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Phase field modelling of crystal growth of NaCl in
two dimensions†

Chao Dun Tan and Georg Hähner *

Modelling crystal growth is important for example in crystal engineering, materials science, and the life

sciences. Molecular modelling techniques can provide fundamental insights into the atomic processes

underlying crystal growth but do not always give direct information about growth rates and growth modes

on spatial and temporal scales relevant in nature and for applications. The phase-field (PF) approach is a

relatively simple model that can provide results on length and time scales directly comparable to

experiments, but it has not extensively been employed to investigate crystallization of ionic solids, and not

many quantitative results have been reported. In the present study we model the growth of cubic NaCl

crystals in two dimensions. We have used small crystal seeds with an appropriate anisotropy term to

investigate both the growth speed and the growth mode. Results are compared to experimental data from

the literature. The PF model displays the concentration dependent transition from compact to non-

compact growth of NaCl reasonably well on spatial and temporal scales that are not easily accessible with

other theoretical models.

1. Introduction

The crystallization and solidification of materials play an
important role in nature and are also relevant in relation to
some industrial processes.1 Crystallization properties such as
the growth speed and growth mode have been studied
experimentally on microscopic and macroscopic scales for
periods of milliseconds up to several hours.2–4 These studies
involve the controlled evaporation of the solvent of salt
solutions – often in microchannels – and have revealed some
insights into the crystallization process. It was found that
crystallization of NaCl in confinement typically starts at high
supersaturation values, Ω, of 1.6–1.7.3,5 Furthermore, growth
was observed to be ultrafast during the first few milliseconds
slowing down on longer time scales.3,6 The rates of both
nucleation and growth determine the product crystal shape, its
size, and the size distribution and are therefore of high interest
in relation to industrial applications involving crystallization.

Modelling the crystallization of salts is in general
challenging since the processes underlying nucleation and
growth are complex. Precipitation and dissolution as well as
the growth rate and growth mode of NaCl have been studied
theoretically on the molecular scale using different
methods.7–13 Molecular dynamics (MD) simulations can give

insights on atomic scale processes,7,14–18 leading to a
fundamental understanding of the growth mechanism. It was
found, for example, that the growth rate scales with solvent
residence times near ions and surface sites.7 Atomistic
simulations can also predict nucleation rates,16–18 and even
reveal a change in the nucleation mechanism in aqueous
NaCl solution indicated by a transition to a phase separation
via spinodal decomposition.18 However, such calculations are
in general time consuming and often require significant
additional effort to provide information on time scales and
spatial dimensions that are of practical interest or are directly
comparable with experiments. At low supersaturation, steady-
state growth models provide an excellent quantitative
description of growth rates and morphologies,19 which can
be directly compared to population balance models for
crystallization at industrial scales.20,21

The conventional phase-field (PF) approach is a diffuse
interface model including diffusion and reaction kinetics that
can be used to facilitate interface tracking but does not
provide an accurate physical model of the interface on the
atomic scale.22 It can capture length scales between the
atomistic approaches and the steady state growth models, as
well as high-supersaturation morphologies. However, the PF
approach is not a first-principles method and often an
unphysical thickness of the interface has to be used. In the
conventional approach it is limited to the diffusion limited
growth regime. It is based on a set of differential equations.
The PF model has been extensively applied to simulate the
solidification of liquid phases of pure substances in an
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undercooled melt that is controlled by a continuous
temperature field across the solid–liquid interface with a
discontinuous temperature gradient, e.g., ref. 22–24. It has to
a much lesser extent been employed in relation to the
precipitation and dissolution processes involved in
crystallization that is controlled by a discontinuous solute
concentration at the solid–liquid interface,25–28 and PF
modelling of the crystallization of real systems with direct
quantitative comparison to experimental data is rare.29–31

According to reaction diffusion theory ionic crystals develop
a diffuse interface of several tens of micrometres in
solution32,33 and the PF model is in principle well suited to
provide quantitative results on microscopic and macroscopic
scales for such systems. The model is appealing because it
can provide information about properties such as the crystal
growth rate and the growth mode.26 In addition, it can
visualise the solid structures resulting from crystallization.34

In the present study we investigate the crystallization of
NaCl in two dimensions based on the PF approach as
described in ref. 25 and 26.

The crystallization process is often complex on the atomic
scale and is still debated for many systems. It can
phenomenologically be decomposed into nucleation and
growth. The conventional PF model does not include
nucleation. We therefore used small starting seeds to
simulate the growth of NaCl. The growth proceeds via
reaction at the solid–liquid interface and involves
precipitation and dissolution. Although the equations of the
PF model do only provide a phenomenological description of
the atomic processes underlying precipitation and
dissolution at the solid–liquid interface the approach can
reveal information about some of the essential features in
relation to crystal growth, for example about the growth
speed and growth mode such as compact and non-compact
growth. The goal of the present study was to test how well
the PF model can describe these aspects on the mesoscale by
comparison with some of the experimental results reported
in the literature. We demonstrate that some features of the
crystal growth of NaCl are well reproduced and are in good
agreement with experimental findings.

