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The Parallel Coordinate Plot (PCP) is a complex visual design commonly used for the analysis of
high-dimensional data. Increasing data size and complexity may make it challenging to decipher and
uncover trends and outliers in a confined space. A dense PCP image resulting from overlapping edges
may cause patterns to be covered. We develop techniques aimed at exploring the relationship between
data dimensions to uncover trends in dense PCPs. We introduce correlation glyphs in the PCP view
to reveal the strength of the correlation between adjacent axis pairs as well as an interactive glyph
lens to uncover links between data dimensions by investigating dense areas of edge intersections.
We also present a subtraction operator to identify differences between two similar multivariate data
sets and relationship-guided dimensionality reduction by collapsing axis pairs. We finally present a
case study of our techniques applied to ensemble data and provide feedback from a domain expert in
epidemiology.

© 2023 The Authors. Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity
Press Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction and motivation

The Parallel Coordinate Plot (PCP), introduced by Inselberg (In-
elberg and Dimsdale, 1990), is a visual design showing multidi-
ensional relations using parallel axes. PCPs facilitate data explo-

ation and understanding relationships for multivariate data. One
f the well-known challenges with PCPs is associated with over-
lotting. Rendering thousands of polylines causes overlapping
dges that may obscure the underlying patterns in the image,
specially in high data density areas (Geng et al., 2011). We call
PCP with high-density areas resulting from many overlapping
olylines a ‘‘dense’’ PCP. Ellis and Dix refer to this as, ‘‘too much
ata on too small an area of the display’’. Ellis and Dix (2007) In
hese cases, interaction can be crucial in exploring the data and
inimizing ambiguity. However, processing and analyzing over-
lotted data requires new approaches to support understanding.
n our previous study on PCP literacy (Firat et al., 2022), we
iscovered that correlation between axes is one of the significant
arriers to PCP understanding. This is one of the main inspirations
ehind the current work — to make the relationship between
ata dimensions clearer and more explicit. We believe the same
oncept could be applied to scatterplot matrices.
We propose novel visual feature and interaction methods to

ddress challenges in PCPs that occur as a result of overlapping
ine segments. We introduce interactive glyph lenses that enable
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users to explore an overplotted area using a dynamic lens that
hovers over the PCP based on mouse location. This interaction
summarizes edges that intersect with the lens represented by
arrow glyphs showing the average slope of a dense collection
of edges. To convey relationships between dimensions, we dis-
play arrow glyphs placed below each adjacent pair of axes that
indicate the correlation. We introduce a dimension reduction
technique that enables users to evaluate a PCP by looking at the
correlation value between neighboring axes and collapsing axis
pairs that do not add information to the display. We also present
a user option we call a subtraction operator, ∆, that displays
the difference between two multi-dimensional data sets for quick
comparison. The ∆ operator addresses the unsolved problem of
visually comparing multivariate ensemble data. In this paper, we
specifically concentrate on interaction techniques for dense PCPs.
The main contributions of this study are as follows:

• The introduction of interactive correlation glyphs for adja-
cent axis pairs

• Novel dynamic glyph lenses to support data analysis and
comprehension

• A subtraction operator, ∆, to indicate differences between
two multi-dimensional data sets

• Relationship-guided dimensionality reduction based on col-
lapsing of axis pairs to reduce redundancy

We evaluate our methods with a case study based on the
simulation of Covid-19 contagion behavior together with a mod-
eling expert in this area. Visual comparison of ensemble data is

considered an unsolved problem (Wang et al., 2019).
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The rest of the paper is organized as follows: In Section 2, we
eview the previous work on reducing the impact of clutter in
CPs. In Section 3, we demonstrate interaction design including
orrelation glyphs, dynamic and static lenses, and the ∆ operator.
n Section 4, we discuss the performance of our visualizations and
rovide feedback from domain experts. Section 5 wraps up with
onclusions and future work.

. Related work

Displaying a large multivariate data set in a 2D space has
lways been a challenge for data exploration due to over-plotting
nd clutter. We start by reviewing related surveys and focus
n literature for the discovery of the information in dense and
luttered areas in PCPs.
Surveys: Dasgupta et al. (2012) investigate different types

f ambiguity in the PCP images and introduce a taxonomy for
lassifying them to reduce uncertainty. By creating a taxonomy,
hey aim to detect distinct sources of uncertainty in the design
nd link them to different impacts of uncertainty for the user.
imilarly, Heinrich and Weiskopf (2013) propose a taxonomy and
ssessment of strategies for modeling, visualizing, analyzing, and
nteracting with PCPs, as well as a classification of common tasks
or investigation. Johansson and Forsell (2016) summarize and
ategorize studies on evaluating PCPs. A thorough examination
f previous research presents user-centered evaluations to report
n the human-centered aspects of PCPs.
In this section, we focus primarily on previous work on PCPs

