates that the approximation of the
heat remaining in the sphere’s material is valid in that time scale.

From the value of t0 in Fig. 3.8, we can infer the rate of change of the radius.
After a time equal to t0, we have the relation µ = ln ρ. Using µ = 4k∆R/3, we can
infer that the radius of the sphere increases by 8.1 nm every 7.6 minutes by thermal
expansion, which corresponds to a speed of 1.1 nm.min−1 or 18 pm.s−1. From these
values of thermal expansion we can infer the temperature increase via the coefficient
of thermal expansion of aluminium ∆T = ∆R/(Rα). We find that the temperature
increases by 30 mK after a time t0, or 4 mK per minute, and 70 µK per second.

In the case of heating of the air, we cannot infer a simple law for the similarity,
as the temperature increase would most certainly not be uniform throughout the
volume of the sphere, and the corresponding phase could not be expressed in a
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simple way. However, as we do observe a Lorentzian, the fraction of heat going into
the air must be small compared to that going into the material. This fraction must
depend on the properties of the material constituting the sphere, in particular its
thermal conductivity. As the thermal conductivity of aluminium is about 4 orders
of magnitude higher than that of air, it is reasonable to think that most of the heat
is transferred to the material.

In order to further confirm the hypothesis that the slow change in the speckle is
due to heating from the laser, we measure t0 for different powers of the input beam.
Assuming again that the heat remains stored in the sphere’s material, we expect
the inverse of t0 to be proportional to the input power. For each value of power, we
record the speckle patterns for 5 minutes, and extract t0 by fitting with a Lorentzian
profile. The result is shown in Fig. 3.9, where the uncertainty on the estimation of
1/t0 is also shown as an error bar. We find an approximately linear relation reading
1/t0 = 0.012P , with t0 in minutes and P in milliwatts. From this we can infer the
rate of change of the radius to be 0.1 nm min−1 mW−1

We can compare the value of the coefficient found in Fig. 3.9 to what we would
expect based on the knowledge of the physical properties of the sphere. We find
that 1/t0 is related to the input power P via

1

t0
=

(
4kαR

3C ln ρ

)
P, (3.47)

with α the coefficient of thermal expansion of the sphere, and C its heat capacity (the
other quantities have been defined above). This is found by inserting µ = 4k∆R/3

in Eq. 3.14, assuming ∆R/R = α∆T and Pt = C∆T , and identifying t0 when ex-
pressing the result in the form of Eq. 3.46. The quantity in parenthesis corresponds
to the coefficient found in Fig. 3.9. Using the thermal expansion coefficient of alu-
minium (α = 23× 10−6K−1) and estimating the heat capacity of the sphere from its
mass (50.8 g) and the specific heat capacity of aluminium (0.89 J K−1 g−1), we find
the value 0.048 min−1 mW−1, which is 4 times higher than the observed value. This
means that the sphere expands 4 times less than expected based on our calculation.
This may be due to the fact that the sphere is in direct contact with its support,
which must absorb some of the heat and result in a higher effective heat capacity.

This effect is of importance when using the integrating sphere as a measurement
tool. It introduces a constant drift in the signal, and we will see in Chapters 5 and
6 how to mitigate for this, either via data processing, or by physically compensating
the effect in real time. On the other hand, the observed high sensitivity brings
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Figure 3.9: Effect of laser power on the rate of change of the speckle pat-
tern. The inverse of the decay time is shown as a function of the input power.
We find an approximately linear relation with a proportionality constant of
0.012 min−1 mW−1, which supports the heating-related origin of the effect.

promises for the measurement of small temperature measurements, although this is
not explored in this thesis.

3.8 Conclusion

In this chapter, we performed a theoretical study of the speckle patterns produced
by an integrating sphere. We developed a model that predicts the change in the
speckle pattern, quantified by the similarity (3.1), resulting from an arbitrary trans-
formation. A transformation is any effect that can change either the intensity, phase,
or polarisation of light along its propagation in the sphere. We paid particular at-
tention to the case of the phase, which happens to describe all the effects that are
experimentally studied in this thesis. In this particular case, we found a general ex-
pression (Eq. (3.14)) that predicts the resulting similarity. This expression depends
on the reflectivity of the sphere, and two statistical quantities characterising the
transformation: the average and variance of the phase shift that the transformation
applies to the light on a given chord.

We also considered effects that change the two other properties of light, intensity
and polarisation. We could solve the case of intensity (Eq. (3.27)), however the
polarisation case was found to be more subtle and case-dependent, and we could
not arrive at an equivalent general result, although we can comfort ourselves with
the pleasing mathematics that we encountered on the way. The derivations outlined
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there may serve as a basis for future work on this topic.
We also discussed experimental aspects involved in the use of integrating spheres,

in particular the heating effect. The different approaches taken to tackle this effect
will be discussed in Chapters 5 and 6.
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Chapter 4

Speckle and wavelength variation

The work presented in this chapter was published in [32].

List of symbols and abbreviations

S speckle similarity (Pearson correlation coefficient of intensity)
µ average phase variation of the field on a chord
σ standard deviation of the phase variation of the field on a chord
k wavenumber
z length of a path
HWHM half width at half maximum
R, ρ radius and reflectivity of the integrating sphere
λ wavelength of light
L fibre length
NA numerical aperture

4.1 Introduction

In this chapter, we shall use the case of wavelength variation as a first validation of
our model developed in Chapter 3.

When the wavelength of laser light incident in an integrating sphere varies by a
small amount, the resulting speckle pattern changes, and in a remarkably sensitive
way. To build an intuition of why speckle depends on wavelength, consider a set
of light rays taking different paths through the sphere. Wavelength determines the
distance between two points of equal phase (modulo 2π) along the propagation of
a light ray. If we mentally place a dot at every repeating value of the phase, a
light ray is a succession of dots separated by one wavelength. If we now change the
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wavelength, we apply a global dilation of the dots along the ray paths. This dilation
affects each ray differently, depending on its length, and therefore the interference
of the different rays (i.e. the speckle pattern) changes.

This principle can be exploited in a metrological perspective to measure wave-
length variations. The ability to measure small wavelength variations is essential
in areas of science and engineering where wavelength stability is required, such as
laser cooling of atoms and ions [51]. A number of speckle-based methods have
been developed in that purpose for their low cost, simplicity of implementation,
and their possibility of miniaturisation. These method use either a rough surface
or optical fibres, reaching a resolution at the picometer level [52, 53], femtometer
level [39,40,42,54,55], and even attometer level [41,56]. The most common methods
used either rely on the similarity between the speckle pattern before and after the
wavelength change, Principal Component Analysis, or machine learning.

The similarity as a function of wavelength change is known in the case of a
rough surface [57], and its HWHM can be estimated analytically in the case of a
multimode fibre [58]. However, such a theoretical description is missing for the
integrating sphere, which has only recently been introduced in this field [39–42].

The sensitivity of speckle patterns to wavelength is also important in a different
but related topic, which is speckle-based spectrometry [24, 25, 54, 59–63], where the
spectral resolution is limited to the HWHM of the similarity profile.

Here we will focus on validating our model in the case of wavelength variation,
which by the same occasion will give us the explicit relationship between the width
of the similarity profile and the relevant experimental parameters, which is currently
missing in the literature.

4.2 Similarity profile

Let us first determine the similarity profile by applying Eq. (3.14). To that purpose,
we need to compute the phase shift φ introduced on a given chord by the wavelength
change. We then compute the average and variance of φ to deduce µ and σ2 respec-
tively. We find φ in the following way. On a given path of length z, light acquires a
phase k z, with k the wavenumber (assuming a refractive index equal to one). After
a wavelength change, the phase changes by an amount ∆k z. It follows that the
average phase change on a chord is µ = ∆k z, with z the average chord length in the
sphere, which is given by geometry to be 4R/3 (with R the sphere’s radius) [46–48].
Likewise, the standard deviation of chord length is

√
2R/3 [47, 48].
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This gives

µ =
4

3
R∆k σ =

√
2

3
R∆k. (4.1)

Inserting these expressions in (3.14), and using ∆k = −k∆λ/λ (as k = 2π/λ and
∆k small), we have

S =
1

1 +

(
∆λ

∆λ0

)2 , (4.2)

where we neglected the σ term (see Appendix D), with ∆λ0 given by

∆λ0 =
3λ2 |ln ρ|

8πR
. (4.3)

A natural measure of sensitivity, widely used in this thesis, is the HWHM (Half
Width at Half Maximum) of the similarity profile, which in the present case is equal
to ∆λ0. This short calculation therefore reveals the essential parameters determining
sensitivity: the reflectivity, the radius, and secondarily the wavelength. For modest
parameters such as R = 1 cm, ρ = 0.9, and λ = 780 nm, this gives already a fairly
high sensitivity with an HWHM of about 0.8 pm.

4.3 Experimental verification

In order to verify (4.2), we implement the experimental setup shown in Fig. 4.1.
Laser light enters an integrating sphere and the resulting speckle pattern is recorded
on a camera. The sphere-camera distance is 20 cm, with a laser power of 10 mW
(see complementary experimental details in section 2.4). We then apply a linear
wavelength variation by applying a triangular modulation to tune the cavity length
of the laser. The amplitude of the wavelength variation is 2.9 ± 0.1 pm and is
measured using a fibre coupled Fizeau-based wavemeter (HighFinesse WS7). One
similarity profile can be extracted by computing the similarity between one reference
image and the subsequent images. By using different reference images across the
modulation period, we extract several similarity profiles, whose average and standard
deviation (displayed as an error bar) is shown in Fig. 4.2(a). As a first sanity check,
we fit the resulting profile using (4.2) with ρ as a free parameter, and find the best
fit for ρ = 0.922 ± 0.002. The uncertainty comes in equal amount from that of

53



the wavelength modulation amplitude and the fitting. Note that the heating effect
discussed in section 3.7 is not an issue here as the applied wavelength variation takes
place in a much shorter interval than the heating time scale.
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p 

p’ 

0.5 mm

camera

laser

wavemeter

IS

0.5 mm

n

integrating 
sphere

Figure 4.1: Experimental setup. Laser light enters an integrating sphere and
produces a speckle pattern recorded on a camera. The wavelength of the laser is
then changed in a linear manner, while the resulting speckle change is recorded.
The wavelength variation is monitored via a fibre-coupled wavemeter.

To compare to the fitted value, we perform an independent measurement of ρ
using a method based on the measurement of the output power at different distances
from the sphere, knowing the input power, port size, port-detector distance, detector
area, and integrating sphere radius [44]. We find a value of ρ = 0.918±0.008, which
is in accordance with our value from fitting the similarity curve of ρ = 0.922±0.002.
Here the main sources of uncertainty are the machine precision limit on the output
port diameter and the power meter measurement (fractional uncertainties of 3% and
7% respectively). Other sources of systematic error, not taken into account, are the
alignment of the detector with the port and the orientation of the detector (both
lead to an underestimation of ρ).

The fit in Fig. 4.2(a) confirms the predicted functional form of the similarity
profile. Now in order to confirm the expression of the HWHM of the profile (4.3),
as a function of reflectivity and radius, we measure the HWHM of four different
spheres whose radii are known and reflectivities are measured using the method
described above. We show in Fig. 4.2(b) the measured HWHM as a function of
the ratio |ln ρ| /R. A linear fit gives a coefficient of (7.3 ± 0.3) × 10−14 m2, which
is in agreement with the model predicting a value of 3λ2/(8π) = 7.26 × 10−14 m2.
This is now a complete verification of the model where both the functional form
and the parameters of the similarity profile have been confirmed. The properties of
the spheres used are given in Table 4.1. Spheres 1 to 3 are custom-made aluminium
spheres, manually coated with Spectraflect paint, and sphere 4 is a commercial
Spectralon sphere (Thorlabs IS200).
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Figure 4.2: (a) Similarity as a function of wavelength change, experimental
(black) and Lorentzian profile predicted by model (red), fitted for a reflectivity
ρ = 0.922. The HWHM is 0.45 pm. (b) HWHM as a function of the ratio
|ln ρ| /R for different spheres, experimental (black) and linear fit (red). Each
sphere is labelled and described in Table 4.1.

Sphere number Radius (mm) Reflectivity HWHM (pm)

1 4 0.877±0.005 2.4±0.1
2 7.5 0.892±0.007 1.09±0.07
3 12.5 0.918±0.008 0.45±0.08
4 25.4 0.978±0.003 0.058±0.004

Table 4.1: Properties of the spheres used in Fig. 4.2(b).

We note in passing that the fit of the similarity curve can serve as a means of
measuring the reflectivity, with an accuracy only limited by the knowledge of the
applied wavelength variation and the sphere’s radius.

