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Abstract

Experimental evolution has led to remarkable discoveries on the evolution of adap-

tive phenotypes. However, an understanding of the genetic basis of adaptation is

only just starting to emerge, especially in eukaryotes. My thesis aims to take full

advantage of genomic time-series data by examining Evolve & Resequence (E&R)

experiments. This approach typically monitors the genomes of lab populations over

the course of several generations.

Firstly, I introduce Bait-ER: a fully Bayesian approach to investigate allele frequency

trajectories while testing for selection. It implements a Moran model to estimate

selection paramaters at each biallelic site. Bait-ER models varying coverage explic-

itly to account for sampling error. My method is robust even when studying small

populations, and it proved accurate in both real and simulated genomic datasets.

Secondly, I investigate the response to sexual selection in lab populations of Drosophila

pseudoobscura using an E&R approach. These flies were subject to an altered mat-

ing regime where the intensity of sexual selection was either relaxed in monogamous

populations - M - or intensified in polyandrous populations - E. I resequenced the

genomes of each population at five separate time points. I estimated diversity and

the effective population size (Ne) across the genome, and found that overall esti-

mates of Ne match neutral expectations. However, Ne was lower at the start of the

experiment, especially on the X chromosome in E populations. This indicates that

sexual selection is strongest at the start in E lines, and that the X is responsible for

early adaptation. Lastly, I performed a genome scan using Bait-ER to detect any

potential targets of selection on the full genomic time-series. E lines show a stronger

signal of selection where the X dominates, but the 3rd chromosome also seems to be

a hotspot.

In summary, I found clear signals of adaptation in the genome of lab populations

at several levels. This is in spite of strong genetic drift acting to slow down the

adaptive process.
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o mundo com um olhar sempre curioso. O saber é melhor compartilhado tal como
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Chapter 1

Introduction

1.1 The experimental evolution paradigm

Geneticists have been concerned with describing evolutionary processes for over

a century. Ever since the DNA molecule was described as being responsible for

inheritance, Darwinian selection was put into context over tens if not thousands of

generations. Strikingly, we have since been able to quantify how much mutation,

selection, migration and drift allow lineages to diverge and adapt. This is due to

the extensive work of population geneticists, who have created mathematical models

to describe evolutionary phenomena across generations; and experimentalists, who

have thoroughly conducted numerous studies on natural and laboratory populations.

It was the bout of high-throughput next generation sequencing during this last

decade that has allowed genes and genomes to be thoroughly examined. However,

it was only recently that genome sequencing costs decreased sharply, which has

removed certain prohibitive costs from laboratory budgets. This has led to an in-

creasing availability of whole-genome datasets from population samples. Thus, we

can investigate patterns of diversity throughout the genome, and, from those, pick

out characteristic signatures of selection and demography. This data availability

offers an invaluable opportunity to couple population genetics theory with novel

statistical approaches to shed light on the genomics of adaptation.

Over the years, experimental populations have been set up in the lab and studied

for many generations. This has been an alternative to field studies where it might

1



Short-term adaptation in the lab: an analysis of evolutionary trajectories using time-series data

be difficult to control any, or all, environmental variables. Evolution studies have

imposed countless selective pressures on experimental populations, ranging from

varying concentrations of micronutrients in the medium, such as iron (e.g. Figueiredo

et al., 2021), cadmium, nickel or zinc (e.g. Gorter et al., 2017), to selection for

antibiotic resistance (e.g. Toprak et al., 2012). Other studies in insects focused

on selecting for increased body size (e.g. Reeve et al., 2000), starvation resistance

(e.g. Chippindale et al., 1996), novel temperature regimes (see Maynard Smith,

1956 for an early instance and Barghi et al., 2019 for a more recent example) or

parasitoid resistance (e.g. Jalvingh et al., 2014). This allows one to investigate

several categories of phenotypes, such as resource allocation, immunity responses

and some social traits. It might even be possible to assess population fitness using

proxies like offspring quality and quantity (e.g. Crudgington et al., 2009; Firman and

Simmons, 2010). These evolution experiments have investigated not only phenotypic

changes but also changes at the genotype level. There are several examples of studies

that have characterised such changes both at functional loci and other molecular

markers (Teotónio et al., 2009; Turner et al., 2011; Burke et al., 2010; Orozco-

terWengel et al., 2012).

The power of experimental evolution stems from the ability to compare the diver-

gence between experimental treatments to the variation among replicate populations

(Kawecki et al., 2012). Combining high-throughput sequencing technologies with se-

quencing pools of individuals at once - pool-seq - has reduced lab costs even further.

This has contributed to many successful Evolve & Resequence – E&R – experiments

(e.g. Teotónio et al., 2009; Burke et al., 2010; Turner et al., 2011; Orozco-terWengel

et al., 2012). Pool-seq is a cost-effective way of obtaining accurate population al-

lele frequencies (Anand et al., 2016; Schlötterer et al., 2014, 2015) such that it has

become quite commonplace. The field of experimental evolution has transformed

substantially with these technical advancements, and their importance has been dis-

cussed for over a decade (Futschik and Schlötterer, 2010; Phillips and Burke, 2021).

This has led us to the brink of understanding the complexities of adaptation at a

genomic level.

The genetic basis of adaptation in the lab varies substantially depending on what sort

of organism one is concerned with. Organisms vary greatly in complexity namely in
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terms of how they reproduce and propagate which can result in very distinct modes

of adaptation (reviewed in Long et al., 2015). At a genome-wide scale, adaptation

in asexual systems typically occurs from new mutations via clonal interference (see

Barrick et al., 2009 for an example in Escherichia coli and (Lang et al., 2013) for

an example in Saccharomyces cerevisiae). When there is no recombination between

genetic backgrounds, multiple beneficial alleles arise in a population leading to com-

petition among clones (Muller, 1932). This will most likely lead to the fixation of

a single such clone. Clonal interference thus causes diversity to be eliminated until

other mutations arise at different loci. Alternatively, in sexual systems, adaptation

from new mutations in large populations can result in the typical classical selective

sweep signature. This genomic pattern is characterised by an advantageous muta-

tion that arises in the population and sweeps to fixation along with linked neutral

variants. After a few generations of stochastic frequency shifts, the allele is then

picked up by selection and starts behaving deterministically until it reaches fixation

(Maynard Smith and Haigh, 1974). The hitchhiking phenomenon leaves a marked

signature of reduced genetic diversity around the selected site (Stephan et al., 1992).

The characteristic trough in diversity is affected by the strength of selection. This

trough gradually flattens as mutation generates new diversity and recombination

brings mutations on different backgrounds together. The selective sweep signature

is therefore a hallmark of the adaptive process in large populations. By contrast, the

mode of adaptation in small populations of recombining organisms differs substan-

tially the sweep paradigm. Studies in outcrossing yeast (Burke et al., 2014), insects,

such as Drosophila (Hoedjes et al., 2019), and plants (Scarcelli and Kover, 2009)

have shown that these rely on standing genetic variation to respond to selection.

The genomic signatures left behind are still largely uncharacterised and expected to

differ from the classical selective sweep.

As discussed above, contrary to what happens in large population experiments,

studies in small populations of outbred eukaryotes have shown that rapid adapta-

tion is mediated via standing genetic variation. There is evidence from laboratory

experiments that selection acts on extant polymorphism to produce a swift response

to the experimental setup (Franssen et al., 2015, 2017b). Extant additive genetic

variance for fitness permits for fitter individuals to be quickly picked up by selection

Chapter 1 3
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in the new environment. In experiments where individuals are collected from the

wild, samples are likely to exhibit a substantial amount of genetic diversity. The

reason standing genetic variation allows for adaptation to occur swiftly within a

short time frame is twofold. First, variance in fitness increases at each generation

due to recombination. It generates added fitness variance which accelerates adap-

tation (Barton, 2010; Sharp and Otto, 2016). Recombination breaks up linkage

disequilibria (LD) between advantageous and deleterious mutations rescuing bene-

ficial variants from low fitness backgrounds. As a result, advantageous mutations

can recombine into genetic backgrounds with other positively selected variants facil-

itating adaptation. Alternatively, when populations are small, recombination might

not act fast enough as to generate fitter combinations of alleles. In that case, if

recombination is low compared to selection, it may pick up on the variation in fit-

ness generated by extended haplotypes. Instead of a marked reduction in neutral

diversity around a limited set of selected sites spread throughout the genome, one

will observe an increase in frequency of a particular haplotype. In E&R studies with

several replicate populations, multiple haplotypes can be selected for in different

replicates (Franssen et al., 2017a). This causes a heterogeneous response amongst

replicates and is a direct cause of the readily available standing genetic variation at

the bout of selection.

We now have a better grasp of the complexity of short term adaptation in labo-

ratory experiments (Schlötterer et al., 2015). However, for a long time, the main

goal of E&R studies was to pinpoint specific SNPs or structural variants as putative

causative sites. After detecting potential candidate loci, one would then perform a

functional analysis by introducing the mutant allele in an invariant genetic back-

ground (e.g. Martins et al., 2014; Turner et al., 2013). This would allow one to

confirm the key role of said variant in the response to selection. In recent years, it

has become quite clear that the genetic background has a much more relevant role

than previously thought. This has shifted the focus of E&R experiments which has

moved on to investigating large-scale patterns of genomic adaptation. If linked to

other selected sites, the ability of a positively selected allele to spread through the

population can be hindered (Kim and Stephan, 2003). Without recombination to

break up associations between closely linked selected sites, haplotypes might com-
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pete with one another in smalls populations. However, beneficial alleles might be

linked to slightly deleterious variants. This can cause the fitness of the whole hap-

lotype to be reduced compared to the fitness of the advantageous mutation. As a

result, linked selection found in recombining sexual systems, either in the form of

background selection or hitchhiking, can have a substantial impact in both the out-

come of selection and the genomic signature it may leave (Charlesworth and Jensen,

2021). From early population genetics theory, we also know that each selected allele

interacts with nearby loci through epistasis (Hill and Robertson, 1966). Directional

epistasis can increase evolvability or hinder adaptation, and it decays when selection

is relaxed (Hansen, 2013). An integrated view of how all these evolutionary forces

interact with one another has helped us put forward numerous hypotheses that one

can both test in the lab and develop models for (Hermisson and Pennings, 2017;

Höllinger et al., 2019; Gompert, 2021).

Not only do we have a better understanding of the underlying population genetics

but there is also increasing E&R data availability. Thus, new and improved sta-

tistical methods are needed. The purpose of these is to detect and infer selection

whilst making the most of the replicated experimental design. New methods should

account for any confounding factors to do with the experimental set up that could

cause spurious results. This includes the effects of small population sizes and insuf-

ficient sampling or sequencing depth. The E&R design is a valuable resource when

natural population studies are underpowered from lack of replication. I have shown

here the relevance of evolution studies for investigating rapid adaptation to selection

pressures imposed in the lab. The next sections will introduce the evidence that has

been collected so far to elucidate the adaptive genomic response, as well as examples

of selection inference methods that have been put forward.

Chapter 1 5
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1.2 The genomics of adaptation to the lab

Researchers have studied a plethora of organisms in the lab with the goal of under-

standing genomic adaptation. That has led us to the realisation that depending on

which organism and population size one chooses to work with the adaptive response

might differ. It can range from almost deterministic in large populations to mostly

affected by genetic drift when recombination is low and populations are small. Stud-

ies were thus needed to understand what aspects of the experimental design might

influence statistical power to find selection in the genome. With more guidance on

how to set up more optimal evolution experiments (Baldwin-Brown et al., 2014;

Kofler and Schlötterer, 2014), E&R experiments are now suited to gather evidence

for short-term adaptation from genomic signatures.

After many attempts at investigating allele frequency changes, there was consen-

sus that the process of adaptation in microbial E&R experiments occurs in two

distinct phases (reviewed in Orr, 2005, and Tenaillon, 2014). The initial phase of

large-effect advantageous mutations that sweep through the population is typically

followed by various small effect variants increasing in frequency. These fine-tuning

mutations arise in multiple genetic backgrounds as the population approaches the

phenotypic optimum. In other words, multi-step mutational pathways contribute to

further adaptation as the long-term fate of an individual mutation may not depend

solely on its immediate effect (Barrick and Lenski, 2013). In sexually reproduc-

ing microbes, selective sweeps at the start of an experiment are accompanied by

strong neutral hitchhiking signal. This process is substantially different from that

in small eukaryote populations. Whereas in microbes, adaptation occurs due to new

mutations arising in the population (e.g. Kosheleva and Desai, 2018), adaptation

in higher order eukaryotes relies mostly on standing genetic variation (reviewed in

Long et al., 2015). This suggests that the pace at which either can adapt is largely

determined by the mutation and recombination rates, respectively. In other words,

adaptation in microbes depends on how fast new variance in fitness is generated via

new mutations (reviewed in Barrick and Lenski, 2013). In contrast, small popula-

tions of eukaryotes adapt at a pace that is limited by the initial genetic variation

of the founders and the rate at which advantageous variants recombine into fitter
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genetic backgrounds (Kosheleva and Desai, 2018; Otte et al., 2021).

The concept of hitchhiking has been around since Maynard Smith and Haigh (1974)

described it in a deterministic model. They were inspired by Lewontin (1974) who

observed that allozyme variability levels were not sufficiently associated with pop-

ulation size. This would contradict the principles of the neutral theory suggesting

there had to be another evolutionary phenomenon causing diversity to drop. Fast

forward over a decade, to 1991 when the term selective sweep was coined by Berry

et al. (1991). Berry et al. used it to encompass the whole process, from the rise

in frequency until fixation of the causative locus to the decrease in neutral diver-

sity surrounding it that is the hitchhiking phenomenon. The characteristic trough

in neutral diversity around the selected site has been explored extensively by re-

searchers attempting to model the hard sweep process. These models were often

incorporated into genome scans for detecting selection in population-level datasets

(reviewed in Stephan, 2019).

It is clear from studies in both natural and laboratory populations (Jha et al., 2015;

Elyashiv et al., 2016; Barghi et al., 2019; Kelly and Hughes, 2019; Garud et al.,

2021) that the classical sweep scenario can only partially capture the complexity

of adaptation. That is especially true for rapid adaptation that relies heavily on

standing genetic variation. The lack of marked troughs in neutral polymorphism

has left scientists baffled (Barghi et al., 2020; Jain and Stephan, 2017a). One of

two things could be causing this pattern. It could be that one is observing an

incomplete sweep. Since one is merely taking a snapshot of a population at a

given point in time, it is possible that not enough time has passed between the

mutational event that produced the new beneficial allele and the bout of selection

for a marked reduction in neutral variation. If enough generations had passed,

one would have detected a reduction in neutral diversity that would match the

hitchhiking model’s predictions. Alternatively, one could be observing the tracks

of a soft sweep. A soft sweep can be the result of adaptation through standing

genetic variation, either due to polymorphism at one locus or multiple variants at

loci with potentially similar fitness effects (Hermisson and Pennings, 2017). In an

E&R experiment, effectively neutral mutations that were segregating in the founder

population become advantageous in the new environment. Extant neutral variants
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might suddenly provide a fitness advantage to those individuals that carry them in

the presence of a new environmental stressor (Hermisson and Pennings, 2005). Such

variants may simply evolve in a nearly-neutral manner or be present in mutation-

selection balance at an appreciable frequency (Stephan, 2019) thus contributing to

the evolvability of the experimental population.

Soft sweeps can be caused by directional selection on complex traits where the

population fitness trajectory is first characterised by a steep increase until the pop-

ulation reaches the new phenotypic optimum. After this optimum is reached, the

fitness trajectory plateaus. These two phases of the trajectory can be accompanied

by allele frequency changes. The first step is caused by large-effect alleles that were

segregating in the population. As these alleles move towards fixation, other neutral

polymorphic sites present in the genetic background linked to the causative loci

will also increase in frequency. However, because these large-effect mutations might

find themselves in different genetic backgrounds, neutral allele diversity will not be

reduced to cause a hard selective sweep. If multiple haplotypes containing one or

more beneficial alleles are segregating before the environmental change, adaptation

will produce a soft sweep signature (Hermisson and Pennings, 2005; Messer and

Petrov, 2013). This involves the haplotypes containing said advantageous variants

to increase in frequency with other less fit haplotypes being eliminated from the

population. Since different combinations of advantageous alleles are already present

in various genetic backgrounds, the end of this phase will result in only a few hap-

lotypes present. The second stage after the trait mean has shifted towards the new

optimum involves smaller-effect alleles. These will change in frequency as stabilising

selection acts to maintain the new trait optimum (Franssen et al., 2017b).

With adaptation from standing genetic variation, one will most likely not be look-

ing for the typical signature of a hard selective sweep. There might be multiple

segregating haplotypes as well as interference between selected sites. Whilst the

former facilitates rapid adaptation, the latter hinders the process. In the case of

interference, the effect of hitchhiking in reducing neutral variation also decreases,

maintaining some levels of polymorphism (Kim and Stephan, 2003). As we have

seen, the process is complex and it most likely involves simultaneous soft sweeps

that can become selected haplotypes across long stretches of the genome. A few
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studies have reported that there is a heterogeneous response to selection within the

replicated E&R design (Orozco-terWengel et al., 2012; Barghi et al., 2019). Experi-

mental replication should help tease apart soft sweep signatures from other possible

phenomena such as polygenic adaptation involving potentially infinite loci. This

observed heterogeneous response can also be caused by sampling of multiple haplo-

types that were segregating before the foundation of the experimental replicates. In

which case, each replicate would have received a different haplotype that is possibly

equally as advantageous.

There seems to be no clear signal of narrow regions of the genome that respond

to selection in E&R experiments from genome scans. This is likely caused by the

pervasive effects of linkage. With adaptation from standing genetic variation, re-

combination might have not had enough time to break up associations between

linked selected sites that are present in one of the extant haplotypes. However, ex-

perimental populations seem to reach their new phenotypic optimum quite swiftly.

Alternatively, when there is a variant sweeping through the population, genome

scans might not have enough power to detect which are the true targets of selection.

When selection is very strong, linkage between neutral and selected sites will cause

neutrally evolving allele frequency trajectories to be shaped very much like if they

were the real targets. In other words, linkage between neutral and selected sites has

been hypothesised and proven to cause skewed neutral site frequency spectra. This

is a well known caveat of genome scans. By analysing individual site trajectories,

one can only assume that the highest scoring SNPs will be in linkage with the true

causative locus or loci. One option to overcome this hurdle is to account for the ef-

fect of linkage disequilibrium. However, that is far from trivial. One can implement

a multi-locus version of classical models of allele frequency evolution (e.g. Wright-

Fisher or Moran) to a mechanistic model including selection, or explore correlations

and covariances between allele frequency trajectories. Especially in eukaryotes with

sexual reproduction, it is key to investigate the time-dependency of these corre-

lated changes in allele frequencies whilst taking the recombinational landscape into

account.

In addition to the effects of linked selection, polygenic adaptation has recently taken

centre stage in E&R studies. It has helped explain why classical selective sweeps do
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not fully describe the process of adaptation to the laboratory. More often than not,

evolution experiments involve selection on complex traits, which typically have a

polygenic basis (Schlötterer et al., 2015). Evidence has been mounting from genome

wide association studies – GWAS – that most traits are highly polygenic, suggest-

ing that considering the hard sweep signature alone will underestimate selection

(reviewed in Sella and Barton, 2019). I have described the key forces that have a

role in allowing populations to adapt readily to environmental shifts. Is it now timely

to introduce the reader to relevant statistical methods that have been developed for

detecting signatures of selection in population-level genomic datasets.

1.3 Methods for time series data

E&R studies with multiple sampling events have created a need for more sophisti-

cated time series analyses. Making use of full allele frequency trajectories should

increase one’s power to detect selection in polymorphism datasets (Burke and Long,

2012). If combined with population genetics models of evolution, one might also be

able to estimate the effective population size from allele frequency changes. Cur-

rent methods range from more empirical statistical approaches to explicit models of

evolutionary forces (reviewed in Vlachos et al., 2019). These sizeable efforts have

pushed a relatively new field forward into making the most of the data that is

currently available from large scale laboratory experiments.

Single-locus evolution has often been described mathematically using the Wright-

Fisher (WF) model. It characterises the deterministic trajectory of a new allele in

a WF population. Changes in allele frequency are often caused by other forces that

violate WF principles - i.e., infinite and constant population size, no mutation, se-

lection, migration nor drift. These violations in real populations have led scientists

to propose inference methods for estimating parameters. Such parameters describe

how a population deviates from the neutral WF properties. Many researchers have

developed their own approximations to the process. Bollback et al. (2008) have

put forward a method that uses the diffusion approximation to the process so they

can estimate Ne and the selection coefficient for a given allele frequency trajectory.

Others have approximated the diffusion process with a one-step method where there
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is a finite number of allele frequency states (Malaspinas et al., 2012). Whilst others

have created a hidden-Markov-model to produce a maximum likelihood estimate of

the selection coefficent (Mathieson and McVean, 2013). Mathieson and McVean em-

ploy an expectation-maximisation algorithm to maximise the likelihood function. In

addition, Steinrücken et al. (2014) developed a spectral representation of the tran-

sition density function, while Lacerda and Seoighe (2014) devised a delta method

to approximate the mean and variance of the WF process. Others have considered

the importance of other loci in the genome on the success of a advantageous muta-

tion. Whereas Illingworth and Mustonen (2012) and Nené et al. (2018) have inferred

the fitness of multiple haplotypes that arise in an experimental population via mu-

tation, Terhorst et al. (2015) developed an approximation to the multi-locus WF

model using Gaussian processes (GP). The latter addresses pooled sequencing since

it accounts for ascertainment bias due to sampling effects. This feature is one of the

key aspects of finding suitable methods for analysing allele frequency trajectories

from E&R studies.

Whilst making use of these mechanistic approaches to describe adaptation, many

inferential methods were developed in this context. These methods use statistical

frameworks to estimate relevant parameters and can be used to analyse polymor-

phism datasets. As an example, Ferrer-Admetlla et al. (2016) developed a very

comprehensive approach that allows them to estimate a number of evolutionary pa-

rameters, including Ne and the selection coefficient, as well as sequencing error and

mutation rates. The authors introduce a discrete approximation for the diffusion

process. The method also employs a Bayesian inference approach that performs the

joint inference of the model parameters. Their results suggest the model is highly

accurate at estimating selection coefficients in medium to large population sizes. In

a study aimed at ancient DNA time series data, Schraiber et al. (2016) present a

Bayesian method to infer both selection and allele age. The authors use a path aug-

mentation approach coupled with a Markov Chain Monte Carlo (MCMC) method

for integrating over the latent allele frequency state space. The key advantage to

this is that it imputes allele frequencies between sampled time points if sampling is

sparse.

Other authors have developed statistical approaches to test for selection explicitly.
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The work published by Feder et al. (2014) presented an empirical likelihood ratio

test (LTR) for rejecting neutral evolution and a frequency increment test (FIT) that

looks at distribution of allele frequency increments. The authors showed that both

methods were good at detecting moderate to strong selection. In 2014, Foll et al.

presented a method for inferring demography and selection from time series data.

The authors introduced an Approximate-Bayesian Computation (ABC) method for

inferring selection using Jorde and Ryman’s 2007 frequency-based Ne estimator -

WFABC. Not unlike other ABC approaches, WFABC involves sampling parameter

values from prior probability distributions, then simulating evolution based on those

parameter values, and finally calculating summary statistics for the simulated and

observed data. Shim et al. (2016) extended WFABC to include a change point

in the signal of selection assuming that the selected allele is segregating at the

time of the change point. This approach requires resequencing data before and

after the onset of selection. Zinger et al.’s (2019) paper proposed an approach

similar to Foll et al. (2014), where they designed a method suited for short-term

E&R experiments or rapidly recombining virus populations. Their tool - FITS

(Flexible Inference from Time-Series) - was implemented such that one has to choose

one of three parameters to estimate. These are the fitness of a given allele, the

mutation rate or the population size. FITS builds on Foll et al. (2014) as it is also an

ABC approach that implements a two-step WF model with selection and recurrent

mutation. The first step applies selection, whereas the second step incorporates drift

through binomial sampling. FITS uses a default prior distribution that is based on

empirical distribution of fitness effects obtained from studies in viruses.

There was a lack of any methods that were aimed at analysing E&R datasets that

combine pooled sequencing with a replicated experimental setup. Iranmehr et al.

