
1. Introduction
Ultra-low frequency (ULF) magnetic field oscillations have been observed at Earth for over 150  years 
(Stewart, 1861). These are attributed to large scale magnetohydrodynamic (MHD) waves set up in the magne-
tosphere. Other planets of the solar system with strong intrinsic magnetic fields (Glassmeier & Espley, 2006 
and references therein) also sustain such large-scale waves. These waves transport energy and momentum in the 
magnetospheric system. The waves can reveal important information about the magnetospheric structure (e.g., 
magnetic field and plasma density properties, e.g., Denton et al., 2006; Takahashi et al., 2006). On Earth, there 
exists a plethora of ground and space-based instrumentation to observe the ULF band. Indeed, most modern 
observational studies involve data from a suite of spacecraft in conjunction with ground magnetometers or radars 
to provide extra evidence for the interpretation of the data (e.g., Shi et al., 2018). On the other planets, however, 
normally measurement is made from a single spacecraft, making the interpretation of such data challenging 
due to the ambiguity associated with separating spatial and temporal effects. In this study, we use the extensive 
knowledge of MHD waves gleaned from ULF studies on Earth, together with high-resolution MHD simulations 
to assist in the interpretation of satellite measurements of ULF oscillations detected at Saturn.

Abstract The observations of Southwood et al. (2021, https://doi.org/10.1029/2020JA028473), using 
data from the Cassini magnetometer from the final (proximal) orbits of the mission at Saturn, show large 
scale azimuthally polarized magnetic signals are always present near periapsis. The signals were attributed to 
standing Alfvén waves excited on the magnetic shells planetward of the Saturn D-ring. The apparent absence 
of any systematic variation in frequency as the spacecraft crossed magnetic shells, implied that the signals 
were not simply locally excited standing Alfvén modes, but were pumped by coupling to global compressional 
eigenmodes excited in a cavity formed in the dayside magnetosphere. In this study, we use a numerical 
magnetohydrodynamic (MHD) model to test such theoretical explanations for the observations, by examining 
in detail the MHD wave coupling and large scale spatial structure of the signals. The modeling not only shows 
good agreement with the data but further provides new insight into features previously overlooked in the data. 
In particular, we show how the apparent frequency of a single spacecraft observation is affected by the phase 
variation present in a local field line resonance.

Plain Language Summary On the final orbits of the Cassini Saturn Orbiter, one surprise was the 
discovery of large magnetic oscillations perpendicular to the background planetary field. The disturbances were 
present each time the spacecraft passed planetward of the innermost rings. This study models what a spacecraft 
would see if the signals were large scale magnetohydrodynamic waves excited within a high-density plasma. 
The strong alignment of the magnetic oscillations transverse to the background led to the original proposal 
that the signals are highly localized Alfvén waves in what is known as field line resonance. The simulations, 
however, reveal subtle aspects of the overall picture and how the system is being excited. In particular, it is 
shown that on the quasi-polar orbits such as Cassini followed one expects some unexpected features, such as the 
signal frequency detected in the largest field component differs between hemispheres. Moreover, the frequency 
detected on the spacecraft might substantially differ in field components in different directions. The conclusion 
that the signals are resonantly excited Alfvén waves hold up but the simulations show that such excitation must 
have a complicated spatial amplitude and phase structure. A re-examination of the Cassini data has revealed 
some of the effects discovered in the computer simulations.
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Southwood et al. (2021) reported observations of such low-frequency signals (periods ∼1 − 10 min) in Saturn's 
magnetosphere from the Cassini magnetometer during the final 22 (proximal) orbits of the mission. At periapsis, 
the spacecraft passed planetward of Saturn's inner D-ring. During this phase of each orbit, large-scale azimuth-
ally polarised magnetic signals were always present, suggesting a systematic steady state rather than some tran-
sient phenomena. The signals were attributed to standing Alfvén waves excited on the magnetic shells planetward 
of the Saturn D-ring. There was furthermore an apparent lack of any systematic variation in the frequency as 
the spacecraft crossed magnetic shells, as would be expected of locally excited standing Alfvén modes. The 
frequency would usually be expected to increase moving radially inward, in line with an increasing Alfvén speed 
caused by an increasing magnetic field strength as well as moving to shorter field lines. This led the authors 
to infer that the signals were pumped at a coherent frequency. Such a frequency could be enforced by global 
compressional eigenmodes excited in a cavity/waveguide formed in the dayside magnetosphere, which represents 
a theory of MHD wave-coupling employed for several decades at Earth (Kivelson & Southwood, 1985, 1986; 
Samson et al., 1992).

The goal of this work is to use numerical simulations to model these oscillations in Saturn's inner magnetosphere 
and to identify which features that appear in the modeling are detectable in the data. Although motivated by 
data obtained at Saturn, our work illuminates the dynamics of the MHD wave modes in a cold plasma and has 
general relevance to in-situ measurements of MHD waves in any magnetosphere. We continue this introduction 
by discussing the details of the observations of Southwood et al. (2021), followed by an appropriate introduction 
to the theoretical and modeling considerations.

1.1. Observational Motivation

Figure 1 is based on the data shown in figure 15 by Southwood et al. (2021). The top panel shows the band-limited 
(filtered between 1 and 5  min periods) azimuthal magnetic field component ΔBϕ with a period of ∼176  s, 
observed as the Cassini spacecraft penetrates magnetic shells planetward of the innermost D-ring on Cassini 
Orbital Revolution (Rev) 291 on 02 September 2017 between 12:50:25 and 13:25:41 UT. The Saturn planetary 
magnetic field is axisymmetric and so magnetic shells can be characterized by the radial distance of the point 
where they are furthest from the planet, or equivalent L shell (EqL, measured in Saturn radii). The L shell of the 
spacecraft is shown in the lower panel. Time, T, is measured from when the innermost shell is encountered at 
L = 1.03. The blue and red portions of the trace denote when the spacecraft is traveling inbound and outbound 
respectively. The spacecraft is on shells that thread the innermost Saturn ring, the D-ring when 1.24 > L > 1.11. 
The orbit is such that, near periapsis, at the same time before and after the innermost magnetic shell, it is on 
the same magnetic shell. One can see that the signals rise above the background (which has been subtracted) 
as the spacecraft crosses the D-ring shells inbound (∼ − 850 s < T < − 528 s) and then decay on crossing the 
D-ring  shells outbound (∼ 528 s < T < 850 s). Peak amplitudes are detected in the 1.5 cycles shown in the shaded 
segments between T = ±264 s and ±528 s. Between in and outbound encounters with the signals, the spacecraft 
has changed hemispheres. The observations, therefore, suggest that the entire flux tubes must be oscillating and 
likely have a standing structure along the background field. Nonetheless, as we shall see, there is some subtlety 
in interpreting what is seen.

Signals like those shown in Figure 1 are detected on each of the proximal orbits. The proximal orbits take the 
spacecraft planetward of the rings. Although the orbits are highly inclined, they are not quite north-south symmet-
ric. On any given pass planetward of the D-ring, the spacecraft moves from north to south crossing around 40° 
in latitude in just under 2 hr in local time (LT). Periapsis is reached just below the equator. Although the Saturn 
field is axisymmetric, the field is not north-south symmetric (Dougherty et al., 2018). Southwood et al. (2021) 
define the equivalent magnetic equator as where the radial component of the background field is zero. This is 
normally encountered just above the planetary equator. In Figure 1, the spacecraft crosses this point on the orbit 
when T = −105 s. The wave field is in fact zero at this point.

There is a high mass density in the region planetward of the rings although uncertainties remain regarding this. 
That the densities of positively charged ions do not match the observed electron densities shows this gap in knowl-
edge (Morooka et al., 2019). Morooka et al. (2019) explained the discrepancy by the presence of unknown quan-
tities of positively or negatively charged dust. It does mean that the plasma mass density is not known precisely. 
Indeed, further theoretical work on the basis of the spectrum of waves seen could shed light on the effective mass 
density of the local plasma in the regions through which the spacecraft is moving.

Writing – original draft: T. Elsden, D. 
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1.2. Theory and Modeling Considerations

The signals of the previous section are seen on all 22 orbits. The large amplitude azimuthal signals appear out 
of background noise as the spacecraft crosses the magnetic shells threading the D-ring and enters a high-density 
plasma that could be regarded as the topside ionosphere. The presence of the signals on all orbits implies that 
they represent a steady-state process.

