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Biomarkers are quantifiable characteristics of biological processes. In
Mycobacterium tuberculosis, common biomarkers used in clinical drug
development are colony forming unit (CFU) and time-to-positivity (TTP) from
sputum samples. This analysis aimed to develop a combined quantitative
tuberculosis biomarker model for CFU and TTP biomarkers for assessing drug
efficacy in early bactericidal activity studies. Daily CFU and TTP observations in
83 previously patients with uncomplicated pulmonary tuberculosis after 7 days of
different rifampicin monotherapy treatments (10–40mg/kg) from the
HIGHRIF1 study were included in this analysis. The combined quantitative
tuberculosis biomarker model employed the Multistate Tuberculosis
Pharmacometric model linked to a rifampicin pharmacokinetic model in order
to determine drug exposure-response relationships on three bacterial sub-states
using both theCFU and TTP data simultaneously. CFUwas predicted from theMTP
model and TTP was predicted through a time-to-event approach from the TTP
model, which was linked to the MTP model through the transfer of all bacterial
sub-states in the MTP model to a one bacterial TTP model. The non-linear CFU-
TTP relationship over time was well predicted by the final model. The combined
quantitative tuberculosis biomarker model provides an efficient approach for
assessing drug efficacy informed by both CFU and TTP data in early
bactericidal activity studies and to describe the relationship between CFU and
TTP over time.
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1 Introduction

Tuberculosis (TB), a bacterial infection caused by
Mycobacterium tuberculosis (Mtb), is among the top causes of
death worldwide and the second leading cause of death due to
infection after COVID-19 (Global tuberculosis report 2022). New
antibiotics are urgently needed due to resistance development to
many existing drugs. In order to develop new antibiotics and
regimens, innovative tools are needed in early development
together with biomarkers which quantify the biological processes
as a response to drug efficacy.

In TB drug development, early bactericidal activity (EBA) in 2-
week treatment trials of TB patients are often the first assessment of
drug efficacy. Colony forming unit (CFU) and time-to-positivity
(TTP) are the two commonly used biomarkers in EBA studies but
also in longer Phase 2b trials. Traditionally, EBA has been assessed
using each of the two biomarkers where TTP often nowadays is the
primary endpoint (Diacon and Donald, 2014). TTP is quantified in
liquid media, often in mycobacterial growth indicator tube (MGIT).
With time, and as the bacteria grow within the MGIT system,
oxygen is depleted and carbon dioxide is produced, resulting in a
fluorescence signal where the time to achieve the positive signal is
defined as TTP. Whereas CFU only quantifies actively multiplying
bacteria on solid media, it has been shown that non-multiplying
bacteria can grow in liquid media (Dhillon et al., 2014), and is
thought to be the more sensitive of the two (Diacon et al., 2012). The
presence of non-multiplying bacteria at the end of treatment is the
cause of relapse, as they act as a pool from which multiplying
bacteria emerge to cause recurrent disease (Chao and Rubin, 2010).
Non-multiplying bacteria most likely exists in different forms in a
spectrum from truly non-multiplying to different states of
multiplying forms (Tuomanen, 1986; Coates and Hu, 2008).

A study on clinical sputum samples supplemented with
resuscitation-promoting factors (rpfs) showed that non-
multiplying bacteria constitute the vast majority of the
bacterial population pre-treatment and that CFU, as a
biomarker of the multiplying bacteria, only quantifies a small
proportion of the total bacterial burden in patient samples
(Mukamolova et al., 2010). Bowness et al. (2015) studied the
relationship between CFU and TTP using data from patients on
rifampicin monotherapy through means of linear regression of
data per observation day and where the gradient of the regression
line and y-intercept of the TTP-CFU relationship increased as
treatment progressed. This resulted in two samples with identical
CFU readings having different TTPs if the samples were collected
at different times during treatment which was suggested to be due
to that TTP captures an additional sub-population that is not
captured in the CFU count.

The different bacterial states can be simplified theoretically
and mathematically as fast-, slow- and non-multiplying TB sub-
states which have been described by the semi-mechanistic
multistate tuberculosis pharmacometric (MTP) model (Clewe
et al., 2016). The MTP model was developed using CFU counts
from natural growth data of Mtb in an in vitro hypoxia system
together with the decline in CFU counts in response to treatment
in log and stationary phase cultures. The MTP model was since
successfully used to describe other in vitro systems (Chen et al.,
2018; Susanto et al., 2020), and was validated and used in in vivo

settings (Chen et al., 2017; Clewe et al., 2020), and in clinical
settings (Svensson and Simonsson, 2016; Faraj et al., 2020a; Faraj
et al., 2020b) to predict the changes in the numbers of bacteria in
the different sub-states and subsequently CFU with and without
treatment. Likewise, time-to-event approaches for describing
drug efficacy using TTP biomarker data in clinical trials have
been developed (Chigutsa et al., 2013; Svensson and Karlsson,
2017; Svensson et al., 2018b).

