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a b s t r a c t

This paper proposes a two-stage estimation approach for a spa-
tial misalignment scenario that is motivated by the epidemiolog-
ical problem of linking pollutant exposures and health outcomes.
We use the integrated nested Laplace approximation method to
estimate the parameters of a two-stage spatio-temporal model —
the first stage models the exposures using data fusion while the
second stage links the health outcomes to exposures. The first
stage is based on the Bayesian melding model, which assumes
a common latent field for the different data sources for the
pollutants. The second stage fits a generalized linear mixed
model using the spatial averages of the estimated latent field,
and additional spatial and temporal random effects. Uncertainty
from the first stage is accounted for by simulating repeatedly
from the posterior predictive distribution of the latent field. A
simulation study was carried out to assess the impact of the
sparsity of the data on the monitors, number of time points,
and the specification of the priors in terms of the biases, RMSEs,
and coverage probabilities of the parameters and the block-
level exposure estimates. The results show that the parameters
are generally estimated correctly but there is difficulty in es-
timating the Matèrn field parameters. The effect of exposures
on the health outcomes is the primary parameter of interest
for spatial epidemiologists and health policy makers, and our
results show that the proposed method estimates these very
well. The proposed method is applied to measurements of NO2
concentration and respiratory hospitalizations for year 2007 in
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England. The results show that an increase in NO2 levels is
significantly associated with an increase in the relative risks of
the health outcome. Also, there is a strong spatial structure in
the risks, a strong temporal autocorrelation, and a significant
spatio-temporal interaction effect.

© 2023 The Author(s). Published by Elsevier B.V. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Spatially misaligned data, where the data are measured at different spatial scales, are a common
ssue in spatial modeling (Lawson et al., 2016). In ecological and epidemiological research for
xample, it is of interest to estimate the effect of pollution exposures on health outcomes such
s incidence of certain diseases (Cameletti et al., 2019; Blangiardo et al., 2016; Lee et al., 2017).
easurements of exposures are typically collected from a network of monitoring stations, from
atellites, or from outputs of computer simulations using numerical models describing the origins
nd dispersion of exposures. Data from monitoring stations are typically sparsely located in the
patial domain, while the two latter measurements are high resolution data on fine regular grids.
he former are classified as point-referenced or geostatistical data, while the latter are considered
s high-resolution areal data on fine regular grids (Bruno et al., 2016). Moreover, data on health
utcomes such as the incidence of certain diseases are available as aggregated counts on fixed
nd irregular areal units. Such data are organized as counts of mortality, morbidity, or hospital
dmissions by type of disease over a set of regions partitioning the entire study region for each
ime point (Bruno et al., 2016). Although these data derive from individual-level information, which
ould enable the analysis of spatial pattern of case event locations and to quantify the effects of

ong-term exposure, individual-level data at this resolution are usually not available and are also
ostly to obtain in practice, and hence have been summarized across administrative units (Bruno
t al., 2016; Diggle, 2013; Molitor et al., 2006). As a result, time series and areal study designs
ave been frequently used to model health outcome data. However, this comes at a cost since the
ummary statistics on the population across areas cannot be used to assess effects at the individual
evel. Moreover, there is the danger of assuming that the associations observed from the areal level
lso hold at the individual level, often referred to as the ecological fallacy (Bruno et al., 2016).
This paper focuses on a specific spatial misalignment scenario where the outcome of interest

is measured and available in areas or blocks, while the explanatory variables include both point-
referenced and high-resolution grid/raster data. A sensible classical approach for this kind of spatial
misalignment is to compute values of the explanatory variables at the level of the administrative
areas or blocks and to then apply standard statistical methods to regress the outcome of interest
against the block-level exposure values (Bruno et al., 2016); in other words, the analysis is
performed in two stages.

In the context of the problem which motivates this paper, the first stage computes pollution
exposure values at the level of the administrative areas or blocks, also termed upscaling or smooth-
ing, using the points data from the monitors and the high-resolution grid data from the satellite
and the dispersion models. Linking pollution exposures and health outcomes therefore necessitates
inference on a spatial scale that is different from the scale of the original data, referred to as a
change of support problem (COSP). A classical approach to this point-to-area COSP in geostatistics is
block kriging (Gotway and Young, 2002). However, kriging approaches require inversion of matrices,
which can be computationally expensive especially for large datasets. This paper hence proposes a
point-to-area upscaling method that does not require inverting large covariance matrices. If there
were no high-resolution data available, a naive approach would be to simply calculate the average
of the values from the monitoring stations inside a block, possibly with the use of distance-based
or population-based weights, and use this as the block-level value (Bruno et al., 2016). However,
2
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this approach does not work when there are blocks without point-referenced data due to the
sparsity of monitoring stations in the entire spatial domain, or if the values exhibit strong spatial
heterogeneity (Lee et al., 2015; Krall et al., 2015). This issue may be addressed by incorporating
information from satellite data and high-resolution output of numerical models. This process of
merging information from different data sources is referred to as data fusion (Berrocal et al., 2012).
ne approach to performing data fusion, called Bayesian melding, is to regard the point-referenced
ata and the high-resolution grid data as outcomes from a common latent continuous random
rocess with some measurement error, and possibly some covariates and spatial and temporal
ffects (Cameletti et al., 2019; Szpiro and Paciorek, 2013; Bergen and Szpiro, 2015; Fuentes and
aftery, 2005).
In the second stage, the block-level exposure estimates from the first stage are used as an

nput in a statistical model for the health outcomes. A naive approach is to perform the first stage
ndependently of the second stage. This assumes that the estimated exposure values at the block
evel are free from estimation error. Since this approach does not account for the uncertainty in
he first-stage model, this can potentially lead to biased estimates of the health effects of exposures
nd can also underestimate the uncertainty in the second stage model estimates (Cameletti et al.,
019; Gryparis et al., 2009). This approach is termed the plug-in approach and has been shown to
ield biased estimates, especially when the data from the monitors are sparse and the values are
eterogeneous in space (Gryparis et al., 2009). An approach to overcome this issue is a two-stage
ayesian approach, in which the first stage estimates the posterior distribution of the parameters
nd of the latent exposures field, while the second stage estimates the health model by plugging
n simulated values from the posterior predictive distribution of the first-stage model (Gryparis
t al., 2009; Lee and Shaddick, 2010). Another approach is a fully Bayesian approach which
imultaneously estimates the parameters of the exposures model and the health model. However, in
his framework, the health outcomes could strongly influence the exposure surface, especially if the
umber of monitoring stations is relatively small. Nonetheless, the two-stage Bayesian estimator is
hown to approximate the fully Bayesian results quite well (Gryparis et al., 2009).
This paper aims to propose and illustrate an approach for a data fusion problem and a change of

upport problem when estimating the effect of exposures on health outcomes. The proposed method
ses the Bayesian melding model to perform data fusion and also to account for the measurement
rror in the different data sources that we wish to integrate when doing modeling and analysis.
he models are latent Gaussian and are estimated using the integrated nested Laplace approximation

(INLA). Moreover, the stochastic partial differential equation approach is used to efficiently estimate
the spatial field (Lindgren et al., 2011; Rue et al., 2009).

The use of the INLA approach is motivated by its computational benefits. The INLA method is
a deterministic approach for doing Bayesian inference, as opposed to Markov Chain Monte Carlo
(MCMC) method which is a simulation-based approach (Rue et al., 2009). For particular spatial appli-
cations for which the size of the latent Gaussian field is large, the INLA method was able to compute
accurate approximations of the posterior marginals which takes longer for MCMC algorithms to
compute. In addition, the approximation bias is smaller than the MCMC error for typical examples.
Fitting Gaussian random field (GRF) models can be computationally demanding because of the
need to factorize and invert typically large covariance matrices. The SPDE approach continuously
approximates the GRF with a Gaussian Markov Random Field (GMRF) structure, resulting in a sparse
precision matrix and hence speeding up the factorization of the matrix. In addition to making the
computation efficient, the SPDE approach also allows the interpretation of the model in terms of
the parameters of the covariance function (Cameletti et al., 2019).

Section 2 provides a discussion of the Bayesian melding model for data fusion. Section 3 discusses
the proposed spatio-temporal model and the assumptions of the model. It also discusses in some
detail how INLA and the SPDE approach can be used to fit the proposed model. Section 4 discusses
the specifics of the simulation study, while Section 5 presents the results of the simulation study.
Finally, Section 6 discusses an application of the method to real data.
3
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2. Bayesian melding

Data used to conduct exposure assessment in any environmental health study come from various
ources. Most studies use data from a network of monitoring stations set up and maintained by
overnment agencies. However, since the network is typically sparse due to high maintenance costs
f the stations, it will be difficult to capture spatial heterogeneity of the true exposure surface.
urthermore, networks are typically located in urban areas where the pollution level is typically
igh. This leads to biases when fitting models to assess the impact of exposures on health outcomes
s the exposure surface will be over estimated (Lawson et al., 2016).
A solution to this problem is the use of additional sources of information of exposures which pro-

ide more detailed spatial and temporal information. Two specific sources are satellite images and
omputer simulations using numerical or deterministic models. Satellite images are remotely sensed
ata and provide global coverage. On the other hand, numerical models enable the simulation of
he creation and dispersion of pollution exposures using information on pollution sources and on
hemical and physical processes. However, despite the rich spatial and temporal information from
hese data, they are prone to error. Remotely sensed data are subject to retrieval errors. Computer
imulations using numerical models are sensitive to model misspecification of the underlying
rocess, the input data on pollution sources, and the discretization of the continuous field. These
wo data sources are also referred to as proxy data (Lawson et al., 2016). This problem of combining
ata from monitoring stations and proxy data from satellite images and computer simulations is
eferred to as data fusion or data assimilation.

