
1. Introduction
Single crystals of ice and olivine are both viscously (Bai et al., 1991; Duval et al., 1983) and elastically (Gammon 
et al., 1983; Kumazawa & Anderson, 1969) anisotropic. Thus, as the crystal orientation fabric (henceforth fabric) 
evolves during flow in polycrystalline glacier ice or in the mineral aggregate of the upper mantle, so should the 
bulk directional viscosity and elasticity structure. Being able to infer fabrics in situ is central for validating large-
scale anisotropic ice-flow models and geodynamical models of mantle flow processes; models that might lead to 
a better understanding of, for example, streaming ice (Lilien et al., 2021) and the coupling between plate motions 
and the sublithospheric mantle (e.g., W. Wang & Becker, 2019), respectively. Furthermore, fabric anisotropy 
provides a unique constraint on the past and present deformation in the lithosphere and sublithospheric mantle 
(Fouch & Rondenay, 2006). Likewise, in the limit of weak dynamic recrystallization, ice fabrics might provide a 
proxy for past and present flow regimes (Thorsteinsson et al., 2003; Wilson & Peternell, 2011) that could reveal 
the existence of paleo ice streams (Lilien et al., 2021; Llorens et al., 2021).

Measuring seismic shear-wave splitting (seismic birefringence caused by elastic anisotropy) is recognized as an 
important approach for determining the in situ fabrics of glacier ice (Diez & Eisen, 2015; Hellmann et al., 2021; 
Kerch et al., 2018) and the upper-mantle (Long & Becker, 2010 and references therein). Glacier ice is, in addi-
tion, also optically birefringent over radio frequencies (Hargreaves, 1978). Radio-echo sounding surveys provide, 
therefore, another way to infer the fabrics of glaciers and ice sheets: for carefully constructed surveys, radio-echo 
return signals (radar returns) contain information about the bulk dielectric permittivity with depth, which in turn 
depends on the second-order structure tensor, 〈c ⊗ c〉, of the local grain c-axis distribution, ψ(θ, ϕ) (Figure 1a) 
(elaborated on below). In a sense, 〈c ⊗ c〉 measures the coarsest degree of fabric anisotropy by characterizing the 
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average outer product of c-axis orientations (lowest-order nonvanishing moment of ψ). Coincidentally, 〈c ⊗ c〉 
is also a central quantity needed for anisotropic ice-flow modeling (e.g., Gillet-Chaulet et al., 2005) and for con-
structing the elasticity tensor of a polycrystal (see Supporting Information S1).

Modeling radio-wave propagation has recently received renewed interest as an important tool for supporting the 
interpretations of radar surveys. Recent examples include among others Jordan et al. (2020) who estimated the 
prevailing horizontal c-axis direction and magnitude of the horizontal fabric asymmetry within the Whillans 
Ice Stream, Young, Schroeder, et al. (2021) who quantified and revealed large-scale trends in fabric asymmetry 
and orientation over the Eastern shear margin of Thwaites Glacier, and Ershadi et al.  (2021) who proposed a 
minimization problem for inferring the eigenvalues of 〈c ⊗ c〉 with depth at the EDC and EDML ice-core sites 
in Antarctica.

Few anisotropic radio-wave propagation models have generally been developed for glaciological applications 
(e.g., Dall, 2020; Fujita et al., 2006; Wang & Wong, 2020; Wang et al., 2009; Warren et al., 2016), and a common 
limiting model constraint is that 〈c ⊗ c〉 must have a vertical principal direction (elaborated on below), with 
only a few exceptions (Matsuoka et al., 2009). While arguably relevant in many places throughout ice sheets, 
this constraint restricts the extent to which modeling can aid interpretations of radar returns over areas where the 
fabric profile is poorly known. Put differently, the error made by assuming a vertical principal direction, when in 
fact there is none, is not well understood. Fabrics with double clusters of c-axes have, for example, been observed 
in shear-dominated regimes where discontinuous dynamic recrystallization is active, both in deformation tests 
(Bouchez & Duval, 1982; Qi et al., 2019) and in natural settings (Jackson & Kamb, 1997; Monz et al., 2021). 
For vertical shear with active discontinuous dynamic recrystallization, the otherwise vertical principal direction 
(center of orientation mass) may hence be displaced toward the horizontal plane. As another example, Lilien 
et al. (2021) recently modeled the strain-induced rotation of c-axes inside an idealized ice stream, finding that 
fabrics may tilt at least 8° under a combination of extensional flow and vertical shear. Such tilt angles have also 
been suggested to exist below or near ice divides (Martín et al., 2009).

In this article, we introduce a general transfer matrix model for radio-wave propagation through layered aniso-
tropic ice that permits an arbitrary dielectric permittivity tensor, and hence arbitrary orientation fabric, in each 
layer. Our model therefore overcomes the fundamental assumption often made in previously developed models, 
namely that the orientation fabric has a vertically aligned eigenbasis (〈c ⊗ c〉 has a vertical principal direction). 
Using the new model, we quantify the error made by assuming 〈c ⊗ c〉 has a vertical principal direction (when in 
fact it does not) by modeling radar returns from synthetic fabric profiles, and discuss the implications for exper-
imentally inferring the fabrics of ice masses. Finally, we end by briefly discussing how our methodology might 
be adapted for elastic (seismic) plane-wave propagation.