4.4 Comparison with multimode fibres

Shining laser light through multimode fibres is one of the most widely used way of
producing speckles. In this section we compare the sensitivity to wavelength change
of the speckles produced in this way to those produced by a sphere. The similarity
profile of a multimode fibre is not Lorentzian, but we know the dependence of its
HWHM on the relevant fibre parameters, namely ∆λ0 ∝ λ2/(L (NA)2), with λ the
wavelength, L the fibre’s length, and NA its numerical aperture [24, 58]. It is inde-
pendent of the core size above a critical diameter of about 100 µm [24]. For a step-
index fibre, the relationship was empirically found to be ∆λ0 ≈ 2.4λ2/(L (NA)2)

[22]. Equating this HWHM to that found above for the integrating sphere, we find
a direct proportionality between the fibre’s length and the radius of the equivalent
integrating sphere. With a standard value of NA = 0.22, and the reflectivity of our
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commercial sphere ρ = 0.978, we have

L ≈ 19000R, (4.4)

which means that a sphere of radius R shows the same sensitivity as a fibre of length
19000R. For example, our sphere of radius 2.54 cm is equivalent to a 500 m long
fibre.

This demonstrates that an integrating sphere can offer a very compact alternative
to an optical fibre, as the effective space occupied by a fibre is much larger than
that of the equivalent integrating sphere (even though its intrinsic volume is smaller)
for similar performance. Another advantage of the sphere is that the sensitivity to
wavelength change is independent of the way in which light is coupled into the
sphere. In contrast, it was shown that the sensitivity of multimode fibres depends
strongly on the number of spatial modes excited in the fibre and therefore on the
coupling of light at the fibre input [24, 64]. Moreover, an integrating sphere offers
the additional advantage of being more robust to mechanical perturbations, as they
are monolithic and have no moving parts, which can be a serious difficulty when
using fibres.

4.5 Comparison to a Fabry-Pérot interferometer

Fabry-Pérot interferometers are another tool used to measure wavelength variation.
Here we discuss their differences with integrating spheres.

As discussed in section 3.5, a strong analogy exists between the Fabry-Pérot
interferometer and the integrating sphere. For a Fabry-Pérot of reflectivity ρ and
length L, the HWHM of the output intensity as a function of wavelength detuning
is λ2| ln ρ|/(4πL) [65]. For an integrating sphere of reflectivity ρ and diameter equal
to L (L = 2R), we found that the HWHM of the similarity profile as a function of
wavelength change is 3λ2 |ln ρ| /(8πR). The HWHM of the Fabry-Pérot is exactly
3 times smaller. This factor of 3 comes down to the different average path-length
in each case, which is actually shorter in the sphere (there is only one path in the
Fabry-Pérot, which is the round-trip between the two mirrors).

In terms of sensitivity to wavelength variation, both approaches are comparable,
although larger sizes and higher reflectivities may be more easily achievable in the
case of the Fabry-Pérot. On the other hand, the integrating sphere benefits from
a simpler implementation, as it does not require any alignment and is only made
of inexpensive components. In terms of data acquisition, the Fabry-Pérot benefits
from a lower noise as it usually implies a photodiode, as opposed to a camera for the
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integrating sphere. However in the latter case the implementation is again simpler,
as the camera can be placed anywhere in the region illuminated by the output light.

4.6 Conclusion

We applied the model developed in Chapter 3 to the particular case of wavelength
variation and predicted the Lorentzian profile (4.2). By doing so, we proved that the
relevant parameters that determine the sensitivity of the resulting speckle pattern
(defined as the HWHM of the similarity profile) are the surface reflectivity, the
radius of the sphere, and the wavelength. We experimentally verified the functional
form of the similarity profile, and found very good agreement. We also verified
the dependency of the profile on the above-mentioned parameters, which were all
independently measured, and found again a very good agreement. This constitutes
a complete verification of the model with no free parameter, in the particular case
of wavelength variation.

We found that the approach taken here can be used in reverse, to measure the
reflectivity of the inner surface by measuring the HWHM of the similarity curve,
knowing the radius and wavelength. The uncertainty on the reflectivity in that
case is mainly limited by that of the applied wavelength variation. This provides a
simple and accurate way of measuring reflectivity, although limited to the particular
wavelength of the laser used.

Beyond the original purpose of verifying our model, the explicit expression of
the HWHM as a function of the relevant parameters is of importance for the field of
speckle-based measurement of wavelength variations and spectra. For the former,
because resolution depends directly on the speckle’s sensitivity to wavelength vari-
ation. For the latter, because the HWHM of the similarity profile gives the spectral
resolution.

We also proved that an integrating sphere of radius R gives the same sensitivity
to wavelength change as a fibre of length ≈ 19000R, with standard parameters. This
suggests that the importance of the integrating sphere in the context of wavelength
measurement may have been overlooked, as it offers significant advantages over more
common alternative methods.

57



58



Chapter 5

Measurement of refractive index
variations

The work presented in this chapter was published in [66].

List of symbols and abbreviations

n refractive index
n′ refractivity (n− 1)

k wavenumber
z length of a path in the sphere
λ wavelength of light
R, ρ radius and reflectivity of an integrating sphere
S speckle similarity (Pearson correlation coefficient of intensity)
µ average phase variation of the field on a chord
σ standard deviation of the phase variation of the field on a chord
HWHM half width at half maximum
ρair mas density of air
V volume of the chamber
δn, σn random fluctuation of refractive index and its standard deviation
δλ, σλ random fluctuation of wavelength and its standard deviation
N number of pixels in speckle image
t0 HWHM in time of the similarity profile
T temperature
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5.1 Introduction

In the integrating sphere arrangement, when the refractive index of the medium
contained in the sphere varies slightly, a change in the resulting speckle pattern
in observed. To build an intuitive picture of why this happens, remember that
the refractive index characterises the speed of light in a medium. When it varies,
light changes speed, which results in a relative delay between the different paths
that reach the camera, depending on the distance they had to travel through the
medium. This delay takes the form of a phase, which changes the resulting speckle
pattern. This is very analogous to what we had with a wavelength change, even
formally, as we shall see in the next section.

Refractive index is a parameter of importance across many areas of optics. For
example, high-precision measurements of refractive index have been proposed as a
route to a more accurate definition of the Pascal [67]. In optical tweezers experiments
exploring the motion of RNA polymerase during transcription [68], the effect of
air currents (which typically modulate the refractive index at the order of 10−7)
[69,70] caused sufficient position instability of the optical trapping and measurement
beams to mask the angstrom-level motion, even in a sealed environment. Also,
interferometric measurements of length and displacement in gaseous environments
[71] are limited in their accuracy by uncertainties in the refractive index of the
environment.

There are many methods to measure refractive index using lasers, including
hollow-core [72], photonic crystal [73, 74] or evanescent optical fibre refractome-
ters [75] (fibre-based devices have been recently reviewed in [76]), and metasurface-
based refractometers [77]. The most sensitive measurements of refractive index in
the literature are variants of double-channel Fabry-Perot cavities [70], with which
refractive index uncertainties of 10−12 have recently been demonstrated [67].

The first application of speckle in refractometry was presented half a century
ago [78,79], and most subsequent work has adopted a similar scheme. A laser beam
impinges on a random phase screen to produce a speckle field, which then traverses
a medium under investigation, and the changes in the speckle pattern can be used to
quantify changes in the refractive index. Speckle has been applied to measurements
of the refractive indices of air [80], glass [81], and liquids [82]. The best performance
to date reached a 10−6 resolution in refractive index variation [83]. This was obtained
using the same quantitative tool that we have been using thus-far (the similarity),
however the diffusion geometry was three consecutive planar diffusers placed inside
a medium of interest.

How might one further optimise the sensitivity of a speckle refractometer? A
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speckle pattern is the result of the interference of many different wave paths. When
light propagates in a medium of refractive index n, the phase acquired on a given
path of length z is n k z, with k the wavenumber. A change in refractive index
therefore applies a phase shift ∆n k z on that path. Now any change occurring in
the speckle pattern results from relative phase changes between paths. It follows
that what maximises the sensitivity of the speckle pattern is not path-length itself,
as intuition might suggest, but the spread in path-length distribution within the
medium of interest. In a simple illustrative case where we consider only two given
paths, their relative phase changes by k∆n∆z, where we see that the maximal effect
is obtained for a maximal path-length difference. This analysis is consistent with
what is found in [83], where the succession of planar diffusers inside the medium
increases the number of paths and their length differences. However, that approach
is still limited by the globally paraxial geometry of the diffusion.

In this chapter, we further increase the speckle sensitivity by using the integrating
sphere, which naturally presents a broad distribution of path-length. This offers
orders of magnitude improvement in sensitivity compared with previous speckle-
based techniques. The method relies on the measurement of the similarity, from
which the refractive index change is inferred using an explicit relation, that we
derive analytically and verify experimentally. By varying the pressure of air inside
an integrating sphere, we resolve changes in refractive index as low as 4.5 × 10−9

with an uncertainty of 7× 10−10. We also discuss the role of the heating effect and
identify strategies for its compensation.

5.2 Similarity profile

We first want to determine the similarity profile as a function of refractive index
change by applying Eq. (3.14). In that purpose, we first need to express the phase
shift on a given chord. On a given chord of length z, light acquires a phase n k z,
with n the refractive index and k the wavenumber. After a refractive index change,
the phase changes by an amount ∆n k z. It follows that the average phase change
on a chord is µ = ∆n k z, with z the average chord length in the sphere, which is
given by geometry to be 4R/3 (with R the sphere’s radius) [46–48]. Likewise, the
standard deviation of chord length is

√
2R/3 [47, 48].
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This gives

µ =
4

3
∆n k R σ =

√
2

3
∆n k R. (5.1)

Inserting this in Eq. (3.14), we have

S =
1

1 +

(
∆n

∆n0

)2 , (5.2)

where the σ term is neglected (see Appendix D), with ∆n0 is given by

∆n0 =
3λ |ln ρ|

8πR
, (5.3)

which also corresponds to the HWHM of the Lorentzian. For modest parameters
such as R = 1 cm, ρ = 0.9, and λ = 780 nm, this gives ∆n0 ≈ 10−6.

The knowledge of the similarity profile allows us to infer the refractive index
variation between two given times, by simply applying the reciprocal function of
Eq. (5.2) and using the value of the similarity between the two corresponding speck-
les. This gives

∆n = ∆n0

√
1/S − 1, (5.4)

with S the similarity between the two corresponding speckles.

5.3 Experimental implementation

In this section we experimentally verify relation (5.2) with the setup described in
Fig. 5.1. Laser light enters an integrating sphere and the resulting speckle pattern
is recorded on a camera. The sphere-camera distance is 20 cm, with a laser power
of 10 mW (see complementary experimental details in section 2.4). The sphere is
placed in a 2490± 50 ml stainless steel chamber which is hermetically sealed using
ConFlat flanges and copper gaskets (these are standard vacuum technology). A
refractive index variation is then applied by slightly compressing the air inside the
chamber using a 100 ml syringe connected to the chamber via a needle valve. The
compression changes the density of the air, which increases its refractive index in
the same proportion. The syringe is compressed at a constant rate of 4.0 ml s−1

using a motorised translating stage while the changing speckle is recorded. From
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this we extract the similarity profile as a function of refractive index change shown
in Fig. 5.2. The variability of the profile, given by the error bars, is found in the
same way as described in section 4.3.

input  
beam

0.5 mm

sealed 
chamber

integrating
sphere 0.5 mm

input 
beam

syringe

integrating 
sphere

trapped 
air

sealed  
chamber

camera 

pipette

window

window

Figure 5.1: Experimental setup. An integrating sphere is placed in a sealed
chamber, which light can enter and exit via two glass windows. The air inside
the chamber is slightly compressed by pushing a syringe (for the verification of
Eq. (5.2)) or a pipette (for the measurement of small variations). The resulting
change in refractive index of the air induces a change in the speckle pattern
which is recorded on a camera.

The value of the refractive index change is inferred from the volume change by
the following. The fact that the chamber is sealed implies ∆n/n′ = ∆ρair/ρair ≈
−∆V/V , with n = 1 + n′ the refractive index of the air inside the chamber, ρair
its density, and V the chamber’s volume, assuming n′ ∝ ρair (this is called the
Gladstone-Dale law [84]) and ∆V � V . It follows that the refractive index change
is given by ∆n = −n′∆V/V , with n′ = 2.7 × 10−4 for our values of λ = 780 nm,
20°C, and 100.5 kPa [85]. The main source of uncertainty is the volume of the
chamber (2%). By fitting the resulting profile using (5.2) with the reflectivity as a
free parameter, we find best agreement for ρ = 0.916 ± 0.002, which is consistent
with our previous estimate ρ = 0.918±0.008 in section 4.3. The measured HWHM is
∆n0 = 6.5×10−7, corresponding to a volume variation of only 6.0 ml, or a fractional
volume change of 0.24%. This can be done very easily by hand without feeling any
pressure resistance, which offers a very hands-on demonstration of speckle sensitivity.