An approach to data assimilation, called Bayesian melding, assumes that both the point-referenced
ata and the proxy data have a common latent spatial process (Fuentes and Raftery, 2005). The
ayesian melding model in a purely spatial context is based on the following equations:

w(s) = x(s) + e(s) (1)

x(s) = µ(s) + ξ (s) (2)

x̃(s) = α0(s) + α1(s)x(s) + δ(s) (3)

x̃(Bi) =
1

|Bi|

∫
Bi

x̃(s)ds, (4)

here w(s) denotes the point-referenced random outcome at location s, x̃(Bi) is the outcome of
he proxy data in grid cell Bi, and x(s) is the latent spatial stochastic process. Eq. (1) states that
he observed values at the monitoring stations are error-prone realizations of the latent process
ith e(s) as the random error term. Eq. (2) postulates that the latent spatial stochastic process is
ecomposed into a mean process µ(s) and a residual process ξ (s). The mean of x(s) can be a function
f covariates, while the residual component may include spatial effects. Eq. (3) models the proxy
ata at the point-level. The point-level outcome x̃(s) is associated with the latent process as a linear
unction of x(s), and with α0(s) and α1(s) as additive and multiplicative calibration parameters,
espectively. In addition to that, there is also an additional random error term, δ(s), for x̃(s). The
ncorporation of these calibration parameters is due to the assumption that the proxy data have
ore noise and are less correlated with the true latent field as compared to the observed values

rom the monitors (Lawson et al., 2016). The calibration parameters α0(s) and α1(s) are assumed
o be either constant or varying in space, but they are usually considered as fixed effects to avoid
dentifiability issues when estimating x(s). Finally, Eq. (4) defines the observed value of x̃(Bi) as a
patial average of x̃(s), where |Bi| denotes the size of block Bi. Studies have shown that Bayesian
elding outperforms kriging in predicting pollution fields (Berrocal et al., 2010; Liu et al., 2011).
he idea of assuming a common latent spatial process for the observed data at different spatial
cales was also used in Wikle and Berliner (2005), McMillan et al. (2010) and Sahu et al. (2010).
he proposed method discussed in Section 3 extends these ideas in a spatio-temporal context.

. Proposed method

There are two main model structures, one for the exposures (referred to as the first-stage model)

nd another one to link the health outcomes with the exposures (second-stage model). Section 3.1

4
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discusses the model specification and assumptions. Sections 3.2 and 3.3 discusses the details of
model estimation for the first-stage and second-stage model, respectively. When estimating the
effect of exposures on the health outcomes using the two-stage modeling framework, it is important
to account for the estimation error in the first stage. This issue is discussed in Section 3.3.1.

3.1. Model assumptions

3.1.1. First-stage model
The first-stage model borrows ideas from the Bayesian melding model in Eqs. (1)–(4), extending

he original formulation to a spatio-temporal context. An extension of Eq. (2) which specifies the
atent spatial process is given by:

x(s, t) = β0 + β⊺z(s, t) + ξ (s, t)
ξ (s, t) = ςξ (s, t − 1) + ω(s, t), |ς | < 1, t = 2, . . . , T .

his follows the spatio-temporal model proposed in Cameletti et al. (2013) for particulate matter
oncentration in the North-Italian region Piemonte. Here, x(s, t) is the true exposures value at
ocation s and time t , z(s, t) are the covariates, β0 is the intercept of the model, and β is the
oefficient vector of the covariates z(s, t). The spatio-temporal dependence in the model is induced
y ξ (s, t) which evolves in time as an autoregressive process of order 1, with ς as the autoregressive
arameter and ξ (s, 1) ∼ N(0, σ 2

ω/(1 − ς2)). The term ω(s, t) is a temporally-independent Gaussian
andom field with mean 0 and Matèrn covariance function, i.e.,

Cov(ω(si, t), ω(sj, u)) =

{
0 t ̸= u
Σi,j t = u,

ithΣi,j =
σ 2
ω

2ν−1Γ (ν)
(κ∥si−sj∥)νKν(κ(∥si−sj∥)) where ∥·∥ is the Euclidean distance in R2 and si and

sj are two locations. In the Matèrn equation, σ 2
ω is the marginal variance, Kν is the modified Bessel

function of the second kind and order ν > 0 usually fixed at 1, and κ > 0 is a scaling parameter.
The Matèrn parameters are σ 2

ω and κ . The interpretation of the spatio-temporal structure of the
model is usually in terms of the σ 2

ω and the range parameter ρ, which is the distance at which the

correlation is around 0.1. The empirically derived relationship between ρ and κ is ρ =

√
8ν
κ

.
Following Eq. (1) of the melding model, the model for the observed values at M monitors is given

by:

w(si, t) = x(si, t) + e(si, t), e(si, t)
iid
∼ N(0, σ 2

e ), i = 1, . . . ,M, (5)

where w(si, t) is the observed value at a monitor in location si at time t . This equation follows the
classical error model in which the observed values at the monitors are error-prone realizations of
the true exposures surface and where the error process is modeled as e(si, t)

iid
∼ N(0, σ 2

e ).
With the assumption that the resolution of the proxy data is reasonably fine, the proxy data

is treated as geostatistical at the centroids. This provides a simplification of the Bayesian melding
model since Eq. (3) is used immediately to model the proxy data instead of using both Eqs. (3) and
(4). The proxy data is typically in the form of a raster data; hence, we use x̃(Bi, t) to denote the
observed value at the pixel or grid cell Bi. The model for the proxy data is then given by

x̃(Bi, t) = x̃(g i, t) = α0 + α1x(g i, t) + δ(g i, t), δ(g i, t)
iid
∼ N(0, σ 2

δ ), (6)

where g i is the centroid of Bi. This simplification avoids the joint specification given by

x̃(s, t) = α0 + α1x(s, t) + δ(s, t), δ(s, t)
iid
∼ N(0, σ 2

δ ) (7)

x̃(Bi, t) =
1

|Bi|

∫
Bi

x̃(s, t)ds. (8)
5
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The simplification in Eq. (6) still incorporates an additive bias α0, a multiplicative bias α1, and
n additional zero-mean random noise term with variance σ 2

δ . The proposed method is not a full
ayesian melding approach since both the proxy data and the observed data from the monitors are
onsidered as geostatistical. The regression calibration method, which is another method to do data
usion, also treats the proxy data as geostatistical; hence this assumption is not new in the literature
Lee et al., 2017). Even with this simplification, the proposed model is still primarily based on the
elding model by assuming that the monitors data and the proxy data are a function of a common

atent spatial process as shown in Eqs. (5) and (6).
A particular scenario for a joint specification in Eqs. (7) and (8) to be infeasible is when there is

o available covariate information whose resolution is finer than the resolution of the proxy data.
or instance, if the resolution of the proxy data is the same for the covariate information z(s, t), then
t will not be feasible to fit both Eqs. (7) and (8) jointly unless it will be assumed that the value
f z(s, t) for any point s inside B is constant. Thus, an implicit assumption in the data generating
rocess other than for the proxy data to have a high resolution is that the covariate information on
(s, t) is collected at the same resolution as the proxy data and also at the level of the monitors. This
implification in the model assumptions also simplifies the estimation procedure for the first-stage
odel as would be presented in Section 3.2. Also, in doing the simulation study which would be
resented in Section 4, the resolution of the simulation grid for the latent field is the same as the
esolution of the proxy data but incorporating the biases α0, α1 and δ(s). On another important note,
he proposed model assumes an iid error process for the monitors and the proxy data, as shown in
qs. (5) and (6). But a more complex structure in the measurement error term could be adopted.
ince the proposed method is based on the INLA method, a limitation in the construction of the
odel for the error process is that it should satisfy the latent Gaussianity assumption in order for

he INLA method to be applicable.
Lastly, the true value of the exposures at an area or block Bi at time t , denoted by x(Bi, t), is

ssumed to be a spatial average of the process x(s, t) over Bi, i.e.,

x(Bi, t) =
1

|Bi|

∫
Bi

x(s, t)ds. (9)

n terms of the notation, x(Bi, t) denotes a spatial average of the latent process, while x̃(Bi, t) is the
bserved value of the proxy data at a pixel Bi which is assumed to be equal to x̃(g i, t), where g i is
he centroid of Bi, as shown in Eq. (6).