2. Modelling of the system
2.1 Simulation parameters

Physical parameters relevant for the simulation of the crystal
growth of the salt are the diffusion constant of the ions in

solution, D, the density of the solid, ρc, the solute
concentration at equilibrium with the solid, Ceq, the ‘rate of
reaction’, kR, the surface energy, S, and the interface mobility,
L. Table 1 summarises the parameters and the values used in
the simulations.

Both S and L are physical parameters that can be
determined experimentally34 or computationally.29,35 The
surface energy S (ref. 35) depends on the direction of the
Miller planes. For NaCl S = 0.100 J m−2 in the direction of the
(1 0 0) plane and S = 0.114 J m−2 in the direction of the (1 1
1) plane.35 The interface mobility, L, is related to the interface
velocity.29,34 In some cases it can be determined
experimentally. The value we used is from the literature and
was determined by modelling the dissolution of NaCl with
the PF model.29

2.2 Phase-field equations and initial phase field and
concentration

2.2.1 The phase field equations. The equations we used are:

τ
∂ϕ
∂t ¼

∂
∂y 

∂
∂θ

∂ϕ
∂x

� �
− ∂
∂x 

∂
∂θ

∂ϕ
∂y

� �
þ ∇· 2∇ϕ

� �

þ 1 − ϕ2� �
ϕ − λcð Þ − 2κ ∇ϕj j;

(2:1)

∂c
∂t ¼ D∇2cþ α

∂ϕ
∂t 1þ D∇2ϕ − ∂ϕ=∂t

k ∇ϕj j
� �

: (2:2)

They are similar to those reported in ref. 25–27 with ϕ and c
describing the phase and concentration, respectively. In addition
to ref. 26 we included anisotropy via (θ) = εσ(θ),22,36 where σ is
the anisotropy term:22

σ(θ) = 1 + δ cos( j(θ − θ0)). (2.3)

δ is the anisotropy strength, j is the anisotropy mode
number, θ is the angle between the x-axis and the surface
normal of the solid phase, and θ0 indicates a high symmetry
direction.22,28 In the calculations the concentration field, c, is
a function of position and time and was non-

dimensionalised via c ¼ C −Ceq

Ceq
.25 α = 1/2b is a dimensionless

constant25–27 with b = Ceq/ρc the ratio of solute concentration
at equilibrium with the solid and the density of the solid. ε is
a length parameter related to the interface width of the phase
field.25 τ is a characteristic time parameter25–27 that is related

Table 1 Physical parameters used in the simulation of the crystal growth of NaCl

Parameter Symbol Value Ref.

Diffusion constant D 1.3 × 10−9 m2 s−1 40
Solid density ρc 37.04 mol l−1 (≡ 2165 kg m−3) 2, 41
Equilibrium concentration Ceq 5.55 mol l−1 (at room temperature) 3, 7
Rate of reaction kR 2.33 × 10−3 m s−1 3
Surface energy S 0.114 J m−2 along (111) direction of NaCl 29, 35

0.100 J m−2 along (100) direction of NaCl
Interface mobility L 4.11 × 10−3 m3 J−1 s−1 29
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to the interface mobility L, the surface energy S,29,34,37 and ε

(see ESI†):

τ ¼ 2
ffiffiffi
2

p
ε

3LS
: (2:4)

λ is a coupling coefficient determined via a formal asymptotic
analysis, which ensures that the PF equations converge to the
sharp-interface solution as the phase field interface width ε

→ 0:23,25–27,38,39

λ θð Þ ¼ τD

α θð Þ2
5
3
þ

ffiffiffi
2

p
D

k θð Þ
� �−1

: (2:5)

If the parameter ε is fixed then all other physical parameters
apart from those related to the anisotropy are determined by
experimental values and eqn (2.4) and (2.5).

We approximated the mean curvature κ = ∇·(∇ϕ/|∇ϕ|) as
described in ref. 26. In the PF model we used the phase field
ϕ can adopt values between −1 and +1, with −1 < ϕ < −(1 − ξ)
indicating the solid phase, and 1 − ξ < ϕ < 1 liquid phase.
We set the cut-off ξ = 10−6. Diffusion in the solid is neglected.
Note that the concentration in this model is zero in regions
of the solid and is not equal to the density of the solid, i.e.,
there is no discontinuity in the concentration at the position
of the interface.

