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In this paper we introduce the graph �sc(G) associated with a group G , called the solvable 
conjugacy class graph (abbreviated as SCC-graph), whose vertices are the nontrivial 
conjugacy classes of G and two distinct conjugacy classes C, D are adjacent if there exist 
x ∈ C and y ∈ D such that 〈x, y〉 is solvable.
We discuss the connectivity, girth, clique number, and several other properties of the SCC-
graph. One of our results asserts that there are only finitely many finite groups whose 
SCC-graph has given clique number d, and we find explicitly the list of such groups with 
d = 2. We pose some problems on the relation of the SCC-graph to the solvable graph and 
to the NCC-graph, which we cannot solve.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Various graphs have been defined on finite groups, using various properties of groups, and studied to understand the 
interplay between groups and graphs. Commutativity is one of such graph defining properties on groups. The first graph 
arising from commutativity is the commuting graph [6] which is the complement of the non-commuting graph [19]. The 
commuting graph of a group G is a graph whose vertices are the nontrivial elements of G and two distinct vertices x, y are 
adjacent if 〈x, y〉 is abelian.

Another way of defining graphs on G is given by considering the conjugacy classes as the vertex set and adjacency is 
defined using properties of conjugacy classes [3]. We write xG to denote the conjugacy class {gxg−1 : g ∈ G} of x ∈ G . Mixing 
the concepts of commutativity and conjugacy class, in 2009 Herzog et al. [14] have introduced commuting conjugacy class 
graph (abbreviated as CCC-graph) of G as a graph whose vertex set is the set of nontrivial conjugacy classes of G and two 
distinct vertices xG and yG are adjacent if 〈x′, y′〉 is abelian for some x′ ∈ xG and y′ ∈ yG .

Extending the notion of CCC-graph, in 2017 Mohammadian and Erfanian [18] introduced the nilpotent conjugacy class 
graph (abbreviated as NCC-graph) of a group. Its vertex set is the set of nontrivial conjugacy classes of G , and two distinct 
vertices xG and yG are adjacent if 〈x′, y′〉 is nilpotent for some x′ ∈ xG and y′ ∈ yG . Note that the CCC-graph is a spanning 
subgraph of the NCC-graph of G .

In this paper, we further extend the notions of CCC-graph and NCC-graph and introduce the solvable conjugacy class 
graph (abbreviated as SCC-graph) of G . The SCC-graph of a group G is a simple undirected graph, denoted by �sc(G), with 
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vertex set {xG : 1 �= x ∈ G} and two distinct vertices xG and yG are adjacent if there exist two elements x′ ∈ xG and y′ ∈ yG

such that 〈x′, y′〉 is solvable. It is clear that the NCC-graph is a spanning subgraph of the SCC-graph of G .
The aim of this paper is to discuss the connectivity, girth, clique number, and some properties of SCC-graph.
For each of these conjugacy class graphs, we sometimes consider a variant where the vertex set is G , rather than the 

set of conjugacy classes in G , with the adjacency rules as described. So, if two conjugacy classes are equal or adjacent in 
the conjugacy class version, then all pairs of vertices in those classes are adjacent in the graph on G . This change leaves 
several properties, such as connectedness and diameter, unchanged. The reason for doing this is that we want to compare 
the solvable conjugacy class graph with the usual solvable graph (see [4]) on G , which is easier if the vertex sets are the 
same. We will call the version of the SCC-graph with vertex set G the expanded SCC-graph on G . The expanded CCC-graph 
and NCC-graph are defined analogously.

We write V (�) to denote the vertex set of a graph �. We write u ∼ v to denote that the vertices u, v are adjacent.
The distance between two vertices u and v of � is denoted by d(u, v). Recall that the diameter of a graph is the 

maximum distance between its vertices. If u = v then we write d(u, v) = 0. The solvabilizer of x, denoted by SolG(x), is the 
set given by {y ∈ G : 〈x, y〉 is solvable}.

