
Artificial Intelligence 319 (2023) 103915
Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Automated streamliner portfolios for constraint satisfaction 

problems

Patrick Spracklen, Nguyen Dang, Özgür Akgün ∗, Ian Miguel

School of Computer Science, University of St Andrews, St Andrews, Fife, KY16 9SX, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 January 2022
Received in revised form 20 March 2023
Accepted 24 March 2023
Available online 29 March 2023

Keywords:
Constraint programming
Constraint modelling
Constraint satisfaction problem
Algorithm selection

Constraint Programming (CP) is a powerful technique for solving large-scale combinatorial 
problems. Solving a problem proceeds in two distinct phases: modelling and solving. Effec-
tive modelling has a huge impact on the performance of the solving process. Even with the 
advance of modern automated modelling tools, search spaces involved can be so vast that 
problems can still be difficult to solve. To further constrain the model, a more aggressive 
step that can be taken is the addition of streamliner constraints, which are not guaranteed 
to be sound but are designed to focus effort on a highly restricted but promising portion of 
the search space. Previously, producing effective streamlined models was a manual, difficult 
and time-consuming task. This paper presents a completely automated process to the gen-
eration, search and selection of streamliner portfolios to produce a substantial reduction 
in search effort across a diverse range of problems. The results demonstrate a marked im-
provement in performance for both Chuffed, a CP solver with clause learning, and lingeling, 
a modern SAT solver.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Challenging combinatorial problems, from domains such as planning, scheduling, packing or configuration, often form 
problem classes: families of problem instances related by a shared high-level specification, with a common set of free pa-
rameters. Constraint Programming (CP) and Propositional Satisfiability solving (SAT) offer powerful, complementary means 
to solve these problem classes. For either formalism, a model must be formulated, which describes the problem class in 
a format suitable for input to the intended solver. Since the search spaces involved can be vast, however, sometimes the 
model initially formulated for a problem class may give instances where it is too difficult for the solver to find a solution in 
a timely manner

In response, a natural step is to constrain the model further in order to strengthen the inferences the solver can 
make, therefore detecting dead ends in the search earlier and reducing overall search effort. One approach is to add im-
plied constraints, which can be inferred from the initial model and are therefore guaranteed to be sound. Manual [1,2]
and automated [3–5] approaches to generating implied constraints have been successful. Other approaches include adding 
symmetry-breaking [6–9] and dominance-breaking constraints [10–12], both of which rule out members of equivalence classes 
of solutions while preserving at least one member of each such class.
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Fig. 1. Essence specification of the Car Sequencing Problem [14], shown to be NP-complete [15]. A number of cars (n_cars) are to be produced; they are 
not identical, because different classes (n_classes) are available (quantity) as variants on the basic model. The assembly line has different stations 
which install the various options (n_options) such as air conditioning and sun roof (each class of cars requires certain options, represented by usage). 
A maximum number of cars (maxcars) requiring a certain option can be sequenced within a consecutive subsequence block (blksize), otherwise the 
station will not be able to cope.

If these techniques are inapplicable, or improve performance insufficiently, for satisfiable problems a more aggressive step 
is to add streamliner constraints [13], which are not guaranteed to be sound but are designed to focus effort on a highly 
restricted but promising portion of the search space. Streamliners trade the completeness (i.e. failing to find a solution when 
there is one) offered by implied, symmetry-breaking and dominance-breaking constraints for potentially much greater search 
reduction.

Previously, producing effective streamlined models was a difficult and time-consuming task. It involved manually in-
specting the solutions of small instances of the problem class in question to identify patterns to use as the basis for 
streamliners [13,16–18]. For example, Gomes and Sellmann [13] added a streamliner requiring a Latin Square structure 
when searching for diagonally ordered magic squares.

The principal contribution of this paper is to demonstrate how a powerful range of streamliners can be generated and applied 
automatically. Our approach is situated in the automated constraint modelling system Conjure [19–21]. This system takes 
as input a specification in the abstract constraint specification language Essence [22,23]. Fig. 1 presents an example specifi-
cation, which asks us to sequence cars on a production line so as not to exceed the capacity of any station along the line, 
each of which installs an option such as sun roof. Essence supports a powerful set of type constructors, such as set, multi 
set, function and relation, hence Essence specifications are concise and highly structured. Existing constraint solvers do 
not support these abstract decision variables directly. Therefore we use Conjure to refine abstract constraint specifications 
into concrete constraint models, using constrained collections of primitive variables (e.g. integer, boolean) to represent the 
abstract structure. The constraint modelling assistant tool Savile Row [24,25] is then used for producing solver dependent 
input. Savile Row supports several solving paradigms, including CP, SAT and SMT (satisfiability modulo theories).

Our method exploits the structure in an Essence specification to produce streamlined models automatically, for example 
by imposing streamlining constraints on the function present in the specification in Fig. 1. The modified specification is 
refined automatically into a streamlined constraint model by Conjure. Identifying and adding the streamlining constraints 
at this level of abstraction is considerably easier than working directly with the constraint model, which would involve 
first recognising (for example) that a certain collection of primitive variables and constraints together represent a function 
– a potentially very costly process. Moreover, recovering high-level information from a low-level model expressed in a 
lower level constraint modelling language like OPL [26], MiniZinc [27] or Essence Prime [28] would be brittle with respect 
to the exact heuristics and modelling reformulations used inside Conjure and Savile Row. As with automated symmetry 
breaking during modelling [29,20], automated streamlining therefore motivates the adoption of a higher level language such 
as Essence and letting automated tools work out the best compilation – just as has happened in general programming 
languages.

Our streamlining system completely automates the original manual process defined by Gomes and Sellmann [13]. As per 
their method, it does require an initial investment in generating and testing streamliners for the problem class at hand, but 
this effort is repaid in two ways. First, we assume a context common across automated algorithm selection [30] and machine 
learning in general: we expect to solve a large number of instances of the problem class, and so the effort made to formulate 
the best model that we can is amortised over that substantial solving effort. Second, successful streamlining can result in a 
vast reduction in search effort, allowing us to solve much harder instances than would otherwise be practically feasible. Our 
work significantly expands previous work on automated streamliner generation from high-level problem specifications [31]
and automatic selection of streamlining constraints [32].
2
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Fig. 2. Solving a problem instance using a streamlined Essence specification. Conjure is run once for a streamlined model, whereas Savile Row and the 
selected solver is run once per instance. The streamliner that is provided as input to Conjure is generated by a separate call to Conjure as part of Phase 1
(Candidate Streamliner Generation).

We demonstrate the effectiveness of our approach on both the CP and SAT solving paradigms, choosing representa-
tive solvers for each. For CP, we use the learning solver chuffed [33], and for SAT, we use lingeling [34]. As presented 
in Section 8, our method can often produce a substantial reduction in search effort across a diverse range of problems. 
The automated streamlining system, Essence problem specifications and all the data used in this work for computational 
evaluation are available at https://www.github .com /stacs -cp /automated -streamliner-portfolios (see [35]).

2. Architecture overview

We begin with an overview of the architecture of our system, before explaining each of its components in detail in the 
subsequent sections. Given a problem class of interest, our streamlining approach proceeds in three main phases. Firstly, 
candidate streamliners are generated from an Essence specification (Section 2.1). Secondly, streamliners are combined into 
a portfolio of streamliner combinations with complementary strengths (Section 2.2). Finally, given an unseen instance of 
the problem class, one or more streamliner combinations are selected from the portfolio and scheduled for use in solving 
(Section 2.3).

2.1. Phase 1: candidate streamliner generation

Given an Essence specification of a problem class, several candidate streamliners are automatically derived via a set of 
prebuilt rules encoded inside Conjure. Those rules define patterns that match against the types of the decision variables 
in the Essence specification. As an example, a candidate streamliner for the Car Sequencing problem in Fig. 1 can enforce 
approximatelyHalf of the range of the car function to take odd values only, hence reducing the search space. A full description 
of the rules and the streamliner generation process are presented in Section 3. The performance of a streamlined model on 
a given problem instance can then be evaluated using the procedure described in Fig. 2.