(2017) proposed a method that addresses uneven coverage along the genome which

causes added sampling noise. The author’s approach estimates Ne as well as the

dominance and the selection coefficients. It is a composition of likelihoods for E&R

experiments (CLEAR). It uses a hidden Markov model (HMM) with discrete fre-

quency states and outputs a log-odds ratio of the likelihoods for a neutral evolution

and a directional selection model. Hypothesis testing relies on obtaining a distribu-

tion of those statistics and performing genome-wide drift simulations to compute an
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empirical null-distribution. This allows CLEAR to output a p-value for each vari-

ant. Another use of Gaussian processes was reported by Topa et al. (2015) where

the authors apply a beta-binomial GP model to rank allele frequency trajectories

that have a significant non-random variation in abundance over time. They apply it

to E&R experiments where there are allele frequency changes across sampled time

points. The GP model is coupled with a beta-binomial prior for the allele counts

that represents the uncertainty generated by finite sequencing depth. The program

outputs a Bayes factor (BF) that is a ratio of two likelihoods: one for a time-

dependent model where allele frequencies depend on previous states, and another

for a time-independent model where allele frequencies changes are governed by drift

alone. In other words, a model where an allele increases in frequency consistently

through time due to directional selection is compared to another where it changes

in abundance randomly in either direction. Taus et al. (2017) have taken a different

approach to modelling allele frequency trajectories where they employ linear least

squares (LLS) regression to fit allele frequencies to a purely deterministic selection

model. The method infers the selection coefficient and starting allele frequency by

fitting a LLS model to logit-transformed allele frequency data. The method also

simulates neutral trajectories so it can output a p-value for each trajectory. More

recently, Kojima et al. (2020) have coupled WF parameter estimation with formal

statistical testing. The authors applied an expectation-maximisation algorithm to

the Kolmogorov forward equation that is associated with the diffusion approxima-

tion of the WF model. They then describe a LRT to detect selected variants.

The process of adaptation is inherently complicated given that each variant in the

genome interacts with other variants it is linked to. Its genomic context might be just

as important as its direct effect on fitness. That is why an increasing amount of stud-

ies have tried to report the impact of linked selection in both neutral polymorphism

and other selected sites. Some have developed methods multi-locus approximations

of the WF model (Terhorst et al., 2015; Sohail et al., 2021). Terhorst et al. (2015)

use their multi-locus GP approximation of the WF process and incorporate it into a

LRT that uses an empirical null distribution that calculated by running additional

simulations. In a later study, Sohail et al. (2021) presented a multi-locus model

using the diffusion approximation to infer selection from time series data. They call
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their method Marginal Path Likelihood (MPL) as it computes the probability of an

evolutionary path, that is described by the set of mutant allele frequencies present

at each sampled time point. MPL uses Bayesian inference to calculate the posterior

distribution of possible selection coefficients given an observed path of allele frequen-

cies. Because it is a multi-locus model it helps disentangle the effects of linkage, but

it does require phased genotype data.

Others tried to quantify the impact of linked selection in causing allele frequency

change by measuring temporal autocovariances (Buffalo and Coop, 2019). The

method estimates the additive genetic variance for fitness using the property of

temporal autocovariances that are caused by LD between a neutral allele and the

fitness of its genetic background which persists over generations. Their approach also

employs a least squares method to estimate drift-Ne. Buffalo and Coop (2020) ap-

ply their statistical method to several evolution experiments, particularly to Barghi

et al. (2019). They found that over 20% of allele frequent changes were caused by

selection, and that covariances between adjacent time points were positive initially

but decay as one looks at more distant time intervals. This is consistent with positive

selection affecting linked neutral trajectories until enough time has passed that LD

is broken up. Instead of including neutral variation in their analyses, Franssen et al.

(2017a) take on the task of reconstructing selected haplotypes from time series data.

Their approach is targeted for replicated experimental setups that resequence using

pool-seq. The method identifies selected haplotypes from finding correlated allele

frequency trajectories. Correlated trajectories are maintained by physical linkage

between selected sites.

As I have described, the past decade has been incredibly fruitful in terms of inves-

tigating short-term adaptation using time series data. Coupled with this need to

analyse complex data, a number of versatile statistical approaches were developed.

Most rely on population genetics models that describe the evolution of idealised pop-

ulations. However, lab experimental populations commonly violate several assump-

tions made by any such models. For example, it is often the case that population

sizes are small such that genetic drift determines the fate of low frequency alleles

even when these are beneficial. This might hinder adaptation as genetic diversity

is quickly erased reducing the adaptive potential of the population. Additionally,
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when resequencing, one rarely samples the whole population. This results in in-

creased sampling noise that can be further aggravated by uneven genome coverage.

Both of these features of the experimental design can severely underpower the sta-

tistical analysis. That would cause genome scans to have poor resolution at pin

pointing which are the true targets of selection. Since experiments are underpow-

ered to detect selection on individual SNPs, the focus has started to shift towards

describing larger scale patterns namely the role of structural variants in adaptation.

The adaptive process is further complicated by linkage and interference where re-

combination plays a decisive role. The future of E&R data analysis thus lies on new

mechanistic models that can incorporate the complexities of the genetic background.

1.4 The genomics of sexual selection in D. pseu-

doobscura

As early as the 19th century, Darwin (1871) wrote about the special case of natural

selection that is traits evolving differently between the sexes. Sexual selection thus

results from competition among same sex individuals for mates of the opposite sex.

Individuals exhibiting some trait variant outcompete other members of the same sex

gaining access to mates. With better understanding of heritable variation through

DNA, Parker (1979) reasoned that there must be conflict between the sexes since

they share one genome but might have divergent evolutionary interests. There is

sexual conflict when there is sexually antagonistic (SA) selection acting on shared

traits. These traits can have similar – intralocus conflict – or different – interlocus

conflict – genetic basis in each sex (Perry and Rowe, 2015; Rowe et al., 2018). Many

have investigated how this intragenomic conflict might arise whilst others focused

on how it may be resolved.

Sexually antagonistic selection can thus lead to a co-evolutionary arms race between

the sexes (Holland and Rice, 1998). Evidence for an arms race has been found in

multiple behavioural traits, particularly in species of Drosophila, which have been

repeatedly chosen as a model organism to study in the lab for well over a cen-

tury. Holland and Rice (1999) set out to investigate the consequences of imposing

monogamy on the naturally promiscuous Drosophila melanogaster. After 47 genera-
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tions of selection, Holland and Rice found that males had evolved to be less harmful

to females. There was also evidence that females had evolved to be less resistant to

male harm as a result of relaxed sexual selection under monogamy. Other studies of

Drosophila matings also showed that seminal fluid proteins have numerous fitness-

related effects on female flies (Chapman et al., 1995; Chapman and Davies, 2004).

These proteins can cause physiological changes to females, including altered immune

gene expression and ovulation, as well as altered aggression and feeding behaviours.

All these factors will affect female survival and overall reproductive rate.

One of the main advantages of modern experimental evolution is that it allows

investigating the genetic basis of traits that respond to sexual selection. Despite

it being especially difficult to detect genetic variation that might be associated

with behavioural traits, there are few examples that relate mating behaviour with

polymorphism (reviewed in Boake et al., 2002, and Wilkinson et al., 2015). Ritchie

(2000) found that female preference for male song was determined by sex-linked

genes in the bushcricket Ephippiger ephippiger. Later, Noor et al. (2001) were able

to map inversions on the X and second chromosomes of Drosophila pseudoobscura

and Drosophila persimilis which they associated successfully with female preference

and male courtship wing vibration. Turner et al. (2013) performed an association

study between over 13k SNPs and interpulse interval (IPI) of male courtship song.

The authors even validated a few candidate genes. Chenoweth et al. (2015) set out

to assess the impact of sexual selection in comparison to that of natural selection in

Drosophila serrata populations. They found that, after genotyping over 1,400 SNPs,

sexual selection had affected many of the same genomic regions as natural selection.

Even more recently, Ruzicka et al. (2019) used sex-specific fitness data from fully

sequenced D. melanogaster lines. The authors identified 226 clusters of potential

candidate SNPs throughout the genome that responded to sexually antagonistic

selection. However, the authors found no evidence that the X chromosome was a

hot spot for sexually antagonistic variation as some theory had previously suggested

(Rice, 1984).

It had been originally proposed by Rice (1984) that sexually antagonistic varia-

tion should be more common on the X chromosome in species where males are the

heterogametic sex. This would be in contrast with the autosomes where sexually
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antagonistic polymorphism would be rare. Rice (1984) proposed a theoretical model

where a sexually antagonistic allele will readily invade the population if dominant

and beneficial to females or partially recessive and favouring males. The paper then

predicts that X-linked genes will increase in frequency within a wider parameter

space when compared to autosomal genes assuming parallel dominance between the

sexes. Despite this expectation, there is mixed evidence that the X is a hotspot

for sexually antagonistic variation (e.g. see Gibson et al., 2002, Innocenti and Mor-

row, 2010, and Lucotte et al., 2016, for evidence for X-linked SA polymorphism,

and Delcourt et al., 2009, Ruzicka et al., 2019, and Ruzicka and Connallon, 2022,

for genome-wide SA variation). The answer to the question of where SA varia-

tion would be predominantly located may lie in understanding the evolution of

sex-specific dominance (Fry, 2009; Mullon et al., 2012; Spencer and Priest, 2016;

Grieshop and Arnqvist, 2018). On the question of genetic variation, sexually an-

tagonistic selection was also proposed to cause allele frequency differences between

males and females. Lucotte et al. (2016) found that allele frequencies differed be-

tween the sexes in humans. More variants that differed significantly between the

sexes were found on the X chromosome. The authors suggest that this is evidence of

SA selection on viability. Another study of sexually antagonist selection in humans

focused on autosomal variants and found that loci with intermediate degrees of sex-

bias in gene expression also showed the greatest allele differentiation between the

sexes (Cheng and Kirkpatrick, 2016). In other words, ongoing sex-specific selection

is strongest for loci with intermediate sex-biased expression - a pattern the authors

refer to as ‘Twin Peaks’. Thus far, studies have shown that the genomic outcome

of sexual conflict varies drastically depending on several key conditions, namely the

genetic basis of the conflict and sex-specific dominance coefficients. Ultimately, this

conflict may cause polymorphism to be maintained, or for mutations to invade and

lead to adaptive substitutions.

In a large population where drift is minimised, adaptive substitutions have been

proposed to accumulate more readily on the X chromosome. This is caused by

new recessive mutations being directly exposed to selection in the hemizygous sex,

i.e. allelic effects will no longer be masked in the males. Theoretical models of

rates of evolution predict an accelerated rate of adaptive change in X-linked loci

Chapter 1 17



Short-term adaptation in the lab: an analysis of evolutionary trajectories using time-series data

relatively to autosomal alleles - faster-X effect (Charlesworth et al., 1987; Vicoso

and Charlesworth, 2006). The genomic response to sexual conflict can thus be tied

in with the faster-X effect. If variants affected by sexual selection are mostly found

on the X chromosome, faster-X evolution may facilitate adaptation to altered mating

systems. This effect was found to promote the fixation of advantageous mutations

depending on the ratio of the effective population size of the X chromosome in

comparison to that of autosomes (Vicoso and Charlesworth, 2009). The same model

found that an NeX/NeA greater than 3/4 promoted a faster-X effect under a much

wider range of dominance levels. Some empirical studies have found that NeX/NeA

is typically close to 1 in African populations of Drosophila melanogaster (reviewed in

Charlesworth, 2012). If selection, mutation and migration increase NeX/NeA ratios,

these evolutionary forces might in fact contribute to a faster-X effect. Predicting how

NeX/NeA ratios might change under different sex-determination and mating systems

is not a trivial task. However, understanding how differences between autosomes

and sex chromosomes can facilitate adaptation may guide research on intralocus

sexual conflict.

Understanding the mechanisms via which sexual conflict may be resolved has thus

been the focus of recent research. This is especially true now that we have the

ability to resequence not only whole genomes but also transcriptomes. The genetic

mechanisms that can be used to resolve sexual conflict may differ depending on

whether its genetic basis is intra- or interlocus. Intralocus sexual conflict results

from selection on a shared trait with a genetic basis that is common between the

sexes. When trait optima vary between males and females, sexual conflict arises.

As discussed above, this conflict is thought to involve allele frequency differences

between the sexes. It is possible that, under some restrictive conditions where

linkage between loci is tight and alleles are strongly selected, genomic islands of

differentiation on sex chromosomes might arise (Otto, 2019). However, these are

likely to be rare and located in the recombining region of the sex chromosomes.

A similar result was found when modelling genomic differentiation in autosomal

loci (Kasimatis et al., 2019). In such cases, intralocus sexual conflict might be

resolved through the decoupling of male and female gene expression patterns (Wright

et al., 2018, 2019). Hollis et al. (2014) used D. melanogaster to show that enforced
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monogamy does change gene expression profiles. They found that after more than

100 generations of monogamy gene expression became feminised. In contrast, if there

is interlocus sexual conflict, it may as well be fully resolved by allele changes between

the sexes (Cheng and Kirkpatrick, 2016; Lucotte et al., 2016). To help understand

this process, E&R experimental setups should prove very useful in disentangling the

genetic basis of sexual conflict resolution.

The primary data set I will focus on in this thesis is of a particular social envi-

ronment experiment designed by Snook et al. (2005) using small populations of

Drosophila pseudoobscura. There were two treatments that influenced the strength

of sexual selection: monogamy (M) or elevated polyandry (E). It is known that D.

pseudoobscura females mate with 2 to 3 males within their lifetime (Dobzhansky

and Pavlovsky, 1967). Therefore, a regime where a female is housed with 6 males

instead is expected to elevate sexual conflict. In contrast, monogamy should lead to

relaxed selection since there is no male-male competition nor any need for further

female preferences to evolve. Overall, E males were faster to sing (Snook et al.,

2005; Debelle et al., 2017), courted females more often (Crudgington et al., 2010)

and sired the most amount of progeny (Crudgington et al., 2009).

In addition to examining behavioural and fitness-related traits, there were several

studies that tried to find patterns of adaptation to this new social environment

in the genome. Both gene expression levels (Immonen et al., 2014; Veltsos et al.,

2017) and allele frequency changes (Wiberg et al., 2021) were examined. Immonen

et al. showed that 14% of the transcriptome was differentially expressed between

treatments and that 70% of these genes were sex biased. When Veltsos et al. further

investigated the transcriptome, they found that male and female abdomens where

sex-specific reproductive tissues are located as well as female heads were masculinised

in monogamy lines. This is somewhat unexpected since relaxed sexual selection

should cause a feminisation of the transcriptome (Hollis et al., 2014).

In a very recent study, Wiberg et al. (2021) investigated allele frequency differences

between treatments during the last quarter of the experiment. They found that there

were “islands” of divergence between selection lines that were more often present on

the X chromosome. The authors also found that there was lower diversity on the

Chapter 1 19



Short-term adaptation in the lab: an analysis of evolutionary trajectories using time-series data

X, as well as some evidence for selective sweeps. Overall, diversity was lower in E

populations, which might suggest stronger selection acting on allele trajectories in

comparison to M line flies. Genes located within 10kbp of any top scoring polymor-

phism were investigated to find whether these were differentially expressed between

lines. This set of genes showed a significant overlap with differentially expressed

genes in ovaries and testes between M and E populations.

This experiment sets an interesting example of how adaptation to a new social

environment shapes traits and genes. There was evidence for a strong response to

selection in both life-history traits and courtship behaviour when comparing the two

treatments. Transcriptome analysis also showed differences between the treatments

and indicated that males and females responded differently to the selection regime.

Evidence also mounted that, in addition to phenotypic changes at the trait and

molecular level, population allele frequencies responded to the selection treatments.

There was signal of genomic differentiation, which might indicate that selection did

produce a detectable signature. Nevertheless, most studies on this system focused

on comparing either the two treatments at a single time point, or the response be-

tween two time points. Given the availability of new methods for analysing time

series data, it would be very relevant to perform a resequencing study of these popu-

lations throughout the whole experiment. This should give us an idea of the impact

of both selection and drift on allele frequency trajectory shapes. It would be inter-

esting to quantify the real impact of genetic drift in producing a noticeable signal

of differentiation between not only selection lines, but also amongst experimental

replicates. One would expect this impact to be non-negligible since effective popu-

lation size estimates from neutral markers are lower than 200 individuals. Another

interesting aspect of this experimental design is that it allows us to explicitly quan-

tify how strong selection actually is. This can be achieved by computing selection

coefficients for each variant throughout the genome.

With more user-friendly inference software for analysing E&R data, one can, and

should, revisit old questions that have puzzled evolutionary biologists. As we gather

more complete and thorough population-level datasets, analysing allele frequency

changes in lab experiments will certainly provide insight into the complex phe-

nomenon of adaptation.
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1.5 Thesis outline

In this thesis, I will describe the process of developing a new statistical method that

fills the need to analyse time series data, as well as report the results of a time series

study in D. pseudoobscura.

This thesis will consist of two research chapters. The first presents a new method for

estimating selection coefficients aimed at E&R polymorphism datasets. We released

this method – Bait-ER – as an open-source software that is freely available for

download. It quantifies the strength of selection as it tests each variant formally to

reject neutral evolution assuming a Moran model with overlapping generations. It

focuses, specifically, on experimental designs with small population sizes. For the

second chapter, I will discuss the findings of an extensive genome-wide time series

study in D. pseudoobscura. The dataset produced consists of allele frequencies across

five time points that span from approximately generation 20 to generation 200. I will

focus on differences in estimates of the effective population size, both at a genome-

and chromosome-wide level. I will aim to disentangle the effects of drift and sexual

selection in a replicated experimental setup where each small replicate population

is exposed to changes in their mating system. I will also aim to find specific targets

of selection throughout the genome that might indicate adaptation to a new social

environment. Them, I will compare and discuss the genetic basis of adaptation to

monogamy and polyandry in D. pseudoobscura.

Finally, I will discuss my findings in the context of the latest available literature.

I will discuss caveats related to the power of current experimental setups and the

limitations associated with our understanding of the evolutionary phenomena un-

derlying short-term adaptation. In particular, I will focus on how adaptation of

complex traits has yet to be fully described. Moreover, I will argue that collecting

data more thoroughly in an E&R setting might help bridge the gap between our

current modelling approaches to polygenic adaptation and the real complexities of

the process.
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Chapter 2

Bait-ER: a Bayesian method to detect

targets of selection in

Evolve-and-Resequence experiments

Abstract

For over a decade, experimental evolution has been combined with high-throughput

sequencing techniques in so-called Evolve-and-Resequence (E&R) experiments. This

allows testing for selection in populations kept in the laboratory under given exper-

imental conditions. However, identifying signatures of adaptation in E&R datasets

is far from trivial, and it is still necessary to develop more efficient and statistically

sound methods for detecting selection in genome-wide data. Here, we present Bait-

ER – a fully Bayesian approach based on the Moran model of allele evolution to

estimate selection coefficients from E&R experiments. The model has overlapping

generations, a feature that describes several experimental designs found in the liter-

ature. We tested our method under several different demographic and experimental

conditions to assess its accuracy and precision, and it performs well in most sce-

narios. Nevertheless, some care must be taken when analysing trajectories where

drift largely dominates and starting frequencies are low. We compare our method

with other available software and report that ours has generally high accuracy even

for trajectories whose complexity goes beyond a classical sweep model. Further-

more, our approach avoids the computational burden of simulating an empirical
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null distribution, outperforming available software in terms of computational time

and facilitating its use on genome-wide data.

2.1 Introduction

Natural selection is a complex process that can dramatically alter phenotypes and

genotypes over remarkably short timescales. Researchers have successfully tested

theoretical predictions and collected evidence for how strong laboratory selection

acting on phenotypes can be. However, it is not as straightforward to measure

selection acting on the genome. Many confounding factors can lead to spurious re-

sults. This is particularly relevant if we are interested in studying how experimental

populations adapt to laboratory conditions within tens of generations, in which case

we need to take both experiment- and population-related parameters into account.

A powerful approach to gathering data on the genomics of adaptation is to combine

experimental evolution, where populations are exposed to a controlled laboratory

environment for some number of generations (Kawecki et al., 2012), with genome

resequencing throughout the experiment. This approach is referred to as Evolve-

and-Resequence (E&R, fig. 2.1). E&R studies are becoming increasingly more

common and have already made remarkable discoveries on the genomic architecture

of short-term adaptation. Examples of experimental evolution studies include those

on yeast (Burke et al., 2014), red flour beetles (Godwin et al., 2017) and fruit flies

(Turner et al., 2011; Debelle et al., 2017). The E&R set-up allows for describing the

divergence between experimental treatments while accounting for variation among

replicate populations (Schlötterer et al., 2015). This is true both at the phenotype

and genotype level. Consequently, the optimal approach to finding signatures of

selection, is to not only monitor allele frequency changes but to also search for

consistent changes across replicates. Moreover, experimental populations are often

sampled and pooled for genome sequencing. The motivation for sequencing pooled

samples of individuals (pool-seq) is that it is cost-effective and it produces largely

accurate estimates of population allele frequencies (Futschik and Schlötterer, 2010).

Thus, statistical methods tailored for E&R studies are especially valuable, notably

so when investigating allele frequency trajectories originating from pooled samples
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of small populations.

Several statistical approaches have been proposed to analyse these data and detect

signatures of selection across the genome. A few such methods consider allele fre-

quency changes between two time points. These simply identify those loci where

there is a consistent difference in frequency between time points. One such ap-

proach is the widely-used Cochran-Mantel-Haenszel (CMH) test (Cochran, 1954).

Such tests are often preferred since they are very fast, which makes them suitable

for genome-wide datasets. Other approaches allow for more than two time points:

for example, Wiberg et al. (2017) used generalised linear models, and introduced

a quasi-binomial distribution for the residual error to quantify allele frequency dif-

ferences between treatments; and Topa et al. (2015) employed Gaussian Process

models in a Bayesian framework to test for selection by identifying time dependency

from earlier sampling events while accounting for sampling and sequencing noise.

While the latter methods use more sophisticated statistical approaches, they re-

main descriptive with respect to the underlying evolutionary processes. In contrast,

mechanistic approaches explicitly model evolutionary forces, such as genetic drift

and selection. Such models have the advantage that they can properly account for

drift, which may generate allele frequency changes that can easily be mistaken for

selection. Indeed, this is usually the case for E&R experimental populations with

low effective population sizes (Ne), where genetic drift is the main evolutionary force

determining the fate of most alleles.

The Wright-Fisher (WF) model is the most used mechanistic model for allele fre-

quencies from time series data. There have been numerous studies that rely on

approximations of the WF process, e.g., its diffusion limit (Bollback et al., 2008), a

one-step process where there is a finite number of allele frequency states (Malaspinas

et al., 2012), a spectral representation of the transition density function (Steinrücken

et al., 2014), or a delta method to approximate the mean and variance of the process

(Lacerda and Seoighe, 2014). Others have additionally considered the importance of

haplotypes arising in a population via mutation (Illingworth and Mustonen, 2012;

Nené et al., 2018), or implemented an approximation to the multi-locus WF pro-

cess over tens of generations (Terhorst et al., 2015). Amongst these methods, most

infer selection parameters in the form of selection coefficients, whilst some can also
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estimate the population size, allele age, mutation rate and even the dominance coef-

ficient. Such parameters are key for understanding the process of genetic adaptation.

Nonetheless, there are only a few approaches that couple parameter estimation with

explicitly testing for selection (Feder et al., 2014; Terhorst et al., 2015; Iranmehr

et al., 2017; Taus et al., 2017; Kojima et al., 2020). While these approaches are

useful for detecting selected variants whilst estimating the strength of selection, not

all of them are implemented in software packages that can be used genome-wide for

E&R experiments.

Most approaches assume linkage equilibrium, and consequently each trajectory is

analysed independently from the effects of neighbouring sites. In reality, allele fre-

quencies at linked loci co-vary which causes selection to be overestimated around

selected sites. Some have tried to measure the impact of linked selection through

analysing autocovariances between adjacent sites (Buffalo and Coop, 2019), and

others have investigated the correlation between nearby loci to identify selected

haplotypes (Franssen et al., 2017a). Whilst these efforts are a step in the right di-

rection, neither approaches directly estimate selection coefficients nor do they test

for selection. These two approaches do not rely on modelling evolutionary processes

explicitly.