In this work, we aimed to develop a combined quantitative TB
biomarker model using CFU and TTP biomarker data for assessing
drug efficacy in early bactericidal activity studies and to describe the
relationship between CFU and TTP over time.

2 Materials and methods

2.1 Patients and data

Clinical trial data was obtained from the PanACEA
HIGHRIF1 trial, an open-label phase 2a trial registered at
www.clinicaltrials.gov (NCT01392911) (Boeree et al., 2015).
The trial was approved by local Ethical Review Boards and by
the Medical Control Council of South Africa and was conducted
according to Good Clinical Practice. All patients provided
written informed consent before enrollment into the study.
Newly diagnosed, pulmonary TB patients, susceptible to
isoniazid and rifampicin were randomized to six cohorts
assigned to 10 (n = 8, reference arm), 20, 25, 30, 35, or 40
(n = 15/arm) mg/kg daily oral rifampicin monotherapy for the
first 7 days. The following seven days, therapy was supplemented
with isoniazid, pyrazinamide and ethambutol at standard doses.
Sputum samples were collected overnight over a 16-h interval on
two consecutive days at baseline and daily for one week. On each
day, two replicates from each sample were cultured on agar plates
to assess CFU over time, while two other replicates were cultured
in liquid media to determine the change in TTP over time. The
limit of quantification (LOQ) for log CFU was 1 mL−1, while it
was 42 days for TTP samples. CFU samples below LOQ and TTP
samples above LOQ were considered negative. One positive
replicate was considered enough to include the sample in this
analysis regardless of the other replicate as long as the next
sample was positive.

In this analysis, data of daily sputum samples from a total of
83 patients on rifampicin monotherapy over the first week were
included in the analysis. Contaminated CFU (n = 22) and TTP
(n = 14) samples were excluded from the analysis. A total of
40 CFU samples were negative in that period and were removed
from the analysis. This is because in all but two individuals, the
negative samples were followed by positive CFU samples, and for
those two individuals, the negative samples took place on day
seven. A total of three negative TTP samples were excluded from
the analysis. There were only seven instances in the CFU data and
two in the TTP data when only one replicate was positive and the
other was negative. Accordingly, 681 and 727 samples of CFU
and TTP were included in the analysis, respectively. A
description of the data and patient characteristics are
summarized in Supplementary Tables S1, S2, respectively, in
the Supplementary Materials.
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2.2 Modelling strategy

In order to evaluate rifampicin exposure-response relationship
using CFU and TTP, a previously developed rifampicin
pharmacokinetic (PK) model using the PK data from this study
was used (Svensson et al., 2018a). An individual pharmacokinetic
parameter (IPP) approach (Zhang et al., 2003) was used where the
individual PK model estimates were used as input for the exposure-
response analysis for the CFU and TTP data. Initially, the MTP
model (Clewe et al., 2016), developed to describe clinical CFU data
after rifampicin treatment (Svensson and Simonsson, 2016), was
used as a stand-alone model to describe only the CFU data.
Thereafter, the combined quantitative TB biomarker model was
developed by linking the MTP model to a TTP model. The TTP
model was based on a semi-mechanistic time-to-event model
previously developed using TTP data from the same clinical trial
(Svensson et al., 2018b).

The MTP model had a central role within the combined
quantitative TB biomarker model and acted as the link between
the CFU and TTP data. While the sum of the fast- and slow-
multiplying bacteria in the MTPmodel was used to predict CFU, the
sum of all bacterial sub-states in the MTP model at the end of each
sampling day, were transferred to the bacterial population in the
TTP model, which thereby initiated the 0–42-day TTP. The TTP
model related the mycobacterial growth in the liquid medium to the
probability of achieving a positive signal in the MGIT system using a
hazard model, treating the TTP observations as time-to-event data
(Svensson et al., 2018b). Both CFU and TTP data were
simultaneously analyzed to investigate the drug exposure-
response relationship on each of the mycobacterial sub-states
using the MTP model.

Once developed, the combined quantitative TB biomarker
model was applied to predict one biomarker using information
from the other. In order to predict the median tendency of TTP from
CFU, only the CFU data were used to derive the empirical Bayes
estimates (EBEs) of the final model. The opposite was applied when
predicting the median tendency of CFU using only TTP data to
derive the EBEs of the final model.

