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Abstract
Humans have developed considerable machinery used at scale to create policies and to
distribute incentives, yet we are forever seeking ways in which to improve upon these,
our institutions. Especially when funding is limited, it is imperative to optimise spending
without sacrificing positive outcomes, a challenge which has often been approached within
several areas of social, life and engineering sciences. These studies often neglect the avail-
ability of information, cost restraints or the underlying complex network structures, which
define real-world populations. Here, we have extended thesemodels, including the aforemen-
tioned concerns, but also tested the robustness of their findings to stochastic social learning
paradigms. Akin to real-world decisions on how best to distribute endowments, we study
several incentive schemes, which consider information about the overall population, local
neighbourhoods or the level of influence which a cooperative node has in the network, selec-
tively rewarding cooperative behaviour if certain criteria are met. Following a transition
towards a more realistic network setting and stochastic behavioural update rule, we found
that carelessly promoting cooperators can often lead to their downfall in socially diverse
settings. These emergent cyclic patterns not only damage cooperation, but also decimate the
budgets of external investors. Our findings highlight the complexity of designing effective
and cogent investment policies in socially diverse populations.

Keywords Evolutionary game theory · Evolution of cooperation · Cost efficiency ·
Incentives · Scale-free networks · Prisoners’ dilemma

This article is part of the topical collection ”Evolutionary Games and Applications” edited by Christian
Hilbe, Maria Kleshnina and Kateřina Staňková.
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1 Introduction

The design of mechanisms that encourage pro-social behaviours in populations of self-
regarding agents is recognised as a major theoretical challenge within several areas of social,
life and engineering sciences. It is ubiquitous in real-world situations, not least ecosystems,
human organisations, technological innovations and social networks [3, 14, 23, 43, 47, 52].
In this context, cooperation is typically assumed to emerge from the combined actions of
individuals within the system. However, in many scenarios, such behaviours are advocated
and promoted by an external party, which is not part of the system, calling for a new set of
heuristics capable of engineering a desired collective behaviour in a self-organised complex
system [38]. Among these heuristics, several have been identified as capable of promoting
desired behaviours at a minimal cost [10, 11, 13, 18, 19, 22, 26, 59]. However, these studies
neglect the diversified nature of contexts and social structures which define real-world popu-
lations. Here, we analyse the impact of diversity by means of scale-free interaction networks
with dissimilar levels of clustering [6, 46] and test various interference mechanisms using
simulations of agents facing a cooperative dilemma.

For instance, if one considers a near future, where hybrid societies comprising humans and
machines shall prevail, it is important to identify the most effective incentives to be included
to leveraging cooperation in such hybrid collectives [3, 14, 24, 37]. In a different context,
let us consider a wildlife management organisation (e.g. the WWF) that aims to maintain a
desired level of biodiversity in a particular region. In order to do that, the organisation, not
being part of the region’s ecosystem, has to decide whether to modify the current population
of some species, and if so, then when and in what degree to interfere in the ecosystem
(i.e. to modify the composition of the population) [29]. Since a more impactful intervention
typically implies larger costs in terms of human resources and equipment, the organisation
has to achieve a balance between cogent wildlifemanagement and a low total investment cost.
Moreover, due to the evolutionary dynamics of the ecosystem (e.g. frequency and structure
dependence) [28, 30, 47], undesired behaviours can reoccur over time, for example when the
interference was not sufficiently strong in the past. Given this, the decision-maker also has
to take into account the fact that it will have to repeatedly interfere in the ecosystem in order
to sustain levels of biodiversity over time. That is, they must find an efficient interference
mechanism that leads to their desired goals, while also keeping in mind potential budget
concerns.

Moreover, real-world networks of individuals, such as social networks and networks of
collaboration, are inherently heterogeneous [6]. Moreover, in the context of evolutionary
game theory (EGT), scale-free networks implymore than the underlying interaction structure.
Heterogeneous graphs can portray social diversity [48] and the inherent inequality that exists
between individuals. Individuals vary in influence and accumulated wealth, and this diversity
has been shown to play a key role in the evolution of cooperative behaviours [42, 47],
enhancing the resilience of cooperation by inducing cooperative agents to create assortative
clusters, where they reciprocate cooperation. Notwithstanding, several recent works have
also discovered that heterogeneity could play a negative role in the evolution of cooperation,
in the context of weak selection [2, 31, 32, 55]. These findings lend particular importance to
carefully considering network structures when designing incentive schemes.