2.2. Phase 2: portfolio construction

The generated candidate streamliners can be combined to form stronger streamliners [36], i.e., multiple streamliners can 
be added to the original problem specification at the same time to form a streamlined model. This results in a potentially 
very large number of possible (combined) streamliners for a given problem class. Each of those streamliners may drastically 
reduce the search space and lead to large speed up in solving time. However, in contrast to other space-pruning techniques, 
such as symmetry-breaking or implied constraints, we cannot expect streamliners to be universally applicable. As illustrated 
in Section 5.2.1, the effectiveness of a streamliner can vary widely among instances of the same problem class. For example, 
a streamliner can be very useful for solving some instances but impair performance on others or even render them unsatis-
fiable. Therefore, we need an effective mechanism to search in the large space of streamliner combinations and identify the 
effective and sound ones.
3
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Given a problem class, our system aims at constructing a portfolio of streamliners with complementary strengths, i.e., 
each streamliner is specialised towards a region of the instance space (i.e., the high-dimensional space defined by instance 
features [37]). Our portfolio construction method consists of three stages. Firstly, a set of training instances that is repre-
sentative of the instance space of the given problem is automatically built (Section 5). Secondly, a Monte Carlo Tree Search 
method is used for searching in the space of the candidate streamliner combinations (Section 6.1 and Section 6.2). Finally, a 
portfolio builder approach is applied on top of the search process to enhance the complementary strength of the constructed 
portfolio (Section 6.3).

2.3. Phase 3: streamliner selection and application

Once a streamliner portfolio has been constructed, it can be used for solving any unseen instance of the same problem 
class. In Section 7, we discuss several methods to select and apply a streamliner portfolio to a new problem instance. We 
start with the simplest approaches where streamliners are selected based on their average performance across the whole 
training instance set. We then investigate a learning-based approach [38] where a prediction model is used for deciding 
the best streamliner based on features of the given instance. Even though the training of such learning-based approach is 
more computationally expensive, this approach offers significant improvement in performance compared to the other ones 
in several cases (as shown in Section 8).

3. From streamlining constraints to streamlined specifications

This section presents the methods used to generate streamlined models automatically. The process is driven by the 
decision variables in an Essence specification, such as the function in Fig. 1. The highly structured description of a problem 
an Essence specification provides is better suited to streamliner generation than a lower level representation, such as a 
constraint modelling languages like OPL, MiniZinc and Essence Prime. This is because nested types like multiset of sets 
must be represented as a constrained collection of more primitive variables, obscuring the structure that is useful to drive 
streamliner generation. For each variable, the system generates streamlining constraints that capture possible regularities 
that impose additional restrictions on the values of that variable’s domain. Since the domains of Essence decision variables 
have complex, nested types, these restrictions can have far-reaching consequences for constraint models refined from the 
modified specification. The intention is that the search space is reduced considerably, while retaining at least one solution.

Candidate streamliners are generated by applying a system of streamlining rules. A streamlining rule takes as input the 
domain of an existing Essence term (a reference to a decision variable, or parts of it) and produces a constraint posted 
on this term. Abstract domains in Essence can be arbitrarily nested and streamlining rules take advantage of this nested 
structure. A rule defined to work on a domain D is lifted to work on a domain of the form set of D (and other abstract 
domain constructors mset, function, sequence, relation, partition, tuple, etc) through high-order rules.

We identify groups of streamlining rules and tag them appropriately such that multiple streamlining constraints from the 
same group are not combined. For example a rule that enforces an integer variable to be even uses the same tag as another 
rule that enforces the same integer to be odd. This simple way of identifying conflicting streamlining constraints allows
streamliner selection search to prune some of these combinations without wasting any computational effort (Section 6.1).

3.1. Streamlining rules

Domain attributes can be added to Essence domains annotated to restrict the set of acceptable values. For example, 
a function variable domain may be restricted to injective functions, or a decision variable whose domain is a partition 
may be restricted to regular partitions. Hence, the simplest source of streamliners is the systematic annotation of the 
decision variables in an input specification. This sometimes retains solutions to the original problem while improving solver 
performance.

The existing Essence domain attributes are, however, of limited value. They are very strong restrictions and so often 
remove all solutions to the original problem when added to a specification. In order to generate a large variety of useful 
streamliners we employ a small set of rules, categorised into two classes:

1. First-order rules add constraints to reduce the domain of a decision variable directly.
2. High-order rules take another rule as an argument and lift its operation onto a decision variable with a nested domain, 

such as the complex set of functions presented in Fixed Length Error Correcting Codes (see Fig. 5). This allows for the 
generation of a rule such as enforcing that approximately half (with softness parameter) of the functions in the set are 
monotonically increasing. Imposing extra structure in this manner can reduce search very considerably.

A selection of the first-order rules is given in Fig. 3, and a selection of the higher-order rules is given in Fig. 4. These rules 
cover all domain constructors in Essence and they can be applied recursively to nested domains. Some of the rules (e.g. 
approximately half) take a softness argument which can control how strict the generated streamliner constraint is going to 
be. As a convention, smaller values of the softness parameters produce comparatively strict streamliners (hence potentially 
4
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Fig. 3. The first-order streamlining rules. For each rule we present the rule name, rule’s input and output and the tag. The tags are used to filter trivially 
contradicting streamliners during streamliner selection. We choose up to 1 streamliner from each tag.

causing greater reductions in the amount of search) and larger values produce more applicable streamliners. The reduction 
power and applicability are two of the criteria that we use when searching for effective streamliners (see Section 6.2).

The first two set of rules in Fig. 3 operate on a decision variable with an integer domain. They work by adding a unary 
constraint to limit values to the odd values, even values, values from the lower half of the domain, or upper half of the 
original domain. The next five sets of rules operate on decision variables with function domains. Monotonically increasing 
(and decreasing) enforce entries in the function to be monotonically increasing (or decreasing). The smallest first rule is a 
subset of monotonically increasing: it only enforces the smallest value in the function’s defined set to be mapped to the 
smallest value in the range set (similarly for largest first). Commutative, non-commutative and associative rules enforce the 
corresponding property on a function variable. All streamlining rules work on partial and total functions. The quasi-regular 
rule takes a softness parameter and enforces the partition decision variable to be almost regular. A regular partition is one 
in which all parts of the partition are of equal cardinality. On binary relations, Essence contains common binary relation 
properties (listed in the figure). These attributes can simply be turned on by adding them to the domain declaration. The 
last set of streamlining rules generate one of these attributes on decision variables with a binary relation domain.

The tags given in Fig. 3 are used to filter trivially contradicting streamliner rules. For example, since they share the same 
tag our system would not generate commutative and non-commutative streamliners simultaneously. However, we would 
generate one of commutative or non-commutative together with associative.
5
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Fig. 4. The higher-order streamlining rules. These rules lift existing first-order and higher-order streamlining rules to work on nested domain constructors 
of Essence. They do not introduce any additional tags, but they propagate the tags introduced by the rule they are parameterised on.

Fig. 4 lists the higher-order streamlining rules implemented in Conjure. These rules are used to apply the first-order 
streamlining rules to decision variables with nested domains. The first set of rules (all, half and at most one) work on 
sets, multi-sets, sequences and relations. They take another streamlining rule as an argument and apply it to the relevant 
members of the domain. The second set of rules applies a given streamlining rule to approximately half of the members of 
the decision variable’s domain. The third set of rules applies a given streamlining rule to the defined set or the range set of 
a function variable. Finally, the last rule applies a given streamlining rule to the set of parts of a partition (returned by the 
parts function). The streamlining rule (R) that is given as a parameter to these rules can be a first-order or a higher-order 
rule. Moreover, they can be nested arbitrarily to match the nested domains that can be defined in the Essence problem 
specification. See Fig. 1 and Fig. 5 for the domains of the decision variables in the ten problem classes we use in this 
paper.

Although rich, the set of Essence type constructors is not exhaustive. Graph types, for example, are a work in progress 
[39]. At present, therefore, we might specify such a problem in terms of a set of pairs or a relation domain. The streamliner 
generator constraints would produce candidate streamliners based on this representation. As further type constructors are 
added to Essence it is straightforward to extend our streamlining rules to accommodate them.

4. Problem classes

We now introduce the problem classes studied in this paper, in addition to the Car Sequencing Problem presented in 
Fig. 1. There are 10 problem classes in total. They will be used both to illustrate the remainder of our method and for our 
empirical evaluation. We selected these problems, presented in Fig. 5, to give good coverage of the abstract domains available 
in Essence, including matrices, sets, partitions, relations and functions. They also cover various types of problems in practice, 
such as fundamental combinatorial design problems (Balanced Incomplete Block Design, Social Golfers), scheduling and 
manufacturing problems (Car Sequencing, Vessel Loading), timetabling problems (Balanced Academic Curriculum Problem), 
and transportation problems (Transshipment, Tail Assignment). Such problems have been considered in various prior works 
in both Constraint Programming and Operation Research.

The Balanced Academic Curriculum Problem (BACP) [40] (decision version) is to design a balanced academic curricu-
lum by assigning periods to courses. The constraints include the minimum and maximum academic load for each period, 
the minimum and maximum number of courses for each period, and the prerequisite relationships between courses. This 
problem is also specified as finding a function from courses to periods.