A further critical property of the signals is the lack of frequency variation with L-shell. This occurs in spite of 
the resonant Alfvén mode eigenfrequency varying significantly with L-shell, which varies due to the changing 
magnetic field geometry, as well as likely changes in plasma mass density, magnetic field strength, and field 
line length with radial distance. Therefore, if the field lines were freely oscillating at their natural frequen-
cies in response to a broadband driver, one would expect to see such a frequency variation as the spacecraft 
crossed L shells. Instead, there are band-limited frequencies present in this region inside of the D-ring shell. 
This led Southwood et  al.  (2021) to suggest that the narrow band response meant that the local azimuthally 
polarised waves were being driven by energy fed from global fast eigenmodes. The works of Kivelson and 
Southwood (1985, 1986) introduced the concept of global magnetohydrodynamic (MHD) eigenmodes of Earth's 
dayside magnetosphere, in order to explain the discrete band-limited frequency signals often observed. Global 
modes are fast MHD waves that are inherently damped through the coupling between the fast MHD mode and the 
Alfvén mode. At the lowest frequencies, the Alfvén mode adopts a standing structure along the field and its eigen-
frequencies vary from magnetic shell to shell. Each oscillating shell is known as a field line resonance (FLR) 
(Southwood, 1974). The global fast eigenmode damping is caused by the FLRs, due to energy being irreversibly 
transferred from the fast to the local Alfvén wave. When significant dissipation is present (i.e., through a resistive 
ionosphere), the steady state resonance exists over a finite L shell width (Mann et al., 1995).

A global fast mode with a consistent frequency in the observed region could explain the data in two ways. First, 
if there is no local FLR, coupling far away can introduce an Alfvén mode component into a global eigenmode. 
However, the amplitude of such signals would not be very large as they are not resonant oscillations. A priori this 
seems unlikely in the Cassini observations. The transverse azimuthal oscillations have amplitudes as much as an 
order of magnitude larger than the components in the meridian, which would correspond to the global fast mode 
polarisation. Second, with strong dissipation causing a broader bandwidth, one finds a relatively large FLR width 
(Mann et al., 1995), thus allowing a large amplitude narrow band Alfvén mode excitation over a finite range of 
magnetic shells. We shall investigate these possibilities further here and compare them with observations.

Figure 1. Reproduced from figure 15 of Southwood et al. (2021). The top panel shows band-limited signals of the azimuthal 
magnetic field perturbation ΔBϕ with period near 176 s. A 1–5 min period filter has been applied. The lower panel shows the 
magnetic shell of the spacecraft, on Cassini orbit Rev 291. The x-axis in both panels is time, T, measured in seconds from 
when the spacecraft encounters the innermost magnetic shell (EqL = 1.03, further explained in main text). Trace colors are 
blue before the innermost shell encounter and red after. The shaded regions correspond to when the spacecraft is crossing 
magnetic shells with 1.05 < EqL < 1.11 inbound (left) and outbound (right). The vertical lines are separated by 264 s. 
The magnetic shell at the D-ring inner edge is crossed at T = ±528 s, with the outer D-ring edge crossed at T ∼±850 s, as 
indicated by the thick gray arrows.
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A new issue specifically raised in this study is the effect of spacecraft motion. The fast-Alfvén wave coupling that 
gives rise to FLR inherently introduces spatial phase structure in the vicinity of the resonant shell. Spatial phase 
variation can appear as time variation in phase, that is, a modification of the frequency, on a spacecraft moving 
through the structure. This was noted at Earth by Anderson et al. (1989); Takahashi et al. (1990), who showed 
evidence of frequency differences between inbound and outbound spacecraft passes of up to 15% at L ∼ 5. This 
has also been studied for low Earth orbit satellites, which are passing much more rapidly through the resonance 
(Heilig et al., 2013; Vellante et al., 2004), which enhances this effect. Indeed, this will be important for Cassini, 
given how quickly it passes through the region of interest. Sampling from a simulated spacecraft in our modeling 
provides key insight, as we will show. Thus, although motivated by observations in the Cassini data set used by 
Southwood et al. (2021), our numerical MHD modeling will also bring new perspectives on what can be observed 
by a spacecraft when traveling through a FLR, potentially useful in any magnetospheric context.

The paper is structured in the following way: Section 2 describes the numerical MHD model used for the simula-
tions; Section 3 analyses the results from the simulations from a fundamental MHD wave coupling perspective; 
Section 4 considers the observational features of FLR by a spacecraft; Section 5 links the model and the data by 
analyzing virtual spacecraft signatures; Section 6 presents examples from the data to compare with the modeling. 
Conclusions are given in Section 7.

2. Numerical Model
The numerical model used will be briefly summarized here, though the interested reader should refer to the simu-
lation development focused study for full details (Wright & Elsden, 2020). The model solves the resistive, linear 
MHD equations for a cold plasma in a background dipole magnetic field geometry. A key feature of the model 
is the development of a set of field-aligned orthogonal coordinates, based on optimizing the standard dipole 
coordinates for numerical efficiency. These new coordinates, labeled (α, β, γ), mitigate some of the grid spacing 
issues which arise when using dipole coordinates, leading to numerically inefficient codes. Such features are 
very well explained by Kageyama et al. (2006). The γ coordinate is along the field direction, β is in the azimuthal 
direction and α is in the direction of the local field outward normal, that is, it labels magnetic shells and in the 
equatorial plane coincides with the radially outward direction. The coordinate system is designed to be effective 
for studying the small-scale structure between magnetic shells, which occurs where the coupling between the fast 
compressional mode and the transverse Alfvén mode drives the latter into FLR.

The simulation domain and setup are shown in Figure 2. The dimensions of the simulation domain are not as 
extreme as the actual Kronian context where the observed signals are encountered on shells corresponding to 
dipole L = 1.03 − 1.24. For computational economy, the inner boundary of the simulation is placed at L = 1.2 as 
shown by the grid in the upper left panel (a) in Figure 2, displaying selected contours of the meridional (α) and 
field-aligned (γ) coordinates in the X-Z plane. Panel (b) displays the equilibrium Alfvén speed in the equatorial 
plane. The chosen separation into two cavities is clear, with the blue region representing the smaller dense inner 
cavity and the red representing the larger diffuse outer cavity. The density gradient marking the equivalent of the 
D-ring crossing is between L = 1.5 − 1.8, and the Alfvén speed transitions smoothly between the two regions. On 
either side of this transition, the Alfvén speed is held constant. Furthermore, there is no azimuthal variation in the 
Alfvén speed. The outer boundary of the computational domain is L = 4, which at Saturn, would approximately 
mark the orbit of Enceladus, so the scale of the actual dayside magnetosphere is substantially larger. However, as 
Enceladus is a primary source of plasma for the magnetosphere that diffuses outwards, the shells inside its orbit 
are likely to form an effective cavity for the fast MHD mode.

The inner boundary, the lower and upper ionospheric boundaries, and the boundaries in azimuth are all chosen to 
be perfectly reflecting. For the ionosphere, the assumption corresponds to perfect conductivity and for the inner 
boundary, it corresponds to a rigid boundary. The boundary in azimuth (local time) is the most unrealistic as it 
precludes azimuthal energy transport. Hence, the domain is a cavity rather than an open-ended waveguide. The 
azimuthal extent is limited to a quarter of the whole domain for numerical efficiency. As previously mentioned, 
it is the meridional structure that will govern the behavior and is of interest in this study. The simulation is 
driven from the outer boundary at L = 4, by perturbing the field-aligned magnetic field component bγ at a fixed 
frequency, as described in the next section.

The simulations include dissipation through the magnetic diffusivity η, which has a uniform value throughout 
most of the domain. Close to the ionospheric end of the field lines, η is smoothly tapered to zero to prevent short 
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diffusion timescales in this region where the numerical grid spacing decreases. A full discussion of this is given 
in Section 3.4 of Wright and Elsden (2020). Dissipation is included in order to limit the radial width of FLRs such 
that it is always suitably resolved. The simulation code was tested extensively, with energy conserved typically 
to one part in 10 5.

The variation in the fundamental Alfvén frequency, ωA, with equatorial radial distance is shown in panel (c) of 
Figure 2. In the regions where the Alfvén speed is constant, the variation in the field line length still provides 
a significant change in the frequency, resulting in a smooth Alfvén continuum. The most important effect of 
the increased density in the inner region is to provide a sharp change in the Alfvén speed between L = 1.5 and 
L = 1.8. In order to resolve the steep radial gradients in the resulting waves, the number of grid points used in 
each of the coordinate directions is (αm, βm, γm) = (420,30,60). The chosen driving frequency is denoted by the 
red line in Figure 2c. Where this frequency intersects the Alfvén frequency, FLRs are expected to form, as marked 
by the vertical blue dashed lines.