Specifically, we consider populations of individuals distributed in a scale-free network,
who interact with their neighbours via the one-shot prisoner’s dilemma (PD), where uncoop-
erative behaviour is preferred over cooperation [40, 44, 47, 51]. As an outside decision-maker,
we aim to promote cooperation by interfering in the system, rewarding particular agents in
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the population at specific moments. The research question here is to identify when and how
much to invest (in individuals distributed in a network) at each time step, in order to achieve
cooperation within the system such that the total cost of interference is minimised, taking
into account the fact that individuals might have different levels of social connectivity. For
instance, wemight wonder whether it is sufficient to focus the investment only on highly con-
nected cooperators, as they are more influential. Would targeting influencers reduce overall
costs? Do we need to take into account a neighbourhood’s cooperativeness level, which was
shown to play an important role in square lattice networks [22]? Also, when local information
is not available and only global statistics can be used in the decision-making process, how
different are the results in heterogeneous networks, in comparison with regular graphs (i.e.
homogeneous networks)?

To answer these questions, this paper will systematically investigate different general
classes or approaches of interference mechanisms, which are based on (i) the global popula-
tion statistics such as its current composition, (ii) a node’s degree centrality in the network
and (iii) the neighbourhood properties, such as local cooperativeness level.

Our results show that interference on scale-free networks is not trivial. In particular,
we highlight that the inconsiderate distribution of incentives can lead to the exploitation
of cooperators. We present which mechanisms are more efficient at fostering cooperation,
arguing that social diversity and the network’s clustering coefficient both play a key role in the
choice of interference mechanisms available to institutions wishing to promote cooperation.

2 Model andMethods

2.1 Prisoner’s Dilemma on Scale-Free Networks

We consider a population of agents on scale-free networks of contacts (SF NoCs)—a widely
adopted heterogeneous population structure in population dynamics and evolutionary games.
We focus our analysis on the efficiency of various interference mechanisms in spatial set-
tings, adopting an agent-based model directly comparable with the setup of recent laboratory
experiments on cooperation [45].

One of the main targets of this work is therefore to measure the impact of network prop-
erties and structural heterogeneity in the evolutionary dynamics of interference behaviours.
To measure these effects, we will make use of two types of scale-free networks [6, 16, 34],
generated through two growing network models: the Barabási and Albert (BA) model [6]
and the Dorogovtsev–Mendes–Samukhin (DMS) model [17].

The Barabási and Albert (BA) model [6] is one of the most famous models used in the
study of highly heterogeneous, complex networks. Themain features of theBAmodel are that
it follows a preferential attachment rule and has a small clustering coefficient and a typical
power-law degree distribution. In order to explain preferential attachment, let us describe the
construction of a BA network. Starting from a small set ofm0 interconnected nodes, each new
node selects and creates a link with m older nodes according to a probability proportional to
their degree. The procedure stops when the required network size of N is reached. This will
produce a network characterised by a power-law distribution,

pk ∼ k−γ , (1)

where the exponent γ is its degree exponent [5]. There is a high degree correlation between
nodes, and the degree distribution is typically skewed with a long tail. There are few hubs
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in the network that attract an increasing number of new nodes which attach as the network
grows (in a typical “rich-get-richer” scenario). The power-law distribution exhibited by BA
networks resembles the heterogeneity present in many real-world networks. However, they
are also defined by low clustering coefficients, which means they cannot always be used to
approximate realistic settings [54].

To build heterogeneous networks with a large clustering coefficient, [17] have proposed
the eponymous DMS model. This model follows a similar method of construction as the
BA model, is also exemplary of the preferential attachment rules and follows a power-law
degree distribution. Crucially, each new node connects with the two extremities ofm (m ≥ 2)
randomly chosen edges, instead, therefore forming characteristic triangular motifs whenever
a new node is added to the network. Since the number of edges arriving to any node reflects its
degree, the probability of attaching the new node to an old node is proportional to its degree
and preferential attachment is recovered. The degree distribution is therefore the same as the
one of a BA model, and the degree–degree correlations are also equal [15]. However, the
clustering coefficient is large, and more accurately mimics many realistic social networks
[7, 54]. Moreover, we select an initial number of nodes m0 = 2, with two additional edges
being created at every time step of network generation. This produces networks of average
connectivity z = 4, serving as a direct comparison between this work and other studies
performed on structured populations [22].