5.4 Measurement of small refractive index changes

How can we measure refractive index variations much smaller than ∆n0? We could
simply apply (5.4), however this is not ideal, as for ∆n ≈ 0 we have dS/d∆n ≈ 0.
A variation much smaller than ∆n0 would take place "at the top of the hill", where
S varies only at second order in ∆n. This problem would be solved if instead

63



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

n 10-6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

si
m
ila
rit
y

measurement
model

Figure 5.2: Speckle similarity as a function of refractive index change, experi-
mental (black dots) and Lorentzian profile predicted by model (red line), fitted
for a reflectivity ρ = 0.916. The centre and span of the error bars respectively
give the mean and standard deviation of a set of curves extracted from the
data set. The HWHM is 6.5× 10−7.

we could look at small variations of the similarity around a point of higher slope,
anywhere along the profile other than ∆n = 0. This in fact can be done by purposely
applying an initial variation prior to the measurement, for example equal to ∆n0.
In this way the similarity, taken between a speckle before and after the initial ∆n0

leap using (5.4), varies around a value of 0.5 with a high sensitivity. In our setup,
this initial variation could be applied by changing the volume of the chamber by 6.0
ml. However, a simpler way is to make use of the equivalence that exists between
refractive index change and wavelength change, and use a wavelength change instead.
Indeed, all the effects that are dominated by the µ term in Table 3.2 can be used
interchangeably to produce the same change in the final speckle pattern. Let us see
that in the case of refractive index change and wavelength change. The phase shift
resulting from a wavelength change on a path of length z is n∆k z, which is of the
same form as what we found for a refractive index change (∆n k z). As both phase
shifts are proportional to z, equating them on one path equates them on all paths,
and the two effects are physically equivalent when ∆n = n∆k/k ≈ −∆λ/λ (with
n ≈ 1 and ∆λ small). This means that the same change in a speckle pattern occurs
after a refractive index change ∆n or after a wavelength change ∆λ = −λ∆n.
We can therefore bring the similarity to a point of higher slope by applying an
appropriate wavelength offset (of the order of 0.5 pm). Note that the actual value
of the initial offset needs not be known, it can we seen as an arbitrary parameter
that we tweak such that the similarity is close to 0.5. In our setup, this corresponds
to about 0.5 pm.

We proceed in the following way. A reference speckle pattern is first recorded
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at an initial wavelength, and the initial wavelength offset is applied. Thereafter,
small refractive index changes are applied using a pipette, which can apply much
smaller volume changes than a syringe. We press and release the pipette in a square
wave manner with a period of about a second, with a 40 µl volume load. This
corresponds to a fractional volume change of (1.61 ± 0.03) × 10−5, from which we
infer an expected refractive index change of (4.3 ± 0.1) × 10−9. We compute the
similarity between the reference speckle and the speckles undergoing change, which
is then converted to refractive index difference using (5.4). The resulting curve is
shown in Fig. 5.3. The first value of the time series is subtracted, so that what is
displayed is the refractive index variation applied by the pipette. We find steps of
amplitude (4.5± 0.7)× 10−9, which is consistent with the expected value.

0 1 2 3 4 5 6

time (s)
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Figure 5.3: Measurement of small periodic steps in refractive index, applied
by changing the volume of the chamber by 40 µl using a pipette, corresponding
to a fractional volume change of (1.61±0.03)×10−5. We find a step amplitude
of (4.5± 0.7)× 10−9, in accord with the expected value of (4.3± 0.1)× 10−9.

5.5 Uncertainty

As the slope of the similarity profile at ∆n = ∆n0 is 1/(2∆n0), we can express any
small refractive index variation around ∆n0 as δn = 2∆n0δS. For estimating our
measurement uncertainty, we also include laser wavelength fluctuations, as this sets
a fundamental limit to performance. We now have

δn = 2∆n0δS −
δλ

λ
, (5.5)

where we used the fact described above that a refractive index variation contributes
to speckle change in the same way as a wavelength variation, with the equivalence
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given by ∆n = −∆λ/λ. From this we infer the uncertainty relation

σ2
n = (2∆n0σS)2 +

(σλ
λ

)2

, (5.6)

where σ denotes the uncertainty (standard deviation of the noise) on each quantity.
σS is dominated by the photon shot noise on each individual pixel which propagates
to the estimation of the similarity, and σλ is a property of the laser source used.
Fluctuations in the input beam polarisation, position or angle produce only negligi-
ble contributions to the noise, as the similarity of speckle from an integrating sphere
is largely insensitive to path-independent effects (as shown in section 3.4). We are
then facing two possible cases, where either the σS or the σλ term dominates.

When σS dominates, which is the case of our experiment, we have σn = 2∆n0σS.
In principle, σS could be determined analytically knowing the probability law of the
noise on each pixel and the explicit expression of the similarity, but this turns out to
be a very difficult problem. Instead, we find an empirical law1 for σS, approximately
given by 0.1/

√
N for our camera and illumination conditions, with N the number

of pixels (for our image size, 200×200, this gives σS ≈ 5 × 10−4). Inserting the
expressions of ∆n0 and σS we find

σn ≈
3λ |ln ρ|

40πR
√
N
. (5.7)

With our parameters, this gives σn = 7× 10−10, which is in accord with the level of
noise found in Fig. 5.3.

As σS is reduced by increasing image size, the σλ term may become dominant,
which sets a lower limit to performance with an uncertainty σn = σλ/λ. Note that
estimating the similarity noise as a function of image size can serve as a way of
measuring σλ. Indeed, if a plateau is reached as image size is increased, σλ can be
inferred from the value of that plateau.

In this work, we use a laser with low wavelength drift (less than 0.1 fm) and a
standard CMOS camera. Therefore we are in the first case described above where
camera noise dominates2. However this cannot be the only reason for our lower
uncertainty compared to other reported works. Indeed, the best performance found
in the literature uses a HeNe laser [83], and if the reported uncertainty (2 × 10−6)
were to be attributed to wavelength noise, we would have σλ = 3 pm, which is much

1This is found by applying the same protocol, without any refractive index variation, and
extracting the standard deviation of the resulting signal.

2For this reason the uncertainty associated with wavelength fluctuations is not taken into
account in the rest of this thesis.
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higher than the typical fm-level noise of a wavelength-stabilised HeNe laser. As the
effect of camera noise increases with the HWHM (∆n0 is in factor of σs in Eq. (5.6)),
this is probably the dominant source of uncertainty in most other works reported in
the literature.

5.6 Tackling the heating effect via volume change

As we saw in section 3.7, using an integrating sphere exposes us to an intrinsic
heating effect, which is unavoidable and gives the same signal as a refractive index
variation. Among the different ways to mitigate against this effect that we men-
tioned, one is through a direct physical compensation. This is the route we take
here.

As thermal expansion is equivalent to a refractive index variation or a wavelength
variation, we can use either of these to physically compensate the expansion. As here
we need to apply a small and steady variation, this time changing the refractive index
is simpler to implement. This is because it can be done by changing the volume of the
chamber with a syringe mounted on a commercial syringe pump (WPI AL2000), just
like we did for the measurement of the similarity profile in Fig. 5.2. The equivalent
procedure using wavelength was not possible in the setup. This is not the most
elegant approach, as we modulate the same variable as that we want to measure.
However the compensation is constant in time and independent on the measured
variation. Denoting t0 the measured HWHM of the Lorentzian profile in time, and
using the equivalence ∆n ⇔ ∆R/R, we find that the volume rate that must be
applied to compensate the expansion is V̇ = −3V ln ρ/(4n′kRt0). For t0 = 7.6 min
as found in Fig. 3.8, and with the same parameters as above, we have V̇ = 0.79

ml min−1. The volume of the chamber was continuously increased at this rate in the
measurement of Fig. 5.3 to compensate for the thermal expansion.

In future developments, compensation of the expansion could also be accom-
plished via a steady wavelength increase, or via a direct temperature stabilisation of
the sphere. One might also take the route of signal processing. For example, Fourier
filtering could be applied to remove low frequency components, or the signal could
be analysed directly in the Fourier domain (as is done in Chapter 6) depending on
the application.

In any case, reducing the sensitivity to temperature variations would be benefi-
cial. We can be more quantitative on this by computing the temperature variation
that is equivalent to a certain refractive index variation that we want to measure.
For a temperature change ∆T , we have µ = nk∆z, with ∆z = αz∆T , where α is
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the thermal expansion coefficient. Equating this to the µ obtained for a refractive
index variation, we find the simple equivalence ∆T = ∆n/α. This means that if we
want to measure ∆n, we want temperature to vary much less than ∆T = ∆n/α in
the time scale of the measurement. We then want the lowest possible value for α.
For example, for measuring the value of our resolution (∆n = 4.5 × 10−9) with a
sphere made of aluminium (α = 23× 10−6K−1), we find ∆T = 0.2 mK. For a sphere
made of zerodur3 (α = 0.05 × 10−6K−1), we find ∆T = 0.1 K, which shows that
zerodur could be a good alternative for stability.

5.7 Conclusion

In summary, we proposed a route to optimise speckle-based measurements of refrac-
tive index. While intuition suggests that the correct strategy is to maximise the
path-length of light in the medium of interest, we find that it is more important to
maximise the spread in path-length distribution within the medium. In particular,
we have demonstrated that an integrating sphere, in which light has a broad path-
length distribution, offers a simple yet sensitive probe of refractive index change of
the medium it encloses. We quantified the change in the speckle pattern using the
similarity, analytically demonstrated that this takes a simple Lorentzian form as a
function of refractive index change (5.2), and verified it experimentally. We gave a
general expression for the HWHM of the similarity curve, and found that it depends
mainly on the radius and surface reflectivity of the sphere, which paves the way for
possible optimisations. In our setup, we found the HWHM to be 6.5× 10−7.

We exploited this high sensitivity to measure small refractive index variations of
amplitude 4.5× 10−9 with an uncertainty of 7× 10−10. Our method allows a level of
uncertainty comparable to current state of the art techniques, but with a significantly
simpler implementation. On the other hand, it allows the measurement of variations
(instead of absolute values) in refractive index and requires some care regarding
heating effects due to the input laser light. This however can be compensated by
applying either an appropriate volume or wavelength change, and could also be
reduced in future devices by a more judicious choice of the material from which the
integrating sphere is constructed.

Importantly, the measurements presented here are three orders of magnitude
more sensitive than previous implementations based on laser speckle. We identified
that the use of shorter laser wavelength, larger image arrays and especially higher-

3Zerodur is a type of glass that has the lowest thermal expansion coefficient of all known
materials.

68



reflectivity coating inside the sphere offer significant opportunities to measure even
smaller refractive index changes (with a limit ultimately determined by wavelength
stability). This work is most likely to find applications in chemical sensing, in
particular the detection of trace gases or small concentrations of chemicals in liquids.
The study of the heating effect also suggests applications in the measurement of small
temperature variations.
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Chapter 6

Displacement measurement

The work presented in this chapter was submitted for publication and is currently
under review. A preprint can be found at [86].

List of symbols and abbreviations

φ phase variation applied to the field
k wavenumber
u unit vector parallel to a chord
x displacement
s variable determining if a chord changes length or not
S speckle similarity (Pearson correlation coefficient of intensity)
µ average phase variation of the field on a chord
σ standard deviation of the phase variation of the field on a chord
ρ reflectivity of the integrating sphere
HWHM half width at half maximum
θ, φ polar angles of a chord in a spherical coordinate system
β, angle between the direction of displacement and the z axis
f probability density function

6.1 Introduction

Measuring small displacements is a classical metrology task. From the Vernier scales
used in the early experiments of Cavendish and Coulomb to LIGO, many meth-
ods have been developed with various degrees of resolution and complexity [87,88].
Optical techniques are dominated by classic interferometric schemes such as the
Michelson interferometer, even though more original techniques keep being devel-
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oped. Examples of these are the use of strong phase variations of the superoscillatory
field produced by a metasurface to resolve nanometre-level displacements [89], or the
encoding of displacement into polarisation using g-plates allowing sub-nanometric
resolution [90].

A number of speckle-based techniques have also been developed. When laser
light is reflected on a rough surface, the resulting speckle acts as if it was "attached"
to it, translating and rotating when the surface is translated and rotated by a small
amount. This property (which is a special case of optical memory effect [91] and
sometimes called as such) is at the basis of most applications of speckle in this field.
It allows the measurement of the translation [92], and rotation [93] of a test surface,
or even the spatial mapping of displacement [94]. Many improvements and variations
of these have since been made [95]. The current most accurate speckle-based method
for displacement measurement tracks singularities in the pseudo phase of a moving
speckle pattern to reach nanometric precision [96,97].