Figure 2. Simulation setup, (a) example coordinate grid for the simulation, displaying contours of the meridional and 
field-aligned coordinate (note: only every 13th contour across the field and every 2nd contour along the field are plotted). (b) 
Contour in the equatorial plane of the equilibrium Alfvén speed. (c) Alfvén frequency (ωA) variation with radius. Solid red line 
denotes the driving frequency, dashed vertical blue lines give the locations where field line resonances are expected to form.
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3. MHD Wave Coupling and System Behavior
Before considering matching the observations, we examine the overall 
behavior of the simulation system outlined in the previous section. A simple 
source is chosen in which the outer boundary surface at L = 4 is forced into 
oscillation with a fixed frequency. The frequency is chosen to be close to 
an eigenfrequency for the compressional mode in the cavity formed by the 
boundaries at L = 1.2 and L = 4. The magnetic compression enforced on 
the boundary is transmitted through the system as a meridional oscillation. 
With the boundary conditions detailed in the previous section, if there were 
no azimuthal variation, that is, azimuthal wave number kβ  =  0, the wave 
components would exhibit secular growth over many cycles, as energy accu-
mulates as the source pumps the meridional motion. Eventually, numerical 
dissipation would bring saturation, with dissipation distributed throughout 
the volume. If kβ ≠ 0 however, the behavior is very different. The difference 
between the kβ = 0 and kβ = 2 (used here) cases is that once kβ ≠ 0, the fast 
compressional mode couples to the MHD Alfvén mode and FLR occurs. The 
Alfvén mode FLRs provide highly localized energy absorption and energy 
balance between modes is established rapidly.

The driven boundary perturbation to the field-aligned magnetic field compo-
nent imposed at L = 4 is

�� (� = 4, �, �, �) = cos(���) cos(���) sin(���), (1)

for kβ  =  m  =  2, kγ  =  π/(2γmax) and driving frequency ωd  =  0.739 (period 
τd = 8.502; dimensionless values are presented for the simulations through-
out). These values provide a half wavelength dependence azimuthally over 
the simulation domain (0 < β < π/2) and a half wavelength (the fundamen-
tal) along the field line. The fundamental cavity mode has a quarter wave 
structure in the meridian between the driven outer boundary and the rigid 
inner  one.

Figure 3 illustrates the overall spatial profile of the three magnetic compo-
nents once the system has reached a steady state, which occurs once energy 
inputted into the domain from the driven boundary is balanced by that dissi-
pated through the inclusion of resistivity. It displays the radial dependence 
of each magnetic field component at four equally spaced phases, Φ, during 
a wave cycle where the time order is black (Φ = 0), blue (Φ = π/2), green 
(Φ = π), and red (Φ = 3π/2). The top panel shows the profile in the meridian 
of the compressional component, bγ. The plot is taken at the equator and 
along the central meridian. The black and green traces resemble the quarter 
wave form one would expect for a pure eigenmode with a node of the radial 
velocity at the inner boundary and a node of bγ at the outer driven boundary 
(Appendix A of Elsden and Wright (2015) showed that driving the bound-
ary with magnetic pressure results in a node of the compressional field (bγ) 
there). The traces half a cycle apart in time are a little different from the case 

where kβ = 0 (i.e., no mode coupling). However, the blue and red traces (in quadrature with the black and green) 
represent the difference with kβ = 2.

In the steady state, the signal phase in a pure eigenmode would not vary. The red and blue traces here represent 
an oscillation in quadrature with the black and green and would not be present in a pure eigenmode. At Φ = π/2 
and Φ = 3π/2 in the cycle, the pure mode would be zero everywhere. The presence of the spatially varying 
small signals in quadrature with the primary bγ signal means that the phase of the overall bγ oscillations varies 
from magnetic shell to shell. Spatial phase structure has long been recognized as linked to energy transport in 
large-scale MHD waves (Southwood,  1975; Southwood & Kivelson,  2000). In this case, the mode coupling 

Figure 3. Radial dependence once the simulation has reached a steady state, 
of Top - Field-aligned magnetic field bγ; Middle - Azimuthal magnetic field 
bβ; Bottom - Meridional magnetic field bα. The colored lines correspond to 
different times separated by a quarter wave period in the order black, blue, 
green, and red. Vertical dashed lines denote expected field line resonance 
locations.
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induces irreversible energy transfer from the compressional mode to the Alfvén mode FLRs, and the small, in 
quadrature signals, are directly associated with the energy transfer toward the FLR shells.

A further feature is clear in the black and green profiles for the field-aligned component (top panel). At the 
density step at L ∼ 1.6, the magnitude of the gradient in amplitude in the meridian changes dramatically. It results 
in an enhanced amplitude in the high-density region that peaks at the inner boundary. The effect can be seen as 
the direct result of there being a rigid inner boundary condition. The compressional signal can be thought of as 
pumping the transverse azimuthal signals, so the enhancement in the inner region contributes to the high trans-
verse amplitudes there.

The middle panel in Figure 3 shows the azimuthal magnetic field, bβ. Despite the fact that this component would 
not be present at all if kβ = 0, the amplitude scale in the plot is now substantially larger than for the other compo-
nents. With finite kβ the azimuthal variation of the compressional component is now pumping azimuthal motion. 
The azimuthal motion is most effectively excited at the FLR shells and it follows that the azimuthal component 
shows most clearly the Alfvén mode FLR behavior. The red and blue traces have peaks at the three shells where 
FLR occurs (where ω = ωA as indicated in the bottom panel of Figure 2). At the FLR locations, the azimuthal 
motion is being pumped by the gradients in bγ, just as in an oscillator forced at its resonant frequency.

The azimuthal component (middle panel) also shows substantial black and green signals peaking on either side of 
the resonance. This means that the phase of the bβ oscillations changes substantially as one moves from shell to 
shell through resonance. As we shall discuss below, the sign change across the resonance in these traces implies 
a net change of π in phase across the resonant region and will have potentially important observational effects for 
a spacecraft moving through the FLR.

The meridional magnetic field component, bα, transverse to the field is shown in the bottom panel of Figure 3. 
As with the other transverse component, bβ, the standing structure along the field means that it has a node at 
the equator. Therefore, the plot is taken from off the equator and in the central meridian. The bα component has 
smaller amplitude at peak values than bβ. It is a hybrid signal; effects can be seen attributable to both wave modes. 
There is a large-scale background variation that reflects the dominant quarter wavelength mode structure of the 
fast mode in the meridian. At the inner rigid boundary, the MHD frozen field condition means bα has a node there. 
At the outer boundary, where the system is driven, the plasma displacement in the α direction has an antinode 
(maximum), as does bα. This confirms a previous statement, that driving the outer boundary with perturbations 
to the field-aligned magnetic field component bγ, simulates a node of bγ there (Elsden & Wright, 2015), hence the 
antinode in the meridional displacement.

Superposed on the large-scale variation of bα there are also clear local amplitude increases at the FLR locations. 
A simple way to understand this is that when kβ is non-zero the bα component is required to meet Gauss's law 
(∇ ⋅ B = 0). In other words, the field lines of the large azimuthal FLR perturbation are closed close to the reso-
nance in the plane perpendicular to the background field. Comparing the colors of the traces in the relevant plots 
of Figure 3 shows that near resonance, bα is in spatial quadrature with bβ, as would be expected. For clarity, a 
movie showing this time dependence is included as supplementary information for this study (Movie S2).

4. Observable Features of Field Line Resonance
As Wright and Elsden (2016) showed, the polarization behavior through resonance can be complex. However, for 
our purposes, we can note that our motivating observations, with very large azimuthal field perturbations, indi-
cate the small azimuthal wavenumber case is appropriate. The azimuthal component stands out in the simulations 
as manifesting the effect of FLR, not only in amplitude but also in phase, as is indicated by the local amplitude 
peaks in both the black/green and the red/blue traces in the FLR vicinity in Figure 3. Near resonance, we can 
approximate the variation of the azimuthal component bβ across the FLR magnetic shell by the function:

𝑓𝑓 (𝑥𝑥) =
1

𝑥𝑥 + 𝑖𝑖𝑖𝑖
 (2)

where ϵ is a constant and x is the radial coordinate (Kivelson & Southwood, 1986; Southwood, 1974). The real 
and imaginary parts of f(x) are shown in the upper panel of Figure 4.

We first compare the top panel of Figure 4 with the middle panel of Figure 3, where the spatial variation of the 
azimuthal component bβ is shown. By taking the black trace (in Figure 4) as the real part and the red trace as 
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the imaginary part (i.e., lagging in phase by π/2), the function can be seen to 
reflect the relative variation of bβ through the resonance, as seen in the traces 
in Figure 3, if the resonance is located at x = 0. The lower panel of Figure 4 
then shows the phase of the function f(x) and thus allows picturing of the 
spatial phase variation from shell to the shell through resonance.

Any independent spatial variation evident between the black and red traces in 
Figure 3 means that there is an impact on phase. The black and red traces for 
the meridional components bγ and bα in the upper and lower plots do show 
distinct variation, meaning there is some spatial phase structure. However, 
there is nothing resembling the large phase change as seen in bβ. Accord-
ingly, the main impact in the observations should be sought in the azimuthal 
component, bβ, for the small azimuthal wavenumber signals discussed here. 
In the bβ component, the overall change in phase through an individual reso-
nance is π, potentially sufficient to cause a change in apparent frequency or 
even a change in sign of the oscillation amplitude. However, the observability 
will also depend on the speed of a spacecraft passage through the resonant 
shells as well as the parameter ϵ from Equation 2, which is related to the 
dissipation.