Initially each agent in a population of size N is designated as either a cooperator (C)
or defector (D) with equal probability. Agents’ interaction is modelled using the one-shot
prisoner’s dilemma game, where mutual cooperation (mutual defection) yields the reward R
(penalty P) and unilateral cooperation gives the cooperator the sucker’s pay-off S and the
defector the temptation T . As a popular interaction model of structured populations [36], we
adopt the following scaled pay-off matrix of the PD (for row player):

(C D

C 1 0
D b 0

)
,

with b (1 < b ≤ 2) representing the temptation to defect. We adopt this weak version of the
prisoner’s dilemma in spite of cooperation prevalence shown in previous works on scale-free
networks [48], so as to have a direct comparison with studies on the effects of rewarding
mechanisms in different types of networks [22].

At each time step or generation, each agent plays the PD with its immediate neighbours.
The score for each agent is the sum of the pay-offs in these encounters. Before the start
of the next generation, the conditions of interference are checked for each agent, and if
they qualify, the external decision-maker increases their pay-off. Multiple mechanisms (i.e.
multiple conditions) can be active at once, but the individual investment cannot be applied
more than once; the schemes determine the eligibility for investment.

At the start of the next generation, each agent’s strategy is updated using one of two social
learning paradigms—a deterministic or a stochastic rule. Using a deterministic update rule,
each agent will choose to imitate the strategy of its highest scored neighbour [36, 56]. In the
stochastic case, instead of copying the highest scored neighbour, at the end of each generation
an agent A with score f A chooses to copy the strategy of a randomly selected neighbour agent
B with fitness fB , using a pairwise comparison rule, with an imitation probability given by
the Fermi–Dirac function [57]:

(1 + e( f A− fB )/K )−1,
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where K denotes the amplitude of noise in the imitation process [56]. We set K = 0.1 in
our simulations, a value usually adopted in previous works [11, 41, 56]. Our analysis will
be based on this standard evolutionary process in order to focus on understanding the cost
efficiency of different interference mechanisms.

We simulate this evolutionary process until a stationary state or a cyclic pattern is reached.
The simulations converge quickly in the case of deterministic update, with the exception of
some cyclic patterns which never reach a stationary state. Because this work studies cost-
effective intervention, these rarely occurring patterns which inherently invite very large total
costs are escaped early by running simulations for 75 generations (deterministic update) and
500 generations (stochastic update), at which point the accumulated costs are excessive
enough for this mechanism to not be of interest. The difference in the final number of
generations accounts for the slower convergence time associated with stochastic dynamics.
Moreover, the results are averaged for the last 25 generations of the simulations for a clear
and fair comparison (e.g. due to cyclic patterns). In order to improve accuracy related to the
randomness of network topology in scale-free networks, each set of parameter values is ran on
10 different pre-seeded graphs for both types of SF NOCs. Furthermore, the results for each
combination of network and parameter values are obtained from averaging 30 independent
realisations. It is important to note that the distribution of cooperators and defectors on the
network is different for every realisation.

Note that we do not consider mutations or random explorations when employing a deter-
ministic update rule. Thus, whenever the population reaches a homogeneous state (i.e. when
the population consists of 100% of agents adopting the same strategy), it will remain in that
state regardless of interference. Hence, whenever detecting such a state, no further interfer-
ence will be made. Errors can sometimes occur under the presence of stochastic imitation;
thus, we never pre-emptively pause these simulations. Given the difference in convergence
time, network size and stopping conditions,we do not directly compare the total costs between
these two paradigms.

2.2 Cost-Efficient Interference in Networks

We aim to study how one can efficiently interfere in spatially heterogeneous populations to
achieve high levels of cooperation while minimising the cost of interference. An investment
decision consists of a cost θ > 0 to the external decision-making agent/investor, and this
value θ is added as surplus to the pay-off of each suitable candidate. In order to determine cost
efficiency, we vary θ for each proposed interference strategy,measuring the total accumulated
costs to the investor. Thus, the most efficient interference schemes will be the ones with the
lowest relative total cost.

Moreover, in line with previous works on network interference [10, 22, 26], we com-
pare global interference strategies where investments are triggered based on network-wide
information, local neighbourhood information and, lastly, node centrality information.

In the population-based (POP) approach, a decision to invest in desirable behaviours is
based on the current composition of the population. We denote xc the fraction of individuals
in the population adopting cooperative behaviour. Namely, an investment is made if xc is
at most equal to a threshold pc (i.e. when xc ≤ pc), for 0 ≤ pc ≤ 1. They do not invest
otherwise (i.e. xc > pc). The value pc describes how rare the desirable behaviours should
be to trigger external support.