To provide a review of methods that are available for analysing E&R experiments,

Vlachos et al. (2019) have produced a comprehensive benchmarking analysis of such

methods. Their study compares the programs in terms of overall performance includ-

ing parameter estimation using simulated data. It features a number of approaches,

but not all estimate selection coefficients whilst performing statistical testing for

each locus individually. Based on Vlachos et al.’s work, three mechanistic meth-

ods are thus particularly relevant in an E&R context: Wright-Fisher Approximate

Bayesian Computation (WFABC, Foll et al. (2015)), Composition of Likelihoods

for E&R experiments (CLEAR, Iranmehr et al. (2017)) and LLS (Linear Least

Squares, Taus et al. (2017)). These methods differ in how they model drift and

selection, the inferential approach to estimate selection coefficients, the hypothesis

testing strategy, and the extent to which they consider specific experimental condi-

tions (table 2.1). WFABC employs an ABC approach that uses summary statistics

to compare simulated and real data. It jointly infers the posterior of both Ne and
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the selection coefficient at some locus in the genome using allele frequency trajec-

tory simulations. Real and simulated summary statistics must agree to a certain

predefined scale. This makes WFABC computationally intensive. CLEAR com-

putes maximum-likelihood estimates of selection parameters using a hidden Markov

model tailored for small population sizes. LLS assumes that allele frequencies vary

linearly with selection coefficients such that the slope provides the coefficient esti-

mate. Although all three methods have been shown to accurately estimate selection

coefficients, they rely heavily on empirical parameter distributions to perform hy-

pothesis testing: (i) WFABC is highly dependent on how accurately the chosen set

of summary statistics describes the underlying evolutionary forces determining the

observed trajectories; (ii) CLEAR relies on genome-wide simulations to calculate an

empirical likelihood-ratio statistic to assess significance; and (iii) LLS computes an

empirical distribution of p-values simulated under neutrality. One other common

thread amongst these tools is that they do not account for linked selection. Be it

background selection or hitchhiking, these software estimate selection without look-

ing into how linked loci might affect other sites’ trajectories. Additionally, the three

software vary substantially in computational effort. Therefore, currently available

methods are still limited in their use for genome-wide hypothesis testing.

Here, we propose a new Bayesian inference tool – Bait-ER – to estimate selection

coefficients in E&R time series data. It is suitable for large genome-wide poly-

morphism datasets and particularly useful for small experimental populations. As

our new approach was implemented in a Bayesian framework, it gives posterior

distributions of any selection parameters while considering sources of experimental

uncertainty. Bait-ER jointly tests for selection and estimates selection contrary to

other state-of-the-art methods. It does not rely on empirical or simulation-based

approaches that might be computationally intensive, and it properly accounts for

specific shortcomings of E&R experimental design. As it currently stands, Bait-ER

is not concerned with the impact of linked selection as it models individual allele

frequency trajectories. To test Bait-ER and other software, we explore individu-

ally simulated trajectories, whole chromosome arm simulations with linkage and an

analysis of real data. We show that Bait-ER is faster than other available software,

when accounting for hypothesis testing, and still performing accurately in some
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particularly difficult scenarios.

2.2 Material and Methods

2.2.1 Method outline

E&R experiments produce a remarkable amount of data, namely allele frequencies

for thousands to millions of loci. We created a Bayesian framework to infer and test

for selection at an individual locus that is based on the Moran model. It estimates

the selection coefficient, σ, for each allele frequency trajectory, which relies on the

assumption that the variant in question is a potential causative locus. The Moran

model is especially useful for studies that have overlapping generations, such as

insect cage experimental designs (fig. 2.1). Such cage experiments are easier to

maintain in the lab and allow for larger experimental population sizes avoiding

potential inbreeding depression and crashing populations (Kawecki et al., 2012).

Furthermore, Bait-ER combines modelling the evolution of an allele that can be

under selection while accounting for sampling noise to do with pooled sequencing

and finite sequencing depth. Our method takes allele count data in the widely-used

sync format (Kofler et al., 2011b) as input. Each locus is described by allele counts

per time point and replicate population. The algorithm implemented includes the

following key steps:

1. Bait-ER calculates the virtual allele frequency trajectories accounting for Ne

that is provided by the user. This step includes a binomial, or beta-binomial,

sampling process that corrects for pool-seq-associated sampling noise.

2. The log posterior density of σ is calculated for a given grid of σ-values. This

step requires repeatedly assessing the likelihood function (equation eq. (2.3)

in section section 2.2.2).

3. The log posterior values obtained in the previous step are fitted to a gamma

surface (details on surface fitting can be found in supplementary fig. A.1).

4. Bait-ER returns a set of statistics that describe the posterior distribution of

σ per locus. In particular, the average σ and the log Bayes Factor (BF) are
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the most important quantities. In this case, BFs test the hypothesis that σ is

different from 0. Bait-ER also returns the posterior shape and rate parameter

values, α and β, respectively. These can be used to compute other relevant

statistics (e.g., credible intervals, variance).

Time t0 Time t1 Time tN

Pressure

Sequencing

Evolve
. . . 

Cage

Replicates

Figure 2.1: Example of an E&R experimental setup. E&R experiments expose several
replicated populations (e.g., of flies, yeast, viruses) to a selective pressure (e.g., temperature, food
regimes) for a specific number of generations tN . The replicated populations are surveyed at several
time points by whole-genome sequencing, which allows one to quantify changes in allele frequencies
over time.

2.2.2 Model description

Let us assume that there is a biallelic locus with two alleles, A and a. The evolution

of allele A in time is fully characterised by a frequency trajectory in the state space

{nA, (N − n)a}, where n is the total number of individuals that carry allele A (in a

population of size N). Supposing the allele evolves according to the Moran model

where a randomly chosen individual reproduces as another is randomly drawn from

the population for death, the transition rates for the process are the following

n→ n− 1 : n(N−n)
N

n→ n+ 1 : n(N−n)
N

(1 + σ)
, (2.1)

where 1 + σ is the fitness of any A-type offspring and σ the selection coefficient for

allele A. If σ = 0, i.e. A is evolving neutrally, then none of the alleles is preferred at

reproduction. Let Xt be the number of copies of A at time t in a population of N

individuals and xt the observed counts of A at that time; the probability of a given
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allele trajectory X can be defined using the Markov property as

p(X | σ) = p(X0 = x0)
T∏
t=1

p(Xt = xt | Xt−1 = xt−1, σ) , (2.2)

where T is the total number of time points measured in generations at which the

trajectory was assayed. The conditional probability on the left-hand side of the

equation has one calculating Xt = eQdtXt−1, where Q is the rate matrix defined in

(eq. (2.1)) and dt the difference in number of generations between time point t and

t − 1. The probability of a single allele frequency trajectory can be generalised for

R replicates by assuming their independence

p(X | σ) =
R∏
r=1

p(Xr
0 = xr0)

T∏
t=1

p(Xr
t = xrt | Xr

t−1 = xrt−1, σ) . (2.3)

The main caveat for pool-seq data is the fact that it provides estimates for allele

frequencies, not true frequencies. For that reason, we assume that the allele counts

are generated by a binomial or beta-binomial sampling process which depends on

the frequency of allele A and the total sequencing depth C obtained by pool-seq. We

then recalculate the probability of the Moran states given an observed allele count

c, which becomes the following with binomial sampling

p({nA, (N − n)a} | {c, C}) ∝
(
C

c

)( n
N

)c (
1− n

N

)C−c
, n = 0, . . . , N . (2.4)

This step is key, for it corrects for sampling noise generated during data acquisition.

This is particularly relevant for low frequency alleles and poorly covered loci.

2.2.3 Inferential framework

We used a Bayesian framework to estimate σ. It requires allele counts and coverage

for each time point and replicate population {c,C} at each position as input. The

posterior distribution can be obtained by

p(σ|{c,C}) ∝ p(σ)p({c,C}|σ) . (2.5)
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Our algorithm is defined using a gamma prior on σ. The posterior cannot be formally

obtained, hence we define a grid of σ values for which we calculate the posterior

density. Estimating the posterior distribution p(σ|{c,C}) is a time consuming part

of our algorithm because the likelihood is computationally costly to compute. To

avoid this burden, we fit the posterior to a gamma density

log p(σ|{c,C}) = c+ (α− 1) log σ − βσ , (2.6)

where α and β are the shape and rate parameters, respectively, and c the normaliza-

tion constant. The gamma fitting represents a good trade-off between complexity

and flexibility, since it only requires two parameters, but its density may take many

shapes. As one requires the values of α and β that best fit the gamma density for

further analyses, we find the least squares estimates of α and β (and c), such that

the error is minimal. The estimation is as follows

α̂ =
−(s2s4 + s2

4 − s6 − s7)(s2
1 − s8)− (s3 + s1s2 + s1s4 + s5)(s1s4 − s5)

s7s2
1 − 2s4s5s1 + s2

5 + s2
4s8 − s7s8

∧

β̂ =
−s3s

2
4 + s2s5s4 + s1s6s4 − s5s6 − s1s2s7 + s3s7

s7s2
1 − 2s4s5s1 + s2

5 + s2
4s8 − s7s8

,

(2.7)

where s1 =
∑

i xi/N , s2 =
∑

i yi/N , s3 =
∑

i xiyi/N , s4 =
∑

i log xi/N , s5 =∑
i xi log xi/N , s6 =

∑
i yi log xi/N , s7 =

∑
i log2 xi/N and s8 =

∑
i x

2
i /N . We

evaluated the fitting of the gamma density for neutral and selected loci, and observed

that a gamma surface with five points describes the log posterior of selected and

neutral loci well (supplementary fig. A.1).

Bait-ER was implemented with an allele frequency variance filter that is applied be-

fore performing the inferential step of our algorithm. This filtering process excludes

any trajectories that do not vary or vary very little throughout the experiment from

further analyses. To do that, we assess the trajectories’ frequency increments and

exclude loci with frequency variance lower than 0.01. These correspond to cases

where trajectories are too flat to perform any statistical inference on. Trajectories

such as these typically have both inflated σ̂ and BFs. This filtering step allows us to

improve computational efficiency as we remove trajectories that are statistically un-

informative since allele frequencies are essentially constant. Such trajectories are still

Chapter 2 31



Short-term adaptation in the lab: an analysis of evolutionary trajectories using time-series data

included in the output file, despite Bait-ER not performing the selection inference

step on them. This results in Bait-ER being suitable for large genome-wide datasets

without losing any relevant information on trajectories that might be initially flat

but can eventually escape drift very quickly.

Bait-ER is implemented in C++ and freely available for download at: https://

github.com/mrborges23/Bait-ER (accessed on April 9th 2021). There, we provide

a tutorial on how to compile and run Bait-ER, including a toy example with 100

loci taken from Barghi et al. (2019).

2.2.4 Simulated data

We tested our algorithm’s performance under several biologically relevant scenar-

ios using (1) a Moran model allele frequency trajectory simulator, and (2) the

individual-based forward simulation software MimicrEE2 (Vlachos and Kofler, 2018).

The Moran model simulator was used, firstly, for benchmarking Bait-ER’s perfor-

mance across a range of experimental conditions, and, secondly, to compare our

estimates of σ to those of CLEAR (Iranmehr et al., 2017), LLS (Taus et al., 2017)

and WFABC (Foll et al., 2015). We started out by testing Bait-ER under different

combinations of experimental and population parameters. A full description of these

parameters can be found in supplementary table A.2. Scenarios that explored

several experimental designs included those with varying coverage (20x, 60x and

100x), number of replicate populations (2, 5 and 10) and number of sampled time

points (2, 5 and 11). In addition to simulating even sampling throughout the exper-

iment, we tested our method on trajectories where we varied sampling towards the

start or towards the end of said experiment. Total study length might also affect

Bait-ER’s estimation, therefore we tracked allele frequency trajectories for 0.2Ne

and 0.4Ne generations.

We set out to compare Bait-ER to other selection estimation software using ex-

perimental parameters that resemble realistic E&R designs. Our base experiment

replicate populations consist of 300 individuals that were sequenced to 60x cover-

age. There are five such replicates that were evenly sampled five times throughout

the experiment. We then simulated 100 allele frequency trajectories for all starting
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frequencies and selection coefficients mentioned above. We simulated trajectories

for 0.25Ne as well as 0.5Ne generations.

The performance of both CLEAR and LLS was assessed by running the software

with a fixed population size of 300 individuals (flag --N=300 and estimateSH(...,

Ne = 300), respectively). Additionally, to estimate the selection coefficient under

the LLS model, we used the estimateSH(...) function assuming allele codomi-

nance (argument h = 0.5). WFABC was tested with a fixed population size of Ne

individuals (flag -n 300), lower and upper limit on the selection coefficient of -1 and

1, respectively (flags -min s -1 and -max s 1), maximum number of simulations of

10000 (flag -max sims 10000) and four parallel processes (flag -n threads 4). The

program was run for 1200 seconds, after which the process timed out to prevent it

from running indefinitely in case it fails to converge. This caused trajectories with

starting allele frequencies of 5% and 1% not to be analysed at all. We have thus

only been able to include results for alleles starting at 10% and 50% frequencies.

Finally, we used data simulated with MimicrEE2 (Vlachos and Kofler, 2018) by

Vlachos et al. (2019) to benchmark Bait-ER and compare it extensively with other

relevant statistical methods. MimicrEE2 allows for whole chromosomes to be sim-

ulated under a wide range of parameters mimicking the effects of an E&R set-up

on allele frequencies (see supplementary figs. A.16 to A.21, A.25 and A.26

for a comparison of population parameters, including nucleotide diversity, with real

experimental data). This dataset consisted of 10 replicate experimental populations,

and each experimental population consisted of 1,000 diploid organisms evolving for

60 generations. The haplotypes used to find the simulated populations were based

on 2L chromosome polymorphism patterns from Drosophila melanogaster fly pop-

ulations (Bastide et al., 2013). Recombination rate variation was based on the D.

melanogaster recombination landscape (Comeron et al., 2012). 30 segregating loci

were randomly picked to be targets of selection. Sites were initially segregating at

a frequency between 0.05 and 0.95. Benchmarking Bait-ER using these data also

allowed us to look into our method’s robustness when the data generating model is

not Moran: the first scenario includes allele frequency trajectories simulated under

a Wright-Fisher model of a selective sweep; and the second consists of trajectories

simulated under a quantitative trait model with truncating selection. In the former,
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each of the targets of selection were simulated with a selection coefficient of 0.05.

For the latter, 80% of the individuals with the largest trait values were chosen to

reproduce.

2.2.5 Application

We applied our algorithm to the recently published dataset from an E&R experiment

in 10 replicates of a Drosophila simulans population to a hot temperature regime

for 60 generations (Barghi et al., 2019). All populations were kept at a census size

of 1000 individuals. The experimental regime consisted of light and temperature

varying every 12 hours. The temperature was set at either 18°C or 28°C to mimic

night and day, respectively. The authors extracted genomic DNA from each replicate

population every 10 generations using pool-seq. The polymorphism datasets are

available at https://doi.org/10.5061/dryad.rr137kn in sync format. The full

dataset consists of more than 5 million SNPs. We subsampled the data such that

Bait-ER was tested on 20% of the SNPs. Subsampling was performed randomly

across the whole genome.
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2.3 Results

2.3.1 Prior fitting with Bait-ER

Bait-ER employs a Bayesian approach outlined in section 2.2.1 – Method outline –

and described in further detail in the section 2.2.2 – Model description. Bayesian

model fitting depends on the prior distribution implemented and requires further

testing. Bait-ER uses a gamma prior for which the shape α and rate β parameters

have to be defined beforehand. We tested the impact of uninformative (α = β =

0.001) and informative (α = β = 105) gamma priors on the posterior distribution

of σ under standard (60x coverage, 5 time points and 5 replicates) and sparse (20x

coverage, 2 time points and 2 replicates) E&R experiments. Our results show that

the prior parameters have virtually no impact on the posterior estimates of unscaled

σ when α = β < 100 (fig. 2.2 and supplementary fig. A.1), and thus, by default,

Bait-ER sets both prior parameters to 0.001.
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Figure 2.2: Impact of the prior on the posterior estimates of the selection coefficients.
The posterior distribution of unscaled σ was calculated using gamma priors G(α, β), where α and
β are the shape and rate parameters. We set α = β and allowed β to vary from 0.001 to 105 (i.e.
ranging from a very uninformative to a very informative prior, respectively). The different priors
were tested under three E&R experiment scenarios: the first was a sparse experimental design
(coverage (C) = 20x, number of time points (T) = 2 and number of replicates (R) = 2), while the
second mimicked a standard set up (C = 60x, T = 5 and R = 5). Finally, the third scenario had
the most thorough experimental conditions (C = 100x, T = 11 and R = 10). Red lines indicate
the true value of σ. Blue lines point to the mean of the prior imposed on σ. Black lines and points
correspond to the posterior mean of unscaled σ and credibility intervals at 0.95.

Calculating the posterior distribution of σ is a computationally intensive step be-

cause it requires solving the exponential Moran matrix for several σ-values. To
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reduce the number of times Bait-ER assesses the log-posterior, we fit the posterior

density to a gamma distribution. We found that a gamma surface fits the posterior

well, and further that five points are enough to provide a good estimate of its surface.

This remains valid even for neutral scenarios, where the log-likelihood functions are

generally flatter (supplementary fig. A.1).

2.3.2 Impact of E&R experimental design on detecting tar-

gets of selection

Bait-ER not only models the evolution of allele frequency trajectories but it also

considers aspects of the experimental design specific to E&R studies. Bait-ER can

thus be used to gauge the impact of particular experimental conditions in pinpointing

targets of selection. We simulated allele frequency trajectories by considering a

range of experimental parameters, including the number and span of sampled time

points, the number of replicated populations, and coverage. Each of these settings

was tested in different population scenarios that we defined by varying population

size, starting allele frequency, and selection coefficient. We assessed the error of

the estimated selection coefficients by calculating the absolute bias in relation to

the true value. In total, we investigated 576 scenarios (supplementary table A.2).

Heatmaps in fig. 2.3 (A-C) show the error for each scenario.

Heatmaps A, B, and C in fig. 2.3 show that the initial frequency is a determining

factor in the accuracy of σ̂ in E&R experiments. We observed that trajectories

starting at very low frequencies (around 0.01) may provide unreliable estimates of

σ. However, σ̂’s accuracy on those trajectories can be improved by either increas-

ing the sequencing depth (supplementary fig. A.4) or the number of replicates

(supplementary fig. A.3). Similar results have been obtained using other meth-

ods such as in Kofler and Schlötterer (2014) and Taus et al. (2017). Designs with

high coverage and several replicates may be appropriate when potential selective

loci appear at low frequencies (e.g., in dilution experiments). Surprisingly, alter-

native sampling schemes do not seem to substantially impact the accuracy of σ

(see supplementary text in appendix A). These results have practical impor-

tance because sampling additional time points is time-consuming and significantly
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increases the cost of E&R experiments.

Absolute 
error:
 

0.00

0.05

C. CoverageB. Number of replicates

A. Number, span and distribution of sampled time points  

TS1: TS2: TS3: TS4: TS5: TS6:

0.4Ne generations0.2Ne generations

Coverage

0.0 0.1 1.0 10.0
Selection coefficient

E
ffe

ct
iv

e 
po

pu
la

tio
n 

si
ze 10

0
30

0
10

00
20 60 10

0

A
llele's starting fre

quency

20 60 10
0 20 60 10
0 20 60 10
0

0.05
0.1
0.5

0.05
0.1
0.5

0.05
0.1
0.5

0.01

0.01

0.01

0.0 0.1 1.0 10.0
Selection coefficient

E
ffe

ct
iv

e 
po

pu
la

tio
n 

si
ze 10

0
30

0
10

00

Number of replicates

2 5 10 2 5 10 2 5 10 2 5 10

A
llele's starting fre

quency

0.05
0.1
0.5

0.05
0.1
0.5

0.05
0.1
0.5

0.01

0.01

0.01

E
ffe

ct
iv

e 
po

pu
la

tio
n 

si
ze 10

0
30

0
10

00

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

A
llele's starting fre

quency

0.05
0.1
0.5

0.05
0.1
0.5

0.05
0.1
0.5

0.01

0.01

0.01

0.04

0.03

0.02

0.01

>0.05

Figure 2.3: Impact of E&R experimental design on Ne-scaled estimated selection coef-
ficients. Each square of the heatmap represents the error of the scaled estimated selection coeffi-
cients, i.e., the absolute difference between the estimated and the true simulated Neσ: Ne×|σ̂−σ|,
for a range of population dynamics and E&R experimental conditions. (A) Number, span and
distribution of sampled time points. The six time schemes differ according to the following criteria:
most time schemes have five sampling events, except for TS1 and TS6, which have two and eleven
time points, respectively; all time schemes have a total span of Ne/5 generations, except for TS5,
which has double the span (2Ne/5); uniform sampling was used in most scenarios but for TS3,
which is more heavily sampled during the first half of the experiment, and TS4, during the second
half. The two maximum experiment lengths considered (0.2Ne and 0.4Ne) were chosen based on
typical E&R experimental designs. (B) number of replicates. (C) coverage. To test the exper-
imental conditions, we defined a base experiment with five replicates, five uniformly distributed
time points (total span of 0.20Ne generations) and a coverage of 60x. The complete set of results
is shown in supplementary fig. A.2-fig. A.5.
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A note on population size

When using Bait-ER to estimate selection coefficients, one needs to specify the ef-

fective population size, Ne. However, as effective population size and strength of

selection are intertwined, misspecifying Ne will directly affect estimates of selection.

The effective population size is often not known at the start of the experiment, but

plenty of methods can estimate it from genomic data (e.g., Jónás et al., 2016). To

assess the impact of misspecifying Ne on σ posterior, we simulated allele frequency

trajectories using a fixed population size of 300 individuals. We then ran Bait-ER

setting the effective population size to 100 or 1000. By doing so, we are increas-

ing and decreasing, respectively, the strength of genetic drift relative to the true

simulated population.

Bait-ER produces highly accurate estimates of σ regardless of varying Ne (fig. 2.4

and supplementary fig. A.5). Misspecifying it merely rescales time in terms of

Moran events rather than changing the relationship between Ne and the number of

Moran events in the process. Further, we observed that the BFs are generally higher

when the specified Ne is greater than the true value, suggesting an increased false

positive rate. The opposite pattern is observed when the population size one speci-

fies is lower than the real parameter. Additionally, we investigated the relationship

between BFs computed with the true Ne and those produced under a misspecified

Ne. We found that these BFs are highly correlated (Spearman’s correlation coef-

ficients were always higher than 0.99; fig. 2.4 and fig. A.5). Taken together, our

results indicate one should use a more stringent BF acceptance threshold if estimates

of the real Ne have wide confidence intervals.

Furthermore, we assessed Bait-ER’s computational performance by comparing the

relative CPU time while varying several user-defined experimental parameters. We

found that increasing Ne affects our software’s computational performance most sub-

stantially (31-fold increase in CPU time when increasing the simulated population

size from 300 to 1000 individuals; see supplementary table A.1).
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Figure 2.4: Impact of the user-specified population size on the estimation of selection
coefficients. The plots show the distribution of unscaled estimated selection coefficients where
the population size is misspecified. Vertical lines and points indicate the interquartile range and
median selection coefficient. Each plot represents a specific scenario that was simulated by varying
the population size, the true simulated selection coefficient (indicated within brackets (Ne, Neσ))
and starting allele frequency (indicated by the yellow-to-red colour gradient). The numbers next
to each bar correspond to the Spearman’s correlation coefficient, which correlates the BFs of the
100 replicated trajectories between the cases where we have either under- and overspecified the
population size (Ne = 100 or 1000, respectively) and the case where we use the true population
size (Ne = 300). Regarding simulated experimental design, we defined a base experiment with five
replicates, five uniformly distributed time points (total span of 0.20Ne generations) and a coverage
of 60x.

