

Dating blueschist-facies metamorphism within the Naga ophiolite, Northeast India, using sheared carbonate veins

Journal:	International Geology Review
Manuscript ID	TIGR-2021-0265.R3
Manuscript Type: Data Article	
Date Submitted by the Author:	n/a
Complete List of Authors:	Maibam, Bidyananda; Manipur University, Earth Sciences Palin, Richard M; University of Oxford, Department of Earth Sciences Gerdes, Alex; University of Frankfurt, Geosciences; Goethe-University Frankfurt White, Richard; University of St Andrews, School of Earth and Environmental Sciences Foley, Stephen; Macquarie University, Department of Earth & Planetary Sciences
Keywords:	blueschist, dynamic recrystallisation, exhumation, petrological modelling, U-Pb carbonate geochronology

SCHOLARONE[™] Manuscripts

2 3 4	1	Dating blueschist-facies metamorphism within the Naga ophiolite,		
5 6 7 8	2	Northeast India, using sheared carbonate veins		
9 10 11	3			
12 13	4	Bidyananda Maibam ^a *, Richard M. Palin ^b , Axel Gerdes ^{c,d} , Richard W. White ^e , Stephen		
14 15 16	5	Foley ^f		
17 18	6			
19 20	7	^a Department of Earth Sciences, Manipur University, Canchipur, Imphal-795003, India		
21 22 23	8	^b Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, United Kingdom		
24 25	9	^c Department of Geosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany		
26 27	10	^d Frankfurt Isotope and Element Research Center (FIERCE), Goethe-University Frankfurt,		
28 29 30	11	60438 Frankfurt, Germany		
31 32	12	^e School of Earth and Environmental Sciences, University of St. Andrews, KY16 9AL, United		
33 34	13	Kingdom		
35 36 37	14	^f ARC Centre of Excellence for Core to Crust Fluid Systems, Department of Earth &		
38 39	15	Environmental Sciences, Macquarie University NSW 2109, Australia		
40 41	16			
42 43 44	17	*corresponding author: bmaibam@yahoo.com		
45 46	18			
47 48	19	Keywords: blueschist; dynamic recrystallisation; exhumation; petrological modelling; U-Pb		
49 50 51	20	carbonate geochronology		
52 53	21			
54 55	22	ABSTRACT		
56 57 58	23	The tectonic significance of blueschist-facies rocks associated with the Indo-Myanmar		
58 59 60	24	ophiolite belt is uncertain, given lack of detailed petrological study and the paucity of reliable		

age data for different stages in their geological evolution. Here, we present new integrated petrological and geochronological data for samples from the Nagaland complex of the Indo-Myanmar ophiolite belt, northeastern India, which constrains the pressure-temperature conditions and absolute ages of peak and retrograde metamorphism. Several samples of blueschist were collected from the region, which have been variably deformed and subjected to shear recrystallization. Based on microstructural constraints and mineral geochemistry, garnet, omphacite, barroisite, chlorite and muscovite are interpreted to represent a highpressure prograde-to-peak metamorphic assemblage, and omphacite, actinolite, hornblende and albite represent a lower-pressure retrograde metamorphic assemblage that formed during shear-related exhumation. Petrological modelling and thermobarometry indicates that unsheared samples equilibrated at ~1.9 GPa and ~480–520 °C at peak metamorphism, indicating subduction to ~60 km depth, whereas sheared and recrystallised samples re-equilibrated at ~0.6 GPa and ~470 °C during retrograde metamorphism associated with obduction of the Naga ophiolite onto the Indian foreland. U-Pb in-situ analysis of carbonate grains (aragonite-calcite) and associated silicate phases (epidote, prehnite, amphibole etc.) in different microstructural positions, including within dynamically recrystallised shear bands that cross-cut older metamorphic fabrics and cogenetic silicate phases, constrains the age of peak metamorphism to be c. 95 Ma and retrograde metamorphism to be c. 90 Ma. Based on the overall progression of ages in the sheared and unsheared samples, we interpret that the area experienced exhumation at a time-averaged rate of ~1 cm/year in the order of Phanerozoic period plate tectonic rate, which is in the order of rates of plate tectonic processes on the Phanerozoic Earth

1. Introduction

40	
49	High-pressure metamorphic belts provide a critical record of the geological evolution of
50	paleo-plate boundaries, and provide valuable constraints on tectonothermal models of both
51	modern and ancient orogeneses (e.g. Ernst 1973; Carswell 1990). Blueschist-facies rocks
52	form at high-pressure-low-temperature (HP-LT) metamorphic conditions characteristic of
53	subduction zones (Miyashiro 1961; Cloos 1985; Palin and White 2016) or ephemerally in the
54	embryonic stages of collisional orogeny (Wang and Foley, 2020), where they may
55	subsequently recrystallize to greenschists or amphibolites under higher temperatures and/or
56	lower pressures (Ernst 1973). Combining mineral equilibria constraints on the
57	thermobarometric conditions under which sequential assemblages formed with absolute ages
58	obtained via <i>in-situ</i> geochronology, can elucidate the timing and timescales of geodynamic
59	processes that control the subduction-exhumation cycle (e.g. Terry et al. 2000; Rubatto and
60	Hermann 2001; St-Onge <i>et al.</i> 2013).
61	The power of this integrated technique is demonstrated here in the case of the Indo-
62	Myanmar ophiolite belt, a part of the Indo-Myanmar Range that extends to the east and
63	southeast of the Himalayan orogen. The geological history and tectonic evolution of this belt
64	is currently poorly understood, such that more precise constraints on the pressure-
65	temperature time $(\mathbf{B}, \mathbf{T}, t)$ note of key lithelegies are processery to improving our geological

temperature-time (P-T-t) path of key lithologies are necessary to improving our geological understanding of this part of southeast Asia. Much of the current uncertainty concerning the tectonic evolution and significance of these Indian-plate ophiolitic rocks stems from a lack of reliable petrochronological data. In particular, the timing and P-T conditions of high-pressure metamorphism in the Indo-Myanmar belt is poorly constrained due to the general absence of datable mineral phases in mafic igneous rocks that are reactive at subsolidus subduction-zone HP-LT metamorphic conditions. Zircon from jadeitites in this region have previously yielded U-Pb ages ranging from Late Jurassic (c. 147 Ma: Shi et al. 2008) to Late Cretaceous (c. 77

Ma: Yui *et al.* 2013), although all of these data show significant scatter due to incomplete recrystallization of magmatic grains and metasomatic/hydrothermal activity during subduction and exhumation, which can partially reset isotope systems (Wang and Griffin 2004). Furthermore, these former studies performed geochronology on zircon grains separated from the host rocks, which inhibits direct correlation of age data with P-T conditions derived from metamorphic assemblages and microstructures, leading to potentially unreliable geological interpretations.

The zircon U-Pb isotope system is widely applied for dating the crystallization and re-crystallization of mineral assemblages during high-temperature metamorphic events (e.g. Williams and Claesson, 1987; Parrish, 1990; Robb et al. 1999, Rubatto et al., 2001). However, some lithologies and/or geological processes often cannot be dated directly by this technique due to the absence of appropriate minerals that incorporate measurable amounts of radiogenic nuclides. Examples of such rocks can be found in shear zones, but this issue also extends to HP-LT metamorphic rocks, ore mineralisations, diagenetic minerals and cements, some sedimentary rocks, and some alteration assemblages (e.g. Gillev et al. 2003). Recent studies have focused on the application of *in-situ* U-Pb isotope analyses of low-U minerals in thin section by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for geochronological study (Millonig et al. 2012; Coogan et al. 2016; Ring and Gerdes 2016; Roberts and Walker 2016; Li et al. 2014). Thus, instead of dating single accessory mineral domains, millimetre-sized minerals and mineral assemblages (e.g., carbonate, epidote, amphibole etc.) that recrystallised and equilibrated during a single tectonic event and which contain measurable amounts of U and Pb can be used to determine crystallization ages (e.g. Burisch et al. 2017; Ring and Gerdes 2016).

96 Here we apply the isochron method to dynamically recrystallised carbonate veins and
97 selected mineral assemblages in blueschists within the Kiphiere District of the Nagaland

ophiolite belt and integrate these ages with thermobarometric data to produce new constraints on the timing and rates of subduction and exhumation of Neo-Tethyan crust in the Indo-Myanmar region.

2. Geological background

The Indo-Myanmar Range is thought to represent a relict eastward-dipping subduction zone that runs from the eastern edge of the Himalayan Range in southeast Tibet to the island of Sumatra in the south (Allen et al. 2008; Fig. 1). The Eastern Himalayas, about 700 km long, trends ENE-WSW. Broadly N-S trending to sigmoid IMR has subdivided into three sectors from north to south of about 400 km length each e.g., Naga Hills, Chin Hills and Arakan Yoma (Acharyya 2015). The belt continues as the Anadaman Nicobar island arc in the south. Belts of narrow tectonised but nearly continues, late Mesozoic-Eocene ophiolite and associated sediments skirt along the northern margin of the Himalayas (Indus-Tsangpo Ophiolite-ITO) and the eastern margin of the Himalayas IMR. Structural relationships show that Indian-plate oceanic crust was overridden by units of the West Burma Block (e.g. Holt et al. 1991; Mitchell et al. 2007; Searle et al. 2007), although its age of formation and the timing of its obduction are poorly known. The Indo-Myanmar ophiolite belt separates subducted Indian-plate oceanic lithosphere to the west from a closely associated high-pressure metamorphic belt and Jurassic to Cretaceous magmatic arc-forearc complex of the Burmese plate to the east (Mitchell et al. 2012). The Naga Hills ophiolite is represented by peridotite, cumulate mafic-ultramafic, mafic volcanics, eclogite, glaucophane schist, amphibolite and late felsic intrusives. The ophiolite sequence has an east-dipping thrust contact with the underlying flysch-like sediments of the Disang and Barail Formations exposed to the west, and are overthrust from the east by continental metamorphic rocks of the Naga Metamorphics consisting of quartz mica-schist, garnet mica-schist, quartzite, and

2	
3 4	
4	
5 6	-
7	
8	-
9 10	
11	-
12	
13 14	-
15	-
16	
17 18	-
19	
20	-
21	
22	
24	-
25 26	
20	-
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 30 31 32 33 34 35	
29 30	-
31	
32	
33 34	-
35	
36 37	-
37 38	
39	-
40	-
41 42	
42	-
44	
45 46	-
40 47	
48	
49 50	-
50	
52	-
53 54	
54 55	-
56	-
57 58	
58 59	-
60	

granitic gneiss (Brunnschweiler, 1966). The mid-Cretaceous, fossil-bearing Nimi Formation 123 occurs at the contact between the ophiolite and the Naga Metamorphics (Chatterjee and 124 Ghose, 2010). Within this belt, blueschist- and eclogite-facies mafic rocks occur as tectonic 125 slices (or detached layers and lenses) intercalated with unmetamorphosed mafic and 126 ultramafic units. Basement lithologies underlie Palaeogene sediments in the ophiolite belt, 127 although their geological history and lithological constitution are uncertain (Acharyya 2015). 128 129 Ophiolitic rocks within the Indo-Myanmar belt have been subdivided into two parallel groups: the 'Eastern' and 'Western' belts (Mitchell 1993), although both show similar 130 131 structural and petrological characteristics. Accretion of the Eastern Belt, which contains metamorphosed ultramafic rocks in northern Myanmar that host world-famous jadeitites, is 132 thought to have occurred sometime after the Mesozoic (Gansser 1980; Mitchell 1993; Shi et 133 al. 2008). The Western Belt along the Naga and Manipur hills, which forms part of the Indo-134 Myanmar Range, formed due to collision between India and the Burmese microplate during 135 the late Oligocene (Sengupta et al. 1990). 136

There is still controversy about emplacement ages of ophiolites in these two belts: the 137 'Eastern Belt' is inferred to mark the locus of the subduction zone into which the ophiolites 138 were accreted since Mesozoic, whilst the 'Western Belt' was inferred to have been caused by 139 a late Oligocene terminal collision between the Indian and the Burmese continental blocks 140 (Shit et al., 2014 and references therein). In the 'Western Belt' a combination of radiolarian 141 142 biostratigraphy and whole-rock K–Ar geochronology suggests an Upper Jurassic age (Kimmeridgian–Lower Tithonian) for marine sedimentation and volcanism in the Nagaland 143 ophiolite belt (Sarkar et al. 1996; Baxter et al. 2011). The mid-Cretaceous, fossiliferous Nimi 144 Formation occurs at the contact between the ophiolite and the Naga metamorphic units, and 145 so gives a maximum age constraint on the initiation of obduction. Recently, Singh et al. 146 (2017) reported U–Pb zircon ages ranging between 116 and 119 Ma from the plagiogranite of 147

Page 7 of 110

International Geology Review

1	.48	the studied ophiolite. In the 'Eastern Belt' falling in the Mynamar Shi et al. (2008) reported a
1	.49	sensitive high-resolution ion microprobe (SHRIMP) U–Pb zircon age of 146.5 ± 3.4 Ma for
1	.50	jadeitites of the Jade Mines area, Myanmar, and proposed that subduction may have begun
1	.51	during the Late Jurassic. Mitchell (1993) suggested that the Manipur ophiolitic nappe was
1	.52	emplaced along the Indo-Myanmar ranges during the Mid-Eocene and was followed by a
1	.53	switch to east-dipping subduction from the mid-Miocene onwards. Recently, Liu et al. (2016)
1	.54	reported a c. 125 Ma U-Pb zircon crystallisation age for rodingite associated with formation
1	.55	of the ophiolite, and a c. 115 Ma age for garnet amphibolites within the Kalaymo ophiolite
1	.56	belt, which lies adjacent to the Indo-Myanmar ophiolite belt. Shi et al. (2014) reported
1	.57	superimposed tectono-metamorphic ages of phengitic mica Ar-Ar ages from blueschist-facies
1	.58	rocks in the Tagaung-Myitkyina Belt. They interpreted a Jurassic age $(152.4 \pm 1.5 \text{ Ma})$
1	.59	obtained from glaucophane as the lower limit of the subduction age and suggested that
1	.60	Eccene (45.0 \pm 1.3 Ma) ages recorded an intra-continental shearing deformation event.
1	.61	Chatterjee and Ghose (2010) documented eclogite- and blueschist-facies rocks present
1	.62	as thrust slices and lenses within the volcanic and ultramafic rocks of the Naga ophiolite belt.
1	.63	Ao and Bhowmik (2014) deduced the thermal history of the eclogite and blueschist rocks
1	.64	ranging from ~1.15 GPa and ~340 °C to 0.6 GPa and 335 °C. Despite an improved
1	.65	understanding of the tectonic evolution of the Indian ophiolite belt, a paucity of reliable
1	.66	geochronological age data has hindered the correlation of sutures and collisional deformation
1	.67	episodes within the region.
1	.68	
1	69	3 Analytical methods

3. Analytical methods

The eclogites and blueschists rocks of Naga Hills occur as NE–SW to N–S oriented, steeply
east-dipping shear fault-bound tectonic slices or detached layers and lenses intercalated with
basaltic and ultramafic units parallel to the shear faults in the Naga Hills ophiolite of Phek

Page 8 of 110

2	
3	
4 5	
6	
+ 5 6 7 8	
8	
9 10	
11	
12	
13	
14	
16	
17	
9 10 11 12 13 14 15 16 17 18 19	
20	
21	
22	
23 24	
25	
26	
27 28	
29	
30	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
33	
34	
35	
37	
38	
39	
40 41	
42	
43	
44 45	
46	
47	
48 49	
50	
51	
52 53	
55 54	
55	
56 57	
57 58	
59	
60	

1

district, Nagaland (Chatterjee and Ghose, 2010). In the area eclogite constitutes the core of 173 some lenses, which are surrounded by successive layers of garnet-blueschist, glaucophanite 174 and greenschist. Twenty metamorphosed samples were collected between Longkhimong and 175 Moya villages, after systematic petrographic study six samples were selected for detailed 176 study. Mineral compositional data for all samples were obtained on a JEOL JXA-8200 177 electron microprobe housed at the Institute of Geosciences, Johannes-Gutenberg University 178 179 of Mainz, Germany. Operating conditions included an acceleration voltage of 15 kV, a beam current of 12 nA, and a 2 µm spot size. A matrix correction for atomic number (Z), 180 181 absorption (A), and fluorescence (F) was automatically applied to all analyses. For the data presented below, mineral compositions were recalculated to standard numbers of oxygens per 182 formula unit (pfu) using the software AX (Holland 2009), with OH assumed to be present in 183 stoichiometric amounts. The proportion of ferric iron in different mineral species was also 184 calculated using AX. Mineral proportions for each sample were determined using the 185 software JmicroVision (Roduit 2010), with each individual count consisting of five hundred 186 points randomly distributed over a digitally scanned thin-section image. Calculated volume 187 proportions of minerals in each sample are given below. These bulk compositions are given 188 in Supplementary Table 3. Mineral abbreviations are after Kretz (1983). Representative 189 compositions of major minerals for all samples are given in Supplementary Table 2 and 190 photomicrographs of microstructural features and assemblages are shown in Figures 2 and 3. 191 Bulk-rock compositions for use in petrological modelling were obtained from X-ray 192 fluorescence (XRF) via the production of glass beads in order to guarantee standardised and 193 reproducible analyses. Powdered rock samples were initially dried overnight at 105 °C. 194 Approximately 5.2 g of lithium tetraborate ($Li_2B_4O_7$) flux and 0.4 g of powdered rock sample 195 were then weighed, homogenized, and melted in a Vulcan AMA melting device to produce 196 each glass beads. These beads were then analyzed in a Philips MagXPRO spectrometer with 197

Page 9 of 110

International Geology Review

1		
1 2		
3 4 5 6 7 8 9	198	a rhenium X-ray tube housed in the Institute of Geoscience, Johannes Gutenberg University
	199	of Mainz, Germany. Detection limits are estimated to be 100 μ g g ⁻¹ for light elements (Na,
	200	Mg, Al) and 10 μ g g ⁻¹ for heavy elements (K to U). Analysed major oxides comprised SiO ₂ ,
10 11	201	Al ₂ O ₃ , total Fe ₂ O ₃ , MnO, MgO, CaO, Na ₂ O, K ₂ O, TiO ₂ , P ₂ O ₅ , SO ₃ , Cr ₂ O ₃ , and NiO.
12 13	202	All U-Pb ages for the analysed carbonate grains and silicate phases were acquired in
14 15	203	situ from polished thin sections by laser ablation-inductively coupled plasma-mass
16 17 18	204	spectrometry (LA-ICP-MS) at the Goethe University Frankfurt (GUF), using a Element2
19 20	205	(Thermo-Scientific) sector field ICP-MS coupled to a RESOlution ArF Excimer laser
21 22	206	(Compex Pro 102). The applied method was similar as described in Ring and Gerdes (2016),
23 24	207	Burisch et al. (2017), Hansman et al. (2018) and Salih et al. (2019). Ablation spot size was
25 26 27	208	213 μ m and crater depth was ~20 μ m. Samples were screened by LA-ICP-MS for suitable Pb
28 29	209	and U concentration and variability, and selected spots were subsequently analysed in fully
30 31	210	automated mode. Spot analyses consisted of 20 s background acquisition followed by 20 s
32 33 34	211	sample ablation. Surface contamination was removed prior to each spot analysis via a 3-s pre
35 36	212	ablation. Soda-lime glass SRM-NIST 614 was used as a reference material together with two
37 38	213	carbonate reference materials – WC-1 and a Zechstein dolomite – to bracket sample analysis.
39 40 41	214	SRM-NIST 614 yielded a depth penetration of about 0.5 μ m s ⁻¹ and an average sensitivity of
41 42 43	215	280,000 cps/µg g ⁻¹ for ²³⁸ U. The detection limits for ²⁰⁶ Pb and ²³⁸ U were ~0.1 and 0.05 ng
44 45	216	g ⁻¹ , respectively. All data were corrected using an MS Excel spreadsheet program (Gerdes
46 47	217	and Zeh, 2006, 2009). NIST 614 was used as a standard for the analysis of silicate phases.
48 49 50	218	The possible offset related to sample matrix is within the analytical uncertainty of the quoted
51 52	219	ages.
53 54	220	The 207 Pb/ 206 Pb ratio was corrected for mass bias (0.3%) and the 206 Pb/ 238 U ratio for
55 56 57	221	inter-element fraction (ca. 5%) using SRM-NIST 614. An additional correction of 4% was
58 59	222	applied on the ²⁰⁶ Pb/ ²³⁸ U to correct for difference in the fractionation due to the carbonate
60		

Al ₂ O ₃ , total Fe ₂ O ₃ , MnO, MgO, CaO, Na ₂ O, K ₂ O, TiO ₂ , P ₂ O ₅ , SO ₃ , Cr ₂ O ₃ , and NiO.
All U-Pb ages for the analysed carbonate grains and silicate phases were acquired in
situ from polished thin sections by laser ablation-inductively coupled plasma-mass
spectrometry (LA-ICP-MS) at the Goethe University Frankfurt (GUF), using a Element2
(Thermo-Scientific) sector field ICP-MS coupled to a RESOlution ArF Excimer laser
(Compex Pro 102). The applied method was similar as described in Ring and Gerdes (2016),
Burisch et al. (2017), Hansman et al. (2018) and Salih et al. (2019). Ablation spot size was
213 μ m and crater depth was ~20 μ m. Samples were screened by LA-ICP-MS for suitable Pb
and U concentration and variability, and selected spots were subsequently analysed in fully
automated mode. Spot analyses consisted of 20 s background acquisition followed by 20 s
sample ablation. Surface contamination was removed prior to each spot analysis via a 3-s pre-
ablation. Soda-lime glass SRM-NIST 614 was used as a reference material together with two
carbonate reference materials – WC-1 and a Zechstein dolomite – to bracket sample analysis.
SRM-NIST 614 yielded a depth penetration of about 0.5 μ m s ⁻¹ and an average sensitivity of
280,000 cps/µg g ⁻¹ for ²³⁸ U. The detection limits for ²⁰⁶ Pb and ²³⁸ U were ~0.1 and 0.05 ng
g ⁻¹ , respectively. All data were corrected using an MS Excel spreadsheet program (Gerdes
and Zeh, 2006, 2009). NIST 614 was used as a standard for the analysis of silicate phases.
The possible offset related to sample matrix is within the analytical uncertainty of the quoted
ages.
The $^{207}Pb/^{206}Pb$ ratio was corrected for mass bias (0.3%) and the $^{206}Pb/^{238}U$ ratio for
inter-element fraction (ca. 5%) using SRM-NIST 614. An additional correction of 4% was

matrix. This resulted in a lower intercept age of 23 WC-1 spot analyses of 254.1 ± 1.5 (MSWD = 1.5; anchored at 207 Pb/ 206 Pb of 0.851) and 253.9 ± 3.4 (MSWD = 1.5; n = 17) for the Zechstein dolomite used as an in-house reference material in Frankfurt. Data were plotted on a Tera-Wasserburg diagram and ages calculated as lower intercepts using Isoplot 3.71 (Ludwig 2007). All uncertainties are reported at the 2 sigma level.

According to Rasbury and Cole (2009), a linear regression taken through a group of samples from the same system produces a slope from which an age can be calculated using the accepted decay rate for the parent isotope. If the system being analysed has no initial heterogeneity, and it remained closed throughout the duration of the decay process, all scatter of data points about the isochron can be explained by analytical uncertainties. Closed isotopic systems will plot as a line, giving a precise age and low mean squared weighted deviate (MSWD) of \sim 1, while systems that have not remained closed will show scatter and have a C.C. high MSWD (>>1).

4. Sample petrology

Out of the twenty collected samples we have selected four metabasite samples for systematic study and thermobarometry Six metabasite samples were collected from. Locality information and GPS co-ordinates for each outcrop are given in Supplementary Table 1 and location map is presented in Figure 1C. Field photographs of the studied samples are presented in Figure 1D. The samples occur as meter-sized boulder blocks, which occur individually and in clusters (Figures 1 D1, D3) within serpentinites. Samples are thus classified as either sheared or unsheared based on the occurrence of key deformational features present at the field, hand sample, and microscopic scale. Samples N5 and 14 lack evidence of post-peak shear-driven recrystallization and likely represent relics of

International Geology Review

3 4	247
5 6	248
7 8	249
9 10 11	250
12 13	251
14 15	252
16 17 18	253
19 20	254
21 22	255
23 24 25	256
25 26 27	257
28 29	258
30 31	259
32 33 34	260
35 36	261
37 38	262
39 40 41	263
41 42 43	264
44 45	265
46 47 48	266
48 49 50	267
51 52	268
53 54 55	269
55 56 57	270
58 59	271
60	

undeformed, peak metamorphic blueschists. By contrast, samples 7c, 13, 3b, and 11 are 247 strongly sheared and represent subsequently deformed equivalents of these older units. 248

4.1. Sample description 250

4.1.1. Unsheared samples N5 and 14 251

Unsheared samples N5 and 14 exhibit a largely unfoliated microstructure and show no 252 253 evidence of pervasive retrogression following peak blueschist-facies metamorphism during subduction, though localised retrogression does occur. Sample N5 is a blueschist that 254 255 contains abundant sodic amphibole (38%) and epidote (37%), with minor quartz (9%), garnet (6%), sodic-calcic amphibole (4%), phengite (3%), and rutile (2%). Accessory pyrite, zircon, 256 and apatite also occur. Garnet porphyroblasts are between 0.5 and 2 mm in diameter (Figures 257 2a–b) and exhibit no substantial major element compositional zoning, with core compositions 258 of Alm₅₆₋₅₈Prp₁₂₋₁₄Grs₂₁₋₂₂Sps₇₋₈ and rim compositions of Alm₆₀₋₆₁Prp₁₅₋₁₆Grs₂₂₋₂₃Sps₃₋₄ 259 (Supplementary Table 2 and Fig. 4). Core regions contain inclusions of pumpellyite, 260 phengite, epidote, barroisite, actinolite, and quartz, and rims contain inclusions of phengite, 261 epidote, actinolite, rutile, and quartz. Some grains show replacement by chlorite at their 262 outermost rims. Matrix phengite has Si = 3.34 - 3.38 pfu (on a 11 O basis; Supplementary 263 Table 2) and grains included in the outer rims of garnet has Si = 3.32 - 3.35 pfu. Epidote 264 shows no significant compositional zoning from core to rim, with a minor range in pistacite 265 content $[XPs = Fe^{3+}/(Al^{3+}+Fe^{3+})]$ of 0.18–0.21 (Supplementary Table 2). According to the 266 classification scheme of Hawthorne et al. (2012), sodic and sodic-calcic amphiboles in the 267 matrix are glaucophane and winchite-katophorite, respectively (Figure 5). 268 Sample 14 is modally dominated by epidote (50%) and quartz (35%), with lesser garnet 269 (1%), sodic-calcic amphibole (10%), phengite (2%), rutile (0.5%), titanite (0.5%), and 270 carbonate (1%). Accessory minerals include chlorite, apatite, and zircon (all <<1%). 271

Although sample 14 displays no foliation, it is mildly anisotropic, with alternating centimetre-scale guartz- and epidote-rich domains. In contrast to the large porphyroblasts present in sample N5, garnet forms <0.1 mm diameter grains that are restricted to quartz-rich regions (Figure 2). These garnet grains have no inclusions and are compositionally homogeneous (Alm₃₆₋₃₉Prp₁₀₋₁₃Grs₃₁₋₃₆Sps₃₆₋₃₉). Epidote shows no significant zoning, with core and rim compositions both having similar pistacite contents of 0.20–0.24 (Supplementary Table 2). Matrix rutile is partially or fully replaced by titanite (Figure 2), though rare inclusions in sodic-calcic amphibole lack such pseudomorph textures. Phengite contains Si = 3.34 - 3.35 pfu (Supplementary Table 2) and in places is intimately intergrown with chlorite, though the extremely fine-grained nature of these intergrowths prohibited reliable compositional analysis of either phase. Sodic-calcic amphibole in the matrix is barroisite-winchite-katophorite (Hawthorne et al. 2012; Figure 5), with rare tremolite, likely representing minor post-peak retrograde mineralogical transformation. K

4.1.2. Sheared samples 11 and 7c

In contrast to N5 and 14, sheared samples 11 and 7c contain distinct spaced foliations that are truncated by carbonate- and quartz-filled veins. These crosscutting veins commonly form shear bands (Figures 3e-f) and locally deflect the main metamorphic foliations at their boundaries (Figure 3b), indicating that shearing and vein formation post-dated subduction metamorphism. The host rock domains in sample 7c are dominated by epidote (39%), calcic amphibole (32%), and sodic-calcic amphibole (18%), with minor phengite (4%), albite (2%), K-feldspar (2%), titanite (1%), and quartz (2%). Apatite and zircon occur as accessory phases. The main metamorphic foliation is defined by elongate and aligned crystals of epidote and amphibole (Figure 3a). Large green calcic amphibole is mostly pargasite with thin magnesiohornblende outer rims, and sodic-calcic amphibole is winchite (Figure 5).