In the neighbourhood-based (NEB) approach, committing an abuse of notation, a decision
to invest is based on the fraction xc of neighbours of a focal individual with the desirable
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behaviours, calculated at the local level. Investment happens if xc is at most equal to a
threshold nc (i.e. when xc ≤ nc), for 0 ≤ nc ≤ 1; otherwise, no investment is made.

Given the deliberate inequality between nodes, we need a measurement to distinguish
important/influential nodes from less important ones. The degree centrality is the oldest
measure of importance or influence ever used in network science [9]. It denotes the number
of neighbours of the node i ; namely, it measures the number of edges of node i . By definition,
degree centrality is normalised using the total number of nodes, or the maximal possible
degree, n − 1, to obtain a number between 0 and 1. Despite its simple definition, degree
centrality is often a highly effective measure of the influence or importance of a node, since
people with more connections tend to be more influential in a social network [8, 35]. The
reason why we define degree centrality by using the previous normalised definition, and not
simply the degree, is that it allows us to compare two nodes that belong to different networks
regardless of network size [50]. We will refer to this examination as the node influence-based
(NI) approach. Degree centrality, denoted by NI-deg or xdeg

i , is defined as follows:

xdeg
i = degi = ki

n − 1
, (2)

where ki is the degree of the node i and n − 1 is the total number of nodes. The degree ki

of a node i is given by: ki = ∑n
j=1 Ai j , where A is the adjacency matrix of a finite graph,

populated with pairs of vertices which are adjacent (i.e. connected). The decision-maker
invests in a cooperator node C when the value of its degree centrality is above a threshold of
influence cI , for 0 ≤ cI ≤ 1. Otherwise, i.e. when 0 ≤ xi < cI , no investment is made. The
value cI describes how influential a cooperator node should be to trigger an investment into
its survival.

For the POP and NEB schemes, the threshold signifies an increase in the number of
nodes that satisfy the requirements for investment. In other words, a threshold of 1 means
always investing in all nodes which follow the desired strategy. Conversely, a lower threshold
implies a more careful approach to investment, whereby the exogenous agent is stricter in
their selection of suitable candidates. The opposite is true for NI, as a value of 1 implies
only the most connected individual(s) is eligible for investment, whereas a value of 0 means
investing in every cooperative agent.

Interestingly,we posit that thesemechanisms require different levels of information,which
may or may not be readily available in the given network. In some cases, such as social net-
works, the connectivity (i.e. the number of friends) of a node is virtually free information
which requires no effort on the part of the external decision-maker to discern. On the other
hand, neighbourhood-based approaches inherently require more information about the pop-
ulation and the level of cooperativeness in different parts of the network. Thus, POP is a
broad mechanism which only requires knowledge about overall cooperativeness, but NEB
invites complex information gathering, in order to determine the cooperativeness in each
neighbourhood. Combining NI with NEB does not require any additional observation than
NEB by itself. Our study of neighbourhood-based interference does not directly take into
account the cost of gathering information, it is a comparison between perceived gains in
cooperation and the associated per-individual cost of interference set out in the interference
mechanisms. Our discussion will naturally present these subtle differences in the hierarchy
of information gathering, as they signal hidden costs for some application domains.



Dynamic Games and Applications

3 Results

In contrast to the study on square lattice networks [22], we found that performing cost-
effective interventions onSFNOCs exhibits complex patterns and presentsmultiple concerns.
In structured populations, more detailed observations resulted in effective interventions with
improved outcomes. On the other hand, more knowledge about the population in SF NOCs
simply reduces the risk of interfering to the detriment of cooperators. In other words, inter-
fering in SF NOCs without adequate knowledge should be approached cautiously or it could
act to the benefit of defectors. This issue is prevalent in SF networks with low clustering (BA
model), but also sees some representation in highly clustered (DMS) networks if stochastic
dynamics are taken into account.