We write Sol(G) = {x ∈ G : 〈x, y〉 is solvable for all y ∈ G}. Clearly, Sol(G) = ⋂
u∈G SolG(u) and Z(G) ⊆ Sol(G). Also, if G

is finite then Sol(G) is the solvable radical of G (see [12]).
We note that the second and third authors, together with Arunkumar and Selvaganesh, have considered graphs defined 

by combining a graph on the group (such as the commuting graph) with an equivalence class (such as conjugacy) in [1]. 
However, the SCC-graph is not considered in that paper.

2. Properties of the SCC-graph

We begin with a simple observation. Let a and b be two elements of G such that aG and bG are joined in the SCC-graph 
of G . This means that there exist a′ ∈ aG and b′ ∈ bG such that 〈a′, b′〉 is solvable. Without loss of generality, we can assume 
that a′ = a. For suppose that (a′)h = a. Then 〈a′, b′〉h = 〈a, (b′)h〉 is solvable, since it is a conjugate of (and hence isomorphic 
to) 〈a′, b′〉.

Theorem 2.1. Let G be a finite group. Then the SCC-graph of G is complete if and only if G is solvable.

Proof. If G is solvable, 〈x, y〉 is also solvable for all x, y ∈ G . In particular, if aG , bG are two vertices of �sc(G) and x ∈ aG , 
y ∈ bG then 〈x, y〉 is solvable. Therefore, aG and bG are adjacent. Hence, �sc(G) is a complete graph.

Conversely, suppose that �sc(G) is complete. Then, by the observation at the end of the last section, for every a, b ∈ G , 
there is a conjugate b′ of b such that 〈a, b′〉 is solvable. By [11, Theorem A], we conclude that G is solvable. �
Theorem 2.2. Let G be a finite solvable group. Then G has complete expanded NCC-graph if and only if G is nilpotent.

Proof. The reverse implication is clear. We prove the contrapositive of the forward implication. Moreover, it is easy to see 
that, if the expanded NCC-graph of G is complete, then the same is true of G/N for any normal subgroup N of G . So we 
assume that G has expanded NCC-graph complete but is not nilpotent, and is minimal with respect to these properties. 
Thus, any proper quotient of G is nilpotent.

Suppose G is not nilpotent. Then there is a prime p such that N = O p(G) �= 1. Since G/N is nilpotent and O p(G/N) = 1, 
N is a Sylow p-subgroup of G , so |N| and |G/N| are coprime. By the Schur–Zassenhaus Theorem [21, Theorem 10.30], N has 
a complement H ∼= G/N . Since G is not nilpotent, H acts non-trivially on N . Hall’s extension of the Burnside basis theorem 
([7], see [21, Theorem 11.12, Corollary 11.13]) now implies that H acts faithfully on N/�(N), where �(N) is the Frattini 
subgroup of N . If �(N) �= 1, we have a contradiction to the fact that G/�(N) is nilpotent. So N is an elementary abelian 
p-group.

Let x ∈ G be a p′-element such that 1 �= xN ∈ Z(G/N). Then there exists y ∈ N such that xy �= yx. It follows that 〈x, y〉 is 
not nilpotent. Now for every g ∈ G we have gxg−1 ≡ x (mod N). Hence, also 〈gxg−1, y〉 is not nilpotent. Therefore, x and y
are not adjacent in the expanded NCC-graph. Contradiction. �

At this point we record several questions about SCC-graphs, which we have not been able to answer, together with some 
comments.

Problem 2.3. Given a finite group G , describe the set of vertices of the expanded SCC-graph of G which are joined to all 
others.

We observe that, in the solvable graph, the set of dominant vertices is just the solvable radical of G , by the result 
of [12]. Hence the set of dominant vertices in the expanded SCC-graph contains the solvable radical. However, it can be 
larger. Consider the simple groups PSL(2, 2d), with d ≥ 2. Each group has a unique conjugacy class of involutions, and every 
element of the group is mapped to its inverse by conjugation by some involution. So, for any element a ∈ G , there is an 
2
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involution b ∈ G so that 〈a, b〉 is dihedral, and hence solvable. Thus the involutions are dominant vertices. On the other 
hand, G is non-abelian simple, so its solvable radical is trivial. The sporadic Janko group J1 also has this property.

Problem 2.4.

(a) For which finite groups G is the expanded SCC-graph of G equal to the solvable graph of G?
(b) For which finite non-solvable groups G is the expanded SCC-graph of G equal to the expanded NCC-graph of G?