2.3.3 Benchmarking Bait-ER with LLS, CLEAR and WFABC

Simulated Moran trajectories

To compare the performance of Bait-ER to that of other relevant software, we set

out to simulate Moran frequency trajectories under the base experiment conditions

described above. We tested Bait-ER as well as CLEAR (Iranmehr et al., 2017),

LLS (Taus et al., 2017) and WFABC (Foll et al., 2015) on 100 trajectories for

four starting frequencies (from 1% to 50%) and four selection coefficients (0 6

N eσ 6 10). All population parameters were tested for both 75 and 150 generations

of experimental evolution. Figure 2.5 shows the σ estimates for Bait-ER, LLS

and CLEAR under two starting frequency scenarios – 10% and 50% – and two

Neσ. CLEAR and LLS largely agree with Bait-ER’s estimates of σ, even though

the level of statistical significance is often not the same. It is evident that LLS

produces estimates that are not as accurate as CLEAR’s. This might have to do

with the former not explicitly considering sampling bias in pool-seq data as a direct

source of error. On the other hand, WFABC systematically disagrees with Bait-
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ER’s estimates because its distribution is very skewed towards high Neσ (greater

than 180; see supplementary fig. A.6). This is perhaps unsurprising given that

WFABC does not consider replicate populations nor finite sequencing depth unlike

the other three methods. We have included WFABC in our study to compare Bait-

ER with another Bayesian method. However, WFABC was not designed for E&R

experiments with multiple replicates, hence its poor performance.
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Figure 2.5: Comparison of estimates of σ produced by Bait-ER versus CLEAR and LLS.
These plots include estimates for those Moran trajectories simulated with starting frequencies of
10% and 50% (top and bottom row, respectively). Only neutrally evolving (Neσ = 0) and strongly
selected alleles were considered here (Neσ = 10). The left and right hand side panels correspond
to two different experiment lengths: 150 and 75 generations, respectively. LLS returned NA’s for
3 out of 800 trajectories which were excluded from these graphs.
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Regarding computational performance, Bait-ER seems to be the fastest of the four

methods, even though it is comparable to WFABC (see fig. 2.6). However, we tested

WFABC on the first replicate population data rather than the five experimental

replicates used for the remaining methods. Additionally, WFABC does not provide

any statistical testing output such as a Bayes Factor. In contrast, CLEAR and LLS

are slower than the other two approaches. While CLEAR takes less than 40 seconds

on average to analyse 100 sites, LLS is the slowest of the four, averaging around 4

minutes. Overall, these results suggest Bait-ER is just as accurate and potentially

faster than other currently available approaches, which makes it a good resource for

testing and inferring selection from genome-wide polymorphism datasets.
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Figure 2.6: Real computational time for Bait-ER and the other three approaches tested.
From left to right, computational time in seconds including both inference and hypothesis testing
for Bait-ER, CLEAR, LLS and WFABC is shown here. Similarly to figs. fig. 2.5 and fig. A.6, these
boxplots include estimates for those trajectories simulated with starting frequencies of 10% and
50%, as well as both study lengths investigated, i.e. 150 and 75 generations. Four NA’s produced
by LLS were again removed from these plots.
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Complex simulation scenarios with recombination

For a more comprehensive study of Bait-ER’s performance, we have analysed a

complex simulated dataset produced by Vlachos et al. (2019). The authors simulated

an E&R experiment inspired by the experimental set-up of Barghi et al. (2019)

and used polymorphism data from a Drosophila melanogaster population. Vlachos

et al. (2019) have produced this dataset to standardise software benchmarking by

simulating a series of experimental scenarios that are relevant in an E&R context.

We have used it to assess Bait-ER’s performance at inferring selection under linkage

and varying recombination rates. In particular, we chose to focus on the classic sweep

scenario as well as a quantitative trait model with truncating selection, which are

two of three complex scenarios simulated in Vlachos et al. (2019). Each experiment

had 30 targets of selection randomly distributed along the chromosome arm.

ROC (Receiver Operating Characteristic) curves are compared for five methods,

Bait-ER, CLEAR, the CMH test (Agresti, 2003), LLS and WFABC, similarly to 2A

in Vlachos et al. (2019). Bait-ER performs well with an average true positive rate

of 80% at a 0.2% false positive rate (fig. 2.7 (a)). Its performance is as good as the

CMH test’s, but it does underperform slightly in comparison to CLEAR. Bait-ER,

CLEAR and the CMH test greatly outperform LLS and WFABC. FIT1 and FIT2

(Feder et al., 2014) are also included for comparison. These methods both use a

t-test for allele frequencies and are inaccurate in a classical sweep dataset. A similar

picture to that of the sweep simulation emerges for the truncating selection scenario

(fig. 2.7 (b)). Bait-ER is amongst the top three methods despite the generating

quantitative trait model being completely misspecified during inference. It is only

slightly outperformed by CLEAR.

To assess why Bait-ER seems to be outperformed by CLEAR, we further investi-

gated CLEAR’s selection coefficient estimates. We note that Bait-ER assumes a

continuous-time Moran model, whilst CLEAR uses a WF model for inference, much

like the simulated data analysed here. Comparison of selection coefficients estimated

by Bait-ER and CLEAR showed that Bait-ER is slightly more accurate on average

at estimating true targets’ σ (fig. A.7). In addition, those trajectories that scored

highest with CLEAR also produced the highest Bait-ER σ̂ (fig. A.8). True targets
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of selection mostly score in the top half of Bait-ER’s Neσ scale (fig. A.23). Overall,

Bait-ER and CLEAR perform to a similar high standard. However, the frequency

variance filter implemented in Bait-ER seems to explain our method’s slight under-

performance shown in fig. 2.7. Despite having excluded fewer than 70 (out of 300)

targets of selection, Bait-ER’s filtering step has also classified approximately the

same amount of neutral trajectories for being too flat for inferring selection. Whilst

the two method’s false positive rates seem to be comparable, Bait-ER excluded a

few selected sites from further analyses as they had changed very little in frequency

throughout the experiment.

Our results also indicate that there is interference between linked selected sites.

This phenomenon hinders adaptation as it reduces the fixation probability for each

locus - Hill-Robertson Interference, HRI (Hill and Robertson, 1966). It can result

in both incomplete and soft sweeps, which are often hard to detect because neither

causes the characteristic trough in diversity around causative sites. Bait-ER esti-

mated scaled selection coefficients ranged from 5.85 to 43.2, which suggests each

target was under strong selection. Such values should be enough for selection to

overcome genetic drift unless there is some degree of interference between selected

sites within a 16Mb region. Nevertheless, even with realistic amounts of linked se-

lection, Bait-ER identifies most targets along the chromosome arm and results in

narrow peaks of significant BFs (supplementary fig. A.15). For the undetected

targets of selection, HRI and inconsistent responses between replicate populations

might cause Bait-ER not to perform optimally.

2.3.4 Analysing E&R data from hot adapted Drosophila

simulans populations

We have applied Bait-ER to a real E&R dataset that was published by Barghi et al.

(2019). The authors exposed 10 experimental replicates of a Drosophila simulans

population to a new temperature regime for 60 generations. Each replicate was

surveyed using pool-seq every 10 generations. This dataset is particularly suited

to demonstrate the relevance of our method, as Barghi et al. (2019) observed a

strikingly heterogeneous response across the 10 replicates. The highly polygenic
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Figure 2.7: Performance of Bait-ER and other software at testing for selection in data
simulated by Vlachos et al. (2019). ROC (Receiver Operating Characteristic) curves for Bait-
ER, CLEAR, CMH, LLS, WFABC, FIT1 and FIT2 under (a) the classic sweep scenario and (b) a
scenario with truncating selection. Note that LLS and WFABC were run on a subset of SNPs in
(a), and that WFABC was not included in (b) for it was prohibitively slow and only finished runs
for 29 replicate experiments.

basis of adaptation has proved challenging to measure and summarise thus far.

The D. simulans genome dataset is composed of six genomic elements: chromosomes
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2-4 and chromosome X. For each element, we have estimated selection parameters

using Bait-ER (mean σ̂ distributions can be found in fig. A.9). Figure 2.8 shows

a Manhattan plot of BFs for the right arm of chromosome 3. We can observe

that there are two distinct peaks across the chromosome arm that seem highly

significant (BF greater than 9). These two peaks – one at the start and another

just before the centre of the chromosome – should correspond to loci that responded

strongly to selection in the new lab environment. Such regions display a consistent

increase in frequency across replicate populations (see supplementary fig. A.22

for the relationship between allele frequency changes and σ). Overall, there are

only a few other peaks that exhibit very strong evidence for selection across the

genome (supplementary fig. A.10). Those are located on chromosomes 2L, 2R

and 3L. When compared to the CMH test results as per Barghi et al., Bait-ER’s

most prominent peaks seem to largely agree with those produced by the CMH (see

supplementary fig. A.11). The same is true for high BF regions on chromosomes

2L and 2R where there are similarly located p-value chimneys at the start of these

genomic elements (supplementary fig. A.12). Both Bait-ER and the CMH test

did not produce clear signals of selection on chromosomes 3L, 4 and on the X.
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Figure 2.8: Bayes Factors on chromosome 3R. This Manhattan plot shows log-transformed
Bayes Factors computed by Bait-ER for loci along the right arm of the 3rd chromosome in the
Barghi et al. (2019) time series dataset. The orange line indicates a conservative threshold of
approximately 4.6, which corresponds to log(0.99/0.01), meaning all points in orange have very
strong evidence for these to be under selection. The SNPs that are significant at this level are
sorted by size according to how strong Bait-ER’s selection coefficients are. In other words, points
are sized according to how strong the large selection coefficient is estimated to be.

One of the advantages of Bait-ER is that we have implemented a Bayesian approach
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for estimating selection parameters, which means we can calculate both the mean

and variance of the posterior distributions. To examine both of these statistics, we

looked into how the posterior variance varies as a function of mean σ. Fig. 2.9

shows the relationship between variance and mean selection coefficient for the X

chromosome. We observe that the highest mean values also correspond to those

with the highest variance. This suggests that the strongest response to selection,

i.e. the highest estimated σ values, are also those showing a fairly heterogeneous

response across replicates. The remaining genomic elements seem to show similar

patterns, apart from chromosome 4 (see fig. A.13). This is consistent with other

reports that inferring selection on this chromosome is rather difficult due to its size

and low levels of polymorphism (Jensen et al., 2002).

Finally, we compared the p-values obtained by Barghi et al. (2019) and the BFs

computed by Bait-ER. Barghi and colleagues performed genome-wide testing for

targets of selection between first and last time points using the CMH test. The tests

seem to largely agree for the most significant BFs correspond to the most significant

p-values. However, Bait-ER appears to be more conservative than the CMH test.

This follows from the finding that there is quite a substantial proportion of loci (less

than 10% of all loci) that are deemed significant by a p-value threshold of 0.01,

which are not accepted as such by Bait-ER. This is true even for a BF threshold of

2 such as that shown in fig. 2.10 for chromosome 2L. Similar patterns are found in

other genomic elements (supplementary fig. A.14).
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Figure 2.9: Variance versus mean sigma on the X chromosome. This graph compares
log transformed variances in σ estimates to average σs. The variance is calculated using the
inferred rate and shape parameters for the beta distribution, and the average σ is the mean value
of the posterior distribution estimated by Bait-ER. Orange coloured points are significant at a
conservative BF threshold of log(0.99/0.01), approx. 4.6.
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Figure 2.10: Bait-ER’s Bayes Factors versus CMH test’s p-values on chromosome 2L.
Orange coloured points correspond to BFs which are greater than log(0.99/0.01) (approx. 4.6) and
p-values less than or equal to 0.01, i.e. those that are considered significant by both tests. Blue
coloured points indicated that the computed BF is greater than our threshold, but not significant
according to the CMH test. Additionally, dark grey points are significant according to the CMH
test, but not to Bait-ER, and light grey points are inferred not significant by both tests.
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2.4 Discussion

One of the main aims of E&R studies is to find targets of selection in genome-wide

datasets. For that, we developed an approach that uses time series allele frequency

data to test for selection whilst estimating selection parameters for individual loci.

As Bait-ER does not rely on simulations for statistical testing, it sets itself apart

from other currently available methods. Bait-ER’s implementation of the time-

continuous Moran model makes it especially suitable for experimental set-ups with

overlapping generations. In addition, we designed Bait-ER to be well suited for

small population experiments where genetic drift has a substantial impact on the

fate of polymorphisms. This is because random frequency fluctuations can force

alleles to be more readily lost and, thus, overlooked by selection. When considering

such polymorphisms, our stochastic modelling approach to describe their frequency

trajectory is most fitting. We assume that the effect of drift is pervasive and that

there is added noise from sampling a pool of individuals from the original population.

We show that Bait-ER is faster and just as accurate as other relevant software.

Overall, these features make it a desirable approach that can be used in many E&R

designs.

Firstly, we addressed Bait-ER’s performance at inferring selection. For that, we car-

ried out a comprehensive analysis of simulated trajectories where we explored the

parameter space for coverage, number of experimental replicates, user-defined pop-

ulation size, starting allele frequency and sampling scheme (figs. 2.3, 2.4 and A.2

to A.5). Our results suggest that Bait-ER’s inference is mostly affected by low

starting allele frequencies. This can be overcome should the sequencing depth or the

number of experimental replicates be increased. Our simulations show that Bait-ER

estimates selection coefficients accurately even if an allele’s starting frequency is low

but provided coverage is high and there are at least 5 replicates (fig. 2.3). Although

increasing the number of replicates increases the cost of setting up an E&R exper-

iment substantially, improving sequencing depth is certainly within reach. This

interesting result might help guide future research. Encouragingly, Bait-ER per-

formed well with small manageable population sizes, suggesting replication is key,

but large populations are not necessarily required for achieving good results.
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We also assessed Bait-ER’s performance on a complex chromosome arm dataset

simulated by Vlachos et al. (2019). We then compared it to other selection inference

programs of which most are suited for time series allele frequency data. Despite

numerous similarities, they vary substantially in terms of model assumptions and

what sort of experimental set-up they are a good fit for. For example, WFABC seems

to underperform in comparison with the other methods for E&R experiments. This

is likely to be the case because it was modelled for relatively large populations. As

Foll et al. (2015) show in their original study, WFABC is accurate for population

sizes of 1000 individuals and for both weak and strong selection coefficients. Despite

this being low in comparison to experiments in bacteria or yeast, which easily range

from 105 to 108, that is not the standard population size we consider in our work.

Bait-ER has been shown to perform well for such large populations (see bottom rows

of each graph in fig. 2.3), as well as small census sizes. In reality, Ne is predicted to

be a lot smaller than the census sizes reported in typical E&R studies. In contrast

to WFABC, CLEAR and LLS set a better standard to which one should compare

new software to. Whilst CLEAR accounts for uneven coverage, LLS only considers

consistency between experimental replicates. In terms of overall performance, Bait-

ER and CLEAR are similar in accuracy but Bait-ER runs substantially faster. This

indicates that inferring selection from WF trajectories simulated with MimicrEE2

produces similar results regardless of whether a WF or a Moran model is used to

describe the evolution of such trajectories.

To investigate Bait-ER’s ability to detect selected sites in a real time series dataset,

we analysed the D. simulans E&R experiment by Barghi et al. (2019). Bait-ER

performs well on this dataset as it is rather conservative and produces only a few

very significant peaks across the genome, which suggests it has a low false positive

rate. It was designed to account for strong genetic drift, hence the use of a discrete-

population state space. Most of the genome produced BFs greater than 2, indicating

that there is not enough resolution to narrow down candidate regions to specific

genes despite those very significant peaks. Barghi et al. (2019) argue that there

is strong genetic redundancy caused by a highly polygenic response to selection in

their experiment. Despite Bait-ER modelling sweep-like scenarios rather than the

evolution of a quantitative trait using an infinitesimal model, the somewhat elevated
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BF signal across the genome might indicate that the genetic basis of adaptation to

this new temperature regime is indeed polygenic. Our results also suggest that the

impact of linked selection might be non-negligible and worth investigating further.

We used ROC curves to compare Bait-ER’s performance to six other methods’.

They serve the purpose of showing the performance of a binary classification model

at all significance thresholds, regardless of the statistical measurement used, may

it be a p-value or a BF. ROC curves address whether the method places the true

targets of selection amongst its highest scoring hits. While this is informative, it fails

to account for the importance of finding an adequate significance threshold when

analysing experimental data. For example, fig. 2.7 suggests that Bait-ER and the

CHM test perform very similarly. However, the CMH test returns more potential

targets than Bait-ER when comparable thresholds are used for both methods (e.g.

fig. 2.10 that shows the comparison between Bait-ER logBFs and CMH test p-

values for a real D. simulans dataset). This is consistent with other reports of the

CMH test producing overinflated false positive rates on account of it confounding

heterogeneity across replicates with a main effect (Wiberg et al., 2017). Additionally,

whilst the CMH might be more prone to identifying high coverage sites, Bait-ER is

not affected by sequencing depth (fig. A.24). Altogether, this indicates that Bait-

ER is more conservative and that the CMH test is more prone to producing false

positives.

Linkage between selected and neutral variants has long been shown to cause skewed

neutral site frequency spectra (Fay and Wu, 2000). Our analysis of the Barghi et al.

(2019) experiment indicates that linked selection might be the cause of a similar

skew in this dataset. Of the six genomic elements in the D. simulans genome, five

show significant SNPs all throughout the chromosome. In fact, Buffalo and Coop

(2020) have analysed temporal covariances in Barghi et al.’s dataset to quantify the

impact of linked selection in a model of polygenic adaptation. They found that

the covariances between adjacent time points are positive but do decay towards

zero as one examines more distant time intervals. This would be predicted under

a scenario where directional selection is determining the fate of linked neutral loci.

Over 20% of genome-wide allele frequency changes were estimated to be caused by

selection, particularly linked selection. Linkage disequilibrium (LD) between neutral
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and selected sites is likely to have a substantial impact on genome scans such as

Bait-ER that assume independence between sites. Bait-ER producing an elevated

signal throughout the genome is consistent with this prediction. Linked selection

is especially evident in highly significant peaks of BFs (figs. 2.8 and A.10). The

trajectories within such peaks will have similar sweep-like shapes and will likely

consist of causative loci as well as closely linked neutral sites. These results are

in contrast to what we obtained from analysing Vlachos et al. (2019) where linked

selection does not generally affect Bait-ER’s ability to detect the true targets of

selection. Bait-ER’s BFs are able to pinpoint the majority of causative loci without

producing peaks due to LD (fig. A.15). This indicates that the data simulated by

Vlachos et al. might not fully reproduce the complexity of real genomic data.

Barghi et al. (2019) claim that their experiment showed a very distinctive pattern of

heterogeneity amongst replicate populations. In other words, they found that dif-

ferent replicates had different combinations of alleles changing in frequency together

throughout the whole experiment. This heterogeneous response can be the result

of sufficient standing genetic variation followed by haplotype segregation amongst

replicates. If there was enough time for the multiple beneficial mutations to spread

to different genetic backgrounds before the onset of laboratory selection, the hap-

lotypes that were present at the foundation of the population replicates could have

been segregating from the start. In an independent study, Buffalo and Coop (2020)

found that there is a substantial proportion of the initial allele frequency change in

response to selection that is shared between replicates in the Barghi et al. dataset,

but this pattern is overturned rapidly. This can be caused by the population swiftly

reaching the new phenotypic optimum, thereby hitchhiker alleles spread through

the population along with adaptive sites, which reach high frequency very quickly.

These linked loci eventually recombine on to other genetic backgrounds causing link-

age to dissipate. After the adaptive phase, recombination is coupled with stabilising

selection which will then act to maintain those beneficial alleles at high frequencies

whilst allowing for neutral variation to accumulate.

The consequences of replicate heterogeneity on genome scans are twofold. On the one

hand, different segregating haplotypes could be selected for in different replicates.

This will cause genome scans not to find any convergent genotype frequencies, sug-
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gesting the response to selection is varied across replicates. The process is difficult

to characterise unless there is sufficient data on the founder haplotypes. However,

numerous studies have time series data that does not include full sequences of those

starting haplotypes, e.g. Barghi et al. (2019) and Burke et al. (2014). On the other

hand, if there was enough diversity at the start of the experiment, it is possible that

multiple interacting beneficial mutations are already present in the standing genetic

variation. Interference between linked selected sites through epistasis can reduce the

effectiveness of selection (Hill and Robertson, 1966). This will be more prevalent if

there are large effect loci in the vicinity. Our results indicate that that might be

the case in the sweep simulated by Vlachos et al. (2019), where the authors simu-

late a little over 10% of the D. melanogaster total genome length. Each simulated

segment had 30 selected targets. For moderate to strong selection, that might be

enough for linkage to hinder rapid adaptation and produce signatures that are not

readily captured in genome scans.

Bait-ER estimates and tests for selection. However, σ estimates are not to be taken

literally as linked selection might be inflating individual selection coefficients. Such

is the case that nearby sites are not independent from one another that extended

haplotypes might be rising to fixation at once. In a short timescale such as that of

an evolution study, recombination is unlikely to have had the chance to have broken

up haplotypes present in the standing genetic variation. In addition, one expects

drift to exacerbate the effect of linked selection in experiments where populations

are small. Selection inference methods will likely be affected when the combined

effect of linkage and drift is pervasive. Maximum likelihood estimates of selection

coefficients were shown to be unaffected by demography in populations as small as

500 individuals (Jewett et al., 2016). However, it is common that Ne in laboratory

experiments is lower than the census population size. For example, Barghi et al.

(2019) have reared flies in populations of roughly 1000 individuals, but they have

estimated Ne to be around 300. Collectively, our results suggest that drift should not

be neglected as it might inflate selection coefficient estimates since it exacerbates the

extent of linked selection. Its impact can be substantial especially for populations

with low polymorphism levels.

Regardless of demographic factors, adaptation of complex traits in and of itself is a
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challenging process to characterise. This is because trait variation is influenced by

numerous genes and gene networks. There is now some evidence in the literature

suggesting that polygenic adaptation is key in a handful of laboratory evolution

studies. The genomic signature left by such a complex process is still hard to describe

in its entirety even in a replicated experimental design. It depends on numerous

factors, including the total number of causative loci, as well as on the levels of

standing genetic variation within the initial population. These are not independent

of each other, as the more polygenic a trait is the more likely linkage between

selected sites is to generate selected haplotypes. Nevertheless, directional selection

will cause some proportion of selected sites to behave as sweep-like trajectories. It is

those that Bait-ER is aiming to characterise. In short-term evolution experiments,

theoretical studies have shown that a shift in the phenotypic optimum can result in

sweep signatures provided the effect size is large (Jain and Stephan, 2017b).

One aspect of time series polymorphism datasets that is worth of attention is that of

missing data. It is sometimes the case that there is no frequency data at consecutive

time points for a given trajectory. In the future, we will extend Bait-ER to allow

for missing time points. Such a feature will enable one not to discard alleles for

which not all time points have been sequenced. By using a probabilistic approach

to estimate missing allele frequencies, Bait-ER has inherently the potential to cope

with missing data when estimating selection parameters.

Results from genome-scans in E&R studies of small populations generally tend to

underperform. Since drift is pervasive and LD is extensive, genome scans might

suffer from low power and high false positive rates. For that reason, we plan to

extend Bait-ER to explicitly account for linkage, which decays with distance from

any given locus under selection. Accounting for linkage should help disentangle the

effects of local directional selection on specific variants versus polygenic selection

on complex traits. Modelling the evolution of linked sites by including information

on the recombination landscape will further clarify the contribution of each type of

selection.
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Chapter 3

Selection on the fly: short term

adaptation to an altered sexual selection

regime in Drosophila pseudoobscura

Abstract

Experimental evolution studies are powerful approaches to unveil the evolutionary

history of lab populations. Such studies have shed light on how selection changes

phenotypes and genotypes. Most of these studies have not examined the time course

of adaptation under sexual selection manipulation, by resequencing the populations’

genomes at multiple time points. Here, we analyse allele frequency trajectories in

Drosophila pseudoobscura where we altered their sexual selection regime for 200

generations and sequenced pooled populations at 5 time points. The intensity of

sexual selection was either relaxed in monogamous populations (M) or elevated in

polyandrous lines (E). We present a comprehensive study of how selection alters

population genetics parameters at the chromosome and gene level. We investigate

differences in the effective population size – Ne – between the treatments, and per-

form a genome-wide scan to identify signatures of selection from the time-series

data.

We found genomic signatures of adaptation to both regimes in D. pseudoobscura.

There are more significant variants in E lines as expected from stronger sexual
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selection. However, we found that the response on the X chromosome was substantial

in both treatments, only more marked in E and restricted to chromosome arm XR

in M. Ne is lower on the X at the start of the experiment, which might indicate a

swift adaptive response at the onset of selection. Additionally, we show that the

third chromosome was also affected by elevated polyandry. Its distal end harbours

a region showing a strong signal of adaptive divergence in E lines.

3.1 Introduction

Evolutionary biologists have put considerable effort into uncovering how social en-

vironments shape evolution, especially those that change sexual selection pressures.

Studies over the years have found differences in courtship phenotypes as well as

other fitness-related traits caused by altered mating systems (Chapman et al., 1995;

Wigby and Chapman, 2004; Chenoweth and Blows, 2005; Hollis et al., 2017). Due

to the effects of mate competition, male harm has also been found to evolve under

specific environmental conditions (Holland and Rice, 1999; Yun et al., 2019).