.1.2. Second-stage model
The second-stage model specifies the model for the health outcomes as the response variable and

he block-level spatial averages of x(s, t) defined in Eq. (9) as an input to the model. The observed
ount at an irregular block Bi at time t , denoted by Y (Bi, t), is assumed to be a Poisson outcome,
.e.,

Y (Bi, t) ∼ Poisson
(
P(Bi, t)λ(Bi, t)

)
, (10)

where P(Bi, t) is the expected number of cases in area Bi at time t , and λ(Bi, t) is the relative risk
modeled as

log(λ(Bi, t)) = γ0 + γ1x(Bi, t) + ϕit ,

where γ0 is the intercept, γ1 is the coefficient of the true block-level exposure x(Bi, t), and ϕit
is a spatio-temporal random effect. A conditional independence assumption given the effects is

assumed for the Poisson outcome, i.e., Y (Bi, t)|γ0, γ1, ϕit
ind
∼ Poisson

(
µ(Bi, t) = P(Bi, t)λ(Bi, t)

)
. The

spatio-temporal random effect term can take several forms as discussed in Blangiardo and Cameletti
(2015). A general form is given as

log(λ(Bi, t)) = γ0 + γ1x(Bi, t) + φi + ψi + ζt + νt + υit , (11)

where φi is an iid spatial random effect, ψi is a structured spatial random effect, νt is an iid

temporal random effect, ζt is a structured temporal random effect, and υit is a spatio-temporal

6
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interaction effect. The interaction effect has four types, depending on which of the two spatial
effects and which of the two time effects interact. Structured random effects include random
walk models, autoregressive processes, and correlated random effects of different dimensions.
These different ways to specify the spatio-temporal structure of the model do not violate latent
Gaussianity, and hence all posterior marginals of the model parameters can be estimated using the
INLA method (Blangiardo and Cameletti, 2015).

Fig. 1 shows a simulated data with number of time points T = 3: the counts at the irregular
locks Y (Bi, t) (top), the proxy data x̃(s, t) (middle), and data from a network of monitoring stations
w(s, t) (bottom). The true values of the parameters and other details of the simulation study are
discussed in Section 4.

3.2. Model fitting for first-stage model

Suppose the data from the monitors at time t are given by w
⊺
t =

(
w(s1, t) w(s2, t) . . . w(sM , t)

)
,

t = 1, . . . , T . We assume that we have T time points and M monitors. Also, the data from the proxy
data at time t is given by x̃⊺t =

(
x̃(g1, t) x̃(g2, t) . . . x̃(gG, t)

)
, t = 1, . . . , T . Here, we denote by

G the number of grid cells for the proxy data, and we denote by x̃(g i, t) the observed value at the grid
cell whose centroid is g i at time t, i = 1, . . . ,G. Since both wt and x̃t are error-prone realizations
of the true exposure values xt , then we define the vector of true exposures combined for both the
monitors and the proxy data at time t as xt =

(
xt,M xt,P

)⊺, where xt,M denotes the vector of true
exposures at the monitors at time t , and xt,P denotes the vector of true exposures at the centroids
of the grid cells making up the proxy data at time t . Then the vector of true exposures for all
t = 1, . . . , T is denoted by x =

(
x⊺1 x⊺2 . . . x⊺T

)⊺. Similarly, we define ξ =
(
ξ
⊺
1 ξ

⊺
2 . . . ξ

⊺
T

)⊺,
where ξ

⊺
t =

(
ξ
⊺
t,M ξ

⊺
t,P

)
, with ξt,M as the vector of spatio-temporal random effects at the monitors

for time t and ξt,P as the vector of spatio-temporal random effects at the centroids of the grid cells
making up the proxy data at time t . And finally ω =

(
ω

⊺
1 ω

⊺
2 . . . ω

⊺
T

)⊺ as the vector of values of
the Gaussian random field, where ω

⊺
t =

(
ω

⊺
t,M ω

⊺
t,P

)
; and z =

(
z⊺
1 z⊺

2 . . . z⊺
T

)⊺, as the vector
of a single covariate, where z⊺

t =
(
z⊺
t,M z⊺

t,P
)
. This is can easily be generalized to the case of more

than one covariate.
The first-stage estimation procedure fits the following joint model:

wt = xt,M + et , et ∼ N(0, σ 2
e IM ), t = 1, . . . , T (12)

x̃t = α01G + α1xt,P + δt , δt ∼ N(0, σ 2
δ IG), t = 1, . . . , T (13)(

xt,M
xt,P

)
= β01M+G + β1

(
z t,M
z t,P

)
+

(
ξt,M
ξt,P

)
, t = 1, . . . , T (14)(

ξt,M
ξt,P

)
= ς

(
ξt−1,M
ξt−1,P

)
+

(
ωt,M
ωt,P

)
,

(
ωt,M
ωt,P

)
∼ N(0,Σ ), t = 1, . . . , T (15)

where IM and IG are identity matrices of dimension M × M and G × G, respectively, and 1G and
1M+G is a vector of 1’s of dimension G and M + G, respectively. As discussed in Section 3.1, ωt is a
temporally-independent Gaussian vector with mean zero and covariance matrixΣ , whose elements
are computed using the Matèrn covariance function with parameters σ 2

ω and κ .
In the system of equations above, the latent vector xt,M is present in both (12) and (14). Also, xt,P

is present in both (13) and (14). In order to make sure that the values of xt,M and xt,P are equivalent
for the different equations when fitting the joint model, xt,M in (12) is assumed to be an (almost)
identical copy of xt,M in (14). Similarly, xt,P in (13) is assumed to be an (almost) identical ‘copy’ of
xt,P in (14) with α1 as a scaling parameter. To create these ‘copies’, the latent field xt is extended to
χt =

(
x⊺t x∗⊺

t
)⊺
, t = 1, . . . , T , where x∗

t =
(
x∗⊺
t,M x∗⊺

t,P

)⊺ is a copy of xt . The prior specification for
the extended latent field at time t , π (χt ), will ensure that x∗

t is an identical copy of xt . In particular,
x∗

t,M and x∗

t,P will be defined later in such a way that E(x∗

t,M ) = xt,M and E(x∗

t,P ) = α1xt,P . This is
the same approach as in Martins et al. (2013) and Ruiz-Cárdenas et al. (2012) and is called a data
augmentation approach.
7
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Fig. 1. Sample data for a spatio-temporal analysis: count data (top row), proxy data (middle row), monitoring stations
data (bottom).
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Since xt on the left-hand side of (14) is unknown, xt is transposed on the right-hand side of the
quation. The remaining vector of zeros in the left-hand side are referred to as ‘pseudo-zeros’. This
ives the following re-expression of the joint model:

wt = x∗

t,M + et , et ∼ N(0, σ 2
e IM ), t = 1, . . . , T (16)

x̃t = α01G + x∗

t,P + δt , δt ∼ N(0, σ 2
δ IG), t = 1, . . . , T (17)

0t = −

(
xt,M
xt,P

)
+ β01M+G + β1z t + ξt , t = 1, . . . , T (18)

ξt = ςξt−1 + ωt , ωt ∼ N(0,Σ ), t = 1, . . . , T (19)

Suppose we have θ =
(
σ 2
e σ 2

δ α0 α1 β0 β1 ς σ 2
ω κ

)⊺. The posterior distribution of
interest is π (χ, ξ, θ|w, x̃, 0), given by

π (χ, ξ, θ|w, x̃, 0) ∝ π (w|χ, ξ, θ)π (x̃|χ, ξ, θ)π (0|χ, ξ, θ)π (ξ|θ)π (θ)π (χ).

The first two are straightforward since wt |χ, ξ, θ
ind
∼ N(x∗

t,M , σ
2
e IM ) and x̃t |χ, ξ, θ

ind
∼ N(α01G +

x∗

t,P , σ
2
δ IG). For the pseudo-zeros, we have 0t |χ, ξ, θ

ind
∼ N(−xt +β01M+G +β1z t + ξt ,

1
τ0
IG), where τ0

s a precision parameter and is fixed at a large value because of the absence of measurement error in
he pseudo-zeros. The form of the distribution of ξt |θ uses the fact that ξt |ξt−1 ∼ N(ςξt−1,Σ ), t =

2, . . . , T , and that ξ1 ∼ N(0, 1
1−ς2

Σ ).
For the extended latent field χ, we have

π (χ) =

T∏
t=1

π (χt ) =

T∏
t=1

π (x∗

t,M |xt,M )π (x∗

t,P |xt,P )π (xt ).

Since x∗

t,M and x∗

t,P are independent copies of xt,M and xt,P , respectively, then both are assumed to

e Gaussian centered on xt,M and α1xt,P and with very high precision, i.e., x∗

t,M |xt,M ∼ N
(
xt,M ,

1
τx∗

)
nd x∗

t,P |xt,P ∼ N
(
α1xt,P ,

1
τx∗

)
, where τx∗ is fixed at some large value. The latent field xt is assumed

o be independent Gaussian centered at zero but with fixed high value for variance (low precision),

.e., xt ∼ N
(
0,

1
τ x

)
, where τx is a small value. Although the precision is very low, the pseudo-zeros

ave very high precision, and so the value of xt in (18) is forced to be close to its true value.
Finally, the components of θ are assumed to be independent, i.e., π (θ) =

∏H
i=1 π (θi), where H is

he number of parameters in θ.
The joint model specified in Eqs. (16)–(19) is a correct representation of Eqs. (12)–(15) which

oes not violate latent Gaussianity; hence, allowing the use of INLA to fit the first-stage joint
odel. This data augmentation approach can be implemented using the R-INLA functionalities,
ome details of which are discussed in Martins et al. (2013) and Ruiz-Cárdenas et al. (2012).