International Geology Review

2 3 4	297	Matrix phengite has $Si = 3.39-3.43$ pfu and epidote cores have $XPs = 0.19-0.25$ and rims
5 6 7 8 9 10 11 12 13	298	have $XPs = 0.26-0.33$ (Supplementary Table 2). Quartz- and carbonate -filled veins crosscut
	299	and offset this epidote- and amphibole-defined metamorphic foliation (Figure 3b).
	300	Sample 11 contains abundant sodic amphibole (33%), quartz (34%), carbonate (14%),
	301	and sodic pyroxene (11%), with subsidiary sodic-calcic amphibole (2%), phengite (1%),
14 15 16	302	garnet (2%), and albite (1%). Accessory pyrite, titanite, apatite, and zircon (all <<1%) also
17 18	303	occur. Alternating sodic amphibole (glaucophane) and quartz-rich bands define a spaced
19 20	304	foliation that wraps around porphyroblasts of pyroxene and garnet (Figure 3c). Grains of the
21 22 23	305	latter are commonly less than 1 mm in diameter and are variably replaced by aggregates of
24 25	306	carbonate, albite and/or quartz (Figure 3d). Though individual grains lack any significant
26 27	307	major-element compositional zoning from core to rim, compositions vary significantly
28 29 30 31 32 33 34	308	between grains; the majority are spessartine-rich (Alm ₁₉₋₂₄ Prp ₁₀₋₁₄ Grs ₁₇₋₂₀ Sps ₄₅₋₅₁), while
	309	others are richer in almandine and grossular ($Alm_{26-29}Prp_{12}Grs_{23-32}Sps_{28-37}$). Minor sodic-
	310	calcic amphibole in the matrix is winchite, and sodic pyroxene porphyroblasts are
35 36 37	311	compositionally classified as aegirine–augite ($X_{Jd} = 0.04-0.23$) (Morimoto <i>et al.</i> 1988).
38 39	312	
40 41	313	5. Phase equilibria modelling
42 43	314	Constraints on the $P-T$ conditions of peak subduction-zone metamorphism were obtained
44 45 46 47 48 49 50 51 52 53	315	from unsheared samples N5 and 14, whereas constraints on the $P-T$ conditions of subsequent
	316	ductile shearing were obtained from sheared sample 7c. Preliminary investigation of phase
	317	equilibria stability in sample 11 did not allow for reliable thermobarometry to be performed
	318	due to the high variance of the interpreted peak mineral assemblage. Phase diagrams showing
54 55	319	the $P-T$ conditions over which equilibrium mineral assemblages are calculated to occur in a
56 57	320	specific bulk-rock composition (pseudosections) were constructed using THERMOCALC
58 59 60	321	v3.40i and the internally consistent thermodynamic data set ds55 (Powell and Holland 1988;

Holland and Powell 1998; updated to August 2004) in the Na₂O-CaO-K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O-TiO₂-O (NCKFMASHTO) compositional system. The following activity-composition relations for solid-solution phases were used: clinoamphibole (calcic, sodic-calcic, and sodic amphibole; Diener and Powell 2012), clinopyroxene (diopside and omphacite, Diener and Powell 2012), muscovite and paragonite (Coggon and Holland 2002), talc and epidote (Holland and Powell 1998), chlorite (Holland et al. 1998), biotite and garnet (White et al. 2007), plagioclase and K-feldspar (Holland and Powell 2003), ilmenite and hematite (White et al. 2000). Albite, lawsonite, rutile, titanite, quartz, kyanite, and H₂O were treated as pure phases.

5.1. Metamorphic mineral equilibria modelling parameters

Bulk-rock compositions used for modelling were obtained via XRF analysis, as discussed previously (Supplementary Table 2). Point counting was applied to the entire thin section image, aside from areas that do not actually contain pieces of the rock (e.g. as it is not a perfect rectangle). 500 points were sufficient in this case, as we kept track of the evolving proportions during analyses and the values converged on final results after ~300 points or so. For sample 7c, areas adjacent to shear bands were excluded from consideration during point counting such that the proportions obtained represent unsheared portions of the sample that equilibrated prior to deformation.

The fluid contents for each bulk rock composition during metamorphism were calculated using the proportions of hydrous phases present in each equilibrium mineral assemblage, assuming H₂O was present in stoichiometric amounts. Mixed-component fluids were not considered due to the lack of reliable a-x relations for C–O–H fluids at elevated pressures; nonetheless, however, this should not have any significant effects on our calculated diagrams, as unsheared sample N5 does not contain carbonate, unsheared sample 14 contains only a minor proportion (2.2 vol. %), and carbonate veins in sheared sample 7c are

International Geology Review

2			
3			
4			
5			
б			
7			
8			
9			
1	0		
	2		
1	1		
1	2		
1	3		
1	4		
1	5		
1	6		
1	7		
1	8		
	9		
2	0		
-	1		
2	0 1 2		
2	2		
ว	1 2 3 4 5 6 7 8 9		
2	С		
2	4		
2	5		
2	2		
2	6		
2	7		
_	′		
2	8		
2	g		
_	2		
3	0		
3	1		
3			
3	3		
3	4		
3	5		
	6		
3	7		
- -			
5	8		
3	9		
	0		
4	1		
4	2		
	_		
4	3		
1	4		
-			
4			
4	6		
4	1		
4	8		
4	_		
5	0		
	1		
5	2		
	3		
0	3		
5	4		
5	5		
5	6		
5	7		
5	8		
5			

60

interpreted from microstructural constraints to post-date final metamorphism and textural
equilibration. Pressure uncertainties for assemblage field boundaries are approximately ±0.1
GPa (Powell and Holland 2008; Palin *et al.* 2016).

350

351 *5.1.1. Unsheared samples*

Calculated mineral assemblages matching those observed in unsheared samples N5 and 14 constrain peak *P*–*T* conditions of subduction-zone metamorphism to ~1.8–2.0 GPa and ~420– 560 °C, with the calculated proportions and compositions of major minerals best matching observed values at ~1.9 GPa and ~480–520 °C. These conditions lie along the global range of *P*–*T* conditions predicted to occur at the surface of subducted oceanic crust in modern-day subduction zones (Syracuse *et al.* 2010; Penniston-Dorland *et al.* 2015).

358

359 *5.1.2.* Sheared sample

In contrast with the undeformed samples, the observed mineral assemblage in sample 7c was 360 calculated to be stable at the notably lower pressure and slightly lower temperature conditions 361 of ~0.2–0.6 GPa and ~420–490 °C, with observed and calculated mineral proportions and 362 compositions matching best at ~0.6 GPa and ~470 °C. Semi-independent constraints on P-T363 conditions using the avPT function of THERMOCALC for each sample produced similar and 364 statistically robust results of 2.05 ± 0.22 GPa and 489 ± 39 °C for N5, 1.95 ± 0.18 GPa and 365 541 ± 34 °C for 14, and 0.60 ± 0.23 GPa and 464 ± 76 °C for 7c (Supplementary Table 4) 366 corroborating the results obtained by phase diagram modelling. 367

368 **6. U–Pb geochronology**

U-Pb isotopic analysis of carbonate grains was carried out on metabasite samples 14
(unsheared), 11 (sheared), 3b and 13, which equilibrated at different stages of the
subduction-exhumation cycle. Carbonate crystals within dynamically recrystallised veins

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12 13	
13 14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25 26	
26 27	
28	
29	
29 30	
31	
32	
33	
34 35	
35	
36 37	
37 38	
38 39	
39 40	
40	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
52	
53	
55	
55	
56	
57	
58	
59	
60	

372	were preferentially selected for analyses; however, suitable matrix minerals were also
373	investigated in order to perform a check on the analysed carbonates, which generally have a
374	low U content. Results of the isotopic composition of the Nagaland blueschists are presented
375	in Supplementary Table 5 and isochrons are shown in Figure 9. Measured ²⁰⁷ Pb/ ²⁰⁶ Pb ratios
376	range from 0.205 to 0.836 (sample 3b), 0.735 to 0.848 (sample 13), 0.776 to 0.845 (sample
377	11) and 0.809 to 0.846 (sample 14), and measured $^{238}U/^{206}Pb$ ratios range from 0.361 to 9.752
378	(sample 3b), 0.043 to 10.53 (sample 13), 0.118 to 5.474 (sample 11) and 0.809 to 0.846
379	(sample 14). All data for each sample lie on a single array on an isochron diagram, indicating
380	that each attained isotopic equilibrium, and give well-defined least squares fit indices with
381	MSWD values of 0.35–1.17 (Figure 9). The U concentrations in the minerals range between
382	0 and 3 ppb and model Th/U ratios show a wide variation, with most lying between 0.015 and
383	5, but some reaching up to \sim 46. These analyses show that unsheared samples 14 and 11
384	equilibrated at 95.3 ± 5.9 Ma and 93.7 ± 4.0 Ma, respectively, and sheared samples 3b and 13
385	experienced exhumation-related shear deformation at 90.6 ± 3.4 Ma and 88.8 ± 2.7 Ma,
386	respectively. Although the unsheared sample dataset is within uncertainty of all the sheared
387	sample dates, an overall age progression may be reconstructed from the sheared and
388	unsheared samples. Considering the well-behaved dataset in the studied samples with a low
389	MSWD, it can be broadly inferred that the analysed phases had the same initial isotopic ratio
390	and that the system was at equilibrium during closure of the isotopic system.

391 7. Discussion and implications

Most natural carbonate occurs in the form of calcite and can be transported to the Earth's interior via subduction of carbonate-rich sediments or metasomatized oceanic crust (Zhang *et al.* 2018). Calcite transforms to aragonite at high pressure. Although may revert back to calcite during exhumation if there are no kinetic limitations. At the P-T conditions of peak metamorphism for samples N5 and 14, the carbonate likely stabilised in the form of aragonite,

International Geology Review

whereas carbonate in sheared samples 11 and 7c is calcite, which indicates polymorphic
transformation following exhumation from peak depths. Representative BSE images showing
the analysed spots are presented in Figure 10.

The tectonothermal evolution of the Indo-Myanmar Tethyan ophiolite belt is poorly understood owing to a lack of integrated thermobarometry and geochronology. Here, we have combined microstructurally constrained U-Pb data with P-T conditions calculated for peak and retrograde metamorphism in order to constrain the exhumation history of the Nagaland region of this ophiolite complex (Figure 11). The investigated samples show considerable microstructural variation, ranging from largely undeformed (N5 and 14) to sheared (11, 3b, 7c, and 13). The contrasting textures and ages of the studied rocks, together with reported metamorphic recrystallizations ages in the adjoining ophiolite belts in Myanmar (Shi et al. 2008; Yui et al. 2013; Liu et al. 2016) suggest that the terrain has undergone several metamorphic events. In terms of texture, the blueschist facies rocks (N5 and 14) do not show any obvious preferred orientation that they were formed predominantly under near-hydrostatic conditions, without apparent shear deformation. By contrast, the sheared samples record deformation and post-tectonic (annealing) recrystallization, as the constituent minerals display preferred orientation, bending, and curving. Mineral assemblages in the unsheared samples N5 and 14 constrain peak P-T

416 conditions of subduction-zone metamorphism to ~1.8–2.0 GPa and ~420–560 °C, with the
417 calculated proportions and compositions of major minerals matching observed values at ~1.9
418 GPa and ~480–520 °C (Figure 6).

⁵³ 419 By contrast, the observed mineral assemblage in sheared (sample 7c) was calculated to ⁵⁵ 420 be stable at notably lower P-T conditions of ~0.2–0.6 GPa and ~420–490 °C, with observed ⁵⁷ 421 and calculated mineral proportions and compositions matching best at ~0.6 GPa and ~470 °C. ⁵⁹ 422 The calculated peak metamorphic conditions for the unsheared samples agree with P-T

conditions previously reported for the area (Chatterjee and Ghose 2010). The *P*–*T* conditions are far-removed from the slab-top range for modern-day subduction reported by Syracuse et al. (2010). The calculated pressures of ~1.9 GPa for peak metamorphism and ~0.6 GPa for retrograde equilibration are approximately equivalent to depths of 60 km and 15 km, respectively, assuming no significant tectonic overpressure. In Figure 10, the *P*–*T* path calculated here is compared with published examples for other blueschist samples from the Naga ophiolites and other studies with thermal models of the global active subduction zones (Syracuse et al. 2010).

The age of the high-P metamorphic event is crucial to the reconstruction of the geological history of this little-known terrain; however, reliable metamorphic age data has been lacking, and ages for the Nagaland ophiolite are poorly resolved whereas it is not so in the Eastern Belt. We have integrated our new age and P-T data into a revised tectonic model for the evolution of the Naga ophiolite belt, as shown in Figure 12. Only one whole-rock K-Ar isotopic age of 148 ± 4 Ma (Upper Jurassic) has been reported from a volcanic rock in this area (Sarkar *et al.* 1996), which is supported by a radiolarian age (Baxter *et al.* 2011), whereas recently, a younger U–Pb zircon age of 115 Ma (Lower Cretaceous) has been reported from a plagiogranite (Singh et al. 2017). Based on the available geochronological and radiolarian ages, the formation age of the Nagaland ophiolite crust thus likely ranges between Early Cretaceous (Liu et al. 2016; our unpublished data) and Late Jurassic (Figure 12a). Past plate reconstructions during this period suggest that early subduction off the coast of Myanmar dipped to the west during the Jurassic, but there was a reversal in polarity immediately prior to the Early Cretaceous (Figure 12b; Bhowmik and Ao, 2015). This reversal caused the proto-Nagaland ophiolite complex oceanic crust to experience subduction along an eastern-dipping convergent margin during the Early Cretaceous, with U-Pb ages of the blueschist associated with the Nagaland ophiolite

International Geology Review

suggesting that peak high-pressure metamorphism was reached at around this time (Figure12c).

Utilizing the integrated petrologically constrained *in situ* ages and thermobarometry shows that the unsheared sample 14 yielded a U-Pb age of 95.3 Ma while sheared samples yielded ages ranging between 93.7 Ma (sample 11) and 88.8 Ma (sample 13) Ma, illustrating an age difference between the sheared and unsheared samples. This suggests that the Mesozoic ophiolite underwent HP-LT subduction-related metamorphism c. 95 Ma and that exhumation was a continuous process that lasted until c. 89 Ma (Figure 12d). This age range is in agreement with the Guillot et al. (2008)'s HP metamorphic age inferred from K-Ar whole rock and mineral (phengite, glaucophane) ages of 100 to 80 Ma for the western Himalayan Tethyan ophiolites. Based on a zircon isotopic study, an older age of 115 Ma has been reported from the garnetiferous amphibolite of the adjoining Myanmar ophiolite (Liu et al. 2016). However, no petrological information was presented, making it hard to evaluate the significance of this age. As a consequence, it is unclear whether the available ages record a prolonged emplacement event, discrete metamorphic events or if the older amphibolite represents remnants of metamorphic sole of the ophiolite belt. Although the unsheared sample dataset is within uncertainty of the sheared sample dates, an overall age progression is evident from the studied sheared and unsheared samples. Based on the combined U-Pb age dataset and the calculated *P*–*T* regime, it can be inferred that the Nagaland blueschist rocks were exhumed at a rate of ~1 cm/year (~45 km in 5 Ma), which is in the order of rates of plate tectonic processes on the Phanerozoic Earth. However, exhumation along the slab interface would imply overall faster transport rates to achieve this vertical rate. U-Pb dating of low-uranium minerals such as calcite, prehnite, epidote, amphibole at small scale is a new and promising geochronological method. In the present study, we

471 focussed on both carbonate and other cogenetic silicate phases such as prehnite, epidote,

amphibole etc. formed at the same time and the isotopic systems seem to be closed since the metamorphic event. The reported age uncertainty could be improved by using well characterised specific with less scatter age and matrix matched standards (e.g., carbonate minerals normalisation of Pb-Pb isotope is currently achieved using a synthetic glass other than a carbonate, Roberts et al. 2020) reference materials (both carbonate and silicate phases) Although the behaviour of uranium in carbonates that have undergone high P/low T is not clear because of the lack of studies in natural and synthetic systems, our study suggest that the U-Pb systematics of carbonate can withstand temperatures up to 500 °C without resetting. These data thus encourage the ongoing development of in-situ dating of carbonates and low uranium silicate minerals as a tool to understand the rates and ages of tectonic processes. Acknowledgements

BM began this work during his visits to JGU Mainz on a BOYSCAST Fellowship and
continued during the INSA-DFG Exchange programme visit to Bonn. BM thanks the Council
of Scientific and Industrial Research, Government of India for financial support in the form
of a project. Sample processing equipment were procured under a Department of Science and
Technology, Government of India FIST program. This is FIERCE contribution XX. BM
acknowledges Yhunyulo Tep for the help during the field work. Lorenzo Fedele (Napoli) and
four anonymous journal reviewers are appreciated for their insightful comments.

References

Acharyya S.K., 2015, Indo-Burman Ranges: a belt of accreted microcontinents, ophiolites
and Mesozoic–Paleogene flyschoid sediments: International Journal of Earth Sciences,
v. 104, p. 1235–1251.

Page 21 of 110

1

International Geology Review

2 3 4 5 6 7 8 9 10 11 12 13 14 15	497	Allen, R., Najman, Y., Carter, A., Barfod, D., Bickle, M.J., Chapman, H.J., Garzanti, E.,
	498	Vezzoli, G., Ando, S., and Parrish, R.R., 2008, Provenance of the Tertiary sedimentary
	499	rocks of the Indo-Burman Ranges, Burma (Myanmar): Burman arc or Himalayan-
	500	derived?: Journal of the Geological Society of London, v. 165, p. 1045-1057.
	501	Anon., 1986, Geology of Nagaland ophiolite: Geological Survey of India Memoir, v. 119,
	502	113 pp.
16 17 18	503	Ao, A., Bhowmik, S.K., 2014, Cold subduction of the Neotethys: the metamorphic record
19 20	504	from finely banded lawsonite and epidote blueschists and associated metabasalts of the
21 22	505	Nagaland Ophiolite Complex, India: Journal of Metamorphic Geology, v. 32, p. 829–
23 24 25	506	860.
26 27	507	Baxter, A.T., Aitchison, J.C., Zyabrev, S.V., and Ali, J.R., 2011, Upper Jurassic radiolarians
28 29 30 31 32 33 34 35 36 37 38 39 40 41	508	from the Naga Ophiolite, Nagaland, northeast India: Gondwana Research, v. 20, p.
	509	638–644.
	510	Bhowmik, S.K., and Ao, A., 2016, Subduction initiation in the Neo-Tethys: constraints from
	511	counterclockwise P-T paths in amphibolite rocks of the Nagaland Ophiolite Complex,
	512	India: Journal of Metamorphic Geology, v. 34, p. 17-44.
	513	Brunnschweiler, R.O., 1966, On the geology of the Indoburman ranges — Arakan Coast and
42 43	514	Yoma, Chin Hills, Naga Hills: Journal of the Geological Society of Australia, v. 13, p.
44 45 46	515	137–194.
40 47 48	516	Burisch, M., Gerdes, A., Walter, B.F., Neumann, U., Fettel, M. and Markl, G., 2017,
49 50 51 52 53 54 55 56 57 58 59 60	517	Methane and the origin of five-element veins: Mineralogy, age, fluid inclusion
	518	chemistry and ore forming processes in the Odenwald, SW Germany: Ore Geology
	519	Reviews, v. 81, p. 42–61.
	520	Carswell, D.A., 1990, Eclogite-Facies Rocks. Blackie, London.

2		
3 4	521	Chatterjee, N., and Ghose, N.C., 2010, Metamorphic evolution of the Naga Hills eclogite and
5 6	522	blueschist, North India: implications for early subduction of the Indian plate under the
7 8 9	523	Burma microplate: Journal of Metamorphic Geology, v. 28, p. 209-225.
9 10 11	524	Cloos, M., 1985, Thermal evolution of convergent margins: Thermal modelling and
12 13	525	evaluation of isotopic Ar-ages for blueschists in the Franciscan Complex of California:
14 15	526	Tectonics, v. 4, p. 421–433.
16 17 19	527	Coggon, R., and Holland, T.J.B., 2002, Mixing properties of phengitic micas and revised
18 19 20	528	garnet-phengite thermobarometers: Journal of Metamorphic Geology, v. 20, p. 683-
21 22	529	696.
23 24	530	Coogan, L.A., Parrish, R.R. and Roberts, N.M., 2016, Early hydrothermal carbon uptake by
25 26 27	531	the upper oceanic crust: Insight from in situ U-Pb dating: Geology, v. 44(2), p. 147-
28 29	532	150.
30 31	533	Diener, J.F.A., and Powell, R., 2012, Revised activity-composition models for clinopyroxene
32 33 34	534	and amphibole: Journal of Metamorphic Geology, v. 30, p. 131–142.
34 35 36	535	Ernst, W.G., 1973, Blueschist metamorphism and P–T regimes in active subduction zones:
37 38	536	Tectonophysics, v. 17, p. 255–272.
39 40	537	Gansser, A., 1980, The significance of the Himalayan suture zone: Tectonophysics, v. 62, p.
41 42 43	538	37–52.
44 45	539	Gilley, L.D., Harrison, T.M., Leloup, P.H., Ryerson, F.J., Lovera, O.M. and Wang, J.H.,
46 47	540	2003, Direct dating of left-lateral deformation along the Red River shear zone, China
48 49 50	541	and Vietnam: Journal of Geophysical Research: Solid Earth, v. 108(B2), 2127.
50 51 52	542	Guillot, S., Mahéo, G., de Sigoyer, J., Hattori, K.H. and Pêcher, A., 2008, Tethyan and Indian
53 54	543	subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks:
55 56	544	Tectonophysics, v. 451, p. 225–241.
57 58		
59 60		

Page 23 of 110

2		
3 4	545	Hansman, R.J., Albert, R., Gerdes, A., and Ring, U., 2018, Absolute ages of multiple
5 6	546	generations of brittle structures by U-Pb dating of calcite: Geology, v. 6(3), p. 207–210.
7 8 9	547	Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C.
) 10 11	548	and Welch, M.D., 2012. Nomenclature of the amphibole supergroup. American
12 13	549	Mineralogist, v. 97, p. 2031–2048.
14 15	550	Hernández-Uribe, D., Palin, R.M., Cone, K.A. and Cao, W., 2020. Petrological implications
16 17 18	551	of seafloor hydrothermal alteration of subducted mid-ocean ridge basalt: Journal of
10 19 20	552	Petrology, v. 9, p. egaa086, doi: 10.1093/petrology/egaa086
21 22	553	Holland, T.J.B., 2009, AX: A program to calculate activities of mineral end-members from
23 24 25	554	chemical analyses. http://www.esc.cam.ac.uk/research/research-groups/holland/ax.
25 26 27	555	Accessed June 2015.
28 29	556	Holland, T.J.B., and Powell, R., 1998, An internally consistent thermodynamic dataset for
30 31 22	557	phases of petrological interest: Journal of Metamorphic Geology, v. 16, p. 309-344.
32 33 34	558	Holland, T.J.B., and Powell, R., 2003, Activity-composition relations for phases in
35 36	559	petrological calculations: an asymmetric multicomponent formulation: Contributions to
37 38	560	Mineralogy and Petrology, v. 145, p. 492–501.
39 40 41	561	Holland, T.J.B., Baker, J.M., and Powell, R., 1998, Mixing properties and activity-
42 43	562	composition relationships of chlorites in the system MgO-FeO-Al ₂ O ₃ -SiO ₂ -H ₂ O:
44 45	563	European Journal of Mineralogy, v. 10, p. 395–406.
46 47 48	564	Holt, W.E., Ni, J.F., Wallace, T.C., and Haines, A.J., 1991, The active tectonics of the
49 50	565	Eastern Himalayan syntaxis and surrounding regions: Journal of Geophysical Research,
51 52	566	v. 96, p. 14595–14632.
53 54	567	Johannes, W., and Puhan, D., 1971, The calcite-aragonite transition, reinvestigated.
55 56 57 58 59 60	568	Contributions to Mineralogy and Petrology, v. 31(1), p. 28–38.