Figure 4 shows that the FLR structure would yield a change of order π across 
the scale of order a few times ϵ. ϵ is also the scale on which the amplitude 
of the resonance varies. Critical to detecting the effect of the phase change 
is the time a spacecraft takes to cross the resonance region, τ, say. When τ 
is comparable with the wave period, T, the spacecraft may detect up to half 
a cycle phase change (π) in one period, where the phase change should be 
2π. According to the sign of the change, this would appear as a decrease in 
apparent frequency by a factor of two (negative phase change) or an increase 
by 3/2 (positive phase change). When τ ≪T, the resonance is rapidly crossed; 
the oscillation component will simply exhibit a sign change in less than one 
cycle. When τ ≫T, the spacecraft takes many wave periods to cross the reso-
nance. The frequency change may be small but it will be modified over many 

cycles. Noting the phase change is much smaller in the meridional components, the most evident observational 
effect may well be a difference between the frequency observed in the azimuthal component and the meridional 
components.

We next examine how ϵ is parameterized. In Appendix A we provide a derivation of two Equations, A14 and A11, 
reproduced below as Equations 3 and 4. The equations show that the azimuthal displacement and magnetic field 
are controlled in the vicinity of resonance as.

𝜉𝜉𝛽𝛽 =
1

(

𝜔𝜔2 − 𝜔𝜔2

𝐴𝐴
(𝛼𝛼) + 2𝑖𝑖𝑖𝑖𝜔𝜔

)

𝐵𝐵2

ℎ𝛽𝛽𝜌𝜌𝜌𝜌0

𝜕𝜕

𝜕𝜕𝛽𝛽

(

𝑏𝑏𝛾𝛾

𝐵𝐵

)

, (3)

𝑏𝑏𝛽𝛽

ℎ𝛽𝛽

= 𝐁𝐁 ⋅ ∇

(

𝜉𝜉𝛽𝛽

ℎ𝛽𝛽

)

, (4)

(see appendix Equations A14 and A11) where hβ is a geometrical factor associated with the coordinate system 
(hβ = r sin θ in spherical polar coordinates in an axisymmetric background field where the dipole is at the origin 
aligned along the symmetry axis) and ν represents damping or dissipation. As stated in Section 2, dissipation is 
included in the model through the magnetic diffusivity η. Of importance to the simulations is the time taken to 
establish an equilibrium, such that the resonances have achieved their steady-state amplitude, whereby energy 
fed to the resonance is balanced by that dissipated through Ohmic heating. The value of η is such that it takes 
approximately six periods to reach this steady state.

The resonant denominator is clear on the r.h.s. of Equation 3. The numerator is the azimuthal pressure gradient 
induced by the compressional component, bγ. The plots in Figure 3 show that for the compressional component 
bγ the phase change near resonance is small (compare the difference in amplitude of the black/red traces). Thus, 

Figure 4. Idealized resonance structure. Top: Real (black) and imaginary 
(red) parts of the function f(x) given by Equation 2. Bottom: Phase variation 
across the resonance that is, the argument of the complex function f(x).

 21699402, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JA

031208 by N
H

S E
ducation for Scotland N

E
S, E

dinburgh C
entral O

ffice, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Space Physics

ELSDEN AND SOUTHWOOD

10.1029/2022JA031208

9 of 21

the denominator controls the phase variation in ξβ (and bβ). Denoting the value of L on the resonant shell, L0, we 
expand the expression for the resonant denominator in Equation 3 using a Taylor expansion to give:

𝜔𝜔2 − 𝜔𝜔2

𝐴𝐴
(𝐿𝐿) + 2𝑖𝑖𝑖𝑖𝜔𝜔 ≈ 2𝑖𝑖𝑖𝑖𝜔𝜔𝐴𝐴(𝐿𝐿0) − (𝐿𝐿 − 𝐿𝐿0)

[

d

dL

(

𝜔𝜔2

𝐴𝐴
(𝐿𝐿)

)

]

𝐿𝐿=𝐿𝐿0

. (5)

Thus, the constant ϵ from Equation 2, measured in units of α (length) and expressed in terms of the system 
parameters is given by

𝜖𝜖 =
𝜈𝜈

[

d

dL
(𝜔𝜔𝐴𝐴)

]

𝐿𝐿=𝐿𝐿0

.
 (6)

We now turn to the “observability” of resonances. The form of the resonant denominator in Equation 3 (and the 
expansion in Equation 5) shows that the resonant amplitude is inversely proportional to the radial gradient in 
FLR frequency, dωA/dα. This dependence is made explicit in equation (25) of Elsden and Wright (2017), where 
the resonance amplitude for a 3-D FLR is described. As we have just shown in Equation 6, the spatial scale of 
the resonance is also inversely proportional to the Alfvén frequency gradient (Mann et al., 1995). However, the 
wave amplitude will be greater at resonances where the Alfvén frequency gradient is shallower. Thus, although 
the most rapid spatial phase variation might appear to be where the gradient of ωA is steepest, in circumstances 
where multiple resonances are occurring the equilibrium amplitude at the steepest gradient of ωA is the weakest 
of the FLRs. This behavior is evident by comparing the resonance amplitudes in the middle panel of Figure 3 for 
bβ with the gradient of ωA shown in the bottom panel of Figure 2 (the smallest resonance occurs in the steepest 
frequency gradient).

Finally, it must be noted that the sense of the phase change through resonance is also a function of the gradient 
in ωA. When the radial gradient of ωA is positive, as in the middle resonance of the three indicated in the lower 
panel in Figure 2, the phase increases inwards and so phase motion appears inwards. The resulting Doppler shift 
detected by an inward/outward moving spacecraft would cause a frequency decrease/increase respectively. The 
reverse would apply to the other two resonances in the lower panel of Figure 2 where the gradient of ωA is nega-
tive. The spatial phase then decreases inwards and the resulting phase motion is thus outwards. The alternative 
way of thinking of this is that the phase motion is always in the direction of decreasing Alfvén frequency. Clear 
examples of this will be shown later such that this change can be more easily visualized.

4.1. Variation in Phase Along the Field

There is also a second effect to allow for the lowest frequency eigenmodes. The eigenmodes have an overall 
standing structure along the background magnetic field direction. Where there is north-south symmetry and 
where both ionospheres are reflecting, one expects the lowest frequency signals to have a node for the two trans-
verse components (bα and bβ) at the equator. The compressional component would have an antinode there. Thus, 
if a spacecraft travels through the equator the transverse signals would change sign (i.e., the phase changes by π).

The effect on the signal phase can be further complicated if the ionospheric boundaries are absorptive as that 
would introduce a phase variation along the background field (Newton et al., 1978). This can be complicated 
further by any asymmetries in the northern/southern ionospheric Pedersen conductances (Ozeke et al., 2005). 
These effects are not included here; nor have we seen evidence of this in the data referred to subsequently. 
However, the north-south phase difference is detected not only by the transverse signals passing through zero 
near the field equator but also in the phase differences detected in signals when the spacecraft passes the same 
magnetic shell inbound and outbound. Indeed, in our further discussion of the event shown in Figure 1, we shall 
point out this effect.

5. Virtual Spacecraft Signatures
We now consider how the effects present in the coupled global MHD eigenmode structure can impact observa-
tions made on a spacecraft passing through the signals. Figure 5 shows three separate cases, labeled ‘a’, ‘b’ and 
‘c’, of spacecraft orbits through the simulation domain. The inbound portion of the orbits (from the north) is 
colored blue, with the outbound portion (to the south) colored red. The green and purple dashed lines represent 
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the magnetic shells where FLRs are centered at L = 1.4 and L = 1.6. Orbit ‘a’ does not cross the FLR shells. 
Orbit ‘c’ is shifted to the south from orbit ‘b’ to study the north-south asymmetry present at Saturn due to the 
hemispheric asymmetry of the magnetic field. The expanded region shown to the right indicates how this has 
changed the portion of each orbit where the magnetic equator is crossed.

As mentioned in Section 3, the dimensionless driving frequency is ωd = 0.739 giving a period of τd = 8.502. The 
speed of the spacecraft is chosen such that it takes just under 6 cycles (5.9) for the transit along the orbits shown. 
In the simulations, there will be a small azimuthal variation (as kβ = 2) due to the assumed standing structure in 
longitude. The satellite orbits are strictly in a meridional plane, ignoring any azimuthal motion of the spacecraft.

5.1. Spacecraft Orbit Missing the Resonance Region

The simplest case to consider is that where the spacecraft does not cross the central shells of an FLR, labeled ‘a’ 
in Figure 5. The top panel of Figure 6 shows the azimuthal magnetic field bβ as measured by a spacecraft moving 
uniformly along this trajectory from the North.