2.3 MTP model

The MTP model is a semi-mechanistic pharmacometric model,
which describes the different mycobacterial sub-states and allows for
the exploration of the exposure-response on those sub-states (Clewe
et al., 2016). It consists of three bacterial sub-states: Fast- (F), slow-
(S), and non-multiplying (N). The MTPmodel is represented by Eqs
1–3, in which time was defined as the time since infection.

dF

dt
� Growth · F · FG + kSF · S − kFS · F − kFN · F − FD · F (1)

dS

dt
� kFS · F + kNS ·N − kSN · S − kSF · S − SD · S (2)
dN

dt
� kSN · S + kFN · F − kNS ·N −ND ·N (3)

where FG, FD, SD, and ND are the estimated drug effects as
inhibition of the fast-multiplying growth and killing of the fast-,
slow-, and non-multiplying sub-states, respectively. The transfer

rates between the three different sub-states are described by kSF, kFS,
kFN, kNS, and kSN.

Only the fast-multiplying sub-state was assumed to grow, with
the growth limited by the system carrying capacity parameter
(Bmax). The growth of slow-multiplying sub-state was not
included, and the increase of slow-multiplying sub-state took
place through the transfer of bacteria from the fast-and non-
multiplying state (Clewe et al., 2016). The transfer rates between
the three different sub-states were fixed to the in vitro estimates
(Clewe et al., 2016), as it was not possible to estimate such system-
specific parameters separately from drug exposure-response
parameters using the current data of rifampicin treatment. In
addition, the transfer rate from the non-multiplying bacterial
sub-state to the fast-multiplying bacterial sub-state was
considered negligible based on the previous publication (Clewe
et al., 2016). Furthermore, the transfer rate from the fast-to the
slow-multiplying sub-states (kFS) increased linearly with time. A
Gompertz growth function was chosen to describe the growth of the
fast-multiplying sub-state:

Growth � kG · log B max

F + S +N
( ) (4)

where kG is the growth rate of the fast-multiplying bacterial sub-
state in the MTP model and Bmax is the system carrying capacity,
which defines the bacterial at start of treatment.

In this study, patients were assumed to be in the stationary phase
of the infection, which is characterized by stable bacterial counts
over time in untreated patients (Jindani et al., 1980). Patients were,
thus, assumed to start treatment 150 days after the TB infection, a
time-point at which the MTP model predicts a negligible change in
the bacterial population, and little to no growth is expected. As the
data was not sufficient to the estimate the acute bacterial growth
phase, the kG parameter was fixed to the in vitro estimate (Clewe
et al., 2016). In addition, the initial conditions occurring 150 days
before baseline, i.e., at time of infection, were fixed to zero for the
non-multiplying stub-state and to 4.10 and 9,770 mL−1 for the fast-
and slow-multiplying sub-states, respectively, based on the original
work and its clinical application (Clewe et al., 2016; Svensson and
Simonsson, 2016). On the other hand, the Bmax parameter was re-
estimated, along with its inter-individual variability (IIV), to account
for the different individual bacterial baselines without affecting the
relative amounts of the bacterial populations.

From the MTP model, the bacterial sub-states were transferred
to the TTP model, while CFU was predicted as the sum of only the
fast- and slow-multiplying sub-states using Eq 5.

log10 CFU � log10 F + S( ) (5)
where log10 CFU is the logarithm of CFU at a specific time-point,
and F and S are the fast- and slow-multiplying sub-states,
respectively, at that same time-point.

2.4 TTP model

The TTP model was based on an earlier published TTP model
(Svensson et al., 2018b). The model describes the growth of the
bacterial liquid culture from patients’ sputum samples. The starting
bacterial load in the tube was evaluated in different ways such as a
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one subpopulation model and a three-subpopulation model
(i.e., MTP model structure). In addition, the use of a correction
factor (CF) that scaled down the ratio of the non-multiplying
bacteria to the total bacteria that is transferred from the MTP
model to the tube bacterial compartment was also evaluated
(F + S +N · CF). The CF parameter was both estimated and
fixed to 17% (Faraj et al., 2020a). This is because it has been
previously shown that the ratio of the non-multiplying sub-state
to the total bacteria had to be scaled down to correctly predict the
clinical bacterial number using an MTP model developed using
in vitro data (Faraj et al., 2020a).

In the TTP model, another time scale was used, which was
time since inoculation in liquid media. The total bacteria in the
bacterial compartment were assumed to give rise to the signal in
the MGIT system, as it was expected that, once introduced into
the fresh media in the tube, the non-multiplying bacteria will re-
initiate protein synthesis (Hu et al., 1998) and contribute to the
total bacterial growth. A liquid culture-specific system carrying
capacity parameter (Bmax ,lc) and a liquid culture-specific growth
rate constant (kG,lc), both controlling the growth of the bacterial
liquid culture, were estimated. This is because the bacterial
population is expected to grow differently in the MGIT
system, as a growth enhancing substance is added to the
MGIT liquid medium to reduce the detection time (Siddiqi
and Rüsch-Gerdes, 2006). Different models of growth in the
liquid medium were evaluated, including exponential, logistic
and Gompertz growth functions.