2		
3 4	569	Khogenkumar, S., Singh, A.K., Kumar, S., Lakhan, N., Chaubey, M., Imtisunep, S., Dutt, A.
5 6 7	570	and Oinam, G., 2021, Subduction versus non-subduction origin of the
7 8 9	571	Nagaland-Manipur Ophiolites along the Indo-Myanmar Orogenic Belt, northeast India:
10 11	572	Fact and fallacy. Geological Journal, v. 56(4), p. 1773-1794.
12 13	573	Kretz, R., 1983, Symbols for rock-forming minerals: American Mineralogist, 68, 277–279.
14 15 16	574	Li, Q., Parrish, R.R., Horstwood, M.S.A., and McArthur, J.M., 2014, U-Pb dating of cements
17 18	575	in Mesozoic ammonites: Chemical Geology, v.376, p. 76–83.
19 20	576	Liu, CZ., Chung, SL., Wu, FY., Zhang, C., Xu, Y., Wang, JG., Chen, Y. and Guo, S.,
21 22	577	2016, Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints
23 24 25	578	from Myanmar ophiolites: Geology, v. 44, p. 311–314.
26 27	579	Ludwig, K., 2007, Isoplot 3.62, Berkley Geochronology Centre Special Publication 4, p. 70.
28 29	580	Morimoto, N. et al. 1988, Nomenclature of pyroxenes: American Mineralogist, v. 73, p.
30 31 32	581	1123–1133.
33 34	582	Millonig, L.J., Gerdes, A., and Groat, L.A., 2012, U-Th-Pb geochronology of meta-
35 36	583	carbonatites and meta-alkaline rocks in the southern Canadian Cordillera: a
37 38 20	584	geodynamic perspective: Lithos, v. 152, p. 202–217.
39 40 41	585	Mitchell, A.H.G., 1993, Cretaceous-Cenozoic tectonic events in the western Myanmar-
42 43	586	Assam region: Journal of the Geological Society of London, v. 150, p. 1089–1102.
44 45	587	Mitchell, A.H.G., Htay, M.T., Htun, K.M., Win, M.N., Oo, T., and Hlaing, T., 2007, Rock
46 47 48	588	relationships in the Mogok Metamorphic Belt, Tatkon to Mandalay, central Myanmar:
49 50	589	Journal of Asian Earth Sciences, v. 29, p. 891–910.
51 52	590	Mitchell, A.H.G., Chung, SL., Oo, T., Lin, TH., and Hung, C-H., 2012, Zircon U-Pb ages
53 54 55	591	in Myanmar: magmatic-metamorphic events and the closure of a Neo-Tethys Ocean?:
55 56 57	592	Journal of Asian Earth Sciences, v. 56, p. 1–23.
58 59 60	593	Miyashiro, A., 1961, Evolution of metamorphic belts. Journal of Petrology, v. 2, p. 277–311.

1 2		
3 4	594	Palin, R.M., and White, R.W., 2016, Emergence of blueschists on Earth linked to secular
5 6 7 8 9 10 11 12 13	595	changes in oceanic crust composition: Nature Geoscience, v. 9, p. 60-64.
	596	Palin, R.M., Weller, O.M., Waters, D.J., and Dyck, B., 2016, Quantifying geological
	597	uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and
	598	implications for tectonic interpretations: Geoscience Frontiers, v. 7, p. 591-607.
14 15	599	Penniston-Dorland, S. C., Kohn, M. J., and Manning, C. E., 2015, The global range of
16 17 18	600	subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are
19 20	601	hotter than models: Earth and Planetary Science Letters, v. 428, p. 243-254.
21 22	602	Powell, R., and Holland, T.J.B., 1988, An internally consistent thermodynamic dataset with
23 24 25	603	uncertainties and correlations: 3. Application to geobarometry, worked examples, and a
25 26 27	604	computer program: Journal of Metamorphic Geology, v. 6, p. 173–204.
28 29	605	Powell, R., and Holland, T.J.B., 1994, Optimal geothermometry and geobarometry:
30 31 32 33 34 35 36	606	American Mineralogist, v. 79, p. 120–133.
	607	Rasbury, E.T., Cole, J.M., 2009, Directly dating geologic events: U-Pb dating of carbonates:
	608	Reviews of Geophysics v. 47, RG3001.
37 38	609	Ring, U., and A. Gerdes, 2016, Kinematics of the Alpenrhein-Bodensee graben system in the
39 40 41	610	Central Alps: Oligocene/Miocene transtension due to formation of the Western Alps
42 43	611	arc: Tectonics, v. 35, doi:10.1002/2015TC004085.
44 45	612	Robb, L.J., Armstrong, R.A., and Waters, D.J., 1999, The history of granulite-facies
46 47	613	metamorphism and crustal growth from single zircon U-Pb geochronology:
48 49 50	614	Namaqualand, South Africa: Journal of Petrology, v. 40, p. 1747-1770.
51 52 53 54	615	Roberts, N.M.W. and Walker, R.J., 2016. U-Pb geochronology of calcite-mineralized faults:
	616	Absolute timing of rift-related fault events on the northeast Atlantic margin: Geology, v.
55 56 57	617	44, p. 531–534.
58 59 60		

2		
- 3 4	618	Roberts, N.M.W., Drost, K., Horstwood, M.S.A., Condon, D.J., Chew, D., Drake, H.,
5 6	619	Milodowski, A.E., McLean, N.M., Smye, A.J., Walker, R.W., Haslam, R., Hodson, K.,
7 8 9	620	Imber, J., Beaudoin, N., and Lee, J.K., 2020. Laser ablation inductively coupled plasma
10 11	621	mass spectrometry (LA-ICP-MS) U-Pb carbonate geochronology: strategies, progress,
12 13	622	and limitations: Geochronology, v. 2, p. 33-61,
14 15 16	623	Roduit, N., 2010. JMicroVision: un logiciel d'analyse d'images pétrographiques innovant:
10 17 18	624	Étude sur différentes méthodes de quantification et de caractérisation des roches.
19 20	625	Éditions universitaires Européennes, 136 pp.
21 22 22	626	Rubatto, D., and Hermann, J., 2001, Exhumation as fast as subduction?: Geology, v. 29, p. 3–
23 24 25	627	6.
26 27	628	Rubatto, D., Williams, I.S. and Buick, I.S., 2001, Zircon and monazite response to prograde
28 29 20	629	metamorphism in the Reynold Range, Central Australia: Contribution to Mineralogy
30 31 32	630	and Petrology, v. 140, p. 458–468.
33 34	631	Sarkar, A., Datta, A.K., Poddar, B.C., Bhattacharyya, B.K., Kollapuri, V.K., and Sanwal, R.,
35 36	632	1996, Geochronological studies of Mesozoic igneous rocks from eastern India: Journal
37 38 30	633	of Southeast Asian Earth Sciences, v. 13, p. 77-81.
39 40 41	634	Salih, N., Mansurbeg, H., Kolo, K., Gerdes, A., and Préat, A., 2019, In situ U-Pb dating of
42 43	635	hydrothermal diagenesis in tectonically controlled fracturing in the Upper Cretaceous
44 45 46	636	Bekhme Formation, Kurdistan Region-Iraq: International Geology Review, v. 62, p.
46 47 48	637	2261–2279.
49 50	638	Schmidt, M.W., and Poli, S., 1998, Experimentally based water budgets for dehydrating slabs
51 52	639	and consequences for arc magma generation: Earth and Planetary Science Letters, v.
53 54 55	640	163, p. 361–379.
55 56 57	641	Searle, M.P., Noble, S.R., Cottle, J.M., Waters, D.J., Mitchell, A.H.G., Hlaing, T., and
58 59 60	642	Horstwood, M.S.A., 2007, Tectonic evolution of the Mogok metamorphic belt, Burma

Page 27 of 110

2 3	643	(Myanmar) constrained by U–Th–Pb dating of metamorphic and magmatic rocks:
4 5	644	Tectonics, v. 26, p. TC3014.
6 7	044	rectomes, v. 20, p. 105014.
8 9	645	Sengupta, S., Ray, K.K., Acharyya, S.K., and de Smeth, J.B., 1990, Nature of ophiolite
10 11	646	occurrence along eastern margin of Indian plate and their tectonic significance:
12 13	647	Geology, v. 18, p. 439–442.
14 15 16	648	Shi, G.H., Cui, W.Y., Cao, S.M., Jiang, N., Jian, P., Liu, D.Y., Miao, L.C., and Chu, B.B.,
16 17 18	649	2008, Ion microprobe zircon U-Pb age and geochemistry of the Myanmar jadeitite:
19 20	650	Journal of the Geological Society of London, v. 165, p. 221–234.
21 22	651	Shi, G., Lei, W., He, H., Nok Ng, Y., Liu, Y., Liu Y., Yuan, Y., Kang, Z., and Xie, G., 2014,
23 24 25	652	Superimposed tectono-metamorphic episodes of Jurassic and Eocene age in the jadeite
26 27	653	uplift, Myanmar, as revealed by ⁴⁰ Ar/ ³⁹ Ar dating. Gondwana Research, v. 26, p. 464–
28 29	654	474.
30 31 32	655	Singh, A.K., Chung, S.L., Bikramaditya, R.K. and Lee, H.Y., 2017, New U–Pb zircon ages of
32 33 34	656	plagiogranites from the Nagaland-Manipur Ophiolites, Indo-Myanmar Orogenic Belt,
35 36	657	NE India: Journal of Geological Society of London, v. 174, p. 170–179.
37 38	658	St-Onge, M.R., Rayner, N., Palin, R.M., Searle, M.P., Waters, D.J., 2013, Integrated
39 40 41	659	pressure-temperature-time constraints for the Tso Morari dome (NW India):
42 43	660	Implications for the burial and exhumation path of UHP units in the western Himalaya:
44 45	661	Journal of Metamorphic Geology, v. 31, p. 469–504.
46 47 48	662	Stacey, J.S., and Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by
49 50	663	a two-stage model: Earth and Planetary Science Letters, v. 26, p. 207-221.
51 52	664	Syracuse, E.M., van Keken, P.E., and Abers, G.A., 2010, The global range of subduction
53 54 55	665	zone thermal models. Physics of the Earth and Planetary Interiors, v. 183, p. 73–90.
56 57		
58 50		
59 60		

2 3 4	666	Terry, M.P., Robinson, P. and Ravna, K., 2000, Kyanite eclogite thermobarometry and
5 6	667	evidence for thrusting of UHP over HP metamorphic rocks, Nordøyane, Western
7 8	668	Gneiss Region, Norway: American Mineralogist, v. 85, p. 1637–1650.
9 10 11	669	Wang, X. and Griffin, W.L., 2004, Unusual Hf contents in metamorphic zircon from coesite-
12 13	670	bearing eclogites of the Dabie Mountains, east-central China: implications for the
14 15	671	dating of ultrahigh-pressure metamorphism: Journal of Metamorphic Geology, v. 22, p.
16 17 18	672	629–637.
19 20	673	Wang, Y., and Foley, S.F., 2020, The role of blueschist stored in shallow lithosphere in the
21 22	674	generation of post-collisional orogenic magmas: Journal of Geophysical Research, v.
23 24 25	675	125, doi.org/10.1029/2020JB019910.
25 26 27	676	White, R.W., Powell, R., and Holland, T.J.B., 2007, Progress relating to calculation of partial
28 29	677	melting equilibria for metapelites: Journal of Metamorphic Geology, v. 25, p. 511–527.
30 31	678	White, R.W., Powell, R., Holland, T.J.B., and Worley, B.A., 2000, The effect of TiO_2 and
32 33 34	679	Fe ₂ O ₃ on metapelitic assemblages at greenschist and amphibolite facies conditions:
35 36	680	mineral equilibria calculations in the system K ₂ O-FeO-MgO-Al ₂ O ₃ -SiO ₂ -H ₂ O-TiO ₂ -
37 38	681	Fe ₂ O ₃ : Journal of Metamorphic Geology, v. 18, p. 497–511.
39 40 41	682	Williams, I.S., and Claesson, S., 1987, Isotopic evidence for Precambrian provenance and
42 43	683	Caledonian metamorphism of high grade paragneisses from the Seve Nappes,
44 45	684	Scandanavian Caledonides. II, Ion microprobe zircon U-Th-Pb: Contribution to
46 47	685	Mineralogy and Petrology, v. 97, p. 205–217.
48 49 50	686	Yui, T.F., Fukoyama, M., Iizuka, Y., Wu, C.M., Wu, T.W., Liou, J.G. and Grove, M., 2013,
51 52	687	Is Myanmar jadeitite of Jurassic age?: A result from incompletely recrystallised
53 54	688	inherited zircon. Lithos, v. 160–161, p. 268–282.
55 56 57		
57 58 59		
60		

 Zhang, Zh., Mao, Zh., Liu, X., Zhang, Y., and Brodholt, J., 2018, Stability and Reactions of
CaCO₃ Polymorphs in the Earth's Deep Mantle: Journal of Geophysical Research,
Solid Earth, v. 123(8), p. 6491–6500.

Figure captions

Figure 1. (A) Regional geological map of Indo-Myanmar Range and part of Myanmar (after Acharyya 2015). (B) Geological map of the Indo-Myanmar ophiolite belt (after Geological Survey of India M.N.C. DRG No. 42/87) (C) Geological map of the Nagaland ophiolite belt showing sample locations (after Anon. 1986, Ao and Bhowmick, 2016). (D) Field photographs (1) Unfoliated/Unsheared sample occur as boulders. Person for reference. (2) Unsheared sample showing the slicken sided face, chisel is for reference. (3) Blueschist samples present as blocky boulders. (4) Sheared sample showing foliation on a freshly broken face. Pen shows the foliation trend.

Figure 2. Thin-section photomicrographs showing representative mineral assemblages and microstructures for undeformed samples N5 (a-b) and 14 (c-d). All thin section images are shown under plane-polarized light. Scale bar is 1 mm. (a–b) Glaucophane- and epidote-rich matrix in sample N5, with minor garnet porphyroblasts associated with quartz and muscovite. (c) Small millimetre-scale garnet in sample 14 mostly occurs in guartz-rich domains that are relatively epidote- and barroisite-poor. (d) Barroisite grains enclose epidote crystals. Mineral use in 2(a) Gln – Glaucophane, Grt – Garnet, Ep – Epidote, Ms – Muscovite. 2(b) Gln – Glaucophane, Grt – Garnet, Ep – Epidote, Ms – Muscovite, Qtz – quartz, 2(c) Brs – Barroisite, Carb – Carbonate, Grt – Garnet, Ep – Epidote. 2(d) Brs – Barroisite, Ep – Epidote, Ms – Muscovite, Qtz – quartz, Ttn – Titanite.

1 2	
∠ 3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13 14 15 16 17	
14	
15	
16 17	
17 18	
19	
20	
20 21 22 23 24 25 26 27 28 29	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32 33	
33 34	
35	
34 35 36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45 46	
46 47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59 60	
60	

714	Figure 3. Thin-section photomicrographs showing representative mineral assemblages and
715	microstructures in sheared samples 7c (a-b) and 11 (c-f). All thin section images are shown
716	under plane-polarized light (unless stated otherwise) and oriented perpendicular to the
717	dominant metamorphic foliation. Scale bar is 1 mm. (a) The metamorphic foliation in sample
718	7c is defined by aligned crystals of epidote, sodic-calcic amphibole, and calcic amphibole, (b)
719	and is crosscut by quartz- and carbonate-filled veins that also cause localized deflections at
720	their intersections. Sample 11 contains olive-green aegirine-augite (c) and garnet (d)
721	porphyroblasts that are wrapped by a glaucophane-magnesioriebeckite foliation defined by
722	alternating glaucophane- and quartz-rich bands. Sheared veins filled with carbonate (e) and
723	quartz (f) exhibit ductile deformation microstructures and dynamic recrystallization. Mineral
724	abbreviation use in Figure 3(a) Brs – Wnc: Barroisite – Winchite, Ep – Epidote, Prg – Ed:
725	Pargsite – Edinite, Ttn: Titanite, Figure 3(b) Qtz – Quartz, Carb – Carbonate, Brs –
726	Barroisite, Wnc – Winchite, Ep – Epidote, Ms – Muscovite, Kfs – K-feldspar, Ab – Albite,
727	3(c) Agt – Aegirine augite, Gln: Glaucophane, Fgl – Ferroglacuphane, Grt – Garnet, Qtz –
728	Quartz, Ms – Muscovite, Figure 3(d) Alb – Albite, Carb – Carbonate, Gln – Glaucophane,
729	Fgl – Ferroglaucophane, Quartz – Quartz, Figure 3(e) Carb – Carbonate, Ms – Muscovite,
730	Qtz – Quartz, Figure 3(f) Carb – Carbonate, Qtz – Quartz.
731	
732	Figure 4. Compositional line profile for a garnet porphyroblast of from the unsheared sample
733	N5, running from rim to rim (~0.75 mm diameter). (a) Cation mole fractions of divalent
734	cations. (b) X-ray compositional map of divalent cations showing relative concentrations
735	from core to rim. Colours do not represent equivalent cation concentrations between images.
736	
737	Figure 5. Compositions of amphiboles from all studied samples, classified according to the

- classification scheme of Hawthorne *et al.* (2012). Discrimination between calcic (group 2),
 - 30

Page 31 of 110

1 2

International Geology Review

3 4	739
5 6	740
7 8 9	741
) 10 11	742
12 13	743
14 15 16	744
17 18	745
19 20 21	746
21 22 23	747
24 25	748
26 27	749
28 29 30	750
31 32	751
33 34	752
35 36 37	753
38 39	754
40 41	755
42 43 44	756
45 46	757
47 48	758
49 50 51	759
52 53	760
54 55	761
56 57 58	762
59 60	763

calcic-sodic (group 3), and sodic (group 4) amphiboles is based upon the Na content of the 739 M4 crystallographic site, with the ranges <0.5, 0.5-1.5, and >1.5, respectively for a 23-740 oxygen recalculation. Representative compositions are given in Supplementary Table 2. 741 742 Figure 6. Results of mineral equilibria modelling for unsheared sample N5. (a) Pressure-743 temperature (P-T) pseudosection constructed for the bulk composition given in 744 745 Supplementary Table 3. Dotted overlay represents the global range of P-T conditions modelled to occur at the surface of subducting ocean crust in present-day subduction zones 746 747 (Syracuse et al. 2010). Gray star and associated dashed ellipses represent the results of avPT calculations (Supplementary Table 4) and are shown at 1 and 2 S.D. Bold line marks the 748 extent of H₂O-bearing assemblage fields. Numbered fields are as follows: 1 – Grt Ms Cld Tlc 749 Omp, 2 – Grt Ms Cld Tlc Omp Gln, 3 – Grt Ms Cld Tlc Omp Gln Lws, 4 – Grt Ms Cld Tlc 750 Omp Ky Lws, 5 – Grt Ms Act Cld Tlc Ky Lws, 6 – Grt Ms Bt Cld Act Gln, 7 – Grt Chl Bt 751 Cld Act Gln, 8 – Grt Bt Act Gln Mag, 9 – Grt Bt Chl Hbl Gln, 10 – Bt Omp Hbl Pl H₂O, 11 – 752 Bt Omp Hbl Pl Ab H₂O, 12 – Grt Ms Omp Hbl H₂O, 13 – Grt Ms Gln H₂O, 14 – Grt Chl Ms 753 Omp Gln, 15 – Grt Chl Ms Brs Gln, 16 – Grt Chl Ms Omp Gln Lws, 17 – Grt Ms Cld Omp 754 Gln Lws. Some small, minor fields are unlabelled for clarity. (b) Interpreted peak assemblage 755 field showing isolines of modal proportions of selected phases. Red star indicates the best 756 match between observed and calculated mineral abundances. Dashed line labelled XNaM₄Act 757 = 0.25 marks the division between actinolite (<0.25) at low-T and barroisite (>0.25) at high-758 T. (c) Bar chart showing degree of correlation between observed volume proportions (%) of 759 minerals and calculated proportions at 1.9 GPa and 485 °C (red star in b). 760 761

Figure 7. Results of mineral equilibria modelling for unsheared sample 14. (a) Pressure-

763 temperature (P-T) pseudosection constructed for the bulk composition given in

2	
2	
ر ۸	
4 5	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	
23	
23 24 25 26 27 28 29 30	
25	
26	
20	
22	
20	
29	
50 21	
31	
32 33	
33	
34	
34 35 36 37 38	
36	
37	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
59 60	
00	

764	Supplementary Table 3. Dotted overlay represents the global range of $P-T$ conditions
765	modelled to occur at the surface of subducting ocean crust in present-day subduction zones
766	(Syracuse et al. 2010). Gray star and associated dashed ellipses represent the results of avPT
767	calculations (Supplementary Table 4) and are shown at 1 and 2 S.D. Bold line marks the
768	extent of H_2O -bearing assemblage fields. Numbered fields are as follows: $1 - Grt Ms Pg$
769	Omp Act Gln, 2 – Grt Ms Bt Omp Act Gln, 3 – Grt Bt Omp Act Gln Ab, 4 – Grt Bt Omp Act
770	Gln Ilm Mag Ab (-Rt), 5 - Grt Bt Omp Act Gln Mag Ab (-Rt), 6 - Grt Bt Omp Brs Gln
771	Mag, 7 – Bt Omp Brs Gln Hbl Mag, 8 – Grt Bt Omp Brs Hbl, 9 – Bt Di Brs Hbl H ₂ O, 10 – Bt
772	Di Hbl Ttn H ₂ O (-Rt), 11 – Bt Di Hbl, 12 – Grt Ms Bt Omp Act H ₂ O, 13 – Grt Ms Tlc Omp
773	Act H ₂ O, 14 – Grt Ms Tlc Omp H ₂ O, 15 – Grt Ms Tlc Omp Brs Lws, 16 – Grt Chl Ms Omp
774	Brs, $17 - GrtChl Ms Omp Brs H_2O$. Some small, minor fields are unlabelled for clarity. (b)
775	Red star indicates the best match between observed and calculated mineral abundances.
776	Interpreted peak assemblage field showing isolines of modal proportions of selected phases.
777	Dashed line labelled XNaM ₄ Act = 0.25 marks the division between actinolite (< 0.25) at low-
778	T and barroisite (>0.25) at high-T. (c) Bar chart showing degree of correlation between
779	observed volume proportions (%) of minerals and calculated proportions at 2.0 GPa and 525
780	°C (red star in part b).
781	

Figure 8. Results of phase equilibria modelling for sheared sample 7c. (a) Pressure–
temperature (*P*-*T*) pseudosection constructed for the bulk composition given in
Supplementary Table 3. Dotted overlay represents the global range of *P*-*T* conditions
modelled to occur at the surface of subducting ocean crust in present-day subduction zones
(Syracuse *et al.* 2010). Gray star and associated dashed ellipses represent the results of avPT
calculations (Table 4) and are shown at 1 and 2 S.D. Bold line marks the extent of H₂Obearing assemblage fields. Numbered fields are as follows: 1 – Omp Act Gln Mag Rt Hem (–

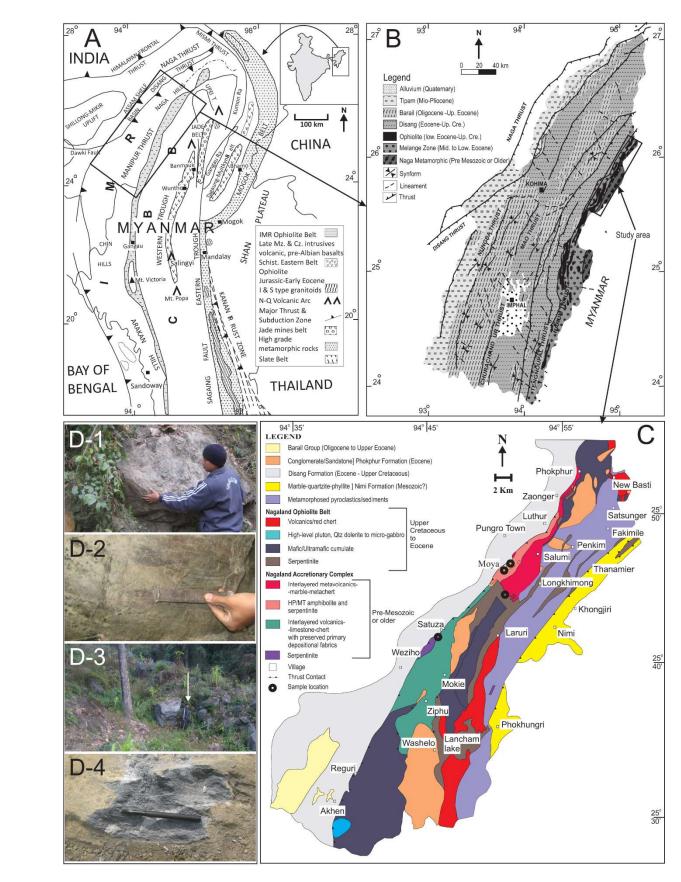
1 2	
2 3 4	7
4 5 6	7
7 8	-
9 10	_
11 12	
13 14	7
15 16	7
17 18	7
19 20	7
21 22	7
23 24	7
25 26 27	7
27 28 29	٤
30 31	Ę
32 33	ç
34 35	
36 37	2
38 39	8
40 41	٤
42 43	٤
44 45	٤
46 47	c
48 49	5
50 51 52	ξ
52 53 54	٤
54 55 56	٤
50 57 58	٤
59 60	Ę

789	Ttn), 2 – Omp Act Gln Mag Rt, 3 – Omp Act Gln Mag, 4 – Omp Act Gln Mag Ab, 5 – Act
790	Gln Mag Ab, 6 – Omp Act Hbl Gln Mag Rt (–Ttn), 7 – Omp Act Hbl Gln Ab, 8 – Act Hbl
791	Gln Mag Ab, 9 – Chl Act Hbl Mag Ab, 10 – Chl Act Hbl Ab H ₂ O, 11 – BrsHbl Ab, 12 –
792	Omp Act Hbl Ab, 13 – Di Act Hbl Ab H ₂ O, 14 – Di Hbl Ab H ₂ O, 15 – Di Act Hbl Pl, 16 –
793	Di Hbl Pl Mag Hem (-Ttn, Ep), 17 – Omp Act Hbl Gln Rt Hem (-Ttn), 18 – Omp Brs Hbl
794	Gln Rt Hem (-Ttn), 19 – Omp Brs Hbl Gln Rt (-Ttn), 20 – Omp Act Hbl Gln Rt (-Ttn), 21 –
795	Omp Brs Hbl Gln, 22 – Omp Act Hbl Gln, 23 – Omp Brs Gln Rt Hem (–Ttn), 24 – Omp Act
796	Hem (-Ttn), 25 – Omp Act (-Ttn). Some small, minor fields are unlabelled for clarity. (b)
797	Red star indicates the best match between observed and calculated mineral abundances.
798	Interpreted peak assemblage field showing isolines of modal proportions of selected phases.
799	Dashed line labelled $XNaM_4Act = 0.25$ marks the division between actinolite (<0.25) at low-
800	T and barroisite (>0.25) at high-T. (c) Bar chart showing degree of correlation between
801	observed volume proportions (%) of minerals and calculated proportions at 0.6 GPa and 465
802	°C (red star in b).
803	
804	Figure 9. Isochrons for all dated samples. A: Unsheared sample 14. B: Sheared sample 11. C:

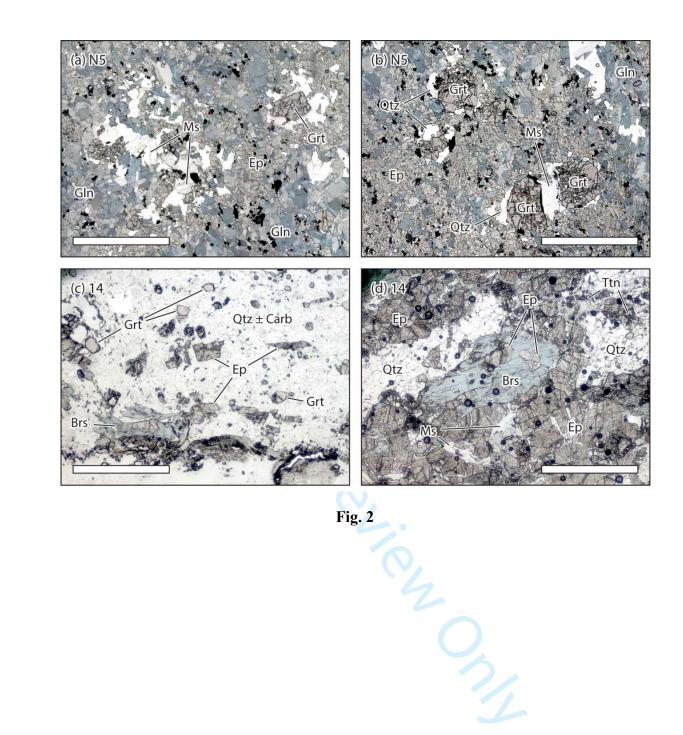
Sheared sample 3b. D: Sheared sample 13. All ellipses are shown at the 2σ confidence 805

interval and n = number of analyses. 806

807


Figure 10. Representative back scattered electron images of analysed samples 14 (a), 11 (b), 808 3b (c) and 13 (d). U-Pb analysed spots are showing in ellipse (white: silicate phases and 809 yellow: carbonates). 810

811


Figure 11. Pressure-temperature diagram summarizing the proposed model for the 812 tectonometamorphic evolution of blueschist-facies rocks from the Nagaland ophiolite 813 complex. Red boxes represent calculated conditions of metamorphism and thick grey arrow 814

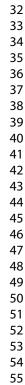

represents the interpreted P-T-t evolution. Paths for Nagaland blueschists reported by Chatterjee and Ghose (2010) and Ao and Bhowmik (2014) are shown (CG10 and AB14, respectively) for comparison. Aragonite-calcite stability curve is from Johannes and Puhan (1971).