A few key studies have tried to identify the genetic basis of adaptation to a new

sexual selection regime. Sexually antagonistic loci were initially hypothesised to be

more prevalent on the X chromosome (Rice, 1984). In a model with equal dominance

in both sexes, Rice proposed that a sexually antagonistic variant that is either dom-

inant and female-beneficial or recessive and advantageous to males should increase

in frequency. This would then result in X-linked sexually antagonistic variation to

invade more readily when compared to autosomal loci. Rice’s prediction was con-

firmed in several evolution experiments (e.g. Chippindale et al., 2001; Innocenti and

Morrow, 2010). However, subsequent theoretical predictions suggested that auto-

somes are just as likely to harbour sexually antagonistic polymorphism as the X

under certain conditions namely relaxing the assumption of parallel dominance be-

tween the sexes (Fry, 2009; Ruzicka and Connallon, 2020). Others have subsequently

shown that sexual selection seems to affect many of the same genomic regions as

those affected by natural selection (Chenoweth et al., 2015). More surprisingly, the

X chromosome was found not to be a hotspot for sexually antagonistic variation in

inbred Drosophila melanogaster (Ruzicka et al., 2019). We also know that the res-
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olution of sexual conflict over gene expression optima is involved in the response to

selection (Innocenti and Morrow, 2010). Evidence indicates that sexual antagonism

can lead to sex-biased gene expression within a relatively short timescale (Wright

et al., 2018). The importance of sexual selection in shaping the genomic landscape

of a population is still largely undiscovered. Our study will characterise the adaptive

response of polymorphic sites throughout the genome. It will address some of gen-

eral patterns in short-term adaptation that have started to emerge. In particular,

we will focus on whether the response to an altered mating system is restricted to

the X chromosome or more evenly distributed along the genome.

Here, we investigate patterns of genetic adaptation of Drosophila pseudoobscura flies

in a socially manipulated environment across 200 generations of evolution. The ex-

periment consisted of rearing replicated populations under either monogamy – M

– or elevated polyandry – E. These two treatments should relax or increase sex-

ual selection, respectively. It has been shown that behavioural and physiological

traits have diverged between these lines throughout the experiment. These include

courtship song and male mating and courtship rates. In summary, E males pro-

duced more attractive song, showing decreased singing latency and faster songs over

longer periods of time (Snook et al., 2005; Debelle et al., 2017). These males also

had higher courtship rates (Crudgington et al., 2010). In contrast, M males had

smaller accessory glands and sired fewer progeny (Crudgington et al., 2009). Inter-

estingly, female preference also seems to have coevolved with male signal in opposite

directions between the two selection regimes (Debelle et al., 2014).

Earlier studies have demonstrated that sexual selection affected multiple traits sub-

stantially as populations adapted. It soon became clear that a better understanding

of the genetic mechanisms responsible for differences in phenotype was needed. Anal-

yses of gene expression patterns in virgin M and E females showed that 14% of the

transcriptome was differentially expressed (Immonen et al., 2014). In addition, 70%

of these differences were sex biased. This suggests loci under sexually antagonistic

selection might be contributing to divergence between the treatments. Nevertheless,

more evidence is required to make a compelling case for sexual conflict as a major

driver of adaptation in E line flies. The prediction that sexual selection should in-

crease the number of male-biased genes had thus to be tested (Veltsos et al., 2017).
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Both female and male transcriptomes were sequenced and revealed that the majority

of differentially expressed genes was found in males’ heads, which is consistent with

the importance of behavioural traits. Conversely, M treatment flies were predicted

to exhibit a feminisation of the transcriptome. In M populations, there was indeed

a feminisation of male heads but, contrary to expectations (Haig, 2006; Hollis et al.,

2014), male abdomens and both female heads and abdomens were masculinised.

This is relevant since the abdomens house the sex-specific reproductive tissues.

Transcriptome evolution therefore seems to be a large part of the adaptive response

to sexual selection (Connallon and Knowles, 2005; Hollis et al., 2014). However,

it is still unclear how sexual selection can cause allele frequencies to change in the

short-term. Genomic time-series data can provide a missing link between phenotypic

changes and proof of selection acting on the genome. For this reason, investigating

allele frequency trajectories alongside experimental phenotypes in an Evolve & Re-

sequence (E&R) design can prove very useful. They can help determine the rate and

strength of selection driving genomic responses. E&R studies focus on adaptation

from standing genetic variation and can help reveal signatures of selection by inves-

tigating allele frequency changes. Experimental populations are typically sampled

and resequenced repeatedly within a certain number of generations. Samples at

two time points can be used to test for selection by finding allele frequency changes

that differ significantly between treatments (e.g. Pearson’s chi-square, χ2, test as

in Griffin et al., 2017; Fisher’s Exact test as in Burke et al., 2010; or the Cochran-

Mantel-Haenszel, CMH, test as in Barghi et al., 2017). However, such approaches

lack the ability to take advantage of the allele’s frequency trajectory. In contrast,

more probabilistic modelling frameworks use time-series data to fully describe fre-

quency trajectories. In particular, time-series approaches gain a lot from accounting

for sampling noise typical of E&R experimental designs.

There are theoretical predictions on the genetic basis of adaptation to an altered

mating system that we must consider. First, diversity on the autosomes (A) is ex-

pected to differ from X-linked diversity due to differences in the effective population

size. Under monogamy, X/A diversity ratios are predicted to be roughly 3/4. Because

males only carry one copy of the X chromosome, NeX = 3
4
NeA under the assumption

of equal variance in reproductive success between the sexes. This affects the efficacy
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of selection and, consequently, diversity ratios. Under polyandry, however, these

ratios are expected to shift towards even lower values especially if populations are

founded following a bottleneck (Pool and Nielsen, 2008). This effect should perhaps

be counter-acted by the experimental design in our study. The family size for E and

M populations was set as to ensure that Ne on the autosomes was roughly the same

in both lines (addressed in Snook et al., 2009). In addition, if most beneficial mu-

tations on the X chromosome are partially recessive, diversity on the X is predicted

to be lower compared to that on the autosomes (Betancourt et al., 2004; Vicoso and

Charlesworth, 2009). These effects combined with sexual selection pressures should

result in a marked reduction in diversity on the X chromosome. The X chromosome

is known to be enriched in genes that are important for mating success, namely

accessory gland proteins (Acps) which are involved in sperm production along with

other seminal fluid proteins. One would thus expect sexual selection signatures to

be especially prominent on the X where genes that are key for successful mating are

located.

With the appropriate statistical framework, we can now characterise allele frequency

changes caused by sexual selection in these D. pseudoobscura populations. Here, we

looked for evidence of adaptation in M and E line females both at the chromosome

and gene level. Our study builds on the work by Wiberg et al. (2021) who examined

genomic variation between the two treatments after ≈ 160 generations of selection.

Wiberg et al. (2021) found “islands” of differentiation between the lines located

on the X and 3rd chromosomes. This work offers a more comprehensive analysis

of full allele frequency trajectories. Whilst resequencing early generations was not

possible, we produced and analysed a pool-seq time-series consisting of five time

points throughout those 15 years of evolution in the lab. Starting at generation

21, this time-series allows us to better understand both short-term and long-term

effects. Our study assumes that adaptation has proceeded from standing genetic

variation in these populations so that the effect of new mutations is negligible. We

estimated the effective population size – Ne – for the four main D. pseudoobscura

chromosomes: 2, 3, 4 and X. We used a Bayesian modelling approach – Bait-ER

(Barata et al., 2020) – to infer selection on individual SNPs that allows for finding

potential targets of selection. We combined individual SNP tests for selection with
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window-based estimates of the effective population size, Ne, which gave us a clearer

view of the process of adaptation. We found that there was a substantial response

to selection with the two treatments differing in their rate of adaptation.

3.2 Material and Methods

3.2.1 Experimental setup

The experiment was established in 2002 and reached approximately 200 generations

(Snook et al., 2005). The ancestral population was established from 50 wild-caught

females collected in Arizona, USA. The selection experiment was set up after four

generations of “common-garden” laboratory evolution. Each of the two treatment

lines (M and E) was replicated four times. For each selection regime, recently

eclosed offspring were collected and combined given the appropriate sex ratio at every

generation. All experimental populations were kept with standard food media and

added live yeast at 22°C on a 12-L:12-D light cycle. For a more detailed description,

see Snook et al. (2005) and Crudgington et al. (2005).

Both selection regimes were established based on the observation that D. pseudoob-

scura females are assumed to carry sperm from two males at any given time in the

wild (Cobbs, 1977). Therefore, for each E treatment group, two M line groups were

established. For each replicate population, 80 and 40 groups of flies remained after

culling in M and E treatment lines, respectively. Consequently, we expect no dif-

ferences in the potential for adaptation between treatments due to reduced effective

population size.

3.2.2 Sequencing

The time-series dataset consists of 5 time points and it includes all four replicates for

each selection regime. These time points are fairly evenly distributed throughout

the study. The experimental setup was such that the replicates were established

in a staggered fashion. Therefore, fly sampling did not occur at the same for all

replicate populations: time point 1 was sampled at generations 21 and 22, time

point 2 between 59-63, time point 3 between 112-116, time point 4 ranged between
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160-164, and time point 5 at generation 200. For more details on the generation at

which each replicate was sampled and, thus, sequenced, see table B.1. Samples at

time point 4 were sequenced as part of Wiberg et al. (2021).

All fly samples were stored at -80°C immediately after collection in the Department

of Animal and Plant Sciences at the University of Sheffield. The samples were then

collected and kept at -80°C storage in the Centre for Biological Diversity at the

University of St Andrews up until DNA extraction.

For each DNA sample, 40 female flies were pooled from the frozen stocks. Females

were sexed and collected approximately at time of emergence, thus, we assume these

to be virgin. DNA extraction was performed using a DNeasy Blood & Tissue Kit

(QIAGEN) for 20 individuals. Firstly, flies were homogenised at room temperature

using a Bullet Blender homogeniser with zirconium beads. After adding Proteinase

K, all samples were left to incubate overnight at 56°C. The step which involves

adding buffer AW1 was repeated, and the elution with buffer AE (150 µL) was also

repeated to maximise DNA yield. At the end of the extraction protocol, the two

20-female samples were combined to make up a pool of 40 females and stored at

-20°C.

DNA sequencing was carried out at Novogene (Hong Kong) using an Illumina HiSeq

X Ten platform. The library preparation protocol resulted in a 350bp insert DNA

library. For each sample, there is a set of raw paired-end reads all 150bp long.

3.2.3 Read mapping

Raw reads were filtered and trimmed using Trimmomatic (version 0.38, Bolger et al.,

2014). After trimming, time points 1, 2, 3, and 5 had an average read length of 148

(min = 36, max = 150), whilst time point 4 had shorter reads with an average length

of 97.3 (min = 36, max = 100). Trimmed reads were then mapped to both the

complete Drosophila pseudoobscura genome assembly Dpse 4.0 (FlyBase, GenBank

accession GCA 000001765.3, June 2018) and the X chromosome sequence of the

UCBerk Dpse 1.0 assembly (UC Berkeley, GenBank accession GCA 004329205.1,

March 2019). The former reference was assembled with Illumina (150x) and PacBio

(70x) reads, and the latter consists of Oxford Nanopore MinION (40x) long reads.
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All paired-end reads were mapped separately using two mappers: bwa mem (ver-

sion 0.7.17, default parameters, Li, 2013) and novoalign (version 4.00.Pre-20190624,

Novocraft Technologies, http://novocraft.com/). Regardless of which mapper

was used, over 98% of reads were mapped successfully to the reference genome (see

table B.2 for more details). The SAM files produced by the two mappers were

re-aligned to around indels using GATK (Genome Analysis Tool Kit, version 3.8.1,

Van der Auwera and O’Connor, 2020) as recommended in Schlötterer et al. (2014).

3.2.4 Variant calling and filtering

Variants were then called with both bcftools (mpileup and call functions, version

1.9, Li, 2011; Danecek et al., 2021) and freebayes (version 1.3.3, Garrison and Marth,

2012) (see table B.3 for details on variants called by both callers). Variants called

by bcftools were filtered according to the following criteria suggested by Kofler et al.

(2016a):

1. Minimum mapping quality of 40;

2. Minimum base quality of 30;

3. Minimum allele count of 1/F at the first time point, where F is the total

number of founder haplotypes or the sample size, i.e. MAF = 1/40 = 0.025;

4. Remove sites not called by FreeBayes;

In addition, we have filtered out those variants not present in both the bwa mem

and novoalign mapped datasets. Such a two mapper approach to producing pool-

seq data is rather conservative and preferred to ensure good quality datasets (Kofler

et al., 2016a). Genome-wide, novoalign alignments led to fewer called mean SNPs

genome-wide: 2,309,226 with bwa mem versus 2,194,721 with novoalign for M lines,

and 2,281,034 with bwa mem versus 2,167,341 with novoalign for E populations. A

similar trend is observed in the X chromosome alignment (bwa mem 862,881 and

841,935 vs novoalign 807,689 and 787,561 for M and E, respectively). Fewer variants

were called as time progresses. On average, a little over a third of variants that were

called on autosomes were intergenic (chromosome 2: 34.1%; chromosome 3: 34.1%;

chromosome 4: 38.6%). A higher percentage was observed on the X chromosome
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where 47.5% of variants were intergenic. We also considered strand bias (fig. B.4)

and overall coverage for each analysed locus as a measure of quality (fig. B.5).

After filtering for mapping and base calling quality, as well as retaining any variants

called by bcftools and Freebayes in the two alignments produced with bwa mem

and novoalign, median sequencing depth is 45x. For this reason, we decided not

to filter variants based on coverage any further. Finally, we have only considered

biallelic sites and of those only the ones that were found to be polymorphic at

the first sampled time point were used for further analyses. This allowed us to

describe allele frequency changes throughout the experiment. The total number of

SNPs remaining after quality filtering as well as those called in both bwa mem and

novoalign alignments for the whole-genome and the X chromosome assemblies can

be found in table B.3. After filtering, SNPs present across all replicates between

the five time points (or the first three) were considered for further selection inference.

We analysed 38,065 and 51,339 full five time point trajectories in M and E lines,

respectively. For Ne estimation, those variants present between any two time points

were considered. More details on how these were distributed across time points and

chromosomes can be found in table B.4 and fig. B.6.

To investigate how quickly alleles were fixing throughout the experiment, we cal-

culated experimental fixation rates that correspond to the number of SNPs that

become fixed from one time point to the next. Experimental fixation rates were

calculated as follows:

Fixation rate =
fTn − fTn−1

tn

where fTn and fTn−1 are the number of fixed sites at time point n and time point

n− 1, and tn is the total number of trajectories being analysed.

3.2.5 Genetic diversity

We used Grenedalf to calculate estimates of nucleotide diversity and Tajima’s D

(Czech and Exposito-Alonso, 2021). Grenedalf computes measures of diversity cor-

rected for pool-seq. This includes θπ, hereinafter referred to as π. The program
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follows the approach implemented in PoPoolation (Kofler et al., 2011a) and PoPoola-

tion2 (Kofler et al., 2011b) that accounts for any bias introduced by sampling and

sequencing error. Absolute π is the sum of estimates for all SNPs within a given

window, and relative π the average per window. We used sync format files, which

include all replicates and time points, as input. We considered sample sizes of 40

individuals and computed π as well as Tajima’s D for each replicate at each time

point in windows of 250kbp with a 25kbp overlap.

3.2.6 Selection inference and Ne estimation

For estimating the effective population size, Ne, we used a moment-based estimator

(Jónás et al., 2016) implemented in the R package poolSeq (Taus et al., 2017). The

estimator uses temporal data to investigate any allele frequency changes. It accounts

for the effect of pooled sequencing by introducing variance from two sampling events:

first, when individuals are sampled from an experimental population for sequencing,

and second, due to uneven coverage throughout the genome. The approach models

drift variance to obtain a temporal estimator forNe. Estimates were computed for 2k

SNP windows with a 10% overlap assuming that populations were sampled according

to Jónás et al.’s plan II, where sampling takes place before reproduction and sampled

individuals’ genomes do not contribute to the next generation. Replicate medians

are computed first. These are, in turn, used to calculate chromosome-level median

estimates. Similarly, each genome-wide Ne estimate is a median of all replicate

medians.

Finally, we investigated potential targets of selection using a Bayesian genome scan

on the time-series - Bait-ER (Barata et al., 2020). It was designed for E&R ex-

periments as it accounts for added binomial, or beta-binomial, sampling noise from

pool-seq. Bait-ER models the evolution of an allele using a Moran model with

overlapping generations. It estimates parameters of selection, namely selection co-

efficients (σ), whilst also testing each allele frequency trajectory for selection. The

program outputs a Bayes Factor (logBF) per site, which is a ratio of the likelihoods

of two alternative models: one where genetic drift is the main driver of allele fre-

quency changes, and another where there is positive selection favouring a particular

allele. Similar to Grenedalf, both Bait-ER and poolSeq take sync files as input.
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3.2.7 Gene feature analysis

In order to obtain a complete annotation of gene features for our time-series dataset,

we used NCBI’s Remap tool (www.ncbi.nlm.nih.gov/genome/tools/remap). This

tools allowed us to perform coordinate remapping between the latest annotated

reference genome uploaded to NCBI’s repository (University of California, Irvine,

Dpse MV25, accession number GCA 009870125.2) and the two assemblies described

in section 3.2.2. The software outputs gff3 format annotation files which we con-

verted to bed format using BEDOPS’ (Neph et al., 2012) gff2bed tool.
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3.3 Results

3.3.1 Diversity and allele frequency changes

We first investigated the behaviour of allele trajectories by looking at allele frequency

spectra throughout the experiment. The time-series consists of five time points

from generation 21 to generation 200 (T1: 21-22; T2:59-63; T3:112-116; T4:160-

164; T5:200; see table B.1 for more details). Frequency spectra at the start are

flat distributions with maxima roughly at 0.5-0.6 (fig. 3.1). Alleles fixed at high

rates, with the most fixations between time point 3 and time point 4 for M lines and

time points 2 and 3 for E lines. Up to 29.5% and 16.9% more fixed sites than in the

previous time point were observed for E and M, respectively. This indicates that

diversity was more swiftly erased in E populations, as expected if sexual selection is

strongest in this regime. Allele frequency changes between first and last time point

show distributions that are highly skewed towards low values (fig. B.7). This is

especially true in the case of the X chromosome.

Nucleotide diversity was measured in 250kbp windows for each chromosome sepa-

rately and at each time point. Diversity distributions show a marked reduction in

diversity as time passes, particularly from time point 1 to time point 2 (fig. 3.2).

All chromosomes’ densities peak at 0.4-0.5 per site at the first time point. At the

end, densities for chromosomes 3 and X flatten out, especially for E flies. Interest-

ingly, in M lines, π on the 3rd chromosome becomes skewed towards very low values

in later generations. In contrast, chromosomes 2 and 4 maintain more diversity.

Taken together, these results suggest that selection was pervasive on the 3rd and X

chromosomes resulting in more windows of very low π across treatments. Window

estimates along each chromosome exhibit some diversity peaks, particularly on the

3rd chromosome, that become flat towards the end of the experiment (fig. B.8).
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Figure 3.1: Allele frequency spectra in M and E populations. Allele frequency spectra in
(a) for M and (b) for E populations per time point (rows) for each replicate population (columns).
Each chromosome is coloured in a different shade of green (M) or orange (E) as seen on the bottom
legend.

2 3 4 X

E
M

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

5

4

3

2

1

5

4

3

2

1

Nucleotide diversity

Time point

5

4

3

2

1

Figure 3.2: Relative π densities in M and E lines. Estimates were computed with Grenedalf
(Czech and Exposito-Alonso, 2021). Rows correspond to the two different treatments and columns
to chromosomes. Each individual plot has five densities coloured in as per side legend that corre-
spond to one of the five time points.
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Tajima’s D estimates throughout the genome are typically greater than 0 but show

substantial variation amongst windows (figs. 3.3 and B.9). These were also com-

puted for 250k SNP windows as for π. This result suggests that there is a lack of

rare alleles in our dataset which is perhaps unsurprising in a pool-seq experiment

using such stringent filtering criteria. For example, we filtered variants a minimum

allele frequency of 0.025 at the first time point which removes very low frequency

variants. This would partly explain an elevated Tajima’s D especially at the start

of the experiment. One region worthy of note is the centre of the X chromosome

where Tajima’s D is consistently elevated in comparison to surrounding stretches

(fig. 3.3). The pattern is present in both E and M populations throughout the

whole experiment.
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Figure 3.3: Tajima’s D estimates along the X chromosome for E and M lines. Rows
correspond to the two different treatments. Estimates were calculated in 250k SNP windows with
Grenedalf (Czech and Exposito-Alonso, 2021). Lines are coloured per time point according to the
side legend.
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3.3.2 Estimating the effective population size

Time interval Median - M Median - E

Overall 144.6 (n = 134) 149.6 (n = 258)

T1T2 100.6 (n = 292) 90.7 (n = 360)

T2T3 67.1 (n = 307) 110 (n = 288)

T3T4 66.5 (n = 167) 120.3 (n = 139)

T4T5 134.2 (n = 140) 140.1 (n = 140)

Table 3.1: Median genome-wide Ne estimates for M and E lines at different time point
intervals. Medians were calculated using 2k SNP window estimates from all of the four experi-
mental replicates. ‘Overall’ corresponds to Ne estimates based on allele frequency changes between
the first and last time point. The total number of windows considered in each replicate is found
in brackets.

Estimating the effective population size in windows across the genome should shed

light on how fast selection and drift act together to cause allele frequencies to change.

Using an estimator that relies on frequencies changing between any two time points

(Jónás et al., 2016), we looked for differences in Ne between chromosomes and treat-

ments. This approach uses data on any polymorphic sites and computes an estimate

of variance-Ne which does not use any information on fixed loci. Previous results

using molecular marker-based estimators, suggest that Ne is similar between lines,

ranging from 141.2 (s.d. 27.4) to 110.5 (s.d. 19.2) for M and E, respectively (Snook

et al., 2009). Our results confirm this: genome-wide median estimates considering

allele frequency changes between time point 1 and 5 are 145 for M populations and

150 for E lines (table 3.1).

In E populations, Ne drops most during the first 20 to 60 generations implying

that selection is strongest then. Ne starts to recover from time point 3 onwards

reaching ≈ 140 at the end of the experiment. Such a result is only possible because

variance-Ne is estimated from observed temporal shifts in allele frequencies. This is

not caused by new mutations as we assume that adaptation occurs from standing

genetic variation throughout this study. This same pattern is not found in M lines,

where Ne estimates suffer a continuous and drastic reduction until time point 4

(from 101 at generation ∼21 to 66 at generation ∼161), after which neutral levels

are nearly recovered (table 3.1). Similar patterns are recovered when using only
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intergenic variants to estimate Ne (table B.5). Since finding that Ne recovers

towards the end of the experiment, we compared estimates between the first and last

time point. These are significantly different (Mann-Whitney U test p-value = 4.4×

10−7), suggesting that (i) selection acting at the start might be causing a significant

reduction in Ne, and (ii) selection during the last intervals of the experiment is less

effective in altering allele frequencies, allowing Ne to recover.

Reduced Ne during the first half of the experiment - time points 1 to 2 - might

indicate a strong selective response as E populations reach the new phenotypic

optimum very swiftly. In contrast, selection under monogamy seems to act slower,

causing low Ne until the third quarter of the experiment. Interestingly, the first

interval is marked by low Ne on the X chromosome especially in E populations

(fig. 3.4, panel (b)). We investigated whether the estimates on the X differed from

those on the autosomes and this difference is statistically significant (fig. 3.4, panel

(a), Mann-Whitney U test p-value = 9.4 × 10−6). Thus, the X chromosome shows

a fast adaptive response in E lines from the onset of selection. This result is not as

clearly replicated in M populations where Ne estimates on the X are more similar

to those on chromosomes 3 and 4 from T1 to T4 (Mann-Whitney U test p-value =

0.051).
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Figure 3.4: Ne estimate comparison between autosomes and the X chromosome during
the first 20 to 60 generations (T1 to T2). Panel (a) shows boxplots of Ne window estimates
for the two categories - autosomes and X - in E populations (Mann-Whitney U test very significant).
Twelve outliers were removed from (a) for visualisation purposes. Panel (b) shows median estimates
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3.3.3 Estimating selection

We performed a genome scan of the time-series across all time points using Bait-ER

(Barata et al., 2020). The signal of selection is substantially higher in E versus

M lines (fig. 3.5), which suggests that selection is indeed stronger under elevated

polyandry. In total, 350 (0.9% of all sites in the time-series) and 770 (1.5%) SNPs

were statistically significant (at a threshold of log(99)) for M and E lines, respec-

tively. If considering the first 3 time points alone, M lines had 570 (0.6%) significant

SNPs whilst E had 1591 (1.5%). Regardless of whether you consider the complete

time-series or a shorter dataset with the first 3 time points only, E populations

have a similar percentage of sites - 1.5% - that are considered to be under selection.

They consistently show approximately double the number of loci with evidence of

selection than the M lines.

When comparing the different chromosomes, it is clear that there are far more signif-

icant peaks along the X chromosome in comparison to autosomes in both treatments

(M: 322; E:563). Of those 322 top X candidates in M lines, 309 (96%) were located

in intergenic regions (versus 50.8% in E). This is a surprising result given that half

of the variants called on the X can be found within intergenic regions. Significant

trajectories on chromosomes 2 and 4 were never more than 60 (2: 9 and 43; 4: 3

and 54; for M and E, respectively). In addition, signal on the 3rd chromosome is

also markedly elevated in E populations where there are 110 significant SNPs versus

only 16 in M (fig. 3.5). Taken together, these results suggest that whilst selec-

tion is stronger under elevated polyandry, the X chromosome is also responsible for

adaptation to a strict monogamy regime.