Sputum samples undergo dilution and centrifugation steps
during processing that remove any antibiotics that might have
been present in the samples before being placed in the liquid
medium. Consequently, the TTP model did not include killing by
drug. Taking into consideration that post antibiotic effect (PAE)
might take place within the liquid culture, different lag-time models
in addition to time-varying growth rate in the liquid culture were
evaluated to describe a potential delay or change of bacterial growth
after different drug exposures. Furthermore, IIV, reflecting
variability in the bacterial metabolic activity, was explored for the
different liquid culture parameters.

As the TTP model describes time-to-event data, a hazard model,
which described the probability of achieving a positive signal in the
MGIT system, was employed, with right censoring occurring on day
42. At any given time-point in the liquid culture (tlc), the hazard,
h(tlc), was calculated and was equal to the total bacterial load
multiplied by a hazard scaler (HS) as:

h(tlc) � Blc(tlc) ·HS (6)
where h(tlc) is the hazard at one time-point, Blc(tlc) is the total
bacterial liquid culture at that time-point, and HS is a scaling
parameter for the hazard.

The hazard at each time point was integrated to calculate a
cumulative hazard, H(tlc):

H(tlc) � ∫
tlc

0

h(tlc)dt (7)

where H(tlc) is the cumulative hazard at time in the liquid culture
and h(tlc) is the hazard at that time-point.

Finally, the survival, which describes the probability of not yet
observing a positive signal was:

S(tlc) � e−H(tlc) (8)
where S(tlc) is the survival at time in the liquid culture andH(tlc) is
the cumulative hazard at that time-point.

2.5 Exposure-response relationships

A previously developed rifampicin PK model by Svensson et al.
(2018a) was linked to the MTP model. Different exposure-response
relationships were evaluated on four different effect sites of the MTP
model in four steps using the combined quantitative TB biomarker
model and both CFU and TTP data. The different exposure response
relationships that were evaluated were on/off, linear, Emax, and
sigmoidal Emax relationships. The four different effect sites that
were evaluated were inhibition of the growth of the fast-multiplying
sub-state (FG) and killing of each of the fast- (FD), slow (SD), and
non-multiplying (ND) sub-states. The first step was to evaluate all
exposure-response relationships on all effect sites in a univariate
approach. The models were considered statistically significant at a
significance level of 5%, i.e., drop in objective function value (OFV)
of at least 3.84, for nested models with one additional parameter.
The second step involved evaluating the statistically significant
exposure-response models kept from the univariate evaluation of
each effect site in combinations of two, three, and then all four effects
sites, with at least a linear model on each site. The third step involved
re-evaluating the exposure-response relationship at each effect site,
and only statistically significant models were kept. The model with
the largest OFV drop was selected and evaluated in combination
with the model with the second highest significant drop until no
significant drop in OFV was observed. The fourth step involved
removing one exposure-response relationship from each effect site.
In this backward elimination step, a significance level of 1%, i.e.
6.63 OFV drop, was used. After applying the four steps, the model
with the final exposure-response relationship was obtained. IIV on
the different exposure-response parameters were also evaluated.

2.6 Software and model selection

The CFU and TTP data analyses were performed using
NONMEM 7.4.3 (Icon Development Solutions, Elliott City, MD,
United States) (Beal et al., 2018) with the Laplacian estimation
method. Data management and visualization were done in R
statistical software version 4.1.2 (R Foundation for Statistical
Computing, Vienna, Austria) (R Development Core Team, 2017).
PsN 5.0.0 (Lindbom et al., 2005) was used to run the models and
produce visual predictive checks (VPCs) used for model diagnostics
(Lindbom et al., 2005). Additional graphical assessments of results
were performed in xpose 4.7.2 (Keizer et al., 2013).

Model evaluation was based on parameter uncertainty and
scientific plausibility while they were visually assessed using
goodness-of-fit plots and VPCs. Nested models were evaluated
based on the OFV, using the likelihood ratio test at a 5%
significance level. For CFU, conventional VPCs, comparing
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observed and simulated data stratified by dose group, were
produced. For TTP, posterior predictive checks (PPC) of the TTP
in days versus time since treatment, stratified by each dose group,
were used. Sampling importance resampling (SIR) was used to
obtain accurate parameter uncertainties (Dosne et al., 2016).

3 Results

The general structure of the final quantitative TB biomarker
model consisted of one PK model and two biomarker models: the
MTP and TTP models (Figure 1).

All MTP model parameters were fixed to the in vitro estimates
(Clewe et al., 2016), except for Bmax, which was estimated.
Estimating IIV on Bmax was necessary to allow for the prediction
of the individual bacterial load at baseline. The MTP model
previously employed by Svensson and Simonsson (2016) to
describe clinical CFU data, was first applied to CFU data as a

stand-alone model. The model described the CFU data well,
which provided a validation for using the MTP model in this work.