Figure 12. Schematic tectonic model for formation and exhumation of the Nagaland ophiolite belt and its metamorphic suite. (a) Westward-dipping subduction away from Myanmar during the Jurassic, with future Nagaland ophiolite belt oceanic crust on the overlying plate. (b) Reversal in the subduction dip direction prior to the Early Cretaceous, leading to burial of future Nagaland ophiolitic crust and mantle. (c) Peak metamorphism of the studied samples was achieved during the Middle Cretaceous, with (d) slab break-off and buoyancy-driven exhumation and associated shearing of these units during the Middle to Late Cretaceous. (e) the final configuration of the Indo-Myanmar plates and suture zone between following collisional orogenesis (modified after Khogenkumar et al. 2021). Yellow star indicates locations of the studied samples during metamorphism and deformation.

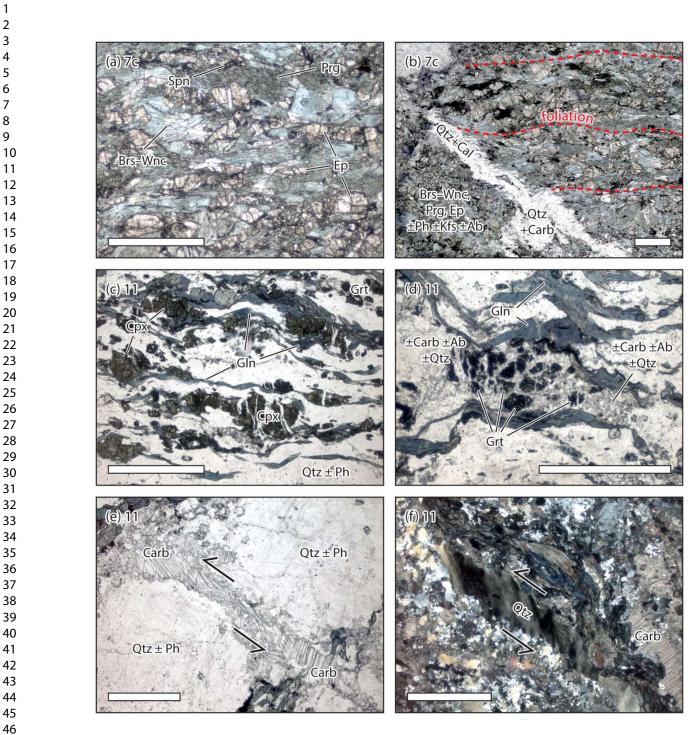
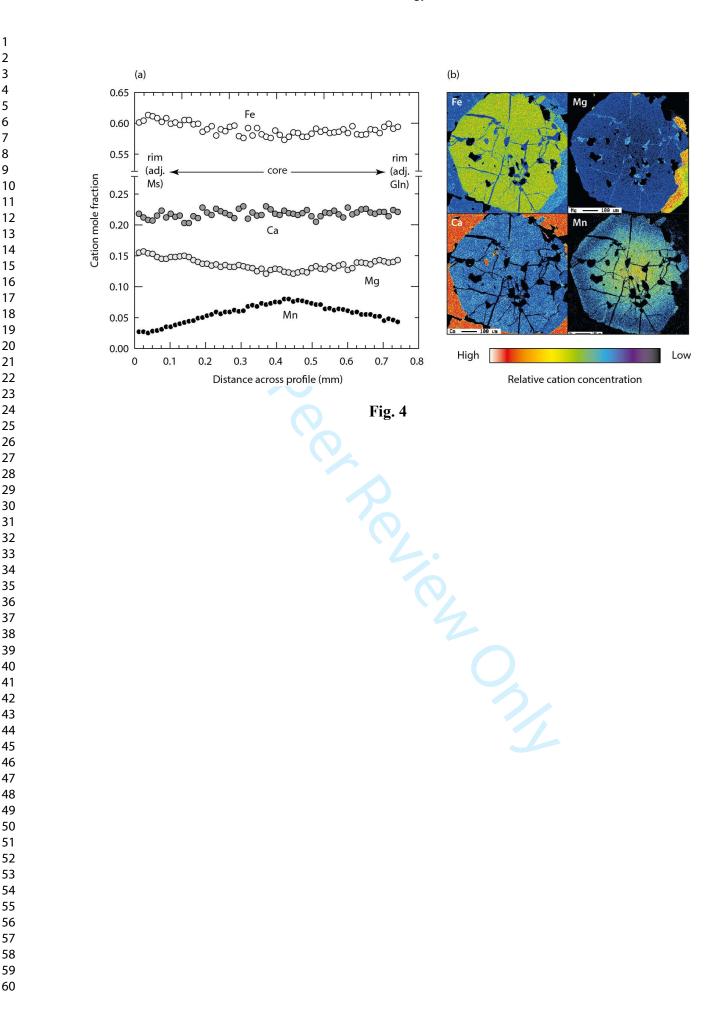
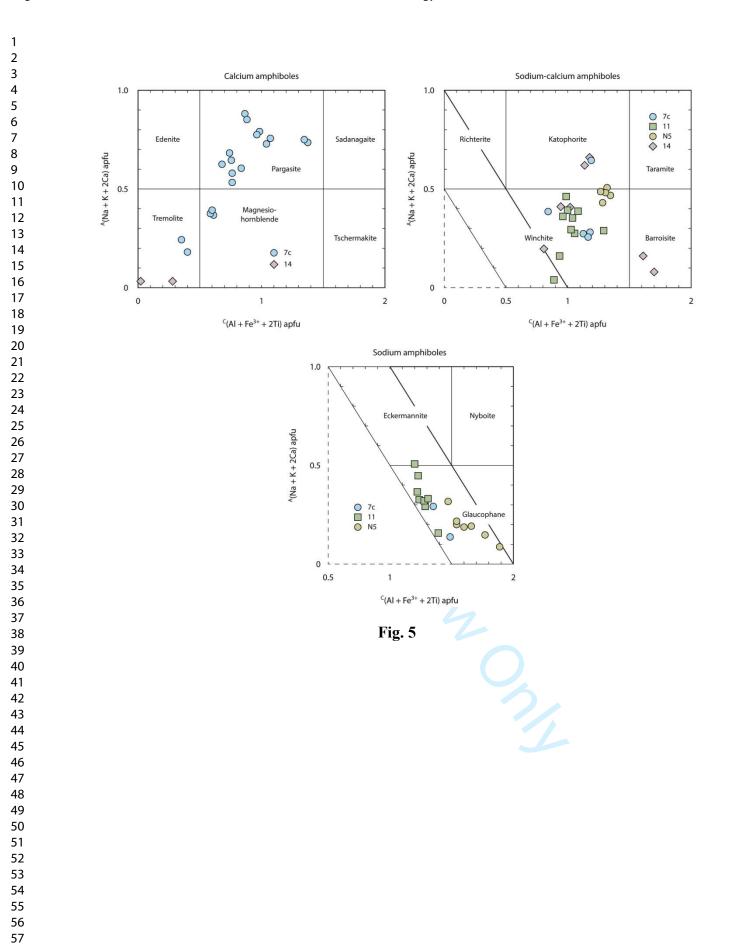
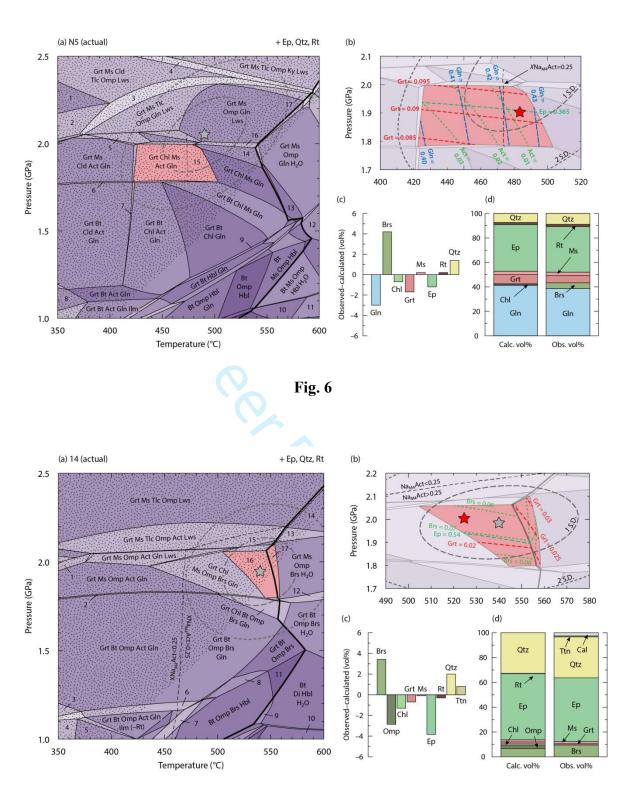
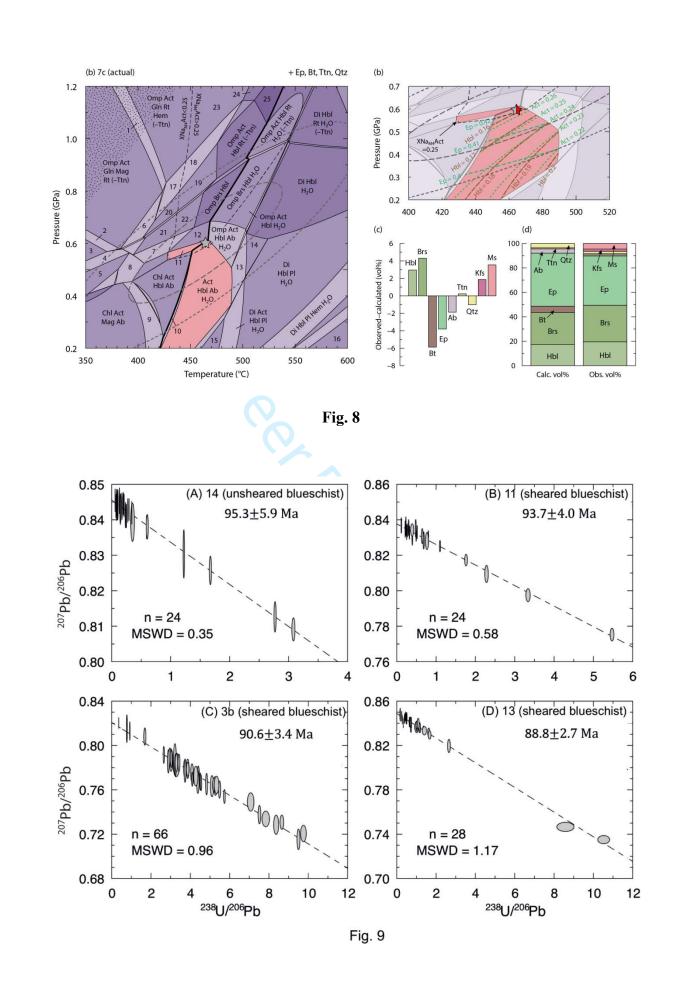
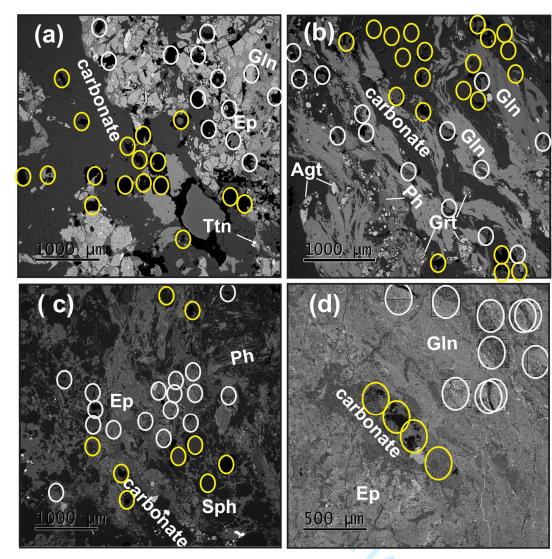
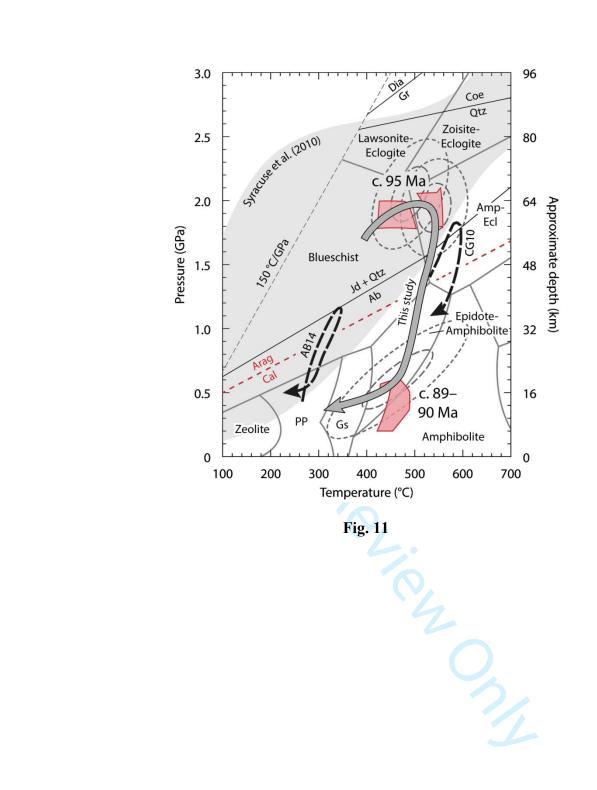
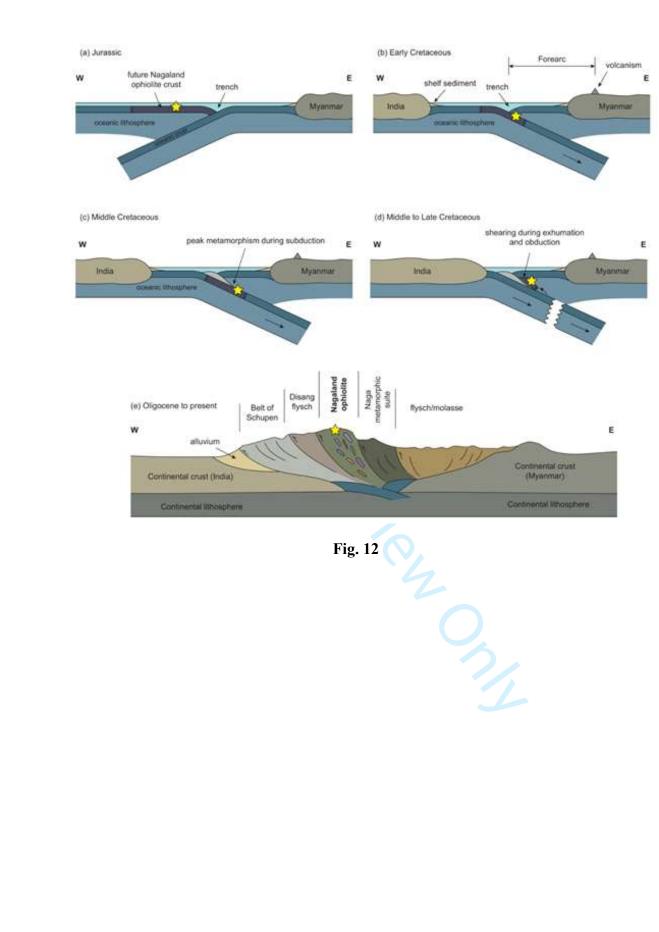




Fig. 3


Fig. 7

2 3	1	SUPPLEMENTARY INFORMATION for:
4 5 6	2	Dating blueschist-facies metamorphism within the Naga ophiolite,
6 7 0	3	Northeast India, using sheared carbonate veins
8 9	4	
10 11	5	Bidyananda Maibam ^{*a} , Richard M. Palin ^b , Axel Gerdes ^{c,d} , Richard W. White ^e , Stephen
12 13	6	Foley ^f
14 15	7	^a Department of Earth Sciences, Manipur University, Canchipur, Imphal-795003, India
15 16 17	8	^b Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, United Kingdom
18 19	9	^c Department of Geosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
20 21	10	^d Frankfurt Isotope and Element Research Center (FIERCE), Goethe-University Frankfurt,
22 23	11	60438 Frankfurt, Germany
24 25	12	^e School of Earth and Environmental Sciences, University of St. Andrews, KY16 9AL, UK
26 27	13	^f ARC Centre of Excellence for Core to Crust Fluid Systems, Department of Earth & Planetary
28 29	14	Sciences, Macquarie University NSW 2109, Australia
30 31	15	
32	16	*corresponding author: bmaibam@yahoo.com
33 34	17	
35 36	18	<u>Contents:</u> Supplementary Tables 1-5
37 38	19	Supplementary Tables 1-5
39	20	
40 41	21	Extended sample description
42 43	22	GPS coordinates for each sample are given in Supplementary Table 1. These samples can be
44 45	23	divided into sheared and unsheared units. Major-element mineral compositional data were
46	24	obtained on a JEOL JXA-8200 electron microprobe at the Institute of Geosciences, Johannes
47 48	25	Gutenberg University of Mainz, Germany. Operating conditions included an acceleration
49 50	26	voltage of 15 kV, a beam current of 12 nA, and a 2- μ m spot size. A matrix correction for atomic
51	27	number, absorption, and fluorescence was automatically applied to all analyses. For the data
52 53	28	presented below, mineral compositions were recalculated to a standard number of oxygens per
54 55	29	formula unit (pfu), with H_2O assumed to be present in stoichiometric amounts. Where
56 57	30	stoichiometric criteria could be applied, the proportion of ferric iron was calculated using the
58	31	software AX (Holland, 2009). Representative compositions of major minerals for all samples
59 60	32	are given in Supplementary Table 2. Mineral abbreviations are after Kretz (1983).

34					
35					
36					
	0 1				1. 1 1
37		nentary Table 1. Lithological descriptions a			-
38		ript numbers denote whether samples were			
	Sample		Northing	Easting	Locality
	N51	Unsheared blueschist			Near Satuza
	141,2	Unsheared blueschist	25°46'02.8"	94°51'03.6"	Moya
	7c ¹	Sheared blueschist with cross-cutting carbonate veins	25°36'56.3"	94°51'39.8"	Moya
	13 ²	Sheared blueschist	25°46'06.6"	94°51'26.4"	Moya
	3b ²	Sheared blueschist	25°49'19.0"		Luthur-Salomi
	111,2	Sheared blueschist with cross-cutting carbonate veins		94°52'16.7"	Salomi-Longkhimon

- 57 58 59
- 60

URL: https://mc.manuscriptcentral.com/tigr E-mail: rjstern@utdallas.edu

Sample			N	5 (Unsheare	ed)		14 (Unsheared)							
Mineral Location	Gln Matrix	Ep Matrix	Brs Matrix	Ms Matrix	Rt Matrix	Grt Core	Grt Rim	Brs Matrix	Cal Vein	Ep Matrix	Grt Pblast	Ms Matrix	Chl Matrix	Ttn Matr
Weight %														
SiO ₂	56.99	38.32	48.82	50.30	0.03	38.65	38.03	50.55	0.04	38.31	38.44	49.16	28.76	30.6
TiO ₂	0.03	0.06	0.31	0.31	99.21	0.10	0.10	0.37	0.00	0.21	0.07	0.48	0.01	37.9
Al_2O_3	7.74	25.28	10.87	27.78	0.03	21.55	21.90	7.58	0.04	25.01	20.89	26.30	17.26	1.16
Fe ₂ O ₃	3.84	9.68	2.30	0.54	0.00	0.03	0.08	2.94	0.00	10.65	1.66	1.51	0.00	0.00
FeO	10.06	0.61	11.27	2.60	0.87	26.63	27.83	11.11	0.09	0.00	17.44	2.11	20.86	0.49
MnO	0.18	0.03	0.15	0.03	0.01	3.62	1.25	0.55	0.67	0.19	7.25	0.02	0.45	0.13
MgO	10.80	0.08	11.76	3.32	0.03	3.17	3.92	12.92	0.03	0.02	3.44	3.56	19.57	0.00
CaO	1.29	23.40	7.72	0.00	0.02	7.88	7.37	8.17	62.13	23.30	11.79	0.00	0.03	28.3
Na ₂ O	6.89	0.02	4.17	0.68	0.00	0.06	0.00	3.42	0.07	0.03	0.00	0.44	0.00	0.0
K ₂ O	0.01	0.00	0.37	10.32	0.00	0.00	0.02	0.66	0.00	0.00	0.00	10.38	0.04	0.0
Total	97.85	97.53	97.74	96.05	100.27	101.73	100.52	98.38	63.12	97.79	101.04	94.10	87.07	98.8
Cations per	formula unit													
Si	7.95	3.03	7.04	3.35	0.00	3.01	2.98	7.27	0.00	3.03	2.99	3.35	2.98	1.0
Ti	0.00	0.00	0.03	0.02	0.99	0.01	0.01	0.04	0.00	0.01	0.00	0.02	0.00	0.9
Al	1.27	2.36	1.85	2.18	0.00	1.98	2.02	1.29	0.00	2.33	1.92	2.11	2.11	0.04
Fe ³⁺	0.41	0.58	0.25	0.03	0.00	0.00	0.01	0.32	0.00	0.64	0.10	0.08	0.00	0.0
Fe ²⁺	1.17	0.04	1.36	0.14	0.01	1.73	1.82	1.34	0.00	0.00	1.14	0.12	1.81	0.0
Mn	0.02	0.00	0.02	0.00	0.00	0.24	0.08	0.07	0.02	0.01	0.48	0.00	0.04	0.0
Mg	2.25	0.01	2.53	0.33	0.00	0.37	0.46	2.77	0.00	0.00	0.40	0.36	3.02	0.0
Ca	0.19	1.98	1.19	0.00	0.00	0.66	0.62	1.26	1.97	1.97	0.98	0.00	0.00	1.0
Na	1.86	0.00	1.17	0.09	0.00	0.01	0.00	0.95	0.00	0.00	0.00	0.06	0.00	0.0
K	0.00	0.00	0.07	0.88	0.00	0.00	0.00	0.12	0.00	0.00	0.00	0.90	0.01	0.00
Sum	15.14	8.00	15.50	7.01	1.00	8.00	8.00	15.44	2.00	8.00	8.00	7.01	9.97	3.0
Oxygens	23	12.5	23	11	2	12	12	23	3	12.5	12	11	14	5
X _{Mg}	0.66	0.18	0.65	0.70	0.00	0.18	0.20	0.67	0.00	1.00	0.26	0.75	0.63	0.00