.2.1. SPDE representation
In the SPDE representation of the model, the latent (Gaussian) field, ωt , which is continuously

defined in space is discretized on a mesh or a triangulation with K vertices. The discretization at
an arbitrary location s at time t is given by

ωD(s, t) =

K∑
k=1

ψk(s)wkt , (20)

where {ψk} are basis functions chosen to be piece-wise linear in each triangle, i.e., ψk = 1 at vertex
k and 0 at other vertices, and {wkt} are Gaussian-distributed weights. The basis functions are not

indexed by t since we use the same mesh for all time points. The weights {wkt} on the other hand do

9
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vary for different time points; hence, the weights are indexed by t . Eq. (20) provides a continuously-
indexed but finite-dimensional approximation to the solution of the following stochastic partial
differential equation at a fixed time t:

(κ2
−∆)α/2ω(s, t) = W(s, t), s ∈ Rd, α = ν + d/2, κ > 0, ν > 0 (21)

where (κ2
−∆)α/2 is a pseudodifferential operator, W(s) is a Gaussian white noise with unit variance,

and ∆ is the Laplacian defined by ∆ =
∑d

i=1
∂2

∂ω2
i
. In the context of the problem at hand, d = 2; but

his result holds true at higher dimensions. The solution of this SPDE is a Gaussian field with the
atèrn covariance function (Lindgren et al., 2011). The benefit of using the approximation in Eq. (20)

s that its full distribution, which is specified by the joint distribution of the weights wk, has a sparse
precision matrix and closely approximates the inverse precision of the Matèrn Gaussian field in
some norm (Lindgren et al., 2011). This sparsity speeds up computation and model estimation.

Denoting by ωD
t the vector of values at the nodes of the mesh at time t , we have ωD

t ∼ N(0,Q−1
s )

with Q s a sparse precision matrix. The details on how the elements of Q s are computed are
discussed in Lindgren et al. (2011). Eq. (19) now defined on the nodes of the mesh is then expressed
as

ξDt = ςξDt−1 + ωD
t , ωD

t ∼ N(0,Q−1
s ), t = 1, . . . , T ,

where ξD1 ∼ N
(
0, 1

1−ς2
Q−1

s

)
and ξDt is a K -dimensional vector of spatio-temporal random effect

t the K nodes of the mesh at time t . The joint distribution of the TK -dimensional vector ξD =(
ξ
D⊺
1 . . . ξ

D⊺
T

)⊺
is ξD ∼ N(0, (Q s⊗Q T )−1), where Q T is the precision matrix for the autoregressive

process of order 1, the form of which is given in Rue and Held (2005).
Since ξ and ω are estimated in a mesh whose nodes may be different from the observed locations

and from the centroids of the grid cells, there needs to be a linear mapping from the nodes to the
locations of the observed values of the monitors and proxy data. This is done by incorporating a
projection or mapping matrix, say B, which is a sparse (M + G) × K matrix, so that

xt = β01G+M + β1z t + BξDt , t = 1, . . . , T , or

x(si, t) = β0 + β1z(si, t) +

K∑
k=1

bikξtk,

where ξtk is the kth element of the vector ξDt and bik is the (i, k)th element of the mapping matrix
B.

The first-stage hierarchical SPDE model is then given by

wt = x∗

t,M + et , et ∼ N(0, σ 2
e IM ), t = 1, . . . , T (22)

x̃t = α01G + x∗

t,P + δt , δt ∼ N(0, σ 2
δ IG), t = 1, . . . , T (23)

0t = −

(
xt,M
xt,P

)
+ β01G + β1z t + BξDt (24)

ξDt = ςξDt−1 + ωD
t , ωD

t ∼ N(0,Q−1
s ), t = 1, . . . , T (25)

The joint model specified in Eqs. (22)–(25) is a latent Gaussian model and hence can be fitted
using the INLA method. Using ϑ to denote the vector of hyperparameters, we then have ϑ =(
α1 σ 2

e σ 2
δ ς σ 2

ω κ
)⊺. The posterior marginals of ϑ is approximated as

π (ϑi|wt , x̃t ) =

∫
π (ϑ|wt , x̃t )dϑ−j.

The latent Gaussian vector is given by
(
x⊺ x∗⊺ ξ⊺ α0 β0 β1

)⊺, whose posterior marginals are
computed as

π (·|wt , x̃t ) =

∫
π (·|θ,wt , x̃t )π (θ|wt , x̃t )dθ.
10
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The mathematical and computational details of the INLA method are discussed in Rue et al. (2009).
Moreover, the R codes to jointly fit Eqs. (22)–(25) is available on https://github.com/StephenVillejo
/DataFusionINLASPDE.

3.2.2. Computing block level exposures
The first-stage model is used to predict the values of x(s, t) on a prediction grid. Two methods

o compute the block-level exposures discussed in Cameletti et al. (2019) are explored in the
imulation study done in this work. Suppose we denote by x̂(Bi, t) the predicted value of exposures

t block Bi at time t , so that x̂(Bi, t) ≈
1

|Bi|

∫
Bi
x(s, t)ds. The first method considers all the prediction

grid cells which overlaps with block Bi. Suppose we denote by x̂(g j, t) the predicted value of x(g j, t)
t the grid cell whose centroid is g j at time t and h(g j, Bi) the proportion of the area of block Bi
hich overlaps with the grid cell. The first method is computed as follows:

Method 1: x̂(Bi, t) =

∑
∀j

x̂(g j, t)h(g j, Bi). (26)

The first method computes the value of x̂(Bi, t) as a weighted mean of the predicted values at the
grid cells which overlap with block Bi where the weights are the proportion of block Bi which
overlap with the grid cells. On the other hand, the second method uses only the grid cells whose
centroids are inside block Bi. The computed value of x̂(Bi, t) using the second method is then a
simple mean, i.e., it is computed as

Method 2: x̂(Bi, t) =
1

#(gj ∈ Bi)

∑
gj∈Bi

x̂(g j, t), (27)

where #(gj ∈ Bi) is the number of grid cells whose centroids are inside block Bi.

3.3. Model fitting for second-stage model

The latent Gaussian vector for the second-stage model is given by
(
γ0 γ1 ϕ

)⊺ where ϕ is the
vector containing all the spatial effects, temporal effects, and their interaction. The hyperparameter
vector, say θϕ , consists of all the model constants used to parameterize the components of ϕ. For
instance, if a random walk model of order 1 is used for the temporal effect, then the variance pa-
rameter for the random walk process is included in the hyperparameter vector. The different model
specifications for ϕ are discussed in Blangiardo and Cameletti (2015). The posterior distribution of
interest is

π (γ0, γ1,ϕ, θϕ |y) ∝ π (y|γ0, γ1,ϕ, θϕ)π (ϕ|θϕ)π (γ0, γ1, θϕ),

where y is the vector of all observed counts Y (Bi, t). π (y|γ0, γ1,ϕ, θϕ) has a simple form since the
elements of y are independent conditional on the latent field and hyperparameters. The form of
π (ϕ|θϕ) depends on the model specified for the elements of ϕ and has a straightforward structure
(Blangiardo and Cameletti, 2015). Lastly, π (γ0, γ1, θϕ) can be safely assumed as a product of the
individual priors.

In the simulation study done in this paper which is discussed in Section 4, a simpler form is
assumed for the log risks to illustrate how the model fitting is done and to identify scenarios that
could potentially affect model performance. We assume the following form for the log risks:

log(λ(Bi, t)) = γ0 + γ1x(Bi, t) + φi + νt , (28)

where φi
iid
∼ N(0, σ 2

φ ) and νt
iid
∼ N(0, σ 2

ν ). Hence, we assume that ϕit is equal to the sum of an
unstructured spatial effect and an unstructured temporal effect. The latent Gaussian field in this
case is given by

(
γ0 γ1 φ⊺ ν⊺

)⊺ while the hyperparameter vector is
(
σ 2
φ σ 2

ν

)⊺
. The posterior

distribution of interest is

π (γ0, γ1,φ, ν, σ 2
φ , σ

2
ν |y) ∝ π (y|γ0, γ1,φ, ν)π (φ|σ 2

φ )π (ν|σ
2
ν )π (γ0, γ1, σ

2
φ , σ

2
ν ).

For π (γ , γ , σ 2, σ 2), the prior distributions can be defined independently for each parameter. This
0 1 φ ν
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t(
is a latent Gaussian model; hence, all the posterior marginals can be approximated using INLA. In
the general case, Eq. (11) provides a more complex form for the spatio-temporal effects.

3.3.1. Propagating uncertainty from the first-stage to the second-stage model
One approach to propagate uncertainty from the first-stage to the second-stage model is

o sample several times from the posterior predictive distribution of the latent field x =

x⊺1 x⊺2 . . . x⊺T
)⊺, and then to compute all the block-level values of exposures from each sample

using Eqs. (26) and (27) which are then used as an input to fit the second-stage model. The final
parameter estimates of the second-stage model are then computed using the combined results from
all samples (Cameletti et al., 2019; Blangiardo et al., 2016; Lee et al., 2017; Liu et al., 2017). Suppose
we simulate from the posterior predictive distribution of x J times, then the steps to propagate
uncertainty from the first-stage to the second-stage model are as follows:

Do the following J times:

1. Simulate from the posterior distribution of the latent field π̂ (x|·) on the prediction grid. This
distribution is obtained from the first-stage model.

2. Compute block-level exposures, x̂(Bi, t) for all blocks Bi in the study region, using the two
methods in Eqs. (26) and (27).

3. Fit the second-stage model using INLA as described in Section 3.3.
4. For each parameter in the second-stage model, generate samples from its posterior marginal

distribution.

After completing all J cycles, all samples from step (4) are combined and used to approximate the
posterior distribution of the second-stage model parameters.