The TTP model comprised a one bacterial population that was
initialized as the sum of the fast-, slow-, and non-multiplying sub-
states in the MTP model at the sampling occasion. An MTP model
structure within the TTP model, representing all three sub-states in
the liquid mediumwith all transfer rates between the sub-states fixed
to the in vitro estimates, was also evaluated, in which the positive
signal in the MGIT system was driven by the sum of the fast-, slow-,
and non-multiplying sub-states. However, the TTP data did not
support the MTP model structure within the TTP model. Therefore,
a one bacterial liquid culture (Blc) was explored and shown to
describe the data:

dBlc

dtlc
� Growthlc · Blc (9)

where Growthlc and Blc are the liquid culture-specific growth and
total bacterial liquid culture, respectively.

FIGURE 1
Schematic representation of the final quantitative tuberculosis biomarkermodel, including the pharmacokinetic (PK) model (left), MTPmodel (lower
middle) and time-to-positivity (TTP) model (upper middle) using early bactericidal activity data of rifampicin inmonotherapy in tuberculosis patients. CFU
and TTP observations are simultaneously informing the MTP and TTP models through the simultaneous fit of the model to the data. The MTP model is
represented by different bacterial sub-states; fast- (F), slow (S) and non-multiplying sub-state (N). The PKmodel is linked to the MTPmodel through
the different killing parameters. CFU is predicted from the MTPmodel as the sum of the F and S sub-states. The TTPmodel consists of one bacterial sub-
population model (Blc) which is the sum of the F, S, and N sub-states at the starting time in the liquid medium (tlc = 0). The bacterial liquid culture at any
given time point in the liquid medium [Blc(tlc)] was equal to the hazard h(tlc)multiplied by a hazard scaler (HS). The probability of a TTP sample without a
positive signal at time tlc was given by the survival [S(tlc)] which was derived from the cumulative hazard [H(tlc)]. F450, relative bioavailability to 450 mg;
F max , maximal increase in relative bioavailability; ED50, dose corresponding to half the F max ; NN, number of transit compartments; ktr , transfer rate
between transit compartments;MTT , mean transit time; ka, absorption rate constant; kENZ , first-order enzyme degradation rate and zero-order enzyme
formation rate; E max , maximal increase in enzyme formation rate; EC50, concentration corresponding to 50% of E max ; Cp, plasma concentration; V max ,
themaximal elimination rate; km ,Cp at half of E max; V , volume of distribution; kG , growth rate of the fast-multiplying state; Bmax , system carrying capacity
per mL-1; kFSLin , time-dependent linear rate parameter describing transfer from fast-to slow-multiplying states; kSF , first-order transfer rate from slow-to
fast-multiplying states; kFN, first-order transfer rate between fast- and non-multiplying states; kSN, first-order transfer rate between slow- and non-
multiplying states; kNS, first-order transfer rate between non- and slow-multiplying states; Blc , total bacterial liquid culture; Bmax ,lc , system carrying
capacity per mL-1 in liquid media; kG,lc , growth rate of the bacterial liquid culture; HS, hazard scaler; t, time since infection; tlc , time in liquid culture. Solid
arrows represent mass transfer, while dashed arrows represent linking between models.
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Adding a fixed CF parameter (CF = 17%) to correct for the
amount of the non-multiplying sub-state transferred from the MTP
model to the TTP compartment resulted in a higher OFV, while
estimating it did not improve the model fit to the data, and thus, the
CF parameter was not used. Instead, the total sum of all bacterial
sub-states (F + S +N) was transferred from the MTP model to the
liquid medium in the TTP model.

The liquid culture-specific growth was described by a
Gompertz growth model as it improved model fit compared to
logistic and exponential growth models. Estimating a liquid
culture-specific bacterial growth rate (kG,lc) was necessary and
resulted in a 314-point drop in OFV compared to using the fixed
in vitro kG parameter. This is in line with the expectation of the
different bacterial growth in the MGIT system due to the added
growth enhancing substance in the liquid medium (Siddiqi and
Rüsch-Gerdes, 2006). Furthermore, a liquid culture-specific
Bmax ,lc, controlling the growth in the liquid medium, was
estimated and provided a significantly better fit to the data
with a 629 drop in OFV compared to using the in vitro Bmax

parameter. A time-varying mycobacterial growth and a delayed
liquid culture growth did not statistically significantly decrease
the OFV. Eq.10 shows the Gompertz growth model in the TTP
model.

Growthlc � kG,lc · log Bmax ,lc

Blc
( ) (10)

where kG,lc is the liquid culture growth rate, Bmax ,lc is system
carrying capacity, and Blc is the total bacterial liquid culture.