URL: https://mc.manuscriptcentral.com/tigr E-mail: rjstern@utdallas.edu

Sample				,	7c (sheare	ed)							11			
Mineral Location	Ab Vein	Mhb Matrix	Wnc Matrix	Cal Vein	Ep Core	Ep Rim	Kfs Matrix	Ms Matrix	Ttn Matrix	Agt Pblast	Ab Matrix	Mrbk Core	Wnc Rim	Cal Vein	Grt Pblast	Ms Matrix
Weight %																
SiO ₂	68.39	51.36	56.25	0.07	37.97	37.28	63.73	51.57	30.24	51.81	67.73	54.78	54.62	0.03	37.75	46.31
TiO ₂	0.00	0.07	0.01	0.00	0.26	0.06	0.00	0.27	38.14	0.13	0.00	0.02	0.08	0.00	0.07	0.39
Al_2O_3	19.22	5.07	2.81	0.03	25.84	22.27	18.04	25.08	1.21	4.91	19.61	3.72	5.09	0.01	19.47	25.57
Fe ₂ O ₃	0.00	2.44	8.97	0.00	9.29	14.65	0.31	3.95	0.00	9.64	0.10	10.32	4.41	0.00	2.31	5.66
FeO	0.00	10.50	8.10	0.17	0.00	0.00	0.00	1.52	0.47	3.70	0.00	10.02	13.02	0.04	8.15	2.18
MnO	0.00	0.27	0.19	0.06	0.11	0.29	0.00	0.05	0.09	0.86	0.04	0.42	0.53	0.69	22.88	0.07
MgO	0.00	14.48	12.45	0.01	0.15	0.02	0.02	4.04	0.00	8.49	0.02	9.37	10.42	0.00	2.57	3.13
CaO	0.00	9.48	3.17	63.12	23.38	23.01	0.00	0.03	28.52	15.78	0.02	0.83	2.68	60.75	7.15	0.00
Na ₂ O	11.71	2.51	5.72	0.01	0.00	0.01	0.20	0.12	0.01	4.76	11.53	6.82	6.15	0.11	0.03	0.49
K ₂ O	0.02	0.43	0.03	0.02	0.00	0.02	16.02	8.53	0.00	0.03	0.04	0.04	0.05	0.00	0.00	10.36
Total	99.41	96.72	97.73	63.50	97.12	97.68	98.36	95.26	98.68	100.16	99.14	96.37	97.09	61.63	100.48	94.17
Cations per	formula	unit														
Si	3.00	7.47	7.98	0.00	3.00	2.99	3.00	3.43	0.99	1.93	2.98	7.98	7.90	0.00	3.01	3.22
Ti	0.00	0.01	0.00	0.00	0.02	0.00	0.00	0.01	0.94	0.00	0.00	0.00	0.01	0.00	0.00	0.02
Al	1.00	0.87	0.47	0.00	2.41	2.11	1.00	1.97	0.05	0.22	1.02	0.64	0.87	0.00	1.83	2.09
Fe ³⁺	0.00	0.27	0.96	0.00	0.57	0.89	0.01	0.20	0.00	0.27	0.00	1.07	0.48	0.00	0.14	0.30
Fe ²⁺	0.00	1.28	0.96	0.01	0.00	0.00	0.00	0.09	0.01	0.12	0.00	1.28	1.58	0.00	0.54	0.13
Mn	0.00	0.03	0.02	0.00	0.01	0.02	0.00	0.00	0.00	0.03	0.00	0.05	0.06	0.02	1.55	0.00
Mg	0.00	3.14	2.63	0.00	0.02	0.00	0.00	0.40	0.00	0.47	0.00	2.03	2.25	0.00	0.31	0.32
Ca	0.00	1.48	0.48	1.99	1.98	1.98	0.00	0.00	1.00	0.63	0.00	0.13	0.42	1.97	0.61	0.00
Na	1.00	0.71	1.57	0.00	0.00	0.00	0.02	0.02	0.00	0.34	0.99	1.93	1.72	0.01	0.00	0.07
K	0.00	0.08	0.01	0.00	0.00	0.00	0.97	0.72	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.92
Sum	5.00	15.34	15.09	2.00	8.00	8.00	5.00	6.84	3.00	4.00	5.00	15.13	15.29	2.00	8.00	7.06
Oxygens	8	23	23	3	12.5	12.5	8	11	5	6	8	23	23	3	12	11
X _{Mg}	0.00	0.71	0.73	0.00	1.00	1.00	1.00	0.82	0.00	0.80	1.00	0.61	0.59	0.00	0.36	0.72

URL: https://mc.manuscriptcentral.com/tigr E-mail: rjstern@utdallas.edu

C 1				ry Table 3						1 1	1 1
Sample	Ter	nperatu (°C)*	ire	Pressure (kbar)*	Co	or'	Fit [§]	N [‡]	Excl	uded er	nd meml
N5		89 ± 39		20.5 ± 2.2			53 (1.6.	/		spss, 1	
14 7c		$41 \pm 34 \\ 64 \pm 76$		19.5 ± 1.8 6.0 ± 2.3			20 (1.49 18 (1.6)			spss, sp ep, sp	
7c*		76 ± 65		6.2 ± 2.0			$\frac{10}{1.54}$			sph, a	
[†] Calculated co uncorrelated) [§] Calculated fit parentheses. [#] Number of in	and 1 (per t statistic,	fectly c with sa	correlate mple-sp	ed). pecific ma	ximum	legal va	lue for	-	-		
Supp	lementary	Table	4. Bulk	-rock com	positior	ns used	for min	eral eq	uilibria	modell	ing
Sample	Figures	H ₂ O	SiO ₂	Al ₂ O ₃	CaO	MgO	FeO	K ₂ O	Na ₂ O	TiO ₂	0
N5	6	5.88	49.66	9.44	11.70	7.41	9.31	0.17	2.64	1.78	2.01
14	7	4.57	59.38		15.67	2.34	5.56	0.11	0.38	0.29	2.14
7c	8	6.49	45.35	8.11	15.09	10.00	9.93	0.55	1.37	0.39	2.72

Supplementary Table 5. U-Pb isotopic data of the studied blueschist samples

Sample	grain	²⁰⁶ Pb ^a	Ub	Pb ^b	$\underline{Th^{b}}$	238Ud	$\pm 2\sigma$	207Pbd	$\pm 2\sigma$	
No.		(cps)	(ppb)	(ppb)	U	²⁰⁶ Pb	(%)	²⁰⁶ Pb	(%)	
3b	A06	46683	0.57	0.35	2.574	5.486	0.8	0.7604	0.84	
3b	A07	45228	0.42	0.34	1.726	4.13	0.6	0.7724	0.74	
3b	A08	40049	0.41	0.30	1.362	4.504	0.6	0.7678	0.82	
3b	A09	313580	0.26	2.48	3.194	0.3611	0.5	0.8205	0.5	
3b	A10	29838	0.21	0.22	1.590	3.238	0.9	0.7891	0.81	
3b	A11	29405	0.26	0.16	1.744	8.365	1.3	0.7287	0.98	
3b	A12	30144	0.30	0.23	2.554	4.406	1.0	0.7726	0.97	
3b	A13	26045	0.56	0.19	2.917	9.752	1.2	0.7208	0.84	
3b	A14	37615	0.26	0.29	2.114	3.05	1.0	0.7856	0.82	
3b	A15	30660	0.53	0.21	2.603	9.501	0.7	0.7155	1.1	
3b	A16	32154	0.12	0.26	2.137	1.686	2.6	0.8082	0.8	
3b	A17	21010	0.23	0.16	3.933	4.827	0.8	0.7653	1.0	
3b	A18	24380	0.24	0.19	2.908	4.383	1.2	0.7674	1.1	
3b	A19	13694	0.11	0.11	2.518	3.288	4.0	0.7827	1.1	
3b	A20	43860	0.36	0.34	1.454	3.703	1.0	0.7796	0.74	
3b	A21	41984	0.73	0.32	2.377	7.516	0.7	0.7379	0.92	
3b	A22	51471	0.54	0.32	2.461	4.544	0.6	0.7664	0.76	
3b	A23	36041	0.22	0.29	2.390	2.652	1.0	0.7917	0.79	
3b	A24	27563	0.22	0.22	2.167	3.866	1.5	0.7792	0.92	
3b	A25	22581	0.16	0.18	1.152	3.022	2.2	0.787	1.1	
3b	A26	26644	0.27	0.21	2.932	4.28	2.1	0.7726	0.95	
3b	A27	17740	0.13	0.14	2.387	3.215	1.8	0.7881	1.4	
3b	A28	44024	0.57	0.34	2.988	5.735	0.6	0.7542	0.68	
3b	A29	40662	0.27	0.31	3.544	3.036	1.2	0.788	0.8	
3b	A30	21547	0.19	0.17	1.798	3.733	1.1	0.7775	1.1	
3b	A31	31724	0.27	0.26	0.712	3.246	0.9	0.7822	1.1	
3b	A32	65329	0.14	0.54	10.798	0.9236	1.0	0.8133	0.84	
3b	A38	19073	0.15	0.15	2.008	3.293	1.7	0.7846	0.84	
3b	A39	48827	0.83	0.36	2.106	8.653	0.9	0.7309	0.73	
3b	A40	33413	0.85	0.30	2.700	5.103	1.4	0.7635	1.0	
3b	A41	28942	0.40	0.27	2.739	7.071	1.9	0.7492	0.9	
3b	A42	34281	0.38	0.21	3.654	5.264	2.1	0.7645	0.8	
3b	A43	9252	0.02	0.20	5.821	0.7733	2.2	0.8154	1.3	
3b	A44	42860	0.53	0.08	1.464	5.28	1.2	0.763	0.85	
3b	A45	39968	0.50	0.34	2.191	5.332	1.8	0.7646	0.84	
3b	A46	30215	0.30	0.32	1.716	3.421	1.2	0.7846	0.82	
3b	A165	28595	0.23	0.23	1.800	2.955	1.4	0.79	0.83	
3b	A166	36178	0.29	0.30	1.537	3.866	1.5	0.7787	0.67	
3b	A167	6215	0.39	0.34	2.502	1.62	2.3	0.7771	0.84	
3b	A168	24685	0.03	0.00	1.660	4.086	1.4	0.7754	0.87	
3b	A169	38043	0.23	0.22	1.698	4.098	0.7	0.7698	0.68	
3b	A170	18218	0.44	0.36	1.663	2.882	1.2	0.7858	0.00	

URL: https://mc.manuscriptcentral.com/tigr E-mail: rjstern@utdallas.edu

International Geology Review

1											
2											
3	3b	A171	67145	0.82	0.50	2.548	7.836	2.0	0.7339	0.79	S
4 5											
6	13	A60	159418	0.42	1.42	8.280	1.016	8.4	0.8368	0.5	С
7	13	A61	313237	0.05	2.66	5.537	0.06115	2.0	0.8398	0.38	С
8	13	A62	261899	0.65	2.19	2.420	1.028	4.1	0.8373	0.42	С
9 10	13	A63	55562	0.10	0.47	3.605	0.7208	3.4	0.839	0.69	S
10	13	A64	158085	0.42	1.38	4.167	1.087	4.1	0.8399	0.47	S
12	13	A65	526092	0.36	4.39	2.059	0.2806	0.4	0.8435	0.37	С
13	13	A66	191738	1.16	34.10	10.125	2.654	2.2	0.8198	0.6	S
14 15	13	A72	388843	1.01	3.06	12.566	1.359	2.1	0.834	0.37	С
16	13	A73	193233	5.51	1.70	0.169	10.53	2.4	0.7353	0.41	S
17	13	A74	988575	0.20	8.57	1.319	0.08119	0.7	0.8332	0.32	S
18	13	A75	527603	1.88	4.67	3.614	1.406	6.4	0.8336	0.37	S
19 20	13	A76	283119	0.81	2.45	2.090	1.181	2.3	0.8356	0.35	S
20 21	13	A77	427752	0.31	3.41	2.592	0.3309	0.9	0.8403	0.41	S
22	13	A78	237016	0.15	2.10	5.531	0.2493	2.2	0.8467	0.43	S
23	13	A79	161435 <	0.07	1.41	3.403	0.1762	3.5	0.8479	0.57	S
24	13	A80	240641	0.99	2.16	6.213	1.627	2.6	0.8322	0.38	С
25 26	13	A81	213705	0.41	1.99	3.326	0.6789	6.6	0.8414	0.42	S
27	13	A82	190452	0.21	1.68	9.824	0.4379	1.5	0.8464	0.39	S
28	13	A83	295855	0.29	2.56	10.553	0.3994	2.8	0.8444	0.42	S
29	13	A84	211768	0.35	2.12	3.368	0.5029	3.6	0.8455	0.45	S
30 31	13	A85	309000	0.37	2.64	7.666	0.4901	2.1	0.844	0.44	S
32	13	A86	1006451	0.12	9.69	2.300	0.04261	1.6	0.8355	0.38	С
33	13	A87	472813	0.96	3.48	1.363	1.012	2.6	0.8385	0.37	S
34	13	A88	294608	0.75	3.29	5.596	0.7062	3.2	0.8405	0.43	С
35 36	13	A89	1980020	0.29	17.72	12.090	0.05791	2.9	0.8394	0.33	S
37	13	A90	214418	0.09	1.86	0.926	0.1674	2.5	0.8485	0.45	С
38	13	A091	2134501	0.32	18.16	0.600	0.0622	4.4	0.8377	0.32	С
39	13	A92	314456	1.31	2.71	0.458	1.669	3.7	0.8297	0.37	С
40 41	13	A93	580143	0.41	3.95	2.470	0.4795	0.5	0.8455	0.35	С
42	13	A94	276122	0.42	2.32	18.890	0.6495	1.9	0.8414	0.44	S
43	13	A95	247814	0.68	2.05	2.381	1.171	2.4	0.8362	0.45	S
44	13	A96	1268062	0.98	6.95	12.461	0.5039	1.7	0.8431	0.35	S
45 46	13	A97	330147	3.14	1.69	1.738	8.582	4.2	0.7468	0.45	S
40 47	13	A98	1511920	1.04	13.25	4.565	0.2732	5.1	0.8384	0.31	S
48	13	A99	585406	0.50	4.90	0.633	0.3547	6.5	0.8384	0.35	S
49											
50 51	11	A100	550329	1.62	3.33	0.995	3.338	1.4	0.7978	0.38	С
52	11	A101	643865	0.43	5.47	2.447	0.2659	0.3	0.8348	0.33	С
53	11	A107	726889	1.91	6.13	8.982	1.099	1.0	0.8255	0.32	С
54	11	A108	321175	0.26	2.79	0.137	0.3235	1.1	0.8332	0.38	С
55 56	11	A109	895619	6.69	7.54	4.678	3.002	1.3	0.7838	0.34	S
50 57	11	A110	427471	0.23	3.70	2.364	0.2135	0.4	0.8343	0.39	С
58	11	A111	260406	0.53	2.48	45.947	0.8021	0.7	0.8304	0.37	С
59	11	A112	167449	0.81	1.57	0.194	1.732	1.9	0.7945	0.54	S
60	11	A113	162814	0.05	1.56	0.227	0.1177	0.9	0.8448	0.49	S
				-	-						

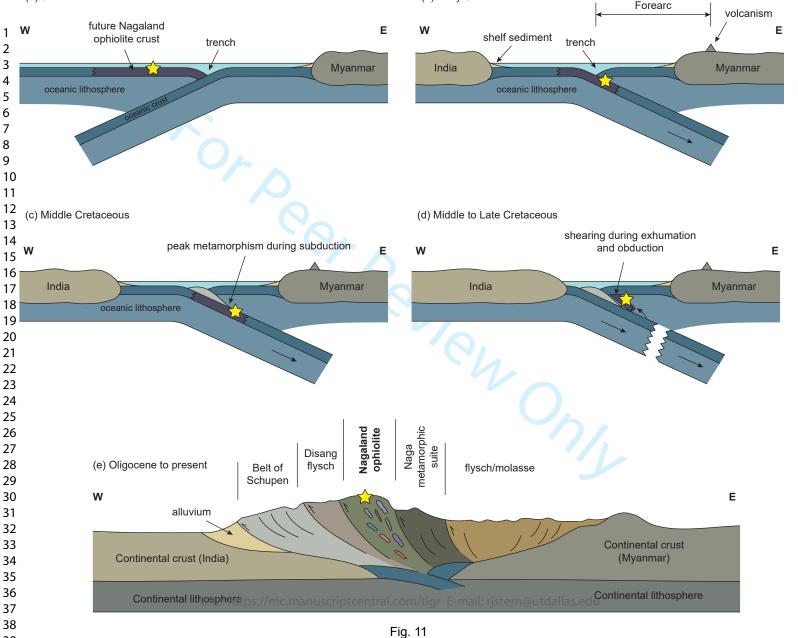
2											
3	11	A114	129813	0.06	1.28	0.183	0.1681	0.8	0.8405	0.54	S
4	11	A115	74811	0.08	0.73	0.152	0.3965	1.7	0.8316	0.56	С
5	11	A116	88180	0.57	0.85	0.271	2.282	1.6	0.8098	0.49	S
6 7	11	A117	122657	0.21	1.02	0.226	0.7684	4.2	0.8284	0.48	S
8	11	A118	365557	0.21	3.10	0.339	0.1198	2.3	0.8369	0.37	С
9	11	A119	85225	0.11	0.76	7.786	0.6861	1.7	0.8287	0.49	С
10	11	A120	284139	0.15	2.55	12.306	0.6485	2.7	0.8311	0.42	S
11 12	11	A121	432625	0.47	4.94	17.064	0.3922	8.5	0.8346	0.34	S
12	11	A122	1885183	2.38	17.00	6.513	0.494	0.9	0.8313	0.3	S
14	11	A123	1437266	3.18	9.84	8.088	1.762	1.6	0.8176	0.33	S
15	11	A124	481565	0.33	9.84 4.17	2.304	0.2727	0.9	0.834	0.34	S
16 17	11	A125	185421	0.33	1.68	4.353	0.3782	3.3	0.8421	0.42	S
17 18	11	A126	217816	0.18	1.08	0.861	0.1141	3.4	0.8372	0.43	C C
19	11	A127	316865	0.00	2.87	8.533	0.4547	2.6	0.842	0.37	S
20	11	A128	123976	0.37	1.05	0.224	0.2328	2.0	0.8365	0.54	S
21	11	A129	224359		1.05	2.837	0.1777	1.5	0.8427	0.41	C
22 23	11	A130	439692	0.10		10.548	5.474	0.7	0.7756	0.38	C C
23	11	A131	147942	1.44	2.62	2.536	0.4829	2.2	0.8356	0.30	S
25	11	A131	237211	0.16	1.16	2.142	0.215	0.7	0.8355	0.41	C
26	11	A132	591044	0.13	2.07	1.967	0.213	0.3	0.8332	0.42	C C
27 28	11	A133	192938	0.38	5.20	0.405	0.2314	1.9	0.8352	0.42	C C
28 29	11	A134	458317	0.14	1.62	2.160	1.097	0.6	0.8233	0.45	C C
30	11	AISS	430317	0.61	3.03	2.100	1.097	0.0	0.8233	0.37	C
31	14	A136	390768	0.65		0.545	1.672	0.9	0.826	0.4	S
32	14	A130 A137	688012	0.65	2.62	1.298	0.1749	1.6	0.820	0.4	S
33 34	14	A137 A138	1170631	0.35	6.94	2.712	0.1749	1.0	0.8413	0.33	C C
35	14	A138 A139	1931275	0.83	11.88	0.699	0.2475	0.5	0.8413	0.33	S S
36	14	A139 A140	817585	0.99	16.01	4.519	3.079	0.3	0.8094	0.33	C C
37	14	A140 A141	1377486	1.01	4.77	4.319 0.789	0.2726	0.7	0.8094	0.33	S S
38 39	14	A141 A142	102777	0.67	11.55	1.546	1.222	0.9	0.8306	0.55	S
40	14	A142 A143	1889857	0.65	1.51	5.000	0.5913	0.8	0.8300	0.08	C C
41	14	A143 A144	181455	2.33	16.77	2.755	0.3913	7.3	0.8395	0.52	S S
42	14	A144 A145	2133448	0.08	1.33	0.535	0.3324	0.6	0.8393	0.33	S S
43 44	14	A143 A151	1728879	0.73	17.86	0.333 1.646	0.1937	0.0	0.8422	0.31	S S
45				0.79	13.25		0.6019	2.3		0.31	
46	14	A152	732208 1122112	0.40	5.15	7.157			0.8383		S
47	14	A153		0.20	7.77	0.182	0.208 0.1307	1.4	0.8443	0.32 0.35	S
48 49	14	A154	634125	0.25	6.79	0.425		1.8	0.8456		S
50	14	A155	247895	0.06	2.65	1.102	0.08261	4.5	0.8444	0.43	S
51	14	A156	508240	0.23	5.36	1.686	0.1454	3.5	0.8431	0.41	S
52	14	A157	1049201	0.18	11.18	0.479	0.05772	1.5	0.8457	0.31	S
53 54	14	A158	369712	0.13	4.23	1.415	0.1012	7.2	0.8445	0.42	S
55	14	A159	1040233	0.22	11.17	0.464	0.07095	0.9	0.8441	0.32	C
56	14	A160	498591	0.30	2.82	2.304	2.768	0.6	0.8129	0.43	C
57	14	A161	1012897	0.47	13.87	0.378	0.09687	3.6	0.8444	0.32	S
58 59	14	A162	460864	0.21	4.94	1.221	0.1502	4.3	0.8436	0.4	S
59 60	14	A163	1508708	0.80	16.24	0.341	0.1755	0.2	0.8435	0.32	S
	14	A164	606128	0.43	6.57	5.745	0.2345	1.9	0.8416	0.35	S

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Spot size = 235 µm; depth of crater ~20µm. ²³⁸ U/ ²⁰⁶ Pb error is the quadratic additions of the within run precision (2 SE) and the external reproducibility (2 SD) of the NIST 614. ²⁰⁷ Pb/ ²⁰⁶ Pb error propagation (²⁰⁷ Pb signal dependent) following Gerdes and Zeh (2009). ^a Within run background-corrected mean ²⁰⁷ Pb signal in cps (counts per second). ^b U and Pb content and Th/U ratio were calculated relative to NIST SRM-614. ^c percentage of the common Pb on the ²⁰⁶ Pb. b.d. = below detection limit. ^d Corrected for background, within-run Pb/U fractionation (in case of ²⁰⁶ Pb/ ²³⁸ U) and subsequently
$ \begin{array}{r} 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 44 \\ 23 \\ 24 \\ 45 \\ 25 \\ 26 \\ 46 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \\ \end{array} $	normalized to NIST 614 (ID-ICPMS value/measured value). S – Amphibole/Epidote C – Calcite

Highlights

- (a) Naga ophiolite has undergone polymetamorphic events.
- (b) Unsheared samples peak P-T conditions of ~1.9 GPa and ~480–520 °C.
- (c) Sheared sample stable at lower P-T conditions of ~0.6 GPa and ~470 °C
- (d) U-Pb ages of the Nagaland blueschist underwent peak and retrograde metamorphism

c. 95 Ma and c. 90 Ma.


(e) Combined U–Pb age and calculated P-T that Nagaland blueschist rocks exhumed at a rate of ~1 cm/year

rate of ~1 cm/year

International Geology Review (b) Early Cretaceous

Page 55 of 110 (a) Jurassic

Reviewer: 1

Comments to the Author

Review of "Dating blueschist-facies metamorphism within the Naga ophiolite, Northeast India, using sheared carbonate veins" by Maibam et al., submitted to International Geology Review.

This is a quite interesting and concisely written paper that presents the results of a classical tectonometamorphic study combined with a novel approach to absolute dating. Overall, the conclusions drawn sound convincing and well supported by the provided data, which are undoubtedly of high quality. However, I have made some remarks about some aspects that in my opinion need to be carefully elucidated and/or better presented before the article can be considered ready for publication. In the following lines I am summarising the main points of my criticism, but the authors are referred to the attached pdf file for more detailed comments and specific suggestions.

My first concern regards the "Geological background" section, which is too brief and general in my opinion (please refer to the attached comments). I think the authors should spend some additional effort into providing more detailed information about the geology of the investigated area, so that a reader that is not familiar with such topics (like I am) can easily understand what is the general context and what are the main points of debate in the scientific literature. In this way, the authors will not only help the reader to get into the presented topics, but also, and most importantly, to get convinced about the significance of their study, explaining what is the great contribution they are giving in order to resolve those issues that are still a matter of debate. In the present version of the manuscript I am not sure this is completely clear, especially as regards the geochronological issues. The authors mention numerous age data from the existing literature and then conclude that there is "a paucity of reliable geochronological age data" (lines 151-152), although they actually do not explain on what basis they can say this. I think they should definitely add some more specific information and comments about this, in order to sound completely convincing and to give further strength to their novel approach.

As regards the "Analytical methods" and "Sample petrology" sections, I have found a number of controversial points that need to be elucidated.

- first of all, I think that the section on the analytical techniques should include also some information about the investigated samples, before describing what was done. Few notes on sampling activities, including locations, stratigraphic positions, lithotypes, number of collected samples etc., would be sufficient (and absolutely necessary, in my opinion).

- mineral abundances are said to have been calculated ("Calculated volume proportions of minerals in each sample are given below", lines 164-165), but in the following sections of the manuscript these are said to have been determined via point counting ("Mineral proportions for each sample were

International Geology Review

 determined using the software JMicroVision", lines 308-309). This needs to be clarified. I do not think that these were calculated, but if so, the authors should explain how this was made. In addition, where they mention that mineral abundances were obtained by point counting, the authors say that this was made on a total of 500 points for each of the analysed samples in thin section. I am not sure this can be considered sufficient to yield statistically reliable modal proportions. To my knowledge, point counting is generally made on at least 3000-4000 points per sample. Please also consider that the investigated samples include a relatively large number of different mineral phases (7 major phases plus 3 accessory phases for sample N5; 8 plus 3 for sample 14; 8 plus 2 for sample 7c; 8 plus 4 for sample 11), so counting only 500 randomly chosen points throughout the entire thin section can very likely bias the final results.

- bulk rock samples are said to have been analysed by XRF (lines 168-177), but the results are not reported neither in the main manuscript, nor in the Supplementary Files. But what is more important, later in the text, in the "Thermobarometry" section, rock compositions are said to have been calculated using mineral modes and compositions (lines 306-307). I warmly invite the authors to clarify this.

- the analysed samples are said to be six, but those that are described are just 4: the sheared N5 and 14 and the unsheared 7c and 11. Two additional sheared samples, 3b and 13, are in some instances mentioned, but nothing is reported about their petrography, mineral chemistry or bulk rock composition. I think this should be amended, providing a description of the general petrographic and mineral chemistry features of these samples, exactly the same way this is done for the other 4 samples. If for some reason, this is not possible, I think the authors should explicitly mention it and provide full explanations.

- the unsheared sample 14 is said to be a blueschist (or a metabasite) sample like all the other investigated samples, but I have to say that I find it hard to agree with that. Its mineral composition is dominated by epidote (50%) and quartz (35%), with only 10% Na-Ca amphibole (i.e., the "blue" or "glaucophane" amphibole; see lines 236-238). In addition, the bulk composition reported in the Supplementary Table 3 is much richer in SiO2 and poorer in MgO and FeO with respect to the other samples. I think this requires to be taken into account by the authors.

- since bulk rock compositions have been obtained for the investigated samples (whether directly, through XRF analyses, or indirectly, calculated using mineral modes and compositions – see previous point), I expect that a paragraph of the "Sample petrology" section is devoted to a brief description of these. I think this would be absolutely necessary, also considering that these compositions are then used for phase equilibria modeling, so that the reader can understand why the authors chose the specific model system they employed for such calculations.