4. Simulation study

The performance of the proposed method is investigated using a simulation study. The study
region used is the Belo Horizonte region in Brazil which is available in the spdep package in R (Bivand
and Piras, 2015) and is the same study region used in Cameletti et al. (2019) from which the
extensions done in this work are based. Fig. 1 shows the study region map. We used this for
the simulation study since it has few areas (98 of them) which makes it more computationally
manageable. In the case study presented in Section 6, we used England data which has relatively
more areas. The Bayesian computation are done using the functionalities in the R-INLA library. All
results in the paper can be replicated using the R code which is available on https://github.com/St
ephenVillejo/DataFusionINLASPDE.

4.1. Simulation of the exposure field

For the Matèrn covariance function parameters, the spatial variance σ 2
ω is set to 1.5, while the

range parameter ρ is 1.89 which corresponds to around 46% of the maximum distance in the
100 × 100 simulation grid. The autoregressive parameter ς is set to 0.7. The single covariate z(s, t)
was generated from N(µ = 0, σ = 1). The fixed effects are β0 = 0 and β1 = 2. The simulated
values of x(Bi, t) is a spatial average of all the points inside block Bi, i.e.,

x(Bi, t) =
1

|Bi|

∫
Bi

x(s, t)ds ≈

∑
∀s∈Bi

1
#(s ∈ Bi)

x(s, t).

4.2. Simulation of the health data

Using the simulated values of x(Bi, t), it is straightforward to simulate the health data. The fixed
effects are γ0 = −3 and log(γ1) = 1.2. The assumed value of γ1 implies an expected increase of 20%
in the relative risk for a one unit increase in x(Bi, t). The assumed values of the variance parameters
of the spatial effect and the temporal effect are σ 2

φ = σ 2
ν = 0.02. The expected number of cases for

each block are generated from a uniform distribution and are made to be proportional to the size
of the block so that blocks with bigger surface areas have higher expected number of cases.
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https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE
https://github.com/StephenVillejo/DataFusionINLASPDE


S.J. Villejo, J.B. Illian and B. Swallow Spatial Statistics 54 (2023) 100744

4

A
2
s
b
o
a
t
t
c
F
o

σ
d
o
l
m

4

a
w
t
i

Fig. 2. Non-sparse network of monitors (left) and a sparse network of monitors (right).

.3. Simulation of the monitors and proxy data

The monitors are simulated by getting a random sample of points from the simulation grid.
non-sparse network was considered and investigated in Cameletti et al. (2019) - either getting
%, 10%, or 30% of the points from the simulation grid inside each block. Their simulation results
howed that block predictions are better in terms of the RMSE and the correlation with the true
lock-level exposure values when there are more monitoring stations in the data. One contribution
f this paper is to look at the case of having a sparse network of monitoring stations, i.e., there
re few monitors and several areas or blocks do not have monitors inside. This study considers
wo scenarios for the monitoring stations data. The first scenario is a non-sparse network similar to
hat considered in Cameletti et al. (2019). The second scenario is a sparse network and is carefully
hosen in such a way that it resembles how actual data of sparse monitoring stations look like.
ig. 2 shows a simulated non-sparse network (left) and a sparse network (right) of monitors. The
bserved values w(si, t), i = 1, . . . ,M follow the classical error model, with the error term assumed

as e(si, t) ∼ N(0, σ 2
e = 0.1). For the proxy data, the bias parameters are α0 = −1, α1 = 1.5, and

2
δ = 1. Fig. 3 shows an example of a simulated exposures field (left) and the corresponding proxy
ata after adding the biases (right). The figure shows that there is more variability in the values
f the proxy data, which is expected because of the scaling in the values through α1, a shift in the
ocation of the center through α0, and an additional random noise whose variance is larger than the
easurement error in the monitors.

.4. Prediction grid

The effect of the resolution of the prediction grid on the block-level predictions using Eqs. (26)
nd (27) has been investigated in Cameletti et al. (2019). Their simulation results have shown that
ith a finer prediction grid, the block-level exposure predictions are also more accurate. Hence, in
he simulation study in this paper, a 100 × 100 prediction grid is used for all the scenarios, which
s the same grid resolution used to simulate the true exposures field and the proxy data.
13
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Fig. 3. Simulated true exposures field (left) and corresponding proxy data after adding biases (right).

4.5. Simulation scenarios

There are three simulation settings considered in the study:

1. The sparsity of the monitoring stations: sparse or non-sparse. This is illustrated in Fig. 2.
2. Length of time: T = 3, T = 6, or T = 12. Since this simulation study is a spatio-temporal

extension of that in Cameletti et al. (2019), it is important to investigate the effect of the
length of time in terms of the model estimates and predictions.

3. Prior specification: use of non-informative priors or informative priors. Since the sensitivity
of the posterior estimates to the priors is an important part of Bayesian analysis, the effect
of prior specification is therefore investigated in the simulation study. Not all parameters are
given informative priors. Only those parameters which are usually difficult to estimate are
given informative priors — these include the parameters of the latent Gaussian field σ 2

ω, ρ,
and ς ; the variance parameters σ 2

ν , σ
2
φ , σ

2
e , and σ

2
δ ; and α1 which is the scaling parameter of

xt,P .

There are a total of 12 simulation scenarios. For each scenario, 500 independent replications
re done in order to evaluate the performance of the proposed method. In fitting the second-stage
odel, the number of simulations from the posterior predictive distribution of the latent field x(s, t)

s set at J = 100. For each estimated posterior marginal distribution, 200 random values were
simulated to compute posterior quantities of interest which include the posterior mean, posterior
median, and 95% credible intervals.

Table 1 shows all the simulation scenarios and how they are labeled in the figures in Section 5.
Table 2 shows the priors for the first-stage model parameters for the two cases. Non-informative

riors are used in both cases for the parameters β0, β1, and α0. The non-informative priors of the
Matèrn parameters are defined in terms of a reparameterization of the parameters of the SPDE
in Eq. (21). A detailed discussion of prior specification for Matèrn models using the SPDE approach
is discussed in (Lindgren and Rue, 2015). The informative priors for ρ and σ 2

ω are the so-called
penalized-complexity (PC) priors (Fuglstad et al., 2019). The PC prior is a weakly informative prior
14
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Table 1
Simulation scenarios in the simulation study.
Sparsity Priors specification Time points

3 6 12

No Informative A E I
Non-informative B F J

Yes Informative C G K
Non-informative D H L

Table 2
Priors specification for first-stage model parameters.
Parameter Informative prior Non-informative prior

β0 N(0,∞) N(0,∞)
β1 N(0, 1000) N(0, 1000)
α0 N(0,∞) N(0,∞)
α1 N(1.5, 1) N(0, 1000)
σ 2
e Inv Gamma(100, 10) Inv Gamma(1, 5e−5)
σ 2
δ Inv Gamma(10, 10) Inv Gamma(1, 5e−5)
ρ PC(ρ0, α)a See Lindgren and Rue (2015)
σ 2
ω PC(σω,0, α)a See Lindgren and Rue (2015)

ς log
(
1 + ς

1 − ς

)
∼ N(0.75, 0.052) log

(
1 + ς

1 − ς

)
∼ N(0, 0.152)

aThese are called penalized-complexity priors which are weakly informative priors
(Fuglstad et al., 2019).

Table 3
Priors specification for second-stage model parameters.
Parameter Informative prior Non-informative prior

γ0 N(0,∞) N(0,∞)
γ1 N(0, 1000) N(0, 1000)
σ 2
φ PC(σφ,0, α)a Inv Gamma(1, 5e−5)
σ 2
ν PC(σν,0, α)a Inv Gamma(1, 5e−5)

aThese are called penalized-complexity priors which are weakly informative priors
(Fuglstad et al., 2019).

which penalizes complexity or additional flexibility in the model; hence, the prior tends to prefer
the simpler base model. It works on the principle that a model further away from the base model
should be more strongly penalized. For the Matèrn parameters, the PC prior shrinks the model to
the base model with infinite range and zero marginal variance. The informative priors for ρ and σ 2

ω

hown in Table 2 are a joint specification, where σω,0 and ρ0 are the upper and lower limit for σω
nd ρ, respectively, and α is the tail probability. In fitting the models in the simulation study, σω,0

and ρ0 are set as equal to the true value, and α = 0.05.
There are three precision parameters in the first-stage model that are fixed at an appropriate

level. The first one is the precision parameter, τ0, for the pseudo-zeros which is fixed at a large
value. The second one is the precision parameter, τx, for the prior of the latent field xt which is
ixed at a very small value. Finally, for the conditional distribution of the copies x∗

t,M and x∗

t,P , the
recision parameter τx∗ is also fixed at a large value so that both mimic xt,M and xt,P , respectively.
Table 3 shows the priors for the second-stage model parameters for the two cases. The parame-

ers α0 and α1 are given non-informative priors for the two cases. The variance parameters σ 2
φ and

2
ν are also given the PC priors for the cases of informative priors.
The performance of the proposed method is evaluated in terms of the bias, RMSE, and coverage

robabilities for each parameter estimate and block-level predictions x̂(Bi, t). The details are found
n Appendix A.
15
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Fig. 4. Plot of bias (purple) and RMSE (yellow) for α0 . (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

. Results and discussion

This section presents the results of the simulation study. Section 5.1 presents the results for the
irst-stage model parameters, Section 5.2 for the block-level exposure estimates, and Section 5.3 for
he second-stage model parameters.