Using the MTP model approach, a linear effect described the
killing of the fast-multiplying sub-state, while an Emax effect
described the killing of each of the slow- and non-multiplying
sub-states. No further significant OFV drop was seen when
evaluating more complex models, e.g., Emax for the killing of
the fast-multiplying sub-state or sigmoidal Emax model the
killing of either the slow- and non-multiplying sub-states.
Additionally, no statistically significant exposure-response
relation was found on the inhibition of growth of the fast-
multiplying sub-state. IIV was evaluated on all exposure-
response parameters but was not supported by the data. The
exposure-response relationships identified using both CFU and
TTP data were different compared to fitting the CFU stand-
alone model to the CFU data. While both models identified an
Emax relationship on the killing of the slow- and non-
multiplying sub-states, using only CFU data identified a
simpler on/off model for the inhibition of growth of the fast-
multiplying sub-state.

FIGURE 2
Visual predictive check of the final quantitative biomarker model describing colony forming unit (CFU) versus time since first dose and stratified on
rifampicin dose group. The solid and dashed lines are the median, 2.5th, and 97.5th percentiles of the observed data, respectively. The shaded areas are
the 95% confidence intervals of the 97.5th (blue), median (red), and 2.5th (blue) percentiles of the simulated data based on 1,000 simulations. Open circles
are the observations.
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The final combined quantitative TB biomarker model provided
a good fit to both the CFU and TTP data as seen in the VPC of CFU
versus time stratified by dose group (Figure 2) and the PPC of TTP
versus time (Figure 3), respectively. A Kaplan-Meier VPC of TTP
versus time in the liquid medium for different rifampicin doses and
treatment days is included in Supplementary Figure S1. The final
parameter estimates from the combined biomarker model is shown
in Table 1.

The final quantitative TB biomarker model was also able to
describe the median CFU-TTP relationship well (Figure 4). Deriving
the EBEs of the final model using data on either biomarker allowed
for the prediction of the median tendency of the other biomarker.
The final model was able to predict the median tendency of TTP
using only CFU data with an R2 of 0.79 (Figure 5A). However, it was
difficult for the model to predict the median tendency of CFU using
only TTP data with high precision (R2 = 0.51; Figure 5B).

4 Discussion

This paper presents the development of a combined
quantitative TB biomarker model (Figure 1), consisting of a
PK-CFU-TTP model, to identify the relationship between CFU
and TTP based on data from patients with pulmonary TB on
10–40 mg/kg rifampicin monotherapy for seven days in an early
bactericidal activity (EBA) trial. The MTP model acted as the link
between the CFU and TTP data within the combined model
where CFU was the sum of the fast- and slow-multiplying sub-
states which varied over time due to drug effect, while the total
bacterial load predicted from the MTP model at the end of each

day was the starting point for the level of bacteria in the TTP
model.

This work builds on the MTP concept of three different sub-
states; fast-, slow- and non-multiplying bacteria (Clewe et al.,
2016). The MTP model has been shown to describe the growth, in
the absence of treatment, and decline, in response to treatment, of
bacteria in the different sub-states and, subsequently, CFU, using
in vitro and clinical data (Clewe et al., 2016; Svensson and
Simonsson, 2016). Consequently, the MTP model has been
successfully applied to describe in vitro (Clewe et al., 2016;
Susanto et al., 2020), mouse (Chen et al., 2017), and clinical
data (Svensson and Simonsson, 2016; Faraj et al., 2020a; Faraj
et al., 2020b). In addition, the MTP model has been successfully
used to predict observations from early clinical studies using
clinical dose-response forecasting from pre-clinical in vitro
studies of rifampicin (Wicha et al., 2018; Susanto et al., 2020).
Furthermore, it has been shown that applying semi-mechanistic
modelling approaches, such as the MTP model, can increase the
power of phase IIa studies and reduce the number of patients
required to characterize drug exposure-response as compared to
traditional statistical methods, e.g., t-test or ANOVA, and
empirical approaches, e.g., mono- or bi-exponential models
(Svensson et al., 2017). Applying the MTP model approach for
representing bacterial burden presents a number of advantages,
as representing drug efficacy on different mycobacterial sub-
states is more mechanistically plausible, and it allows the
evaluation of the drug exposure-response relationships on
each of those populations separately, offering a mechanistic
interpretation of rifampicin’s effect on different bacterial sub-
states.

FIGURE 3
Posterior predictive check of the final quantitative biomarker model describing median time-to-positivity (TTP) versus time since first dose and
stratified per rifampicin dose group. Solid lines represent the median time to positivity based on the observed data. Shaded areas are the 90% prediction
interval based on 1,000 simulations using the model.
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The EBA of rifampicin was evaluated using all available CFU
and TTP data simultaneously, which further supported a strong
mechanistic approach when developing the work and assessing
the drug efficacy. Studies have shown that the combined use of
two biomarkers better ranked the efficacy between treatments
compared to using only one biomarker, as in the case of the
combined use of CFU and RS ratio (Dide-agossou et al., 2022).
Liquid media are known to be more sensitive in detecting the Mtb
populations than solid media but are more prone to
contamination (Cruciani et al., 2004; Diacon et al., 2012).
International guidelines, therefore, recommend the use of at
least one solid and one liquid medium to quantify the
bacterial load accurately (Behr et al., 2022). As such, the
simultaneous analysis of both CFU and TTP data in the
combined biomarker model provided more information about
the drug efficacy than only CFU, although this work only
evaluated one drug. The rifampicin PK model used (Svensson
et al., 2018a) accounted for the non-linearity in PK by a
concentration-dependent apparent clearance and a dose-