In this chapter, we improve the previous speckle-based techniques by using a
fundamentally different approach. Instead of using speckle patterns produced by a
single reflection, displaying the optical memory effect, we use ones resulting from
multiple reflections in an integrating sphere. This produces much more sensitive
speckles, where displacement manifests itself as a structural change, rather than a
translation. While measuring translation is a simple task, we now need to interpret
a structural change to relate it to displacement. We will achieve this by using the
similarity, that we relate to displacement with the model we developed in Chapter
3. In the Fourier domain, this allows a noise floor of 5 pm/

√
Hz (λ/160, 000) above

30 Hz in a facile implementation, which we use to measure oscillations of 17 pm
amplitude with a signal to noise ratio of 3.

6.2 Similarity profiles

We consider a special arrangement where the integrating sphere used to produce
the speckle pattern is made of two independent hemispheres, such as the one shown
in Fig. 2.1. One of the hemispheres is allowed to move by a small amount. Two
particular directions of motion are considered: the axial motion (away or towards
the other hemisphere, z axis on Fig. 6.1), and transverse motion (sideways, x − y
plane on Fig. 6.1). We want to derive the expression of the similarity profiles for the
axial and transverse motion, starting from Eq. (3.14). The first step is to express
the phase shift on a chord resulting from the displacement of the hemisphere. The
effect of the displacement is to change the lengths of the chords, and therefore the
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length of propagation of light, which is why the effect takes the form of a phase
shift. Along a chord of length z, light acquires a phase kz, with k the wavenumber.
When the hemisphere is displaced, this phase varies by k∆z, with ∆z the change in
length (the ends of the chords are "attached" to the sphere and move with it). For
small displacements, ∆z is given by u ·x, with u a unit vector parallel to the chord
(oriented from the fixed to the moving end of the chord), and x the displacement
vector of the moving hemisphere. Moreover, no phase shift occurs if the chord starts
and ends on the same hemisphere. This can be modelled by a variable s, that takes
a value of 0 when both ends of the chord belong to the same hemisphere, and 1
otherwise. It follows that the phase shift induced by the displacement on a chord
can be expressed as

φ = ku · x s. (6.1)

The terms µ and σ2 in Eq. (3.14) are the mean and variance of φ. We therefore
seek to express the following quantities

µ = φ σ2 = φ2 − φ2
, (6.2)

where the bar indicates averaging over random chords in the sphere1.
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= cos θ
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in this region
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hemisphere 1
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u

f

Figure 6.1: Notations. x is the displacement vector of the moving hemisphere.
For a given chord, u is a unit vector parallel to the chord and pointing in the
upper half-space. u is expressed in a spherical coordinate system centred on
the sphere and oriented as shown. In this figure the sphere is presented as a
unit sphere, such that the u vector lies on its surface, but the relative sizes of
the sphere and u are arbitrary.

Let us express φ in more explicit terms before computing the averages. We
express u in a spherical coordinate system, with the origin at the centre of the

1As discussed in 3.3, a random chord is a chord whose endpoints are chosen with a uniform
probability density across the sphere’s surface.

73



sphere and the z-axis oriented such that it points perpendicularly to the separation
between the two hemispheres, with the moving hemisphere being on the positive side
(see Fig. 6.1). In this system we use the spherical angles θ ∈ [0 π/2] and ϕ ∈ [0 2π].
The restricted range of θ is chosen to guarantee that u is uniquely defined for a
given chord, and points from the fixed to the moving hemisphere. In the axial case,
we have x = xẑ, and therefore φ = kx cos θ s, with θ the angle between the chord
and the z-axis. With this we can express µ as

µ =

∫∫
kx cos θ s f(θ, s)dθds, (6.3)

with f(θ, s) the joint probability density of θ and s. As s is a discrete variable, this
can be recast as

µ =

∫ π/2

0

kx cos θ s P (s=1|θ)f(θ)dθ, (6.4)

with P (s= 1|θ) the probability of s being 1 for a given θ, and f(θ) the probability
density of θ.

We can find f(θ) in the following way. By symmetry, the distribution of random
chords is isotropic. The set of all possible u vectors then forms a uniform unit
hemisphere. The number of chords contained around a certain θ is then proportional
to the surface element in our spherical system, which is proportional to sin θ. After
normalisation, we simply have f(θ) = sin θ. P (s= 1|θ), on the other hand, can be
shown to be cos θ. The derivation is more subtle and is shown in Appendix E.

We have now everything in hand to to compute the integrals:

µ =

∫ π/2

0

kx cos θ cos θ sin θdθ

µ =
kx

3
.

(6.5)

Similarly for σ2:

σ2 =

∫ π/2

0

(kx cos θ)2 cos θ sin θdθ − µ2

σ2 =
(kx)2

4
− (kx)2

9
=

5

36
(kx)2.

(6.6)

In the transverse case, we have x = xx̂ (or any direction in the xy plane), and
therefore φ = kx sin θ cosϕ s, with θ the angle between the chord and the z-axis,
and ϕ the azimuthal angle of the chord with respect to the x-axis. This invokes
the probability density of the azimuthal angle f(ϕ), which by symmetry is uniform,
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giving f(ϕ) = 1/2π. This leads to

µ =

∫ 2π

0

∫ π/2

0

kx sin θ cosϕ cos θ sin θ
1

2π
dθdϕ

µ = 0

(6.7)

σ2 =

∫ 2π

0

∫ π/2

0

(kx sin θ cosϕ)2 cos θ sin θ
1

2π
dθdϕ

σ2 =
(kx)2

8
.

(6.8)

We can also perform the calculation for an arbitrary direction of displacement
forming an angle β with the z-axis, in which case we find

µ =
kx

3
cos2 β

σ2 = (kx)2

(
1

8
sin2 β +

5

36
cos2 β

)
,

(6.9)

yielding the axial and transverse results from β = 0 and β = π/2 respectively.

Results (6.5) to (6.8) were verified numerically by generating a set of random
points uniformly distributed across the unit sphere. The points belonging to one
hemisphere were translated in either the axial or transverse direction, and the statis-
tics of the chord length variations were computed, using 10000 points and 50000
chords between them. We found very good agreement to 1 part in 1000, the limita-
tion being the number of chords generated.

With the values of µ and σ2, we can now compute the similarity profiles:

1. For an axial displacement, we find µ = kx/3 and σ = kx
√

5/6. Inserting this
in Eq. (3.14), and neglecting the σ term (see Appendix D), we obtain

S =
1

1 +

(
kx

3 ln ρ

)2 , (6.10)

which is a Lorentzian with an HWHM given by 3λ |ln ρ| /2π ≈ 0.5λ |ln ρ|.
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2. For a transverse displacement, we have µ = 0 and σ = kx/
√

8, leading to

S =
1(

1− (kx)2

16 ln ρ

)2 , (6.11)

which is a squared-Lorentzian with an HWHM of
√

16(
√

2− 1)/2πλ
√
|ln ρ| ≈

0.4λ
√
|ln ρ|.

The axial motion imparts a greater change to the speckle pattern than the trans-
verse one. This can be understood qualitatively. In the axial case, all chord that
change in length increase in length. In the transverses case, half of the chords that
change in length increase and half decrease in length. In the transverse case, some
chords can then compensate each other, leading to small change.

For modest parameters such as λ = 780 nm and ρ = 0.9, the HWHM is 39 nm
in the axial case, and 104 nm in the transverse case. Those numbers are consistent
with our empirical observation of the very high speckle sensitivity. Note that the
sensitivity of the speckle pattern to displacement is independent of the size of the
sphere.

Just as in Chapter 5, the knowledge of the similarity profiles allows us to infer the
displacement between two given times, by simply applying the reciprocal function of
the appropriate profile and using the value of the similarity of the two corresponding
speckles. For example, for the axial profile, using (6.10) we have:

x = x0

√
1/S − 1, (6.12)

with x0 the HWHM.

6.3 Experimental implementation

In this section we experimentally verify the relations (6.10) and (6.11) with the setup
described in Fig. 6.2. Laser light enters the integrating sphere and the resulting
speckle pattern is recorded on a camera. The sphere-camera distance is 20 cm, with
a laser power of 10 mW (see complementary experimental details in section 2.4).
The sphere is made of a fixed and a moving hemisphere. The fixed hemisphere
rests on a manual translation stage, for coarse alignment of the two halves, and the
moving hemisphere rests on a 3D precision stage capable of nanometer precision (PI
P-733.3DD).
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Figure 6.2: Experimental setup. Laser light enters the integrating sphere and
produces a speckle pattern recorded on a camera. Hemisphere (1) rests atop
a manual 3D translation stage (TS) for coarse alignment with hemisphere (2),
which rests atop a motorised nanopositioner (NP). The latter is moved at a
constant speed while the changing speckle pattern is recorded. The z-axis, the
axial and transverse directions are shown.

We displace the moving hemisphere in the axial and transverse (horizontal) di-
rection at a constant speed of 0.1 µm s−1 while the changing speckle is recorded, and
extract the similarity profiles by applying expression (3.1) between one reference and
subsequent images. The resulting profiles are shown in Fig. 6.3. We find a good
agreement for the axial profile, while the transverse profile shows a small deviation.
This difference was found to be systematic and independent of the experimental con-
ditions (such as the incidence angle of the laser, or the initial position of the moving
hemisphere). In section 6.4, we show how this can be explained by a small deviation
from the assumptions of our model, in particular the Lambertian reflectance and the
uniformity of the reflectivity across the inner surface. The variability of the profiles,
given by the error bars, is found in the same way as described in section 4.3. We
also plot the theoretical profiles (6.10) and (6.11).

Note that the coherence length of the laser does not need to be as high as that
used in this study. The standard deviation of the path length distribution of the
sphere is 4R/(3 |ln ρ|) (derived from the path length distribution given in [43]), which
is equal to 19.5 cm with our parameters. The coherence length only needs to be
large compared to the standard deviation of path length, therefore more standard
laser sources with coherence lengths of the order of meters should be suitable.
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Figure 6.3: Speckle similarity profiles as a function of displacement. Exper-
imental data (black), axial theoretical profile (red), and transverse theoretical
profile (blue). The HWHM is 32 nm in the axial case and 85 nm in the trans-
verse case. The observed transverse profile shows a small systematic deviation
from the model, which can be explained by an imperfect Lambertian reflectance
and/or a non uniform reflectivity. This is taken into account in the modified
model (dashed blue). The images show the speckle pattern in the transverse
case.

6.4 Hypotheses on the systematic deviation of the

transverse profile

In the measurement of the transverse profile, we found a small but systematic de-
viation from the model’s prediction (see Fig. 6.3). Here we show that this can be
explained by a deviation from some of the assumptions of the model, in particular
the Lambertian reflectance and uniform reflectivity (assumption 2). When such de-
viations are introduced in the model, we find that it does not change the prediction
of the axial profile in first approximation, but does change that of the transverse
profile. The obtained modified model can be empirically adjusted to reproduce the
observed profile.

In Chapter 3, we derived the general expression of the similarity for an arbitrary
transformation (eq. (3.14)). The last step of the derivation, Eq. (3.13), can be
expressed as follows

S =

∣∣∣∣∫ ∞
0

− lnρ
(
ρeiφ

)N
dN

∣∣∣∣2 , (6.13)
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where φ, the phase shift on a chord, is Gaussian with mean µ and variance σ2, and
the overline designates averaging over random chords. We saw that the combination
of the Lambertian reflectance, uniform reflectivity, and spherical geometry conspire
in such a way that the intensity of a light ray always decreases by the same factor
after each reflection. For this reason, only the phase term is in the chord-averaging
and the reflectivity ρ is outside.

We can describe any deviation from the Lambertian reflectance or the uniform
reflectivity by a dimensionless function g, which we include in the chord-averaging.
This function can contain a direction dependence to model an excess of power in the
specular direction for example, or a position dependence to model a non uniform
reflectivity. We have g = 1 for a Lambertian reflectance and uniform reflectivity,
and g = 1 in any case2. With this definition, the previous ρeiφ term becomes ρgeiφ.
The actual expression of this term would be difficult to derive in any particular
case, but we can still infer the effect of g on the final similarity profile. We start by
expressing geiφ as differing from eiφ by a complex number aeib, reading

geiφ = aeibeiφ, (6.14)

with a and b unknown dimensionless functions of kx.