In all panels in Figure 6, a dashed black constant amplitude sinusoidal guide signal is shown. It represents the 
signal at a fixed point in the plasma frame of reference and we will refer to it simply as the ‘guide’. We shall use 
it as a reference to show how motion-induced phase and amplitude changes occur in the observed signal. The 
solid vertical line marks the innermost shell encounter, which for this orbit coincides with crossing the magnetic 
equator. Comparing the solid and dashed traces one sees that the spacecraft signal comes to zero and changes 
sign (phase jump of π) at the equator, that is, it is passing through a magnetic node, consistent with the expected 
field-aligned nodal structure for the transverse field in the lowest frequency eigenmode. The mode structure along 

Figure 5. Three virtual satellite trajectories labeled ‘a’, ‘b’, and ‘c’ in a meridional plane along which fields are measured in 
the simulation domain to compare with data. Both ‘a’ and ‘b’ are north-south symmetric. Blue denotes the inbound and red 
the outbound phase of the orbit. The dashed green and purple lines represent the magnetic shells of the field line resonances 
located at L = 1.4 and L = 1.6 respectively. The expanded region shown to the right emphasizes the north-south asymmetry 
for orbit c, with asterisks marking the transition in the orbits from inbound (blue) to outbound (red).
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Figure 6. Time series (in simulation (sim) time units) of the azimuthal magnetic field component bβ measured along each 
of the trajectories from Figure 5 (top panel is the orbit labeled ‘a’ in Figure 5; middle is ‘b’; bottom is ‘c’). Blue is the 
inbound phase of the orbit, red the outbound. The dashed line is a constant frequency reference signal to highlight the phase 
structure. The vertical solid line represents the time when the spacecraft switches from the inbound to outbound phase of 
the orbit. The corresponding L-shell, latitude and time from the innermost L-shell are given as secondary axes below each 
panel. The purple/green dashed lines in the lower panels indicate where the spacecraft is crossing the field line resonance at 
L = 1.6/L = 1.4 respectively. The gray numbered arrows in the lower panels demarcate time periods further explained in the 
main text.
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the field also accounts for the amplitude increasing away from the equator crossing. The phase jump at the equa-
tor means that there is one wave cycle about the equator where, although the amplitude is small, the wave cycle 
appears to halve in length simply due to the presence of the node. However, the precise shape of the wave  detected 
on equatorial passage depends on the phase of the signal when the spacecraft reaches the equator. Once the 
spacecraft is across the equator, the change in signal phase by π means that the oscillations are in antiphase with 
the guide sinusoid.

5.2. Spacecraft Orbit Encountering FLRs

The middle and bottom panels of Figure 6 show the signals recorded along the two orbits labeled ‘b’ and ‘c’ in 
Figure 5. The distinction between the orbits is that in orbit ‘b’, the innermost shell is encountered at the equator 
while orbit ‘c’ encounters the innermost shell in the southern hemisphere after it has passed through the equa-
tor. The latter geometry is very close to the actual Cassini proximal orbits. For the simulation, the spacecraft 
is assumed to move at a constant speed along the orbit and the speed has been chosen to display well the effect 
of resonance. In fact, the steady speed near periapsis does match what is seen near the Cassini periapses in 
practice.

The first remark is that even in orbit ‘b’ which is symmetric about the equator, crossing the resonance introduces 
significant departures from symmetry. However, by bearing in mind both the nature of the phase and ampli-
tude structure through resonance as described earlier, along with the overall North–South asymmetry about the 
equator, the behavior of the signal (which we refer to as the ‘trace’) can be elucidated. In each panel the plots 
are divided into numbered time segments, 1–6, marked on the upper part of each plot and indicated by the gray 
double-headed arrows. We shall take each segment in sequence, beginning with orbit ‘b’ (middle panel).

In segment 1 of orbit ‘b’, the spacecraft is approaching the outer resonance in the steep density gradient inbound. 
The steep positive gradient, dωA/dL, means that the resonance is thin. The resonance phase change causes the 
frequency to be reduced, and the resonance amplitude itself is small compared with the inner resonance. The zero 
in both the guide and trace at the beginning of the segment indicates that the guide and trace enter the resonance 
region in phase. The resonance is crossed where there is a zero in the guide signal (indicated by the purple dashed 
line). At the resonance, the trace should be in quadrature with the guide signal and so at peak amplitude. However, 
this is only just perceptible in the trace by a slight glitch. The reason is that the larger amplitude of the broader 
inner resonance is already affecting the trace as we enter segment 2.

Segment 2 begins with the trace having a peak, close to being in antiphase with the guide signal and ends with the 
trace close to in phase. The broader nature of the inner resonance is clear and its larger overall amplitude means it 
has primary influence over the trace for well over a cycle of the guide signal. There are ∼1.5 cycles of the guide 
whilst the trace completes two cycles in the segment. Thus the apparent signal frequency is increased by a factor 
of 4/3. This frequency increase is caused by the outward phase motion of the resonance combined with the inward 
spacecraft motion. The crossing of the inner resonance (green dashed marker) happens at a trough in the guide 
and the trace has a zero there. There are amplitude peaks in magnitude (one peak, one trough) at just over ∼1/4 
cycle of the guide signal. Segment 2 ends with the trace more or less back in phase with the guide.

Segment 3 is where the equator is crossed and lasts a half cycle of the guided wave during which time the trace 
performs a ‘wiggle’ in each direction to reverse phase with respect to the guide. The equator crossing is close to 
a trough in the guide thus in this case the wiggle is first negative then positive once the equator is crossed. As 
the effect of the resonance is now weak, the wiggle resembles that seen on orbit ‘a’, first negative, then positive.

Segment 4 covers much of the inner resonance outbound. The apparent frequency of the trace is now ∼20% below 
that of the guide. This is caused by the opposite effect from the inbound portion, namely outbound spacecraft 
motion combined with outward phase motion in the resonance. Hence the phase structure is observed to pass 
more slowly across the spacecraft. A trough in the trace before the resonance is followed by a large peak shortly 
after resonance that occurs almost precisely in quadrature with the guide, as occurred inbound. The amplitude of 
the peak is very similar to the inbound seen 2.5 guide cycles earlier also near the resonance. The two trace troughs 
in the segment are of similar magnitude despite the first being much closer to the resonance. The similarity in 
amplitude is due to the motion along the field (latitude change of ∼13°) so that, despite the second being farther 
from the resonant shell, its amplitude remains comparable to the former. Segment 4 ends with the trace at a trough 
slightly before a trough in the guide signal.
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Segment 5 shows the clear effect of the outer resonance outbound. The frequency increases due to the outbound 
spacecraft and inward phase motion. This increase is almost by a factor of two, as the trace completes a full cycle 
in only a half cycle of the guide.

Finally, in segment 6, the trace passes through zero at the time of a zero in the guide. From now on the effects of 
the resonances are over and the trace and the guide, having started in segment 1 in phase in the northern hemi-
sphere, will oscillate in antiphase in the south (due to the standing structure along the field).

The orbit ‘c’ trace in the lower panel of Figure 6 has a strong resemblance to orbit ‘b’. The major difference is 
that equatorial behavior is seen just after the innermost shell crossing. As the spacecraft encounters the equator at 
a different guide phase the wiggle is reversed. The outer resonance is not as clear inbound as on orbit ‘b’ (due to 
the resonance occurring essentially at the beginning of the trace), but it is clear outbound. The resonance effect 
is over by the final guide half cycle in the plot where the trace is now in antiphase with the guide. The segments 
1–6 for orbit ‘c’ (lower panel) provide a similar picture to those for orbit ‘b’ (middle panel), as explained in detail 
in the previous paragraphs.

5.3. Meridional Components as a Metronome

The lower two panels of Figure 6 illustrate how the spatial structure of the phase across an FLR can cause a strong 
Doppler shift in the frequency measured on a spacecraft, if the transit time through the FLR is comparable with 
the wave period. As we have seen earlier, although both contain some spatial phase structure, the meridional 
magnetic field components, bα and bγ are dominated by the fast eigenmode global structure. The FLR represents 
a far smaller contribution to these components and therefore the resonance phase change effect on the bα and bγ 
signals is much smaller. Thus, although all three components have the same frequency in the plasma rest frame, 
on a moving spacecraft the resonant effect on the azimuthal bβ component can exhibit the frequency change asso-
ciated with crossing the resonance, while the meridional components do not. This is illustrated in Figure 7. The 
top panel shows the transverse meridional component, bα, and the lower panel shows the azimuthal magnetic field 
component, bβ, from orbit ‘b’ in Figure 5. Again, the blue portion is the inbound pass and the red portion is the 
outbound. The amplitudes of the two transverse components are very different (see scale on y-axes), something 
that gives a problem of detectability in the Cassini data. However, it is clear in the simulation that bβ exhibits a 
frequency change between inbound and outbound legs whereas bα follows the guide sinusoid except for the abrupt 
change of sign across the equator. In this way, although the amplitude of the meridional component is much 
smaller, where detectable, it is a metronome indicating the frequency in the plasma rest frame.