In E lines, 417 (54.2%) of those statistically significant variants were found within

genes, whereas only 35 SNPs (10%) were mapped on to genes in M lines. This

difference is striking given that approximately the same number of significant vari-

ants were located in intergenic regions (E: 353; M: 315). A large proportion of

the E line top variants that were found in genes locate to the X chromosome (426,

72.3%). Fourteen genes in E populations have 5 or more significant SNPs (up to

23; table B.7). Selection coefficients for individual trajectories as estimated with

Bait-ER ranged from 0.03 to 0.11. Genes with the highest number of top SNPs were
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found on the X and third chromosomes. Of these, the second gene with the most top

variants (11) codes for hemicentin-1 (NCBI: 4813557; FlyBase: FBgn0076932) with

an ortholog in Drosophila melanogaster - neuromusculin which is a protein that is

expressed in the muscle system and the peripheral nervous system. Allele frequency

trajectories for these top SNPs typically start at relatively high frequency and fix

within two or three time points (fig. 3.6).

A previous study (Wiberg et al., 2021) identified 480 variants as having a signifi-

cant allele frequency differences between M and E replicates at time point 3. We

determined which genes these top SNPs were located in as well as any genes in the

vicinity of intergenic top SNPs. We then compared these genes with those found

significant in our genome scan. There were 21 genes in common between the two

studies (table B.6). These include genes involved in neural and muscle develop-

ment, as well as other biological regulation processes.
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Figure 3.5: Genome scan for signatures of adaptation throughout the genome for M
(top) and E (bottom) lines. (a) and (c) are manhattan plots of Bait-ER (Barata et al., 2020)
logBF for each allele frequency trajectory. Statistically significant SNPs are coloured in green
(M, top) or orange (E, bottom). Dashed lines correspond to a threshold of log(99) ≈ 4.6. (b)
and (d) are diagrams of chromosomes 3 (top) and X (bottom) that illustrate which regions of
each chromosome harboured the most number of significant hits. Average estimated selection
coefficients (|ŝ|) for each interval can be found above each diagram as a bar plot. Data excludes
chromosome 5.
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Figure 3.6: Nine (out of 11) allele frequency trajectories of significant SNPs located on
a single gene coding for neuromusculin. Each replicate is coloured differently as per bottom
legend. Individual variant coordinates can be found at the top of each graph.

3.4 Discussion

Sexual selection can cause substantial divergence between populations and even

is hypothesised to be involved in speciation (Seehausen et al., 2014). It has been

repeatedly implicated in altered ratios of genetic diversity between sex chromosomes

and autosomes (e.g Corl and Ellegren, 2012). Here, we used an E&R experimental

design in D. pseudoobscura to help elucidate the process of adaptation when the

strength of sexual selection is altered in the short-term. We altered the intensity

of sexual selection by reducing it in monogamous populations (M) or elevating it

in a polyandrous regime (E). Signals of selection were strongest in E populations

where sexual selection is elevated. This response is accompanied by a reduction

in nucleotide diversity and alleles becoming fixed as time progresses. In addition,

Ne estimates suffer a reduction as populations adapt, but recover towards neutral
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levels.

While M lines should exhibit relaxed selection since competition for mates is elim-

inated, E lines are likely subject to elevated selection. Increasing the number of

males a single female is housed with should cause sexual selection to be stronger.

The elevated polyandry regime thus results from the observation that D. pseudoob-

scura are naturally polyandrous and each female has been found to mate with 2 to

3 males within its lifetime (Dobzhansky and Pavlovsky, 1967). Therefore, housing

a female with 6 males instead should increase intrasexual competition. One would

predict that increased promiscuity would facilitate the evolution of traits involved

in mating or fertilisation success and perhaps pre-zygotic isolation mechanisms be-

tween the two treatments. Our D. pseudoobscura populations show a lack of assor-

tative mating either between treatments or within lines (Debelle et al., 2016). A

possible explanation for this might be that male-male competition overcomes the

coevolution of female preference in this experiment. This observation could help

generate expectations regarding some of the genomic response to selection. Under

monogamy, competition for mates is eliminated. In a system where female prefer-

ence is overshadowed by competition amongst males, sexually antagonistic selection

is reduced to a minimum in M lines. If sexual conflict is promptly resolved, the adap-

tive response to enforced monogamy should be dominated by sexually antagonistic

variation being drastically reduced.

Adaptation to an altered mating system will shape patterns of genetic variation in

somewhat unpredictable ways. Understanding how allele frequency changes occur

within given haplotype structures is instrumental to finding putative targets of se-

lection. Is the signal of adaptation to sexual selection even throughout the genome

and consistent across time? Our approach to understanding the adaptive process

relied on taking snapshots of the replicates at several time points throughout the

200 generation experiment. These snapshots were allele frequencies estimated from

a pool-seq dataset of each of the four replicate populations. Our two-mapper two-

variant caller approach ensures that only high quality SNPs are present in both the

full time-series and the two time point datasets. In particular, selection scan results

are based on a time-series that is comprised of SNPs that were polymorphic at the

first time sampling point. This causes our results to be focused on polymorphisms
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with the most adaptive potential, since most would have possibly overcome the

counteracting effects of drift over the first 20 generations of selection. In small pop-

ulations such as these, drift will cause alleles to shift such that most low frequency

polymorphisms will get lost within a few generations.

Taken together, our results support the hypothesis that strong sexual selection in

E lines causes a substantial adaptive response. Not only did alleles become fixed

more promptly in E populations (fig. 3.1), but also nucleotide diversity was depleted

faster (fig. 3.2). In addition, our genome scan showed more than double the number

of target candidates in E versus M. These top SNPs were found mostly across the X

and the 3rd chromosomes (fig. 3.5). These results are consistent with the findings

by Wiberg et al. (2021) whose SNPs showing significantly consistent allele frequency

differences between E and M clustered along chromosomes 3 and X. The selection

signatures we find are more pervasive in comparison to Wiberg et al.’s “islands” of

differentiation. This is perhaps suggesting that LD has a substantial impact in our

genome scan. In addition, effective population size estimates are consistent with

a swift response to selection from the start of the experiment, especially in E. Ne

estimated from allele frequency changes between time points 1 and 2 indicate that

E lines suffer a more drastic reduction from the onset of selection.

At the end of the first half of the experiment - between time point 2 and 3 - E

populations showed far more fixations than M lines (fig. 3.1). We hypothesised

that this could result in a more marked response to selection in E which could, in

turn, manifest as a reduction in Ne within that time interval. Interestingly, the

pattern is reversed when comparing Ne between the two treatments: M lines have

a much lower overall Ne on average than E. This result is statistically significant

(M versus E at T2 to T3 Mann-Whitney U test p-value = 8 × 10−13). This could

mean that, despite more overall fixed loci, variance-Ne at the end of this first half

indicates a more substantial reduction amongst M populations. A pattern such as

this might be caused by one of two things. First, drift could be stronger in M overall

resulting in drift variance that is picked up by the Ne estimator. Other monogamous

regimes have been shown to result in lower overall Ne which augments the extent of

drift (Wigby and Chapman, 2004). Ne in monogamous populations of Drosophila

melanogaster lines was found to be only 16.2% smaller than that in polyandrous lines
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(Rice and Holland, 2005). This prediction was tested previously in our lines and Ne

was not significantly different between treatments (Snook et al., 2009). Secondly,

our estimates could be biased if selection affects most allele frequency changes. This

effect should dissipate if one would estimate Ne with sites that are evolving neutrally.

We tried to overcome this by computing Ne using intergenic SNPs alone. General

trends remained unchanged with similar median Ne for M and E between T2 and

T3 as that using the complete dataset (M: 68.2 and E: 111.9; table B.5).

As costs of promiscuity arise from different mating frequency optima between the

sexes, monogamy lines should show signs of resolved sexual conflict. This could, in

turn, result in a more even distribution of nucleotide diversity along the genome,

as well as less variance in Ne. Monogamous populations do exhibit less response to

selection with fewer significant genome scan hits across the genome. This finding can

be evidence for relaxed sexual selection due to mate competition being eliminated.

Those regions showing selection signatures may have harboured a substantial portion

of the sexually antagonistic variation. With most phenotypic optima that differed

between the sexes having converged by the end of the experiment, such sexually

antagonistic loci would have likely been targets of selection. Interestingly, median

Ne in M throughout the experiment is severely reduced until time point 4 to values

lower than those found in E. An accelerated rate of genetic drift due to monogamy

cannot be ruled out here. However, this could, alternatively, be evidence of a delayed

response where new phenotypic optima are reached towards the last quarter of the

experiment.

Most of the adaptive signal is found on the X chromosome, which is unsurprising

given that most genes involved in the response to both intra- and intersexual conflict

are usually expected to be X-linked (Gibson et al., 2002; Connallon and Jakubowski,

2009; Mank and Ellegren, 2009). This signal is widespread across the X in E lines.

Evidence for a faster-X effect (Charlesworth et al., 1987) is also supported by a low

X/A Ne ratio during the first time point interval. Here, Ne estimates on the X are

significantly lower than those on the autosomes (fig. 3.4). Indeed, the substitution

of favourable mutations on the X appears swifter in comparison to autosomes. Di-

versity ratios are also predicted to be reduced as a result of hitchhiking favouring

recessive beneficial alleles on the X (Betancourt et al., 2004), an effect that should
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be elevated under polyandry (Pool and Nielsen, 2008). However, reduced recombi-

nation on chromosome X favours the increase in frequency of extended haplotypes.

This could be causing the widespread signal that our genome scan is producing.

Determining the extent of linkage disequilibrium in this experiment proves difficult

as there is no data on the haplotypes present in the founder populations. Neverthe-

less, signatures of adaptation emerging from examining the X chromosome are still

compelling.

Our results suggest that the predicted 3/4 reduction in Ne on the X chromosome is

not prevalent throughout the experiment. NeX is just as high as on the autosomes

in M lines regardless of the time point interval in question. Take the example of

the T1 and T2 interval, median Ne is very similar for chromosomes 3, 4 and X

(fig. 3.4). A similar trend is observed in E lines where NeX is only found to be

the lowest in comparison to any autosome between T1 and T2. If considering any

other interval, Ne on the X is as high at that calculated for the autosomes. This is

a striking result as theoretical studies predict a lower NeX (Pool and Nielsen, 2008;

Betancourt et al., 2004), especially under polyandry. Higher NeX indicates that ge-

netic diversity on the X is similar to that found in the autosomes. Accordingly, the

elevated Tajima’s D we observe throughout the genome is also consistent with an

excess of heterozygosity. One possible explanation might be that balancing selection

could be maintaining higher levels of polymorphism which could increase estimates

of variance-NeX . In such cases, pervasive balancing selection might arise especially

if a large proportion of this variation is antagonistic between the sexes, which would

favour heterozygotes. Alternatively, any excess heterozygosity may be caused by

associative overdominance where there is an apparent heterozygote advantage (or

pseudo-overdominance) at effectively neutral loci due to linked selection. Associative

overdominance results from linkage desequilibrium between a neutral polymorphic

locus and other loci under balancing selection (Ohta and Kimura, 1970). Purifying

selection against recessive deleterious variants can also cause associative overdomi-

nance (Ohta, 1971).

As far as the X chromosome is concerned, the response found on the two chromosome

arms differs between the treatments. M lines had a more pronounced response

towards the distal end of the chromosome, whereas E lines’ signal was more evenly
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distributed along the chromosome. This suggests that the genetic basis of adaptation

to either elevated or relaxed sexual selection on the X is distinct. This pattern

would not be detected in most studies which simply compare divergence in allele

frequencies between any two lines. The distal end of the X chromosome (chromosome

arm XR in previous D. pseudoobscura assemblies) is equivalent to Muller element

D in the D. melanogaster genome. This chromosome arm is known to have fused

with the ancestral X chromosome to form the ”neo-X”. This could indicate that

most of the sexually antagonistic variation is found on chromosome arm XR. The

signatures found could be a signal of resolved sexual conflict. The ancestral X arm

(XL) may have had enough evolutionary time to resolve any intragenomic conflict

through mutation and recombination prior to the fusion. Moreover, both treatments

exhibited a marked valley of signals of selection (fig. 3.5) in the centre of the X.

This was coupled with a positive and elevated Tajima’s D within the same region

(fig. 3.3). Such a pattern suggests that, in spite of evidence for positive selection on

both chromosome arms, the centromere region could be under balancing selection.

This could perhaps be the result of sex-specific allele differentiation on the X between

the two sexes. The centre of the X also contains some of the highest coverage regions

across the genome (fig. B.10). This indicates that it might be a highly repetitive

portion of the chromosome. Phased data from long read sequencing technology

would be necessary to resolve this issue.

One other interesting finding is that populations recovered to neutral levels of Ne

towards the middle or end of the experiment for E and M lines, respectively. Here,

drift variance caused by any allele frequency changes that match neutral expec-

tations might indicate the end of an initial strong selection phase. It is possible

that phenotypic optima are reached at that point and allele frequencies might even

plateau. In other words, directional selection becomes less effective towards the end

of the experiment as populations reach the new phenotypic optima. Selection coeffi-

cients are reduced as polymorphism is eliminated and other modes of selection may

arise. Stabilising selection will prevent trait means from moving away from the new

optima. Again, balancing selection may now be present and act to maintain some

genetic diversity. Any remaining genetic variation at the end behaved in such a

way that allele frequency variance matched drift expectations. This is independent
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from any previous allele fixations that might have occurred as a result of directional

selection. While more in-depth studies of the genetic basis of sexual conflict would

be required to elucidate this matter, our findings support the potential that it has

largely been resolved.

Wiberg et al. (2021) found a cluster of top SNPs on chromosome 3 that showed

significant differentiation between M and E lines. High levels of nucleotide diversity

observed at the start of the experiment (fig. B.8) make chromosome 3 a good

candidate for harbouring selection targets. This would facilitate adaptation due to

increased fitness variance amongst individuals in the population. The region at the

end of the chromosome was identified by Wiberg et al. as also showing a steep rate

of decay in LD. This suggests that this peak region exhibits high recombination

which is unexpected given that telomeres are typically low recombination regions.

Our study confirms these results. There is evidence for positive directional selection

within this region. Interestingly, the signal seems to be caused solely by directional

selection in E lines. Increased recombination at the end of chromosome 3 relative

to neighbouring areas could have contributed to the slightly elevated nucleotide

diversity (fig. B.8). Additionally, this region also seems not to overlap with any

known inversions (Wallace et al., 2011). However, it is still possible that extant

structural variants have had an impact in our results which we have not accounted

for here.

In summary, we showed that the response to an altered mating system in populations

of D. pseudoobscura is found mostly to the X chromosome, but also on chromosome

3. This is consistent with previous work that focused on comparing E and M lines at

time point 4 in our analysis (Wiberg et al., 2021). Selection signal is strongest when

mate competition is strongest due to elevated polyandry. Such a pattern indicates

that most allele frequency changes observed were in fact caused by elevated sexual

selection and not solely adaptation to lab conditions. Our study showed the power

of investigating allele frequency trajectories and their usefulness when estimating

selection parameters and the effective population size.
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Chapter 4

Discussion

4.1 Experimental evolution in the genomics era

Experimental evolution has been key in an era dominated by the search for the

genetic architecture of the response to selection. E&R experiments have combined

strong selection pressures with genome resequencing. These have also taken full

advantage of replicated populations in order to understand allele frequency changes

due to some selection regime. The question of how selection in the lab shapes allele

frequencies has been the subject of heated debate for some time now. Adaptation

to lab environments within tens of generations seems to cause phenotypic optima to

be reached quickly. As phenotypes evolve, allele frequencies change to match them.

Perhaps even whole haplotypes can increase in frequency as a result of the adaptive

process (Franssen et al., 2015). How are these allele frequency trajectories shaped?

How can we detect potential selection targets?

Several properties of adaptation to strong lab selection in the short-term have been

uncovered as a consequence of decades of experimental evolution. The adaptive

process depends mainly on population ancestry, on the effective population size

and on the genetic basis of the traits in question. The field is rapidly moving

towards unifying population genetics principles with quantitative trait modelling.

Additionally, recognising sources of noise when analysing real time-series data is

paramount. Understanding and modelling these sources can help improve the power

of any statistical methods for detecting selection targets. Whilst some studies have
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also drawn attention to the complexity of quantitative trait adaptation, we are only

just starting to unveil the intricacies of the process.

In this thesis, I have investigated the genomic architecture of short-term adaptation

in lab populations. I have studied properties of allele frequency trajectories over the

course of tens of generations across experimental replicates. In particular, I worked

to develop a statistical method for inferring selection parameters, thus confirming

the usefulness of characterising full frequency trajectories. In addition, I analysed

signatures of sexual selection in Drosophila pseudoobscura populations in an E&R

setup. I compared the signal found on the X chromosome to that on the autosomes

in populations where sexual selection was either relaxed or elevated.

4.2 Statistical power in an E&R framework

As more and more evolution experiments require appropriate statistical frameworks

to analyse them, researchers have examined several aspects of the E&R experimen-

tal setup (Schlötterer et al., 2015; Kofler and Schlötterer, 2014; Rode et al., 2018).

What could limit the power of an E&R experiment to detect signals of adaptation

in the genome? Plenty of factors have been put forward to explain the low power

of most tests to detect targets of selection. One specific aspect of pool-seq data is

that there are multiple sources of sampling error associated with it. For example,

sources of variation can arise from unequal contributions of individuals to the DNA

pool. These can occur when sampling individuals from the population or during

the DNA extraction procedure. If sampled individuals vary in body size or develop-

mental stage, their respective DNA contribution might vary too. As far as noise is

concerned, variance in sequencing depth can also affect allele frequency estimates.

Rode et al. (2018) showed that even when samples are small, allele frequency esti-

mates can be just as precise provided loci have enough coverage. Typically, DNA

library preparation methods do not affect estimates more than 1% which is far less

than the effect of coverage (Kofler et al., 2016b). This added variation can be es-

pecially troublesome when investigating low frequency variants as these might go

unnoticed.

While some sources of pool-seq noise cannot be resolved until individual-level se-

Chapter 4 81



Short-term adaptation in the lab: an analysis of evolutionary trajectories using time-series data

quencing costs decrease substantially, statistical frameworks can be modified to bet-

ter account for added variance. Our approach to circumventing sampling error was

to incorporate a binomial (or, alternatively, beta-binomial) sampling process to ob-

served Moran allele frequency states. Bait-ER produced accurate estimates of the

selection coefficient, σ, for average and high simulated coverage (60x and 100x, re-

spectively; fig. 2.3C and fig. A.4). This result suggests that Bait-ER is robust to

varying sequencing depth, provided starting allele frequencies are not too low and

populations are not too small. We also show that low statistical power in estimat-

ing σ for alleles that start at low frequencies can be overcome if there are enough

experimental replicates (fig. A.3) or by increasing sequencing coverage. Moreover,

Bait-ER’s power to detect selected trajectories is not affected by coverage variation

in real pool-seq time-series as Barghi et al.’s (2019) (fig. A.24). In general, we prove

that our method avoids estimation bias caused by sampling error during pooled se-

quencing. As with other approaches, Bait-ER still produces inaccurate σ estimates

for low starting frequency alleles especially in populations with 100 individuals or

less.

Moreover, small lab populations can cause trouble of their own. First, if the founder

population lacks diversity, experimental populations might not be able to reach

the new phenotypic optimum set by the imposed selection pressure. A population

lacking genetic diversity is a population with reduced genetic variance for fitness.

Ultimately, this will hinder adaptation to the new environment. Secondly, linkage

disequilibrium throughout the genome will most likely be extensive. If a population

is small and the experiment is short, extended haplotypes will probably be passed

down. This is because recombination has not had the ability to breakup these

haplotypes. Recombination is low compared to selection in experimental evolution.

Consequently, the power of genome scan-type methods will potentially be reduced

as most do not take LD into account. As peaks of statistically significant candi-

date SNPs are spread throughout the genome, it is difficult to pinpoint the actual

causative locus (or loci). Finally, as genetic drift is stronger in small populations,

beneficial alleles might be lost causing the response to selection to be slower. This

can result in soft or partial sweeps being the most common signature. As most

methods search for sweep-like trajectories, drift can become a limitation.
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As mentioned above, for a method such as Bait-ER, strong drift can be inconvenient

as it might result in biased σ estimates. The issue lies in low starting frequency vari-

ants. In large populations, these variants rarely overcome the drift barrier. There

is then a small proportion of variants that reaches a high enough frequency for

selection to cause them to increase in frequency and, ultimately, to fix. In small

populations, however, drift may cause considerable allele frequency shifts from one

generation to the next. Consequently, alleles may fix or get lost within a few gener-

ations. This affects σ estimates because it will change the shape of allele frequency

trajectories. Estimates will likely be downwardly biased since a larger proportion of

ancestral polymorphism will appear to be swiftly fixed by selection. We have shown

that drift does affect estimates for low frequency variants in populations with up

to 300 individuals. However, Bait-ER’s accuracy is unaffected by more prevalent

alleles (from 0.5%; fig. 2.3). This is true regardless of the size of the population

one considers. While Bait-ER is robust to drift variance in small populations, its

performance is still affected by LD. In the laboratory, populations are more prone to

high levels of LD due to reduced census sizes and limited generations of evolution.

Taken together, our results on Barghi et al.’s (2019) D. simulans experiment and our

study on D. pseudoobscura (described in chapter 3) suggest that there is substantial

LD given the overall elevated logBF signal throughout the genome (figs. 2.8, 3.5

and A.10). Applying a suitably conservative threshold to Bait-ER’s logBF results

guarantees most of the hitchhiking noise is removed. We are then left with a few

very significant peaks. This indicates that, despite extensive LD, Bait-ER is still

identifying the significant regions where there is marked response to selection. How-

ever, our genome scan is less conclusive at detecting individual loci that might be

potential targets of selection. Strategies to improve this might involve investigat-

ing genes within significant peaks. This could help understand what gene networks

could be involved in the response to the selection regime. Gene ontology analyses

can be further complemented with expression studies and gene knockout assays.

Some statistical methods for detecting genomic selection in E&R experiments have

attempted to look for consistent behaviour across experimental replicates. Alleles

that start at a low frequency are problematic when quantifying shared responses

across replicates. Such alleles are more likely to be lost by drift. If low starting
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frequency variants are the most likely selection targets, the lack of parallel responses

across replicate populations will certainly reduce the power of any statistical test

that accounts for it. Strong genetic drift will affect the rate at which diversity is

eroded, causing these low frequency alleles to be even more readily lost. Ultimately,

larger populations show a higher degree of repeated evolution compared to smaller

populations. Bait-ER searches for consistency across replicate populations insofar

as it calculates the likelihood of a given selection coefficient as a product of all

replicates. In other words, strongly selected trajectories are those that exhibit a

similarly shaped trajectory across replicates. This is evident in our genome-scan of

the D. pseudoobscura time-series where top significant SNP trajectories were quite

similar resulting in alelle fixations on all four replicates (fig. 3.6).

One way to avoid making assumptions about the shape of a selected allele’s tra-

jectory is to develop methods that model phenotypic selection. Gompert (2016)

started off by developing a hidden Markov model to estimate variance-based Ne and

quantify selection in heterogeneous environments. Gompert’s method relies on the

association between allele frequency changes and some environmental variable at

each generation. Ne is estimated using a Bayesian bootstrap approach coupled with

a linear model to estimate selection coefficients. Gompert (2021) has expanded this

idea of allele frequency change and environmental covariance to model phenotypic

selection as an explicit function of the state of the environment in an ABC approach.

This method models and quantifies fluctuating selection on complex traits. Here,

phenotypic selection depends on an understanding of the trait’s genetic architecture,

which requires a genotype-phenotype association study. The method assumes that

mutation and migration are negligible and that selection is directional. Addition-

ally, each locus only explains a small proportion of the trait variance and any causal

variants are unlinked. This is a different approach to estimating the effects of selec-

tion as it models selection acting directly on the phenotype rather than the genetic

process of adaptation via allele frequency changes. It does not remove the genotype

from its organismal context as it tries to explain phenotypic change through time.

However, current evolution experiments still lack the appropriate experimental se-

tups to collect the required data. It would be necessary to perform some thorough

GWA study using founder populations in order to find any variants that might be

84 Chapter 4



Short-term adaptation in the lab: an analysis of evolutionary trajectories using time-series data

associated with the complex trait of interest. Such an experimental design would

become feasible as individual-level sequencing costs decrease with the release of new

high-throughput sequencing technologies and new library preparation methods like

haplotagging (Meier et al., 2021). While this might still be a limitation, it is cer-

tainly one to inform on how phenotypic data collection should be set up along with

genome resequencing in the future.