We can be more specific on the behaviour of a and b. First, for no displacement
(x = 0), we have a = 1 and b = 0, as g = 1. Also, as kx is relatively small in our
range of measurement (0.26 for x = HWHM), we can Taylor expand a and b around
zero. By keeping only the first non-zero terms of the Taylor expansions, we have
a = 1 +α(kx)2/2 and b = βkx, with α and β small dimensionless numbers. Indeed,
it can be shown (by expanding the derivative with respect to x of eq. (6.14)) that
the derivative of a is zero at kx = 0. Using these expansions, we can insert (6.14) in
place of eiφ in (6.13), perform the integral and see the impact this has on the final
form. We find the modified profile

S =
1(

1− σ2 + α(kx)2

2 ln ρ

)2

+

(
µ+ βkx

ln ρ

)2
. (6.15)

In the axial case, we see that the modification is negligible, as the sigma term
was already negligible in the original profile, and µ � βkx. Therefore, the axial

2As g redistributes power in direction and position but does not change the total amount of
power.
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profile is unchanged. In the transverse case, we have

S =
1(

1− (1 + 8α)
(kx)2

16 ln ρ

)2

+

(
βkx

ln ρ

)2
, (6.16)

where we see that the modification is no longer negligible. This modified profile has
two free parameters α and β, and gives an excellent fit of the data for α = 0.027

and β = 0, which is an argument in favour of our hypothesis.
The modified profile is shown in Fig. 6.3. Note that this modification acts as

a scaling of the original profile (6.11) in the x direction by 10%. This suggest the
possibility of a calibration issue of the nanopositioner. However the amplitude of
displacement was verified independently using a Michelson interferometer and this
possibility was excluded. An imperfect Lambertian reflectance is more likely, as
it was shown [98] that even in the case of spectralon, significant deviations from
the ideal Lambertian reflectance are observed. In particular, an excess of power
in the specular direction (specular reflection), as well as in the incident direction
(backscattering), and polarisation dependence were found.

6.5 Variation with a virtual hemisphere

We can apply a small modification to the experimental setup, where the moving
hemisphere is replaced by a flat mirror (Thorlabs BB1-E03) with reflectivity > 0.99.
In this arrangement, we find that the speckle becomes more sensitive to axial motion
and insensitive to transverse motion. The similarity profile obtained for the axial
motion is shown in Fig. (6.4).

Although the geometry of the problem seems very different from the previous
experiment, we find again a Lorentzian profile, with a HWHM precisely twice smaller
(the same factor of two was found with other spheres of different reflectivities and
radii). This curious result can be understood in a simple way if we think of the
image of the fixed hemisphere. The real and the virtual hemispheres form together
a complete sphere, in which we can apply our previous model as if the whole sphere
was real. The motion of the mirror implies an axial motion of the virtual hemisphere,
just like we had in the previous setup. The virtual hemisphere however, by its very
nature, moves twice as much as the mirror, which explains the factor of two. Also,
transverse motion does not change the position of the virtual hemisphere, which is
consistent with the absence of speckle change in that case.

In this interpretation we neglect the effect of the mirror’s own reflectivity (>0.99
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Figure 6.4: Left: a modified version of the experimental setup of Fig. 6.2,
where the moving hemisphere is replaced by a flat mirror. Right: Axial sim-
ilarity profile obtained in the modified setup. The profile is also Lorentzian,
with a HWHM of 16 nm, precisely half that found in the previous setup. This
factor of two finds a simple explanation in terms of the moving virtual image
of the hemisphere. Here the axial model is obtained by multiplying x by 2 in
Eq. (6.10).

at 6° and 45° angle of incidence), as it is much higher than that of the sphere (0.918).
If both reflectivities were closer together, the result would be less trivial. In fact, as
any path reaching the virtual hemisphere has to undergo a reflection on the mirror,
the similarity profile would be that of a real sphere divided in two regions of different
reflectivities, one ρ and one ρ′ρ (with ρ′ the mirror’s reflectivity), which would surely
result in a similarity profile implying a non-trivial combination of ρ and ρ′.

6.6 Measurement of small axial displacements

In this section we use the hemisphere-mirror configuration to measure small displace-
ments. For displacements much smaller than the HWHM, using directly Eq. (6.12)
is not ideal, as around x = 0 the similarity only changes at second order. We are
exactly in the same situation as in the previous chapter (section 5.4). To solve this,
we use the same method of applying an initial wavelength offset, to reach a point
of non-zero gradient of the similarity profile. This time however, we make an im-
provement to this method by using the point of maximal gradient. For a Lorentzian
profile of HWHM noted x0, the point of maximal slope (or inflexion point) is found
at x = x0/

√
3, which corresponds to S = 3/4. Again, we make use of the fact that

transformations that are dominated by the µ term in Table (3.2) can be used inter-
changeably to produce the same change in the final speckle pattern. We then use a
wavelength variation instead of a displacement, which has the same physical effect
and can be controlled independently. This initial wavelength variation is applied
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by varying the diode current of the laser3, and chosen so that the similarity drops
to a value close to 3/4. The speckle before and after the variation are recorded,
the similarity between them is computed (denoted Sλ), from which an equivalent
displacement is extracted xλ = x0

√
1/Sλ − 1. Subsequent measurements of S cor-

respond to a displacement x = x0

√
1/S − 1 = xλ + δx, with δx any subsequent

displacement. It follows that δx is given by

δx = x0

√
1/S − 1− xλ. (6.17)

We apply this approach in the hemisphere-mirror configuration described in the
previous section, so that only the axial component is probed. A gap of about 0.5
mm is left between the hemisphere and the mirror, and the mirror is attached to
a piezoelectric crystal (APC 70-2221) to apply controlled sinusoidal displacements.
We start by applying a 25 Hz modulation with 2.3 nm amplitude. The displacement
is found using Eq. (6.17) and shown in Fig. 6.5(a). We see that the measured
displacement is made of a sinusoidal component superposed to a linear component.
This linear component comes from the heating effect, described in section 3.7. Here,
instead of physically compensating the effect as in Chapter 5, we take the route
of analysing the signal in the Fourier domain, which allows us to disentangle the
heating from displacement. The Fourier spectrum is shown in Fig. 6.5(b), where
a very distinct 2.3 nm peak at 25 Hz is found. The heating effect manifests itself
as a linear increase in the time domain, which translates into a peak at 0 Hz in
the frequency domain, resulting in the monotonically decreasing component found
in 6.5. Small random fluctuations are also observed in the Fourier transform, which
comes form the random fluctuations of the original signal in the time domain.

We want to determine the resolution limit of the method. To that aim, we de-
crease the modulation amplitude until the peak in the Fourier spectrum is about 3
times larger than the noise floor. Still operating at 25 Hz, we reach a modulation
amplitude of 17 pm. The measured displacement is shown in Fig. 6.5(c) and its
Fourier spectrum in Fig. 6.5(d). We also show in red in Fig. 6.5(d) the Fourier
spectrum of displacement when no modulation is applied, which gives the funda-
mental noise level. This is below 14 pm/

√
Hz above 10 Hz, and reaches a plateau

of 5 pm/
√

Hz above 30 Hz. In each case of Fig. 6.5, we record 4 s at a sampling
frequency of 100 Hz, and the Fourier spectrum is found by taking the absolute value
of the Fast Fourier Transform (FFT) with a 10 fold zero padding. With the displace-

3Note that the precise value of the initial wavelength shift need not be known, as it does not
come into play at any stage of the calculations. We only need the similarity to be brought close to
3/4.
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Figure 6.5: (a) and (b): measured displacement as a function of time and its
Fourier spectrum when a 25 Hz modulation of 2.3 nm amplitude is applied. (c)
and (d): measured displacement as a function of time and its Fourier spectrum
when a 25 Hz modulation of 17 pm amplitude is applied. In panel (d) is also
shown the Fourier spectrum of displacement when no modulation is applied
(red). In each case, we record 4 s at a sampling frequency of 100 Hz.

ment signal in nanometers and time in seconds, the units of the absolute value of
the Fourier transform is nm/

√
Hz, following the properties of the Fourier transform

(this is most easily seen through the Parseval theorem). Its interpretation is that
when the absolute value of the FFT is properly normalised (multiplied by two and
divided by the number of time steps in the original signal) the height of a peak in
the frequency domain is equal to the amplitude of the corresponding sinusoid in the
time domain.
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The performance of the method can be improved mainly via three parameters:
the wavelength, the sphere’s reflectivity, and the number of pixels in the image. On
one hand, the smallest detectable displacement scales with the width of the similarity
profile, which depends directly on the wavelength and the sphere’s reflectivity, as
shown by Eqs. (6.10) and (6.11). Cone, et al, have demonstrated diffusely reflecting
surfaces with reflectivity up to 0.99919 at 532 nm [99]. With these parameters, the
combined effect of the higher reflectivity and shorter wavelength would give an axial
HWHM of 206 pm (or 155 times smaller). Finally, as the main source of noise is
photon shot noise on the camera, its effect can be reduced by increasing the number
of pixels in the image. Note that increasing laser power does not necessarily help
decreasing camera noise as the camera parameters must be such that the pixels do
not saturate. If the exposure time is already such that the dark signal is negligible,
then increasing laser power does not decrease camera noise.

6.7 Conclusion

In this chapter, we considered a special arrangement where an integrating sphere
is split into two hemispheres, where one is fixed and one is free to move in any
direction. We empirically found that the resulting speckle is remarkably sensitive to
the relative displacement of the two hemispheres. We characterised this sensitivity
using our model of Chapter 3, and experimentally verified its predictions. We also
demonstrated that, by replacing one hemisphere with a highly-reflective mirror, the
displacement sensitivity is enhanced by a factor of 2 in the axial direction while
vanishing in the transverse direction, which gives an elegant method to selectively
probe one direction of motion. Using this hemisphere-mirror configuration, we found
a noise floor of 5 pm/

√
Hz above 30 Hz, and measured a sinusoidal displacement of

17 pm amplitude (or 6 times smaller than a hydrogen atom) with a signal to noise
ratio of 3.

Displacement measurement in itself is not new, as many techniques have been
developed for a very long time. The elegance of this particular technique lies mainly
in its simplicity of implementation. It may indeed consist of the simplest possible
interferometric displacement measurement, as it requires no fine alignment, and
contains only 3 simple elements: a laser, an integrating sphere, and a camera. The
fact that such a simple arrangement allows the detection of displacements smaller
than the dimension of the smallest atom is quite remarkable.

Along our investigations we came across a very particular type of transformation
where the average phase in Eq. (3.14) is zero, which is the transverse motion. In all
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other effects studied in this thesis (apart from the Aharonov-Bohm effect), the sim-
ilarity profile is dominated by the average phase, and the effect of its variance plays
a negligible role. The transverse motion is a special case where only the variance
plays a role. We proved that this situation is that where the similarity profile is
most sensitive to the validity of the assumptions behind Eq. (3.14), and indeed we
found a small deviation, which we suspect comes from an imperfect Lambertian re-
flectance. Future analytical developments may exploit this feature of the transverse
profile to extract reflectance properties of a test surface.
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Chapter 7

Speckle and polarisation

The work presented in this chapter was published in [100].

List of symbols and abbreviations

E complex field
ω angular frequency of light
t time
u Jones vector
C coherency matrix
Sn nth Stokes parameter
S Stokes vector
S matrix containing N realisations of S in columns
σn nth Pauli matrix
Tr trace operator
J Jones matrix (transforming the Jones vector)
M Mueller matrix (transforming the Stokes vector)
I vector containing the values of intensity at each pixel
I matrix containing N realisations of I in columns
T transformation matrix between the Stokes vector of the input beam and

the resulting intensity profile
L number of pixels in one speckle image
N number of polarisation states
k number of laser beams
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7.1 Introduction

When the polarisation state of a laser beam incident on a complex medium is
changed, a change is observed in the resulting speckle pattern. As we discussed
in section 3.4, this change cannot be increased by the multiple scattering of light,
because it is a path-independent transformation. This is in contrast to what we
had with refractive index and displacement, where the multiple scattering of light
dramatically increased the sensitivity of the speckle pattern. We therefore cannot
hope to measure very small changes in polarisation in this way. However, this is
balanced by the fact that the speckle is a very simple function of polarisation.

A previous study derived an explicit expression for estimating the Stokes pa-
rameters (which described the polarisation) of a laser beam, in terms of the cross-
correlations between the speckle pattern it produces and four particular speckle
patterns corresponding to the four classical polarisation filters [101]. Later studies
included a generalised approach using Jones-like transmission matrices [102], and
Mueller-like transmission matrices allowing spatially resolved polarimetry [103], and
spectropolarimetry [104].

In this chapter we will derive the linear relationship between polarisation and
speckle and verify it experimentally. We will then exploit it in a metrological per-
spective, and develop a new method which allows one to use an arbitrary number
of reference polarisation states. We will quantitatively study the uncertainty on the
retrieval as a function of key experimental parameters, and show that the Stokes
parameters can be measured with an uncertainty of 0.05 using speckle images of
150×150 pixels and 17 reference polarisation states states.

We will also extend the method to show that the polarisation state of multiple
beams can be measured simultaneously from one single speckle pattern. This will
be demonstrated experimentally for the case of two beams.