The free parameter ε has to be small enough such that the
results obtained are in good agreement with those for a sharp
interface and experimentally observed results. On the other
hand, in order to obtain results on the mesoscale in a
reasonable amount of computing time, ε should be ‘large’
since the limit for the numerical time step, Δt, given by the

instability condition is34 Δt <
Δx2

2D
where Δx is the grid size,

and Δx has to be ≤0.5ε to achieve sufficiently accurate
results.26,42 Therefore, a small ε implies a small Δx and hence
a small Δt. This dichotomy is one of the main reasons why
the application of the PF model can be a challenge on scales
relevant for many experiments.

Our simulations were run with home-written MATLAB®
routines. The numerical cell size Δx of the grid and the time
step Δt had to be determined such that the calculations are
numerically stable and provide insights on the spatial–
temporal scale of interest. We tested various grid sizes Δx < ε

to see if this had an influence on the resulting diffuse
interface of the phase field. It has been reported that Δx =
0.5ε provides a sufficiently accurate shape of the phase field
profile.42 Our results were independent of Δx if Δx ≤ 0.5ε.
Therefore, we set Δx = 0.5ε similar to ref. 26. We set the time
step, Δt, for the iterations well below the value given by the
instability condition.34

In the calculations we used the finite difference method
with Nx × Ny square cells of equal length Δx.26 The time
discretization of eqn (2.1) and (2.2) was implemented using
the finite difference mid-point method to improve accuracy.43

For the discretised Laplace operator, ∇2, we employed the
9-point stencil method to reduce anisotropy effects that can

be caused by the finite grid size of the lattice.23,38,39 In
addition, the anisotropy term helps to minimise potential
anisotropy effects that can be induced by the simulation grid.

2.2.2 Initial phase and concentration fields. For all
simulations performed we first determined the stationary
phase field profile of the solid–liquid interface for the
selected ε in order to avoid non-physical behavior of the
phase field due to changes of the solid–liquid interface shape
during solid growth. An analytical solution for the phase field
in one dimension is the hyperbolic tangent profile.42 Setting
up the initial profile based on an analytical expression can be
difficult in two dimensions depending on the shape of the
initial seed. We therefore determined the equilibrium profile
numerically by setting up ϕ for the seed with a ‘sharp’
interface, i.e., the phase ϕ changed from −1 to +1 (solid to
liquid) over one Δx at t = 0 (see Fig. 1a) and b)) – shown is

the scaled phase profile ϕ′ ¼ 1 − ϕ
2

, which can adopt values

between +1 (solid) and 0 (liquid) and setting the
concentration c equal to the equilibrium concentration (ceq =
0) in the entire simulation domain. In all cases studied the
initially sharp phase interface converged to a hyperbolic
tangent profile after around a few thousand iterations and
remained essentially stable afterwards,42 with the interface
width of ϕ determined by ε (see ESI†).

We used these numerically determined stable phase field
profiles as the starting profiles in combination with a ‘sharp
interface’ in the initial concentration field (see
Fig. 1c) and d)) when studying growth, i.e., the initial
concentration in our simulations changed from ceq = 0
(solid) to c∞ (solution) over one Δx at the position of the
interface (ϕ′ = 1/2). The concentration profile changes its

Fig. 1 a) Example of the initial set-up of the (scaled) phase field with a
planar seed used to determine the equilibrium profile. Neumann no-
flux boundaries (mirror) were applied at the short (left and right) edges
and periodic boundaries along the long (top and bottom) edges of the
simulation domain. b) Shows the cross section along the red dashed
line in a). c) Displays the initial concentration distribution used when
simulating growth. d): Cross section of c).
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shape as long as the solid grows or is dissolved, i.e., if c∞ ≠
0 in the solution. The concentration in our PF model is
constant (=0) at the position of the solid. We set the
concentration c∞ > 0 in the bulk of the solution at t = 0.
During growth ions are removed from the solution and are
attached to the solid. Consequently, during growth the
concentration profile of the solution changes with time
while the phase profile moves due to the growth of the
solid but the solid–liquid interface shape is essentially
constant (see ESI†).

3. Results and discussion
3.1 Growth speed in 2D

3.1.1 Growth normal to a planar solid–liquid interface in
supersaturated solutions. The square cells of the grid are a
potential error source when simulating growth with the PF
model because they can lead to anisotropy effects if the solid–
liquid interface is not aligned with the cells.39,44,45 Another
potential source of error if the phase field is used for interface
tracking is curvature driven interface motion while the phase
field is converging.25 To avoid both of these problems we
started with the growth of a seed with a planar solid–liquid
interface aligned with the cells of the grid (Fig. 1). The
anisotropy was set to 0, i.e., δ = 0 and hence σ = 1 in eqn (2.1)
and (2.2). We set S = 0.110 J m−2 similar to ref. 29 and all other
values as in Table 1. Simulations were run on a rectangular grid
with square cells of length Δx = ε/2 and with periodic
conditions along its longer boundaries and no-flux Neumann
conditions along the shorter boundaries. Fig. 1a) shows an
example of the rectangular grid with dimensions of 2 μm × 20
μm and an initial solid seed of length of 2 μm. The size of the
simulation grid was big enough to serve as an infinite reservoir
for the periods we studied.