The Balanced Incomplete Block Design problem (BIBD) [41] is a standard problem from design theory often used in the 
design of experiments. It asks us to find an arrangement of v distinct objects into b blocks such that each block contains 
exactly k distinct objects, each object occurs in exactly r different blocks, and every two distinct objects occur together in 
exactly λ blocks. This problem is naturally specified as finding a relation between objects and blocks.
6
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Fig. 5. Essence problem specification fragments for the problem classes used for evaluation, in addition to Fig. 1. Here we list the decision variable declara-
tion statements for these problems, since these are what govern the generation of candidate streamlining constraints. The full models we use can be found 
in our accompanied github repo.

The Covering Array problem [42] requires finding a matrix of integer values indexed by k and b such that any subset of 
t rows can be used to encode numbers from 0 to gt−1. In addition to the covering constraint, row and column symmetries 
are broken using the lexicographic ordering constraints [43].

The Equidistant Frequency Permutation Arrays problem (EFPA) [44,45] is to find a set (optionally of maximal size) of 
codewords, such that any pair of codewords are a certain Hamming distance apart. The decision version we consider here 
works for a given number of codewords. In comparison to Fixed Length Error Correction Codes problem which only has a 
minimum distance requirement, this problem requires the distances to be equal to an exact value. In addition each codeword
must include each symbol a certain number of times.

The Fixed Length Error Correction Codes problem (FLECC) [46,47] asks us to find a set of code words of a uniform length 
such that each pair of code words are at least a specified minimum distance from each other, as computed by a given 
distance metric (e.g. hamming distance).

The Transshipment problem [48] considers the design of a distribution network, which includes a number of warehouses 
and transshipment points to serve a number of customers. The cost of delivering items from each warehouse to each trans-
shipment point and from each transshipment point to each customer, and the amount of stock available at each warehouse 
are given. We are asked to find a delivery plan that meets customer demand within a cost budget. This is specified as a 
pair of functions describing the amount of demand supplied between each warehouse and transshipment point, and each 
transshipment point and customer.

The Tail Assignment problem [49] is the problem of deciding which individual aircraft (identified by its tail number) 
should cover which flight. The problem is represented using a nested function variable, where the outer function is total 
and the inner one is potentially partial. There are several constraints on this nested function variable ensuring a sensible 
sequence of flights and frequent enough visits to a maintenance depot.

The Social Golfers problem [50] is concerned with finding a schedule for a number of golfers over w weeks. The schedule 
for each week is a partitioning of the golfers such that over the course of the entire schedule no golfer plays in the same 
group as any other golfer on more than one occasion.

The Vessel Loading decision problem [51] is to determine whether a given set of containers can be positioned on a given 
deck, without overlapping, and without violating any of the separation constraints. The problem is modelled in Essence

using four total functions capturing the location of each container.
7
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Fig. 6. A snippet of the instance generator model for the Transshipment problem. For brevity, we omit the specification for n_customer, costTC,
stock, demand and maxCost, as they are rewritten in exactly the same way as other parameters of the same types.

5. Generating and selecting training instances

The core idea behind our methodology is that we can build a portfolio of streamliners on a training set and then employ 
that portfolio to solve unseen instances from the same problem class with substantially less effort than the unstreamlined 
model. This method relies upon the automatic evaluation of model candidates in order to construct a high quality portfolio 
of streamlined models. In this section, we describe how a set training instances that are representative of the problem 
instance space is generated automatically.

5.1. Generating candidate training instances

As the first step, we generate a large number of candidate training instances for each pair of problem class and solver via 
AutoIG1 [52,54,55], a constraint-based automated instance generation tool. AutoIG allows users to describe the generation 
of instances for a given problem class in a declarative way as a constraint model, and supports the automated generation 
of new instances with certain properties required by the users. Fig. 6 shows (part of) an example generator model for the 
Transshipment problem. For this work, we use AutoIG to find satisfiable instances that are solvable by a chosen solver 
within the solving time range of [10, 300] seconds. The lower bound of 10 seconds is imposed to avoid trivially solvable 
instances, as the gain when applying streamliners on such instances are often negligible.

The internal working mechanism of AutoIG is as follows. Starting from a description of the problem and an instance 
generation model (either created by users or generated via an automated generator approach [52,54]), AutoIG generates new 
instances by searching in the parameter configuration space of the generator using the automated algorithm configuration 
tool irace [56], and by sampling a new instance via solving each instance of the generator model (provided by irace) via 
the constraint solver Minion [53]. Every time a new instance is generated, it is evaluated using the chosen solver and its 
quality (in term of satisfying the properties specified by users) is given to irace as feedback to update its sampling model. 
The instance generation process stops once a given tuning budget is exhausted and all instances satisfying the required 
properties will then be returned.

5.2. Training set construction

For some problems, the number of instances found by the automated instance generation process can be quite large. For 
example, we got 4647 instances for FLECC problem with chuffed as the target solver (Table 1). Using all instances during 
the streamliner portfolio construction phase would require a significant amount of computation. In this section, we propose 
a method to select a small representative subset of training instances from the ones obtained in previous step.

1 https://github .com /stacs -cp /AutoIG.
8

https://github.com/stacs-cp/AutoIG


P. Spracklen, N. Dang, Ö. Akgün et al. Artificial Intelligence 319 (2023) 103915
Table 1
For each problem class, the table shows the following fields: the number of candidate streamliners au-
tomatically generated by Conjure, the total number of training instances generated by the automated 
instance generation procedure, and the number of clusters detected by GMeans. The instance-related fields 
are different per solver, as instance generation is done separatedly for each solver.

Problem #Candidate #Instances #Clusters

Streamliners Chuffed Lingeling Chuffed Lingeling

BACP 108 235 133 < 50 < 50
BIBD 200 427 272 < 50 < 50
CoveringArray 64 4301 1641 153 54
Car Sequencing 36 4376 5651 171 149
EFPA 312 1233 1215 57 62
FLECC 144 4647 6930 128 162
Transshipment 68 1534 3889 < 50 96
Tail Assignment 336 1515 1627 90 96
Social Golfers 260 709 340 < 50 < 50
Vessel Loading 208 2764 3430 65 80

Fig. 7. Performance of three example streamliners on the training set of 4647 instances generated for the Fixed Length Error Correcting Code problem 
with chuffed. Each two dimensional plot is a projection of the original multi-dimensional instance feature space via Principal Component Analysis. (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

5.2.1. Streamliner performance footprint analysis
The aim of the instance selection process is not only to reduce the size of the training instance set, but also to make 

sure that the selected instances are as diverse as possible. The motivation behind the latter objective is to ensure the 
generalisation ability of the constructed portfolio.

We illustrate our motivation via a visualisation analysis on streamliner performance across the instance space. The visu-
alisation is similar to the algorithm footprint analysis method [57]. An algorithm footprint is simply the part of the instance 
space where the algorithm performs well. In our context, a streamliner is an algorithm. We will show that the footprints of 
different streamliners can cover different parts of the instance space, which suggests the necessity of selecting the training 
instances with good coverage across the space.

To visualise the instance space, we extract FlatZinc instance features via the fzn2feat tool (part of mzn2feat [58]). 
There are 95 features grouped into 6 categories (variables, constraints, domains, global constraints, objective, and solving 
features) [58]. The feature space is then projected into a 2-D space using Principal Component Analysis [59]. For each 
streamliner, we mark its performance on all generated instances with different colours. For simplicity, the performance is 
divided into three categories: (i) UNSAT (the streamliner eliminates all solutions of the instance), (ii) the streamliner offers 
less than 50% reduction in solving time for the given instance, and (iii) the streamliner achieve more than 50% reduction in 
solving time.

Fig. 7 shows performance of three example streamliners on the FLECC problem with chuffed. Looking at the group 
of instances at the bottom of each plot, we see that the performance achieved by different streamliners varies drastically. 
Streamliner 2 is mostly satisfiable across the group but generally it only achieves a reduction of less than 50%. Streamliner 
121 on the other hand occasionally achieves good reductions but in general it seems to be too strict and renders most 
instances infeasible. Note also that we can vastly modify the footprint achieved by applying the combination of 2 and 8. 
For most instances in the bottom group it seems that this is a more effective combination as the general reduction has 
drastically increased to ≥ 50%. However in other parts this combination makes the resulting instance too tight and as 
such negatively affects its feasibility. Therefore, during training set construction, it is important that we take this diversity 
9
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Fig. 8. GMeans clustering results on the instance feature space (projected to 2-dimensional space by PCA) for the Fixed Length Error Correcting Codes 
problem with chuffed. Each colour represents a cluster.

into account. If our training set only include instances from this particular group, this will directly limit the ability of our 
streamliner portfolios to generalize across the problem class.