dependent relative bioavailability. The model also accounted
for the decrease in rifampicin exposure with time by
employing an enzyme turnover model to incorporate
rifampicin’s auto-induction. The estimated exposure-response
relationships included a linear killing of the fast-multiplying sub-
state and a non-linear Emax killing for both the slow- and non-
multiplying sub-states, with a higher predicted drug potency
towards the non-multiplying sub-state (Table 1). In the final
combined biomarker model, the precision in the rate of the
killing of the fast-multiplying sub-state (FDk) parameter was
low (Table 1). However, omitting the parameter from the model
led to an increase in OFV of 174 points, and a simpler on-off
model did not provide a good fit of the data. Further, omitting the
parameter led to a too low predicted decline in biomarker
response at day seven compared to keeping the parameter in
the model.

The MTP model applied in this work is in agreement with the
conclusions from Bowness et al. (2015) who also used data from the
same trial, in that TTP captures an additional bacterial population

TABLE 1 Final quantitative tuberculosis biomarker model parameter estimates.

Parameter Description Estimatea RSE%b

MTP model

kG (days-1) Fast-multiplying bacterial growth rate 0.206 FIX -

kFSLin (days-1) Time-dependent transfer rate from fast- to slow-multiplying state 0.00166 FIX -

kFN (days-1) Transfer rate from fast- to non-multiplying state 8.97·10−7 FIX -

kSF (days-1) Transfer rate from slow- to fast-multiplying state 0.0145 FIX -

kSN (days-1) Transfer rate from slow- to non-multiplying state 0.186 FIX -

kNS (days-1) Transfer rate from non- to slow-multiplying state 0.00123 FIX -

Bmax (mL-1) System carrying capacity 4.997·104 5.27

F0 (mL-1) Initial bacterial number of fast-multiplying state 4.1 FIX -

S0 (mL-1) Initial bacterial number of slow-multiplying state 9770 FIX -

IIV Bmax (%) Inter-individual variability in Bmax 83.4 12.1

ε (CV%) Additive residual error on log scale 59.4 4.02

εrepl (CV%) Additive replicate error on log scale 19.1 24.1

TTP model

Bmax ,lc (mL-1) System carrying capacity per mL in liquid culture 1.62·106 7.61

kG,lc (day-1) Mycobacterial growth rate in liquid culture 0.22 4.34

HS Hazard scaler 1.49·10−6 6.99

Exposure-response

FDk (L·mg-1·days-1) Second-order fast-multiplying state death rate 16.5 333

SDE max (days-1) Maximum achievable drug-induced slow-multiplying state kill rate 0.30 18.3

SDEC50 (mg·L-1) Concentration at 50% of SDE max 24.9 36.5

NDE max (days-1) Maximum achievable drug-induced non-multiplying state kill rate 1.93 10.8

NDEC50 (mg·L-1) Concentration at 50% of NDE max 4.83 30.5

aAll fixed parameters in this model were obtained from Clewe et al. (2016), and applied in Svensson and Simonsson (2016).
bRSE, relative standard error reported on the approximate standard deviation scale obtained using sampling importance resampling (SIR) (Dosne et al., 2016).
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that is not detected by CFU. In this work, by allowing the transfer of
the sum of the bacterial sub-states in the MTP model to the TTP
model, we assumed that TTP can capture the non-multiplying sub-

state as the extra bacterial population that CFU does not capture,
and by doing so the model is able to predict both CFU and TTP
adequately well. The relationship between CFU and TTP is non-

FIGURE 4
Predicted relationship between colony forming unit (CFU) versus time-to-positivity (TTP) using the final quantitative biomarker model. The solid
lines represent the median of the observed data, while the shaded areas outline the 95% confidence interval based on 1,000 simulations.

FIGURE 5
Predicted median tendency of the observed time-to-positivity (TTP) versus observed TTP, using only colony forming unit (CFU) data and the final
quantitative biomarkermodel (A) and predictedmedian tendency of the observedCFU versus observedCFU, using only TTP data and the final quantitative
biomarker model (B). Solid line is the line of identity.
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linear with respect to time and in this model approach, the non-
linear relationship with time is predicted.