To study the influence of ε on the growth speed we
initialised the simulations with the equilibrium profile of the
phase corresponding to ε, and the sharp concentration
profile as described in section 2.2.

Crystal growth was simulated for periods from 10 ms up
to 5 minutes using a range of ε and Δt values to test the

influence of both on the resulting crystal growth speeds. The
timescales and bulk concentrations c∞ are based on
experimental conditions reported in the literature.2,3,6,46 We
first investigated the influence of ε on both the resulting
concentration distribution after 10 ms and the resulting
average growth speed, v̄gr:

v ̄gr tð Þ ¼ R tð Þ −R t0ð Þ
t − t0

: (3:1)

R(t) is the position of the phase field interface (ϕ = 0) at time,
t. To obtain R(t) phase profiles across the ϕ interface (i.e.,
along the x-axis) were extracted at different times, resulting
in a series of one-dimensional phase profiles. These profiles
were fitted with an analytical hyperbolic tangent function to
extract the interface positions, R(t), and the width parameter,
ε. The latter was constant after an initial period with <5%
deviation from the set ε confirming a stable phase profile
during growth.

Fig. 2 (left) shows the determined growth speeds over 10
ms for Ω = 1.72 (c∞ = 0.61) and different values of ε, and the
concentration profiles that result after 10 ms (right). Also
shown is the scaled phase profile ϕ′.

Table 2 summarises the different values of ε and Δt
studied, as well as the resulting τ and λ values, and the
average growth speeds. There is a small increase of ∼3% in
the growth speed with increasing ε over the range of values
tested.

Experimentally determined growth speeds have also been
reported for longer periods of 2 s, 20 s, and 5 minutes,2,6,46

and we have run simulations for those periods and the
reported experimental concentrations as well. Fig. 3 shows

Fig. 2 Average growth velocity for different values of ε depending on time (left), and concentration profile after 10 ms together with the scaled
phase profile ϕ′ (right). The inset shows the region at the interface in more detail.

Table 2 ε values and the resulting average growth speeds for Ω = 1.72
(c∞ = 0.61) and growth for 10 ms

ε (nm) Δt used (μs) τ (ms) λ v̄gr (μm s−1)

80 0.05 0.167 0.871 34.0
100 0.5 0.209 0.841 34.2
200 0.5 0.417 0.717 34.6
400 5 0.834 0.554 35.0
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as an example the average growth speed over a period of 5
min for Ω = 1.6 (c∞ = 0.51) and various ε values. The
behavior is similar to that found for 10 ms: while there is
some deviation between the average growth speeds
depending on ε for periods of less than 1 s corresponding
to the first few thousand iterations, they are virtually
identical for longer periods (see inset of Fig. 3 left): for
example, the average growth speed after 2 s is 2.31 μm s−1

with an error of 0.4%, for the four ε values tested. The
concentration profiles that result after 2 s are shown in
Fig. 3, right.

Table 3 summarises the periods and the concentrations
studied, the ε range tested for each concentration, and the
periods after which the average growth speeds for larger ε

values are essentially identical to the growth speed for ε =
200 nm. The table also shows the average growth speeds
obtained from the modelling together with the experimental
values reported in the literature. A smaller ε and therefore a
sharper interface is preferable in general but can increase
computing time significantly and would not provide
additional physical insights here.

Precipitation in the absence of fluid flow is similar to
diffusion-limited aggregation. Diffusion is the only
mechanism responsible for solute transport to the solid–
liquid interface for growth without liquid agitation. Diffusion
theories presume that during crystal growth matter is
deposited continuously on the crystal faces at a rate
proportional to the concentration difference between the
bulk of the solution and the point of deposition, C∞ − Ceq.
This predicts a linear increase of the instantaneous growth

speed,
dR
dt

¼ vğr, with concentration, c∞, in the solution:32

vǧr ¼ kG
ρc

C∞ −Ceq
� � ¼ kG

ρc
Ceqc∞; (3:2)

where kG is the overall growth coefficient.32 kG is determined
by the reaction rate, kR, i.e., how fast ions can be
incorporated into the solid, and the diffusion rate, kD, which
determines how fast ions are transported from the liquid to
the solid surface: kG = kRkD/(kR + kD).