hat address visual clutter and ambiguity. We briefly introduce
olutions to analyze large data on PCPs. In general, the methods
or reducing the impact of clutter on dense displays can be
ategorized as frequency-based, using interaction and brushing,
lustering, and edge-processing.
Frequency-based: Artero et al. (2004) present a method for

reating frequency and density plots from PCPs. The new plots
nable interactive data exploration of large and high-dimensional
ata, enabling users to remove noise and highlight data-rich
reas. Work by Geng et al. (2011) proposes angular histograms
nd attribute curves that enable users to investigate cluster-
ng and linear correlations in large data sets to address over-
lotting and clutter in PCPs. The state-an-art reported by Heinrich
nd Weiskopf (2013) has a particular subsection on frequency-
ased techniques that address aggregating edges together as an
pproach to overplotting and provides numerous methods for
ggregating the data (Andrienko and Andrienko, 2004; Heinrich.
t al., 2012; Fua et al., 1999; Rosenbaum et al., 2012; Siirtola,
000). Our work incorporates a frequency-based approach that
ounts the number of edge intersections with an interactive lens.
Interaction and Brushing: Blaas et al. (2008) present quan-

ization and compression techniques for data pre-processing,
s well as joint density distributions for adjacent variables en-
bling efficient GPU-based rendering of PCPs. In addition, they
ropose faster brushing methods for interactive data selection
n several linked views. Raidou et al. (2016) introduce a novel
echnique, Orientation-enhanced PCPs, to improve the view by
isually enhancing segments of each PCP line emphasizing slope
hen there are several overlapping edges or when outliers and
tructures are obscured by noise. A novel effective selection
ethod, the Orientation-enhanced Brushing (O-Brushing) is also
resented that eliminates unnecessary user interaction. Another
rushing method to enhance dense PCPs by Roberts et al. (2019)
ntroduces higher-order, smart data-driven brushing, and sketch-
ased brushing. The sketch-based brush is generated by con-
ecting mouse clicks across the PCP on each axis at the chosen
rush-axis intersection. Smart brushing assists the user during
57
interaction by revealing patterns at run time. Some of our meth-
ods are based on interaction, however, none involve traditional
brushing on PCPs.

Clustering: Data clustering is one method for reducing clutter
in a PCP. Fua et al. (1999) use hierarchical clustering to create a
multiresolution representation of the data, and a variation on the
PCP to express aggregated information for the clusters that facili-
tates navigation and filtering to explore the patterns and trends in
the data. Ellis and Dix (2006) propose several approaches for mea-
suring occlusion by interactively adjusting the level of sampling.
They explore three algorithms (raster, line, random) to measure
the degree of occlusion. When compared to other algorithms,
the raster algorithms result in higher accuracy. In addition to
hierarchical clustering and calculating polyline occlusion tech-
niques, Johansson et al. (2006) use transfer functions to display
different characteristics of clusters and transform each K-means-
derived cluster to high-precision structural texture that, applied
to a colored polygon, creates the cluster’s final visual appear-
ance. Blumenschein et al. (2020) propose 30 different ordering
strategies. The study introduces classification of task and pattern
and investigates which PCP reordering strategies aid in detecting
them. Our methods do not use explicit clustering. However, the
lens we introduce summarize the edges that pass through them
depicting average slope.

Edge-Processing: McDonnell and Mueller (2008) introduce
a technique that shows each data point as a poly curve to fa-
cilitate edge bundling and declutter the display. Palmas et al.
(2014) present an edge-bundling technique that applies density-
based clustering for each dimension. It represents the clustered
lines as polygons, which reduces rendering time. They also use
this strategy to enhance multidimensional clustering by develop-
ing attribute connections. Divino et al. (2017) describe an edge
bundling strategy used in PCPs to expose cluster information
directly from the overview. The edge-bundling survey by Lhuil-
lier et al. (2017) presents a data-based taxonomy for classifying
bundling methods and introduces a framework to describe the
steps of bundling algorithms. Pomerenke et al. (2019) render each
line segment based on its slope between two axes in order to
reduce the effect of cluttered lines. Horizontal lines are rendered
with the default line thickness while diagonal lines are rendered
thinner. The survey provides a subsection on PCPs and describes
edge bundling papers that apply edge bundling for reducing the
clutter and increasing readability (Heinrich. et al., 2012; McDon-
nell and Mueller, 2008; Palmas and Weinkauf, 2016; Zhou et al.,
2008). Our dynamic lens could be considered as a kind of edge
processing technique.

In contrast to previous work, the techniques we describe gen-
erally focus on the space between axis pairs rather than on axes
themselves. Most previous literature focuses on either the parallel
axes or the polyline edges. We focus on supporting cognition of
relationships between axis pairs in the context of dense PCPs.
We introduce novel techniques to facilitate data analysis guided
by correlation glyphs between neighboring axis pairs, showing
the differences between data sets using a subtraction operator,
and enabling the user to reduce dense areas and dimensions by
collapsing axis pairs.