.1. First-stage model parameters

Figs. 4 and 5 show plots of the biases and RMSEs for the additive and multiplicative bias in the
roxy data, α0 and α1. These parameters are important since both account for the bias in the proxy
ata. The obtained estimates of these bias parameters will be used to recover the latent exposures
ield given the observed values of the proxy data. As shown in Figs. 4 and 5, the biases are generally
lose to zero for all scenarios. However, the RMSEs are higher when the data on the monitors are
parse (scenarios C, D, G, H, K, L); but the values are decreasing with more time points. The proposed
ethod is able to correctly estimate α1, which is expected to be difficult to estimate since it is a
caling parameter of the latent exposures field x(s, t). There is no difference in the bias and the
MSE for α1 when using informative or non-informative prior.
Fig. 6 shows the biases and RMSEs for the measurement error at the monitors and at the proxy

data, σ 2
e and σ 2

δ , respectively. Similar to α0 and α1, both parameters are of interest since both
measure the systematic error in the data. An accurate estimation of these parameters also implies
good estimates for the latent exposures field. For σ 2

e , the biases are close to zero for all scenarios but
the RMSEs are generally higher when the data on the monitors are sparse and when non-informative
priors are used (scenarios D, H, L). This is expected since with few data points from monitors, there
is also little information at hand to do the estimation. But for as long as informative priors are used
or there are several time points, the RMSEs are generally lower even if the data on the monitors
is sparse. For σ 2, the biases are also close to zero for all scenarios. The RMSEs are also generally
δ
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Fig. 5. Plot of bias (purple) and RMSE (yellow) for α1 . (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

Fig. 6. Plot of bias (purple) and RMSE (yellow) for the measurement error variances σ 2
e (left) and σ 2

δ (right). (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

mall, and is decreasing with more time points. The sparsity in the monitors data and the priors
pecification does not seem to affect the bias and the RMSE of σ 2

δ .
Fig. B.13(a)–(b) and (d)–(e) in Appendix B shows the biases and RMSEs for the Matèrn parameters

σ 2
ω and ρ. The biases and RMSEs are clearly smaller when informative priors are used which is the

expected result since the Matèrn parameters are typically very difficult to estimate. Even if the
monitors data is sparse, the biases and RMSEs are still small as long as informative priors are used.
This is expected since with few observed values from monitors, we would rely on informative priors
to correctly estimate the Matèrn parameters. When non-informative priors are used and data on
the monitors are sparse, the bias and RMSEs are expected to be high.
17
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For the temporal parameter of the exposures field, ς , the biases and RMSEs are generally close to
ero for all scenarios as shown in Fig. B.13(c) and (f) in Appendix B. The RMSEs are relatively higher
hen there are fewer time points. This is expected since ς parameterizes the temporal evolution
f the spatial field, so that more time points means more information available for estimation. Even
ith non-informative priors, for as long as there are relatively more time points, the ς parameter

s estimated well.
Lastly, shown in Fig. B.14 also in Appendix B are the biases and RMSEs for β0 and β1. For both

arameters, the biases are close to zero for all scenarios. However, when the data on the monitors
s sparse, the RMSE of β1 is large. The parameter β1 is the coefficient of the covariate of the latent
xposures field. Although this information is also available for the high-resolution proxy data, the
roxy data is noisier and less correlated with the true values of the latent field. Hence, this could be
he reason for the difficulty in estimating it correctly when the monitors data is sparse. For more
ime points, the RMSEs for both β0 and β1 are generally smaller, since more time points means
ore information available to do the estimation.

.2. Block-level exposure estimates

Fig. 7 shows the average of the correlations between the block-level exposure estimates and the
orresponding true values for all scenarios. Each point in the plot corresponds to an area or block in
he simulation study region. Since there are T time points in the simulated data, the values shown
n the figure is the average of the correlations from the T time points which are further averaged
rom all 500 replicates. All the correlations range from around 0.97 to some value close to 1.0, but
sing method 2 for computing spatial averages generally gave higher correlations than method 1
or all scenarios. Also, the correlations are generally higher when there are more time points, which
s true for both methods.

Fig. B.15 in Appendix B shows the biases and RMSEs in the block-level exposure estimates for
ll scenarios. Similar to Fig. 7, each point in the plot corresponds to an area or block. The bias for
ach block at a given time point is computed as the average of the difference between the true block
xposure value and its estimated value across all the 500 replicates. The RMSE is computed similarly
or each block for a given time point. The final values shown in Fig. B.15 are then the average of
he values for all time points T . The bias in the block-level exposures for all 98 areas are generally
lose to zero; but the spread in the biases are wider for method 1 than method 2. Also, when the
ata on the monitors are sparse and the priors are non-informative, the biases are generally larger,
specially for scenarios with fewer time points. This pattern observed for the biases is also true for
he RMSEs. There are a couple of areas with very high RMSEs when using method 1, and this is
onsistent for all the scenarios. The RMSEs from using method 1 are generally higher compared to
ethod 2 for all the scenarios.

.3. Second-stage model parameters

The main parameter of interest is γ1 since it is the coefficient of the exposures in the health
odel. Fig. 8 shows the biases and the RMSEs for γ1 for all the scenarios. There is no striking
ifference in the biases and RMSEs between the two methods for computing the spatial averages of
xposures. The figures show that the bias in γ1 is close to zero for all scenarios. Also, for more time
oints, the RMSEs become smaller. This is expected since with more time points, there are more
nformation available to estimate the parameter properly. Moreover, the sparsity of the monitors
oes not affect the quality of estimates for γ1. This is also expected since as shown in Section 5.2,
he obtained block-level exposures estimates are highly correlated and are close to the true values
f block-level exposures whether the monitors data is sparse or not. Hence, the obtained estimates
or γ1 will be similar for either case. Lastly, even with non-informative priors on γ1, the bias and
he RMSE is consistently small. Note that in the simulation study, the γ1 parameter has a non-
nformative prior for all the scenarios, and so all the values shown in Fig. 8 are computed using
on-informative priors for γ1. The insights for γ1 also holds true for the intercept γ0, as shown in
ig. B.16(a) and (b) in Appendix B.
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Fig. 7. Plot of correlations with true bock-level exposures for all scenarios.

For the variance parameters in the second-stage model, the plots of the biases and RMSEs for all
cenarios are shown in Fig. B.16(c)–(f) of Appendix B. For the variance parameter of the time effect
2
ν , the biases and RMSEs are generally smaller when there are more time points. This makes sense
ince σ 2

ν is a parameter of the temporal random effect, and so it is more accurately estimated when
he length of the time series is longer. In addition, the prior specification also affects the precision
f the estimates. If the priors used are informative, the RMSEs for σ 2

ν are generally lower compared
he scenarios where the priors are non-informative. However, the difference in the RMSEs for σ 2

ν

or the informative and non-informative priors diminishes with more time points.
For the variance of the block-specific effect σ 2

φ , the biases and the RMSEs are generally close to
ero for all the scenarios. The number of time points does not seem to unduly affect the biases and
MSEs. This is expected since the model in the simulation study assumes that the block-specific
ffect is independent with time, and so the number of time points in the data does not potentially
ffect the accuracy and precision of the estimates of σ 2

φ . In addition, this parameter does not seem
o be sensitive to the prior specification and the sparsity of the monitors.

Table B.6 in Appendix B shows the coverage probabilities for the health model parameters.
or γ1, all the coverage probabilities are very close to the nominal value of 95%. There is no
ifference between the two methods of computing spatial averages. For the intercept γ0, the
overage probabilities are also reasonably close to the nominal value. The coverage probabilities
or scenarios with fewer time points is smaller compared to the scenarios with more time points.
he coverage probabilities for the variance parameter of the time random effect σ 2

ν is higher when
enalized complexity priors are used or when there are more time points. Finally, for the variance
f the block-specific random effect σ 2

φ , the coverage probabilities are consistently high and close to
he nominal value for all scenarios.

. Application to real data

The proposed method is applied on a real data in England. The exposures measurements
re nitrogen dioxide (NO ) concentrations at 142 locations from the Automatic Urban and Rural
2
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Fig. 8. Plot of biases and RMSEs for γ1 .

Fig. 9. Plot of the location of monitors in England and Wales (left), the location of the data points for the AQUM data
center), and a plot of NO2 values from the AQUM for year 2007 and month January (right).

Network (AURN) in England and Wales. Fig. 9 (left) shows the location of the monitors in the study
region. The measurements were averaged at a monthly level to be consistent with the temporal
resolution of the health data. Data from the Air Quality Unified Model (AQUM) was used as the
proxy data for NO2. The AQUM is a weather and chemical transport model which provides hourly
estimates of pollutant concentrations in a 12 km2 all over England (Lee et al., 2017). Similar to
he AURN data, the AQUM data was averaged to monthly level to be consistent with the temporal
esolution of the health data. This is the same data used in Lee et al. (2017) where they developed a
wo-stage model for the same problem of pollution prediction and estimating its long-term impact
n health. They used MCMC to do Bayesian inference, as opposed to the proposed method in this
aper which uses INLA.
Shown in Fig. 9 (center) are the locations of the data points for the AQUM data in England. Fig. 9

right) shows the AQUM data for NO2 for January 2007. The health data used is count of respiratory
hospitalizations in England at the level of Local and Unitary Authorities (LUA) which is available at
a monthly level. Shown in Fig. 9 (left) is the study map which shows the boundaries of the LUAs
in England. We apply the proposed method on a monthly data from January to December 2007. All
details of data cleaning and pre-processing are discussed in Lee et al. (2017).