As regards the "Thermobarometry" (which I think should be renamed more properly as, e.g., "Phase equilibria modeling") and the "Discussion and implications" sections I have a few smaller remarks: - only one of the 4 unsheared samples was used for calculating bulk rock pseudosections (i.e., sample 7c), but the authors do not provide any explanation about their choice to focus on this sample only. I think at least a few notes on this should be added.

- the authors did not explain why they assumed that some phases are in excess, which I think needs to be adequately elucidated.

- in constraining peak P-T conditions for unsheared samples, the authors use together the results for the two investigated samples N5 and 14. I think it would be much better if they present the results for these two samples separately, and then they propose a single P-T range by comparing them and see where the best matches for both samples overlap.

- the authors usually refer to the "best matching assemblages" but to me this sounds like a very vague concept, if they do not explain what was the strategy they employed in order to identify such best matches. I guess these are defined as those minimizing the differences between observed and calculated mineral abundances, but maybe this can be done in more than just one single way, e.g., not only by minimizing the differences of mineral abundances, but maybe also by minimizing the squared residuals of the differences, or maybe even in some other way.

- in the conclusive section, when presenting the results of their estimates for P-T conditions, I think the authors can simply refer to the conditions obtained for the best matching assemblages, rather than repeating again what is the total range for the peak and retrograde assemblages (which were already discussed in the "Thermobarometry" section). I think they should report such tighter ranges also in the other sections of the paper (e.g., abstract, conclusions) where they mention the results of their models.

- since the proposed P-T-t path (Fig. 10) is quite different from those from the available literature reported for comparison, I would expect that this was discussed a little bit, trying to provide some explanations for such mismatches [which are particularly evident for the path from Ao and Bhowmik (2014)]. On the other hand, the authors simply present the proposed P-T-t path in just three lines (400-402), completely avoiding any comment on the compared models. I think this issue needs to be addressed.

Finally, as regards the Supplementary Files (i.e., Electronic Appendix), I have to say that most of the contents that are presented are actually just a repetition of what was already reported in the main text. The authors should report in this section only additional material that was not previously included in any parts of the manuscript, like their Supplementary Tables and Supplementary Figure 5 (which thus should be renamed to "Supplementary Figure 1"). In addition, as regards mineral analyses reported in Supplementary Table 2, I think these should include not only a selection of some representative ones, but the entire dataset available to the authors, not only because there are no space limitations for electronic supplementary materials, but also because providing a large dataset surely adds robustness and value to their work.

Lorenzo Fedele

Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR) Page 59 of 110

Università degli Studi di Napoli Federico II Complesso Universitario di Monte Sant'Angelo, Edificio 10 - L1 Via Cintia 21, 80126 Napoli e-mail: <u>lofedele@unina.it</u> tel.: +390812538114

Reviewer: 2

Comments to the Author

This manuscript presents petrological and geochronological data for blueschist facies rocks from the Nagaland ophiolite. The paper connects pressure-temperature conditions for two distinctly different types of samples – one unsheared and one sheared - with geochronology to interpret the timing of metamorphism and rate of exhumation for these samples. The paper will be of interest primarily to structural and metamorphic geologists, and those interested in the tectonics of exhumation.

I found the paper to be well-written and the concepts were clearly and concisely described. The P-T conditions are clearly quite different for the two suites of mineral assemblages and the textural differences are clearly shown in the figures. The interpretation, if is supported fully, could be an interesting and exciting contribution. However, I think that more attention needs to be paid to providing the context for the analytical spots and a fuller discussion of recrystallization in the context of the spots analyzed could be provided.

Analytical spot context: The context for the spots analyzed needs to be better documented. The text in the abstract for the manuscript states that the geochronology is "U-Pb in situ analysis of carbonate grains (aragonite-calcite)". However in line 90-91 this is now described as "millimetre-sized minerals and mineral assemblages (e.g., carbonate, epidote, amphibole, etc.)." A look through the data table indicates that <25% of the analyses for sample 3b are carbonate. The other samples also have fewer than 50% carbonate analyses. This raises a number of questions. A look at supplemental Figure 5 shows back-scattered electron imaging of the samples with white circles on the analytical spots. This figure is incredibly important as it provides context for the analyses. It might be worth incorporating this as a regular figure of the paper. However, looking at this figure it is still not clear from the figure which spots are on which mineral(s), and whether the placement of the spots on carbonate are indeed in recrystallized veins as is described in the text. The vein-like regions labeled "carbonate" are remarkably devoid of analytical spots. This may be a simple issue solved by better labeling. One way to improve this would include to color code the spots on the diagram to highlight the carbonate analyses, in particular those that are recrystallized carbonate. As it looks right now, many of the spots fall on black parts of the image (are those minerals or holes in the section?), and it looks like the minority are on carbonate. The inset figures do not provide much useful information because their

position on the larger scale image is not marked and there are no analytical spots located on those images. The text of the abstract should be changed to reflect that these analyses are of both silicate minerals and carbonates. Would the data interpretation change if only carbonate data were evaluated? If so, it would strengthen the interpretation to demonstrate that.

Thanks for the comment on the documentation of the analysed spots. We would like to share the presented BSE images and the analysed spots are representative. We do not present the full thin sections. As suggested, we have increased the labelling of the spots. Reviewer has rightly pointed out the black parts in the images are laser holes, where the laser spot has penetrated the phases.

The inset images have deleted. The abstract has been modified with the insertion of silicate phase analysis. Geochronology data is improved when we consider the carbonate and cogenetic silicate phases, compared to the carbonate data only.

Additionally, a more in-depth discussion of the likely recrystallization of the various minerals analyzed would be helpful in supporting the conclusions of the study. It is stated that the carbonate is selected from recrystallized veins. Is the carbonate in the unsheared sample still aragonite or might it be calcite? If it has reverted, did it recrystallize upon reversion and thus is the age for the unsheared sample possibly not a peak age? Are the other minerals dated in the sheared samples (epidote, amphibole) likely to recrystallize during exhumation or might they simply be reoriented and not recrystallized?

Thanks for the comment but we cannot comment much on the likely crystallisation of the various minerals. We have inferred the carbonates in the sheared and unsheared samples as calcite and aragonite on the basis of the estimated P-T range and well-established aragonite-calcite stability curve.

We cannot comment on the recrystallisation affecting the isotopic values. As presented in the text, in the present study instead of dating single accessory mineral domains, millimetre - sized minerals and mineral assemblages (e.g., carbonate, epidote, amphibole etc.) that recrystallised and equilibrated during a single tectonic event and which contain measurable amounts of U and Pb can be used to determine crystallization ages. Here we apply this method to dynamically recrystallised carbonate veins and selected mineral assemblages (amphibole, epidote) in blueschists within the Kiphiere District of the Nagaland ophiolite belt and integrate these ages with thermobarometric data to produce new constraints on the timing and rates of subduction and exhumation cycle of Neo -Tethyan crust in the Indo - Myanmar region.

Below I discuss specific comments keyed to section and line numbers in the manuscript draft.

Specific comments

Abstract, line 39 – This should be reworded to indicate that other minerals were included in the analytical data set.

Done

Line 50 – "HT-LP" here should be "HP-LT" Done

Lines 94-101 – This section seems like it would be more appropriate in the Methods section.

Done

Geological Background – There are a lot of names here, some of which need to be more clearly defined/stated near the beginning of the section. In particular the Manipur ophiolitic nappe isn't defined, it is just part of a description in line 136, so it needs to be clearly stated what/where it is before that. Also it should be made clear in the first paragraph of this section which ophiolite is the Naga ophiolite. It appears first on line 130 as "Nagaland ophiolite belt" without a clear introduction. As it is the fiocus of the paper, it would be helpful to more clearly define it early on.

The geological has improved with additional information taking account of the suggestions.

Lines 164-165 – How are the volume proportions described here calculated? This needs to be explained.

It has been explained.

Line 210 - "sheared OR unsheared" rather than "and"

Done

Line 308-311 – This information seems more appropriate for the Methods section. Perhaps this addresses the question I had in lines 164-165? Also it is worth considering putting the information about how phase diagrams were calculated in the Methods section (lines 293-304).

Have transferred to the Method section.

Lines 353+ U-Pb geochronology - It is difficult to see clearly that recrystallized calcite was chosen for analysis, based on the images in the supplementary file. This raises the question of whether minerals recrystallized during deformation or not. Discussion of whether older ages could be preserved during

shearing would be important. Would resetting be expected during shearing of these minerals? Preferred orientation, bending and curving (lines 390-391) do not require recrystallization.

Thanks for the comment but the represented figures are for representative purpose only and do not reflect the overall feature.

As given above we cannot comment on the recrystallisation affecting the isotopic values. In the present study instead of dating single accessory mineral domains, millimetre -sized minerals and mineral assemblages (e.g., carbonate, epidote, amphibole etc.) that recrystallised and equilibrated during a single tectonic event and which contain measurable amounts of U and Pb can be used to determine crystallization ages.

Line 401 – If these are slab-top temperatures from Syracuse et al., 2010 that should be indicated here.

Indicated

Line 405 – Change "out" to "our"

Done

Lines 435-437 – The uplift rate calculated here would be vertical uplift since the distance is based on changes in pressure. However, as indicated in Figure 11, some or all of the exhumation may not be 100% vertical, and there may be some component along the subduction plate interface. This possibility should be discussed and included in estimates.

Possibility is discussed with additional info.

Reviewer: 3

Comments to the Author Comments:

1. Pseudosections/Phase equilibria modeling. MnO is critical to control the garnet stability. It is OK to omit the modeling, but reasonable explanations are necessary. Naturally, pseudosections in the Mn-free system have a risk of explaining observed mineral assemblages.

There are no manganese bearing activity composition models available for either the amphiboles or clinopyroxene, it is not currently possible to consider manganese in any confident way in meta basic systems.

In Supplementary Figures 6 and 7, please illustrate isopleths of garnet end-member compositions and phengite Si apfu.

We have not contoured these isopleths as we don't believe this is necessary for the overall interpretation of the rocks in question. it is unclear from the comment why the reviewer wants these isopleths calculated and for what purpose.

In the Supplementary Figures, I'm curious about the assumption (?) of excess Ep (and also Rt) in the whole P-T range (1.0–2.5 GPa and 350–600°C). The stability of biotite also loos strange to me.

In these calculations epidote and rutile are found to be in excess (stable in all fields) rather than assumed to be in excess. Therefore, the in excess notation is simply to simplify the labelling of diagrams. In addition, without clarification of what is considered to be odd will strange in the stability biotite it's difficult to comment on this. the stability biotype in the diagram is what is predicted by the thermodynamic modelling.

2. Sodic amphibole compositions. In Figure 5, please add Fe3+/(Fe3+/Al) versus Mg# diagram for analyzed sodic amphibole. Also, please discuss the consistency of the composition of sodic amphibole and the modeled amphibole composition, especially Fe3+.

We don't feel the suggested plot would be particularly informative. Furthermore, given that the Mg# is somewhat dependent on the estimation of ferrous vs ferric iron from the probe analyses there is a danger of there being a correlation of errors or co-dependent variables in such a plot. Further, a direct comparison between the model compositions and the probe analyses would involve considerable new calculation to extract this information from the model results.

3. Sonic pyroxene (aegirine-augite). Sample 11 contains aegirine-augite + quartz + albite. This mineral association is helpful to constrain P-T.

Thanks for the comment. Preliminary investigation of phase equilibria stability in sample 11 did not allow for reliable thermobarometry to be performed due to the high variance of the interpreted peak mineral assemblage

4. In general, vein formation requires brittle deformation.

While classic straight sharp-edged veins require brittle deformation many other vein-like structures do not (for example in migmatites where a ductile parting process may operate, see papers by Brown, Sawyer etc.)

5. Rutile. Why don't you try rutile U-Pb dating to compare the results? I think dating is more straightforward than carbonate dating.

We have tried to analyse rutile but because of low U concentration, could not yield a producible age.

6. Occurrence of carbonate in unreformed samples. Petrographic information on sample 14 is weak. Please describe more about the dated carbonate mineral. The authors considered the calcite in unreformed samples was aragonite. Do you see any topotactic pseudomorphs after aragonite? For example, see Bradt et al. (2004)

https://doi.org/10.1016/S0191-8141(03)00099-3

We have inferred the carbonates in the sheared and unsheared samples as calcite and aragonite on the basis of the estimated P-T range and well-established aragonite-calcite stability curve.

7. Others

Line 144. 1 kbar ==> 0.1 GPa

Done

Line 150-151. ~11.5 kbar ==> 1.15 GPa; 6 kbar ==> 0.6 GPa

Done

Line 230. Si = 3.34–3.38 pfu ==> Si = 3.34–3.38 pfu for O = 11

Done

Line 237. sphene ==> titanite

Done

```
Lines 269, 273, 278. muscovite ==> phengite
```

Done

Line 287. Please add the jadeitite component of the aegirine-augite.

Done

Line 326. 1 kbar ==> 0.1 GPa

Done

Line 384. I think better to say "metamorphic recrystallizations"

Done

Supplementary Table 4.

- Please use "GPa" instead of "kbar"

Done

Supplementary Figure 5. Ms ==> Ph Sph ==> Ttn

Done

3 4 5	1	Dating blueschist-facies metamorphism within the Naga ophiolite,
6 7 8	2	Northeast India, using sheared carbonate veins
9 10 11	3	
12 13	4	Bidyananda Maibam ^{a*} , Richard M. Palin ^b , Axel Gerdes ^{c,d} , Richard W. White ^e , Stephen
14 15 16	5	Foley ^f
17 18	6	
19 20	7	^a Department of Earth Sciences, Manipur University, Canchipur, Imphal-795003, India
21 22 23	8	^b Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, United Kingdom
23 24 25	9	^c Department of Geosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
26 27	10	^d Frankfurt Isotope and Element Research Center (FIERCE), Goethe-University Frankfurt,
28 29 20	11	60438 Frankfurt, Germany
30 31 32	12	eSchool of Earth and Environmental Sciences, University of St. Andrews, KY16 9AL, United
33 34	13	Kingdom
35 36	14	^f ARC Centre of Excellence for Core to Crust Fluid Systems, Department of Earth &
37 38 39	15	Environmental Sciences, Macquarie University NSW 2109, Australia
40 41	16	
42 43	17	*corresponding author: bmaibam@yahoo.com
44 45 46	18	
47 48	19	Keywords: blueschist; dynamic recrystallisation; exhumation; petrological modelling; U-Pb
49 50	20	carbonate geochronology
51 52 53	21	
54 55	22	ABSTRACT
56 57	23	The tectonic significance of blueschist-facies rocks associated with the Indo-Myanmar
58 59 60	24	ophiolite belt is uncertain, given their lack of detailed petrological study and the paucity of

Page 67 of 110

International Geology Review

reliable age data for different stages in their geological evolution. Here, we present new integrated petrological and geochronological data for samples from the Nagaland complex of the Indo-Myanmar ophiolite belt, northeastern India, which constrains the pressure-temperature conditions and absolute ages of peak and retrograde metamorphism. Several samples of blueschist were collected from the region, which have been variably deformed and subjected to shear recrystallization. Based on microstructural constraints and mineral geochemistry, garnet, omphacite, barroisite, chlorite and muscovite are interpreted to represent a high-pressure prograde-to-peak metamorphic assemblage, and omphacite, actinolite, hornblende and albite represent a lower-pressure retrograde metamorphic assemblage that formed during shear-related exhumation. Petrological modelling and thermobarometry indicates that unsheared samples equilibrated at ~ 1.9 GPa and $\sim 420-560$ °C∼480–520 °C (LARGE T RANGE AT FIXED P EXPLAINED IN THE TEXT) at peak metamorphism, indicating subduction to ~60 km depth, whereas sheared and recrystallised samples re-equilibrated at ~0.6 GPa and ~470 °C (EXTREMELY PRECISE P-T RANGE INSTEAD) during retrograde metamorphism associated with obduction of the Naga ophiolite onto the Indian foreland. U-Pb in-situ analysis of carbonate grains (aragonite-calcite) and associated silicate phases (epidote, prehnite, amphibole etc.) in different microstructural positions, including within dynamically recrystallised shear bands that cross-cut older metamorphic fabrics and cogenetic silicate phases, constrains the age of peak metamorphism to be c. 95 Ma and retrograde metamorphism to be c. 90 Ma. Based on the overall progression of ages in the sheared and unsheared samples, we interpret that the area experienced atypically slow exhumation at a time-averaged rate of ~1 cm/year in the order of Phanerozoic period plate tectonic rate (ARE YOU SURE THIS CAN BE CONSIDERED A SLOW EXHUMATION RATE? TO MY KNOWLEDGE, RATES IN THE ORDER OF MM/YR ARE ALSO COMMON, SEE E.G., MANZOTTI ET AL., 2008,

50 CORRECTED). which is in the order of rates of plate tectonic processes on the Phanerozoic51 Earth

1. Introduction

High-pressure metamorphic belts provide a critical record of the geological evolution of paleo-plate boundaries, and provide valuable constraints on tectonothermal models of both modern and ancient orogenesis orogeneses (e.g. Ernst 1973; Carswell 1990). Blueschistfacies rocks form at high-pressure-low-temperature (H*TP*-L*PT*) metamorphic conditions characteristic of subduction zones (Miyashiro 1961; Cloos 1985; Palin and White 2016) or ephemerally in the embryonic stages of collisional orogeny (Wang and Foley, 2020), where they may subsequently recrystallize to greenschists or amphibolites under higher temperatures and/or lower pressures (Ernst 1973). Combining mineral equilibria constraints on the thermobarometric conditions under which sequential assemblages formed with absolute ages obtained via *in-situ* geochronology, can elucidate the timing and timescales of geodynamic processes that control the subduction-exhumation cycle (e.g. Terry et al. 2000; Rubatto and Hermann 2001; St-Onge et al. 2013).

The power of this integrated technique is demonstrated here using the example of in the case of the Indo-Myanmar ophiolite belt, a part of the Indo-Myanmar Range that extends to the east and southeast of the Himalayan orogen. The geological history and tectonic evolution of this belt is currently poorly understood, such that more precise constraints on the pressuretemperature-time (P-T-t) path of key lithologies from the complex are necessary to improving our geological understanding of this part of southeast Asia. Much of the current uncertainty concerning the tectonic evolution and significance of these Indian-plate ophiolitic rocks stems from a lack of reliable petrochronological data. In particular, the timing and P-Tconditions of high-pressure metamorphism in the Indo-Myanmar belt is poorly constrained

Page 69 of 110

International Geology Review

due to the general absence of datable mineral phases in mafic igneous rocks that are reactive at subsolidus subduction-zone HP-LT metamorphic conditions. Zircon from jadeitites in this region have previously produced yielded U-Pb ages ranging from Late Jurassic (c. 147 Ma: Shi et al. 2008) to Late Cretaceous (c. 77 Ma: Yui et al. 2013), although all of these data show significant scatter due to incomplete recrystallization of magmatic grains and metasomatic/hydrothermal activity during subduction and exhumation, which can partially reset isotope systems (Wang and Griffin 2004). Furthermore, these former studies performed geochronology on zircon grains separated from the host rocks, which prohibits inhibits direct correlation of age data with P-T conditions derived from metamorphic assemblages and microstructures, leading to potentially unreliable geological interpretations.

The zircon U-Pb isotope system is widely applied for dating the crystallization and re-crystallization of mineral assemblages during high-temperature metamorphic events (e.g. Williams and Claesson, 1987; Parrish, 1990; Robb et al. 1999, Rubatto et al., 2001). However, some lithologies and/or geological processes often cannot be dated directly by this technique due to the absence of appropriate minerals that incorporate measurable amounts of radiogenic nuclides. Examples of such rocks can be found in shear zones, such as mylonites and tectonic earbonates, but this issue also extends to HP-LT metamorphic rocks, ore mineralisations, diagenetic minerals and cements, some sedimentary rocks, and some alteration assemblages (e.g. Gilley et al. 2003). Recent studies have focused on the application of in-situ U-Pb isotope analyses of low-U minerals (e.g., carbonates, epidotes, amphiboles etc.) in thin section by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for geochronological study (Millonig et al. 2012; Coogan et al. 2016; Ring and Gerdes 2016; Roberts and Walker 2016; Li et al. 2014). Thus, instead of dating single accessory mineral domains, millimetre-sized minerals and mineral assemblages (e.g., carbonate, epidote, amphibole etc.) that recrystallised and equilibrated during a single tectonic event and which contain measurable

amounts of U and Pb can be used to determine crystallization ages (e.g. Burisch *et al.* 2017;
Ring and Gerdes 2016).

According to Rasbury and Cole (2009), a linear regression taken through a group of samples from the same system produces a slope from which an age can be calculated using the accepted decay rate for the parent isotope. If the system being analysed has no initial heterogeneity, and it remained closed throughout the duration of the decay process, all scatter of data points about the isochron can be explained by analytical uncertainties. A statistical test of this is the mean squared weighted deviate (MSWD). Closed isotopic systems will plot as a line, giving a precise age and low mean squared weighted deviate (MSWD) of ~1, while systems that have not remained closed will show scatter and have a high MSWD (>>1). Here we apply this the isochron method to dynamically recrystallised carbonate veins and selected mineral assemblages (amphibole, epidote) in blueschists within the Kiphiere District of the Nagaland ophiolite belt and integrate these ages with thermobarometric data to produce new constraints on the timing and rates of subduction and exhumation of Neo-Tethyan crust in the Indo-Myanmar region.

- , 3 115
 - **2. Geological background**

The Indo-Myanmar Range is thought to represent a relict eastward-dipping subduction zone that runs from the eastern edge of the Himalayan Range in southeast Tibet to the island of Sumatra in the south (Allen et al. 2008; Fig. 1). The Eastern Himalayas, about 700 km long, trends ENE-WSW. Broadly N-S trending to sigmoid IMR has subdivided into three sectors from north to south of about 400 km length each e.g., Naga Hills, Chin Hills and Arakan Yoma (Acharyya 2015). The belt continues as the Anadaman Nicobar island arc in the south. Belts of narrow tectonised but nearly continues, late Mesozoic-Eocene ophiolite and associated sediments skirt along the northern margin of the Himalayas (Indus-Tsangpo

Page 71 of 110

1	
2	
3	
4	
5	
6	
7	
, 8	
9	
9 10	
11	
12	
13 14 15	
14	
15	
16 17	
17	
18	
19	
20	
21	
22	
21 22 23	
24	
25	
26	
26 27	
28	
29	
30	
31	
32	
33	
33 34	
24	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
55 56	
57	
58	
59	
60	

125	Ophiolite-ITO) and the eastern margin of the Himalayas IMR. Structural relationships show
126	that Indian-plate oceanic crust was overridden by units of the West Burma Block (ANY
127	INFORMATION ABOUT THESE? JUST A FEW NOTES ABOUT E.G.,
128	LITHOLOGY, TECTONIC SIGNIFICANCE ETC. WOULD BE USEFUL) (e.g. Holt et
129	al. 1991; Mitchell et al. 2007; Searle et al. 2007), although its age of formation and the
130	timing of its obduction are poorly known. The Indo-Myanmar ophiolite belt separates
131	subducted Indian-plate oceanic lithosphere to the west from a closely associated high-
132	pressure metamorphic belt and Jurassic to Cretaceous magmatic arc-forearc complex of the
133	Burmese plate to the east (Mitchell et al. 2012). The Naga Hills ophiolite_is represented by
134	peridotite, cumulate mafic-ultramafic, mafic volcanics, eclogite, glaucophane schist,
135	amphibolite and late felsic intrusives. The ophiolite sequence has an east-dipping thrust
136	contact with the underlying flysch-like sediments of the Disang and Barail Formations
137	exposed to the west, and are overthrust from the east by continental metamorphic rocks of the
138	Naga Metamorphics consisting of quartz mica-schist, garnet mica-schist, quartzite, and
139	granitic gneiss (Brunnschweiler, 1966). The mid-Cretaceous, fossil-bearing Nimi Formation
140	occurs at the contact between the ophiolite and the Naga Metamorphics (Chatterjee and
141	Ghose, 2010). Within this belt, blueschist- and eclogite-facies mafic rocks (SOME
142	INFORMATION ABOUT THESE ROCKS, ARE THESE MAFIC? CARBONATIC?) occur
143	as tectonic slices (or detached layers and lenses) intercalated with unmetamorphosed
144	(MAYBE YOU SHOULD explicitly mention THIS, OTHERWISE IT MIGHT SOUND
145	A LITTLE BIT ODD, SINCE ALSO BLUESCHISTS AND ECLOGITES ARE MAFIC
146	ROCKS, DONE) mafic and ultramafic units. Basement lithologies underlie Palaeogene
147	sediments in the ophiolite belt, although their geological history and lithological constitution
148	are uncertain (Acharyya 2015). Ophiolitic rocks within the Indo-Myanmar belt have been
149	subdivided into two parallel groups: the (I AM NOT SURE THEY DISPLAYED IN FIG.