3. Fundamentals

In order to convey the strength of the correlation between axis
pairs, correlation glyphs for each adjacent pair (Section 3.2) are
presented in the PCP view. This provides users with a summary
perspective of the multivariate relationships and an improved
understanding of the link between axis pairs, which may not be
visible by glancing at a dense set of edges. One of our techniques
for dense displays is based on detecting the intersection of the



E.E. Firat, B. Swallow and R.S. Laramee Visual Informatics 7 (2023) 56–65
Fig. 1. Overview of the PCP software tool. (A) The image displays user options, (B) the data with correlation glyphs under each axis pair, (C) interactive feedback
in a dense area with an arrow glyphs lens, (D) collapsed axes pairs with stacked labels, and (E) a color legend. The PCP displays the predictions that the number of
recovery in those under the age of 20 (Group 1) and the number of deaths in patients over the age of 70 (Group 7) will be higher than in other age groups. It also
shows that mortality is lower for health care workers. The data contains of 1593 lines of records.
edges with a glyph lens. The lens offers interactive feedback to
the user as a function of the current mouse position that specifies
center of the lens in the PCP (Section 3.3) in dense areas where
the relationship between the axes may be difficult to interpret.
The ∆ operator (Section 3.4) is one of the techniques developed
in order to understand the difference between two comparable
data sets. Also, axis pairs can be collapsed (Section 3.5) through
a selection that enables users to view a reduced set of axes,
motivated by redundant information.

Fig. 1 shows an overview of the PCP tool we developed that
allows a user to view different data sets via the user interface
on the right of the screen (A). To demonstrate the relationship
between each adjacent axis pair, correlation arrow glyphs are
positioned under the PCP view (B). The figure also shows an
example of a dynamic edge glyph lens (C) and some collapsed
axes with stacked labels (D). The color scale on the left (E) is
initially mapped to the edges on the first axis. This can be updated
by selecting another axis. One of the user options offered by the
tool is to display data labels and points where an edge crosses
the axes by hovering the mouse over the edges and highlighting
them. In addition, features such as rendering the average edge
by taking the average of all edges and showing the zero point
on the axes are also supported. See the demo video for complete
details (Video).

3.1. Ensemble data from a Covid-19 simulation

The ensemble data we study is a major motivation for the
techniques we develop here. RAMP VIS (RAMP) is a VIS volunteer
group that responded to a call by the Scottish COVID-19 Response
Consortium (SCRC) to support modeling scientists and epidemi-
ologists (SCRC). The primary objective is to build a stronger and
improved understanding of possible strategies to deal with the
Covid-19 outbreak in the United Kingdom. We study the ensem-
ble data set provided by the modelers by processing the large
amount of simulation data given to the RAMP VIS group in our

study. The data includes hundreds of time series for different
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regions of Scotland and different indicators (e.g., test, case, hos-
pitalized, and fatality) and different age groups. The ensemble
data is aggregated based on eight age groups and contains 23 pa-
rameters (see Fig. 1). Each age group exemplifies an age interval
(e.g. Group 1 –> [age≤20], Group 2 –> [20-29], . . . , Group 7 –>
[70≤age], and Group 8 –> Healthcare Workers) (See Appendix A).
The data contains the total numbers of susceptible, exposed,
asymptomatic, symptomatic, hospitalized, recovered, deceased
patients with a minimum, maximum, and mean values. Each age
group is recorded on daily basis for 198 days. Each row in the
data set represents a record of one day. See the Appendix A for a
more detailed description of the ensemble data.

By investigating the ensemble data in our novel PCP software,
we aim to assist users in exploring models such that users can
interactively compare outcomes across age groups, identify dif-
ferences between simulation parameters, and observe patterns as
well as reveal outliers and features in the data.

3.2. Axis correlation glyph

The correlation coefficient is beneficial to identify relation-
ships between the two variates. For some PCP examples, over-
lapped edges may create clutter and users may have difficulty
viewing patterns between axes. Results of a previous user-study
on PCP understanding reveal that identifying correlation can be
a barrier to PCP literacy (Firat et al., 2022). Deriving the slope
of the edges and interpreting the links between data variables
by looking at the PCP image can be challenging. Therefore, we
introduce arrow glyphs for each pair of axes to present correlation
values explicitly (see Fig. 1(B)). This offers users a convenient way
to interpret the relationship between two dimensions by glancing
at the correlation glyphs. Many-to-many PCP is an alternative
design to show the axes correlation, for example, the many-to-
many design of Wu et al. (2017) or Lind et al. (2009). We believe
that our glyph-based technique could benefit these visual layouts
as well. However, many-to-many axis layout is difficult to scale

as evidenced by the low number of dimensions.
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Fig. 2. The figure shows the glyphs that represent the correlation coefficient
value between adjacent axis pairs displayed in the θ ∈ [−90, +90] range. The
olor scale can be modified by the user.