7.2 Polarisation

Let us begin with some background that will be necessary for the rest of this chap-
ter. Polarisation is a general property of vector waves. Light is such a wave: the
oscillating physical quantity, the electric field, is a vector oscillating in the plane
perpendicular to the direction of propagation. There are many ways to oscillate in
a plane. If we look at one point of space in an electromagnetic wave, and if the
wave is monochromatic, the extremity of the electric field at that point describes a
closed trajectory in time. The shape of this trajectory defines the polarisation. We
can express the field as the sum of two fields along two perpendicular directions (in
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the plane of oscillation), each being a sinusoid of a given amplitude and phase. We
have

E =

(
ax cos (ωt+ φx)

ay cos (ωt+ φy)

)
. (7.1)

This defines a parametric equation for E in the plane, whose parameter is time,
and the resulting trajectory is an ellipse. Any ellipse can be obtained by tweaking the
values of ax, ay, φx, and φy. The orientation and eccentricity of the ellipse (function
of those parameters) are one way to quantitatively characterise polarisation. This is
a convenient picture to keep in the back of our mind, where we consider the electric
field as a real vector oscillating in space. However, remember that light is most often
described as a complex quantity (see Appendix A). Using complex numbers, another
formalism exists to describe polarisation which is more convenient mathematically,
although we completely lose the simple picture of a real oscillating field.

Using the complex form of the electric field, the time dependence can be factored
out, and by also factoring out the norm of the vector ρ =

√
a2
x + a2

y we have

E = eiωt
(
axe

iφx

aye
iφy

)
= ρeiωtu, (7.2)

where u is now a unit complex vector, called the Jones vector. The Jones vector is
essentially "what is left" once we factor out the amplitude and time dependence1.
We now have a new way to uniquely describe polarisation, which consists of a set of
two complex numbers.

However, the Jones vector is not directly observable, because the electric field
itself is not directly observable2, only quadratic functions of the field are. We need
to find a way to describe polarisation which only implies quadratic quantities. The
four possible quadratic quantities that can be constructed from the two components
of the field appear naturally in the coherency matrix, which is the covariance matrix
of the field defined as

C =
〈
EE†

〉
=

(
〈ExE∗x〉

〈
ExE

∗
y

〉〈
EyE

∗
x

〉 〈
EyE

∗
y

〉) , (7.3)

where the brackets denote time averaging. For monochromatic light, we can express
the coherency matrix directly from the the Jones vector, which takes the simpler form

1A global phase can also be factored out, the Jones vector is defined within a phase.
2At least in the optical domain, see Appendix A.
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C = ρ2uu†. Sometimes the coherency matrix can be normalised to the intensity, in
which case we have C = uu† (this one will be used in the next section).

The coherency matrix is still complex, we need to convert it to more experimen-
tally accessible quantities. This happens to be the case when decomposing C onto
the basis of the four Pauli matrices, which form a complete basis for any hermitian
complex 2×2 matrix. We then have the two following central relations

C =
3∑

n=0

1

2
Snσn Sn = Tr(Cσn), (7.4)

where σn is the nth Pauli matrix, and Tr designates the trace. The first relation
expresses the fact that C is a linear combination of the the Pauli matrices, with
coefficients Sn (the 1

2
is there by convention). The second relation gives the nth

coefficient Sn by "projecting" C onto the corresponding Pauli matrix3. The coef-
ficients form together a 4-vector S called the Stokes vector. Experimentally, S0 is
the intensity, and S1 to S3 are found by measuring the intensity after the appro-
priate combinations of polarisers and birefringent elements. This is the quadratic
description of polarisation4 that we shall use in this chapter. For fully polarised
light, the norm of (S1, S2, S3) is equal to S0. It follows that (S1, S2, S3)/S0 can be
represented geometrically as a point on the surface of the unit sphere, called the
Poincaré sphere. Note that when the normalised coherency matrix is decomposed
into the Pauli basis, S0 is 1, and (S1, S2, S3) directly gives the coordinates on the
Poincaré sphere.

7.3 How does speckle depend on polarisation?

Consider a beam of monochromatic light with spatially constant polarisation of
Jones vector u. This beam is incident on a complex medium, and the diffused field
is collected on a camera. Assuming the diffusion is linear, the Jones vector u′ of
the field at each point of the camera is a linear transformation of the original Jones
vector

u′ = Ju, (7.5)

where J is a 2×2 complex matrix, called a Jones matrix. We know how the Jones

3This unusual looking trace form follows from the properties of the Pauli matrices.
4Here I presented the Stokes vector as the result of a somewhat arbitrary construction. However

there are deeper justifications for this particular decomposition of the coherency matrix. For
example, S is a 4-vector of special relativity.
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Figure 7.1: The input beam of Jones vector u and Stokes vector S is incident
on a complex medium. The field observed at any given point of the observation
plane has a transformed Jones vector u′ = Ju and a transformed Stokes vector
S′ = MS, where J is a Jones matrix and M a Mueller matrix, which are both
different for each point of the observation plane.

vector transforms, but how does the Stokes vector transform? Quite remarkably, it
also transforms in a linear way, although the Stokes vector is a non-linear function
of the Jones vector. This can be shown in the following way. The coherency matrix
at a given point of the camera C ′ is

C ′ = u′u′† (7.6)

= (Ju) (Ju)† (7.7)

= Juu†J† (7.8)

= JCJ†, (7.9)

where we use the normalised coherency matrix. Inserting (7.9) in the projection
relation (7.4), and expanding C in terms of the initial Stokes vector S, we have

S ′n = Tr
(
C ′σn

)
(7.10)

= Tr
(
JCJ†σn

)
(7.11)

= Tr

(
J

3∑
m=0

1

2
SmσmJ

†σn

)
(7.12)

=
3∑

m=0

1

2
Tr
(
JσmJ

†σn

)
Sm (7.13)

S ′n =
3∑

m=0

MnmSm (7.14)

S′ = MS, (7.15)

whereM is called a Mueller matrix. When the Jones vector transforms via a matrix
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product, the Stokes vector also transforms via a matrix product. This is a fairly
widely known fact, any optical element (polarising, birefringent, or reflective) has its
associated Jones and Mueller matrix, although the precise relation between the two
as shown here is less known. Here we simply apply this to the case of our complex
medium, between the input beam and any point of the camera, where each point of
the camera has its own Jones and Mueller matrix. Remember that a camera only
sees intensity, that is, the first component of S′. Therefore most of the content of
M is useless in our case, and we can just discard it. The intensity at one pixel is
then simply the dot product of S with a vector (the first line of M), different for
each pixel. Stacking the values of the intensity at different pixels in a column vector
I, we can write

I = TS, (7.16)

where T is a transformation matrix. If we consider L pixels on the camera, I is
a L × 1 vector, T a L × 4 matrix, and S a 4 × 1 vector. We now know how
speckle depends on polarisation: the resulting speckle is a linear combination of
four speckles, contained in the columns of T . The rest of this chapter is devoted
to experimentally verify this linear relation, and exploit it as a way to measure the
polarisation of the input beam.

7.4 Method

A first step in verifying Eq. (7.16) is to determine T . This can be done by applying
many different polarisation states S and record the corresponding intensity pattern
I. If we stack all the different input Stokes vectors in a matrix S, one column for
each state, T will apply separately on each column and give a matrix I that contains
the output intensity patterns in columns. With N different states, we can write

I = TS, (7.17)

where I is L×N , T is still L× 4, and S is 4×N . The system written in this form
contains N × L equations, while T contains 4× L unknowns. We therefore need at
least N = 4 different states. We can then estimate T via a matrix inversion

T = IS−1, (7.18)
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were S−1 is the pseudo-inverse of S. The pseudo-inverse has to be used as S is not
square. In principle we could use only 4 states to determine T , but in practice a
better estimation is found by using more states, due to the presence of noise (this is
shown in section 7.6). With N > 4, Eq. (7.17) becomes an over-determined system,
and solving by (7.18) is mathematically equivalent to find the solution for T that
minimises the L2 norm ‖I − TS‖2, defined as ‖A‖2 =

∑
ij A

2
ij.

7.5 Verification of the linear relationship between

polarisation and speckle

We verify the linear relationship (7.16) with the experimental setup described in
Fig. 7.2. In order to find the T matrix, we need to be able to prepare a laser
beam in different arbitrary polarisation states. An indirect way to achieve this is to
make the polarisation state randomly varying in time and measure it using a com-
mercial polarimeter. The random time variation is obtained by passing the beam
through 3 successive waveplates (in order: quarter, half, and quarter-wave) and ro-
tate the waveplates with sufficiently incommensurate speeds (respectively 5.77° s−1,
10.77° s−1, and 20.77° s−1) using motorised rotation stages (Thorlabs PRM1/MZ8).
This ensures that the beam uniformly explores the Poincaré sphere over time and
does not stay trapped in a period cycle. The beam is then split into two paths
using a non-polarising beam splitter, one path goes to the commercial polarimeter
(Thorlabs PAX1000IR1/M), the other path goes onto a rough surface (Thorlabs
SM05CP2C) and the resulting speckle pattern is recorded on a camera (see full
experimental details in section 2.4).

At regular intervals of 2 s, the reading of the polarimeter and the camera are
recorded simultaneously. Using a total of 100 states, we make up our I and S

matrices and find T by applying Eq. (7.18). The 100 states are shown on the
Poincaré sphere in Fig. 7.3. So far this operation could be made even if the relation
between I and S was nonlinear. To verify that it is indeed linear, we plot the value
of the expected intensity TS vs the true value I, for every pixel of every images.
This plot does show a cluster centred around the line y = x. The R2 of the fit
y = x is 0.97, which means that the model explains 97% of the variance in the
data. Eq. (7.16) is then a very good model of the process. To better visualise the
distribution of the data points in the plane measured intensity vs expected intensity,
a 2D histogram is shown in Fig. 7.3, as well as the fit with the identify function
y = x.
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Figure 7.2: Experimental setup. A laser beam of randomly time-varying
polarisation state is split into two paths, one goes to a commercial polarimeter,
one goes onto a rough surface. The measurement of the polarimeter and the
speckle pattern are recorded simultaneously. A second laser is introduced to
test the ability to measure the polarisation state of two beams simultaneously.
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Figure 7.3: Left: the 100 polarisation states used to verify relation (7.16),
represented on the Poincaré sphere. Right: 2D histogram of the measured
intensity vs expected intensity, for all the pixels of all the images. The identity
function y = x (red) fits the data with an R2 of 0.97.
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(c)

Figure 7.4: (a) The 17 training polarisation states, plotted on the Poincaré
sphere. (b) Portion of the trajectory of the test beam on the Poincaré sphere,
measured using the polarimeter (black), and retrieved using speckle patterns
(red). (c) Time series of the Stokes parameters, measured using the polarimeter
(black), and retrieved using speckle patterns (red). The error is also shown,
expressed as the Euclidean distance between ground truth and estimation in
(S1, S2, S3)-space.

7.6 Using the linearity as a measurement tool

Once T is determined, we can use relation (7.16) in reverse, that is, determine the
polarisation state S from the speckle image I, via S = T−1I. To verify this, we
first find T using only 17 training states, with the same procedure as described
above. Then, the randomly varying polarisation state and corresponding speckle is
recorded every 0.2 s, in order to have more continuous measurements in time. For
each speckle pattern, the Stokes vector is estimated and compared to measurement
of the polarimeter. The results are shown in Fig. 7.4.

The error of the retrieval in Fig. 7.4 is shown as the Euclidean distance in
(S1, S2, S3)-space, between the data point measured by the polarimeter and that
retrieved from the speckle. To extract an uncertainty on each individual Stokes pa-
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rameter, we compute the standard deviation of the residuals, given by the difference
between the measurement of the polarimeter and the estimation from the speckles.
In the 200 s measurement of Fig. 7.4, the standard deviation is 0.05. For compar-
ison, the resolution of the commercial polarimeter is 0.01. Note that the average
value of the Euclidean distance plotted in Fig. 7.4 is larger than the uncertainty on
each individual Stokes parameter as a quadratic sum is involved.

Two parameters determine the value of the uncertainty: image size, and the
number of training states. We can investigate the influence of these parameters
by repeating the same procedure with varying image size and number of training
states. This is shown in Fig. 7.5. We see that, for a given image size, the uncertainty
converges to its minimum value after about 15 training states. We also see that,
for a given number of training states, the uncertainty converges to its minimum
value after an image size of about 100×100. For that reason the measurements were
made using 17 training states and a 100×100 image size, where the uncertainty
is 0.05. The main sources of noise are camera noise, which is dominated by the
effect of photon shot noise, and lack of synchronisation between the camera and the
polarimeter.

Note that the observed error is of an interesting kind here, that we could qualify
as globally random but locally systematic. Indeed, looking at panel (c) of Fig. 7.4,
we see that the estimated stokes parameters show a small deviation from the true
ones, which is relatively constant at short time scales, and can then be seen as a local
systematic error. However this deviation itself varies around zero in time, such that
it can also be considered globally random. In fact, the plot of the error in Fig. 7.4
seems to be made of a smooth component superposed to a random component. The
smooth component is most likely the drifting local deviation just discussed (related
to the imperfect camera-polarimeter synchronisation) and the random component
most likely reflects camera noise. This is consistent with the fact that the uncertainty
converged to a finite value: increasing image size reduced the random component,
but a lower limit is imposed by the smooth component.