It is known that

• the expanded CCC-graph is equal to the commuting graph if and only if G is a 2-Engel group (that is, satisfies the 
commutator identity [x, y, y] = 1 for all x, y ∈ G [1, Theorem 2.2]);

• the solvable graph is equal to the nilpotent graph if and only if G is nilpotent [8, Proposition 11.1(b)].

It may be that the answers to these two questions are “G is solvable” and “G is nilpotent” respectively.
We cannot solve Problem 2.4, but we have made some progress on part (b). We give here a reduction which shows that 

it suffices to consider almost simple groups other than symmetric and alternating groups.
Suppose that G is a non-solvable group such that the expanded SCC-graph and NCC-graph coincide. Let S � G be the 

solvable radical. If xS, yS ∈ G/S are adjacent in the expanded SCC-graph of G/S , then there exists g ∈ G such that H :=
〈x, gyg−1〉 is solvable. By Theorem 2.2, there exists h ∈ H such that 〈x, hgyg−1h−1〉 is nilpotent. Then also 〈xS, hgy(hg)−1 S〉
is nilpotent and xS is adjacent to yS in the expanded NCC-graph of G/N . Hence, we may assume that S = 1. Now let 
N be a minimal normal subgroup of G . Then N = T1 × · · · × Tn for isomorphic non-abelian simple groups T1, . . . , Tn . Let 
T := {(t, . . . , t)} ≤ N be a diagonal subgroup. Then elements in T are conjugate in G if and only if they are conjugate by 
automorphisms of T induced by its normaliser in G . So in order to derive a contradiction we may replace G by a subgroup 
of Aut(T ) containing T : that is, we assume that G is an almost simple group.

Let An ≤ G ≤ Sn and let p be the largest prime ≤ n. By Bertrand’s Postulate, n < 2p. Let x ∈ An be a p-cycle and 
y ∈ N An (〈x〉) a disjoint product of a (p − 1)-cycle and a transposition such that y generates Aut(〈x〉). Clearly x and y are 
adjacent in the expanded SCC-graph. Suppose that there exists g ∈ G such that 〈x, gyg−1〉 is nilpotent. Since x and y have 
coprime orders, it follows that x commutes with gyg−1. On the other hand, y and gyg−1 have the same cycle type. Hence, 
the cycles of gyg−1 must be disjoint to the p-cyclic x. This is impossible since p + (p − 1) + 2 > 2p > n.

We give here another open problem, which is loosely related to the above problems.

Problem 2.5. For which finite graphs � is there a finite group G such that � is isomorphic to an induced subgraph of 
�sc(G)?

We note that every finite graph can be embedded in the solvable graph of some finite group (see [8, p. 93]), but this 
construction does not descend to the solvable conjugacy class graph.

Next we turn to the questions of connectedness and diameter. The girth will be discussed in the next section. We adopt 
the convention that vertices in different components have infinite distance. We begin with a simple observation.

Proposition 2.6. Let G be a non-solvable group such that it has an element of order pq, where p, q are primes. If p �= q then 
girth(�sc(G)) = 3 and hence �sc(G) is not a tree.

Proof. Let a ∈ G be an element of order pq. If p �= q then o(aq) = p and o(ap) = q. Also, 〈a, aq〉, 〈aq, ap〉 and 〈ap, a〉 are 
abelian groups. Since aG , (aq)G and (ap)G are distinct, we have the following triangle

a ∼ aq ∼ ap ∼ a

in �sc(G). Therefore, girth(�sc(G)) = 3 and hence �sc(G) is not a tree. �
Proposition 2.7. Let x ∈ G \{1} and a, b ∈ SolG(x) \{1}. Then aG and bG are connected and d(aG , bG) ≤ 2. In particular, if Sol(G) �= {1}
then �sc(G) is connected and diam(�sc(G)) ≤ 2.

Proof. Since a, b ∈ SolG(x) \ {1}, 〈a, x〉 and 〈x, b〉 are solvable. Therefore, d(aG , xG) ≤ 1 and d(xG , bG) ≤ 1. Hence, the result 
follows.