The appropriate design of glyphs is critical for usability and
uccessful visual communication. Relevant visual channels should
e carefully selected and integrated for an effective glyph de-
ign (Koc et al., 2022). The study by Fuchs et al. (2016) me-
hodically gathers and categorizes the literature on data glyphs,
escribing their designs, questions, data, and tasks. The arrow
lyph is included in the ‘‘One-to-One Mapping’’ category. Borgo
t al. (2013) describe that glyph design can use a variety of visual
hannels, including shape, color, texture, size, and orientation.
ur glyph design reveals the relationship between axes-pairs
y presenting an arrow shape, using a peer-reviewed color li-
rary (Roberts et al., 2018) and direction of the slope for the
orrelation value. In addition, the color was consistent with the
olylines and the color scheme used in the PCP has also been
dapted to the correlation glyphs based on κ .
Design Justification: For dense PCPs, it may be difficult to

etermine relationships between data dimensions by observing
he slope of the edges. We use an arrow glyph that conveys cor-
elation value using slope information. The arrow glyph reveals
he trend between dimensions using both the slope and direction.
here are several other options possible here. Both bar charts and
ie charts can encode the same information such as a number
f intersecting edges and average slope. However, we wanted
o map slope of edges to a glyph with slope intuitively built in.
rrow glyphs already have these characteristics naturally build in
hereas other charts and glyphs generally do not.
The correlation values, κ , are calculated using Pearson’s Cor-

elation Coefficient (Bollen and Barb, 1981) for each axis pair.
he arrow glyph represents each pairwise coefficient value. The
ndividual distributions of the two related axis pairs are shown
n the range κ ∈ [−1, +1] and the arrow glyphs represent the
ange θ ∈ [−90, +90] and correspond to the correlation values,
, indicating negative and positive relationships respectively (see
ig. 2). In addition, the color scheme used in the PCP has also been
dapted to the correlation glyphs based on κ .

.3. Dynamic edge glyph lens

The underlying structure in the data is not always obvious in
CPs. The dense PCP resulting from overlapping of the edges may
ause information to be covered. This may make it difficult for the
ser to interpret the existing correlation and observe patterns.
hus, we introduce a glyph lens designed to reveal information
hat may be obscured by edge overplotting. Observing the dy-
amic glyph by hovering the lens over the edges offers the user a
ummary of the edges and of the average slope, θAVG, of the edges
epresented by arrows.

Design Justification: This is a special type of lens that fo-
uses on the space between the axes as opposed to the axes
hemselves. Frequency-based approaches previously presented in
he related work focus primarily on axes instead of relationships
etween axes. Our dynamic edge glyph lens solution offers a user
nteraction-based feature integrated into the PCP to uncover the
rends between axes and improve the interpretation of the data
59
Fig. 3. An overview of (a) the glyph lens, (b) edge intersection summary with
the dynamic edge glyph lens. This figure shows two attributes in the PCP and
three line edges that connect A and B. After the detection of the intersecting
edges for both, arrows are shown as in the lens (a) representing the edges.
Since there are two positively sloped and one negatively sloped edges showing
the relationship between A and B, the arrow representing the positive slope is
longer than the other as it indicates two edges.

(see Fig. 3). We chose the same arrow glyphs as in Fig. 2 because
they intuitively encode slope and thus the correlation between
axes. Other charts and glyphs can encode this same information
but not intuitively because the slope is not the predominant char-
acteristic of most charts and glyphs, e.g., pie charts, bar charts,
etc.

To address the overlap problem, we focused on the inter-
section of the edges with the lens, starting from the left axis
and ending on the right axis (in any pair). The dynamic edge
glyph shows the number of edges that intersect with the lens
and average slope, θAVG, of each intersecting edge (see Fig. 1(C)).
After calculating θAVG, the edges intersecting the lens are grouped
according to whether the edge has a positive or negative slope.
The two groups are represented by two arrows placed in the
lens glyph (see Fig. 3a). The upward arrow in the glyph lens
represents the average positive, θAVG+, and the other represents
the average negatively sloped edges, θAVG-. The resulting arrows
are designed similar to the correlation glyph arrow (Section 3.2).
They display the angle, θ ∈ [−90, +90] by calculating the average
angles of inclination θAVG+, θAVG− (see Fig. 3b). The magnitude
of the arrows is also scaled by the number edges (with positive
and negative slope) that intersect with the lens. The color of the
arrows is mapped to the color legend provided. This interactive
feature facilitates uncovering hidden correlation information be-
tween data axes by hovering the lens and observing the trends in
the data (see Fig. 4).

3.4. Multivariate subtraction operator, ∆

Plotting two data sets on the same PCP or two adjacent PCPs is
a common approach for comparison. However, both of these can
lead to challenges with large data sets as both may be dense to
start with. We introduce a multivariate subtraction operator, ∆,
that we can apply to compare two similar data sets on the same
PCP.