5.2.2. Building a compressed training instance set via clustering
To select a diverse subset of instances for the training phase, the GMeans [60] clustering method is used on the instance 

feature space to detect the number of instance clusters (column 4 of Table 1). An example of clustering results for the FLECC 
problem with chuffed is shown in Fig. 8. With those clusters, we can build a compressed version of the original training 
set by selecting a subset of instances per cluster.

To make sure that we have a sufficient number of representative training instances, we define a minimum number of 50
instances to comprise our compressed training set. This value was chosen based on the computational resources available 
for our experiments. If the number of clusters detected by GMeans is larger than this minimum size, one representative 
instance per cluster is selected. In the scenarios where the number of detected clusters is less than 50, instances are chosen 
from each cluster until the minimum number (50) is met, i.e., the number of instances selected per cluster is proportional 
to the size of the cluster. In order to take into account the information regarding instance difficulty in the selection of 
representative instances, for each cluster, instead of using purely random selection or selection of the instances closest to 
the centroid, we perform sampling without replacement of the median instance in terms of its corresponding solving time 
by the unstreamlined model.

6. Identifying effective combinations of streamliners

It has previously been observed that applying several streamlining constraints to a model simultaneously can result in 
larger performance gains than any of the constraints in isolation [17]; and we give an example of this behaviour using the 
FLECC problem in Fig. 7. In order to find such combinations of constraints we must consider the power set of candidate 
streamliners, which form a lattice: the root is the original Essence specification and an edge represents the addition of a 
streamliner to the combination associated with the parent node. Finding effective streamliner combinations involves search 
in this lattice and evaluating the combinations at each node at which the search arrives. In order to keep the size of the 
set of streamliners (and hence the search) manageable, we used a small number of softness parameter values for each rule 
that requires a softness parameter.

6.1. Pruning the streamliner lattice

For many of the problems considered a large number of singleton streamliners are generated (see Table 1), resulting in 
a space of streamliner combinations too large to be explored exhaustively in practice. Two forms of pruning are used to 
reduce the number of combinations to be considered:

1. If a set of streamliners fails all supersets are excluded from consideration. To be considered failed a streamliner must 
have zero applicability across the instance space, i.e. it removes all solutions for all instances. The effectiveness of this 
pruning strategy is largely dependent on the ordering of the traversal of the streamliner configurations. For instance 
in the example from Fig. 9 it can be seen that the streamliner CD is unsatisfiable, which allows for the supersets of 
that configuration (ABCD, BCD) to be immediately pruned. However, this pruning can only occur if the fact that CD is 
unsatisfiable is discovered before BCD and ABCD are evaluated. Thus different traversal orderings can impact on the 
amount of pruning that can be performed.

2. Trivially conflicting streamliners are not combined, such as streamliners A and B in the figure. For example, we avoid 
forcing a set simultaneously to contain only odd numbers and contain only even numbers. We associate a set of tags 
with each of the rules in order to implement this pruning. Rules applied to the same variable that share tags are not 
combined. This also removes the possibility of combining two different streamliners that differ only in the values of their 
softness parameters.
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Fig. 9. The power set of singleton candidate streamliners is explored to identify combinations that result in powerful streamlined specifications. Starting 
from an empty set of streamliners (the unstreamlined model), new streamliners are gradually added. If small sets of streamliners that fail to retain solutions 
are identified, such as CD, all supersets can be pruned from the search, vastly reducing the number of vertices to be explored. Streamliners A and B are 
tagged (Section 3) mutually exclusive, and so no streamliner combinations containing both are evaluated.

6.2. Searching for a streamliner portfolio

The two pruning rules described above only remove combinations that are sure to fail, or are equivalent to a smaller set 
of streamliners. Therefore, even after pruning, the number of combinations to consider is still typically too large to allow 
exhaustive enumeration. A traversal of the lattice allowing good combinations to be identified rapidly is desirable. In reality, 
streamliner generation has two conflicting goals: to uncover constraints that steer search towards a small and highly struc-
tured area of the search space that yields a solution, versus identifying streamliner constraints in training that generalise 
to as many instances as possible. These goals conflict as generally the search reduction a streamliner achieves is related 
to its tightness. The tighter a streamliner constraint the more propagation it can achieve at each node of search resulting 
in a more restricted search space; this is the reason that combining different candidate streamliners can provide superior 
results as with the addition of each streamliner the search space is further restricted. With two competing objectives, it is 
no longer feasible to find a single “best” streamlined specification: a streamliner combination may be optimal in relation to 
one objective, but at the expense of compromising the other.

To address these problems we adopt a multi-objective optimisation approach, where each point x in the search space X
is associated with a 2-dimensional (following the number of objectives) reward vector rx in R2. Our two objectives:

1. Applicability. The proportion of training instances for which the streamlined model admits a solution.
2. Search Reduction. The mean search reduction in solving time achieved by the streamliner on the satisfiable instances

With these two objectives for each streamliner combination we define a partial ordering on R2 and so on X using 
the Pareto dominance definition in multi-objective optimisation. Given x, x′ ∈ X with vectorial rewards rx = 〈r1, r2〉 and 
rx′ = 〈r1′, r2′〉:

rx dominates rx′ ⇐⇒ (∀i ∈ [1,2] ri ≥ ri′) ∧ (∃ j ∈ [1,2] r j > r j′) (1)

To search the lattice structure for a portfolio of Pareto optimal streamlined models we have adapted the Dominance-based 
Multi-Objective Monte Carlo Tree Search (MOMCTS-DOM) algorithm [61]. The algorithm has four phases, as summarised below. 
An illustration example of the four phases is presented in Fig. 10.

1. Selection: Starting at the root node, the Upper Confidence Bound applied to Trees (UCT) [62] policy is applied to traverse 
the explored part of the lattice until an unexpanded node is reached.

2. Expansion: Uniformly select a random admissible child and expand on it (see the simulation step below).
3. Simulation: The collection of streamliners associated with the expanded node are evaluated. The vectorial reward 〈Ap-

plicability, Search Reduction〉 across the set of training instances is calculated and returned.
Simulation is the most expensive phase. To constrain the computational cost and improve iteration speed we perform 

instance filtering to avoid wasting time on evaluating runs known to be UNSAT. More specifically, if a streamliner com-
bination is proved to be UNSAT on an instance, we know that any of its descendants will also be UNSAT on that same 
instance without having to evaluate them. We make use of this knowledge to reduce the number of instances being 
11
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Fig. 10. MOMCTS-DOM operating on the streamliner lattice. A, B and C refer to single candidate streamliners generated from the original Essence specifica-
tion. As MOMCTS-DOM descends down through the lattice the streamliners are combined through the conjunction of the individual streamliners (AB, ABC). 
The nodes are labelled with CDD reward value divided by the number of times visited.

unnecessarily evaluated at each lattice node. When we arrive at a given node in the lattice, the intersection of the sets 
of satisfiable instances from all available parents in the lattice is used to construct the evaluation set. For example, given 
three streamliners A, B, and C and a set of five instances. If we know AB is only satisfiable on instances {1, 2, 3} while AC 
is only satisfiable on instances {2, 3}, then for ABC we only need to evaluate the streamliner combination on instances 
{2, 3}. This reduces the computation on the current node by 60%.

4. Back Propagation: The current portfolio of non-dominated streamliner combinations is used to compute the Pareto 
dominance test. The reward values of the Pareto dominance test are non stationary since they depend on the portfolio, 
which evolves during search. Hence, we use the cumulative discounted dominance (CDD) [61] reward mechanism during 
reward update. If the current vectorial reward is not dominated by any streamliner combination in the portfolio then 
the evaluated streamliner combination is added to the portfolio and a CDD reward of 1 is given, otherwise 0. Dominated 
streamliner combinations are removed from the portfolio. The result of the evaluation is propagated back up through all 
paths in the lattice to update CDD reward values, as shown in Fig. 10.

6.3. Improving portfolio complementary strength

In our initial implementation the multi-objective search of the lattice is performed until either the computational bud-
get is reached or the lattice is fully explored. During this time one portfolio of non-dominated streamliners is built where 
domination is defined across the two objectives defined in Section 6.2. There are two deficiencies with this method that 
can be highlighted through an example. Consider a setting with three instances {A,B,C} and two singleton streamliners 
{S1, S2}. S1 retains satisfiability on instances {A,C} with {50%, 25%} reduction percentage respectively but renders instance 
{B} unsatisfiable, yielding {AvgReduction:37.5%, AvgApplicability: 66.6%} in terms of our two objectives. {S2} renders instance 
{A} unsatisfiable but retains satisfiability on instances {B,C} with {30%, 35%} reduction respectively, resulting in {AvgReduc-
tion:32.5%, AvgApplicability: 66.6%}. The resulting portfolio at the end of search will only ever contain S1 as S2 is always 
Pareto dominated and so will be disregarded. However S2 actually possesses some interesting qualities that we might not 
want to overlook. Firstly, it manages to cover instance B which is not covered by the current portfolio and it also manages 
to achieve a higher reduction on instance C. Given this in our ideal setting we would like to retain streamliner S2 as part 
of our portfolio. By averaging the performance of a streamliner and maintaining just one Pareto front it makes it difficult to 
distinguish cases like this and will often mean that the resultant portfolio will be suboptimal.