6. Examples From the Cassini Spacecraft Proximal Orbits
The simulation results show that detecting the likely presence of resonances from a moving spacecraft in realistic 
conditions may be extremely difficult, particularly if the signal is highly azimuthally polarised and there is no 
information derivable from components little affected by resonance. The spatial variation in phase inherent to 
FLR in the rest frame of the plasma may be detected on a moving spacecraft as a variation in wave period. The 
standing structure along the background field also needs to be accounted for. For the fundamental, the transverse 
magnetic amplitude is expected to be antisymmetric in latitude. A high inclination orbit will detect a large lati-
tudinal amplitude variation due to this and there should be a phase change of π between hemispheres. The reso-
nance effect also depends on the time for spacecraft passage through the signal. A steep local gradient of the FLR 
frequency, ωA, may mean that the resonance effect is no more than a jump in phase of π, but such a narrow reso-
nance saturates at a smaller amplitude. As we have shown from the simulations, direction of travel with respect to 
the gradient, dωA/dL is important. In the situations modeled, where the spacecraft crosses the resonance inbound 
and then again outbound, the sense of the Doppler shift of the frequency induced by the FLR will be opposite.

The Doppler shift is downward (in frequency) where the gradient of the standing Alfvén eigenfrequency, ωA, 
along the spacecraft track is negative and the shift is to a higher frequency when the gradient is positive. The 
examples of highly azimuthally polarised signals found by Southwood et  al.  (2021) come from a region on 
magnetic shells planetward of Saturn's rings where the spacecraft enters a region where the plasma density is 
enhanced. Thus, there should be a positive gradient of ωA ̧(i.e., dωA/dL > 0) as the spacecraft crosses the inner-
most ring, the D-ring. Once in the high-density region, ωA might increase or decrease as the spacecraft comes 
closer to the planet. Unfortunately, the measurements of the mass and charge density on Cassini are confused by 
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the presence of charged dust (Morooka et al., 2019). In our computational model, we assumed dωA/dL < 0 in this 
inner region (see Figure 2c). The observations we shall show indicate that the effective mass density controlling 
ωA decreases with decreasing L.

The presence of signals in more than one frequency band confuses observations, particularly where the time of 
passage through the signal is a limited number of cycles. Southwood et al. (2021) dealt with this aspect by getting 
around the limitations on spectral analysis introduced by the finite time spent in the signal, by subtracting a cubic 
spline fit with a window near the expected lower frequency from the data. Details of this analysis procedure are 
provided in Section 2 of Southwood et al. (2021).

Our first example is from a Cassini pass, Rev 288, which provided one of the deepest penetrations of the planetary 
field. Data is shown in the two panels of Figure 8. 60-s averaged data from the residual signal left after subtracting 
a cubic spline with a 5 min window is used. In addition, the perturbation radial field in the lower panel has been 
obtained by subtracting the radial component of the C11 model planetary field (Dougherty et al., 2018). A total 
of 25 min (1,500 s) of data are shown taken on 14 August 2017 between 04:05:42 and 04:30:42. The plots are 
centered on the time of encounter with the innermost magnetic shell (t = 0).

The magnetic L shell parameter was derived from the C11 internal Saturn field model (Dougherty et al., 2018) 
and corresponds to the radial distance where a shell crosses the equatorial (ring) plane measured in Rs (Saturn 
radii). The model is axisymmetric with respect to the Saturn rotation axis and so shells are axisymmetric. Ancil-
lary data indicating the local magnetic shell parameter, planetary latitude, and local time (LT) for the spacecraft 
location are given below the time axis in Figure 8. Due to the planetary field not being north-south symmetric 
and that the orbits are not strictly polar, on this pass the spacecraft crosses the point where the background field 
is horizontal (parallel to the surface of the planet) 104 s before the innermost shell encounter. We take this point 
as a proxy for the magnetic equator. Its location is shown by a light blue vertical line in each panel. The L shell 
parameter shows that at the same time before and after the innermost shell, the spacecraft encounters the same 
magnetic shell. This is indicated by the central lighter shaded region. The overall spacecraft motion is from north 
to south and during the 25 min shown the spacecraft crosses 1.5 hr of LT near the noon meridian.

The radial meridional component is shown in the lower panel and the azimuthal in the top. The amplitude scale 
differs between the two panels as the radial oscillation, ΔBr is weaker. This is an unusual pass however in having 
a comparatively large radial signal. The ΔBθ parallel component was too weak to provide a reliable signal and is 

Figure 7. Meridional magnetic field bα (top) and azimuthal magnetic field bβ (bottom) measured in time along the satellite 
trajectory labeled ‘b’ in Figure 5, which crosses the inner region field line resonance (FLR). Blue represents the inbound 
portion of the orbit, red the outbound. The vertical line gives the time when the orbit switches from inbound to outbound in 
L-shell, which coincides with crossing the magnetic equator. The purple/green dashed lines represent the times at which the 
two inner FLRs at L = 1.6/L = 1.4 are crossed.
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not shown. In each panel, black traces show the magnetic perturbations and red dashed traces are guide sinusoids 
with 135 s periods.

The scenario envisaged by Southwood et al. (2021) is that the meridional signal is associated with the global 
eigenmode and it is pumping locally the azimuthal signal associated with the Alfvén mode and FLR. The radial 
component in the bottom panel in the meridian fits quite well with the 135 s period guide trace inbound. The 
black trace of the component is close to being in phase with the guide sinusoid as the spacecraft comes inbound 
from the north. The phase relationship between ΔBr then changes by π for the outbound leg in the southern hemi-
sphere. This is consistent with there being a null in any transverse component near the equator in the fundamental 
wave structure as expected. All in all, the capacity to detect the meridional signal on this pass gives a clear idea of 
the pump frequency and this can now be compared to the larger amplitude azimuthal oscillations.

It is apparent that the black azimuthal component ΔBϕ trace in the top panel has a much less clear relationship 
to the sinusoidal red trace in the same panel. The signal is not coherent with the 135 s period guide trace. Look-
ing to the extreme left and right, one sees that the first half cycle is approximately in phase with the red sinu-
soid and the last cycle is in antiphase with it. Thus, overall the phase of the ΔBϕ trace relative to the red guide 
signal has changed by π between inbound and outbound, in the same manner as for ΔBr, due to the fundamental 
field-aligned mode structure.

Despite the irregularity of the signal, the number of peaks between t = −500 s and −100 s once planetward of the 
D-ring inbound on the pass is two, while outbound between 100 and 500s it is three, symptomatic of the differ-
ence in frequency between inbound and outbound. This is good evidence of the spacecraft encountering FLR 
behavior, similar to the model results presented in Figure 6. We can also deduce that the spacecraft is encounter-
ing an inward spatial variation in phase inbound (thereby increasing the observed period) and the opposite sense 
outbound (decreasing the observed period). The reversal of sense is predicted by the simulations but in the simu-
lation, it was assumed the gradient was the opposite. Here, the Doppler shift to lower frequency on the inbound 
(left) pass and to higher frequency outbound (right) indicates that the Alfvén frequency, ωA, decreases throughout 

Figure 8. Azimuthal component, ΔBϕ, and radial component, ΔBr, measured by the magnetometer on the Cassini spacecraft 
from Rev (orbit) 288 on 14 August 2017 04:05:42 to 04:30:42 UT. The data are in a band corresponding to 1–5 min, filtered 
by a procedure for separating into the two bands which is described by Southwood et al. (2021). The red dashed trace is a 
guide sinusoid with 135 s period. The light red shaded region (−104 < T < 104) begins where the spacecraft crosses the 
Br = 0 point (magnetic proxy equator, marked with light blue vertical line) inbound and ends when the spacecraft attains 
the same L value outbound. The darker shaded regions on the extreme left and right represent where the spacecraft is on 
magnetic shells threading the innermost Saturn ring, the D-ring.
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the region planetward of the D-ring and thus dωA/dL > 0 throughout. As noted earlier, the absence of firm mass 
density measurements due to the presence of charged dust precludes direct checking.

In the Cassini spacecraft data, the amplitude of signals in the meridian is often too small to identify reliably. 
Figure 9 shows an instance where this is true. We show data from orbit Rev 274 illustrating the azimuthal signals 
in a high frequency 1–4 min period band in the upper panel and in the low frequency 4–10 min period band in 
the lower.

At first sight, the signal in the lower panel fits well with the red dashed sinusoid trace which has a period of 310 s. 
There is a reversal of sign (phase jump of π) across the equatorial region so that the black trace of the observed 
signal moves from being in anti-phase inbound to in-phase outbound. This kind of pattern is found often where 
there is a low frequency signal present. As the simulations have shown the amplitude variation can be attributed 
to the latitudinal variation through the fundamental mode structure along the field. There is very little phase 
difference with the 310 s guide trace and so there is no evidence of an FLR being crossed on the pass. On the 
right-hand side, the oscillations are slightly more rapid than on the left which can be attributed to a minor effect 
due to traveling through a gradient dωA/dL > 0. Thus, the evidence from this panel indicates that the spacecraft 
may be traveling through a region where ωA is varying but the spacecraft does not penetrate deep enough to 
encounter any FLR.