Design Justification: In our case, we have ensemble data from
a Covid-19 simulation, thus, the simulation configurations are
directly comparable. The Covid-19 simulation data is major inspi-
ration for our features because the modelers are very interested
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Fig. 4. An overview of (a) a color legend, (b) a dense area in the PCP, and (c) summary of edges in the same area with dynamic edge glyph lens (see Section 3.3).
The numbers indicate the number of edge intersections with the lens.
Fig. 5. Multivariate subtraction performed on the Group 1 ([dage ≤20]) and Group 7 ([70≤ dage]) in yellow and red respectively. The difference, ∆, is shown in the
PCP with blue polylines. Using ∆, multivariate differences between age groups become obvious with respect to hospitalizations, h, and mortality, d. Green points on
each axis address zero values on the axis.
w
t

in comparing different simulation configurations. The ∆ operator
reveals the differences between similar data sets e.g., the case
of ensemble data. The variation between data attributes such as
hospitalization or recovery numbers can be interpreted quickly.
Plotting the difference S∆ between two simulations, S1 and S2,
in the same space as S1 and S2 themselves is simple, fast, and
intuitive.

In order to perform the multivariate subtraction, the attributes
of the data sets are the same and in the same order, such as the
Covid-19 simulation (SCRC) we use. The edges of the difference
obtained after the subtraction can also be rendered and shown in
the PCP (see Fig. 5). As a result of plotting the difference data, S∆,
labels for minimum, d(min), and maximum, d(max), values are
updated.
60
The subtraction operator, ∆, is implemented to highlight
changes in simulation output parameters for different input con-
figurations that may or may not be similar. We perform subtrac-
tion on two configurations selected through the user interface
(see Fig. 1(A)). The second selected, S2, is subtracted from the
first, S1. This operation is applied by subtracting the correspond-
ing values in the same dimensions. Given a simulation, S, with
dimensions S(d0, d1, . . . , dn) the subtraction operator computes
the difference, ∆x, between data values, x, that correspond to one
another e.g.,

S∆ = S1(dn(xm)) − S2(dn(xm))

here dn is a given dimension and m is a given data index. With
he selection of S1 and S2, the maximum value of the axis, d(max),
is derived as the maximum value, d(min), of both S (d ) and
1 n
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Fig. 6. The collapsing of the hmean and hmin axis pair by right-clicking on the
correlation glyph showing the relationship between them. The labels of hmin are
stacked to indicate the collapsing process.

S2(dn), and the minimum value is set as −1 × d(max). The S∆

obtained as a result of subtraction is plotted on the PCP. Positive
or negative differences can be seen within the updated d(min)
and d(max).

Fig. 5 displays the output of the subtraction operator, ∆,
applied to Group 1 ([ ≤20]) and Group 7 ([70≤ dage]) provided in
the Covid-19 simulation (SCRC). The calculation is performed by
subtracting Group 7 from Group 1 plotted with polylines in yellow
and green respectively. We can see an example of this by looking
at the age group dimension. By subtracting the values of dage, the
result is -6 (1 − 7 = −6). The edges representing the difference
between two data sets are plotted within age groups ∈ [−8, +8],
shown in red. Green points on each axis indicate zero values for
each dimension and enable viewing the negative differences. The
result is shown in Fig. 5. The number of hospitalizations, h, and
deaths, d, in patients over 70 years of age is much greater than in
patients under 20 years of age.

3.5. Dimensionality reduction by collapsing axis pairs

The purpose of using parallel coordinates is to expose par-
ticular features in the multivariate data. However, the essential
information sometimes may not be obvious due to overlapping
edges and a high number of dimensions plotted in the PCP. The
images vary depending on the order of axes. In order to display
the relationship between dimensions, we use glyphs showing the
tendency between each axis pair and the corresponding correla-
tion, κ , (see Section 3.2). By using on these correlation glyphs, the
user may exploit relationship-guided dimensionality reduction
via collapsing of axis pairs.

Design Justification: The high-dimensional ensemble data is
based on eight age groups and contains 23 parameters with
minimum, maximum and mean values of each indicator. The data
includes repetitive information. We introduce this user option
61
that gives a different perspective on the data dimensions by
removing some of the redundant elements that do not add new
information to the PCP. The objective of collapsed axis pairs is
to decrease the number of dimensions and depict a less complex
PCP view e.g., especially for values of κ = 1. This feature enables
the user to explore and display the relationship between dimen-
sions, d, that they choose to emphasize and with less redundant
information (see Fig. 1(D)).

The user option provides a new view of the data dimensions by
reducing some of the redundant dimensions that do not present
a particularly notable pattern in the PCP. Collapsing axes can be
guided by observing correlation glyphs. For example, pairwise
axes with a correlation κ of unity may be collapsed without loss
of information. The process is performed by right-clicking on a
correlation glyph for a given axis pair and reducing the space
between them by translating the right axis closer to the left axis.
In the new layout, the axis name and maximum value labels of the
right axis are stacked under the left labels of the pair axis while
the minimum label is placed on the top of other minimum value
labels. The collapsing procedure can be undone by right-clicking
on the same correlation glyph to obtain the previous PCP view.