3,32 The growth
coefficient is dominated by the lower of the two values of kR
and kD. While kR is an intrinsic property, which is

independent of time, the diffusion rate, kD ¼ D
2ζ 1=2

, depends

on the diffusion constant, D, and ζ1/2, which evolves with
time. ζ1/2 is related to the diffuse length. We set ζ1/2 to the
distance over which the concentration profile from ceq at the
solid–liquid interface reaches half of the bulk value, c∞/2 (see
Fig. 4). The increase of ζ1/2 with time leads to a decrease of
kD such that after longer periods kD ≪ kR and therefore kG ≈
kD. The instantaneous growth speed decreases with time due
to the increase of ζ1/2 (Fig. 4).3,32 The average growth speed,
v̄gr, that is measured in experiments is related to the
instantaneous growth speed via:

v ̄gr tð Þ ¼
Ð t
t0
v ̌grdt

t − t0
: (3:3)

Similar to v̌gr it also increases linearly with the concentration,
c∞, for a fixed time, t, and decreases with time for a fixed c∞.

Fig. 3 Logarithmic plot of average growth speeds versus time for different values of ε and Δt. (Left) The inset shows the average growth speeds
between 1.8 and 2 s for various values of ε. Right: Graphs of concentration profiles versus distance after 2 s for different values of ε together with
the scaled phase profile ϕ′ for ε = 10 μm.

Table 3 Listed are the simulation periods, Tsim, supersaturation coefficients, Ω, of the concentrations, range of ε values tested, their convergence time,
tconv, to growth speeds obtained with ε = 200 nm, resulting average growth speeds, v̄gr, for the ε range tested, their relative standard deviation, Δv̄gr/v̄gr,
and experimental growth speeds, vExp (ref. 2, 3, 6 and 46)

Tsim Ω ε range (μm) tconv v̄gr (μm s−1) Δv̄gr/v̄gr vExp (μm s−1)

A 10 ms 1.72 (ref. 3) 0.08–0.4 2 ms 34.4 1.0% 271 (ref. 3)
B 2 s 1.30 (ref. 6) 0.1–1.0 0.1 s 1.2 0.1% 5.0 (ref. 6)
C 20 s 1.92 (ref. 46) 0.5–5.0 0.5 s 1.1 0.3% 2.7 (ref. 46)
D 5 min 1.60 (ref. 2) 5.0–50 2 s 0.2 0.3% 0.8 (ref. 2)
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Crystallization comprises nucleation and growth.
Nucleation is not included in the conventional PF model and
we initiated growth by starting with small crystal seeds. The
concentration profile immediately following nucleation is not
known. It might display an abrupt transition from the value
in the liquid to that at the interface, i.e., a change from the
solution value c∞ to ceq = 0 at the solid–liquid interface over a
very short distance, similar to the initial distribution we
used. In our initial setup ζ1/2 = Δx/2 (abrupt change in the
concentration from liquid bulk to solid–liquid interface over
one Δx). When ζ1/2 is ‘small’ and kD large the reaction rate,
kR, can potentially dominate the overall growth, kG. ζ1/2 then
increases quickly to larger values compatible with the profile
of the concentration under the given conditions.

Based on an asymptotic sharp interface analysis the PF
equations provide reliable results if the diffusion length is
much greater than the interface width, i.e., ζ1/2 ≫ ε.25,38,39

Since in our initial setup ζ1/2 is of comparable size to ε (see
Fig. 4, right, t = 0 s), the determined growth speeds for very
short periods (corresponding to the first few thousand
iterations) are not reliable. This is reflected by the ε

dependence of the growth speed during the initial period
(Fig. 2 and 3) and the subsequent convergence to values
similar to those for smaller ε (and independent from ε) once
ζ1/2 is sufficiently large.

For diffusion limited growth the distance, R(t), that a

plane face of the crystal moves increases with
ffiffi
t

p
,32,47 and the

instantaneous growth speed vǧr ¼ dR
dt

is proportional to
1ffiffi
t

p .

This also holds for the average growth speed, v̄gr, because of
eqn (3.3). Fig. 5 shows R(t) vs.

ffiffi
t

p
for a supersaturation Ω =

1.6 (c∞ = 0.51) over 20 s. R(t) displays linear behaviour for the
whole period studied confirming that growth is diffusion
limited from the start and there is no indication of non-
diffusion limited growth in our model despite the sharp
initial concentration profile.