1 2	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	-
5 6	-
7 8	-
9 10 11	-
12 13	-
14 15	-
16 17	-
18 19 20	-
20 21 22	-
23 24	-
25 26	-
 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 	-
30 31	-
32 33	-
34 35 36	-
30 37 38	-
39 40	-
41 42	
43 44 45	
45 46 47	-
48 49	-
50 51	-
52 53	-
54 55 56	-
57 58	-
59 60	-

1, AS I THINK THEY SHOULD) 'Eastern' and 'Western' belts (Mitchell 1993), although 150 both show similar structural and petrological characteristics. Accretion of the Eastern Belt, 151 which contains metamorphosed ultramafic rocks in northern Myanmar that host world-152 famous jadeitites, is thought to have occurred sometime after the Mesozoic (Gansser 1980; 153 Mitchell 1993; Shi et al. 2008). The Western Belt along the Naga and Manipur hills, which 154 forms part of the Indo-Myanmar Range, formed due to collision between India and the 155 156 Burmese microplate during the late Oligocene (Sengupta et al. 1990). There is still controversy about emplacement ages of ophiolites in these two belts: the 157 158 'Eastern Belt' is inferred to mark the locus of the subduction zone into which the ophiolites were accreted since Mesozoic, whilst the 'Western Belt' was inferred to have been caused by 159 a late Oligocene terminal collision between the Indian and the Burmese continental blocks 160 (Shit et al., 2014 and references therein). In the 'Western Belt' a combination of radiolarian 161 biostratigraphy and whole-rock K–Ar geochronology suggests an Upper Jurassic age 162 (Kimmeridgian-Lower Tithonian) for marine sedimentation and volcanism in the (YOU DID 163 NOT MENTION WHETHER THIS BELONGS TO WESTERN OR EASTERN BELT 164 DONE - NOW MENTIONED AT THE START OF THE SENTENCE) Nagaland ophiolite 165 belt (Sarkar et al. 1996; Baxter et al. 2011). The mid-Cretaceous, fossiliferous Nimi 166 Formation occurs at the contact between the ophiolite and the Naga metamorphic units, and 167 so gives a maximum age constraint on the initiation of obduction. Recently, Singh et al. 168 169 (2017) reported U-Pb zircon ages ranging between 116 and 119 Ma from the plagiogranite (YOU DID NOT MENTION THE OPHIOLITE SEQUENCE EARLIER, THIS IS THE 170 FIRST TIME ONE READ ABOUT THIS PLAGIOGRANITE UNITS? WHICH I 171 THINK IT IS NOT A GOOD IDEA. MAYBE YOU MIGHT WANT TO INCLUDE 172 FEW NOTES ABOUT THE STRUCTURE OF THE NAGALAND OPHIOLITE 173

- 174 BEFORE THIS DESCRIPTION OF THE AVAILABLE GEOCHRONOLOGICAL
 - 7

175	DATA? DONE) of the studied ophiolite. In the 'Eastern Belt' falling in the Mynamar Shi <i>et</i>
176	al. (2008) reported a sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon age of
177	146.5 ± 3.4 Ma from for jadeitites of the Jade Mines area, Myanmar, and suggested proposed
178	that subduction may have begun during the Late Jurassic. Mitchell (1993) suggested that the
179	Manipur ophiolitic nappe was emplaced along the Indo-Myanmar ranges during the Mid-
180	Eocene and was followed by a switch to east-dipping subduction from the mid-Miocene
181	onwards. Recently, Liu et al. (2016) reported a c. 125 Ma U-Pb zircon crystallisation age for
182	rodingite associated with formation of the ophiolite, and a c. 115 Ma age from for garnet
183	amphibolites that may date metamorphism within the Kalaymo ophiolite belt, which lies
184	adjacent to the Indo-Myanmar ophiolite belt. Shi et al. (2014) reported superimposed tectono-
185	metamorphic ages (NOT SURE ABOUT BY THESE SUPERIMPOSED
186	TECTONOMETAMORPHIC AGES, MAYBE YOU SHOULD ELUCIDATE A
187	LITTLE, we are reporting the ages as interpreted by Shi et al., 2014 and cannot elucidate
188	any further than the conclusions provided in that work) of phengitic mica Ar-Ar ages from
189	blueschist-facies rocks in the Tagaung-Myitkyina Belt. They interpreted a Jurassic age (152.4
190	± 1.5 Ma) obtained from glaucophane (DID YOU MENTION THAT THEY DATED
191	PHENGITIC MICA, they have analysed both the phengite and glaucophane) as the lower
192	limit of the subduction age and suggested that Eocene (45.0 ± 1.3 Ma) (OBTAINED IN
193	WHAT KIND OR MINERAL PHASE, DONE) ages recorded an intra-continental shearing
194	deformation event.
104	
194	Chatterjee and Ghose (2010) documented eclogite- and blueschist-facies (AGAIN
195	Chatterjee and Ghose (2010) documented eclogite- and blueschist-facies (AGAIN
195 196	Chatterjee and Ghose (2010) documented eclogite- and blueschist-facies (AGAIN ANY INFORMATION ABOUT THE LITHO-TYPE, DONE) rocks present as thrust

3	
4	
5	
5 6 7	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19 20	
20	
21	
21 22 23 24 25	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
79	

1 2

> YOU, THIS IS NOT THE CASE FOR A READER WHO IS NOT FAMILIAR WITH 200 THE LOCAL GEOLOGY (AS I AM), TO WHICH ALL THESE FOREIGN NAMES 201 SOUND NEW AND POSSIBLY CONFUSING, DONE). Ao and Bhowmik (2014) 202 deduced the thermal history of the eclogite and blueschist rocks ranging from ~ 11.5 kbar 1.15 203 GPa and ~340 °C to 6 kbar 0.6 GPa and 335 °C. Despite an improved understanding of the 204 tectonic evolution of the Indian ophiolite belt, a paucity of reliable geochronological age data 205 206 (I AM NOT SURE ABOUT THIS IS EVIDENT FROM WHAT YOU REPORTED **ABOVE, YOU MENTION NUMEROUS AGE DATA, WHICH MIGHT SOUND** 207 208 PERFECTLY RELIABLE IF YOU DO NOT EXPLAIN WHY DO NOT CONSIDER THEM SO. MAY BE YOU MIGHT ADD SOME MORE SPECIFIC COMMENTS 209 ABOUT THIS, EXPLAINING WHY THE DATA IS AT LEAST QUESTIONALBE. I 210 AM SURE THIS WILL HELP THE READER (ESPECIALLY THE non-expert ONE) 211 TO UNDERSTAND WHAT IS THE POINT OF STRENGTH OF YOUR NOVEL 212 APPROACH TO SUCH TOPICS, DONE) has hindered the correlation of sutures and 213 collisional deformation episodes within the region (AGAIN I AM AFRAID THAT IF YOU 214 DO NOT PROVIDE SOME ADDITIONAL DETAILS (POSSIBLE WITH SOME 215 EXAMPLES), IT IS NOT COMPLETELY CLEAR WHAT ARE THE PROBLEMS 216 HERE. PLEASE NOTE THAT IS A RATHER GENERAL STATEMENT THAT 217 MIGHT APPLY VIRTUALLY TO ANY CASE STUDY. SO I WARMLY INVITE 218 YOU TO INCLUDE SOME ADDITIONAL DETAIL. I AM NOT SAYING YOU 219 SHOULD MAKE A THOROUGH REVIEW ABOUT THESE ISSUES BUT SIMPLY 220 ADD SOME INFORMATION ABOUT E.G., THE MOST PROBLEMATIC POINTS 221 **OF DEBATE THAT MIGHT BENEFIT FROM THE RESULTS OF YOUR WORK)** 222 223

224 **3. Analytical methods**

Page 75 of 110

The eclogites and blueschists rocks of Naga Hills occur as NE–SW to N–S oriented, steeply east-dipping shear fault-bound tectonic slices or detached layers and lenses intercalated with basaltic and ultramafic units parallel to the shear faults in the Naga Hills ophiolite of Phek district, Nagaland (Chatterjee and Ghose, 2010). In the area eclogite constitutes the core of some lenses, which are surrounded by successive layers of garnet-blueschist, glaucophanite and greenschist. Twenty metamorphosed samples were collected between Longkhimong and Moya villages, after systematic petrographic study six samples were selected for detailed study. Mineral compositional data for all samples (YOU NEVER DESCRIBED THESE EARLIER IN THE TEXT. I THINK IT WOULD BE BETTER TO FIRST EXPLAIN WHAT KIND OF SAMPLES WERE INVESTIGATED, AND THEN HOW. MAYBE YOU CAN ADD SOME NOTES ABOUT THE SAMPLING ACTIVITIES, **INCLUDING LOCATIONS, STRATIGRAPHIC POSITIONS, LITHOTYPES,** NUMBER OF COLLECTED SAMPLES ETC. DONE) were obtained on a JEOL JXA-8200 electron microprobe housed at the Institute of Geosciences, Johannes-Gutenberg University of Mainz, Germany, Operating conditions included an acceleration voltage of 15 kV, a beam current of 12 nA, and a 2 µm spot size. A matrix correction for atomic number (Z), absorption (A), and fluorescence (F) was automatically applied to all analyses. For the data presented below, mineral compositions were recalculated to standard numbers of oxygens per formula unit (pfu) using the software AX (Holland 2009), with OH assumed to be present in stoichiometric amounts. The proportion of ferric iron in different mineral species was also calculated using the software AX (Holland 2009). Mineral proportions for each sample were determined using the software JmicroVision (Roduit 2010), with each individual count consisting of five hundred points randomly distributed over a digitally scanned thin-section image. Calculated volume proportions (HOW HAVE THIS BEEN **CALCULATED? I THINK YOU SHOULD SPECIFY THIS, ALSO CONSIDERING**

THAT YOU DID NOT JUST MAKE A MODAL BY SIMPLE POINT COUNTING. THEREFORE, I THINK IT IS ABLUTELY NEVESSARY TO EXPLAIN HOW DID YOU MAKE THIS KIND OF CALCULATION) of minerals in each sample are given below. These bulk compositions are given in Supplementary Table 3. Mineral proportions for each sample were determined using the software JmicroVision (Roduit 2010), with each individual count consisting of five hundred points randomly distributed over a digitally seanned thin-section image. Mineral abbreviations are after Kretz (1983). Representative (WHY ONLY SOME REPRESENTATIVES? YOU CAN INCLUDE ALL YOUR **DATASET IN THE ESM** – we believe that providing all data in electronic appendices offers no significant benefit from providing representative examples. This is our preferred style for data presentation and indeed it is commonplace in petrological studies to only show representative examples.) compositions of major minerals for all samples are given in Supplementary Table 2 and photomicrographs of microstructural features and assemblages are shown in Figures 2 and 3. Bulk-rock compositions for use in petrological modelling were obtained from X-ray fluorescence (XRF) via the production of glass pellets beads (IS THIS CORRECT? TO MY KNOWLEDGE, YOU CAN HAVE "PRESSED POWDER PELLETS", BUT FUSED SAMPLES ARE REFERRED TO AS 'GLASS BEADS' PLEASE CHECK DONE) in order to guarantee standardised and reproducible analyses. Powdered rock samples were initially dried overnight at 105 °C. Approximately 5.2 g of lithium tetraborate ($Li_2B_4O_7$) flux and 0.4 g of powdered rock sample were then weighed, homogenized, and melted in a Vulcan AMA melting device to produce each glass pellet beads (HERE AND IN THE FOLLOWING: AS IN THE PREVIOUS COMMENT, PLEASE CHECK IF 'PELLET' **IS APPROPRIATE**). These <u>pellets beads</u> were then analyzed in a Philips MagXPRO spectrometer with a rhenium X-ray tube housed in the Institute of Geoscience, Johannes

Page 77 of 110

International Geology Review

275	Gutenberg University of Mainz, Germany. Detection limits are estimated to be 100 μgg^{-1} for
276	light elements (Na, Mg, Al) and 10 μ g g ⁻¹ for heavy elements (K to U). Analysed major
277	oxides comprised SiO ₂ , Al ₂ O ₃ , total Fe ₂ O ₃ , MnO, MgO, CaO, Na ₂ O, K ₂ O, TiO ₂ , P ₂ O ₅ , SO ₃ ,
278	Cr_2O_3 , and NiO.

All U–Pb ages for the analysed carbonate grains and silicate phases were acquired in situ from polished thin sections by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) at the Goethe University Frankfurt (GUF), using a Element2 (Thermo-Scientific) sector field ICP-MS coupled to a RESOlution ArF Excimer laser (Compex Pro 102). The applied method was similar as described in Ring and Gerdes (2016), Burisch et al. (2017), Hansman et al. (2018) and Salih et al. (2019). Ablation spot size was μ m and crater depth was ~20 μ m. Samples were screened by LA-ICP-MS for suitable Pb and U concentration and variability, and selected spots were subsequently analysed in fully automated mode. Spot analyses consisted of 20 s background acquisition followed by 20 s sample ablation. Surface contamination was removed prior to each spot analysis via a 3-s pre-ablation. Soda-lime glass SRM-NIST 614 was used as a reference material together with two carbonate reference materials – WC-1 and a Zechstein dolomite – to bracket sample analysis. SRM-NIST 614 yielded a depth penetration of about 0.5 μ m s⁻¹ and an average sensitivity of 280,000 cps/µg g⁻¹ for ²³⁸U. The detection limits for ²⁰⁶Pb and ²³⁸U were ~0.1 and 0.05 ng g^{-1} , respectively. All data were corrected using an MS Excel spreadsheet program (Gerdes and Zeh, 2006, 2009). NIST 614 was used as a standard for the analysis of silicate phases (SO YOU ANALYSED SILICATE PHASES ALSO? THIS IS NOT WHAT IS **REPORTED IN THE ABSTRACT. PLEASE ELUCIDATE, DONE**). The possible offset related to sample matrix is within the analytical uncertainty of the quoted ages. The ²⁰⁷Pb/²⁰⁶Pb ratio was corrected for mass bias (0.3%) and the ²⁰⁶Pb/²³⁸U ratio for

inter-element fraction (ca. 5%) using SRM-NIST 614. An additional correction of 4% was

applied on the ²⁰⁶Pb/²³⁸U to correct for difference in the fractionation due to the carbonate matrix. This resulted in a lower intercept age of 23 WC-1 spot analyses of 254.1 ± 1.5 (MSWD = 1.5; anchored at ${}^{207}Pb/{}^{206}Pb$ of 0.851) and 253.9 ± 3.4 (MSWD = 1.5; n = 17) for the Zechstein dolomite used as an in-house reference material in Frankfurt. Data were plotted on a Tera-Wasserburg diagram and ages calculated as lower intercepts using Isoplot 3.71 (Ludwig 2007). All uncertainties are reported at the 2 sigma level.

According to Rasbury and Cole (2009), a linear regression taken through a group of samples from the same system produces a slope from which an age can be calculated using the accepted decay rate for the parent isotope. If the system being analysed has no initial heterogeneity, and it remained closed throughout the duration of the decay process, all scatter of data points about the isochron can be explained by analytical uncertainties. A statistical test of this is the mean squared weighted deviate (MSWD). Closed isotopic systems will plot as a line, giving a precise age and low mean squared weighted deviate (MSWD) of ~ 1 , while systems that have not remained closed will show scatter and have a high MSWD (>>1).

4. Sample petrology

Out of the twenty collected samples we have selected four metabasite samples for systematic study and well constrained P-T conditions could derived from four samples onlythermobarometry Six metabasite samples were collected from (AS SAID IN A PREVIOUS COMMENT, I THINK THAT GENERAL INFORMATION ABOUT THE **INVESTIGATE SAMPLES SHOULD BE REPORTED IN THE TEXT. ALSO YOU** SAY THAT YOU COLLECTED 6 SAMPLES, BUT IN THE FOLLOWING SECTION IT SEEMS TO ME THAT YOU ARE DESCRIBING ONLY 4 OF THEM: THE UNSHEARED N5 AND 14 AND THE SHEARED 7C AND 11. PLEASE ELUCIDATE) around Moya and Longkhimong (Fig. 1C) to place constraints on the metamorphic and

deformational history of the Nagaland ophiolite belt. Locality information and GPS co-ordinates for each outcrop are given in Supplementary Table 1 and location map is presented in Figure 1C. Field photographs of the studied samples are presented in Figure 1D. The samples occur as meter-sized boulder blocks, which occur individually and in clusters (Fig. 1 D1, D3) within serpentinites. Samples are thus classified as either sheared and or unsheared based on the occurrence of key deformational features present at the field, hand sample, and microscopic scale. Samples N5 and 14 lack evidence of post-peak shear-driven recrystallization and likely represent relics of undeformed, peak metamorphic blueschists. By contrast, samples 7c, 13, 3b, and 11 are strongly sheared and represent subsequently deformed equivalents of these older units. 4.1. Sample description 4.1.1. Unsheared samples N5 and 14 Unsheared samples N5 and 14 exhibit a largely unfoliated microstructure and show no evidence of pervasive retrogression following peak blueschist-facies metamorphism during subduction, though localised retrogression does occur. Sample N5 is a blueschist that contains abundant sodic amphibole (38%) and epidote (37%), with minor quartz (9%), garnet (6%), sodic-calcic amphibole (4%), phengite (3%), and rutile (2%). Accessory pyrite, zircon, and apatite (all <<1%) also occur. Garnet porphyroblasts are between 0.5 and 2 mm in diameter (Figures 2a-b) and exhibit no substantial major element compositional zoning, with core compositions of Alm₅₆₋₅₈Prp₁₂₋₁₄Grs₂₁₋₂₂Sps₇₋₈ and rim compositions of Alm₆₀₋₆₁Prp₁₅₋ ₁₆Grs₂₂₋₂₃Sps₃₋₄ (Supplementary Table 2 and Fig. 4). Core regions contain inclusions of pumpellyite, phengite, epidote, barroisite, actinolite, and quartz, and rims contain inclusions of phengite, epidote, actinolite, rutile, and quartz. Some grains show replacement by chlorite at their outermost rims. Matrix phengite contains has Si = 3.34–3.38 pfu (on a 11 O basis;

International Geology Review

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14 15	
15 16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40 47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

350	Supplementary Table 2) and grains included in the outer rims of garnet contain has $Si = 3.32$ -
351	3.35 pfu. Epidote shows no significant compositional zoning from core to rim, with a minor
352	range in pistacite content ([XPs = $Fe^{3+}/(Al^{3+}+Fe^{3+})$]) of 0.18–0.21 (Supplementary Table 2).
353	According to the classification scheme of Hawthorne et al. (2012), sodic and sodic-calcic
354	amphiboles in the matrix are glaucophane and winchite-katophorite, respectively (Figure 5).
355	Sample 14 is modally dominated by epidote (50%) and quartz (35%), with lesser garnet
356	(1%), sodic-calcic amphibole (10%), phengite (2%), rutile (0.5%), sphene-titanite (0.5%),
357	and carbonate (21%) (BASED ON SUCH MINERALOGY, HOW CAN YOU
358	CONSIDER THIS TO BE A BLUESCHIST (METABASIC) ROCK? ALSO PLEASE
359	NOTE THAT SUM OF THE LISTED MINERALS IS 101% We follow the definition of
360	Ernst (1963) in that a blueschist defined by the presence of the minerals glaucophane +
361	(lawsonite or epidote) +/- jadeite +/- albite or chlorite +/- garnet +/- muscovite in a rock of
362	roughly basaltic composition). Accessory minerals include chlorite, apatite, and zircon (all
363	<<1%). Although sample 14 contains displays no foliation, it is mildly anisotropic, with
364	alternating centimetre-scale quartz- and epidote-rich domains. In contrast to the large
365	porphyroblasts present in sample N5, garnet forms <0.1 mm diameter grains that are
366	restricted to quartz-rich regions (Figure 2). These garnet grains have no inclusions and are
367	compositionally homogeneous (Alm ₃₆₋₃₉ Prp ₁₀₋₁₃ Grs ₃₁₋₃₆ Sps ₃₆₋₃₉) (VERY DIFFERENT
368	FROM SAMPLE N5, FURTHER HIGHLIGHTING THAT THIS CANNOT BE
369	CONSIDERED SAME ROCK TYPE AS THE REPIUOS, IN MY OPINION we do not
370	consider this the same rock type. it is simply grouped here with 14 due to it being unsheared.
371	the degree of deformation is the primary discriminator in this work.). Epidote shows no
372	significant zoning, with core and rim compositions both having similar pistacite contents of
373	0.20–0.24 (Supplementary Table 2). Matrix rutile is partially or fully replaced by titanite
374	(Figure 2), though rare inclusions in sodic-calcic amphibole lack such pseudomorph textures.

International Geology Review

2	
3	375
4 5	
6 7	376
8	377
9 10	378
11 12	378
13	379
14 15 16	380
17 18	381
19 20	382
21 22	383
23 24	384
25 26 27	385
28 29	386
30 31	387
32 33	388
34 35	389
36 37	
38 39	390
40 41	391
42 43	392
44 45	393
46 47 48	394
48 49 50	395
51 52	396
53 54	397
55 56	398
57 58	399
59 60	399

375	Phengite contains $Si = 3.34-3.35$ pfu (for 11 oxygens; Supplementary Table 2) and in places
376	is intimately intergrown with chlorite, though the extremely fine-grained nature of these
377	intergrowths prohibited reliable compositional analysis of either phase. Sodic-calcic
378	amphibole in the matrix is barroisite-winchite-katophorite (Hawthorne et al. 2012; Figure 5),
379	with rare tremolite, likely representing minor post-peak retrograde mineralogical
380	transformation.
381	Most natural carbonate occurs in the form of calcite and can be transported to the
382	Earth's interior via subduction of carbonate-rich sediments or metasomatized oceanic crust
383	(Zhang et al. 2018). Calcite transforms to aragonite at high pressure. Although may revert
384	back to calcite during exhumation if there are no kinetic limitations. At the P T conditions of
385	peak metamorphism for samples N5 and 14 (see below), the carbonate likely stabilised in the
386	form of aragonite, whereas carbonate in sheared samples 11 and 7c is calcite, which indicates
387	polymorphic transformation following exhumation from peak depths (IN MY OPINION,
388	THIS IS NOT APPROPRIATE FOR A SAMPLE DESCRIPTION SECTION LIKE
389	THIS IS. I THINK IT SHOULD BE MOVED TO THE DISCUSSION SECTION.
390	ALSO, I WOULD SUGGEST ADDING A FEW REFERENCES FOR THE GENERAL
391	STATEMENT ABOUT CARBONATE MINERALS AND ON
392	CALCITE/ARAGONITE TRANSITIONS AT THE BEIGINNING OF THIS PIECE
393	OF TEXT.) Analysed spots are presented in Supplementary Figure 5.
394	
395	4.1.2. Sheared samples 11 and 7c
396	In contrast to N5 and 14, (SO YOU THINK THAT SAMPLES N5 AND 14 ARE
397	MINERALOGICALLY HOMOGENEOUS? I FRANKLY CANNOT AGREE WITH
398	IT, SINCE ONE IS BASICALLY GLN+EP, THE OTHER IS EP+WTZ. I THINK

399 YOU SHOULD CAREFULLY RE-CONSIDER THIS The confusion here emanates from

Page 82 of 110

1
2
3
4
5
6
7
8 9 10
9
10
11
12
13
14 15
15
16
17
18
19
20
21
21 22
22 23
20 21 22 23 24 25 26 27 28 29 30 31
24
25
20
27
28
29
30
32
33
34 35
35
36
37
38
39
40
41
42
43
44
45
46
47
48
40 49
49 50
51
52
53
54
55
56
57
58
59
60

1

400	poor wording, which we have corrected. We do not think that both samples are similar
401	(mineralogically) or homogenous – just that they are unsheared. The text has been modified
402	accordingly.) sheared samples 11 and 7c are mineralogically heterogeneous, containing
403	distinct spaced foliations that are truncated by carbonate- and quartz-filled veins. These
404	crosscutting veins commonly form shear bands (Figures 3e-f) and locally deflect the main
405	metamorphic foliations at their boundaries (Figure 3b), indicating that shearing and vein
406	formation post-dated subduction metamorphism. The host rock domains in sample 7c are
407	dominated by epidote (39%), calcic amphibole (32%), and sodic-calcic amphibole (18%),
408	with minor phengite muscovite (4%), albite (2%), K-feldspar (2%), titanite (1%), and quartz
409	(2%). Apatite and zircon occur as accessory phases (PLEASE NOTE THAT SUM OF THE
410	PHASES LISTED ABOVE IS ALREADY 100% these are simply rounding issues and
411	accessory phases, by definition, have very minor volumetric proportions. if we are to round
412	the volume of the accessories to the nearest integer, they would have 0% volume anyway,
413	leaving a total of 100%.). The main metamorphic foliation is defined by elongate and aligned
414	crystals of epidote and amphibole (Figure 3a). Large green calcic amphibole is mostly
415	pargasite with thin magnesiohornblende outer rims, and sodic-calcic amphibole is winchite
416	(Figure 5). Matrix muscovite phengite has $Si = 3.39-3.43$ pfu and epidote cores have XPs =
417	0.19–0.25 and rims have $XPs = 0.26-0.33$ (Supplementary Table 2). Quartz- and carbonate -
418	filled veins crosscut and offset this epidote- and amphibole-defined metamorphic foliation
419	(Fig. 3b).
420	Sample 11 contains abundant sodic amphibole (33%), quartz (34%), carbonate (14%),

Sample 11 contains abundant sodic amphibole (33%), quartz (34%), carbonate (14%),
and sodic pyroxene (11%), with subsidiary sodic–calcic amphibole (2%), muscovite phengite
(1%), garnet (2%), and albite (1%). Accessory pyrite, titanite, apatite, and zircon (all <<1%)
also occur. Alternating sodic amphibole (glaucophane) and quartz-rich bands define a spaced
foliation that wraps around porphyroblasts of pyroxene and garnet (Figure 3c). Grains of the

latter are commonly less than 1 mm in diameter and are variably replaced by aggregates of carbonate, albite and/or quartz (Figure 3d). Though individual grains lack any significant major-element compositional zoning from core to rim, compositions vary significantly between grains; the majority are spessartine-rich (Alm₁₉₋₂₄Prp₁₀₋₁₄Grs₁₇₋₂₀Sps₄₅₋₅₁), while others are richer in almandine and grossular (Alm₂₆₋₂₉Prp₁₂Grs₂₃₋₃₂Sps₂₈₋₃₇). Minor sodic-calcic amphibole in the matrix is winchite, and sodic pyroxene porphyroblasts are compositionally classified as aegirine–augite ($X_{Jd} = 0.04-0.23$) (GIVE JADEITITE COMPONENT) (Morimoto et al. 1988). 5. Thermobarometry/Phase equilibria modelling (MAY BE A DIFFERENT NAME LIKE E.G., "PHASE EQUILIBRIA MODELLING" WOULD BE MORE **APPROPRIATE, DONE**) Constraints on the P-T conditions of peak subduction-zone metamorphism were obtained from unsheared samples N5 and 14, whereas constraints on the P-T conditions of subsequent ductile shearing were obtained from sheared sample 7c (WHAT ABOUT THE OTHER SHEARED SAMPLE 11? WHY YOU DID NOT USE THIS HERE? I THINK YOU SHOULD ADD SOME EXPLAINATION). Preliminary investigation of phase equilibria stability in sample 11 did not allow for reliable thermobarometry to be performed due to the high variance of the interpreted peak mineral assemblage. Phase diagrams showing the P-Tconditions over which equilibrium mineral assemblages are calculated to occur in a specific bulk-rock composition (pseudosections) (SINCE YOU ARE USING BULK ROCK **COMPOSITIONS HERE I THINK YOU SHOULD ADD A SECTION ABOVE IN** WHICH ROCK COMPOSITIONS ARE PRESENTED AND DESCRIBED, AT LEAST A LITTLE BIT. THIS IS NECESSARY ALSO TO UNDERSTAND WHY DID YOU CHOOSE THAT SPECIFIC MODEL SYSTEM. This is unnecessary – the petrological