Fig. 6 demonstrates an example of axis pair collapsing between
hmean and hmin (h: Hospitalization). Selected collapsed axis groups
are data variables with, κ = +1, in other words, showing a direct
relationship. As a result of the collapsing of an axis pair, two
dimensions are positioned side-by-side and axis labels stacked on
top of each other are displayed. Fig. 1(D) shows an example where
3 dimensions are juxtaposed after collapsing two-axis pairs. With
the dimensionality reduction feature, redundant and repetitive
information that makes it more challenging to reveal patterns in
the data can be excluded.

Additional Features: In addition to the previous features we
introduced, the software includes features that are helpful in
exploring the ensemble simulation data. We provide a feature
that allows the min and max labels to be updated such that the
axis data in a given range can be scaled. We offer six different
color scales for color mapping in the PCP using a color library by
Roberts et al. (2018). We also introduce the features of drawing
the average polyline using the average of the edges, or rendering
the positive and negative sloped edges by right-clicking on any
area of the PCP, using focus+context. Finally, we developed a
κ matrix to understand the relationship between each data di-
mension combination. In the matrix, the user can select one of
the dimensions and sort the correlation values from smallest to
largest.

4. Evaluation

We provide three use cases to evaluate our techniques and
provide a demo video for these use cases. We demonstrated the
software to the domain expert and reported feedback collect from
the expert in this section. See the demo video for details (Video).

4.1. Case-study

In this section, three use cases demonstrate the effectiveness
of our techniques in understanding underlying trends in the
Covid-19 ensemble data.

Use Case 1: Multivariate Comparison of Age Groups To ex-
plore the multivariate differences between age groups, we used
the ∆ operator between two age groups in the first simulation
configuration presented in Fig. 1. For example, we render the
relationship between the simulation results under age 20 (Group
1) and above age 70 (Group 7) (see Fig. 5) by applying the ∆

operator to these age groups. We observe that the hospitalization

and mortality numbers are much higher compared to Group 1.

https://vimeo.com/652208042
https://vimeo.com/652208042
https://vimeo.com/652208042
https://vimeo.com/652208042
https://vimeo.com/652208042
https://vimeo.com/652208042
https://vimeo.com/652208042
https://vimeo.com/652208042
https://vimeo.com/652208042


E.E. Firat, B. Swallow and R.S. Laramee Visual Informatics 7 (2023) 56–65

a

a
p
e
m
T
t
r
t
b
t
W
s
d
(
i

t
W
t
W
a
d
p
b
g

4

V
d
(
c
b
u
o
w
&
t

Fig. 7. This figure displays the subtraction operator applied to Simulation 3 with lowest pinf and Simulation 101 with highest pinf . The color is mapped to the first
xis [−8, +8] of the PCP.
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Use Case 2: Comparing Input Parameter Values, pinf Prob-
bility of infection, pinf, is one of the most interesting input
arameters of the simulation according to the simulation domain
xperts. We selected the two simulations with the minimum and
aximum, pinf (min) and pinf (max), for input parameter values.
hen we utilized the ∆ operator to compare the outcomes for
hese two simulations to investigate how influential the pinf pa-
ameter is and understand how input parameter values influence
he output. To compare two simulations, we sorted simulations
y the pinf value and included all age groups in Simulation 3 with
he lowest pinf value and Simulation 101 with the highest pinf.
e then used ∆ operator to render the difference between these

imulations. As a result of ∆, Simulation 101 shows a very clear
ifference for all output parameters compared to Simulation 3
see Fig. 7). The ∆ operator indicates that pinf is a very influential
nput parameter.

Use Case 3: κ-guided Dimensionality Reduction We examine
he PCP in Fig. 1 and the correlation glyphs under each axis pair.
e observe that there is always a direct relationship between

he mean, min and max values of each parameter in the output.
e used this observation to reduce the redundant dimensions

nd produce a new image with the redundant axes removed. The
imensionality reduction technique we utilize by collapsing axis
airs results in an image that reduces the number of dimensions
y almost 50% in the PCP (see Fig. 8). Note that the pairwise
lyphs are also preserved and remind the user of the redundancy.

.2. Domain expert feedback

This work is partially carried out in collaboration with Ramp
is (RAMP) team, who support the modeling scientists and epi-
emiologists in the Scottish COVID-19 Response Consortium
SCRC) (see Section 3.1). We had three meeting sessions, in-
luding visualization experts, modelers, and statisticians. The
rainstorming sessions facilitated understanding of the data sim-
lations and exploring the most influential input parameters. We
rganized a feedback session and interviewed Dr Ben Swallow,
ith a PhD in Statistics and working in the School of Mathematics
Statistics, University of Glasgow. He has been working in sta-
istical simulation and estimation for seven years and has spent
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pproximately four years on epidemiological studies. Some of his
ork focuses on Bayesian parameter inference and model selec-
ion and methods for zero-inflated data. Our interview questions
ere adopted from Hogan et al. (2016).
Correlation Glyph: We demonstrated the correlation glyphs,

nd he reported: ‘‘It’s a really good way of guiding the dimension re-
uction when you have so much information. Users are trying to find
way of deciding how to reduce it down and extract information.