An ideal planar surface in two or three dimensions moves
during growth with the same speed in the direction normal
to the face as in one dimension if under the same conditions,
and the values from Table 3 can be directly compared to

experimental values reported for the growth normal to planar
surfaces (experiments B and D in Table 3). For some of the
experimental growth speeds reported, however, (A and C in
Table 3) it is not clear if they were obtained strictly normal to
a crystal face or in another direction. In all cases studied the
values obtained with the PF model are on the same order of
magnitude but significantly smaller than the experimentally
observed values. For periods of a few seconds up to several
minutes the simulated growth speeds are three to five times
smaller than the experimental values. The growth of NaCl
during the initial stage of crystallization has been reported to
be particularly ‘fast’ with an average value of at least 271 μm
s−1 over the first 10 ms.3 For this short period the simulated
growth speed is around eight times smaller than the
experimental value (Table 3).

It has been shown experimentally that during the initial
phase of crystallisation and the early stages following
nucleation (first few seconds) the growth rate can be
dominated by the reaction rate3,4 for the concentrations
studied, while over longer periods growth becomes diffusion
limited. This could explain the bigger deviation seen for 10 ms.

Another factor that can play a role in the growth speed is
convection, which is not included in the model we used but
can contribute to the transport of the ions to the solid–liquid

Fig. 4 Phase field profile ϕ′ (left) and concentration profile (right) for Ω = 1.6 (c∞ = 0.51) after different periods. Also indicated for two of the
concentration profiles is the diffusion length, ζ1/2.

Fig. 5 Interface position R(t) versus
ffiffi
t

p
over 20 s for Ω = 1.6 (c∞ =

0.51).
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interface. In addition, something that could be particularly
important during the initial stages when the crystal is small
is the pushing of the liquid by the fast growing crystal
causing movement in the liquid, potentially leading to a
faster transport of ions from the solution to the solid–liquid
interface and hence a higher growth speed.48,49 We have
assumed simple first order reaction kinetics to be valid,
which might be adequate when diffusion limited growth
dominates. However, dissolution and precipitation are
complex processes and likely to follow other reaction
kinetics. Therefore, first order kinetics might in particular
not be a good assumption during the very early stages
following nucleation. This might also explain some of the
deviation observed in the growth speed between the
modelling and the experiments. All the points mentioned
might contribute to the higher values observed in the
experiments.

3.1.2 Growth normal to a non-planar solid–liquid interface
in supersaturated solutions. Solid–liquid interfaces are often
planar on small scales. On the meso- to macroscale, however,
crystals establish edges and vertices in regions where
surfaces converge, and non-planar solid–liquid interfaces
result. In general, not all faces will then be aligned with the
cells of the simulation grid. In order to minimise effects that
can be caused by the grid a very small Δx compared to the
size of the initial seed and the diffuse interface width ε may
be used. However, this can be computationally very time
consuming.

In addition, when simulating growth in two or three
dimensions with the PF model, effects that arise from a
curved surface in combination with the overestimation of the
diffuse width of the interface of the phase field can result in
non-physical curvature driven interface motion, and therefore
potentially be a problem.25,50 The last term in eqn (2.1)
counteracts this non-physical effect due to curvature to first
order such that a stationary hyperbolic tangent profile across
the interface results.25,42,50 On the other hand, curvature
driven interface motion in relation to excess surface free
energy is an important contribution to diffusion limited
growth.51

We have used a simple model to estimate potential non-
physical contributions in our PF simulations. When the time
scale over which the concentration profile around the solid
reaches equilibrium is short compared to the time scale over
which the size of the solid changes appreciably then the
diffusion process around the solid reaches steady state, i.e.,
there is a balance between the solute flux density at the solid–
liquid interface and the rate of precipitation or dissolution,
and the steady state model is a good approximation. The rate
of mass transfer from the fluid to the solid can then be used
to calculate the time evolution of the size of the solid.51 The

ratio of the two timescales is
b
2
∼0:1≪1 in our PF model.

Using the steady state model we have derived expressions for

the instantaneous growth speeds, v̆, of spherical crystals in

two and three dimensions, respectively:

v ̆2D tð Þ ¼ D
ρ

Ceqc∞
1

2R tð Þ ln 1þ ζ 1=2 tð Þ
R tð Þ

� � ; (3:4)

v ̆3D tð Þ ¼ D
ρ

Ceqc∞
1
2

1
ζ 1=2 tð Þ þ

1
R tð Þ

� �
; (3:5)

where R is the radius of the sphere and ζ1/2 is related to the
diffuse length as defined in 3.1.1. Note, if R ≫ ζ1/2, v̆2D and

v̆3D converge to
D
ρ

c∞Ceq
1

2ζ 1=2 tð Þ, which is v̆1D(t) and is

identical to eqn (3.2) if kG ≈ kD.
In order to estimate potential non-physical contributions

to the growth speed we simulated isotropic growth of circular
seeds with different radii with the PF model and also used
eqn (3.4) to compare the curvature dependent contributions
in both models (see ESI†). The PF model and the steady state
approximation gave very similar results. We therefore
conclude that curvature dependent growth is adequately
described in the PF model and artefacts due to curvature do
not contribute significantly.