Successfully investing in BA populations broadly requires heavy-handed investment and
large individual endowments (often orders of magnitude higher than similar mechanisms
performed on square lattice populations) or a blanketing mechanism that targets all or almost
all cooperators, even those which are not necessarily in danger of converting to defection.
Converging to 100% C is very difficult unless both of these conditions are met and this intro-
duces multiple concerns in the role of an exogenous interfering party. We avoid focusing on
solutions where the per-generation cost is excessive, as it is unlikely for any institution to
be able to produce unrealistically high endowments, as required by these heterogeneous net-
works. Insteadwe focus on effective interventionwithmanageable amounts of per-generation
cost. In the following subsections, we structure our results based upon the most important
findings and provide relevant references to each studied investment scheme where appro-
priate. Initially, we will present the results for the deterministic update scheme and then the
stochastic update, pointing out any difference between the two. All the main findings are
robust irrespective of the social learning paradigm employed.

3.1 Careless Rewarding Leads to the Exploitation of Cooperators

In direct contrast to previous findings for positive incentives [10, 22, 26], an external
decision-maker should only interfere in scale-free networks with great care, as investing
indiscriminately can lead to the detriment of cooperation (see Fig. 1). We observe that inclu-
sive approaches to interference negatively impact the mean frequency of cooperation if the
individual endowments are not sufficient to turn defectors away from the temptation of
defecting. By inclusive approaches, we imply high values for the threshold that determines
the eligibility of investment (for POP and NEB schemes). If an external investor hedges their
bets, targeting a wide spread of nodes (high threshold) with reduced individual endowments,
they risk dooming cooperators. In such a scenario, we see the formation of cyclic patterns,
ultimately allowing D players to exploit cooperators (see Fig.2). In this way, an investor
would be artificially allowing the survival of cooperators in clusters dominated by defectors,
abetting the possibility of these sparsely connected clusters to take over larger formations
which cannot easily be maintained by defectors. We note that some of these cyclic patterns
eventually converge to a stable state, but the accumulated costs of interference at the end of
these long-lasting patterns is prohibitively large.

In the presence of deterministic selection, this finding ismostly restricted to classical scale-
free networkswith lowclustering (generated using theBAmodel), but relaxing the intensity of
selection produces similar results even with more realistic levels of clustering (see Sect. 3.4).
Social diversity changes the inherent nature of the problem of rewarding cooperators effec-
tively. Previous results show the emergence of cooperation in heterogeneous networks [47,
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Fig. 1 Fraction of defectors as a function of the mean total cost for each scheme (deterministic update). The
markers’ size is determined by the individual investment θ (grouped to the nearest value), whereas the colour
indicates the threshold. Points near the origin indicate the optimal solutions. The horizontal red lines indicate
the baseline level of defection in the absence of rewards for either network type (i.e. BA or DMS). Parameters:
b = 1.8; N = 5000

Fig. 2 Typical time evolution of cooperation, for θ = 5, pC = 0.8 (deterministic update). The left column
shows the network without interference, while the right one shows the same network after population-based
(POP) interference. Some configurations for BA resolve to full C, here we show the scenario in which they do
not. Other parameters: b = 1.8; N = 5000
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Fig. 3 Fraction of cooperation and total cost for population-based (POP) interference, using deterministic
update. Parameters: b = 1.8; N = 5000

48] (shown also in horizontal red lines in Fig. 1). Compared to homogeneous (well-mixed)
and structured populations, there is little improvement to be made in these settings. As the
room for improvement narrows, the risk of acting to the detriment of cooperators increases.
Individual benefactors prosper temporarily, but the recipients of their naivety are none other
than the defectors who exploit them.

3.2 Clustering Reduces the Burden of Investment

Real-world networks have been observed to have higher levels of clustering than what nor-
mally occurs in typical scale-free networks [7, 54]. Nevertheless, several domains, such as
the topology of the WWW, remain, in which the nodes are sparsely clustered [1, 4, 5]. Thus,
it is important to design interference schemes which can target either type of scale-free net-
works, especially so if there exists a degree of uncertainty about the presence of clusters, or
if measuring this factor is unfeasible. We have already mentioned the risks associated with
inadequate reward mechanisms, but nowwe can turn to unveiling the benefits associated with
social diversity and clustering in the quest towards engineering pro-social behaviour.