An alternative would be to create an objective per instance that records the performance of the streamliner on that 
individual instance. This would retain full information and allow us to distinguish the situation where a streamliner works 
on a complementary set of instances, or manages to attain a higher reduction on one particular instance. The difficulty with 
this approach is that with more objectives the size of the portfolio will grow exponentially as a result and it would become 
impractical to schedule the streamliners from the portfolio in any meaningful way. The other difficulty is if each streamliner 
produces small improvements to one or more instances then every path traversed in the lattice will produce a reward which 
will make it very difficult for our best first search procedure to focus and would essentially degrade it into random search.

In order to solve this issue, we adapted our search to incorporate elements of Hydra [63], a portfolio builder approach 
that automatically builds a set of solvers or parameter configurations of solvers with complementary strengths by iteratively 
configuring (a set of) algorithms. Instead of performing just one lattice search and building one portfolio, we now perform 
multiple rounds of search. In each round a portfolio is built to complements the strengths of the combined portfolios built 
in the prior rounds.

More specifically, in the first round, an MO-MCTS search with our original performance metric, which tries to optimise 
both applicability and solving-time reduction on the training set, is done and a portfolio of streamliners is constructed. In 
each subsequent round, a new MO-MCTS search is started using a modified performance metric. For each instance i, the 
12
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best streamliner p for i (the one that has the highest solving-time reduction on i) in the combined portfolios from previous 
rounds is identified if it existed. For any new streamliner q being evaluated in the search of the current round, if it has 
better reduction than p on i, or if i was not yet solved by any streamliner in the current combined portfolio, performance 
of q on i is used, otherwise, the reduction value of p on i is used instead. This means that the new streamliner q will not 
be penalised for its poor performance on an instance if the instance is already efficiently solved by the combined portfolio 
in the previous rounds. Therefore, the MO-MCTS can focus on trying to improve performance in regions of instance space 
where the current portfolio is weak. The final result is a combined portfolio with complementary strengths that can perform 
well on all parts of the training instance set.

Performance of all evaluated streamliners are cached and re-used across rounds. In each round, at least M iterations (not 
including iterations using cached results) have to be completed. After that, the round is stopped if it spends N consecutive 
iterations without finding anything to add to the current portfolio, as it is an indication that we might have reached the 
point of diminishing returns for the current round. The whole Hydra search is terminated if the current combined portfolio 
remains unchanged after a round. In our experiments M and N are set as 10 and 5 respectively. The values were chosen 
based on a small manual tuning experiment, which aims at having a good balance between the number of rounds being 
done and the amount of resources given to each round within the available computational budget.

6.4. Independent solver search

For each problem class, we perform a streamliner search per solver (chuffed or lingeling). It might be expected that 
this is unnecessary and that the streamliners that work well for chuffed will also work well for lingeling and vice-versa, as 
we are generating the streamliners from the Essence specification of a problem class, which is solver independent. However, 
the intricacies of solvers such as heuristics, propagation mechanisms and restarts can be so different that the performance 
of a constraint can vary wildly. Also, the streamliners are defined in Essence and how they are represented in a constraint 
or SAT model can be very different. One streamliner that can be efficiently represented in a constraint model might be very 
verbose in the SAT encoding, which may result in substantial overhead during search and as such affect performance. We 
illustrate that via Fig. 11. The performance of a streamliner when tested on the same instance sets can drastically differ 
between CP and SAT. In Transshipment the streamliners that comprise the portfolio found via chuffed search do elicit 
reductions in lingeling albeit not as strong as their chuffed counterpart. In CarSequencing, however, almost all of the
chuffed portfolio produces a negative reduction in solving time when applied in lingeling.

7. Applying a streamliner portfolio on unseen instances

Having constructed a streamliner portfolio for a particular problem class using our streamliner search on the training 
instance set, the next question is how to apply the given portfolio on an unseen instance of the same problem class. In this 
section, we describe different streamliner portfolio application methods used in this work, ranging from simple instance-
oblivious approaches (Section 7.1 and Section 7.2) to instance-specific methods taken from the literature of automated 
algorithm selection [64,30] (Section 7.3).

7.1. Single best streamliner (SBS)

The most basic streamliner application approach, namely the Single Best Streamliner (SBS), is to choose from the portfolio 
the streamliner that results in the lowest average solving time across all training instances, and applying that chosen one 
for any unseen future instance. The deficiency of this approach is that streamliners that do not perform well on average 
across the instance space are neglected even if they may exhibit good performance on a subset of instances.

7.2. Lexicographic selection methods

It is possible to order the streamlined models in a portfolio lexicographically by, for example, prioritising Applicability, 
then Search Reduction. Given two objectives, there are two such orderings to consider. Thus two lexicographic selection 
methods are used herein: AppFirst, which prioritises applicability over search reduction, and ReducFirst, which has the re-
verse priority.

The selection process involves traversing the portfolio (using the defined ordering) for a given time period and applying 
each streamliner in turn to the given instance. The schedule is static in that it only moves to the next streamlined model 
when the search space of the current one is exhausted.

When traversing a schedule it is possible to dynamically filter streamliners based upon prior results. If for a given 
instance we are evaluating the schedule containing the streamliners {S-1, S-3, S-1-2} in their respective ordering. When 
evaluating this on a given instance if the first streamliner S-1 renders the test instance unsatisfiable, and this is proven 
within the given time limit, then this allows us to filter the rest of the schedule and remove S-1-2 since any superset of S-1
is guaranteed also to render the test instance unsatisfiable.
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Fig. 11. For Transshipment and CarSequencing the portfolios generated during the chuffed streamliner search are tested on lingeling on the same set 
of test instances. The Average Reduction across the two portfolios is represented for both paradigms. The same set of test instances are used so that any 
variation in the reductions of the streamliners is purely due to the different setting.

7.3. Automated algorithm selection methods

In many paradigms for solving combinatorial problems, such as SAT, CP, ASP (Answer Set Programming) there are multiple 
available algorithms or search strategies, all with complementary solving strengths. Automated Algorithm Selection (AS) 
techniques [65,64,30] aim to exploit this fact by utilising instance characteristics to select from a set of algorithms the 
one(s) expected to solve a given problem instance most efficiently. Algorithm selectors have had great success and have 
been shown empirically to improve the state of the art for solving heterogeneous instance sets [38,66].

This is a very similar setting to our portfolio of streamliners, with complementary solving strengths and no single dom-
inating streamliner. In this work we employ the algorithm selection system AutoFolio [38]. Given a particular problem 
instance the goal is to have AutoFolio, based upon the features of the instance, predict which streamliner from the gener-
ated portfolio will most efficiently solve the instance.

When applying algorithm selection to a new domain a number of questions arise. First, there are multiple different 
algorithm selection techniques and there is the question of which particular AS technique is best for the current domain. 
Second, AS approaches generally contain several parameters and there is the need to set these effectively to obtain good 
performance. The AS framework AutoFolio [38] addresses these questions by integrating several AS techniques and automat-
ically choosing the best one as well as configuring their hyper-parameters using the automatic algorithm configuration tool 
SMAC [67]. AutoFolio also supports a pre-solving schedule, a static schedule built from a small subset of streamlined models. 
This schedule is run for a small amount of time. If it fails to solve an instance, the model chosen by the prediction model 
is applied. AutoFolio chooses whether to use a pre-solving schedule during its configuration phase by SMAC.

8. Experimental results

In the preceding sections we have presented a completely automated approach to the generation and selection of stream-
liner constraints, hitherto a laborious manual task. In this section we present two experiments to evaluate the efficacy of 
this approach. The first one is designed to measure the frequency with which streamlining results in a reduction in search, 
14
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Table 2
Performance comparison between ApplicFirst, ReducFirst, AutoFolio the Oracle and the SBS using the overall 
speedup on Distribution A, containing instances with unstreamlined solving times in [10, 300] seconds.