Earlier work has shown that the non-multiplying bacteria in
sputum is 17% of the in vitro levels, suggesting a difference in
phenotypic resistance, whereas no difference in multiplying
bacteria was found (Faraj et al., 2020a). In this work, we
explored the option to only allow for a percentage of the non-
multiplying bacteria to be transferred to the TTP bacterial
compartment from the MTP model but the data in this work
did not support it, and the total bacteria from the MTP model
seemed to well represent the bacterial population driving the TTP
signal. A semi-mechanistic time-to-event approach was
employed to describe the TTP observations in this work.
While an implementation of the full MTP model with three
bacterial compartments in the liquid medium was not
supported by the data, a one-bacterial compartment,
representing the total bacterial population in the liquid
medium, was sufficient and provided a satisfactory description
of the TTP data. Future work should aim at describing the
dynamics of the bacterial populations in liquid media.

A stand-alone TTP model has been previously used to assess
the exposure-response relationship of rifampicin using TTP data
from the same trial (Svensson et al., 2018b). The stand-alone TTP
model was not linked to a rifampicin PK model but instead used
rifampicin exposure as a covariate on the kill rate parameters. In
addition, other models have previously analyzed CFU and TTP
simultaneously using EBA data. Gausi et al. (2021) used both
biomarkers to describe isoniazid efficacy on a single bacterial
population for CFU and TTP in patients with drug-sensitive and
drug-resistant TB. Lyons used CFU and TTP to establish
pretomanid and bedaquiline exposure-response relationships
(Lyons, 2019; Lyons, 2022). This work builds upon the
previous work by using both CFU and TTP data
simultaneously combined to a rifampicin PK model to
evaluate the exposure-response relationship of rifampicin on
three bacterial subpopulations using the MTP model, which
presents a more mechanistic approach of assessing the
exposure-response relationship. Inclusion of a non-multiplying
state may provide a deeper link between EBA and predictions of
long-term efficacy in TB drug development although this still
remains to be further investigated.

While CFU has been the gold standard biomarker in pre-
clinical studies and in TB diagnosis, TTP has been suggested as a
substitute to CFU in phase IIa EBA studies (Diacon et al., 2012).
As such, the combined quantitative TB biomarker model
developed in this work (Figure 1) can play a vital role in
predicting TTP from trials where only CFU was measured. In
addition, the combined quantitative TB biomarker model can be
used to predict typical TTP in the case of missing or
contaminated samples. In this work, the combined
quantitative TB biomarker model was shown to be able to
predict the median tendency of the observed TTP using
information on CFU with good precision after 7-day
rifampicin therapy of drug susceptible TB (Figure 5A). The
model was less precise, however, in predicting the median
tendency of the observed CFU using only TTP data
(Figure 5B). This is because TTP was assumed to correspond
to a signal initiated by the growth of the whole bacterial

population. Thus, it was difficult for the model to differentiate
between the different sub-states using TTP data in order to
predict CFU, which was assumed to be the sum of only the
fast- and slow-multiplying sub-states.

The combined quantitative TB biomarker model was
developed using data from seven-day rifampicin monotherapy
of drug susceptible TB (Boeree et al., 2015). As the clinical data
did not include information on the acute bacterial growth phase,
the growth of the different bacterial sub-states and the transfer
rates between them could not be estimated. Using in vitro
information compensates for this limitation, and thus, the
growth and transfer rate parameters were fixed from the
in vitro setting (Clewe et al., 2016). In this work, the model
assumed that the TTP signal is driven by the sum of the fast-,
slow-, and non-multiplying population. While several
implementations for which population drives the TTP signal
have been explored, the whole bacterial population driving the
signal provided the best fit. The assumption that TTP can capture
all bacterial populations, however, might not be true, and re-
evaluation of the population driving the TTP signal might be
necessary when applying the model to other data.

It has been reported that the CFU-TTP relationship might
differ in certain cases of Mtb mutations (le Roux et al., 2021). As
the response to treatment is expected to differ between drug-
sensitive and drug-resistant Mtb strains (Bahuguna and Rawat,
2020), the model should be validated using data from treatment
of drug-resistant Mtb. Potential differences in CFU-TTP
relationship could be accounted for in the model to allow for
a mutation specific relationship. Further work should also
explore if the identified CFU-TTP relationship is drug-specific,
i.e., to apply the model to different EBA clinical trial datasets. It is
important to emphasize that the exposure-response relationships
always are drug-specific and are better characterized using both
biomarkers rather than either. Likewise, further work should also
evaluate whether the identified CFU-TTP relationship holds in
trials with durations longer than seven days. Therefore,
extrapolation to other drugs and outside the dose range,
bacterial susceptibly and treatment duration should be done
with caution.

The combined rifampicin PK-linked quantitative TB biomarker
model was successfully developed using CFU and TTP data from a
phase IIa EBA trial. The model used data from both biomarkers to
evaluate rifampicin exposure-response relationship in an EBA trial.
The final model was able to describe the relationship between CFU
and TTP over time.
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