The high frequency signal in the top panel is more complicated. A guide red dashed sinusoid with period 144 s 
is shown. The black observed signal can be seen to change phase with respect to the guide trace by around π in 
the first cycles between −650 and −350s, and again by the half-cycle just before the equator at −100s. After the 
passage through the equatorial region after 100 s, the phase of the observed trace has changed by π and then it 
changes again by π before the cycles near 500–750s. Between −350 and −150s inbound there are ∼1.5 guide 
cycles but ∼2 trace cycles. Between 100 and 300s outbound, there are 2.5 trace cycles. Thus there are fewer oscil-
lations inbound than outbound. We conclude that there is evidence for passage through an FLR in this band but 
that it is likely the inward plasma density gradient is also irregular.

Figure 9. ΔBϕ measured by the magnetometer on the Cassini spacecraft from Rev (orbit) 274 on 15 May 2017 16:26 to 
16:56 UT, filtered. Top panel shows the data filtered using a 1–4 min period filter, and the bottom panel 4–10 min periods. 
Red dashed traces are 144 and 310 s period sinusoids for guidance. The light red shaded region (−87 < T < 87) begins where 
the spacecraft crosses the Br = 0 point (proxy equator) inbound and ends when the spacecraft attains the same shell outbound. 
The vertical light blue marker shows the equatorial point and one can see that in both bands there is a null in the field there, 
marking the phase change of π between the northern and southern hemispheres as expected for a fundamental wave structure. 
As shown in Figure 8, the darker shaded regions represent where the spacecraft is crossing the D-ring magnetic shells.
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Our interpretation assumes several signal features that we have assumed in the simulations. First, not only is there 
a fairly monochrome source at a large distance (e.g., as provided by a global eigenmode) but also the excitation 
source of the MHD waves is quasi-steady during the pass. In the example in the lower panel of Figure 8, the fairly 
regular nature of the signal detected in the meridional component supports the idea that there is steady excitation 
for the duration of the spacecraft pass. However, it cannot be guaranteed. In our final example we show a case 
where we have a detectable meridional signal, but which shows the excitation may be sporadic.

Figure 10 shows all three magnetic perturbation field components in spherical polar coordinates for Cassini Rev 
291 on 2 September 2017 between 12:53:02 and 13:23:02 UT. The upper panel shows the azimuthal component 
with a black trace and a red dashed guide sinusoid with a 136 s period. The lower panel shows ΔBr (black trace) 
and ΔBθ (blue trace) as well as the same guide sinusoid with period 136 s (red dashed trace).

The lower panel exhibits irregular signals in the meridional components. However, there are packets with ∼136s 
period apparent inbound between −800s and around −450s and outbound between 250 and 600s. Within the 
packets, ΔBr and ΔBθ appear roughly in antiphase inbound and in phase outbound. This is consistent with signals 
having fundamental structure along the background field as although transverse components have a node at the 
equator, the compressional component ΔBθ would have an antinode there. Between −450 and 250s and after 600s, 
it does not look as if the meridional components are oscillating coherently at 136s and so would not efficiently 
pump the FLR. Accordingly, in this example, there is no reason to assume an overall coherent response during 
the entire spacecraft passage. Indeed, the break in oscillations in ΔBϕ also is symptomatic of this being the case.

7. Final Remarks
Our work has well demonstrated an aspect of magnetospheric MHD waves that applies in any planetary environ-
ment. The field line resonance has some distinct properties. The most significant is the inherent spatial phase vari-
ation from magnetic shell to shell associated with field line resonance structure. The spatial phase change would 
be detected on a moving spacecraft as a frequency change in any circumstance. Although the total phase change 

Figure 10. An example used by Southwood et al. (2021) detected on Cassini orbit, Rev 291 on 02 September 2017 between 
12:53:02 and 13:23:05 UT. The x-axis is time, t, measured in seconds from when the spacecraft encounters the innermost 
magnetic shell (EqL = 1.03). The upper panel shows the perturbed ΔBϕ component and the lower panel shows the radial ΔBr 
(black) and compressional ΔBθ (blue) components. The procedure by which the signals are derived is described in the text. 
The red dashed line is a guide sinusoid with period 136 s. The magnetic equator inbound is shown by the light blue vertical 
line. The light red shaded section marks the equatorial region where the spacecraft is moving in and then out to the same 
magnetic shell as the equatorial crossing. The darker shaded regions represent crossing the D-ring shells.
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is at most π, if the time the spacecraft takes for crossing is comparable with the wave period, the change  detected 
on the spacecraft is very substantial, increasing the apparent frequency by up to 50% or decreasing it by as much 
as a factor of 2. Figure S1 in Supporting Information S1 provides a visual confirmation of this effect. If the source 
is broad band the phase structure would produce a different effect. The frequency would show a monotonic appar-
ent frequency increase as the spacecraft moves in one sense and a decrease as it moves in the other. It is impor-
tant to note that such effects have been seen in the terrestrial magnetosphere (Anderson et al., 1989; Takahashi 
et al., 1990). The fact that we do not see evidence of such continuous change in frequency argues for the idea that 
the FLRs are being driven by fast MHD resonances of a larger magnetospheric cavity. The cavity might not be the 
entire Saturn magnetosphere but might be, for example, the low density plasma region planetward of the plasma 
torus originating from Enceladus.

To summarize and for ease of reference, the main findings are succinctly listed as follows:

•  We have modeled observations of Alfvén waves from the proximal orbits of the Cassini spacecraft reported 
by Southwood et al. (2021). This has been achieved using a linear MHD wave model in a background dipole 
magnetic field geometry, specifically designed to resolve small perpendicular scales inherent in Alfvén wave 
phase mixing.

•  The model raised several interesting features, most notably the phase motion associated with a field line reso-
nance, with the direction of phase motion being determined by the Alfvén frequency gradient.

•  Strong gradients in frequency imply smaller amplitude resonances, something which has been known for 
many years, however, is perhaps at first a counter-intuitive result (e.g., see the resonance amplitudes in the 
middle panel of Figure 3).

•  By looking at virtual spacecraft orbits in the simulations, the importance of the phase motion on the spacecraft 
signal became apparent by the presence of a strong Doppler shift in the frequency. This was then shown to be 
a feature of the observations, which highlights the important relationship between observations and modeling.

•  The simulations further reveal fundamental information about the coupling of a diffuse, larger outer cavity 
and a smaller dense inner cavity, which could have applications at Earth and other planets, for example, the 
coupling of the plasmasphere and outer magnetosphere through fast and Alfvén waves.

•  The further observations presented here than in Southwood et al. (2021) validate the interpretation from that 
paper, of the driving of Alfvén waves at a consistent frequency provided by global modes of a larger magne-
tospheric cavity.

Appendix A: Derivation of Governing Equations Near Resonance
In this appendix, we provide a derivation of Equations 3 and 4 in the main body of the paper. These are derived 
from the two linearized equations of MHD that cover the relationship between the perturbed plasma displacement 
ξ and the associated magnetic field perturbation, b, in a cold plasma. Assuming that all field components are 
proportional to e −iωt, the pertinent linear equations can be written as:

−𝜇𝜇0𝜌𝜌𝜌𝜌
2𝝃𝝃 = [(𝛁𝛁 × 𝒃𝒃) × 𝑩𝑩], (A1)

which is the equation of motion, and

𝒃𝒃 = 𝛁𝛁 × (𝝃𝝃 × 𝑩𝑩) (A2)

is the induction equation where the frozen in flux condition (i.e., ideal MHD) has been assumed. Using the α, 
β, γ coordinates as used in the numerical model described in Section 2, the perturbation magnetic field can be 
expressed in the form

𝒃𝒃 = 𝑏𝑏𝛼𝛼ℎ𝛼𝛼𝛁𝛁𝛼𝛼 + 𝑏𝑏𝛽𝛽ℎ𝛽𝛽𝛁𝛁𝛽𝛽 + 𝑏𝑏𝛾𝛾

(

𝑩𝑩

𝐵𝐵

)

, (A3)

where hα and hβ are the geometrical scale factors associated with the α and β coordinates respectively, which are 
defined through the background magnetic field as

𝑩𝑩 = 𝛁𝛁𝛼𝛼 × 𝛁𝛁𝛽𝛽 =
1

ℎ𝛼𝛼ℎ𝛽𝛽

�̂�𝜶 × �̂�𝜷, (A4)
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where 𝐴𝐴 �̂�𝜶 and 𝐴𝐴 �̂�𝜷 are the unit vectors in the α and β coordinate directions, which are transverse to the background 
magnetic field by definition. The scalar B in Equation A3 is the magnitude of B. From the equation of motion 
Equation A1, it can be seen that the displacement ξ only has components perpendicular to B. Therefore, we can 
write the displacement as