Solver Problem # Instances Oracle SBS ApplicFirst ReducFirst Autofolio

Chuffed BACP 100 25.61 2.84 2.01 2.81 2.48
BIBD 98 1.63 1.05 1.05 1.03 1.15
CarSequencing 100 11.21 3.77 3.35 3.66 4.46
CoveringArray 100 1.73 1.45 1.05 1.05 1.57
EFPA 98 3.21 2.02 2.02 1.86 1.99
FLECC 100 2.42 1.90 1.88 1.71 1.90
SocialGolfersProblem 100 1.12 1.02 1.07 1.07 1.09
TailAssignment 35 3.20 3.20 3.20 1.21 3.20
Transshipment 100 9.19 2.44 2.58 2.63 2.17
VesselLoading 100 5.92 3.56 1.51 1.09 1.89

Geometric-Mean Speedup 4.06 2.11 1.81 1.63 2.01

Lingeling BACP 82 3.22 1.32 1.32 1.16 1.19
BIBD 99 1.03 1.01 1.01 1.01 1.01
CarSequencing 100 1.04 1.01 1.01 1.00 1.00
CoveringArray 100 3.73 1.60 1.01 1.01 1.46
EFPA 98 1.32 1.16 1.05 1.03 1.05
FLECC 100 4.06 2.72 2.79 2.40 3.08
SocialGolfersProblem 91 1.10 1.05 1.01 1.01 1.04
TailAssignment 100 2.47 2.47 2.47 1.04 2.47
Transshipment 99 6.13 1.84 1.95 3.20 4.15
VesselLoading 100 2.24 1.03 1.03 1.44 1.49

Geometric-Mean Speedup 2.19 1.42 1.35 1.31 1.57

and the magnitude of that reduction (Section 8.2). The second one situates our approach in the simplest practical setting, 
where an unstreamlined model is solved in parallel with a streamlined model, in order to measure the overall speedup 
obtained when solving a given set of instances (Section 8.3).

8.1. Experimental setup

The effectiveness of our streamliner approach is demonstrated on a wide range of 10 different problem classes (as 
described in Section 4) with two solving paradigms (chuffed for CP and lingeling for SAT). All experiments were run on 
compute nodes with two 2.1 GHz, 18-core Intel Xeon E5-2695 processors. The streamliner portfolio construction phase was 
run on a single core with a maximum time budget of 4 CPU days for each pair of problem class and solver.

The generated streamliner portfolios were evaluated on two different instance distributions, distinguished by their com-
prising instance difficulty. The first one, denoted Distribution A, consists of instances with similar difficulty to those used 
during the portfolio construction phase (Section 6), i.e. satisfiable instances with a solving time within [10, 300] seconds by 
the unstreamlined model. We use this to analyse the generalisation performance of the streamliner portfolios on similarly 
difficult instances unseen by the portfolio construction. The second test set, denoted Distribution B, includes instances gen-
erated by the same method (Section 5.1), but drawn from a different distribution with a solving time limit of (300, 3600]
seconds (by the unstreamlined model). Distribution B allows us to study the ability of the portfolio to generalise to instances 
of greater difficulty.

Similar to the generation of training instances, the automated instance generation tool AutoIG [55] is used for generating 
instances of both distributions. Each AutoIG run is given a wall-time limit of 24 CPU hours. The number of instances 
generated for each problem class are listed in Table 2 and Table 3).

Our system makes use of Conjure
2 (for generating streamliners and for producing streamlined models), Savile Row

3

(for producing solver-specific inputs, including the FlatZinc input for the fzn2feat4 feature extraction tool), and the two 
solvers chuffed

5 and lingeling
6 for the evaluation. All of those softwares were run with their default parameter settings.

We report the performance of all streamliner scheduling/selection approaches described in Section 7, including the Sin-
gle Best Streamliner (SBS), the two simple streamliner scheduling methods ApplicFirst and ReducFirst, and the automated 
algorithm selection approach AutoFolio7 [38]. A training of AutoFolio on a pair of problem class and solver is given a tuning 
budget of one CPU day. We also report as a reference point the theoretically best performance, namely the Oracle, where 

2 https://github .com /conjure -cp /conjure.
3 https://savilerow.cs .st -andrews .ac .uk/.
4 https://github .com /CP-Unibo /mzn2feat.
5 https://github .com /chuffed /chuffed.
6 https://github .com /arminbiere /lingeling.
7 https://github .com /automl /AutoFolio.
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Table 3
Performance comparison between ApplicFirst, ReducFirst, AutoFolio the Oracle and the SBS using the overall 
speedup on Distribution B, containing instances with unstreamlined solving times in [300, 3600] seconds.

Solver Problem # Instances Oracle SBS ApplicFirst ReducFirst Autofolio

Chuffed BACP 16 53.47 1.47 2.48 4.71 46.56
BIBD 59 2.25 1.13 1.15 1.04 1.71
CarSequencing 52 8.77 1.91 1.88 2.19 6.77
CoveringArray 46 3.36 2.20 1.26 1.26 3.20
EFPA 121 4.86 1.02 1.93 1.79 2.53
FLECC 192 3.95 2.18 2.02 1.68 2.24
SocialGolfersProblem 19 2.53 1.28 1.00 1.00 2.53
TailAssignment 35 3.20 3.20 3.20 1.21 3.20
Transshipment 216 16.21 2.77 2.89 2.93 5.39
VesselLoading 322 4.72 1.64 1.21 1.02 2.12

Geometric-Mean Speedup 5.59 1.80 1.79 1.65 3.74

Lingeling BACP 15 5.92 2.20 2.20 1.88 4.91
BIBD 25 2.26 1.25 1.39 1.04 1.30
CarSequencing 69 3.32 1.06 1.34 1.19 2.95
CoveringArray 34 16.65 2.19 1.63 1.63 10.81
EFPA 158 1.39 1.00 1.18 1.03 1.20
FLECC 166 5.89 1.62 1.79 1.42 3.39
SocialGolfersProblem 17 2.23 1.14 1.09 1.09 1.89
TailAssignment 36 2.97 2.95 2.95 1.18 2.95
Transshipment 68 12.42 3.59 3.55 3.60 5.25
VesselLoading 78 2.51 1.29 1.11 1.80 2.34

Geometric-Mean Speedup 4.07 1.66 1.68 1.47 2.99

we assume that the best solving model (either unstreamlined or the streamlined ones from the constructed portfolio) for 
each instance is used.

The construction of our streamliner portfolios is similar to previous works on manual streamlining [13,17], we show 
that streamliners found using small instances can be highly effective when solving larger and more difficult instances. As 
described in Section 5.1 and Section 6, for each pair of problem class and solver, the lattice search is done using instances 
with the solving times similar to distribution A. By limiting the search to small (yet non-trivial) instances, we can not only 
examine a large amount of streamliners within a reasonable time budget, but also evaluating each streamliner on several 
instances, which allows the search to identify regularities and structures that are common among various instances.

The training cost of building a streamliner selection model on the constructed streamliner portfolio (i.e., AutoFolio) is 
generally much lower since it only focuses on a limited number of streamliner combinations. Therefore, to ensure the 
selection is effective on larger and more difficult instances, we add a small number of instances drawn from distribution B 
(separated from the test instances used for the evaluation) to the training of AutoFolio.8 This AutoFolio model is used for 
the evaluation on distribution B. Note that when evaluating on distribution A, we do not need to add those extra instances, 
i.e., the AutoFolio model is trained on instances from distribution A only (again separated from the test instances used 
for the evaluation). As shown in the subsequent section, AutoFolio achieves the best overall performance in several cases, 
especially on the larger and more difficult instances (Table 3), which demonstrates the importance of effective portfolio-
based streamliner selection.

8.2. Frequency and magnitude of search reduction

The effectiveness of our streamliner method in term of improvement frequency (how often the selected streamlined 
models wins over the original model) and the magnitude of the improvement (in term of search reduction) are presented 
in Fig. 12 and Fig. 13. We begin by considering the setting where the instances are solved with the CP solver chuffed. The 
high improvement frequency of the Oracle on all problem classes demonstrates that there is almost always a streamliner in 
our portfolio that can be used to reduce search for a given unseen instance. As might be expected, the magnitude of the 
search reduction does vary with problem class. On Distribution A, for BACP, Car Sequencing, and Transshipment it is most 
pronounced, approaching one hundred percent, which would indicate a solution obtained with little or no search efforts, 
while for other problems such as BIBD, CoveringArray and Social Golfers, the reduction is generally much smaller.