Highly clustered networks often have the most room to improve by receiving endowments
(See Fig. 1). The initial distribution of players in the hubs of the network often determines
whether the direction towards which the population will converge. Often, a small nudge can
steer the population towards a desirable outcome (see Fig. 2). Moreover, this can easily be
accomplished through a variety of disparate investment paradigms. For instance, metrics
on the overall population (POP) can be used to guarantee maximal cooperation regardless
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Fig. 4 Fraction of cooperation and total cost for local neighbourhood information (NEB) interference, using
deterministic update. Parameters: b = 1.8; N = 5000

of how the endowments are distributed (See Fig. 3). With the reduction in the complexity
of designing an effective scheme, we look towards cost and ways to reduce overspending.
Overeager endowments can lead to total costs several orders of magnitude larger than those
applied as a last resort. Indeed, even very small endowments applied to few surviving cooper-
ators can jumpstart the formation of clusters resilient to invasion. Increasing the threshold for
investment guarantees that more cooperators will be eligible for the endowments, thus exac-
erbating spending. Lowering this threshold guarantees that interference will only be triggered
if desperately required. Investing in every cooperator as a last resort ensures pro-sociality.

Moreover, local observations can be used to ensure positive outcomes following a variety
of pathways (see Fig. 4). In this case, an external decision-maker must target a range of
intermediate values for the threshold. Previous results on structured populations showed
that investing in cooperator neighbourhoods with exactly one defector was the optimal way
of fostering cooperation [22]. In contrast, our findings suggest that the opposite is true for
heterogeneous settings. Indeed, the least expensive routes towards cooperation are those
with low or intermediate thresholds, suggesting that investors should focus their attention on
ensuring only the survival of cooperators who are in danger of turning. For highly clustered
networks, little investment is needed, and provided the threshold is not exceedingly low,
maximal cooperation can be reached in any configuration, without unnecessary expenditure.
Lowly clustered networks, on the other hand, require much more deliberate endowments
to benefit from investment, with the added risk of causing cooperators to fall victim to
exploitation as discussed previously in Fig. 4.
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Fig. 5 Fraction of cooperation and total cost for node influence-based (NI) interference, using deterministic
update. Parameters: b = 1.8; N = 5000

3.3 Heterogeneity and Network Characteristics Play a Key Role in the Design of
Effective Investment Mechanisms

Assuming that information about a node’s influence can be easily gleamed by an external
decision-maker, this can provide a partial solution to reducing the risk of deleterious inter-
ference. Although comparatively costly, this mechanism has the benefit of never succumbing
to the exploitation of cooperators (see Fig. 5). Notwithstanding, the very nature of influential
nodes in scale-free networks (i.e. power-law degree distribution) implies only exceedingly
large endowments are sufficient to sway them. However, the number of cooperators who are
eligible for investment is also small; on account of this, overall spending does not scale pre-
dictably with the endowment amount. We have previously mentioned that there exist some
costs associated with information gathering, which we do not model or measure here. Hence,
the assumption that information about influence is readily available suggests this method
could prevail with respect to real-world budgeting.

We propose that combining several interference mechanisms can be an effective way of
reducing spendingwhile avoiding the pitfalls of pernicious investment. For instance,wemight
consider taking into account an agent’s influence as well as local observations. In Fig. 6, we
explore this possibility, avoiding the least connected nodes (i.e. not investing in the bottom
5% of nodes with respect to degree centrality), and show that this reduces spending compared
to either of the two interference schemes taken individually. These results suggest that hubs
play an important role in the emergence of cooperation in highly clustered networks, but that
they cannot be effectively used to improve outcomes in their lowly clustered counterparts.
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Fig. 6 Fraction of cooperation and total cost for amixed interference scheme (NEBandNI), using deterministic
update. We fix cI = 0.05, avoiding investing into the least connected nodes (bottom 5%). Parameters: b =
1.8; N = 5000

Nevertheless, this integrated approach to interference eliminates the possibility of investment
being detrimental to cooperation.

We note this conundrum between the two types of heterogeneous networks. Lowly clus-
tered networks have little to benefit from investment, and much to lose if the external investor
is negligent in their distribution of endowments. On the other hand, highly clustered networks
have much to gain and little to lose, readily responding positively to any tactic, overspending
being the only matter of discontent. As investment in the greater context of heterogeneous
interactions is not trivial, it would therefore be prudent to first collect as much data on the
nature of the network before deciding to distribute endowments. Uncertainty about social
diversity or clustering carries the additional risk of selecting an improper policy of designing
incentive schemes.