Vectors and tensors are denoted by boldface lower- and upper-case symbols, respectively, for example, a and B,  
with the exception of the electric field, E. Matrix multiplication is written as Ba =  Bijaj, the dot product as 
a ⋅ b = aibi, and the outer product as a ⊗ b = aibj, where repeated indices are summed over. The complex conju-
gate is denoted by superscript “*”, and the matrix transpose by superscript “𝐴𝐴 𝖳𝖳 ”.

Figure 1. The c-axis orientation distribution function (ψ/N) of a polycrystal (a), and the lowest-order harmonic modes that 
〈c ⊗ c〉, and therefore 〈ϵg〉, depends on (b–d). The harmonic modes may be arbitrarily scaled and rotated around 𝐴𝐴 �̂�𝐳 depending 
on the real and imaginary parts of the expansion coefficients 𝐴𝐴 𝐴𝐴𝐴𝑚𝑚

2  , here shown for values of 1.
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2. Permittivity of a Polycrystal
The complex dielectric permittivity of a single ice crystal, ϵg, is uniaxial (Fujita et al., 2000):

�g =

⎡

⎢

⎢

⎢

⎢

⎣

�⟂ 0 0

0 �⟂ 0

0 0 �
‖

⎤

⎥

⎥

⎥

⎥

⎦

, (1)

where 𝐴𝐴 𝐴𝐴
‖

= 𝐴𝐴′
‖

− 𝑖𝑖𝐴𝐴′′
‖

 and 𝐴𝐴 𝐴𝐴⟂ = 𝐴𝐴′⟂ − 𝑖𝑖𝐴𝐴′′⟂ are the principal relative permittivities parallel and perpendicular to the 
optical c-axis, and 𝐴𝐴 𝐴𝐴′⟂, 𝐴𝐴

′
‖

 and 𝐴𝐴 𝐴𝐴′′⟂ , 𝐴𝐴
′′
‖

 are the real and imaginary parts, respectively. For wavelengths much longer 
than the average grain size, the bulk permittivity of a polycrystal is, effectively, the grain-ensemble-averaged 
permittivity (Hargreaves, 1978, see Supporting Information S1)

⟨𝝐𝝐g⟩ =
2𝜖𝜖⟂ + 𝜖𝜖

‖

3
𝐈𝐈 + (𝜖𝜖

‖

− 𝜖𝜖⟂)
(

⟨𝐜𝐜⊗ 𝐜𝐜⟩ − 1
3
𝐈𝐈
)

, (2)

where impurities are disregarded for now. The first contribution in Equation 2 is an isotropic (monopole) contri-
bution, equal to the average permittivity of a single grain. The second contribution is a quadrupole contribution 
that depends on the lowest-order structure tensor characterizing the fabric anisotropy, 〈c ⊗ c〉. The quadrupole 
contribution vanishes if either the single-grain permittivity is isotropic (ϵ⊥ = ϵ∥; not the case for ice), or if the 
fabric is isotropic to lowest order (〈c ⊗ c〉 = I/3). Note that Equation 2 is exact.

Suppose we expand the c-axis distribution, ψ, in terms of a spherical harmonic series:

𝜓𝜓(𝜃𝜃𝜃 𝜃𝜃) =
𝐿𝐿
∑

𝑙𝑙=0

𝑙𝑙
∑

𝑚𝑚=−𝑙𝑙

𝜓𝜓𝑚𝑚
𝑙𝑙 𝑌𝑌

𝑚𝑚
𝑙𝑙 (𝜃𝜃𝜃 𝜃𝜃)𝜃 (3)

where 𝐴𝐴 𝐴𝐴𝑚𝑚
𝑙𝑙  are the complex expansion coefficients, and L is the wave-mode truncation above which finer-scale 

structure in ψ is unresolved. In this case, the total number of grains is simply 𝐴𝐴 𝐴𝐴 =
√

4𝜋𝜋𝜋𝜋0
0 , and ψ being real im-

plies that 𝐴𝐴 𝐴𝐴−𝑚𝑚
𝑙𝑙 = (−1)𝑚𝑚(𝐴𝐴𝑚𝑚

𝑙𝑙 )
∗ . The orientation distribution function (ODF) is by definition the normalized c-axis 

distribution ψ/N and depends therefore on the normalized modes 𝐴𝐴 𝐴𝐴𝐴𝑚𝑚
𝑙𝑙 = 𝐴𝐴𝑚𝑚

𝑙𝑙 ∕𝐴𝐴
0
0 .