If Sol(G) �= {1} then there exists an element z ∈ G such that z �= 1 and z ∈ Sol(G). Therefore, z ∈ SolG(w) for all w ∈
G \ {1}. Let uG and vG be any two vertices of �sc(G). Then u, v ∈ SolG(z) \ {1}. Therefore, by the first part it follows that 
d(uG , vG) ≤ 2. Hence, diam(�sc(G)) ≤ 2. �
3
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Remark 2.8. For any two distinct vertices xG , yG ∈ V (�sc(G)), xG ∼ yG if and only if SolG(gxg−1) ∩ yG �= ∅ for all g ∈ G . 
Also, xG is an isolated vertex if and only if SolG(gxg−1) ⊆ xG ∪ {1} for all g ∈ G .

Theorem 2.9. If G, H are arbitrary nontrivial groups then the graph �sc(G × H) is connected and diam(�sc(G × H)) ≤ 3. In particular, 
�sc(G ×G) is connected and diam(�sc(G ×G)) ≤ 3. Further, diam(�sc(G ×G)) = 3 if and only if diam(�sc(G)) ≥ 3 (possibly infinite).

Proof. Let (x, y) and (u, v) be two nontrivial elements of G × H . Without any loss we may assume that x �= 1G and v �= 1H , 
where 1G and 1H are identity elements of G and H respectively; then

(x, y)G×H ∼ (x,1H )G×H ∼ (1G , v)G×H ∼ (u, v)G×H .

This shows that diam(�sc(G × H)) ≤ 3. Putting H = G , it follows that diam(�sc(G × G)) ≤ 3.
Suppose that diam(�sc(G)) ≤ 2. Let (x, y), (u, v) be two vertices in �sc(G × G). If x = 1G , then there is a path of length 2

between these vertices, namely (1G , y) ∼ (u, 1H ) ∼ (u, v); so we may suppose that x, u �= 1G . Then there exist a ∈ G \ {1G}
such that xG ∼ aG ∼ uG . Therefore 〈x, ag〉 and 〈ah, u〉 are solvable for some g, h ∈ G . We have 〈(x, y), (a, 1H )(g,1)〉 = 〈x, ag〉 ×
〈y〉 and 〈(a, 1H )(h,1), (u, v)〉 = 〈ah, u〉 × 〈v〉 are solvable; so d((x, y), (u, v)) ≤ 2.

Conversely, suppose that diam(�sc(G)) ≥ 3, and take two elements x and u of G \ {1G} whose distance is at least 3. If 
there were a path (x, x)G×G ∼ (a, b)G×G ∼ (u, u)G×G , there would be paths xG ∼ aG ∼ uG and xG ∼ bG ∼ yG in G; the only 
possibility would be a = b = 1G , which is excluded. So diam(�sc(G × G)) ≥ 3, and since we have the reverse inequality we 
must in fact have equality. �

A dominating set of a graph � is a subset S of V (�) such that every vertex in V (�) \ S is adjacent to at least one vertex 
in S . The domination number of �, denoted by λ(�), is the minimum cardinality of dominating sets of �.

Proposition 2.10. Let G be a non-solvable group. Then λ(�sc(G)) = 1 if | Sol(G)| �= 1.

Proof. Let x be a nontrivial element in Sol(G). Then xG ∈ V (�sc(G)). Let yG ∈ V (�sc(G)) \ {xG } be an arbitrary vertex. Then 
〈x, y〉 is solvable. Therefore, xG and yG are adjacent. Hence, {xG } is a dominating set of �sc(G) and so λ(�sc(G)) = 1. �
3. Clique number

The clique number ω(�) of a graph � is the number of vertices in the largest complete subgraph of �. In this section we 
investigate the clique number of the SCC-graphs of finite groups. The main theorem of this section is that there are only 
finitely many finite groups whose SCC-graph has a given clique number.

We begin with a theorem of Landau [17]. Let k(G) denote the number of conjugacy classes of the group G .

Proposition 3.1. For any positive integer m, there are only finitely many finite groups which have k(G) = m.

Proof. Let x1, . . . , xm be conjugacy class representatives, and let ni = |CG(xi)| for i = 1, . . . , m. Then |xG
i | = |G|/ni ; so

m∑

i=1

1

ni
= 1.