𝝃𝝃 = 𝜉𝜉𝛼𝛼ℎ𝛼𝛼𝛁𝛁𝛼𝛼 + 𝜉𝜉𝛽𝛽ℎ𝛽𝛽𝛁𝛁𝛽𝛽𝛽 (A5)

To simplify the algebra, we can consider how the different components of b contribute to Equation A1. Taking 
the β component of b, the right hand side of Equation A1 is

[

(𝛁𝛁 × 𝑏𝑏𝛽𝛽ℎ𝛽𝛽𝛁𝛁𝛽𝛽) × 𝑩𝑩
]

=
[

𝛁𝛁(𝑏𝑏𝛽𝛽ℎ𝛽𝛽) × 𝛁𝛁𝛽𝛽
]

× 𝑩𝑩

= 𝑩𝑩 ⋅ 𝛁𝛁(𝑏𝑏𝛽𝛽ℎ𝛽𝛽)𝛁𝛁𝛽𝛽
 (A6)

where in the first step we have used the vector identity ∇ × (fA) = f∇× A + ∇f × A for scalar f and vector A. The 
vector triple product rule has then been applied to give the final form on the right hand side. Let us now consider 
the contribution of the γ component of b to Equation A1:

[(

� × ��
�
�

)

× �
]

=
[(

��
�

)

� × � + �
(

��
�

)

× �
]

× �

=
[

�
(

��
�

)

× �
]

× �,
 (A7)

upon using the same vector identity as used above for taking the curl of a scalar times a vector, together with 
assuming an irrotational or current free background field, such that ∇ × B = 0. The right hand side of Equa-
tion A7 can be simplified further using the vector triple product to give

[

𝛁𝛁

(

𝑏𝑏𝛾𝛾

𝐵𝐵

)

× 𝑩𝑩

]

× 𝑩𝑩 =

(

𝑩𝑩 ⋅ 𝛁𝛁

(

𝑏𝑏𝛾𝛾

𝐵𝐵

))

𝑩𝑩 − 𝐵𝐵2
𝛁𝛁

(

𝑏𝑏𝛾𝛾

𝐵𝐵

)

= −𝐵𝐵2
𝛁𝛁⟂

(

𝑏𝑏𝛾𝛾

𝐵𝐵

)

. (A8)

Consider now the contribution of ξβ to the right hand side of Equation A2:

𝛁𝛁 × (𝜉𝜉𝛽𝛽ℎ𝛽𝛽𝛁𝛁𝛽𝛽 × 𝑩𝑩) = 𝛁𝛁 ×
[

𝜉𝜉𝛽𝛽ℎ𝛽𝛽𝛁𝛁𝛽𝛽 × (𝛁𝛁𝛼𝛼 × 𝛁𝛁𝛽𝛽)
]

, 

using the form of the background magnetic field given by Equation A4. Using the triple vector product rule and 
the orthogonality of ∇α and ∇β, it can be shown that

� ×
[

��ℎ��� × (�� × ��)
]

= � ×
(

��ℎ�(∇�)2��
)

= � ×
(

��
ℎ�

��
)

,

= �� × �
(

��
ℎ�

)

 

having used that |∇β| = 1/hβ. Further considering the component of this term in the ∇β direction by taking the 
dot product with ∇β gives

� × (��ℎ��� × �) ⋅ �� =
(

�
(

��
ℎ�

)

× ��
)

⋅ ��

= (�� × ��) ⋅ �
(

��
ℎ�

)

,

= � ⋅ �
(

��
ℎ�

)

.

 (A9)

We can also pull out the component of the equation of motion (A1) in the ∇β direction by taking the dot product 
with ∇β to give

−𝜇𝜇0𝜌𝜌𝜌𝜌
2𝝃𝝃 ⋅ 𝛁𝛁𝛽𝛽 = [(𝛁𝛁 × 𝒃𝒃) × 𝑩𝑩] ⋅ 𝛁𝛁𝛽𝛽

⇒ − 𝜇𝜇0𝜌𝜌𝜌𝜌
2

(

𝜉𝜉𝛽𝛽

ℎ𝛽𝛽

)

= (𝑩𝑩 ⋅ 𝛁𝛁(𝑏𝑏𝛽𝛽ℎ𝛽𝛽)𝛁𝛁𝛽𝛽) ⋅ 𝛁𝛁𝛽𝛽 −

(

𝐵𝐵2
𝛁𝛁

(

𝑏𝑏𝛾𝛾

𝐵𝐵

))

⋅ 𝛁𝛁𝛽𝛽𝛽
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where the right hand sides of Equations A6 and A8 have been used. It can be shown that the component of b in 
the ∇α direction would not contribute to this, hence why we only considered the β and γ components previously. 
We can simplify further to give

−𝜇𝜇0𝜌𝜌𝜌𝜌
2

(

𝜉𝜉𝛽𝛽

ℎ𝛽𝛽

)

=
1

ℎ2

𝛽𝛽

𝑩𝑩 ⋅ 𝛁𝛁(𝑏𝑏𝛽𝛽ℎ𝛽𝛽) −
𝐵𝐵2

ℎ2

𝛽𝛽

𝜕𝜕

𝜕𝜕𝛽𝛽

(

𝑏𝑏𝛾𝛾

𝐵𝐵

)

. (A10)

The fact that |∇β| = 1/hβ has been used together with the component form of the gradient operator in curvilinear 
coordinates. This gives an equation for ξβ in terms of bβ, but this can be complemented by taking the dot product 
of Equation A2 with ∇β to give

𝒃𝒃 ⋅ 𝛁𝛁𝛽𝛽 = 𝛁𝛁 × (𝝃𝝃 × 𝑩𝑩) ⋅ 𝛁𝛁𝛽𝛽 

It can be shown, in a similar fashion to the derivation of Equation A9, that the ξα component will not contribute 
to this term as it gives a term perpendicular to ∇β. Therefore we can just consider the ξβ contribution, which from 
Equation A9 gives

� ⋅ �� = � ⋅ �
(

��
ℎ�

)

,

⇒
��
ℎ�

= � ⋅ �
(

��
ℎ�

) (A11)

Equation A11 is Equation 4 from the main body of the study. Using this form for bβ, we can eliminate bβ from 
Equation A10 as

−�0��2
(

��
ℎ�

)

= −�2

ℎ2
�

�
��

(

��
�

)

+ 1
ℎ2
�

� ⋅ �
(

ℎ2
�� ⋅ �

(

��
ℎ�

))

,

⇒ − �0��2�� −
1
ℎ�

� ⋅ �
(

ℎ2
�� ⋅ �

(

��
ℎ�

))

= −�2

ℎ�

�
��

(

��
�

)

.
 (A12)

Equation A12 has the familiar form of a driven harmonic oscillator, with the right hand side representing the 
driving term. Assuming that both ξβ and bβ have a standing structure along the field, and considering only the free 
transverse oscillation in the absence of driving (i.e., the left hand side of Equation A12), we have

−𝜇𝜇0𝜌𝜌𝜌𝜌
2

𝐴𝐴
(𝛼𝛼)𝜉𝜉𝛽𝛽 −

1

ℎ𝛽𝛽

𝑩𝑩 ⋅ 𝛁𝛁

(

ℎ2

𝛽𝛽
𝑩𝑩 ⋅ 𝛁𝛁

(

𝜉𝜉𝛽𝛽

ℎ𝛽𝛽

))

= 0, 

where the Alfvén frequency ωA has been used for this transverse wave, on a particular magnetic shell labeled by 
α. Using this to substitute back into Equation A12 gives

𝜇𝜇0𝜌𝜌
[

𝜔𝜔2

𝐴𝐴
(𝛼𝛼) − 𝜔𝜔2

]

𝜉𝜉𝛽𝛽 = −
𝐵𝐵2

ℎ𝛽𝛽

𝜕𝜕

𝜕𝜕𝛽𝛽

(

𝑏𝑏𝛾𝛾

𝐵𝐵

)

. (A13)

Introducing a uniform ion-neutral collision frequency, ν, to represent the effect of dissipation used in the simu-
lations, yields

𝜉𝜉𝛽𝛽 =
1

(

𝜔𝜔2 − 𝜔𝜔2

𝐴𝐴
+ 2𝑖𝑖𝑖𝑖𝜔𝜔

)

𝐵𝐵2

ℎ𝛽𝛽𝜌𝜌𝜌𝜌0

𝜕𝜕

𝜕𝜕𝛽𝛽

(

𝑏𝑏𝛾𝛾

𝐵𝐵

)

, (A14)

which is Equation 3 in the main body of the paper.

Data Availability Statement
The data used in this work are available from the NASA Planetary Data System: https://pds-atmospheres.nmsu.
edu/data_and_services/atmospheres_data/Cassini/inst-mag.html. Data used to produce the simulation plots can 
be accessed at this site: https://figshare.com/authors/Tom_Elsden/4743264.
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