Given the expansion (Equation 3), the entries of 〈c ⊗ c〉 depend linearly on 𝐴𝐴 𝐴𝐴𝐴𝑚𝑚
2  (Rathmann et al., 2021; see also 

Supporting Information S1). That is, two complex numbers (𝐴𝐴 𝐴𝐴𝐴1
2 , 𝐴𝐴𝐴

2
2 ) and a real number (𝐴𝐴 𝐴𝐴𝐴0

2 ) are sufficient to 
determine 〈c ⊗ c〉, and therefore 〈ϵg〉, exactly. The magnitudes (absolute values) of the three coefficients 𝐴𝐴 𝐴𝐴𝐴0

2 , 𝐴𝐴 𝐴𝐴𝐴1
2 , 

and 𝐴𝐴 𝐴𝐴𝐴2
2 , determine how strongly the harmonic modes shown in Figures 1b–1d contribute to the ODF, respectively, 

while the complex phases of 𝐴𝐴 𝐴𝐴𝐴1
2 and 𝐴𝐴 𝐴𝐴𝐴2

2 determine how the contributions from the two horizontally anisotropic 
modes (Figures 1c and 1d) are rotated around the 𝐴𝐴 �̂�𝐳 axis. The advantage of the spectral basis is therefore made 
clear: the effect of a nonvertical principal direction on 〈ϵg〉 is dictated solely by the magnitude and phase of 𝐴𝐴 𝐴𝐴𝐴1

2 
(Figure 1c).

3. Transfer Matrix Model
We consider the problem of electromagnetic plane-wave propagation through a multi-layered anisotropic medi-
um by adapting the 4 × 4 transfer matrix formalism from the optics community (Passler et al., 2020; Passler & 
Paarmann, 2017; Xu et al., 2000; Yeh, 1980), as recently suggested by Wang and Wong (2020) who also con-
sidered glaciological applications but assumed normal incidence and a fabric with a vertical principal direction. 
A couple of important differences between the optical and radioglaciological application of this method should 
be emphasized: (a) optical applications typically involve a continuously illuminated multi-layered medium (for 
which the method's solution is exact), whereas radar systems used in glaciology emit transient pulses, and (b) in 
radioglaciological applications the electromagnetic energy budget is not strictly closed in the sense that repeated 
reflections of internal interfaces are neglected, as well as absorption and reflection at the ice-bed interface.

In addition to using a spectral-space representation of fabric for calculating 〈ϵg〉, what makes this work novel is, 
therefore, the adaption of the 4 × 4 formalism to radioglaciology, which involves re-casting the 4 × 4 problem of 
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a continuously illuminated multi-layered medium into a 2 × 2 form relevant for polarized incident pulses. In the 
following, we briefly elaborate by introducing the background for the 4 × 4 formalism. For readers less interested 
in technical details, it is possible to skip to the subsection “Radar returns” where the corresponding 2 × 2 transfer 
matrix model is introduced in analogy to the celebrated model by Fujita et al. (2006).

3.1. Background

The permittivity tensor of a given layer is diagonal if 〈c ⊗ c〉 is isotropic or has a vertical principal direction 
and is rotated into its horizontal eigenbasis. In either case, normally incident plane-wave propagation reduces to 
a decoupled problem in the independent p and s modes (electric field polarization parallel and perpendicular to 
the plane of incidence, respectively). As a consequence, multi-layered models typically involve the manipulation 
of 2 × 2 matrices (e.g., Fujita et al., 2006). In the general case of obliquely incident waves in birefringent media 
with nonzero off-diagonal elements in the permittivity tensor, the total radiation consists of four partial plane 
waves, and mode coupling takes place at interfaces (Yeh, 1980). Layered models that allow for arbitrary dielectric 
tensors, and hence arbitrary orientation fabrics, therefore involve the manipulation of 4 × 4 matrices.

To elaborate, consider a plane wave propagating in the 𝐴𝐴 �̂�𝐱 –𝐴𝐴 �̂�𝐳 plane of a semi-infinite isotropic medium with wave 
vector k0, where 𝐴𝐴 �̂�𝐳 is positive in the upwards direction. Let the wave be incident on an anisotropic layer below that 
is horizontally homogeneous and has a permittivity of ϵ0ϵ and a scalar permeability of μ0μ. Here, ϵ0 and μ0 are 
the permittivity and permeability in vacuum, respectively, and ϵ and μ are the relative values. Given the plane of 
incidence, we follow Passler and Paarmann (2017) by writing:

𝐤𝐤0 =
𝜔𝜔
𝑐𝑐
[𝜉𝜉𝜉 0𝜉 𝑞𝑞0]𝖳𝖳𝜉 (4)

where ω is the angular frequency of the wave, 𝐴𝐴 𝐴𝐴 = 1∕
√

𝜇𝜇0𝜖𝜖0 , and ξ and q0 are the dimensionless x- and z-compo-
nents of the wave vector, respectively. The x-component is related to the angle of incidence, α, by 𝐴𝐴 𝐴𝐴 =