4.3 Architecture of complex traits

One would argue that selective sweeps should dominate in E&R datasets owing to

strong selection pressures, but how common are selective sweeps if most quantitative

traits have a complex genetic basis? In a system where selection on a trait is strong,

it is still possible that selection on individual genes is weak (Walsh and Lynch,

2018), especially if we are studying complex traits. Jain and Stephan (2017a,b)

model a quantitative trait subject to polygenic adaptation after a sudden shift in the

phenotypic optimum. The strength of directional selection depends on the distance

to the new optimum. They find that dramatic changes in an allele’s frequency -

similar to a sweep-like trajectory - can occur if the size of the phenotypic effect is

suitably large. When most effects were large, considerable frequency shifts over a

long timescale were also periodically found. These shifts resembled sweeps but did

not occur within the short-term as sweeps are typically expected to. This work

thus suggests that subtle allele frequency shifts are not necessarily the rule in the

adaptive process of quantitative traits.

The results I presented throughout this thesis are consistent with this prediction that

sweep-like trajectories are still frequent in E&R time-series. Bait-ER’s genome scan

for selection in both Barghi et al.’s (2019) and our D. pseudoobscura experiment is

powerful enough to detect some very significant peaks (figs. 2.8, 3.5 and A.10). In

the case of Barghi et al. (2019), Bait-ER produces peaks that are largely in agreement

with Barghi et al.’s original CMH test analysis (figs. A.11 and A.12). The most

striking difference is that, for an equivalent significance threshold, the CMH test is

substantially more lenient resulting in more false positives. This could be because

Bait-ER’s most significant trajectories are those that show consistent sweep-like
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behaviour across replicates. The CMH test has been previously shown to have

a high false positive rate since a real effect is often confounded with heterogeneity

amongst replicates (Wiberg et al., 2017). It is also affected by overdispersion causing

p-values to be systematically low (Spitzer et al., 2020). In addition, our results for

the D. pseudoobscura genomic time-series paint an even clearer picture of adaptation

(fig. 3.5). The response to selection was evidently more marked in the regime where

sexual selection is elevated (E lines), and it is mostly found on chromosomes 3 and

X. The data was parsed as to include only sites that are polymorphic at time point 1.

Since 20 generations of selection had passed since the onset of selection, the dataset

is reduced in comparison to Barghi et al.’s. This could cause the signal to be clear

since low frequency variants might have already been lost and thus not be part of

the time-series. Nevertheless, there are distinctive peaks marking regions containing

putative selected targets.

The adaptive process can also be shaped by epistatic interactions between loci.

When causative alleles at separate loci are inherited non-independently due to fit-

ness constraints, overall selection strength on a specific locus can be attenuated.

Hill-Robertson Interference (HRI) describes the phenomenon whereby multiple loci

under selection interfere with each other (Hill and Robertson, 1966). This causes

a reduction in the efficacy of selection on a specific locus - a property that arises

because the effective population size of that locus decreases. Theoretical predictions

suggest that epistatic effects of a certain strength will affect linkage disequilibrium

the most when selection is weak (Kouyos et al., 2006). As recombination can only

aid selection if it increases genetic variance in fitness, it can play a decisive role in

such cases. It does so by breaking down negative associations between advantageous

variants and thus generating fitter combinations of alleles (Barton, 2010). Whilst

very important in the long-term, adaptation in the short-term might be hindered

by epistasis and low recombination rates.

The extent to which pleiotropy can cause trade-offs between correlated traits is

largely undetermined for most complex traits. A model where traits can be corre-

lated via gene network pleiotropy has been put forward as an explanation for this

phenomenon (Boyle et al., 2017). The omnigenic model for a quantitative trait as-

sumes that the trait in question is affected by a modest number of genes. However,

86 Chapter 4



Short-term adaptation in the lab: an analysis of evolutionary trajectories using time-series data

these are still constrained by cell regulatory networks that regulate these genes’ ex-

pression. These networks are themselves interconnected. Whilst the original model

was thought of in the context of disease, it is likely to be relevant for other complex

traits. In an E&R context, one could predict that regulatory elements, such as pro-

moter and enhancer sequences, would consistently show signatures of adaptation as

these contribute to the fine-tuning of cell regulatory element expression. Moreover,

those genes with the largest fitness effects might show up in genome scan analyses

as potential candidates as they are the most likely elements in this model to show a

sweep-like trajectory.

In an E&R setup, there may be several haplotypes segregating in the founder pop-

ulation. If that is the case, the adaptive response amongst replicates might show

genetic redundancy. Redundancy is when more than one combination of segregating

polymorphisms is able to produce the same phenotype (also referred to as genotypic

redundancy; see Láruson et al. 2020). If we are concerned with polygenic traits,

there might be enough redundancy amongst small effect loci that each haplotype is

completely different from the other. This is in line with the quantitative genetics

paradigm where small effect loci will dominate trait adaptation if the starting popu-

lation is not very far from the fitness optimum. Genetic redundancy is an effect that

requires sequencing founder populations to fully characterise the extant haplotypes.

Fitness assays of founder haplotypes further contribute to understanding adaptation

in the presence of redundancy.

Let us now focus on the length of an evolution experiment. As with most complex

traits, it is difficult to pinpoint when a population has reached a new phenotypic

optimum, partly because we do not know what that optimum is. We are typically

able to quantify changes in fitness to some degree by investigating longevity or

offspring number. However, if we are concerned with behavioural traits, for example,

it is challenging to predict what the phenotypic outcome should be. Unless we

perform a real-time analysis of allele frequency changes, it remains problematic to

map these to any phenotypic differences through time. We are thus left with making

an educated guess regarding how long our study should be. In experiments where

populations of Drosophila flies were subject to strong lab selection, studies found

that adaptation was complete by 60 generations (Barghi et al., 2017; Hsu et al.,
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2020). Others chose to characterise changes for over 600 generations (Burke et al.,

2010). Perhaps longer experiments experience a third mode of selection that is

balancing selection. This phase would follow that where directional and stabilising

selection have moved the population to the new phenotypic optimum. Such a phase

would be characterised by an overall increase in genetic diversity and even Ne. As

directional selection becomes less effective in altering allele frequencies, additive

genetic variance begins to accumulate as replicate populations diverge freely.

A simulation study has helped illustrate this step process of genomic adaptation in

the context of the E&R framework. Franssen et al. (2017b) simulated the evolution

of a quantitative trait under a typical E&R experimental setup. They found that,

after some environmental change, there were three phases of adaptation to a new

trait optimum. The first, where there are directional frequency changes until the

population reaches the new optimum, is followed by a second phase where allele fre-

quencies plateau and only small shifts are observed. The third and final step is when

replicate populations begin to diverge possibly even at causative loci. These trends

are consistent with selection changing its mode as time progresses. Initially, there is

directional selection causing drastic allele frequency changes. Towards the end, pop-

ulations should be fully adapted as additive genetic variance for fitness is reduced by

beneficial alleles reach fixation. This step is followed by stabilising selection keeping

alleles from changing in frequency any further. Our drift-Ne analysis across the D.

pseudoobscura time-series is consistent with a phased adaptive process that ends

with stabilising selection acting to maintain genotypes at the new fitness optimum.

After 100-160 generations of selection, Ne recovered to neutral levels similar to the

census population size. This could only be the case if the remaining polymorphism

experienced a relaxation of selection where alleles changed in frequency similar to

drifting variants.

4.4 Sexual selection in Drosophila pseudoobscura

Sexual selection is thought to affect autosomes and sex chromosomes differently.

Sex differences can be further promoted by sex chromosome inheritance and gen-

erate sexual conflict. These differences can include sexually antagonistic selection,
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sex-specific mutation (Li et al., 2002; Charlesworth et al., 2018) and recombination

rates (Sardell and Kirkpatrick, 2020), as well as sex-specific dominance coefficients

(Spencer and Priest, 2016) and sex-specific variance in reproductive success Ca-

ballero (1995). Population size changes (Pool and Nielsen, 2007) and sex-biased

migration (Laporte and Charlesworth, 2002) may also promote differences between

autosomes and sex chromosomes. Any of these factors can contribute to the main-

tenance or reduction of genetic diversity and, thus, change the outcome of selection.

In the context of our D. pseudoobscura experiment (chapter 3), we have gathered

predictions about X:Autosome (or X:A) diversity ratios. This is especially relevant

since the outcome of the experiment was affected not only by positive selection but

also by other evolutionary and demographic factors. In general, Ne is predicted to

be reduced to 3/4 on the X chromosome relatively to the autosomes. This applies to

large populations with an equal sex ratio. Our results contradict this expectation

where NeX is almost always just as high on autosomes. Overall, more signatures of

adaptation were found in E lines where sexual selection is elevated. The response

to selection is especially marked on the X in both treatments. Below is a discussion

of our findings in a wider context.

The X chromosome is conventionally thought to value female fitness twice as much

as male fitness in comparison to autosomes that have been viewed as placing equal

value on each of the sexes. This is a direct consequence of the X spending 2/3 of

its evolutionary time in the bodies of females and only 1/3 in males (Rice, 1984;

Charlesworth et al., 1987). Intuitively, in XY systems, the X should favour mean

phenotypes that are closer to the female optimum, e.g. feminisation of the transcrip-

tome under monogamy, whereas the autosomes should favour phenotypes closer to

the male optimum for a trait expressed in both sexes (Haig, 2006). However, an X-

linked recessive allele that is advantageous in males will increase in frequency even if

deleterious in females (Rice, 1984). Male-beneficial alleles have been shown to invade

a population more readily (Patten, 2019). The X chromosome can accumulate more

beneficial mutations because the effect of recessive (or partially recessive) muta-

tions is not masked by the ancestral alleles in the heterogametic sex (Charlesworth

et al., 1987). This faster-X effect can thus contribute to the fixation of sexually

antagonistic mutations.
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Under monogamy, variance in reproductive success between the sexes is identical.

This allows one to make predictions about the expected levels of genetic diversity,

Ne and sexually antagonistic variation (reviewed in Ellegren, 2009). In a scenario

where there are multiple sweeps of positively selected mutations, adaptive rates on

the X are predicted to be higher than on the autosomes (Betancourt et al., 2004).

Evidence for a faster-X effect has been found across several taxa (reviewed in Meisel

and Connallon (2013)). Drosophila show the most similar adaptive rate between

X and autosomal loci, with mammals and birds having a more marked faster-X

effect (Mank et al., 2010). It is pervasive amongst the melanogaster clade (Ávila

et al., 2014), and it has been shown to be prevalent in female-biased genes (Avila

et al., 2015; Campos et al., 2018) contrary to theoretical expectations (Vicoso and

Charlesworth, 2009).

The predictions described above hold only in large populations where drift is neg-

ligible. In finite populations where drift dominates, a larger fraction of mutations

is effectively neutral. This effect coupled with a lower Ne contributes to a decrease

in the effectiveness of selection on the X. Moreover, low overall recombination due

to the short-term nature of the experiment as well as a small population size can

contribute to this effect (Betancourt et al., 2009). If the X chromosome is to be

responsible for most of the adaptive response in our D. pseudoobscura lines, low Ne

might hinder adaptation substantially.

Long-term diversity ratios of X/autosome diversity for D. pseudoobscura were found

to be roughly 0.81 and relative Ne ratios to be 3/4 (Haddrill et al., 2011), which

matches neutral expectations under an even sex ratio mating system (Charlesworth,

2012). Our experimental evolution results for the monogamy regime show drift

NeX/NeA ratios of ≈ 1 regardless of the time interval considered. In other words, Ne

on the X is similar to Ne on the autosomes. This suggests that there is no faster-X

effect in M lines which would be consistent with a relaxation of sexual selection

under monogamy. In addition, if beneficial mutations are dominant (or partially

dominant), the X will be more variable than the autosomes, which could also cause

similar NeX and NeA.

An overall moderate adaptive response in M lines might have alternative explana-
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tions. On the one hand, it might be a direct consequence of background selection

which is expected to reduce autosomal more than X-linked diversity (Charlesworth,

1994). This would be even more marked if slightly deleterious mutations are able

to drift to appreciable frequencies due to associative overdominance caused by link-

age to sites under balancing (Ohta and Kimura, 1970) or purifying selection (Ohta,

1971). On the other hand, moderate signals of adaptation could be caused by selec-

tion varying in time as the populations navigate through the adaptive landscape.

Predictions for polyandrous populations are less straightforward. In a scenario where

females are polyandrous and populations experience consecutive bottlenecks, X-

linked diversity is expected to be further reduced relative to autosomal levels (Pool

and Nielsen, 2008). This scenario does not match our experimental setup where D.

pseudoobscura populations experience a single bottleneck at the time of sampling

and are kept at a constant census size throughout the experiment. Having said

that, one would perhaps still predict a reduced NeX/NeA ratio in E lines (≈ 0.29)

relatively to the 3/4 ratio expected under monogamy as there are far fewer copies of

the X in comparison to autosomal copies in a male-biased population. This might

result in adaptation being less effective on the X under polyandry. However, this

seems to be the opposite to what we found. E lines show a stronger selection signal

relative to M populations (fig. 3.5). This indicates that, in spite of a biased sex

ratio that could weaken the effectiveness of selection, selection was pervasive in the

polyandry regime especially on the X chromosome.

The two selection regimes in this D. pseudoobscura experiment were predicted to

differ mainly in the intensity of sexual conflict. The adaptive response in monogamy

lines is expected to consistently work towards resolving most existing sexual con-

flict as male-male competition was instantly eliminated. Under monogamy, interests

shared between the sexes should converge since variance in reproductive success is

identical in males and females. M males were found to lead to greater oviposition and

hatching rates when mated to ancestral females (Crudgington et al., 2005), which

is consistent with monogamous male mating behaviour converging towards female

optima. By contrast, flies reared under elevated polyandry experience stronger con-

flict as males have to compete for access to the female. As E males evolved a higher

courtship frequency (Snook et al., 2005) and a greater mating capacity (Crudging-
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ton et al., 2009), conflict over the optimal mating frequency escalated with females

mating at suboptimal rates. Such elevated conflict under polyandry could lead to

more adaptive signal on male-biased genes. Sexual antagonism for traits expressed

in both sexes could, in turn, cause further sex-biased gene expression (Connallon and

Knowles, 2005). Resolution of sexual conflict in E lines would require enough gen-

erations for male and female expression levels to be decoupled. However, pleiotropy

for these traits is likely to be extensive which would hinder this process.

Taken together, our results seem to indicate that response to an altered mating sys-

tem is mostly located on the X chromosome. This is consistent with previous reports

of the X being a hot spot for sexually antagonistic selection (Gibson et al., 2002).

Despite demographic factors and a male-biased sex ratio hindering adaptation on the

X, E lines still experience a faster-X effect. This result contradicts earlier findings

that adaptive evolution should be slower on the X relative to the autosomes should

populations adapt from standing genetic variation (Orr and Betancourt, 2001). If

adaptation starts at mutation-selection balance, ’Haldane’s sieve’ against recessive

mutations should not hold. Adaptation from SGV would, thus, reduce the added

effectiveness of selection on the X due to hemizygosity. The faster-X effect we ob-

serve could be the result of a founder population not at equilibrium. As founder

populations suffered a bottleneck when collected from the field and established in

the lab, four generations of common-garden might have not been enough for these to

be fully adapted to the new laboratory environment. On the question of dominance,

it is possible that sex-specific dominance reversal could have maintained enough fit-

ness variance in the founder populations that facilitated adaptation (Grieshop and

Arnqvist, 2018).

4.5 Concluding remarks

Allele frequency dynamics over the short-term is a very active field of research.

Whilst long-term trajectories have been thoroughly characterised, the behaviour of

selection targets in lab experiments remains elusive. Statistical approaches that

tackle essential issues to do with evolutionary constraints in real experimental pop-

ulations are increasing in complexity. This is coupled with an increasing knowledge
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of the deterministic and stochastic factors that come into play.

During these times of increasing data availability, it is crucial for researchers to

produce user-friendly software packages. This facilitates their usage by other scien-

tists who might not have extensive training in bioinformatics. Making toy data sets

available along with easy to follow tutorials is key. One other aspect that would im-

prove software usage would be to agree on a specific input data format. This would

be paramount to make sure software comparison is transparent and encouraged.

Reproducible research should be one of our aims as a scientific community.

With sequencing technology costs sharply decreasing, now is a very exciting time

to explore time series data. Studying time-series in the lab has illustrated the

complexity of the genomic architecture of adaptation. Investigating patterns of

LD and how these are associated with the signal of selection identified by genome

scans is the next logical step for the field. Data from founder populations until

the end of the adaptive response coupled with phenotypic data should provide us

with a clear picture of short-term adaptation. This will feed back into our statistical

methodology and software, allowing us to extend its application to populations both

in the lab and in the wild in the future.
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Á. Jónás, T. Taus, C. Kosiol, C. Schlötterer, and A. Futschik. Estimating the

effective population size from temporal allele frequency changes in experimental

evolution. Genetics, 204(2):723–735, 2016.

P. E. Jorde and N. Ryman. Unbiased estimator for genetic drift and effective pop-

ulation size. Genetics, 177(2):927–935, 2007.

K. R. Kasimatis, P. L. Ralph, and P. C. Phillips. Limits to Genomic Divergence

Under Sexually Antagonistic Selection. G3: Genes—Genomes—Genetics, 58:

2160–1836, 2019.

T. J. Kawecki, R. E. Lenski, D. Ebert, B. Hollis, I. Olivieri, and M. C. Whitlock.

Experimental evolution. Trends in Ecology & Evolution, 27(10):547–60, 2012.

J. K. Kelly and K. A. Hughes. Pervasive Linked Selection and Intermediate-

Frequency Alleles Are Implicated in an Evolve-and-Resequencing Experiment of

Drosophila simulans. Genetics, 211(3):943–961, 2019.

Y. Kim and W. Stephan. Selective Sweeps in the Presence of Interference Among

Partially Linked Loci. Genetics, 164(1):389–398, 2003.

R. Kofler and C. Schlötterer. A guide for the design of evolve and resequencing

studies. Molecular Biology and Evolution, 31(2):474–483, 2014.

R. Kofler, P. Orozco-terWengel, N. De Maio, R. V. Pandey, V. Nolte, A. Futschik,

C. Kosiol, and C. Schlötterer. PoPoolation: A Toolbox for Population Genetic

Analysis of Next Generation Sequencing Data from Pooled Individuals. PLOS

ONE, 6(1):e15925, 2011a.

R. Kofler, R. V. Pandey, and C. Schlötterer. PoPoolation2: Identifying differenti-

ation between populations using sequencing of pooled DNA samples (Pool-Seq).

Bioinformatics, 27(24):3435–3436, 2011b.

104 Chapter 5



Short-term adaptation in the lab: an analysis of evolutionary trajectories using time-series data

R. Kofler, A. M. Langmüller, P. Nouhaud, K. A. Otte, and C. Schlötterer. Suit-

ability of Different Mapping Algorithms for Genome-Wide Polymorphism Scans

with Pool-Seq Data. G3: Genes—Genomes—Genetics, 6(November):3507–3515,

2016a.

R. Kofler, V. Nolte, and C. Schlötterer. The impact of library preparation proto-

cols on the consistency of allele frequency estimates in Pool-Seq data. Molecular

Ecology Resources, 16(1):118–122, 2016b.

Y. Kojima, H. Matsumoto, and H. Kiryu. Estimation of population genetic pa-

rameters using an EM algorithm and sequence data from experimental evolution

populations. Bioinformatics, 36(1):221–231, 2020.

K. Kosheleva and M. M. Desai. Recombination Alters the Dynamics of Adaptation

on Standing Variation in Laboratory Yeast Populations. Molecular Biology and

Evolution, 35(1):180–201, 2018.

R. D. Kouyos, S. P. Otto, and S. Bonhoeffer. Effect of varying epistasis on the

evolution of recombination. Genetics, 173(2):589–597, 2006.

M. Lacerda and C. Seoighe. Population genetics inference for longitudinally-sampled

mutants under strong selection. Genetics, 198(3):1237–1250, 2014.

G. I. Lang, D. P. Rice, M. J. Hickman, E. Sodergren, G. M. Weinstock, D. Botstein,

and M. M. Desai. Pervasive genetic hitchhiking and clonal interference in forty

evolving yeast populations. Nature, 500(7464):571–574, 2013.

V. Laporte and B. Charlesworth. Effective population size and population subdivi-

sion in demographically structured populations. Genetics, 162(1):501–519, 2002.
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N. R. Nené, A. S. Dunham, and C. J. Illingworth. Inferring fitness effects from

time-resolved sequence data with a delay-deterministic model. Genetics, 209(1):

255–264, 2018.

S. Neph, M. S. Kuehn, A. P. Reynolds, E. Haugen, R. E. Thurman, A. K. Johnson,

E. Rynes, M. T. Maurano, J. Vierstra, S. Thomas, R. Sandstrom, R. Humbert,

and J. A. Stamatoyannopoulos. BEDOPS: High-performance genomic feature

operations. Bioinformatics, 28(14):1919–1920, 2012.

M. A. Noor, K. L. Gratos, L. A. Bertucci, and J. Reiland. Chromosomal inversions

and the reproductive isolation of species. Proceedings of the National Academy of

Sciences of the United States of America, 98(21):12084–12088, 2001.

T. Ohta. Associative overdominance caused by linked detrimental mutations. Ge-

netical Research, 18(3):277–286, 1971.

T. Ohta and M. Kimura. Development of associative overdominance through linkage

disequilibrium in finite populations. Genetical Research, 16(2):165–177, 1970.

Chapter 5 107



Short-term adaptation in the lab: an analysis of evolutionary trajectories using time-series data

P. Orozco-terWengel, M. Kapun, V. Nolte, R. Kofler, T. Flatt, and C. Schlötterer.

Adaptation of Drosophila to a novel laboratory environment reveals temporally

heterogeneous trajectories of selected alleles. Molecular Ecology, 21(20):4931–

4941, 2012.

H. A. Orr. The genetic theory of adaptation: A brief history. Nature Reviews

Genetics, 6(2):119–127, 2005.

H. A. Orr and A. J. Betancourt. Haldane’s sieve and adaptation from the standing

genetic variation. Genetics, 157(2):875–884, 2001.

K. A. Otte, V. Nolte, F. Mallard, and C. Schlötterer. The genetic architecture of

temperature adaptation is shaped by population ancestry and not by selection

regime. Genome Biology, 22(1):1–25, 2021.

S. P. Otto. Evolutionary potential for genomic islands of sexual divergence on

recombining sex chromosomes. New Phytologist, 224(3):1241–1251, 2019.

A. Papkou, T. Guzella, W. Yang, S. Koepper, B. Pees, R. Schalkowski, M.-C. Barg,

P. C. Rosenstiel, H. Teotónio, and H. Schulenburg. The genomic basis of Red

Queen dynamics during rapid reciprocal host–pathogen coevolution. Proceedings

of the National Academy of Sciences, 116(3):923–928, 2019.

G. Parker. Sexual Selection and Sexual Conflict. In M. S. Blum and N. A. Blum,

editors, Sexual Selection and Reproductive Competition in Insects, pages 123–166.

Elsevier, London, UK, 1979. ISBN 978-0-12-108750-0.

M. M. Patten. The X chromosome favors males under sexually antagonistic selection.

Evolution, 73(1):84–91, 2019.

J. C. Perry and L. Rowe. The evolution of sexually antagonistic phenotypes. Cold

Spring Harbor Perspectives in Biology, 7(6):1–18, 2015.

M. A. Phillips and M. K. Burke. Can laboratory evolution experiments teach us

about natural populations? Molecular Ecology, 30(4):877–879, 2021.

J. E. Pool and R. Nielsen. Population size changes reshape genomic patterns of

diversity. Evolution, 61(12):3001–3006, 2007.

108 Chapter 5



Short-term adaptation in the lab: an analysis of evolutionary trajectories using time-series data

J. E. Pool and R. Nielsen. The impact of founder events on chromosomal variability

in multiply mating species. Molecular Biology and Evolution, 25(8):1728–1736,

2008.

M. W. Reeve, K. Fowler, and L. Partridge. Increased body size confers greater fitness

at lower experimental temperature in male Drosophila melanogaster. Journal of

Evolutionary Biology, 13(5):836–844, 2000.

W. R. Rice. Sex chromosomes and the evolution of sexual dimorphism. Evolution,

38(4):735–742, 1984.

W. R. Rice and B. Holland. Experimentally enforced monogamy: inadvertent selec-

tion, inbreeding, or evidence for sexually antagonistic coevolution? Evolution, 59

(3):682–685, 2005.