Fig. C.17 in Appendix C shows the mesh for the SPDE component. In fitting the first-stage model,
all the priors used were non-informative. Fig. 10 shows the estimated latent NO levels in England
2
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Fig. 10. Plot of NO2 from AQUM (left) versus estimated field (right) in England for two time points.

Fig. 11. Block-level estimates of exposures in England for January 2007 (left) and February 2007 (right).

for January 2007 and February 2007 on a very fine prediction grid. Shown also is the AQUM data
for the same period. The figure shows that there is a close correspondence between the predicted
latent NO2 concentrations and the AQUM data. Fig. 11 shows the block-level estimates of NO2 using
Method 2 in Eq. (27) using the same scale as in Fig. 10. Method 2 was used to compute the estimates
since the simulation study has shown that this method is slightly better than Method 1 in terms
of the bias, RMSE, and the correlation with the true exposure values; and the two methods yield
almost the same estimates. To account for the uncertainty in the first-stage model, we simulate 100
times from the marginal posterior of the latent exposures field, in Eq. (14), at the prediction grid.
For each of the simulated values, block-level estimates are computed which are then used as an
input in the second-stage model.

The second-stage model is given in Eqs. (10) and (11). For the general form of the log-risk
equation,

log(λ(Bi, t)) = γ0 + γ1x̂(Bi, t) + φi + ψi + ζt + νt + υit ,

it is assumed that the block-specific iid effect φi is N(0, σ 2
φ ), the spatially-structured random effectψi
follows the intrinsic conditional autoregressive (AR) process which is parameterized by the variance
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Table 4
Model choice criteria values.
Model Marginal likelihood WAIC DIC Failure PIT CPO

No interaction −17209.0 33646.12 32872.71 0% 0.5093 0.0230
Type I −16685.1 32404.37 30966.22 0.9% 0.5046 0.0204
Type II −15831.7 29366.97 29284.80 2.51% 0.4972 0.0206
Type III −17460.9 29555.34 29516.32 11.42% 0.4873 0.0195
Type IV −18121.1 29308.01 29203.12 2.65% 0.4999 0.0212

Fig. 12. π̂ (γ1|·) of the five models.

2
ψ , the time-specific iid effect νt is N(0, σ 2

ν ), and the temporally-structured effect ζt is an AR process
f order 1 which is parameterized by the lag parameter ρζ and variance σ 2

ζ . The spatio-temporal
nteraction effect υit can take several forms. The first case is when the unstructured effects φi
nd νt interact, which is called Type I interaction. When the structured temporal effect ζt and the
nstructured spatial effect φi interact, this is Type II interaction. Type III and Type IV interaction

are defined as the case when νt and ψi interact, and when both the structured effects ψi and ζt
interact, respectively. The criteria for model selection are the following: marginal likelihood, widely
applicable Bayesian information criterion (WAIC), deviance information criterion (DIC), predictive
integral transform (PIT), and the conditional predictive ordinate (CPO). Smaller values for the CPO
indicate better model fit. Moreover, if the model fits the data well, the values of the PIT should be
close to a uniform distribution.

Table 4 shows the marginal likelihoods, WAIC, DIC, PIT and CPO for the five second-stage models
considered. Since several samples (J = 100) from the estimated posterior predictive distribution of
the latent field π̂ (xt |·) were generated and that for each sample, x̂(Bi, t) were computed and were
used to fit the second-stage model to properly propagate uncertainty from the first-stage model to
the second-stage model, the values shown in Table 4 are the average for all the J = 100 simulations.

The model with Type II interaction has the highest marginal likelihood, but the model with Type
IV interaction has the lowest WAIC and DIC, although the WAIC and DIC for the Type II model is
not too different from the Type IV model. All the mean PIT are close to 0.5 which is the mean of a
uniform distribution from 0 to 1, and all the mean CPO are also close to 0. Based on the values, the
model with Type II interaction seems to provide the best fit among the five models considered.

Fig. 12 shows the estimated posterior distribution of γ1, π̂ (γ1|·), for the five models considered.
The γ estimates are quite close to each other except for the model with Type III interaction. As
1
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Table 5
Estimates of the final second-stage model.
Parameter Mean P2.5% P50% P97.5%

γ0 −0.5034 −0.8283 −0.5192 −0.0690
γ1 0.0267 0.0006 0.0266 0.0533
σ 2
φ 0.0608 0.0295 0.0592 0.1026
σ 2
ψ 0.3050 0.1800 0.2931 0.4914
σ 2
ζ 0.0625 0.0173 0.0476 0.1954
ρζ 0.7970 0.5054 0.8189 0.9592
σ 2
ν 0.0006 0.0000 0.0001 0.0048
σ 2
υ 0.0225 0.0181 0.0223 0.0281
ρυ 0.8105 0.7446 0.8023 0.8540

shown in Table 4, the model with Type III interaction has 11.42% of the observations with predictive
measures which are not reliable due to some numerical problems; hence, the γ1 estimate for this
odel might not be a reliable one. Table 5 shows the parameter estimates and the 95% credible

ntervals for the model with Type II interaction. Since the block-level estimates of exposures were
og-transformed, for a 10% increase in the NO2 levels for a block, we expect the relative risk of
espiratory hospitalization to increase by 2.67%. There seems to be a high spatial correlation in the
isks since the estimate for the variance of the spatially structured effect σ 2

ψ (0.3050) is higher than
he unstructured effect σ 2

φ (0.0608). Also, the temporal correlations is very evident as seen by the
stimated AR coefficient ρζ of 0.7970 and the estimate of the variance of the structured temporal
ffect σ 2

ζ (0.0625) which is bigger than the variance of the unstructured temporal effect σ 2
ν (0.0006).

Type II interaction effect means that ith area/block has its own autoregressive structure which is
ndependent from the other areas. The estimated AR coefficient ρυ in the interaction term is 0.8105
hich indicates a strong interaction effect.

. Conclusions

This paper proposes a two-stage spatio-temporal model for the epidemiological problem of
stimating the effect of exposures on health outcomes where the data have different spatial
upports. The framework of the first-stage model is based on the Bayesian melding model for which
common latent field is assumed for the geostatistical data on the monitors and the high-resolution
roxy data, both being error-prone realizations of the latent field. However, instead of treating the
roxy data as areal, it is treated as geostatistical data on the centroids of the grid cells. A couple
f reasons for this simplification is the assumption that the resolution of the covariate data is not
iner than that of the proxy data, that the resolution of the proxy data is fine enough that it can be
reated as geostatistical at the centroids, and also for the purpose of simplifying the computation.
onetheless, the proposed model incorporates a non-spatially varying additive and multiplicative
ias, and an additional additive noise in the proxy data since it is noisier and less correlated with
he true latent field compared to the measurements from the network of monitoring stations. The
PDE approach is used to model the spatio-temporal structure of the first-stage model in order to
peed up computation and spatial interpolation. The second stage fits a Poisson model using the
patial averages of the latent field, and additional spatial and temporal random effects. Both the
irst-stage and second-stage models, being latent Gaussian, are fitted using the integrated nested
aplace approximation. In estimating the block-level exposure estimates, two methods proposed
n Cameletti et al. (2019) were used. In order to account for the estimation error in the first-stage
odel when fitting the second-stage model, samples from the marginal posterior distribution of

he latent field at the prediction grid are generated. For each set of simulated values, all block-
evel estimates of exposures are computed using the two methods and are then used as input in
he second-stage model. This is done several times and then all results are combined and used to
pproximate the posterior distribution of the second-stage model parameters.
The proposed method worked in the actual data with the expected result that NO2 is significantly

ssociated with respiratory diseases and with additional insights about the spatial and temporal
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structure of the risks. A simulation study was carried out to assess the performance of the proposed
method under different scenarios. Considered in the study are the following settings: the sparsity
of the data on the monitors, the number of time points, and the prior specification. It is common
to work with sparse data on the monitors so it is interesting to look at the effect of the sparsity
on the quality of the parameter estimates. Also, it is important in Bayesian analysis to assess the
sensitivity of the results to the priors, more so in the context of a complex spatio-temporal process
with several model parameters that need to be estimated.

All first-stage model parameters have generally small biases but there is difficulty in estimating
he Matèrn field parameters, particularly the spatial variance and the range parameter, especially
hen non-informative priors are used. As long as informative priors are used, the bias and RSMEs
re very small and the coverage probabilities are very high even if the data on the monitors is
parse.
For the main parameter of interest, γ1, the method provides very good estimates across all

cenarios considered in the simulation study. There is no difference between the two methods of
omputing the spatial averages in terms of the bias, RMSEs, and coverage probabilities. Even with
on-informative prior on γ1 and sparse data on the monitors, the estimates for γ1 are close to the
rue value. Finally, with more time points, the RMSEs tend to decrease.