√

𝜖𝜖incsin(𝛼𝛼) , 
where ϵinc is the relative isotropic dielectric constant of the incident medium (Xu et al., 2000). Due to horizontal 
homogeneity, the x and y wave-vector components of the transmitted and reflected waves are conserved. The 
wave vectors permitted in the anisotropic medium, k1, therefore have ξ in common with the incident medium, 
implying 𝐴𝐴 𝐤𝐤1 = 𝜔𝜔∕𝑐𝑐[𝜉𝜉𝜉 0𝜉 𝑞𝑞1]𝖳𝖳 . The z-component, q1, is meanwhile constrained by the wave equation in momentum 
space (based on Maxwell's equations) for the electric field E:

𝐤𝐤1 × (𝐤𝐤1 × 𝐄𝐄) +
(𝜔𝜔
𝑐𝑐

)2
𝜇𝜇𝝐𝝐𝐄𝐄 = 𝟎𝟎. (5)

Written in component form, the wave equation is:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥 − 𝑞𝑞21 𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥 𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥 + 𝜉𝜉𝑞𝑞1

𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥 𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥 − 𝜉𝜉2 − 𝑞𝑞21 𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥

𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥 + 𝜉𝜉𝑞𝑞1 𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥 𝜇𝜇𝜇𝜇𝑥𝑥𝑥𝑥 − 𝜉𝜉2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐸𝐸𝑥𝑥

𝐸𝐸𝑥𝑥

𝐸𝐸𝑥𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 𝟎𝟎, (6)

for which nontrivial solutions require the determinant of the matrix to vanish, yielding a quartic equation in q1 
with four roots. Let therefore:

𝐤𝐤1𝑗𝑗 =
𝜔𝜔
𝑐𝑐
[

𝜉𝜉𝜉 0𝜉 𝑞𝑞1𝑗𝑗
]𝖳𝖳

 (7)

denote the four wave-vector solutions (j = 1, 2, 3, 4) of the anisotropic layer. The four solutions consist of two 
forward (downward) propagating modes and two reverse (upward) propagating modes (Yeh, 1980), here sorted 
such that indices j = 1, 2 and j = 3, 4 refer to the downward and upward propagating modes, respectively. We 
furthermore sort the solutions into p-polarized (j = 1, 3) and s-polarized (j = 2, 4) modes, or, in the case of bire-
fringent media, ordinary wave modes (j = 1, 3) and extraordinary wave modes (j = 2, 4). The sorting convention 
follows Passler et al. (2020) and Passler and Paarmann (2017).
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Inserting the solutions Equation 7 into Equation 6 and solving for E, the (normalized) eigenpolarizations can be 
calculated for j = 1, 2, 3, 4 (not shown for brevity, see Xu et al., 2000 for analytical expressions), and the total 
electric field in the anisotropic layer is the sum of the four partial plane waves (see Supporting Information S1). 
At this point, however, the partial-wave complex amplitudes are unconstrained because the wave equation is ho-
mogeneous; that is, the partial-wave amplitudes are the model unknowns to be sought after.

3.2. Multilayered Medium

We are interested in the four partial plane-wave amplitudes as a function of depth in a multi-layered medium, 
composed of vertically stacked horizontally homogeneous layers of equal thickness, d, but with different per-
mittivity tensors. Let the subscript i denote the layer number for layer-wise quantities, ranging from i = 0 in the 
incident layer and increasing with depth (Figure 2a). The bulk permittivity of the ith layer, 𝐴𝐴 ⟨𝝐𝝐g⟩𝑖𝑖 , is taken to be 
Equation 2. Here, we follow Fujita et al. (2006) by neglecting all but the primary internal interface reflections, 
even if the spacing between internal interfaces is comparable to the radar wavelength. Note that internal interfaces 
are assumed perfectly straight such that microscopic scattering caused by interface roughness can be neglected.

Let

𝐚𝐚±𝑖𝑖 =
[

𝑎𝑎±𝑖𝑖1, 𝑎𝑎
±
𝑖𝑖2, 𝑎𝑎

±
𝑖𝑖3, 𝑎𝑎

±
𝑖𝑖4

]𝖳𝖳 (8)

be the sorted vector of partial-wave amplitudes for the ith layer, where “+” and “−” refer to the amplitudes at 
the upper and lower interfaces of the layer, respectively (Figure 2a). The boundary conditions on the electric and 
magnetic fields (continuous parallel components across an interface) can be written as (Yeh, 1980; see Support-
ing Information S1 for details):

𝐚𝐚−𝑖𝑖 = 𝐋𝐋𝑖𝑖𝐚𝐚+𝑖𝑖+1, (9)

which relates the amplitudes on either side of the interface between layers i and i + 1 by the interface matrix 𝐴𝐴 𝐋𝐋𝑖𝑖 
(Figure 2a) that depends on the eigenpolarizations.