3.2 Growth modes

The growth speed of a crystal depends on the crystallographic
direction if the surface energy, S, is direction dependent.
Faster growth along energetically favourable directions is the
reason for non-compact growth such as Hopper and dendritic
growth.4,52 Therefore, when modelling growth the symmetry
of the crystal has to be properly taken into account. In our
model the crystal symmetry is superimposed by the
anisotropy terms in eqn (2.1). The terms also help to
minimise unwanted effects that can be induced by the
symmetry of the simulation grid.23,26,38,39

For NaCl with fourfold symmetry, i.e., j = 4, we determined
δ using the known interfacial energies for different Miller
planes:35 if S̄(θ) = Sσ(θ) is the angle dependent interfacial
energy and θ0 indicates the direction of the (1 1 1) plane with
S̄(θ0) = 0.114 J m−2, then (θ0 + 45°) indicates the direction of a
(1 0 0) plane with S̄(θ0 + 45°) = 0.100 J m−2. Therefore, S =

0.107 J m−2 and δ = 0.0654. Note that δ≤ 1
15

¼ 0:0667 is a

condition for the equilibrium shape of an anisotropic four-
fold crystal to be well described.53–56 For higher values of δ,
missing orientations will occur and the phase-field problem
becomes ill-posed.55,57–60

A spherical shape has been reported to be a reasonable
assumption for initial small NaCl clusters.35 Due to the
square cells of the grid however a spherical shape of the seed
is not perfect. To ensure that initial growth is driven by
energetics and not the non-perfect shape of the seed due to
the grid we tested circular seeds of different size and under
different conditions (see ESI†). The imposed symmetry
causes the seed to develop in such a way that one of the
vertices of the crystal points in a direction θ0 degrees off the
x-axis. However, which grid cell of the edge of the seed
develops into the vertex depends on the size of the initial
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seed relative to the cell size and ε, because of the non-ideal
circular shape. As a result, the shape after several seconds
shows minor variations depending on the initial deviation
from the ideal circular shape. It displays four-fold rotational
symmetry but does not always show four-fold symmetry
including mirror symmetry (see ESI†). Therefore, we initiated
corner growth by tiny protrusions on the seed. This makes it
much less likely for the crystal to develop only four-fold
rotational and not four-fold symmetry.

3.2.1 Growth mode depending on the concentration. As
shown in section 3.1 ε within the range studied does not have
a significant effect on the growth speed. However, a smaller ε
and a less diffuse phase interface does reveal more details of
the resulting shape of the crystal when it has grown over
longer periods. Therefore, a small ε is desirable here and we
have chosen ε = 1 μm for concentrations Ω < 1.4 (c∞ < 0.35)
and decreased ε for higher concentrations of Ω > 1.4 when
finer details of the resulting structure are important for the
investigation of the growth mode.

The simulations were performed in a quadrant of the overall
area of interest26,39 with no-flux Neumann conditions applied
on the outer boundaries, exploiting the fourfold rotational
symmetry of both the simulation grid and the crystal. For
simulations with ε = 700 nm, the area of the simulation grid
was 240 × 240 μm2, corresponding to a finite reservoir of overall

size 480 × 480 μm2, conditions similar to those in a
microchannel. For the simulations performed with ε = 1 μm, a
square grid 400 × 400 μm2 was used, corresponding to an
overall area of 800 × 800 μm2 (see details in ESI†).

Fig. 6 displays the initial shape of a spherical seed of
radius 15 μm and its final shape after 10 s of growth together
with the contour lines of the concentration for a range of

Fig. 6 Initial (light green) and final shapes (red) of the spherical seed after 10 s of growth for ε = 700 nm, θ0 = 19°, and (a) Ω = 1.3, (b) Ω = 1.6, (c) Ω
= 2.0, and (d) Ω = 2.2 (corresponding to c∞ = 0.26, 0.51, 0.82, and 0.97), respectively. Dashed white lines are contour lines of the concentration, c.