The simulation study done also showed that the sparsity of the data on the monitors can
otentially affect the quality of the parameter estimates. When the data on the monitors is sparse,
he RMSE of the covariate effect in the latent field is large. This is also true for the measurement
rror variance in the monitors, but the use of informative priors can be helpful to accurately estimate
he parameter. It makes sense for these two parameters to be seriously affected by the sparsity of
he monitors data since these are components of the observation model for the monitors; hence,
he less monitors in the study map, the less information at our disposal to accurately estimate them.
he RMSEs of the Matèrn parameters and the bias parameters of the proxy data are also generally
igher when the monitors data is sparse. The parameters in the second-stage model seem to be not
ffected by the sparsity of the data on the monitors since the proposed method, even with sparse
ata, was able to estimate well the latent field and that the block-level predicted values are also
lose to the true value, at least for most of the areas, as shown in the correlations, biases, and RMSEs
rom the simulation results. However, in practice, this will only be true for as long as the block-level
stimates of exposures are close to the unknown block averages of the latent continuous process.
The use of informative priors gave better parameter estimates especially for the latent field

arameters which are typically the most difficult parameters to be estimated. When informative
riors are used, the estimates of the spatial field variance and the range parameter have lower bias
nd RMSE. The autoregressive parameter of the latent field also benefits with the use of informative
riors, giving smaller errors and higher coverage probabilities. In addition, the measurement error
ariance at the monitors also have lower RMSEs with informative priors especially for the case when
he data is sparse. The rest of the parameters are not too sensitive to the prior specification which
ncludes the variance of the block-specific random effect in the second-stage model.

The number of time points can also potentially affect the quality of the estimates. As already
entioned, if there are more time points, the RMSEs of the fixed effects in the second-stage model
re smaller. This is also true for the variance of the time effect in the second-stage model. The bias
arameters of the proxy data in the first-stage model also have better estimates with more time
oints.
The method for computing block-level exposures estimates does not show to have an impact

n the parameter estimates. The biases in the block-level estimates for both methods are on the
verage close to zero, but the first method seem to give higher biases for certain blocks and also
igher RMSEs overall. Also, the second method gave slightly higher correlations between the true
lock-level exposure values and the estimated values. Nonetheless, both methods gave fairly high
orrelations which are at least 0.97. As far as the parameter estimation is concerned, either of the
wo methods should work very well.
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A possible drawback of the proposed method is that it becomes computationally expensive with
long time series data since it will significantly increase the number of unobserved values of the

atent field that need to be estimated. This would primarily depend on the resolution of the proxy
ata and also the size of the study region.
The use of the full Bayesian melding approach which treats the proxy data as areal would also

otentially increase the computational costs. Under the full Bayesian melding model, it is required
o have covariate information on z(s, t) at a resolution which is finer than the resolution of the
proxy data. Using the data augmentation approach would imply the need for an enlarged extended
field, say χt =

(
x⊺t,M x⊺t,P∗ x∗⊺

t,M x∗⊺
t,P∗

)⊺
, t = 1, . . . , T ; x∗⊺

t,P∗ is of larger dimension than x∗⊺
t,P in the

original model, where P∗ is the resolution of the covariate data z(s, t), which should be greater than
the number of grid cells for the proxy data. Hence, when the proxy data has a very high resolution,
applying the full Bayesian melding model might amplify the computation effort required. The use
of a full Bayesian melding model is a problem that could be investigated in a future work.

Having more than one pollutant (each from multiple data sources) in a single model is a
straightforward extension of the current model. In this scenario, the proxy data and the locations
of the monitors for each pollutant need not be aligned in space, but this will most likely require
the use of multiple but possibly correlated latent processes. This is doable and only requires adding
additional equations in the data fusion (first-stage) model. For the case when there are more than
two sources of information for a single pollutant – say a satellite data in addition to the monitors
data and the data from dispersion models in a single spatio-temporal model – it will also be
straightforward to extend the joint (first-stage) model to accommodate this additional information
by assuming that this also is an outcome from the same latent process with a different set of
calibration parameters. Another extension of the current model is to consider other measurement
error process for the monitors data and the proxy data. For as long as the latent Gaussian assumption
is satisfied, the current framework of using the INLA-SPDE approach can still be used in such
extensions.

The proposed model allows one to obtain estimates of the relative risks at the level of the
administrative units where the health outcomes are observed. However, one might be interested to
obtain the estimates of the relative risks at a fine scale, say on the same scale as the proxy data since
this allows one to look at fine-scale heterogeneity of the risks in space. This is not explored in the
current paper but this could be framed in a latent Gaussian model framework. A recent work has
been done on this in a so-called fusion area-cell spatio-temporal generalized geoadditive-Gaussian
Markov random field (FGG-GMRF) (Jaya and Folmer, 2022).

The proposed model assumes a separable covariance function since the covariance matrix of the
SPDE representation of the first-stage model is a Kronecker product of the covariance matrix in
space, whose elements are computed from the SPDE model, and the covariance matrix in time,
whose elements are computed from the assumed temporal model. The separability assumption
is convenient because it simplifies computation; but this assumption could be inadequate. An
extension of the model is to assume non-separability which is currently an active area of research.
One approach of doing this is to start from an SPDE which yields a Gaussian field with a separability
parameter (Lindgren et al., 2020). This parameter determines the type of non-separability of
the spatio-temporal covariance. This approach which starts from an SPDE is consistent with the
framework adopted in this paper; but there are other approaches for this problem that could be
adopted.

The current model assumes that the latent spatio-temporal process is constant through time.
But the spatio-temporal process could evolve at some point, i.e., the Matèrn field parameters
could change, or the mean structure of the model could evolve as well. This is now a change-
point detection problem which is also a promising future work since relatively only few work has
been done for change-point detection in spatio-temporal processes. Finally, approaches to improve
computational speed and efficiency especially for long time series is a very interesting direction,
and also very useful for many practitioners who work with big spatio-temporal data.
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ppendix A. Model evaluation

The performance of the method is evaluated by looking at the bias, RMSE, and coverage
robabilities. There is a slight difference in the notations for the formulas to compute the model
erformance metrics between the first-stage and second-stage model parameters. For a first-stage
arameter θ , θ̂ik denotes the kth sampled value from the estimated posterior distribution of θ in the
th replication, i = 1, . . . , nsim and k = 1, . . . , K . For a second-stage parameter θ , θ̂ijk denotes the kth
ampled value from the estimated posterior distribution of θ using the block-level estimates x̂(B, t)
omputed using the jth simulated values from the marginal posterior distribution of the latent field,
= 1, . . . , J , k = 1, . . . , K , i = 1, . . . , nsim. In the simulation study, nsim = 500, J = 100 and
= 200.

1. Bias - The bias is computed as

bias =
1

nsim

nsim∑
i=1

(
1
K

K∑
k=1

θ̂ik − θ

)
or bias =

1
nsim

nsim∑
i=1

(
1
JK

J∑
j=1

K∑
k=1

θ̂ijk − θ

)
for a first-stage and second-stage model parameter, respectively.

2. Coverage probability - For a given data replicate i, suppose θ̂ (2.5)i is the 2.5th percentile of θ̂ik
for all k for a first-stage parameter or of θ̂ijk for all j, k for a second-stage parameter. Similarly,
suppose θ̂ (97.5)i is the 97.5th percentile. The 95% coverage probability for θ is given by

coverage probability =
1

nsim

nsim∑
i=1

Ii(θ ), Ii(θ ) =

{
1 θ̂

(2.5)
i < θ < θ̂

(97.5)
i

0 otherwise,

3. Root mean square error (RMSE) - The RMSE is computed as

RMSE =
1

nsim

nsim∑
i=1

√ 1
K

K∑
k=1

(θ̂ik − θ )2 or RMSE =
1

nsim

nsim∑
i=1

√ 1
JK

J∑
j=1

K∑
k=1

(θ̂ijk − θ )2

for a first-stage parameter and second-stage parameter, respectively.

The same model evaluation metrics are used for the block-level exposure estimates. It should be
oted that the true values of the block-level exposures vary for the different replicates.

ppendix B. Simulation results
See Figs. B.13–B.16 and Table B.6.
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r

Fig. B.13. Plot of biases and RMSEs for the Matèrn field parameters σ 2
ω, ρ, and the temporal parameter ς .

Fig. B.14. Plot of bias (purple) and RMSE (yellow) for β0 (left) and β1 (right) for all scenarios. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

Fig. B.15. Plot of biases (left) and RMSEs (right) in block-level exposure estimates for all scenarios.
27
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Fig. B.16. Plot of biases and RMSEs for second-stage model parameters.
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Table B.6
Coverage probabilities of second-stage model parameters for all scenarios.
T Sparse Priors γ0 γ1 σ 2

φ σ 2
ν

M1 M2 M1 M2 M1 M2 M1 M2

3
No Informative 85.4 85.2 94.2 93 95.2 93.8 88.4 88.6

Non-informative 81.8 81.2 93.6 93.4 94.8 93.4 71.6 71.6

Yes Informative 86.4 85.8 94 95 95 95.4 88 88
Non-informative 83 82.6 93.2 93.8 94.2 94.6 71.2 71

6
No Informative 91.8 91.6 93.6 94 94.2 93 89.8 89.4

Non-informative 91.4 91.2 94 94 94 92.6 84.2 83.4

Yes Informative 91 90.6 94.4 94 94.2 94 89.6 90.6
Non-informative 90 90.4 94.2 94 94.2 93.6 86 85.4

12
No Informative 92.6 93.2 94 93.8 94.2 95.2 92.4 93

Non-informative 93.4 92.8 94 94.4 94.2 94.6 90 90

Yes Informative 94.8 94.6 95.4 93.8 93.6 93.4 92.8 92
Non-informative 93.6 94.2 93.4 93.6 93.2 93.4 89.8 89.2

Appendix C. Mesh for the SPDE component

See Fig. C.17.

Fig. C.17. Mesh for the SPDE component covering England.
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