Figure 2. (a): Transfer matrix formalism that allows the four partial-wave amplitudes to be calculated throughout the layer stack by matrix multiplication of the 
interface (Li) and propagation (Pi) matrices with the partial-wave amplitude vector (ai). The plane wave is incident in layer i = 0 with angle of incidence α. Each layer 
is assumed to be horizontally homogeneous and characterized by an anisotropic, complex permittivity tensor, 𝐴𝐴 ⟨𝝐𝝐g⟩𝑖𝑖 , which depends on the second-order structure tensor 
of the layer, 〈c ⊗ c〉i. (b): Fabric (𝐴𝐴 �̂�𝐱, �̂�𝐲, �̂�𝐳 ) and measurement (𝐴𝐴 �̂�𝐱′′, �̂�𝐲′′, �̂�𝐳′′ ) coordinate systems. The angle β represents a rotation in the horizontal plane about 𝐴𝐴 �̂�𝐳 , while the 
angle of incidence, α, represents a rotation about 𝐴𝐴 �̂�𝐲′ . The antennae “H” and “V” directions are parallel to 𝐴𝐴 �̂�𝐱′′ and 𝐴𝐴 �̂�𝐲′′ , respectively, defining the measurement coordinate 
system (gray plane). The plane of incidence is the 𝐴𝐴 �̂�𝐱′′ –𝐴𝐴 �̂�𝐳′′ plane.
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Finally, a phase change is accumulated as the partial waves propagate through the ith layer. The propagation 
matrix 𝐴𝐴 𝐏𝐏𝑖𝑖 describes the change in complex amplitudes between the lower (−) and upper (+) interface of layer i 
(Figure 2a), such that (Yeh, 1980; see Supporting Information S1 for details):

𝐚𝐚+𝑖𝑖 = 𝐏𝐏𝑖𝑖𝐚𝐚−𝑖𝑖 . (10)

3.3. Radar Returns

Let the surface layer (incident medium, i.e., air) be isotropic (〈c ⊗ c〉0 = I/3) such that wave amplitudes can be 
separated into p and s modes, and let 𝐴𝐴 𝐰𝐰 = [𝑤𝑤𝑝𝑝,𝑤𝑤𝑠𝑠]𝖳𝖳 be the downward-transmitted p and s complex wave ampli-
tudes at the interface of the surface layer (i = 0). We then denote the received wave amplitude resulting from a 
reflection on the interface between layers i and i + 1 by 𝐴𝐴 𝐮𝐮𝑖𝑖 = [𝑢𝑢𝑖𝑖𝑖𝑖, 𝑢𝑢𝑖𝑖𝑖𝑖]𝖳𝖳 .

In the Supporting Information S1, we show how the reflection and transmission coefficients may be determined 
for each interface given Li, and how the corresponding 2 × 2 reflection and transmission matrices may be con-
structed. Similar to the radar model by Fujita et al.  (2006), transmitted waves that propagate downwards, are 
reflected of the interface between layers i and i + 1, and propagate back up, have received amplitudes given by 
the matrix product:

𝐮𝐮𝑖𝑖 = 𝐔𝐔𝑖𝑖𝐑𝐑𝑖𝑖𝐃𝐃𝑖𝑖𝐰𝐰. (11)

The 2 × 2 matrices Di and Ui represent the net effect of transmission and propagation down to and up from the 
reflecting interface, respectively, and Ri accounts for the reflection (see Supporting Information S1).

Notice that with the spectral representation of ψ, rotating the model antennae system through an angle of β in the 
horizontal plane (around the vertical axis, 𝐴𝐴 �̂�𝐳 ) corresponds to shifting the phases of 𝐴𝐴 𝐴𝐴𝐴𝑚𝑚

𝑙𝑙  in each layer according to 
the linear transformation 𝐴𝐴 𝐴𝐴𝐴𝑚𝑚

𝑙𝑙 → 𝑒𝑒𝑖𝑖𝑚𝑚𝑖𝑖 𝐴𝐴𝐴𝑚𝑚
𝑙𝑙  . In our coordinate system characterized by α and β, the p and s directions 

thus align with the coordinate axes 𝐴𝐴 �̂�𝐱′′ and 𝐴𝐴 �̂�𝐲′′ , respectively, defined in Figure 2b.

4. Numerical Experiments
To quantify how fabrics without a vertical principal direction (i.e., 𝐴𝐴 𝐴𝐴𝐴1

2 ≠ 0 ) affect radar returns, we construct 
a 2 km tall synthetic fabric profile designed to make the effect as clear as possible. Specifically, we consider 
an ODF profile consisting of a single maximum that is vertical (θ = 0) near the surface and is linearly rotated 
with depth toward the horizontal plane (θ = 90°). In layer i = 1, we therefore set 𝐴𝐴 𝐴𝐴𝐴0

2 = 0.3 (all other components 
vanish) and rotate the resulting structure tensor, 〈c ⊗ c〉1, with depth. We furthermore let the single maximum 
strengthen with depth to make the effect more clear by producing nontrivial radar returns (nonvanishing nodal 
structure in the angular power anomaly plots below). Note that our conclusions are unchanged by how much the 
fabric strengthens with depth. The resulting ODFs and eigenvalues of 〈c ⊗ c〉 (denoted λn) with depth are shown 
in Figures 3a–3d, respectively.