It is worth pointing out that what is retrieved from the speckle patterns is the
polarisation of the light that is incident upon the polarimeter, which is not neces-
sarily the same as that of the light incident upon the diffuser. These may differ due
to the reflection in the beam splitter, and are linearly related by the Mueller matrix
associated with the reflection in the beam splitter. For any unknown beam, the
polarisation retrieved from the speckle patterns is the one that would be measured
by the polarimeter. If this is of any importance in a given application, for example
if we need to determine the polarisation of the light incident upon the diffuser, we
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Figure 7.5: Measurement uncertainty. The uncertainty on the Stokes pa-
rameters is given by the standard deviation of the residuals. It is shown as a
function of the number of training images (four being the minimum required),
for different image sizes. We see that the uncertainty reaches a minimum of
0.05 after about 15 training images and an image size of 100×100 pixels.

would have to determine the Mueller matrix of the beam splitter. That task would
be strictly analogous to what is done in the method section, where the unknown
matrix T would be the Mueller matrix of the beam splitter, and the two linearly
related vectors would be the polarisation states of the two paths.

7.7 Multiplexing

An advantage of speckle patterns is that they allow multiplexing, that is, measuring
the polarisation state of multiple laser beams from one single image. In this section
we investigate this idea and implement it experimentally. Consider k laser beams
originating from different sources, incident on a rough surface. The k corresponding
speckle patterns superpose additively (without interference) on the camera. As the
polarisation state of each individual beam is linearly related to its corresponding
speckle pattern, the sum of all the speckle patterns is linearly related to the Stokes
parameters of each laser beam taken together in a single vector. This can be de-
scribed by a generalised form of (7.16), where S is now a 4k × 1 vector containing
the Stokes vectors of each beam. The image vector I is still L × 1 and T is now a
L× 4k matrix. We implement this in the case of two laser beams. We add a second
laser (of same wavelength and power), which joins the path before passing through
the 3 waveplates (see Fig. 7.2). This second laser beam undergoes the same trans-
formation as the first beam, however we ensure that it starts with a different initial
polarisation state, so that the two output polarisations are different. We then have
two laser beams of different randomly varying polarisation state impinging on the
rough surface. From this we apply the same procedure as described above for one
beam, where we also use 17 training states, and use subsequent states to compare
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Figure 7.6: Two-beam polarisation measurement. The Stokes parameters S1

to S3 are given as a function of time, measured by the commercial polarimeter
(black) and retrieved from the speckle patterns (red and blue, one for each
beam). The estimation was performed using 150×150-pixel images and 17
training states. The error on the estimation is also shown as the Euclidean
distance in (S1, S2, S3)-space for each beam.

the estimation and the polarimeter’s measurement. The results are shown in Fig.
7.6. We also determine the uncertainty as a function of image size and number of
training states. We find again that the uncertainty converges to a minimum after
an image size of 100×100 and 15 training states. Note that in this setup, in order to
measure both polarisation states with the commercial polarimeter, the beams had
to be blocked sequentially so as to have only one beam entering the polarimeter
at once. This was done using home-made voltage controlled shutters. This slowed
down the process, this is why the measurement period is longer in Fig. 7.6 and
contains fewer oscillations on a longer time.

7.8 Conclusion

In this chapter, we analytically proved and experimentally verified the linearity that
exists between the Stokes vector of laser light and the speckle pattern it produces.
Through this linearity, the Stokes parameters formalism proves to be more funda-
mental than the other descriptions of polarisation (in a very analogous way to what
is found in Mueller calculus).

We exploited this linearity as a metrological tool to measure the polarisation of a
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Figure 7.7: Measurement uncertainty for two beams. The uncertainty is
given by the standard deviation of the residuals. It is shown as a function of
the number of training images (eight being the minimum required), for different
image sizes ranging from 20× 20 to 150× 150 pixels. Here the uncertainty also
reaches a minimum of 0.05 after about 15 training images.

single laser beam, and two laser beams simultaneously (multiplexing). The method
relies on a set of training speckle images obtained for known polarisation states,
which are then used to infer any unknown polarisation state via simple linear algebra.
It is important to note that the method is not one based on first principles, and needs
a training stage involving a pre-calibrated instrument. The metrological prospects of
such a method may be limited, but may still have some value in particular situations.
The end result of the procedure is the transfer of the measurement process from the
polarimeter to the camera, the knowledge being passed on during the determination
of the matrix T . By doing so, we benefit from the advantages of the camera that the
polarimeter might not possess. Such advantages are higher acquisition speed, regular
sampling, and multiplexing. For example, the polarimeter used in this particular
study can theoretically achieve a sampling rate of 400 Hz, but is limited to 110 Hz
in practice, with an irregular sampling. In the same conditions, our camera could
record at a sampling rate of 5000 Hz at regular sampling.

The camera has clear advantages over the commercial polarimeter, but this has to
be compared to other standard polarimetry methods. Standard polarimetry meth-
ods for monochromatic laser beams involve measuring the intensity of the test beam
after going through 4 controlled modifications of polarisation, using birefringent
and polarising elements [105]. Each element applies its own Mueller matrix, and a
number of 4 measurements closes the system and allows one to extract the Stokes
parameters from first principles. However the intensity is typically measured using
photodiodes, which obviously surpass the speed capacity of cameras. There may
still be some use in cameras in the context of multiplexing. Indeed, in the standard
scheme just described, measuring the polarisation state of k laser beams would re-
quire 4k measurements after a combination of birefringent and polarising elements,
which would naturally increase in complexity and become less easily computable
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from first principles. The camera on the other hand already contains by design a
large number of measurement points, each with a different Mueller matrix, and does
not require any hardware modification for a different value of k. However in practice
this method would be limited by the speckle contrast reduction as more beams are
added, which in turn reduces the efficiency of the polarisation retrieval (as the image
becomes more and more uniform). Note that standard polarimetry could in fact be
used for more than one beam, if we sequentially launch each separate beam into
the apparatus (by sequential blocking for example), but then the measurement is
no longer instantaneous, as it is with a camera.
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Conclusion

In this thesis, we tackled various aspects of speckle patterns using the three ways of
physical sciences: theoretical models, numerical simulations, and experiments. We
arrived at a number of results that we shall summarise here, along with perspectives
for the future.

We found a general expression (Eq. 3.14) that predicts the amount of change in
a speckle pattern resulting from an arbitrary transformation, in the particular case
of speckle patterns produced by an integrating sphere. We experimentally tested
this model in three cases: wavelength variation, refractive index variation, and dis-
placement. We found very good agreement within experimental errors in each case.
Only the case of transverse displacement showed a systematic deviation from the
model. We could show analytically that transverse displacement is a special case
of transformation which is most sensitive to the assumptions behind the model, in
particular the Lambertian reflectance of the inner surface. Using an approach where
the deviation from the Lambertian reflectance is parametrised by two variables, we
could explain the observations, using these variables as free parameters. More ana-
lytical work on this matter might lead to new ways of investigating some reflectance
properties of surfaces.

We used the case of a wavelength variation to validate our model. We predicted
a Lorentzian similarity profile as a function of wavelength variation, and found
the relevant parameters that determine the width of the profile: reflectivity and
radius. We experimentally verified this functional form, and its parameters, and
found excellent agreement with no free parameter. We found that this approach,
taken in reverse, can be used to measure reflectivity by measuring the HWHM of
the similarity curve, knowing the radius and wavelength. Finally, we analytically
showed that the speckle patterns produced by an integrating sphere are about 19000
times more sensitive than those produced by a typical multimode fibre of the same
size.

We exploited the exceptional sensitivity of the speckle patterns produced by
an integrating sphere in a metrological perspective. We showed that the multiple
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scattering of light, intrinsic to that geometry, dramatically increases the performance
of speckle-based methods. We showed this in the particular case of refractive index
variation measurement where we could measure variations of the order of 10−9 (or 3
orders of magnitude improvement compared to previous methods), and in the case
of displacement measurement where we could measure displacements of the order of
10−11 m (or 2 orders of magnitude improvement compared to previous methods).

Expression 3.14 is valid for an effect that changes only the phase of light along
its propagation throughout the sphere. This is the case of all effects investigated
experimentally in this thesis. But we also considered effects that change the two
other properties of light: amplitude and polarisation. In the case of amplitude, we
could give an explicit result, analog to 3.14. In the case of polarisation however, no
explicit result was found, but we gave a few hints for future work. We also speculated
on the speckle patterns produced by another kind of wave: electron waves, where
the phase considered is that of the Aharonov-Bohm effect. We found an explicit
expression for the similarity of the electron wave speckle pattern as a function of
the magnetic field.

On the other hand, we elucidated how multiple scattering only benefits speckle
metrology for certain measurands: those which involve a path-dependent phase. In
general, for a measurand which changes only the input field, a single-plane scatterer
yields the same sensitivity to a change in the measurand as a multiple scattering
geometry (like a multi-mode fibre or an integrating sphere). Path-dependent changes
correspond to changes in the scatterer, while path-independent changes correspond
to changes in the input light (with the exception of wavelength change, which is
path-dependent).

We also explored the relation between speckle patterns and polarisation, where
we proved that the speckle patterns produced by an input laser beam is linearly
related to its Stokes parameters. From this relation we developed a metrology tech-
nique which retrieves the polarisation states of a test beam by comparing it to an
arbitrary set of reference polarisation states, via simple linear algebra. We also de-
scribed an extension of this method to the case of multiple beams (multiplexing),
allowing the determination of the polarisation state of multiple beams simultane-
ously. Multiplexing is the main benefit of this method, as it can be difficult to
achieve in other methods based on first principles.

Finally, we developed a number of methods for the design of speckle patterns
with custom properties, using light shaping. We developed a general approach to
answer the following problem: what input field should be chosen so that the resulting
speckle pattern is maximally/minimally sensitive to some parameter of interest?
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Using either the similarity or the distance as a measure of sensitivity, this led us to
4 answers. One of those (minimising sensitivity using the similarity) corresponds to
the well known principal modes (eigenvectors of the Wigner-Smith operator). We
tested all these numerically, and obtained encouraging results. Most notably, we
managed to increase sensitivity by a factor of 40, and we found a particular input
field that increases sensitivity only in a very narrow region around a certain target
value of the parameter of interest. The experimental verification of those results will
be the natural continuation for future work.
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Appendix A

Why complex numbers?

In our first attempt at modelling speckle patterns in Chapter 1, we made use of com-
plex numbers to describe the underlying field. As this procedure is quite ubiquitous
in wave theory, and a common source of confusion, here is a good opportunity to
discuss it and unveil a few non-trivial aspects of it. This will serve as a retrospective
catharsis for the puzzled student I was on the matter, and might be useful for future
students.

Complex numbers are traditionally used to describe waves, such as sound or
light, and yet those are fundamentally real quantities (density field and electric
field, respectively). This can cause some rightful confusion. However, it all makes
sense. Let us consider any physical quantity x, and define an artificial complex
quantity x̃ associated to it, such that Re(x̃) = x. This means that the complex
version is the real quantity plus some imaginary part, which is arbitrary. The first
thing to realise is that we can always use x̃ instead of x in any equation of physics
implying x, as long as this equation is linear in x [50, Chapter 23.1]. Indeed, if the
equation is linear, the real and imaginary parts of x̃ will always be decoupled, as
only nonlinear terms can mix them up. It follows that, if we take the real part of
an equation at any stage of a calculation using x̃, we get what we would have got
if we had started with x in the first place. We can then just solve our equations of
physics using x̃ and keep somewhere in the back of our mind that the true physical
quantity is hidden in the real part.

The linear vs non-linear aspect is essential. To illustrate this, let us consider
the following examples. The first example is the potential energy of a mass m in a
uniform gravity field g at a height x (E = mgx), and the second is the potential
energy of a body in a Hookean potential of constant k at a distance x from the
equilibrium position (E = kx2/2). We now replace x by a complex quantity x̃ =

x + iI, with I any real number. Using this x̃ in our expressions of energy yields a
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new complex version of energy Ẽ. Using x̃ makes sense only if taking the real part
of Ẽ yields E, that is, what we would have had in the first place if we had not been
playing with complex numbers. Let us check this:

Ẽ = mgx̃

Ẽ = mgx+ imgI

Re(Ẽ) = mgx

= E

Ẽ = kx̃2/2

Ẽ = k(x2 − I2)/2 + ikxI

Re(Ẽ) = k(x2 − I2)/2

6= E

In the first case, the potential is linear and the real part of the complex energy
is indeed the same as what we would have by simply using x. In the second case,
the non linearity of the Hookean potential couples the real and imaginary parts of
x̃, leading to the presence of an artefactual term in the real part. Therefore the real
part of the complex energy is not the same as the original one. We cannot use a
complex version of x to manipulate this equation.