t’s pretty cool’’.
Dynamic Edge Glyph Lenses: When we presented the both

lyph lenses to watch the behavior of the glyphs and discover
reas with a lot of variation, he stated that the feature is useful
nd added; ‘‘I think it’s just another way of looking at the kind of
ensitivity to that particular parameter and in what direction it’s
oing. I particularly know the type of people that would likely use
his. I think you can get this through more hardcore mathematical
ensitivity analysis, but I think getting an idea of a sensitivity across
egions of parameters and different parameters will be very welcome.
t would be huge benefit of having this type of software. Yes, I really
ike that’’.

Dimensionality Reduction: We mentioned that there are a lot
f redundant dimensions in the data and to the expert. He agreed
n this and reported: ‘‘Yes, that’s [redundant dimensions] what we
ound from the mathematical analysis as well. It was pinf and Ps that
e really the only two parameters that had any impact at all. It
eems that’s what’s being visualized here and in a much more clear
anner’’.
Use Case 1: Comparing Age Groups When we first demon-

trated the subtraction operator, ∆, to the expert, he liked the
oncept of presenting the difference between two multidimen-
ional data sets visually to compare them and stated: ‘‘I think it’s
ighlighting differences. The differences are going to be specific to
articular groups or compartments of the model. So I like being able
o observe that. From a policy point of view, you think ‘‘if I change
his parameter, what’s it going to change?’’ If it has a negative impact
n say younger people, in terms of the number of cases, but maybe
t reduces the deaths in another age category, then that’s going to be
seful from a policy perspective rather than just saying, ‘‘well, we’ve
ust looked at the combined groups’’. There’s going to be more cases
n group two. You know group two is going to be less impacted by
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Fig. 8. This figure demonstrates dimensionality reduction applied on axis pairs with κ = 1.
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Covid-19 in general. And knowing how it’s affecting things in a more
detailed and visual way, I think, is really useful’’.

Use Case 2: Comparing Input Parameter Values, pinf The pinf in-
ut parameter has a significant influence on the outcome, and the
ifference between simulations verifies that. We demonstrated
his in Fig. 7 and asked the expert if he finds this helpful. He
ommented: ‘‘I would like confirming what we have done already
formal mathematical sensitivity analysis], or if we used the software
irst and looking at what we think might be the most important
arameters. You know most of the model developers will have an
dea of which is the most important parameters are. Visualizing that
s very useful for confirmation’’.

We also asked the expert how he figured out the most influ-
ntial parameters without the software and how long it takes. He
eported: ‘‘We normally have to do a full mathematical sensitivity
nalysis of the model. You could look at things like histograms of the
utput, so they would tend to be either visualized viewpoints, but
robably nowhere near as sophisticated as this. Or kind of formal
athematical way you look at things like the derivative, i.e., changes

n the output as a function of the different parameters. But that’s a
ot more complex and time-consuming than this. The process really
epends on the complexity of the model and number simulations you
ave to do, but it would take probably at least a couple of hours to
un mathematical analysis. Because you generally use a Monte Carlo
pproach across lots of simulations as you are plotting here. But
gain, there are lots of different questions that you could ask using
his the PCP software in terms of the sensitivity across time, different
ge groups, and different classes. You would have to do it on the
eparate simulation or sensitivity analysis for each of those different
onfigurations, whereas here you have the option of interrogating
hem all in one go or very quickly switching between the different
uestions that you might want to ask of them to the model’’.

se Case 3: κ-guided Dimensionality Reduction Dimensionality
eduction and axis ordering are still considered unsolved prob-
ems. We demonstrated our κ-guided dimensionality reduction
eatures by collapsing axis pairs (see Fig. 8). We asked the expert
f the feature let him see anything that he might previously
ave not been able to see or make some new observations or

ypotheses. He reported: ‘‘One of the common aspects of these
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ypes of models is over parameterization. When you try and es-
imate the parameters, if the model is not sensitive at all to the
nput parameters, then no matter how much you try and make
ny inference, it is not going to be useful at all. So from that
erspective, I think this feature is useful. The standard approach to
eal with overparameterization is that if you have got parameter
edundancies to make some model reduction — that’s quite complex
o do without a good understanding of the model and where it is lack
f sensitivity arises. So I think it would be really helpful in deciding
ow to think about either combining outputs into a single one. For
xample, if there was age differentiation or there was no impact on
he parameters on age, then I think you would see that here and
n terms of looking at the different compartments, I think that is
eally useful. Parameter redundancy is generally quite a useful way
f guiding model reduction and that would be very helpful there’’.
We asked the expert if the feature might increase confidence

n terms of the correctness or accuracy of the simulations. He
tated: ‘‘Yes, I’m sure. If you are seeing some of the maximum
umbers, if you knew, for example, that hospitalizations never got
bove a particular point but your model is consistently estimating
umbers of hospitalizations to be in the hundreds of thousands, and
ou know that’s not realistic, you would probably have some lack
f confidence in that model. I think that could be something else
hat this helps with. In terms of focusing where you perhaps want
o do data collection as well, if you know there’s a lot of sensitivity.
t seems like hospitalization in this model are a very sensitive, very
aluable output. Then you might try and focus your data collection
n that when you want to make inferences and try and estimate
hese parameters. That would probably be a good way of guiding
hat decision as well’’.