We mention in passing that we also considered other fabric profiles, but refer the reader to the discussion and 
Supporting Information S1 for details.

4.1. Radar Model Configuration

The model parameters are chosen to closely follow Fujita et al. (2006). Transmitted waves therefore have a fre-
quency of 179 MHz and are normally incident (α = 0°) on the surface interface. The real-valued permittivities 
are set to 𝐴𝐴 𝐴𝐴′⟂ = 3.17 and 𝐴𝐴 𝐴𝐴′

‖

= 3.136 (i.e., 𝐴𝐴 𝐴𝐴′⟂ − 𝐴𝐴′
‖

= 0.034 ), representing isothermal ice at ∼−25°C. The imaginary 
part of the bulk permittivity is assumed to be dominated by the impurity content content of polar ice, rather than 
the (pure) single-crystal contributions 𝐴𝐴 𝐴𝐴′′⟂ and 𝐴𝐴 𝐴𝐴′′

‖

 in Equation 2. The imaginary part is therefore isotropic and given 
by 𝐴𝐴 Im[⟨𝝐𝝐g⟩] = −𝜎𝜎∕(𝜔𝜔𝜔𝜔0)𝐈𝐈 , where the conductivity is taken to be σ = 1 × 10−5 S m−1 (Fujita et al., 2006). Upon 
setting 𝐴𝐴 𝐴𝐴′′⟂ = 𝐴𝐴′′

‖

= 𝜎𝜎∕(𝜔𝜔𝐴𝐴0) our model (Equation 2) reproduces 𝐴𝐴 Im[⟨𝝐𝝐g⟩] = −𝜎𝜎∕(𝜔𝜔𝜔𝜔0)𝐈𝐈 .
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4.2. Return Power Metrics

We characterize the modeled radar returns using the usual return-power metrics for phase-sensitive radars. Let 
therefore the transmitted plane wave be either H- or V-polarized: 𝐴𝐴 𝐰𝐰H = [𝑤𝑤p, 0]𝖳𝖳 or 𝐴𝐴 𝐰𝐰V = [0, 𝑤𝑤s]𝖳𝖳 , respectively, 
for a given β. We furthermore separate the received wave amplitudes into their H- and V-polarized components: 
uH(z, w) = up(z, w) and uV(z, w) = us(z, w), respectively, for a given β, where the depth dependency is for clarity 
written in terms of z instead of the layer index i. The received angular power anomalies are then:

����(�) = 20log10‖��(�,𝐰𝐰�)‖ − � ��(�), (12)

for transmitted polarizations of j = H, V and received polarizations of k = H, V. The mean power is simply the 
average over β: � ��(�) = 20∕�log10 ∫

�
0 ‖��(�,𝐰𝐰�)‖d� . To quantify the phase difference between the two received 

polarizations, we adopt the coherence phase (Dall, 2010):

𝜑𝜑𝑗𝑗𝑗𝑗(𝑧𝑧) = arg
( 𝑢𝑢𝑗𝑗(𝑧𝑧𝑧𝐰𝐰𝑗𝑗)𝑢𝑢∗𝑗𝑗(𝑧𝑧𝑧𝐰𝐰𝑗𝑗)
‖𝑢𝑢𝑗𝑗(𝑧𝑧𝑧𝐰𝐰𝑗𝑗)‖‖𝑢𝑢∗𝑗𝑗(𝑧𝑧𝑧𝐰𝐰𝑗𝑗)‖

)

𝑧 (13)

where φHV is the usual HH-VV coherence phase angle.

5. Results
Figures 3e–3h show the modeled returns 𝐴𝐴 𝑃𝑃𝑗𝑗𝑗𝑗 , δPHH, δPHV, and φHV, respectively. Note that surface reflections 
are not shown, and that only the mean power, 𝐴𝐴 𝑃𝑃𝑗𝑗𝑗𝑗 , but not the power anomaly, δPjk, scales with the magnitude of 
the conductivity, σ. In line with existing transfer matrix models (and measured returns) for fabric profiles that 
strengthen with depth (e.g., Young, Martín, et al., 2021), a reduction in the vertical spacing between nodes in 
δPHH and φHV is found, and δPHV displays a depth-constant 90° periodicity (although the depth-constant pattern 
may break if the horizontal projection of the principal fabric directions are misaligned between adjacent layers). 
We refer the reader to, for example, Brisbourne et al. (2019) and Young, Martín, et al. (2021) for further details 
on the interpretation of polarimetric radar return profiles.