Now there are only finitely many expressions of 1 as a sum of m fractions with unit numerator (this is “folklore”, but is not 
a difficult exercise). Moreover, the largest value of ni is |CG(1)| = |G|. �

Now we can deal with solvable groups.

Theorem 3.2. There are only finitely many solvable groups G for which �sc(G) has given clique number d.

Proof. By Theorem 2.1, if G is solvable then �sc(G) is complete, so its clique number is k(G) − 1 (since the identity is 
omitted from the graph); now Proposition 3.1 finishes the result. �

We now give a result which will be used several times.

Theorem 3.3. Let G be a finite group. If G has an element of order n = �m
i=1 pki

i , where pi ’s are distinct primes. Then �sc(G) has a 
clique of size �m

i=1(ki + 1) − 1.

Proof. Let x ∈ G be an element of order n. Then (xr)G ∼ (xs)G for all proper divisors r, s of n. Since total number of proper 
divisors of n = �m pki is �m (ki + 1) − 1, we get a clique in �sc(G) of size �m (ki + 1) − 1. �
i=1 i i=1 i=1

4
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Next, we prove the main result for d = 2, in a stronger form.

Theorem 3.4. With the exception of the cyclic groups of orders 1, 2 and 3 and the symmetric group of degree 3, every finite group G
has the property that �sc(G) contains a triangle (that is, has girth 3).

Proof. If G is solvable, then k(G) = ω(�sc(G)) + 1 (the extra 1 coming from the identity of G), so G has at most three 
conjugacy classes. The groups listed in the theorem are all those having this property.

So we may assume that G is non-solvable. If G has an element whose order is not a prime power, then some power (say 
g) of this element has order pq, where p and q are distinct primes. Then �sc(G) contains a clique of size 3, by Theorem 3.3.

So we may further assume that every element of G has prime power order.
These groups were first studied by Higman [15] in 1957; Suzuki [22] determined the simple groups with this property 

in 1965. Subsequently all such groups have been classified [5,13]. The story is somewhat tangled, perhaps due to the lack of 
a common name for the class. Subsequently two names were proposed; a group with this property is called a CP group by 
some authors, and an EPPO group by others. These groups have arisen in connection with other graphs defined on groups, 
including the Gruenberg–Kegel graph (or prime graph) and the power graph: see [9]. The result we require is that a non-
solvable group in which every element has prime power order satisfies one of the following:

(a) G is one of A6, PSL(2, 7), PSL(2, 17), M10 or PSL(3, 4);
(b) G has a normal subgroup N such that G/N is PSL(2, 4), PSL(2, 8), Sz(8) or Sz(32), and N is a direct sum of copies of 

the natural G/N-module over its field of definition.

Suppose first that we are in case (b). If we can find a triangle in the solvable conjugacy class group of G/N , then it lifts 
to a triangle in �sc(G). So it is enough to add the four possibilities for G/N to the list of groups in case (a).

In Sz(8), there are three conjugacy classes of elements of order 13, all represented in a cyclic subgroup of order 13, 
giving us a triangle. Similar arguments apply to Sz(32) (using an element of order 41), PSL(2, 8) (order 7), and PSL(2, 17)

(order 3 and two classes of order 9). In PSL(2, 4), a dihedral subgroup of order 10 meets two conjugacy classes of elements 
of order 5 and one class of involutions. A similar argument applies to A6 (using a dihedral group of order 10), PSL(2, 7)

(using a non-abelian group of order 21) PSL(3, 4) (a non-abelian group of order 21) and M10 (a quaternion group of order 8
meets two conjugacy classes of elements of order 4 and one class of involutions). All this information is easily obtained 
from the ATLAS of Finite Groups [10]. �

Now we come to the main result of the section.

Theorem 3.5. For any positive integer d, there are only finitely many finite groups G such that ω(�sc(G)) = d.

This theorem can be regarded as a strengthening of Landau’s result.

Proof. We assume that there are groups G of arbitrarily large order such that �sc(G) has clique number at most d, and aim 
for a contradiction. We proceed in a number of steps.