Performance across all problem classes significantly improves for Distribution B, suggesting that the impact of streamlin-
ing grows with the difficulty of the problem instance. This is as expected: the size of the search space typically increases 

8 In preliminary experiments, we also tried training AutoFolio on instances from distribution A only and evaluating the trained selection model on more 
difficult instances. We did not achieve good results, which suggested the lack of necessary information for the selection model to work properly on instance 
type that it never saw during the training.
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Fig. 12. Results with chuffed and lingeling on Distribution A. The top of each pair of charts shows how frequently the associated approach produces an im-
provement (% improved), and also indicates the reason for failure to improve on the remainder of the instances: the instance was rendered unsatisfiable (% 
UNSAT), or the search completed more slowly than the unstreamlined model (% non-improved). The bottom of each pair of charts shows the magnitude of 
the solving time reduction on those instances where an improvement was obtained (% reduction). Hence, care must be taken when comparing approaches, 
since an infrequently applicable approach may do well on the few instances it does improve (e.g. the lexicographic scheduling approaches on the Social 
Golfers Problem). The best approaches are both frequently applicable and result in a large search reduction.

Fig. 13. Results with chuffed and lingeling on Distribution B. Detailed on meaning of the plots are described in Fig. 12.

with that of the instance, providing the opportunity for the selected streamliner to prune larger parts of the search space 
and reduce search further.

In several cases, our automated streamliner selection approaches are able to deliver a substantial fraction of the perfor-
mance of the oracle in terms of the percentage of instances improved. The two simple scheduling approaches sometimes 
perform well, but for problem classes such as BIBD, CoveringArray (on both instance distributions) and SocialGolfers (on 
distribution B), their performance is relatively weak. The Single Best Streamliner approach, which requires no further train-
ing following the streamliner search, offers a fairly good compromise between performance and cost before solving unseen 
instances, especially on the easy instances (distribution A). However, the most robust performance comes from AutoFolio.

Performance in the SAT domain is generally less strong than for Constraint Programming. Although the performance of 
the oracle again indicates that there is almost always a streamliner in our portfolio that can improve search, in Distribution 
A on 4 of 10 problem classes (BIBD, CarSequencing, EFPA and SocialGolfers), the magnitude of this reduction is small. 
On the remaining problem classes, the performance is stronger and in some cases (CoveringArray and FLECC) exceeds the 
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Fig. 14. Distribution of speedup values (in base 10 logarithmic scale) for the Oracle, AutoFolio and SingleBestSolver on Distribution B.

improvement delivered in the corresponding CP setting. Once again performance clearly improves on Distribution B relative 
to Distribution A, suggesting that for SAT the impact of streamlining also grows with difficulty.

8.3. A practical setting

By employing the algorithm selection techniques described in Section 7 our aim is to maximise the occasions on which 
streamlining produces a reduction in search effort. However, we cannot expect an aggressive technique such as streamlining 
to be universally applicable: in particular, the selected streamliner may render the instance under consideration unsat-
isfiable. Therefore, we envisage a practical setting in which a streamliner portfolio is a constituent of a wider portfolio 
containing other more conservative approaches. The simplest such setting, which we employ here, is to run the stream-
liner portfolio in parallel with the unstreamlined model, which will produce a solution if the selected streamliner renders a 
satisfiable instance unsatisfiable.

We evaluated this parallel configuration on both Distribution A and B. Our results are summarised in Table 2 and Table 3, 
which present the Overall Speedup of each approach across the ten different problem classes with two solving paradigms, 
CP and SAT. Overall Speedup represents the total time of the original model divided by the total streamlined time across all 
instances. This metric gives an indication of the overall reduction in search effort across each instance distribution.

Across both distributions, AutoFolio is clearly the best performing among our different streamliner selection approaches. 
It achieves geometric mean speedups of 2.01× and 1.57× for Distribution A and 3.74× and 2.99× for Distribution B, with 
maximum speedups on Distribution A of over 4× for both CP and SAT, and on Distribution B of over 40× for CP and 
over 10× for SAT. As in the results presented in Section 8.2, there is a pronounced increase in the speedups achieved for 
the more difficult Distribution B instances. Savile Row introduces a cost for translating models to solver input, which can 
increase in the presence of streamlining constraints. Since many of the instances in Distribution A are relatively easy to solve, 
this limits the speedup obtainable through streamlining. As difficulty increases in Distribution B, the benefits of streamlining 
become clear.

Overall Speedup is an aggregation metric, which can obscure the individual instance speedups being obtained. For ex-
ample, if a streamliner is evaluated on 10 instances and for half its application makes them trivial reducing the solving 
time to near zero but for the other half it is unsatisfiable the Overall Speedup will be ≈ 2×. This does not provide a good 
indication that on half of the instance distribution the streamliner is decimating the search space to such a high degree. In 
order to better visualize this Fig. 14 shows the distribution of speedup values across instance distribution B for the Oracle, 
SingleBestSolver and AutoFolio methods. The minimum speedup obtained for a streamliner in this setup is 1 (log10(0)) as 
these are the cases where the chosen streamliner is not satisfiable and as such is solved by the original model providing 
no speedup. If we restrict our scope to individual problem classes it can be seen that the application of streamliners can 
provide substantial speedups.

Using the chuffed CP solver, BACP and Transshipment are two problem classes where AutoFolio is able to obtain large 
speedups for a majority of the instance distribution. In the case of BACP the speedups range from ≈ 8× to ≈ 2568× with 
the 1st and 3rd quartiles having values at {q1 ≈ 103×, q3 ≈ 1458×}. For Transshipment the speedups range from ≈ 1× to 
≈ 1120× with the 1st and 3rd quartiles having values at {q1 ≈ 6×, q3 ≈ 120×}. These large speedups are not just restricted 
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to CP and under the SAT paradigm CoveringArray and Transshipment are also examples where this search space decimation 
can occur. For Transshipment the speedups range from ≈ 1× to ≈ 141× with the 1st and 3rd quartiles having values at 
{q1 ≈ 25×, q3 ≈ 35×}. For CoveringArray the speedups range from ≈ 1× to ≈ 244× with the 1st and 3rd quartiles having 
values at {q1 ≈ 6×, q3 ≈ 25×}.

8.4. Cumulative CPU consumption

We must be mindful that all results presented thus far in this section are in terms of the reduction/speedup in time of 
the portfolio approach versus the original model. Since the portfolio method utilises two cores, one for the original model 
and one for the portfolio, this consumes more resources to arrive at a solution. We present a further analysis in Fig. 15
to illustrate the cumulative time spent by the scheduling methods across the instances comprising Distribution B. Here the 
cumulative time of the portfolio approach to solve all instances, taking into account both cores, is compared against that 
of the original model. For the chuffed solver on 9 of the 10 problems, BIBD being the exception, AutoFolio is still able 
to reduce the cumulative time with, in some cases, a substantial reduction. Speedups of BACP: ≈ 42.98x, CarSequencing: 
≈ 3.10x, TailAssignment: ≈ 1.59x and Transshipment: ≈ 3.88x are attained. For lingeling, on every problem except BIBD 
and EFPA positive speedups in cumulative time are achieved again with substantial results for some problems. Speedups of 
BACP: ≈ 2.37x, CarSequencing: ≈ 1.66x, CoveringArray: ≈ 5.96x, FixedLengthErrorCorrectingCodes: ≈ 2.13x, TailAssignment: 
≈ 1.47x and Transshipment: ≈ 2.7x are attained.

It is useful to note that the cumulative time speedup of the portfolio approach is not always half that of the elapsed 
time speedup. The reason for this is that the portfolio approach does not always use twice the time of the original model. 
Let us use an example to illustrate this point. We have an instance which takes 100 s under the original model. If during 
evaluation the selected streamliner is proven to be unsatisfiable at T = 50 s then from T = 50 s to T = 100 s only one core 
will be utilised running the original model. The cumulative time speedup of the portfolio approach is then 2

3 compared with 
a speedup of 1 in elapsed time.

9. Related work

Improving solving performance has been a major research goal in Constraint Programming. Streamlining is a very 
powerful method towards this goal, among methods like adding implied constraints, symmetry breaking constraints and 
dominance constraints. Typically each of these methods are initially explored on a small number of problem classes man-
ually by experts. Once their efficacy is shown, research has moved to automating their application. Symmetry breaking has 
been most successfully automated among these methods, implied constraints and dominance breaking constraints compar-
atively less so. Streamlining has been successfully applied manually prior to our work, we present the first substantial step 
towards automating the application of streamlining in this paper. This section provides the necessary context in prior work 
in streamlining and the related research areas.