In Figure 4d, the difference is shown between δPHH as modeled given the true ODF profile (Figures 3a–3c) and 
upon setting 𝐴𝐴 𝐴𝐴𝐴1

2 = 0 in the true profile (Figures 4a–4c), henceforth referred to as ψ†(z). The returns are found to 
be relatively insensitive to 𝐴𝐴 𝐴𝐴𝐴1

2 (note the colorbar scale in Figure 4d compared to Figure 3f), with the 95th and 99th 

Figure 3. Radar returns given the synthetic orientation distribution function (ODF) profile. (a–c): ODF at selected depths and largest-eigenvalue principal direction e1 
(blue circle). (d): Eigenvalue profiles (λ2 and λ3 overlap). (e): Mean return power. (f and g): HH and HV angular power anomalies. (h): HH–VV coherence phase angle.
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percentile of the absolute differences, 𝐴𝐴 |𝛿𝛿𝛿𝛿HH − 𝛿𝛿𝛿𝛿 †
HH| , being 0.3 and 1 dB, respectively. Differences in δPHV and 

φHV were found to be negligible.

6. Discussion
It is clear from Figure 4d that neglecting the harmonic mode (l, m) = (2, 1) leads to a relatively small error in 
δPHH, suggesting that radar returns from normally incident waves are effectively insensitive to the magnitude of 

𝐴𝐴 𝐴𝐴𝐴1
2 . Thus, existing transfer matrix models that simply neglect 𝐴𝐴 𝐴𝐴𝐴1

2 (setting the x–z and y–z entries of 〈c ⊗ c〉 to zero, 
see Supporting Information S1), such as Fujita's model (Fujita et al., 2006), might in general be accurate. Indeed, 
we find that Fujita's model with Paren's reflection coefficients (Paren, 1981) produces returns that are virtually 
identical to our model for a range of synthetic fabric profiles, including profiles without a vertical principal 
direction such as in Figure 3 (not shown). Note that Fujita's model requires the power reflection coefficients to 
be specified manually, as opposed to our model where they follow directly from Maxwell's boundary conditions 
(Equation 9, see Supporting Information S1). While our work therefore supports the continued use of existing 
transfer matrix models, such as the Fujita-Paren model, the insensitivity to 𝐴𝐴 𝐴𝐴𝐴1

2 might make it challenging to infer 
this ODF component from radar data, not least in the presence of noise.

6.1. Oblique Incidence

Interestingly, we find that the error made by neglecting 𝐴𝐴 𝐴𝐴𝐴1
2 increases substantially for obliquely incident waves. 

Figure 4e shows that the error in δPHH is much larger for α = 10° (the error becomes even more pronounced 
for greater α), all else being equal (note the different colorbar scales). Indeed, the corresponding 95th and 99th 
percentile of the absolute differences, 𝐴𝐴 |𝛿𝛿𝛿𝛿HH − 𝛿𝛿𝛿𝛿 †

HH| , are much larger: 9 and 14 dB, respectively. This suggests 
that 𝐴𝐴 𝐴𝐴𝐴1

2 could, in principle, be estimated from wide-angle experiments, possibly from a bistatic configuration. The 
extended capabilities of our model (allowing arbitrary orientation fabrics and oblique incidence) may therefore 
aid the interpretations of such radar surveys, and possibly be used to build inverse problems analogous to Ershadi 
et al. (2021). On that note, we emphasize that the transfer matrix model by Matsuoka et al. (2009) provides many 
of the same extended capabilities as our model does and could therefore equally well be used.

Figure 4. (a–c): ψ†/N at selected depths (i.e., the orientation distribution function [ODF] assuming that 𝐴𝐴 𝐴𝐴𝐴1
2 = 0 ). (d): 

Difference in modeled δPHH between the ODF profiles ψ/N and ψ†/N for α = 0°. (e): Same as (d) but for α = 10°. (f): Relative 
enhancement factor profiles in the principal directions of the true ODF.
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6.2. Robustness of Results

We considered a total of six synthetic fabric profiles to test the effect of neglecting 𝐴𝐴 𝐴𝐴𝐴1
2 . In the Supporting Informa-

tion S1, the results of the remaining five experiments are shown. These include both vertically and horizontally 
rotated single maximum and girdle fabrics with depth, an idealized shear-margin-like profile, and an idealized 
profile for ice flowing over a bedrock bump. The conclusions drawn from all supplementary experiments align 
with those presented here. However, we emphasize that we are unable to determine whether the insensitivity to 

𝐴𝐴 𝐴𝐴𝐴1
2 is generally valid. Based on the range of our experiments, we nonetheless believe that the insensitivity to 𝐴𝐴 𝐴𝐴𝐴1

2 
might be relatively common. Our work, therefore, stands as an important caveat when attempting to interpret 
radar surveys.