Step 1. By Theorem 3.2, we can assume that G is non-solvable.
Step 2. We can assume that the solvable radical of G is trivial. For suppose that Sol(G) �= 1 and that |G/ Sol(G)| = m, 

and suppose we know that m is bounded by a function of d. Then Sol(G) contains non-identity elements from at most d
conjugacy classes of G , since these classes form a clique in �sc(G). Since each such class splits into at most m conjugacy 
classes in Sol(G), we see that Sol(G) has at most dm non-trivial conjugacy classes, and hence has order bounded by a 
function of d and m. So if m is also bounded by a function of d, then |G| is bounded by a function of d, as required.

Step 3. Let G be a group with clique number bounded by d, and let S be the socle of G (the product of the minimal 
normal subgroups). Then S is a product of non-abelian simple groups. We can assume that the number of factors is bounded. 
For if we choose one non-identity element from each factor, the chosen elements generate an abelian group; and elements 
of this group which have different numbers of non-identity coordinates are not conjugate in G .

Step 4. CG(S) = 1. For CG(S) is a normal subgroup of G , and so contains a minimal normal subgroup, say M . But then 
M ≤ S ∩ CG (S) = Z(S), contradicting the fact that S is a product of centreless groups.

Step 5. It follows that G acts faithfully on S by conjugation. Elements of G permute the factors. Since their number is 
bounded, we can assume that G fixes all the factors; so the socle is simple, and G is almost simple.

Step 6. Now we invoke the Classification of Finite Simple Groups. We can assume that G is sufficiently large that its socle 
is not a sporadic group. So there are three cases:

Case 1: S is alternating, so G = An or Sn . Let H be the subgroup of G with �n/2� orbits of size 2 (and one fixed point if n
is odd). Then H is abelian, and elements of H may be products of any even number of transpositions up to 2�n/4�. 
But elements with different numbers of transpositions are non-conjugate, so �sc(G) contains a clique of size �n/4�. 
Thus n is bounded.
5
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Case 2: G is classical of large rank.
Suppose first that the socle of G is PSL(n, q) for large n. Then dropping to a subgroup of index at most 2, G is the 
quotient of a subgroup of P�L(n, q) by the subgroup of scalar matrices. The diagonal matrices with determinant 1
mod scalars form an abelian group of rank at least n − 2, and elements with different numbers of non-1 diagonal 
entries (greater than n/2) are pairwise non-conjugate, giving a large clique.
Now suppose that G is symplectic, unitary, or orthogonal. Then a cover of G acts on its natural module; this module 
is an orthogonal direct sum of r hyperbolic planes and an isotropic space (see [23]), where r is the Witt index (and 
is at least (n − 2)/2, where n is the dimension of the module). So the cover of G contains the direct product of r
copies of the 2-dimensional classical group, and the same contradiction is obtained.

Case 3: G is of Lie type over a large field GF(q). In this case, G contains a subgroup C of index at most 2 in the multiplicative 
group of the field (inside a subgroup of Lie rank 1, which is either PSL(2, q) or Sz(q)). Every conjugate of a generator 
g of C is the image of g or g−1 under a field automorphism. So, if q = pr with p prime, then a conjugacy class 
of G contains at most 2r generators. But altogether there are at least φ((q − 1)/2) generators, where φ is Euler’s 
function. The ratio of these two numbers tends to infinity with q. So a clique of size larger than d can be found if 
q is sufficiently large. �

An alternative proof of the theorem runs as follows. Using arguments as above, we reduce to the case where G is a 
simple group. Then we apply a recent result of Hung and Yang [16], asserting that the number of prime divisors of a finite 
simple group is bounded above by a (quartic) function of the maximum number of prime divisors of an element order. If 
the clique number of the SCC-graph is bounded, then the number of prime divisors of an element order is bounded, and 
hence the number of prime divisors of |G| is bounded.