. Conclusion and future work

We present interactive glyph lenses, which enable users to
xplore an overplotted image with a dynamic lens that hovers
ver the PCP using mouse position. This interaction outlines the
dges that overlap with the lens, represented by arrow glyphs
hat show the average slope, θAVG, of a dense collection of edges.
e display an arrow glyph below each adjacent axis pair that

ndicates the correlation between dimensions. We present a di-
ension reduction technique that allows users to simplify a PCP
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ased on the correlation value, κ , between adjacent axes and
ollapsing axis pairs that do not add information to the display.
e also provide a user option we call a subtraction operator,
, which displays the difference between two multidimensional
ata sets for comparison. We evaluate our techniques with a case
tudy based on a simulation of Covid-19 in collaboration with a
odeling expert.
One limitation we encounter with a dynamic lens is run-

ime edge detection, which may slow down when there are too
any edges. In addition, with large data sets, the performance of
etecting edge intersections starts to degrade. In the next step,
re-computing a summary of edge intersections in a static grid
nd then displaying the meta-data, rather than trying to calculate
he edge intersections at run-time, is a way to manage this
hallenge. We also note that the subtraction operator is currently
imited to (and targeted at) ensemble data. A more generalized
ersion remains future work.
Future improvements addresses limitations e.g., sorting axis

airs based on correlation value in ascending order and updating
he PCP view accordingly. However, plotting axis pairs according
o pairwise, κ , order is not feasible with the traditional PCP axis
rdering. Therefore, introducing a new axis plotting approach
o convey the axes’ relationships is a future endeavor. Another
imitation is scalability, i.e., how to arrange axis labels when 10
r more pairs of neighboring axes are collapsed. Future direc-
ions address other limitations such as, including multiple lenses,
djustable lens size, and additional operators, such as addition,
ultiplication and division of simulation data sets.
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ppendix A. Covid-19 simulation data

The simulation model used is from the Epidemiology, Eco-
omics and Risk Assessment (EERA) model (EERA). The model in-
orporates an inference process to estimate the range of parame-
ers of interest and the ranges of parameters to extract parameter
onfigurations. In this case, there are 160 parameter configura-
ions. For each configuration there are multiple simulation runs.
n this case, 1000 runs result in different predictions.

The model takes the same set of input parameters, called sim-
lation configurations that yield different output results for each

un. The model aims to provide the range of output possibilities

64
for each possible prediction. For each output result, minimum,
maximum and mean values of output parameters are provided.

For the model, there is a long list of parameters, some are
inferred, some are estimated a priori, and some are fixed across
runs. Here are the critical input parameters:

• nsse_cases: Normalized sum of square error for the number
of cases

• nsse_deaths: Normalized sum of square error for the num-
ber of deaths

• p_inf: Probability of infection
• p_hcw: Probability of infection (Healthcare worker)
• c_hcw: Mean number of healthcare worker contacts per day
• d: Proportion of population observing social distancing
• q: Proportion of normal contact made by people self-

isolating
• p_s: Age-dependent probability of developing symptoms
• rrd: Risk of death if not hospitalized
• lambda: Background transmission rate

For each age group (8 age groups) there are;

• 200 days of predicted time-series of each output data di-
mension in the model

• 16 distinct output data dimensions (see the list below)

he model generates a number of output files for each run. In
otal, 160 (parameter configurations) × 16 (data dimensions) ×

000 (runs) × 8 (age groups) = 20,480,000 time series of 200
ays each. The data we display by default is the first configura-
ion.

The output simulation parameters are as follows:

• Age Group: Age groups ID are used in the model.
• Day: The day for the record
• S: Number of susceptible individuals (not infected)
• E: Number of infected individuals but not yet infectious

(exposed)
• I: Number of infected and infectious asymptomatic individ-

uals
• IS: Number of infected and infectious symptomatic individ-

uals
• H: Number of infected individuals that are hospitalized
• R: Number of infected individuals that are recovered from

infection
• D: Number of dead individuals due to disease

The age groups ID as used in the model are here:

• Group 1: Under 20
• Group 2: 20–29
• Group 3: 30–39
• Group 4: 40–49
• Group 5: 50–59
• Group 6: 60–69
• Group 7: 70+
• Group 8: Health Care Workers

ppendix B. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.visinf.2022.10.003.
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