3.4 Stochastic Imitation Increases the Risk of Exploitation

Previously, we had shown that careless rewards might lead to an increase in defectors
when interfering in BA networks under a deterministic update paradigm (see Sect. 3.1).
Following a transition towards a more realistic, stochastic update rule [58], we observe a
very similar phenomenon and moreover find that it is no longer limited to lowly clustered
scale-free networks (see Fig. 7). Indeed, investing in DMS networks should be approached
with the same due diligence as BA networks, and insufficient endowments often lead to the
exploitation of cooperators. Relying solely on local information is most prone to damaging
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Fig. 7 Proportion of defectors as a function of the mean total cost for each scheme (stochastic update).
The markers’ size is determined by the individual investment θ (grouped to the nearest value), whereas
the colour indicates the threshold. Points near the origin indicate the optimal solutions. The horizontal red
lines indicate the baseline level of defection in the absence of rewards for either network type. Parameters:
b = 1.8; N = 2000; k = 0.1

Fig. 8 Fraction of cooperation and total cost for local neighbourhood information (NEB) interference (stochas-
tic update) using stochastic update. Parameters: b = 1.8; N = 2000; k = 0.1
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Fig. 9 Mean total costs for the most efficient combinations of threshold and investment amount (stochastic
update) θ , using stochastic update. We intentionally avoid configurations in which no endowments are dis-
tributed, and select the configurations with the least possible cost for each minimal fraction of cooperation
required. Error bars in light red show the standard deviation across all replicates of a configuration

cooperation, in spite of the level of complexity associated with this scheme and the amount
of information required to enforce it (See Fig. 8).

Interestingly, stochastic imitation leads to a significant increase in baseline cooperation
prior to interference in highly clustered networks and conversely a decrease in cooperation
in classical scale-free networks (see horizontal lines in Fig. 7). Nevertheless, the findings
discussed in the sections above remain robust. Although the potential gains to be had shift,
causingBAnetworks to benefit from investmentmore than their highly clustered counterparts,
the previous findings still apply in this setting. For instance, we find that DMS networks
readily respond to investment, and are not as prone to the pitfalls which befall BA networks.
In Fig. 9, we show that the most efficient interference schemes are consistently one (or more)
order(s) of magnitude less costly at promoting cooperation in highly clustered networks,
regardless of what potential gains the external decision-makers is aiming for.

3.5 Maximal Cooperation Gains Require Significant Endowments. Cost Efficiency is a
Double-Edged Sword

Unlike homogeneous populations, heterogeneous interaction structures inherently provide
a benefit to cooperators, something usually referred to as network reciprocity [47, 48]. In
practice, this means investment does not lead to outcomes which differ significantly from the
baseline. Furthermore, successful attempts at reaching a maximal level of cooperation (i.e.
little to no defection) require a combination of large endowments and an investment scheme
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Fig. 10 Fraction of cooperation and total cost for population-based (POP) interference (stochastic update)
using stochastic update. Parameters: b = 1.8; N = 2000; k = 0.1

which can target individuals at all levels of the network (see Fig. 7). Using population level
metrics generally fails to improve outcomes unless virtually every cooperator is targeted (see
Fig. 10). Equivalently, relying on degree centrality (i.e. how influential a node is) necessitates
an egalitarian distribution of endowments, which naturally increases costs (See Fig.11).

Local information (NEB), while risky, also has the potential to best improve outcomes
while reducing costs, and this remains true for both BA and DMS networks, if maximal
cooperation gains are required (See Fig. 9). Once again, we intuit the importance of acquiring
detailed observations of information about the agents. This approach is a double-edged sword;
it is simultaneously the optimal solution, as well as the most prone to errors in decision-
making, leading the population to either the most perceived gains or the least (See Fig. 8).
This seems to be another dilemma. Investing is risky, and it is likely for endowments to be
ineffective or even produce negative results, but only significant sums of capital are likely
to lead to desirable outcomes. Social diversity complicates this further, as there exists a
great degree of inequality between individuals, and potential errors in decision-making make
investment precarious.

4 Discussion

In summary, we have studied how optimally an external decision-maker could incentivise
a population of autonomous agents facing a cooperative dilemma to fulfil a coveted collec-
tive state. We build on a previous account which identified the most effective mechanisms
to foster cooperative scenarios in spatially distributed systems in regular graph structured
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Fig. 11 Fraction of cooperation and total cost for node influence-based (NI) interference (stochastic update)
using stochastic update. Parameters: b = 1.8; N = 2000; k = 0.1

populations of agents, but instead we consider two popular models of scale-free networks of
contacts. In particular, we examined if the insights set out in the context of regular graphs
remain applicable to heterogeneous models, as well as explore an additional avenue of inter-
ference enabled by the variance in node connectivity. To address these issues, we combined
an evolutionary game theoretic model with several incentive mechanisms in two types of
pre-generated networks characterised by preferential attachment, with different clustering
coefficients. We argue that this problem cannot be solved trivially and we show that transi-
tivity (i.e. the global clustering coefficient) should be the driving force behind the choice of
an interference mechanism in promoting cooperation in heterogeneous network structures,
as well as its application.