Next we claim that the prime divisors are bounded. Let p1, . . . , ps be the prime divisors of |G|. We show by induction 
on i that pi is bounded in terms of d. Since the solvable radical is trivial, we may assume that p1 = 2. Now let i > 1 and 
take an element x in G of order p = pi ; let C = 〈x〉. The p − 1 generators of C can lie in at most d distinct conjugacy 
classes. Hence the cyclic group NG (C)/CG (C) has order at least (p − 1)/d (since an element of G conjugating a generator 
of C to another must normalize C ). On the other hand, every prime divisor of the order of NG (C)/CG (C) divides p − 1 and 
therefore lies in {p1, . . . , pi−1}. Moreover, the exponents of the Sylow p j-subgroups are bounded by pd

j . So by induction, 
|NG(C)/CG (C)| is bounded in terms of d. Consequently, p is bounded in terms of d as well.

Now Theorem 5.4 of Babai, Goodman and Pyber [2] gives the result.

We have not attempted to write down an explicit function bounding |G| in terms of the clique number of �sc(G).

Corollary 3.6. Given g, there are only finitely many finite groups G for which �sc(G) can be embedded in a surface of genus g.

This holds because the genus of an embedding of the complete graph Kn is an unbounded function of n.

4. Distance in SCC-graph for locally finite group

A locally finite group is a group for which every finitely generated subgroup is finite. An element of a group is said to 
be a p-element if the order of the element is a power of p, where p is a prime. In this section we obtain some results on 
distance between two vertices of �sc(G) for some locally finite groups, analogous to certain results in [14,18].

Proposition 4.1. Let G be a locally finite group. If x, y ∈ G \ {1} are p-elements, where p is a prime, then d(xG , yG) ≤ 1.

Proof. Since G is a locally finite group and x, y ∈ G \ {1} are p-elements, the subgroup 〈x, y〉 is finite. Let P be a Sylow 
p-subgroup of 〈x, y〉 containing x. Then yg = gyg−1 ∈ P for some g ∈ G since all the Sylow p-subgroups are conjugate. 
Therefore, 〈x, yg〉 is solvable and so d(xG , yG) ≤ 1. �
Proposition 4.2. Let G be a locally finite group. If x, y ∈ G are of non-coprime orders, then d(xG , yG) ≤ 3. If either x or y is of prime 
order then d(xG , yG) ≤ 2.

Proof. Let o(x) = pm and o(y) = pn, where p is a prime and m, n are positive integers. Then xm and yn are nontrivial 
p-elements of G . Therefore, by Proposition 4.1, we have

d((xm)G , (yn)G) ≤ 1.

Clearly, d(xG , (xm)G) ≤ 1 and d((yn)G , yG) ≤ 1. Therefore, if xG �= yG then xG ∼ (xm)G ∼ (yn)G ∼ yG is a path from xG to yG . 
Hence, d(xG , yG) ≤ 3.

Suppose that o(x) = pm and o(y) = p. Then xm and y are nontrivial p-elements of G . Therefore, by Proposition 4.1, we 
have
6
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d((xm)G , yG) ≤ 1.

Thus xG ∼ (xm)G ∼ yG is a path from xG to yG . Hence, d(xG , yG) ≤ 2. �
Proposition 4.3. Let G be a locally finite group and x, y ∈ G. Suppose p and q are prime divisors of o(x) and o(y), respectively, and 
that G has an element of order pq. Then

(a) d(xG , yG) ≤ 5, and moreover d(xG , yG) ≤ 4 if either x or y is of prime power order.
(b) If either a Sylow p-subgroup or a Sylow q-subgroup of G is a cyclic or generalized quaternion finite group, then d(xG, yG) ≤ 4. 

Moreover, d(xG , yG) ≤ 3 if either x or y is of prime order.
(c) If both Sylow p-subgroup and Sylow q-subgroup of G are either cyclic or generalized quaternion finite groups, then d(xG, yG) ≤ 3. 

Moreover, d(xG , yG) ≤ 2 if either x or y is of prime order.

Proof. Let o(x) = pm and o(y) = qn for some positive integers m, n. Let a ∈ G be an element of order pq. Then o(aq) = p
and o(ap) = q. Also, ap commutes with aq .

(a) We have

d(xG , (xm)G) ≤ 1, d((aq)G , (ap)G) = 1, and d((yn)G , yG) ≤ 1.

Since o(xm) = o(aq) = o(yn) = p, by Proposition 4.1, we have

d((xm)G , (aq)G) ≤ 1 and d((ap)G , (yn)G) ≤ 1.