9.1. Manual streamlining

Gomes and Sellmann in their introductory work on Streamlining worked on problems from the field of Combinatorial 
Design [13]. One of the problems that they looked at was the construction of Diagonally Ordered Magic Squares (DOMS). They 
note that even for small sizes finding solutions to this problem was difficult, their base model could only find solutions up to 
size 9. They noticed a regularity in the solutions to the small instances: numbers within the magic square are quite evenly 
distributed. Intuitively this makes sense since numbers on each row, column, and diagonal have to sum to the same number 
and placing several large numbers on the same row is unlikely to lead to a solution. Once they identified this regularity, 
they posted a streamliner constraint that disallows similar numbers from appearing near each other. The streamlined model 
was then able to solve instances up to size 18.

Using a similar methodology to Gomes and Sellmann [13], Kouril et al. applied streamlining constraints to the Van der 
Waerden numbers problem [68]. After observing patterns in the solutions to small instances, they added simple constraints 
that force or disallow certain sequences of values to occur in the solutions. Again, this led to a dramatic improvement in 
run time of the solver, allowing much tighter bounds to be computed.

Le Bras et al. used streamlining to help construct graceful double wheel graphs [17]. Constraints forcing certain parts of 
the colouring to form arithmetic sequences allow for the construction of colourings for much larger graphs. These constraints 
led to the discovery of a polynomial time construction algorithms for such colourings, and eventually to a proof that all 
double wheel graphs are graceful.

Finally Le Bras et al. made use of streamlining constraints to compute new bounds on the Erdős discrepancy prob-
lem [18]. Here the streamlining constraints were used to enforce periodicity in the solution, the improved Walters sequence 
to occur in the solution and a partially multiplicative property. Thanks to these streamlining constraints new bounds were 
discovered for this problem.
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Fig. 15. The cumulative CPU time of AutoFolio in comparison to that of the Oracle and the Original model, totalling across the test instances of Distribution 
B. The x-axis shows the total number of instances, sorted in descending order of instance difficulty (solving time) according to the original model. The 
y-axis shows the corresponding total cumulative CPU.

Streamlining proved to be valuable in all of these cases. Despite their success, their application was limited to mathe-
matical and combinatorial design problems. The main reason preventing their widespread adoption has been the need for a 
laborious manual component that requires domain expertise to analyse solution patterns and derive common patterns. This 
motivated the automation of streamlining in this paper.
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Streamlining is related to implied constraints, symmetry breaking constraints and dominance breaking constraints. All of 
these methods can be applied manually or (semi-)automatically to a given base model. Streamlining is orthogonal to these 
methods: it can fruitfully coexist with them in the same model.

9.2. Relation to model counting via XOR constraints

Gomes et al. [69] employ XOR constraints in order to obtain good quality lower bounds for model (meaning solution in 
this context) counting in SAT problems. Their approach involves repeatedly adding randomly chosen XOR constraints on the 
problem variables. The central idea of the approach is that each random XOR constraint cuts the search space approximately 
in half, which means that approximately half of the solutions remain satisfiable after the addition of an XOR constraint. By 
adding several XOR constraints they aim to bring the SAT problem to the boundary of being unsatisfiable. They provide a 
formal proof that with high probability, the number of XOR constraints required in this process determines the solution 
count. They also empirically study the relationship between the number of XOR constraints and the solution count. They 
report promising results including a good bound on the number of solutions.

The randomly chosen XOR constraints in this work are streamlining constraints, since they aim to remove some but 
not all solutions. However the focus is very different from ours, specifically they focus on counting solutions rather than 
efficiency of finding the first solution. In their empirical analysis they compare their XOR-based approximation method with 
exact solution counting methods. Exact solution counting methods require repeatedly solving the same problem, typically by 
adding solution blocking clauses to avoid enumerating the same solution twice. The XOR-based method is computationally 
faster than exact solution counting overall, however it is unlikely to be faster for finding a single solution. Indeed, as the 
authors note, adding large XORs can make a SAT solver inefficient. Nonetheless, this scheme might work as an option in 
our current framework, although we would need to consider in future work how best to integrate it with our method of 
generating streamliners from the structure present in an Essence specification.

9.3. Relation to implied constraints

Streamlining constraints are most closely related to implied constraints. An implied constraint is an additional constraint 
that is added to the model to increase the solving performance. They are also called redundant constraints, since the cor-
rectness of the model does not depend on them. There is a key difference between implied constraints and streamlining 
constraints: implied constraints are sound (they do not change the set of solutions).

Some previous work focuses on manually adding implied constraints to a model to increase the solving performance 
[1,2]. The scope for adding implied constraints is narrower due to the soundness requirement. Automated approaches ([3–5]) 
focus on deriving simple facts from the model constraints and using forward-chaining to generate more complex constraints 
that still hold for a set of instances. Automatically proving the soundness of these implied constraints is a challenging task 
in general, which limits the impact of these approaches.

9.4. Relation to symmetry breaking constraints

Breaking modelling symmetry has been shown to have a substantial impact in improving solving performance. There 
are two main approaches: dynamic approaches that generate symmetry breaking constraints during search [70], and static 
approaches that work by adding constraints to the model to break symmetries [71,43]. Static symmetry breaking constraints 
may allow the derivation of additional implied constraints [1]. Symmetry breaking constraints are either detected from the 
data structures in the model [72] or detected automatically by applying graph automorphism detection methods on the 
constraint graph [73]. Conjure generates static symmetry breaking constraints thanks to its high-level variable domains 
[74,75] and our streamlining approach works in conjunction with the symmetry breaking constraints.

9.5. Relation to dominance breaking constraints

A generalisation of symmetry is dominance between solutions. In the context of optimisation problems, dominance break-
ing constraints can result in dramatic speed ups [10–12]. A dominance breaking constraint disallows solutions that are 
known to be sub-optimal, as well as some optimal solutions, as long as at least one optimal solution remains. This is 
achieved by identifying a mapping between solutions and a condition under which this mapping will improve a solution. 
Preliminary work on automating parts of the derivation of dominance constraints shows promising results [76].

9.6. Portfolio approaches

In several contexts, no single algorithm has been seen to dominate all others on all instances of a computational problem. 
Algorithms often show complementary strengths, and the ideas of making use of algorithm portfolios have been investi-
gated in various fields with great success [30]. For SAT, perhaps the most successful examples of portfolio approaches is 
SATzilla [77,78,66], the first portfolio approach that was shown to outperform stand-alone SAT solvers, and has exhibited 
strong performance in several SAT competitions. For CP, the portfolio approaches CPHydra [79] and SUNNY-CP [80,81] won 
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the Second International Constraint Solver Competition [82] and MiniZinc challenges 2015–2017 (open track), respectively. 
We refer to [64,30] for an overview of portfolio approaches and their achievements. To the best of our knowledge, this work 
is the first one that applies portfolio approaches in the context of streamliners for constraint modelling.

10. Conclusions and future work

Streamliner generation has been the exclusive province of human experts, requiring substantial effort in examining the 
solutions to instances of a problem class, manually forming candidate streamliners, and then testing their efficacy in prac-
tice. In this work we have presented the first completely automated method of generating effective streamliners, achieved 
through the exploitation of the structure present in abstract constraint specifications written in Essence, a best-first search 
among streamliner candidates, and a procedure to select and apply streamliners when faced with an unseen problem in-
stance. Our empirical results demonstrate the success of our approach.

Streamlining constraints are typically used for constraint satisfaction problems. Streamlining in the context of optimisa-
tion is a challenge, because rather than rendering an instance unsatisfiable, an over-aggressive streamliner might disallow 
the best solution(s). Recently, the effective use of streamlining constraints for optimisation problems has been investigated 
in a preliminary study in [83] In this work, the authors present a way of producing automatically a portfolio of streamliners 
for optimisation problems. Each streamlined model in the portfolio represents a different balance between three criteria: 
how aggressively the search space is reduced, the proportion of training instances for which the streamliner admitted at 
least one solution, and the average reduction in quality of the objective value versus the unstreamlined model. This third 
criteria is important for optimization problems because the goal is to find a solution with an optimal objective value, not 
just any solution as in satisfaction problems.

In support of our new method, we present an automated approach to training and test instance generation, and provide 
several approaches to the selection and application of the streamliners from the portfolio. Empirical results demonstrate 
drastic improvements both to the time required to find good solutions early and to prove optimality on three problem 
classes.

A further important item of future work is to exploit the ability of Conjure to refine several alternative models from 
an Essence specification. Herein we have employed the default heuristic in Conjure in order to refine a single model from 
each streamlined specification, but although known generally to select effective models [19], this is not necessarily the 
best model among the set that Conjure can produce. We will add an extra degree of flexibility to the search for effective 
candidate streamliners by measuring the performance of several models for each streamlined specification. Selecting the 
best model of a streamlined specification among those available will lead to still greater performance gains. For SAT this 
approach could be extended further by searching over the possible SAT encodings of the Essence Prime models refined by
Conjure. Preliminary results on a single problem class are promising [84].
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