6.3. Errors in Inferred Directional Viscosities

Given that 𝐴𝐴 𝐴𝐴𝐴1
2 might be difficult to infer from radar data, it is worth investigating how bulk directional viscosities 

are affected if 𝐴𝐴 𝐴𝐴𝐴1
2 is simply neglected. Consider therefore the case where the ODF is weak enough for higher-or-

der harmonic modes to be disregarded (𝐴𝐴 𝐴𝐴𝐴𝑚𝑚
𝑙𝑙 = 0 for l > 2). In the Supporting Information S1, we show how the 

resulting directional strain-rate enhancement factors may be calculated, defined as the strain-rate experienced 
by a material with an anisotropic fabric (subject to a given stress), divided by the strain-rate experienced if the 
same material were instead isotropic. For our purpose, we consider the enhancement factors along the principal 
directions of the true ODF (e1, e2, e3), typically required by bulk anisotropic flow laws. In this way, let E11 denote 
the compressional/extensional enhancement factor along e1, E12 denotes the e1–e2 shear enhancement factor, and 
so on. Figure 4f shows the relative enhancement factor profiles Epq(ψ

†)/Epq(ψ) for the six unique combinations of 
p and q (p, q = 1, 2, 3). Note that for both ψ and ψ†, one eigenvector is always parallel to 𝐴𝐴 �̂�𝐲 , here labeled as e3. Al-
though disregarding higher wave-number ODF modes is a source of uncertainty, Figure 4f suggests that enhance-
ment factors may be over and underestimated by up to 75% and 25%, respectively, if 𝐴𝐴 𝐴𝐴𝐴1

2 cannot be determined.

More generally, we note that current implementations of normally incident sounding configurations cause large 
uncertainties in estimated enhancement factors, due to the ability to infer only relative differences between hori-
zontal fabric eigenvalues (Jordan et al., 2020). Wide-angle radar experiments, which enable oblique sounding, 
can overcome this limitation and recover all eigenvalues independent of each other (Matsuoka et  al.,  2009). 
Therefore, adopting such experimental configurations, aided by our model which allows for arbitrary fabrics, 
offers a potentially novel path toward an empirically based estimation of anisotropic flow parameters.

6.4. Relevance for Elastic Wave Propagation

As noted in the introduction, shear-wave splitting provides an alternative seismic approach for determining the 
crystal fabric of ice masses and of the mineral aggregate in the upper mantle. The elastic plane-wave equation 
in momentum space is an eigenvalue problem similar to Equation 5 (Diez & Eisen, 2015; Hellmann et al., 2021; 
Kerch et al., 2018; see also Supporting Information S1 for details): Qu − ρω2u = 0, where u is the displacement 
field of the plane wave, ρ is the mass density, and Q is the acoustic tensor. At first glance, it would therefore seem 
that our methodology could be adapted for elastic (seismic) problems, too.

In the simplest case, the bulk elastic constitutive equation may be taken as the monocrystal constitutive equation 
averaged over all grain orientations, assuming a homogeneous strain field over the polycrystal scale. It follows 
that Q depends on both the second- and fourth-order structure tensors (in addition to the monocrystal elastic 
parameters; see Supporting Information S1), in contrast to the radio-wave problem which depends solely on the 
second-order structure tensor by virtue of Equation 2. That is, the elastic problem has an increased sensitivity to 
small-scale structure in ψ compared to the electromagnetic problem. To adapt our method, however, further work 
is needed to construct the corresponding interface matrix, Li, which depends on different boundary conditions: all 
displacement field components must be continuous, as well as the stress-tensor components involving the vertical 
direction (Lautrup, 2011, p. 409). Moreover, the elastic problem consists of solving for six partial waves (three 
downward- and three upward-traveling waves, hence a 6 × 6 problem), and, like the electromagnetic problem, 
the wave-vector solutions might become degenerate for certain fabrics that should be handled carefully. We leave 
such developments for future work, but note that we expect it to be feasible to adapt our methodology for elastic 
plane-wave propagation, too.
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7. Conclusion
We adapted the 4 × 4 transfer matrix formalism from the optics community to construct a radiowave transfer 
matrix model applicable to vertically layered anisotropic glacier ice. By expanding the grain c-axis distribution 
in terms of a spherical harmonic series, we found that radar returns over glacier ice are, for normal incidence, 
insensitive to whether or not a vertical principal fabric direction exists. Instead, the harmonic mode responsible 
for a nonvertical principal fabric direction might be determined from oblique radar sounding, suggesting future 
radar surveys ought to consider wide-angle experiments if they seek to infer the full second-order structure tensor. 
Unless the harmonic mode responsible for a nonvertical principal fabric direction can be determined, we found 
that substantial errors in calculated directional ice viscosities might occur. Likewise, insofar as the orientation 
fabric can function as a flow proxy, it would be insensitive to some flow histories. Finally, we discussed the pos-
sibility of adapting our method for elastic (seismic) problems. We showed that for a simple strain-homogenization 
scheme, the problem of elastic plane-wave propagation is similar to that of electromagnetic plane-wave propaga-
tion, suggesting that our method might be adapted to also study shear-wave splitting caused by fabric anisotropy.

Data Availability Statement
The transfer matrix model is available at https://doi.org/10.5281/zenodo.5769549 and includes a Jupyter note-
book demo for calculating radar returns for synthetic fabric profiles.
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