Note that the parameters of the problem, for example g in the first case, must
remain real for the present purpose, as a complex value could also mix the real
and imaginary part. However there exists situations where the physical parameters
themselves can be allowed to be complex. The coexistence of complex parame-
ters and complex variables, in a twist of mathematical beauty, typically allows the
description of additional aspects of phenomena. For example, this is the case of
evanescent fields, which naturally emerge from inserting a complex solution of the
Snell-Descartes law for the wavenumber into a complex wave. An analogous exam-
ple is absorption of light, which naturally emerges from allowing complex values to
the refractive index.

The use of complex quantities in the two examples shown above is obviously
not pertinent, those are purely illustrative. However there is a particular class of
phenomena where the benefit of complex numbers is immense, which is oscilla-
tions. Most oscillatory phenomena follow a second order differential equation in
time and/or space, admitting solutions of the form u = A cosφ, with φ containing
the appropriate time and space dependence. Let us construct a complex quantity
out of this, ũ = u+ iI. Remember that I is arbitrary, and is entirely up to us. There
exists, it turns out, one supremely convenient choice for I in this particular case,
which is A sinφ (sometimes fancifully called the harmonic conjugate). By making
this particular choice we find ũ = A exp iφ, according to Euler’s formula. At the end
of the day, we simply traded a cos for an exp, but it is known that exponentials are
remarkably simpler to manipulate than trigonometric functions, particularly when
derivatives and factorisations are involved. This is the fundamental reason why
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waves are commonly expressed as complex quantities. Although this is an oblivious
reflex of the physicist, it is important to be aware of the thought process behind,
and to keep in mind that the true physical quantity is real, hidden in the real part.
Once this is understood, we no longer need to explicitly take the real part of a result,
or add the complex conjugate terms, as is sometimes seen.

It is worth being aware however, that another more radical point of view exists on
the matter (in the particular case of light) which considers the wave to be an actual
complex quantity. This is a counter-intuitive position, very conducive to passionate
debates. At the end of the day, to decide the issue, one may wonder: can we not
measure the field and see? It turns out that the electric field is not measurable
in the optical domain. This might be surprising because we inherit from classical
physics a misleading picture of what an electric field does. Indeed, we might think
that in principle the electric field of a light wave can be measured directly by simply
placing a test charge in the field and measure its motion. However, this picture of
the oscillating charge is in fact only true in the limit of low-frequency waves. In
reality, the interaction between the charge and the field is a quantum process and
occurs in discrete packets. For low frequency waves, such as radio waves, the energy
packets are small enough to give the illusion of continuity, and the picture of the
oscillating charge is approximately correct [128] (all radio-based technology relies on
the idea that we directly measure the field). In the optical domain however, this is
no longer true. Once we realise that the field cannot be directly measured, the idea
of a complex field might seem less absurd.

A very analogous discussion exists concerning the wavefunction of quantum me-
chanics, which is not measurable and is indeed a fundamentally complex quantity.
In fact, the possibility of a real-valued formulation of quantum mechanics has re-
cently been proved falsifiable [129], and indeed experimentally ruled out [130]. This
is a whole debate of its own, but I got to stop somewhere1.

1To quote a famous physicist.
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Appendix B

Path-length distribution

In section 3.2 we mentioned the path-length distribution in the sphere, where one of
our assumptions was that the coherence length of the light source is large compared
to the spread in the path-length distribution. This distribution was derived in [43],
in the context of studying gas absorption in integrating spheres. Here I provide an
alternative derivation.

Before turning to the problem of path-length distribution, we might ask the
simpler question "what is the average path-length in the sphere?". This turns out
to be a non-trivial question, and as the same non-triviality is found in deriving the
path-length distribution, it is a good starting point. This question on its own is not
a well posed problem, we must specify how a path is defined. If we use the definition
we have been using in our model, that is, a succession of straight lines joining any of
the M surface elements of the sphere, the answer turns out to be undefined. Indeed
there are M paths of (approximately) length z, M2 paths of length 2z, M3 paths of
length 3z, etc. The average is then

∞∑
n=0

nzMn

∞∑
n=0

Mn

= undefined. (B.1)

In the infinite population of paths, the number of paths of a certain length
increases with that length. The average length in that population is therefore unde-
fined. We can still make sense of the notion of average path-length if we introduce
power. If, when computing the average above, we give a weight to each path equal
to the power carried by that path, we obtain a finite answer. We saw that the Lam-
bertian reflectance and spherical geometry imply that power is equally distributed
among the paths. This means that a path containing N reflections carries a power
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proportional to (ρ/M)N . When introducing this weighting, we have

∞∑
n=0

nzρn

∞∑
n=0

ρn
= − z

ln ρ
. (B.2)

Turning now to path-length distribution. With this new notion of path-length
weighted by power, finding the path-length distribution becomes a very simple task,
as it comes down to finding the power as a function of path-length. Indeed the
power carried by a path of length z is proportional to ρN , with N the number of
reflections along the path, which is approximately z/z. Using an exponential form
we have f(z) ∝ exp (ln ρ z/z), and after normalising we have

f(z) = − ln ρ

z
e

ln ρ
z

z . (B.3)

This yields the previous result (B.2) for the average path-length when comput-
ing

∫∞
0
zf(z)dz. It also allows us to compute the spread in path-length, that we

mentioned in section 3.2. A measure of spread is the standard deviation of the dis-
tribution, given by σ2

z =
∫∞

0
z2f(z)dz − (

∫∞
0
zf(z)dz)2, which gives σz = −z/ ln ρ,

the same as the average path-length (it is a property of the exponential distribution,
that the mean is equal to the standard deviation).
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Appendix C

Geometric series solution

In section 3.2, we used an integral approximation to obtain a simpler form for Eq.
(3.14). Here, we give the exact solution obtained using geometrical series instead.
We start from Eq. (3.12):

S =

∣∣∣∣∣∣∣∣
∑
N

ρN
(
eiNµ−Nσ

2
/2
)

∑
N

ρN

∣∣∣∣∣∣∣∣
2

,

and use the standard relation of geometric series
∑∞

n=0 r
n = 1/(1− r), which gives

S =

∣∣∣∣∣ 1− ρ

1− ρeiµ−σ
2
/2

∣∣∣∣∣
2

(C.1)

=
(1− ρ)2

1 + ρ2e−σ
2

− 2ρe−σ
2
/2 cosµ

. (C.2)

Note that Eq. (C.2) yields a non-zero similarity when µ and σ tend to infinity,
equal to (1− ρ)2. This is a surprising artefact of the model. However this allows us
to quantify the difference between Eq. (C.2) and Eq. (3.14). Indeed this difference
generally1 increases monotonically, and as Eq. (3.14) does tend to zero, (1− ρ)2 is
of the order of the maximal difference between them. A maximal difference of 0.01
if found for ρ = 0.9, which we shall set as the critical value below which geometrical
series must be used. This critical value is of course arbitrary and depends on the
level of accuracy desired.

1This depends on the relative behaviour of µ and σ as a function of the variable of interest,
but is correct in most cases.
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Appendix D

Neglecting the σ term

At several occasions we neglected the σ term in Eq. (3.14) whenever the µ term was
non-zero. We justify this here in the general case.

We start by developing the denominator in Eq. (3.14), which gives the terms

1− σ2

ln ρ
+

σ4

4 ln ρ2 +
µ2

ln ρ2 . (D.1)

As all terms are positive, we see that if µ = | ln ρ|, we are at least at the HWHM
of the similarity profile. Evaluating the terms at µ = | ln ρ|, and assuming σ = αµ

with α a proportionality constant close to unity (this is true in all cases studied in
this thesis where µ is non-zero), we have

1− α2 ln ρ+
α4

4
ln ρ2 + 1. (D.2)

As ln ρ is a small number, the leading σ term is the second term. Keeping only the
second term and inserting back in the similarity, we have

S =
1

2− α2 ln ρ
(D.3)

≈ 1

2
+
α2 ln ρ

4
. (D.4)

With our value of reflectivity ρ = 0.918, the additional term is -0.02 (for α = 1),
which is a very small correction at the HWHM. This justifies that we can neglect
the σ term in the original expression of the similarity (3.14) whenever α is of the
order of unity (or smaller).

In all cases of Table 3.2, α2 is 0.125, except for axial displacement where it is 1.25.
Note that having µ = 0, such as in the case of transverse displacement, is equivalent
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to α =∞. There is a certain angle between axial and transverse displacement where
neglecting the σ term starts to fail.
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Appendix E

Deriving P (s=1|θ)

In Chapter 3, we used the quantity P (s= 1|θ), which is the probability of s being
1 for a given θ. Put into words, this is the fraction of chords that touch both
hemispheres, among all those that form an angle θ with the z-axis. It turns out that
this problem becomes (almost) straightforward once we realise the following fact,
that we shall refer to as proposition 1 (even though there is no proposition 2):

Proposition 1. The set of chords that point around a certain direction ("around"
meaning within an infinitesimal solid angle) cross uniformly any disk perpendicular
to that direction.

Let us first prove proposition 1, which is somewhat counter-intuitive, before
proceeding to the determination of P (s=1|θ). Consider the set of chords that point
in a given direction (say, for simplicity, the vertical direction) within an infinitesimal
solid angle dΩ. With what density do those chords cross the (horizontal) equatorial
disk? If we mentally cover the sphere with small surface elements, the set of all
possible chords is given by all the possible lines joining two such elements. Among
all the possible chords, we are interested in those that point around the vertical
direction. Intuitively, we might think of this as looking at the sphere from above
and consider the lines that connect two elements along the line of sight. With this
picture however, the number of chords diverge on the edge of the sphere, and is not
uniform. The problem with this picture is that it misses the implication of the solid
angle. The number of surface elements do diverge on the edge, but concurrently the
number of chords departing from each element decreases in the same proportion.
This is because the number of chords connected to an element on one side of the
sphere is equal to the number of elements on the other side contained within a cone
of solid angle dΩ, which goes to zero on the edge.

This is shown in more details in Fig. E.1. D is the equatorial disk, of which ds
is a surface element. We want to know how many chords cross ds. We consider each
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∝ ds/cos αnumber of starting points

number of ending points ∝ h2dΩ /cos α

α
α

dΩ

h ∝ cos α
ds

D

D

θ

= cos θ

proportion of chords  
in this region

chords cross this  
plane uniformly

hemisphere 1

hemisphere 2

u

D0

Figure E.1: Side view of the sphere, where we consider the set of chords
pointing around the vertical direction. D is the equatorial disk, of which ds is
a surface element. The area directly above ds on the upper surface is ds/ cosα.
The area of the lower surface intersected by a cone of solid angle dΩ starting
at the upper surface is h2dΩ/ cosα. The total number of chords crossing ds is
proportional to those two quantities, which is a constant.

chord as starting from an element of the upper surface and ending at an element of
the lower surface. The number of starting elements directly above ds is proportional
to the projection of ds onto the upper surface, which is equal to ds/ cosα, with α
defined on the figure. For each element of the upper surface, the number of accessible
elements on the lower surface is proportional to the area contained in a cone of solid
angle dΩ, which is equal to h2dΩ/ cosα, with h the distance between the starting
and ending element. The total number of chords crossing ds is proportional to the
product of those two quantities. Moreover, as h ∝ cosα, everything cancels out and
the result no longer depends on the position of ds. It follows that the chords cross
D with a uniform density.

Now that we have proved proposition 1, we can turn to the determination of
P (s = 1|θ), which follows (almost) straightforwardly. Fig. E.2 shows a side view
of the sphere with the separation between the two hemispheres denoted as D0.
Among the chords that point around a certain direction u, those that touch both
hemispheres (what we are interested in, remember) are those that are contained in
the "shadow" of D0 in the direction of u. Additionally, proposition 1 tells us that
the chords pointing around u cross uniformly the disk perpendicular to u (denoted
D). Therefore P (s=1|θ) is proportional to the projection of D0 onto D, from which
it follows P (s=1|θ) = cos θ, with θ the angle between u and the vertical axis.
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∝ ds/cos αnumber of starting points

number of ending points ∝ h2dΩ /cos α

α
α

dΩ

h ∝ cos α
ds

D

D

θ

= cos θ

proportion of chords  
in this region

chords cross this  
plane uniformly

hemisphere 1

hemisphere 2

u

D0

Figure E.2: Side view of the sphere with the separation between the two
hemispheres forming the disk D0. The chords pointing around the direction u
cross uniformly the disk D. Among those, the chords that touch both hemi-
spheres are contained in the shaded region. The proportion of chords in this
region is equal to cos θ.
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