M. G. Ritchie. The inheritance of female preference functions in a mate recognition

system. Proceedings of the Royal Society B: Biological Sciences, 267(1441):327–

332, 2000.

N. O. Rode, Y. Holtz, K. Loridon, S. Santoni, J. Ronfort, and L. Gay. How to

optimize the precision of allele and haplotype frequency estimates using pooled-

sequencing data. Molecular Ecology Resources, 18(2):194–203, 2018.

L. Rowe, S. F. Chenoweth, and A. F. Agrawal. The genomics of sexual conflict.

American Naturalist, 192(2):274–286, 2018.

F. Ruzicka and T. Connallon. Is the X chromosome a hot spot for sexually antago-

nistic polymorphisms? Biases in current empirical tests of classical theory: Sexual

antagonism on the X chromosome? Proceedings of the Royal Society B: Biological

Sciences, 287(1937), 2020.

F. Ruzicka and T. Connallon. An unbiased test reveals no enrichment of sexually

antagonistic polymorphisms on the human X chromosome. Proceedings of the

Royal Society B: Biological Sciences, 289(1967):in press, 2022.

F. Ruzicka, M. S. Hill, T. M. Pennell, I. Flis, F. C. Ingleby, R. Mott, K. Fowler,

E. H. Morrow, and M. Reuter. Genome-wide sexually antagonistic variants reveal

Chapter 5 109



Short-term adaptation in the lab: an analysis of evolutionary trajectories using time-series data

long-standing constraints on sexual dimorphism in fruit flies. PLOS Biology, 17

(4):e3000244, 2019.

J. M. Sardell and M. Kirkpatrick. Sex differences in the recombination landscape.

American Naturalist, 195(2):361–379, 2020.

N. Scarcelli and P. X. Kover. Standing genetic variation in FRIGIDA mediates

experimental evolution of flowering time in Arabidopsis. Molecular Ecology, 18

(9):2039–2049, 2009.

C. Schlötterer, R. Tobler, R. Kofler, and V. Nolte. Sequencing pools of individuals-

mining genome-wide polymorphism data without big funding. Nature Reviews

Genetics, 15(11):749–763, 2014.

C. Schlötterer, R. Kofler, E. Versace, R. Tobler, and S. U. Franssen. Combining

experimental evolution with next-generation sequencing: a powerful tool to study

adaptation from standing genetic variation. Heredity, 114(5):431–440, 2015.

J. G. Schraiber, S. N. Evans, and M. Slatkin. Bayesian inference of natural selection

from allele frequency time series. Genetics, 203(1):493–511, 2016.

O. Seehausen, R. K. Butlin, I. Keller, C. E. Wagner, J. W. Boughman, P. A. Ho-

henlohe, C. L. Peichel, G. P. Saetre, C. Bank, Å. Brännström, A. Brelsford, C. S.
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Appendix A

Supplement to chapter 2

Impact of E&R experimental design on detecting targets of

selection - sampling schemes, replication and coverage

We tested six different time schemes that allow for varying number, span, and distri-

bution of sampled time points (schematically represented in fig. 2.3A). Surprisingly,

we observed that there is no substantial increase in accuracy when more time points

are sampled. Experiments with two time points estimate quite accurately σ for

most of the simulated scenarios (fig. 2.3A and fig. A.2). Worth of note are the

two time span regimes we have investigated: a span of 0.2Ne, i.e., a common E&R

study length (as seen in Barghi et al., 2019; Burke et al., 2014; Papkou et al., 2019),

and 0.4Ne generations. Similarly to the number of sampled time points, we do not

observe a substantial increase in the accuracy of σ by increasing the length of the

experiment.

Most E&R studies have uniform sampling schemes (Burke et al., 2014; Barghi et al.,

2019). Nevertheless, we set out to compare a range of uniform and biased time

schemes. The results show that there are no substantial improvements when using

biased sampling schemes for neutral trajectories. However, in the presence of selec-

tion, the scheme that samples more often at the start of the experiment provides

better estimates of σ (time scheme number 3 for Neσ = 0.1 to 10.0; fig. 2.3A).

We then set out to test the impact of the number of experimental replicate popula-

tions. We observed that the accuracy of the estimated selection coefficients increases
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with the number of replicated populations. The most inaccurate estimates were ob-

served in scenarios with two replicates, both with neutral and weak selection (two

replicates, Neσ = 0.0 and 0.1; fig. 2.3B). This suggests that a higher number of

replicates may help decrease the false positive rate of E&R experiments. Our results

are consistent with previous studies showing that replicated populations improve the

detection of selective targets (Kofler and Schlötterer, 2014) and the accuracy of es-

timated selection coefficients (Taus et al., 2017).

Additionally, we considered three levels of coverage to represent experiments with

low to high sequencing depth. We observed that low coverage can decrease the

accuracy of σ in the case of small populations and low starting frequency trajectories

(first row of the heatmap in fig. 2.3C). In contrast, the accuracy does not differ

substantially in the case of average and high sequencing depths, which suggests that

a coverage around 60x provides enough resolution for detecting targets of selection in

E&R experiments. This is consistent with results obtained by Kofler and Schlötterer

(2014), who showed that a coverage of approximately 50x is sufficient to identify

strongly selected loci.

Real versus simulated data - comparing Barghi et al. (2019)

and Vlachos et al. (2019)

To assess whether the simulation study by Vlachos et al. (2019) mimicked the exper-

imental data gathered by Barghi et al. (2019), we examined allele frequency changes,

nucleotide diversity and variance in allele frequencies amongst replicates indepen-

dently for the two datasets. Overall, Barghi et al. (2019) show higher nucleotide

diversity (fig. A.16 and fig. A.17) as well as greater allele frequency changes

(fig. A.20 and fig. A.21). Smaller allele frequency changes are consistent with a

less polymorphic population. In addition, we investigated patterns of nucleotide di-

versity along the chromosomes in Barghi et al. (fig. A.18) and the genomic element

simulated by Vlachos et al. (fig. A.19). We found that both show similar regions

of very low diversity at the start and/or end of the chromosome corresponding to

the telomeres. In the case of Vlachos et al., the location of actual selected sites

does not match dips in diversity around them, suggesting the simulation does not
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capture any low diversity regions that would be the result of selective sweeps. This

might indicate that there is too much interference between selected sites to allow

for selective sweeps or that the low polymorphism is hindering adaptation.

For both studies, we investigated the relationship between Bait-ER’s scaled selection

coefficient, Neσ, and any allele frequency changes. The two show a different pattern

with Barghi et al. chromosomes producing a tail of much higher Neσ values for

trajectories that have relatively low allele frequency changes (fig. A.22). In Vlachos

et al., selected loci in yellow have allele frequency changes that range from very

low to some of the highest amongst replicate populations (fig. A.23) and we do

no observe a tail of high scoring trajectories. Here, there is no apparent linear

relationship regardless of replicate experiment (mean r2 = -0.05, min = -0.11, max

= 0.24). Moreover, we analysed how differences in coverage amongst loci would

affect Bait-ER’s accuracy at identifying targets of selection. This would only be

an issue in Barghi et al. as all sites in the Vlachos et al. dataset have identical

sequencing depth (1000x). For that reason, we visually inspected the relationship

between logBFs and coverage (fig. A.24). We found no semblance of any linear or

quadratic relationship in any of the five main chromosomes, suggesting that Bait-

ER is not biased towards higher coverage sites. Finally, we compared the shape of

allele frequency spectra at the start (generation 0) and at the end of the experiment

(generation 60) for both studies (fig. A.25 and fig. A.26). Barghi et al. spectra are

markedly U-shaped with a non-negligible amount of intermediate frequency alleles.

In contrast, Vlachos et al. simulations show distribution that is much more biased

towards low frequency alleles which is compatible with the previous finding of low

nucleotide diversity in this dataset.
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Supplementary tables and figures

Conditions Relative CPU time
Base experiment 1.00

2 replicates 0.97
10 replicates 1.15

100 individuals 0.05
1000 individuals 31.97

20X coverage 1.00
100X coverage 1.00
2 time points 0.92
11 time points 1.16

Table A.1: Relative CPU time for Bait-ER under several experimental/population
conditions.a

aThe relative CPU time was calculated considering a base E&R experiment with 5 replicates, 5
uniformly distributed time points, 300 individuals and an average coverage of 60X. Unless otherwise
specified, the remaining simulation parameters were the same as those under base experiment
conditions.
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Parameter Simulated values Notes
Population parameters

Ne effective
population size

100, 300 and 1000 representing a small, a
typical and a large in E&R
study population

p0 allele’s initial
frequency

0.01, 0,05, 0.1
and 0.5

representing rare, low
frequency and common
alleles

σ selection
coefficient

0,1/10Ne,1/Ne

and 10/Ne

representing regimes of
neutrally evolving,
drift-dominated, and
selection-dominated allele
trajectories

Experimental parameters
C Coverage 20x, 60x and 100x low, medium and high

coverage for pool-seq data
R Number of

replicates
2, 5 and 10

T Number of time
points

2, 5 and 11 time
points, assessed at
generations

represents different
combinations of total
number of time points,
experiment lengths

(0.0, 0.2), and distribution of sampling
events

(0.00, 0.05, 0.10,
0.15, 0.20),

(uniform/non-uniform)

(0.00, 0.04 0.08 0.12
0.20),
(0.00, 0.08 0.12 0.16
0.20),
(0.0, 0.1 0.2 0.3 0.4)
and
(0.00, 0.02 0.04 0.06
0.08 0.10 0.12 0.14
0.16 0.18 0.20)
relative to Ne.

Table A.2: Simulated scenarios.b

bThe simulated parameters can be divided into two categories: those which are related with the
population dynamics (effective population size, selection coefficient, and allele’s starting frequency)
and those related to the experimental design (coverage, number of time points and number of
replicates). To test the experimental conditions, we defined a base experiment with 5 replicates, 5
uniformly distributed time points (total span of 0.20Ne generations) and a coverage of 60x. This
base experiment is highlighted in bold. The two maximum experiment lengths considered (0.2Ne

and 0.4Ne) were chosen based on typical E&R experimental designs.
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Figure A.1: Gamma fit to the log posterior distribution of σ. The fitting of the gamma
density to the posterior distribution of 1 + σ was evaluated for both neutral and selected trajec-
tories. Each plot represents the different scenarios that were simulated by varying the population
size, selection coefficient (indicated within brackets (Ne, Neσ)). The points represent either 15
or 5 assessments of the posterior distribution (red and blue points, respectively) obtained whilst
computing the log-likelihood. The dashed lines represent the gamma fitting to the log posterior ob-
tained by using either 15 or 5 points. Both fitting methods match quite well, suggesting Bait-ER’s
current approach using 5 points is a good choice.
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Figure A.6: Comparison of estimates of σ produced by WFABC. These plots include
estimates for those Moran trajectories simulated with starting frequencies of 10% and 50% (top
and bottom row, respectively). Only neutrally evolving (Neσ = 0) and strongly selected alleles
were considered here (Neσ = 10). The left and right hand side panels correspond to two different
experiment lengths: 150 and 75 generations, respectively.
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Figure A.7: Distribution of σ̂ for Bait-ER and CLEAR. These boxplots show the comparison
between estimates of selection coefficients for both selected (right panel) and neutral (left panel)
sites from the Vlachos et al. (2019) selective sweep scenario. Data filtered out by Bait-ER was
excluded from the analysis.
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Figure A.8: Comparison of Bait-ER vs CLEAR σ̂ in the Vlachos et al. sweep scenario.
This scatterplot is the comparison of selection coefficient estimates for both methods, where blue
and grey points are selected and neutral sites, respectively. Data filtered out by Bait-ER was
excluded from the analysis.
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Figure A.9: Distribution of the selection coefficients estimated by Bait-ER for each of
the chromosomes in the Barghi et al. (2019) dataset. From bottom to top row, the figure
shows the distribution of σ̂ on chromosomes 2L, 2R, 3L, 3R, 4 and X. All distributions seem to
be centered around 0, which is unsurprising given that we expect selection not to be widespread
across the genome but rather restricted to some genomic windows rather.
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Figure A.10: Bayes Factors on chromosomes 3L, 2, 4, 5 and X. Similarly to figure fig. 2.8,
these Manhattan plots show log-transformed Bayes Factors computed by Bait-ER for loci along
the left arm of the 3rd chromosome, as well as chromosomes 2, 4, 5 and X in the Barghi et al.
(2019) time series dataset. The orange line indicates a conservative threshold of approximately 4.6,
which corresponds to log(0.99/0.01), meaning all points in orange have very strong evidence for
these to be under selection. The SNPs that are significant at this level are sorted by size according
to how strong Bait-ER’s selection coefficients are. In other words, points are sized according to
how strong the large selection coefficient is estimated to be.
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Figure A.11: CMH test p-values along chromosome 3R. Data presented are the log-
transformed p-values produced by the CMH test as per Barghi et al. for comparison with fig. 2.8.
The most pronounced peaks seem to be common to both methods, although the CMH test pro-
duces many more significant values when compared to Bait-ER. Orange coloured points correspond
to BFs which are greater than log(0.99/0.01) (approx. 4.6) and p-values less than or equal to 0.01,
i.e., those that are considered significant by both tests. Blue coloured points indicated that the
computed BF is greater than our threshold but not significant according to the CMH test. Addi-
tionally, dark grey points are significant according to the CMH test, but not to Bait-ER, and light
grey points are inferred not significant by both tests.
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Figure A.12: CMH test p-values along chromosomes 3L, 2, 4, 5 and X. Data presented
are the log-transformed p-values produced by the CMH test as per Barghi et al. for comparison
with fig. A.10. Orange coloured points correspond to BFs which are greater than log(0.99/0.01)
(approx. 4.6) and p-values less than or equal to 0.01, i.e., those that are considered significant by
both tests. Blue coloured points indicated that the computed BF is greater than our threshold but
not significant according to the CMH test. Additionally, dark grey points are significant according
to the CMH test, but not to Bait-ER, and light grey points are inferred not significant by both
tests.
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Figure A.13: Variance versus mean sigma on chromosomes 3R, 3L, 4 and 5. Similarly to
fig. 2.9, these graphs compare log transformed variances in σ estimates to average σs. The variance
is calculated using the inferred rate and shape parameters for the beta distribution, and the average
σ is the mean value of the posterior distribution estimated by Bait-ER. Orange coloured points
are significant at a conservative BF threshold of log(0.99/0.01), approx. 4.6. Data in Barghi et al.
(2019).

132 Chapter A



Short-term adaptation in the lab: an analysis of evolutionary trajectories using time-series data

2R
3L

3R
4

X

0 3 6 9

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Bait−ER |log(Bayes Factor)|

C
M

H
 te

st
 lo

g(
p−

va
lu

e)

Figure A.14: Bait-ER’s Bayes Factors versus CMH test’s p-values on chromosomes 2L,
3R, 3L, 4 and X. Orange coloured points correspond to BFs which are greater than log(0.99/0.01)
(approx. 4.6) and p-values less than or equal to 0.01, i.e., those that are considered significant by
both tests. Blue coloured points indicated that the computed BF is greater than our threshold but
not significant according to the CMH test. Additionally, dark grey points are significant according
to the CMH test, but not to Bait-ER, and light grey points are inferred not significant by both
tests.
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Figure A.15: Bayes Factors on 8 replicates experiments on the chromosome arm sim-
ulated in Vlachos et al. (2019). This Manhattan plot shows log-transformed Bayes Factors
computed by Bait-ER. The orange line indicates a conservative threshold of approximately 4.6,
which corresponds to log(0.99/0.01). Data points which are marked by an x are those that were
the true targets of selection. These were randomly chosen and simulated with a constant selection
coefficient of 0.5. Plots a-h correspond to replicate experiments #4, #9, #39, #50, #51, #77,
#84 and #93, respectively.
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Figure A.16: Relative nucleotide diversity density per time point for all chromosomes
(excluding 4) in the Barghi et al. (2019) dataset. Diversity values presented are per site.
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Figure A.17: Relative nucleotide diversity density per time point for all replicate exper-
iments and populations in the Vlachos et al. (2019) dataset. Diversity values presented
are per site.
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Figure A.18: Absolute nucleotide diversity along each chromosome (excluding 4) in the
Barghi et al. (2019) dataset. Diversity values presented are per window. Rows correspond to
consecutive time points.
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Figure A.19: Absolute nucleotide diversity along the genomic element simulated by
Vlachos et al. (2019) – replicate experiment #18. Diversity values presented are per
window. Rows correspond to consecutive time points. Black solid bars at the bottom of each
individual plot indicate the location of a selected site.

Chapter A 137



Short-term adaptation in the lab: an analysis of evolutionary trajectories using time-series data

0e+00

2e+05

4e+05

6e+05

0.0 0.2 0.4 0.6 0.8
Allele frequency change

C
o
u
n
ts

0e+00

2e+05

4e+05

0.0 0.2 0.4 0.6 0.8
Allele frequency change

C
o
u
n
ts

0e+00

2e+05

4e+05

6e+05

8e+05

0.00 0.25 0.50 0.75
Allele frequency change

C
o
u
n
ts

0e+00

1e+05

2e+05

3e+05

0.0 0.2 0.4 0.6 0.8
Allele frequency change

C
o
u
n
ts

0.0e+00

2.5e+05

5.0e+05

7.5e+05

0.00 0.25 0.50 0.75
Allele frequency change

C
o
u
n
ts

3R

2L 2R

3L

X

Figure A.20: Histogram of total allele frequency changes in Barghi et al. (2019) chro-
mosomes. Excludes data on the fourth chromosome.
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Figure A.21: Histogram of total allele frequency changes in five Vlachos et al. (2019)
sweep scenario experiments. Includes data on replicate experiments (a) #2, (b) #7, (c) #49,
(d) #76 and (e) #100.
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Figure A.22: Total allele frequency changes for each locus in the Barghi et al. (2019)
dataset versus Neσ. Excludes data on the fourth chromosome.
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Figure A.23: Total allele frequency changes for each locus in the Vlachos et al. (2019)
dataset versus Neσ. Includes data on replicate experiments (a) #31, (b) #31, (c) #47, (d) #54
and (e) #76. Orange points indicate true selected sites.
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Figure A.24: Scatterplot of the relationship between coverage at generation 0, i.e. time
point 1, and Bait-ER logBFs for chromosomes in the Barghi et al. (2019) dataset.
Excludes data on the fourth chromosome.
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Figure A.25: Allele frequency spectra of chromosome 2L in Barghi et al. (2019) at
generations 0 (top) and 60 (bottom), i.e., time points 1 and 7. Each replicate population
is represented in its own individual histogram plot.
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Figure A.26: Allele frequency spectra in replicate experiment #98 of the Vlachos et al.
(2019) study at generations 0 and (top) and 60 (bottom), i.e., time points 1 and 7.
Each replicate population is represented in its own individual histogram plot.
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Appendix B

Supplement to chapter 3

Generation

Replicate TP 1 TP 2 TP 3 TP 4 TP 5

M/E 1 21 63 116 164 200

M/E 2 21 62 115 163 200

M/E 3 21 61 114 160 200

M/E 4 22 59 112 160 200

Table B.1: Description of which generations were sampled at each time point. Both M
and E lines were sampled at the same generation for each corresponding replicate population. TP:
time point.

Treatment Mapper Average no. Average % Min no. (%) Max no. (%) Assembly

M bwa 48,315,592 99.0 37,798,247 (98.6) 62,704,196 (98.8) Genome

M novoalign 48,629,415 99.2 38,092,806 (98.9) 61,869,582 (99.2) Genome

E bwa 52,169,450 99.0 43,105,534 (98.8) 65,961,589 (99.2) Genome

E novoalign 52,568,742 99.2 43,479,141 (99.1) 66,521,236 (99.3) Genome

M bwa 22,269,730 98.4 17,630,965 (98.1) 28,450,846 (98.3) X chr

M novoalign 22,712,923 98.8 17,883,361 (98.6) 29,118,289 (98.8) X chr

E bwa 24,014,102 98.4 19,722,067 (98.3) 29,666,606 (98.8) X chr

E novoalign 24,494,392 98.9 20,185,805 (98.8) 30,279,204 (99.0) X chr

Table B.2: Mapping statistics for both mappers. This includes average number of mapped
reads as well as the average percentage across samples for M and E lines. Data on genome and X
chromosome level assemblies can be found on this table.
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Figure B.1: Mapping quality score distribution at the genome (a) and X chromosome
(b) level assemblies. Rows correspond to the two treatments, E (top) and M (bottom), and
columns to the four experimental replicates. Each time point is coloured differently as per legend
at the bottom.
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Figure B.2: Read coverage distribution at the genome and X chromosome level assem-
blies. Each column corresponds to an different replicate population and each row to either E (top)
or M (bottom) lines. The top panel - (a) - shows genome level data and the bottom panel - (b) -
X chromosome data. Different time points are coloured according to legend at the bottom of the
figure.
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Figure B.3: Variant calling phred quality score per time point for each replicate. (a)
shows quality score distributions at the genome level and (b) at the X chromosome level assemblies.
Each row corresponds to a different treatment - E on top row and M on bottom - and each column
to an individual replicate. Time points are visible by differently coloured lines as per legend at the
bottom of the graph.
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Figure B.4: Strand bias after filtering per time point for each of the four experimental
replicates. E populations are on the top tow, and M on the bottom. Each column corresponds
to an individual replicate. Time point distributions are coloured differently as per side legend.
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Figure B.5: Sequencing depth distribution per time point for all variants called and
retained after filtering. Replicates can be found in columns, and treatments in rows (E: top,
M: bottom). Distributions for each time point were coloured differently as per side legend.
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Figure B.6: Venn diagrams that compare the final number of SNPs analysed between
different time point interval datasets. Panels (a) and (b) show number of SNPs found in a
five time point time series (’All’), a three time point time series (’First 3’) or the first and last time
points (T1 and T5) for M and E, respectively. Bottom panels (c) – M lines – and (d) – E lines –
compare two time point intervals: T1 and T2, T2 and T3, T3 and T4, and T4 and T5.
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Interval Treatment Chr 2 Chr 3 Chr 4 Chr X Total

All time points M 11128 10537 6593 9807 38065

First three M 25300 22547 18568 25191 91606

T1T5 M 21084 17144 13186 21396 72810

T1T2 M 43477 33217 30954 42911 150559

T2T3 M 78318 58094 63784 119452 319648

T3T4 M 68139 45920 51847 95260 261166

T4T5 M 71413 45159 57190 102471 276233

All time points E 12189 14021 11422 13707 51339

First three E 25358 23347 23278 28438 100421

T1T5 E 32883 26935 27344 47587 134749

T1T2 E 48018 35596 38963 64042 186619

T2T3 E 78890 54384 75011 111092 319377

T3T4 E 70816 46865 68182 96712 282575

T4T5 E 70666 47206 75381 99531 292784

Table B.4: Final number of SNPs per treatment for several time point intervals used
for subsequent analyses.
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Figure B.7: Allele frequency change histograms in M (in green) and E (in orange)
populations for each chromosome (columns). These are calculated as the difference in allele
frequency between first and last time point for each individual SNP.
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Figure B.8: Average nucleotide diversity, π, along the genome. Columns correspond to
chromosomes and rows to the two different treatments (top: E; bottom: M). Lines are coloured
as to show variation across time. Averages were calculated across replicates for each 250k SNP
window separately.
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Figure B.9: Tajima’s D estimates along chromosomes 2, 3 and 4 for E and M lines.
Rows correspond to the two different treatments and columns to chromosomes. Estimates were
calculated in 250k SNP windows with Grenedalf (Czech and Exposito-Alonso, 2021). Lines are
coloured per time point according to the side legend.
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Time interval Median - M Median - E

Overall 151.0 (n = 100) 159.2 (n = 223)

T1T2 90.0 (n = 212) 85.7 (n = 308)

T2T3 68.2 (n = 246) 111.9 (n = 239)

T3T4 73.8 (n = 131) 102.9 (n = 112)

T4T5 134.8 (n = 107) 145.8 (n = 116)

Table B.5: Median genome-wide Ne estimates for M and E lines at different time
point intervals using intergenic SNPs only. Medians were calculated using 1k intergenic
SNP window estimates from all of the four experimental replicates. ’Overall’ corresponds to Ne

estimates based on allele frequency changes between the first and last time point. The total number
of windows considered in each replicate is found in brackets.

(a)

(b)

Figure B.10: Maximum coverage chromosome plots for (a) M and (b) E lines. Each
diagram represents the maximum coverage of any given interval in each of the four chromosomes
analysed. M lines are coloured in green and E in orange. Highest coverage regions can indicate
repetitive elements and are common in telomeres and centromeres. Data exclude chromosome 5.
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