Fig. 7 Ratio of distances the crystal has grown in the direction of the
edges to the direction of the faces for Ω = 1.3, 1.6, 2.0 and 2.2. A ratio
below

ffiffiffi
2

p
indicates compact growth.
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values of concentration. The crystal develops fourfold
symmetry and it can be seen that for Ω ∼ 1.3 a circular seed
with fourfold symmetry develops into a square that grows in
size but stays a square over the period studied, indicating
compact growth. For Ω ∼ 1.6 however the crystal grows faster
in the direction of the edges resulting in a transition from
compact to non-compact growth due to the higher
concentration. This is supported by Fig. 7, which shows the
ratio of the distances the crystals have grown in the
directions of the (1 1 1) and the (1 0 0) planes depending on
time for the different concentrations. There is a transition
from compact to non-compact growth for Ω between 1.3 and
1.6 (if the ratio is >

ffiffiffi
2

p
) with non-compact growth for higher

concentrations.
Fig. 8 (left) displays the initial shape of the same spherical

seed as in Fig. 6 and its final shape for Ω < 1.3 (c∞ < 0.26)
after an extended period of 60 s of growth together with the
contour lines of the concentration. For this concentration the
circular seed with fourfold symmetry develops into a square
that grows in size but stays a square even after longer
periods, clearly indicating compact growth under these
conditions. This is supported by Fig. 8 (right) showing the
ratio of the distances the crystal has grown in the direction
of the (1 1 1) face (corner) and the direction of the (1 0 0) face
(plane). The ratio of the interface positions along both

directions is clearly <
ffiffiffi
2

p
even after 60 s supporting compact

growth for this concentration value.
For NaCl both compact and non-compact growth have

been observed experimentally for high supersaturation
values.2–4 Non-compact growth occurs if growth at the edges
of the crystal is faster than at the centre of each face, i.e.,
more material is added to edges compared to the interior
sections of the crystal. As a result, the edges and faces of the
crystal experience different concentration gradients and
therefore grow with different speeds.4,52,61,62

Under high supersaturation secondary nucleation may
occur at the edges of the growing primary nuclei, i.e.,
nucleation is re-initiated4,5 at the edges with a high

frequency. This leads to rapid growth of non-compact crystals
due to a disparity of growth rates between the crystal edges
and the crystal faces. This can then result in a chain-like
structure of non-compact (Hopper) crystals often followed by
compact growth resulting in a hybrid shape.2–4 Since
nucleation is not included in our model such chain-like
growth is not revealed.

The overall size of the crystals after tens of seconds up to
several minutes depends on how long nucleation occurred
and for how long non-compact growth dominated, potentially
followed by compact growth. This makes it difficult to
compare the overall size of experimentally studied crystal
growth with results from our modelling and could explain
the variety of experimentally obtained growth rates for longer
periods reported in the literature.2,3,6,46,63 While the PF
model has its limitations in describing accurately the
experimentally observed growth speeds, it shows a transition
from compact to non-compact growth for concentrations Ω ∼
1.4 in good agreement with experiments.4 This is illustrated
in Fig. 9, which displays the ratio of the average growth

Fig. 8 Initial spherical seed (light green) and its final shape (red) together with the contour lines of the concentration, c, after 60 seconds of
growth for Ω < 1.3 (c∞ < 0.26) (left). Right: Ratio of the growth distances in the direction of the (1 1 1) face and the direction of the (1 0 0) face
versus time.

Fig. 9 Ratio of growth speeds in the direction of the edges and the
direction of the faces for increasing concentration, Ω. A transition
occurs around Ω ∼ 1.4. The blue and red dashed lines were added as
guides to the eye. The black dotted line indicates

ffiffiffi
2

p
.
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speeds in the direction of the edges and that normal to the
faces, indicating a transition at Ω ∼ 1.4.

An extension of the simulations to 3D by appropriate
modification of eqn (2.1)–(2.3) and a modelling of more
complex systems is possible39 but comes with a significant
increase in complexity and computing time. It would however
not provide fundamentally new insights here if not other
effects such as nucleation, convection, or a different order of
the kinetics are included, too.

4. Conclusions

We studied the growth speed and the growth modes of NaCl
in two dimensions for a range of high concentration values.
Such high supersaturation has been reported to prevail in
microchannels. The PF model is not suited to describe
adequately characteristics related to molecular processes
such as the fast decrease of the initial growth rate and the
change from non-diffusion to diffusion limited growth on
very short time scales.34 Apart from the very short time scale
(10 ms) the average growth speeds obtained with the PF
model are of the same order of magnitude as the
experimentally determined values but the values obtained
from modelling are consistently too low. This is most likely
due to the model only capturing diffusion limited growth,
while nucleation followed by a period of non-diffusion
limited high growth speed as well as other phenomena such
as a pushing of the liquid due to the growing crystal or
convection are not included. The PF model does however
correctly show a transition from compact to non-compact
growth depending on the concentration for high
supersaturation values as has been found in experiments.
The model we used does not include nucleation and
convection. It is quantitatively not accurate but predicts some
characteristics in relation to the growth of NaCl correctly and
might be useful in connection with the modelling of the
establishment of macroscopic structures and patterns,
something that is difficult to simulate in general. It might for
example help to better understand and to determine under
which conditions ordered crystal patterns on the mesoscale
are established in quasi two dimensions.64,65
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