In this work, we introduce several incentive mechanisms which are defined formally
and mathematically. We note that they do not have to be defined as such and, in fact, have
many real-life counterparts which are often employed by institutions and investors. For
instance, POP-based metrics describe cooperation observed at a global scale. If we consider
the Great Recession, or the recent COVID-19 pandemic, an institution might only need to
look at the overall state of the economy, or the spread of an infection, before deciding that
action is required. Neighbourhood-based metrics represent local schemes, which are almost
ubiquitous when considering social inequality. Whether it is housing schemes, incentives to
stop smoking, homelessness, education, etc., local governments often decide to invest based
on the level of economic and social deprivation in a specific area, and that is precisely what
we have tried to capture with NEB-based schemes. Finally, we have looked at centrality
(influence) metrics. If we consider social media, a company might wish to use influencers to
market its products, or an institution might decide to specifically target someone in the public
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eye in order to increase the visibility of its incentives, whether they were positive or negative.
The mechanisms we have chosen are by no means exhaustive choices, but they serve as a
fundamental starting point to our discussion, and they are arguably the most common and
most easily implementable mechanisms that we observe in the real world.

We find that impetuously rewarding cooperators can lead to cyclic patterns which damage
cooperation in the long run, enabling the exploitation of cooperators to the benefit of defectors.
We argue that detailed information gathering about the networks and agents prior to the
distribution of endowments can prevent these mistakes. Using two social learning paradigms,
we show the robustness of these findings and observe that clustering lowers the risk of
deleterious investment, easing the strictness of distributing incentives. Moreover, we show
that ignoring lowly connected individuals leads to unprofitable and even futile intervention
irrespective of network transitivity.

Our comparison between the two types of scale-free networks provides valuable insights
regarding the importance of clustering in the outcome of cooperation. We find that a large
clustering coefficient allows for successful, cost-effective interference, indeed even when
partly disregarding a full comprehension of the population and its tendencies. Furthermore,
transitivity lessens the burden on external investors, lowering the total cost required to enforce
cooperation. These results are of particular interest, given that most SF networks portray high
clustering, such as in the case of social ties where friends are likely to be friends of each
other [33]. This scope encompasses heterogeneous scenarios inhibited by spatial constraints
(e.g. in highly urbanised areas or even the allotment of rangelands such as pastures), where
high clustering is also imposed.

Transitioning towards a more realistic, stochastic imitation rule [58], we measure a shift
between the two network types, whereby lowly clustered networks prescribe a greater need
for investment, and vice versa. Maximal cooperation gains in either paradigm can generally
be achieved using large individual endowments. Notwithstanding, highly clustered networks
respond more readily to interference, and we provide several insights about ways in which
cost could be reduced further.

An important question in models of institutional incentives is that of setting up and main-
taining the incentive budget. Considering who should contribute to the incentive budget is a
social dilemma in itself, and addressing this second-order social dilemma has been identified
as a challenging research problem. Several solutions have been identified, including pool
incentives with second-order punishments [39, 53], democratic decisions [27], commitment
formation [21, 25, 49] and hybrid incentives [10, 20]. This work does not aim to address this
issue, focusing instead on how to optimise the spending from a given budget by exploiting
network properties and information gathering. However, it would be interesting to study the
co-evolutionary institutional formation with different interference strategies and individual
strategic behaviours. Moreover, in this work, we do not consider the possibility of detecting
the existence of a certain type of interference from an external party. In reality, individuals
could be aware of active interference and react by changing their behaviour, either to become
suitable candidates for reward or to avoid sanctions [12].

In summary, we have shown that it is crucial to investigate both the underlying network and
behavioural trends before distributing endowments. Previously, these findings were restricted
to very particular combinations of parameters, but stochastic dynamics highlight the pitfalls
of inconsiderate incentives in a variety of settings. As a result of such careless interference,
defector communities grow before eventually collapsing due to their inability to reciprocate.
We have identified several key metrics which can be used to mitigate these risks and ensure
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positive social outcomes. Our findings highlight the complexity of designing effective and
cogent investment policies in socially diverse populations.
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