Therefore, d(xG , yG) ≤ 5.
If o(x) = ps for some positive integer s then, by Proposition 4.1, we have d(xG , (aq)G) ≤ 1. Similarly, if o(y) = qt for 
some positive integer t then d(yG , (ap)G) ≤ 1. Therefore, d(xG , yG) ≤ 4.

(b) Without any loss of generality assume that Sylow p-subgroup of G is either a cyclic group or a generalized quater-
nion finite group. Let P and Q be two Sylow p-subgroups of G containing xm and aq respectively. Since P is finite, 
by [20, Theorem 14.3.4], Q is also finite and P = g Q g−1 for some g ∈ G and so gaq g−1 ∈ P . Therefore, 〈xm〉 and 
〈gaq g−1〉 are subgroups of P having order p. Since P is cyclic or a generalized quaternion group, by [20, Theorem 
5.3.6], we have 〈xm〉 = 〈gaq g−1〉. Therefore, gaq g−1 = (xm)i for some integer i and so 〈x, gaq g−1〉 = 〈x, (xm)i〉 = 〈x〉. 
Hence d(xG , (aq)G) ≤ 1. We also have

d((aq)G , (ap)G) = 1, d((ap)G , (yn)G) ≤ 1, and d((yn)G , yG) ≤ 1.

Thus d(xG , yG) ≤ 4.
If o(x) = p then 〈x〉 = 〈gaq g−1〉. Therefore, x = gaqt g−1 for some integer t . We have xG = (aqt)G and so 〈aqt , ap〉 is 
abelian. Hence, d(xG , (ap)G) ≤ 1 and so d(xG , yG) ≤ 3.

(c) If both Sylow p-subgroup and Sylow q-subgroup of G are either cyclic or generalized quaternion finite groups, then 
proceeding as part (b) we get

d(xG , (aq)G) ≤ 1, d((aq)G , (ap)G) = 1, and d((ap)G , yG) ≤ 1.

Therefore, d(xG , yG) ≤ 3.
If o(x) = p then proceeding as in part (b), we have d(xG , (ap)G) ≤ 1 and so d(xG , yG) ≤ 2. �

We conclude this section with the following consequence.

Theorem 4.4. Let G be a finite group. Let H and K be two subgroups of G such that H is normal in G, G = H K and �sc(H), �sc(K )

are connected. If there exist two elements h ∈ H \ {1} and x ∈ G \ H such that hG and xG are connected in �sc(G), then �sc(G) is 
connected.

Proof. Let a, b ∈ G such that aG and bG are two distinct vertices in �sc(G).
If a, b ∈ H then there exists a path from aH to bH , since �sc(H) is connected. Hence, aG and bG are connected. Let a /∈ H

and o(a) = n. Let f : G/H → K/(H ∩ K ) be an isomorphism and f (aH) = x(H ∩ K ), where x ∈ K . Then xn(H ∩ K ) = f (an H) =
H ∩ K and so xn ∈ H ∩ K . Let d = gcd(o(a), |K |). Then there exist integers r, s such that

xd = xnr+|K |s = (xn)r .(x|K |)s ∈ H ∩ K .

Therefore, d > 1. Let p be a prime divisor of d. Then there exists an element k1 ∈ K such that gcd(o(a), o(k1)) �= 1. Therefore, 
by Proposition 4.2, there is a path from aG to kG . Similarly, if b /∈ H then there exists an element k2 ∈ K such that there is 
1
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a path from kG
2 to bG . We have kG

1 = kG
2 or there is a path from kK

1 to kK
2 , since �sc(K ) is connected. Therefore, kG

1 = kG
2 or 

there is a path from kG
1 to kG

2 . Thus aG and bG are connected. If b ∈ H then, by given conditions, there exist two elements 
h ∈ H \ {1} and x ∈ G \ H such that there is a path from xG to hG and a path from hG to bG (since �sc(H) is connected). 
Since x /∈ H , proceeding as above we get a path from xG to kG

3 for some k3 ∈ K and hence a path from aG to xG . Thus we 
get a path from aG to bG . Hence, �sc(G) is connected. �
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