$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	
41 42 43 44 45 46	

450	modelling community has well-defined compositional systems for use in modelling particular
451	protoliths (e.g. metabasalts). These are constrained by the available a-x relations rather than
452	the mineralogy of the rocks themselves.) were constructed using THERMOCALC v3.40i and
453	the internally consistent thermodynamic data set ds55 (Powell and Holland 1988; Holland
454	and Powell 1998; updated to August 2004) in the Na ₂ O–CaO–K ₂ O–FeO–MgO–Al ₂ O ₃ –SiO ₂ –
455	H ₂ O-TiO ₂ -O (NCKFMASHTO) compositional system. The following activity-composition
456	relations for solid-solution phases were used: clinoamphibole (WHAT IS THE SOURCE
457	FOR THIS) (calcic, sodic-calcic, and sodic amphibole; Diener and Powell 2012),
458	clinopyroxene (diopside and omphacite, Diener and Powell 2012), muscovite and paragonite
459	(Coggon and Holland 2002), talc and epidote (Holland and Powell 1998), chlorite (Holland et
	al. 1998), biotite and garnet (White et al. 2007), plagioclase and K-feldspar (Holland and
460	
460 461	Powell 2003), ilmenite and hematite (White <i>et al.</i> 2000). Albite, lawsonite, rutile, titanite,
461	Powell 2003), ilmenite and hematite (White <i>et al.</i> 2000). Albite, lawsonite, rutile, titanite, quartz, kyanite, and H ₂ O were treated as pure phases.
461	Powell 2003), ilmenite and hematite (White et al. 2000). Albite, lawsonite, rutile, titanite,
461 462	Powell 2003), ilmenite and hematite (White <i>et al.</i> 2000). Albite, lawsonite, rutile, titanite, quartz, kyanite, and H ₂ O were treated as pure phases.
461 462 463	 Powell 2003), ilmenite and hematite (White <i>et al.</i> 2000). Albite, lawsonite, rutile, titanite, quartz, kyanite, and H₂O were treated as pure phases. <i>5.1. Metamorphic mineral equilibria modelling parameters</i>
461 462 463 464	 Powell 2003), ilmenite and hematite (White <i>et al.</i> 2000). Albite, lawsonite, rutile, titanite, quartz, kyanite, and H₂O were treated as pure phases. <i>5.1. Metamorphic mineral equilibria modelling parameters</i> Bulk-rock compositions used for modelling were obtained via XRF analysis, as discussed
461 462 463 464 465	 Powell 2003), ilmenite and hematite (White <i>et al.</i> 2000). Albite, lawsonite, rutile, titanite, quartz, kyanite, and H₂O were treated as pure phases. <i>5.1. Metamorphic mineral equilibria modelling parameters</i> Bulk-rock compositions used for modelling were obtained via XRF analysis, as discussed previously (Supplementary Table 2) (THIS IS GETTING TORTOUS. IN THE
461 462 463 464 465 466	 Powell 2003), ilmenite and hematite (White <i>et al.</i> 2000). Albite, lawsonite, rutile, titanite, quartz, kyanite, and H₂O were treated as pure phases. <i>5.1. Metamorphic mineral equilibria modelling parameters</i> Bulk-rock compositions used for modelling were obtained via XRF analysis, as discussed previously (Supplementary Table 2) (THIS IS GETTING TORTOUS. IN THE ANALYTICAL TECHNIQUES SECTIONS YOU SAID YOU ACTUALLY
461 462 463 464 465 466 467	 Powell 2003), ilmenite and hematite (White <i>et al.</i> 2000). Albite, lawsonite, rutile, titanite, quartz, kyanite, and H₂O were treated as pure phases. <i>5.1. Metamorphic mineral equilibria modelling parameters</i> Bulk-rock compositions used for modelling were obtained via XRF analysis, as discussed previously (Supplementary Table 2) (THIS IS GETTING TORTOUS. IN THE ANALYTICAL TECHNIQUES SECTIONS YOU SAID YOU ACTUALLY DETERMINED BULK ROCK COMPOSITIONS VIS XRF ANALYSES. SO WHY
461 462 463 464 465 466 467 468	 Powell 2003), ilmenite and hematite (White <i>et al.</i> 2000). Albite, lawsonite, rutile, titanite, quartz, kyanite, and H₂O were treated as pure phases. <i>5.1. Metamorphic mineral equilibria modelling parameters</i> Bulk-rock compositions used for modelling were obtained via XRF analysis, as discussed previously (Supplementary Table 2) (THIS IS GETTING TORTOUS. IN THE ANALYTICAL TECHNIQUES SECTIONS YOU SAID YOU ACTUALLY DETERMINED BULK ROCK COMPOSITIONS VIS XRF ANALYSES. SO WHY YOU DID NOT USE THEM? NOT EVEN MENTIONING THAT IN THE
461 462 463 464 465 466 467 468 469	 Powell 2003), ilmenite and hematite (White <i>et al.</i> 2000). Albite, lawsonite, rutile, titanite, quartz, kyanite, and H₂O were treated as pure phases. <i>5.1. Metamorphic mineral equilibria modelling parameters</i> Bulk-rock compositions used for modelling were obtained via XRF analysis, as discussed previously (Supplementary Table 2) (THIS IS GETTING TORTOUS. IN THE ANALYTICAL TECHNIQUES SECTIONS YOU SAID YOU ACTUALLY DETERMINED BULK ROCK COMPOSITIONS VIS XRF ANALYSES. SO WHY YOU DID NOT USE THEM? NOT EVEN MENTIONING THAT IN THE 'ANALYTICAL METHOD' SECTION YOU EXPLICITLY REPORTED THAT
461 462 463 464 465 466 467 468 469 470	Powell 2003), ilmenite and hematite (White <i>et al.</i> 2000). Albite, lawsonite, rutile, titanite, quartz, kyanite, and H ₂ O were treated as pure phases. <i>5.1. Metamorphic mineral equilibria modelling parameters</i> Bulk-rock compositions used for modelling were obtained via XRF analysis, as discussed previously (Supplementary Table 2) (THIS IS GETTING TORTOUS. IN THE ANALYTICAL TECHNIQUES SECTIONS YOU SAID YOU ACTUALLY DETERMINED BULK ROCK COMPOSITIONS VIS XRF ANALYSES. SO WHY YOU DID NOT USE THEM? NOT EVEN MENTIONING THAT IN THE 'ANALYTICAL METHOD' SECTION YOU EXPLICITLY REPORTED THAT 'BULK-ROCK' COMPOSITION FOR USE IN PETROLOGICAL MODELLING
461 462 463 464 465 466 467 468 469 470 471	Powell 2003), ilmenite and hematite (White <i>et al.</i> 2000). Albite, lawsonite, rutile, titanite, quartz, kyanite, and H ₂ O were treated as pure phases. <i>5.1. Metamorphic mineral equilibria modelling parameters</i> Bulk-rock compositions used for modelling were obtained via XRF analysis, as discussed previously (Supplementary Table 2) (THIS IS GETTING TORTOUS. IN THE ANALYTICAL TECHNIQUES SECTIONS YOU SAID YOU ACTUALLY DETERMINED BULK ROCK COMPOSITIONS VIS XRF ANALYSES. SO WHY YOU DID NOT USE THEM? NOT EVEN MENTIONING THAT IN THE 'ANALYTICAL METHOD' SECTION YOU EXPLICITLY REPORTED THAT 'BULK-ROCK' COMPOSITION FOR USE IN PETROLOGICAL MODELLING WERE OBTAINED FROM X-RAY FLOURESCENCE (XRF)' (LINES 168-169). IN

2	
4	
5	
6	
7	
8	
9	
10	
17	
13	
14	
15	
11 12 13 14 15 16 17 18	
17	
18	
19	
20 21	
22	
23	
24	
25	
26	
27	
28	
29 30	
30 31 32 33 34	
32	
33	
34	
35	
36	
36 37 38	
38 39	
39 40	
41	
42	
43	
44	
45	
46	
47 48	
48 49	
50	
51	
52	
53	
54	
55	
56	
57 58	
58 59	

60

(I.E., DETERMINED DIRECTLY, VIA POINT COUTING) OR RATHER WERE 475 CALCULATED IN SOME SORT OF WAY (WHICH NEEDS TO BE SPECIFIED). 476 PLEASE CAREFULLY ELUCIDATE ALL THIS. AFTER GOING THROUGH THE 477 MANUSCRIPT, I'VE NOTICED THAT THE RESULTS OF XRF ANALYSES ARE 478 NEVER EVEN REPORTED IN THE ELECTRONIC APPENDIX. ALL THIS IS 479 **DEFINITELY NEEDS TO BE CLARIFID** – this was an unfortunate typo; we apologize 480 481 for the confusion. XRF data were used.). These bulk compositions are given in Supplementary Table 3. Mineral proportions for each sample were determined using the 482 483 software JMicroVision (SO FINALLY, THE MODAL PROPORTIONS TURN OUT TO **BE DETERMINED (NOT CALCULATED) VIA POINT COUNTING. I THINK THIS** 484 SHOULD BE SAID MUCH EARLIER, IN THE ANALYTICAL TECHNIQUES 485 SECTION.) (Roduit 2010), with each individual count consisting of five hundred points 486 (ARE YOU SURE THESE ARE SUFFICIENT? TO MY KNOWLEDGE, YOU NEED 487 **TO HAVE MUCH MORE OINTS (3-4 THOUSANDS) IN ORDER TO CONSIDER** 488 **YOUR MODAL ANALYSIS STATISTISCALLY RELIABLE.)** randomly distributed 489 over a digitally scanned thin-section image (NOT CLEAR TO ME: IS THIS IMAGE 490 COVERING THE ENTIRE THIN SECTION AREA, OR JUST A PART OF IT? I 491 GUESS (AND HOPE) THE SECOND, BUT MAY BE IT WOULD BE USEFUL TO 492 **EXPLICITLY MENTION THIS** – point counting was applied to the entire thin section 493 image, aside from areas that do not actually contain pieces of the rock (e.g. as it is not a 494 perfect rectangle). 500 points were sufficient in this case, as we kept track of the evolving 495 proportions during analyses and the values converged on final results after ~300 points or so; 496 thus, adding an extra 500 or 1000 points onto this initial 500 will produce no better 497 precision.). For sample 7c, areas adjacent to shear bands were excluded from consideration 498

during point counting such that the proportions obtained represent unsheared portions of the sample that equilibrated prior to deformation. Although Schmidt and Poli (1998) suggest that seafloor-hydrated metabasites can contain up to 5-6 wt.% H₂O, prograde metamorphism during subduction results in the breakdown of hydrous phases such as chlorite, epidote, and amphibole, leading to progressive dehydration and fluid loss from the local environment (e.g. Guiraud et al., 2007, Hernandez-Uribe et al., 2020) (THIS IS COMMON KNOWLEDGE. I DO NOT THINK IT IS **NECESSARY TO REPORT IT. MOREOVER, I DO NOT THINK IT APPROPRIATE**

507 IN THIS SECTION, WHERE I EXPECT TO SEE ONLY INFORMATION ABOUT

HOW YOU PERFORMED YOUR MODELS - deleted). The effective fluid contents of
for each bulk rock composition during metamorphism were calculated using the proportions
of hydrous phases present in each equilibrium mineral assemblage, assuming H₂O was
present in stoichiometric amounts. Mixed-component fluids were not considered due to the

512 lack of reliable a-x relations for C–O–H fluids at elevated pressures (**NOT SURE ABOUT**

513 WHAT YOU MEAN WITH THIS. WHAT ARE THESE 'RELIABLE C-O-H FLUIDS'

514 THAT LACK AT ELEVANTED PRESSURES? DO YOU MEAN MODELS FOR

515 SUCH KIND OF FLUIDS" PLEASE ELUCIDATE._done); nonetheless, however, this

should not have any significant effects on our calculated diagrams, as unsheared sample N5

517 does not contain carbonate, unsheared sample 14 contains only a minor proportion (2.2 vol.

518 %), and carbonate veins in sheared sample 7c are interpreted from microstructural constraints

to post-date final metamorphism and textural equilibration. Pressure uncertainties for

assemblage field boundaries are approximately ± 1 kbar 0.1 GPa (Powell and Holland 2008;

521 Palin *et al.* 2016). Calculated *P*-*T* pseudosections for each sample are given below.

6 522

523 5.1.1. Unsheared samples

Page 87 of 110

The range of mineral parageneses and microstructural features in each sample allows P T constraints to be placed on peak metamorphism and exhumation-related ductile shearing. Calculated mineral assemblages matching those observed in unsheared samples N5 and 14 (I THINK IT WOULD BE MUCH BATTER IF YOU PRESENT THE RESULTS FOR THESE TWO SAMPLES SEPARATELY. THEN YOU SHOULD PROPOSE A SINGLE P-T RANGE BY COMPRAING THEM AND SEE WHERE THE BEST MATCHES FOR BOTH SAMPLES OVERLAP. We disagree – we are grouping samples together according to whether they are sheared or unsheared.) constrain peak *P*-*T* conditions of subduction-zone metamorphism to ~1.8–2.0 GPa and ~420–560 °C, with the calculated proportions and compositions of major minerals best matching (THIS IS A VERY VAGUE CONCEPT. I MEAN, HOW DO YOU EVALUATE WHICH ONE IS THE BEST MATCH? GENERALLY SPEAKING, I GUESS YOU CAN SAY THIS IS THE ONE MINIMIZING THE DIFFERENCES BETWEEN THE OBSERVED AND CALCULATED MINERAL ABUNDANCES, BUT MAY BE THIS CAN DONE IN SOME OTHER WAY LIKE, E.G., MINIMIZING THE SOUARED RESIDUALS OF THE DIFFERENCES, OR MAY BE EVEN IN SOME OTHER WAYS. IN ANY CASE I THINK YOU SHOULD EXPLICITLY REPORT WHAT WAS YOUR STRATEGY, ALONG WITH ALL THE OTHER INFORMATION WHICH CAN HELP THE **READER FIGURING OUT WHAT WAS DONE**.) observed values at ~1.9 GPa and ~480–520 °C. These conditions lie along the global range of P-T conditions predicted to occur at the surface of subducted oceanic crust in modern-day subduction zones (Syracuse et al. 2010; Penniston-Dorland et al. 2015). 5.1.2. Sheared sample (STILL WONDERING WHY SAMPLE 11 WAS NOT USED

548 FOR SUCH MODELS) Preliminary inspection did not reveal it to be useful or

thermobarometry – not all rocks are useful, and this is a trial and error procedure that cannot

be easily predicted ahead of time. In contrast with the undeformed samples, the observed mineral assemblage in sample 7c was calculated to be stable at the notably lower pressure and slightly lower temperature conditions of ~0.2–0.6 GPa and ~420–490 °C, with observed and calculated mineral proportions and compositions matching best at ~0.6 GPa and ~470 °C. These P T conditions are far-removed from the slab-top range for modern-day subduction reported by Syracuse et al. (2010). The calculated pressures of ~1.9 GPa for peak metamorphism and ~0.6 GPa for retrograde equilibration are approximately equivalent to depths of 60 km and 15 km, respectively, assuming no significant tectonic overpressure (MAY BE THIS IS MORE APPROPRIATE IN THE DISCUSSION SECTION. HERE YOU SHOULD SIMPLY PRESENT THE **RESULTS OF YOUR MODEL. ALSO NOTE THAT THES DEPTH ESTIMATES REFER NOT ONLY TO THE SHEARED SAMPLES, THE SUBJECT OF THIS** PARAGRAPH BUT ALSO TO THE UNSHEARED ONES, THE SUBJECT OF THE PREVIOUS PARAGRAPH (I.E., SO WHY NOT REPORTING DEPTH ESTIMATES IN THE FORMER PARAGRAPH FOR THESE LATTER ONES?). Semi-independent constraints on *P*–*T* conditions using the avPT function of THERMOCALC (MAYBE YOU SHOULD EXPLAIN A LITTLE BIT WHAT IS THIS, SO THAT READERS THAT ARE NOT FAMILIAR WITH ALL THE OPTIONS OF THE THERMOCALC SOFTWARE CAN UNDERSTAND WHAT IS THIS FUNCTION AND WHY IT COULD BE USED TO TEST THE RESULTS FROM PSEUDOSECTION. JUST A FEW BRIEF NOTES COULD BE SIFFICIENT. AS FAR AS I KNOW, THIS SHOULD BE FOR MULTIPLE-REACTION THERMOBAROMTRY, BUT I HAVE TO SAY THAT I AM NOT SURE YOU CAN CONSTRAIN BOTH P AND T WITH THE SAME MODEL. HOW ABOUT CONSTRAINING P AND T

1 2		
3 4	574	INDEPENDENTLY, USING TWO DIFFERENT MODELS BASED ON MULTIPLE
5 6	575	REACTION EQUILIBRIA? TO MY KNOWLEDGE, THERMOCALC SHOULD
7 8 9	576	HAVE ALSO AVP AND AVT FUNCTIONS, EXACTLY FOR SUCH PURPOSES. The
9 10 11	577	avPT function is well known in metamorphic petrology community and is well documented
12 13	578	in the source papers. We find the reviewer's comments inconsistent, whereby they ask us to
14 15	579	remove some descriptions for being too obvious, but ask other descriptions to be added for
16 17 18	580	things that we also perceive as being 'obvious'.) for each sample produced similar and
19 20	581	statistically robust results of 2.05 ± 0.22 GPa and 489 ± 39 °C for N5, 1.95 ± 0.18 GPa and
21 22	582	541 \pm 34 °C for 14, and 0.60 \pm 0.23 GPa and 464 \pm 76 °C for 7c (Supplementary Table 4)
23 24 25	583	(SEE/ HERE YOU REPORT VALUES FOR SAMPLE N5 AND VALUES FOR
26 27	584	SAMPLE 14 SEPERATELY. SO WHY NOT PRESENTING PSEUDOSECTION
28 29	585	RESULTS FOR THE TWO SAMPLES SEPERATELY ALSO (AS ASKED IN A
30 31 32	586	PREVIOUS COMMENT)?) See previous note of grouping samples according to their
33 34	587	deformation history., corroborating the results obtained by phase diagram modelling.
35 36	500	
37	588	6. U–Pb geochronology
38 39 40	589	U-Pb isotopic analysis of carbonate grains was carried out on metabasite samples 14
41 42	590	(unsheared), 11 (sheared), 3b and 13 (SO ARE THESE THE MISSING TWO SHEARED
43 44	591	SAMPLES? I THINK THESE SHOULD BE TREATED EXACTLY AS THE OTHER
45 46	592	SAMPLES (I.E., REPORT PETROGRAPHY, MINERAL CHEMISTRY, WHOLE
47 48 49	593	ROCK COMPOSITION AND PERFORM THERMOBAROMETRIC MODELS),
50 51	594	UNLESS, FOR SOME REASON THIS CANNOT BE DONE. BUT IN THIS LATTER
52 53	595	INSTANCE, YOU SHOULD GIVE FULL EXPLAINATION ABOUT THIS), which
54 55	596	equilibrated at different stages of the subduction-exhumation cycle. Carbonate crystals
56 57 58	597	within dynamically recrystallised veins were preferentially selected for analyses; however,
59 60	598	suitable matrix minerals were also investigated in order to perform a check on the analysed

599	carbonates, which generally have a low U content. Results of the isotopic composition of the
600	Nagaland blueschists are presented in Supplementary Table 5 and isochrons are shown in
601	Figure 9. Measured ²⁰⁷ Pb/ ²⁰⁶ Pb ratios range from 0.205 to 0.836 (sample 3b), 0.735 to 0.848
602	(sample 13), 0.776 to 0.845 (sample 11) and 0.809 to 0.846 (sample 14), and measured
603	²³⁸ U/ ²⁰⁶ Pb ratios range from 0.361 to 9.752 (sample 3b), 0.043 to 10.53 (sample 13), 0.118 to
604	5.474 (sample 11) and 0.809 to 0.846 (sample 14), as shown in Figs. 9a, b, c and d. All data
605	for each sample lie on a single array on an isochron diagram, indicating that each attained
606	isotopic equilibrium, and give well-defined least squares fit indices with MSWD values of
607	0.35–1.17 (Figure 9). The U concentrations in the minerals range between 0 and 3 ppb and
608	model Th/U ratios show a wide variation, with most lying between 0.015 and 5, but some
609	reaching up to ~46. Results of the isotopic composition of the Nagaland blueschists are
610	presented in Supplementary Table 5 and isochrons are shown in Fig. 9. These analyses show
611	that unsheared samples 14 and 11 equilibrated at 95.3 ± 5.9 Ma and 93.7 ± 4.0 Ma,
612	respectively, and sheared samples 3b and 13 experienced exhumation-related shear
613	deformation at 90.6 \pm 3.4 Ma and 88.8 \pm 2.7 Ma, respectively. Although the unsheared
614	sample dataset is within uncertainty of all the sheared sample dates, an overall age
615	progression may be reconstructed from the sheared and unsheared samples. Considering the
616	well-behaved dataset in the studied samples with a low MSWD, it can be broadly inferred
617	that the analysed phases had the same initial isotopic ratio and that the system was at
618	equilibrium during closure of the isotopic system.

7. Discussion and implications

620 Most natural carbonate occurs in the form of calcite and can be transported to the Earth's 621 interior via subduction of carbonate-rich sediments or metasomatized oceanic crust (Zhang *et* 622 *al.* 2018). Calcite transforms to aragonite at high pressure. Although may revert back to calcite 623 during exhumation if there are no kinetic limitations. At the P-T conditions of peak

Page 91 of 110

International Geology Review

metamorphism for samples N5 and 14, the carbonate likely stabilised in the form of aragonite, whereas carbonate in sheared samples 11 and 7c is calcite, which indicates polymorphic transformation following exhumation from peak depths. Representative BSE images showing the analysed spots are presented in Figure 10. The tectonothermal evolution of the Indo-Myanmar Tethyan ophiolite belt is poorly understood owing to a lack of integrated thermobarometry and geochronology. Here, we have combined microstructurally constrained U–Pb data with *P*–*T* conditions calculated for peak and retrograde metamorphism in order to constrain the exhumation history of the Nagaland region of this ophiolite complex (Figure 1011). The samples documented investigated samples show considerable microstructural variation, ranging from largely undeformed (N5 and 14) to sheared (11, 3b, 7c, and 13). The contrasting textures and ages of the studied rocks, together with reported metamorphic recrystallizations ages in the adjoining ophiolite belts in Myanmar (Shi et al. 2008; Yui et al. 2013; Liu et al. 2016) suggest that the terrain has undergone several metamorphic events. In terms of texture, the blueschist facies rocks (N5 and 14) do not show any obvious preferred orientation The almost intact crystal shapes of the constituent minerals (Fig. 2a) allow us to suggest that they were formed predominantly under near-hydrostatic conditions, without apparent shear deformation. By contrast, the sheared samples record deformation and post-tectonic (annealing) recrystallization, as; the constituent minerals display preferred orientation, bending, and curving. Mineral assemblages in the unsheared samples N5 and 14 constrain peak P-Tconditions of subduction-zone metamorphism to ~1.8-2.0 GPa and ~420-560 °C, with the calculated proportions and compositions of major minerals matching observed values at ~1.9 GPa and ~480–520 °C (Figure 6) (I THINK YOU CAN SIMPLY CONCLUDE THAT THE ESTIMATED P-T CONDITIONS ARE THOSE OF THE BEST-MATCH

ASSEMBLAGES, THERE IS NEED TO REPEAT AGAIN WHAT IS THE TOTAL
RANGE FOR THE PEAK ASSEMBLAGE, YOU ALREADY DISCUSSED THIS IN
THE PREVIOUS SECTION. I THINK YOU SHOULD REPORT THIS TIGHTER
RANGE ALSO IN THE OTHER SECTION OF THE PAPER (E.G., ABSTRACT,
CONCLUSIONS) WHERE YOU MENTION THE RESULTS OF YOUR MODELS
Done).

By contrast, the observed mineral assemblage in sheared (sample 7c) was calculated to be stable at notably lower P-T conditions of ~0.2–0.6 GPa and ~420–490 °C, with observed and calculated mineral proportions and compositions matching best at ~0.6 GPa and ~470 °C (AS FOR THE PREVIOUS: YOU CAN SIMPLY REPORT 0.6 GPA AND 470°C Done). The calculated peak metamorphic conditions for the unsheared samples agree with P-T conditions previously reported for the area (Chatterjee and Ghose 2010). The P-Tconditions are far-removed from the slab-top range for modern-day subduction reported by Syracuse et al. (2010). The calculated pressures of ~1.9 GPa for peak metamorphism and ~ 0.6 GPa for retrograde equilibration are approximately equivalent to depths of 60 km and 15 km, respectively, assuming no significant tectonic overpressure. In Figure 10, the *P*–*T* path calculated here is compared with published examples for other blueschist samples from the Naga ophiolites (NO COMMENT ON THESE? THEY TOOK PRETTY DIFFERENT FROM YOURS (ESPECIALLY THE ONE LABELLED AB14), MAYBE YOU CAN TRY TO PROPOSE SOME EXPLAINATION ABOUT THIS MISMATCH) and other studies with thermal models of the global active subduction zones (Syracuse et al. 2010). The age of the high-*P* metamorphic event is crucial to the reconstruction of the geological history of this little-known terrain; however, reliable metamorphic age data has been lacking, and ages for the Nagaland ophiolite are poorly resolved whereas it is not so in the Eastern Belt (AS SAID IN A PREVIOUS COMMENT, I THINK YOU SHOULD SPEND SOME

ADDITIONAL WORD ON THIS, OTHERWISE IT IS NOT COMPLETELY CLEAR WHY YOU THINK THAT THERE IS SUCH LACK OF RELIABLE AGE DATA ADDED). We have integrated our new age and P-T data into a revised tectonic model for the evolution of the Naga ophiolite belt, as shown in Figure 142. Only one whole-rock K-Ar isotopic age of 148 ± 4 Ma (Upper Jurassic) has been reported from a volcanic rock in this area (Sarkar et al. 1996), which is supported by a radiolarian age (Baxter et al. 2011), whereas recently, a younger U-Pb zircon age of 115 Ma (Lower Cretaceous) has been reported from a plagiogranite (Singh et al. 2017). Based on the available geochronological and radiolarian ages, the formation age of the Nagaland ophiolite crust thus likely ranges between Early Cretaceous (Liu et al. 2016; our unpublished data) and Late Jurassic (Figure 142a). Past plate reconstructions during this period suggest that early subduction off the coast of Myanmar dipped to the west during the Jurassic, but there was a reversal in polarity immediately prior to the Early Cretaceous (Figure 11b; Bhowmik and Ao, 2015). This reversal caused the proto-Nagaland ophiolite complex oceanic crust to experience subduction along an eastern-dipping convergent margin during the Early Cretaceous, with U-Pb ages of the blueschist associated with the Nagaland ophiolite suggesting that peak high-pressure metamorphism was reached at around this time (Figure 142c).

Utilizing the integrated petrologically constrained *in situ* ages and thermobarometry shows that the unsheared sample 14 yielded a U–Pb age of 95.3 Ma while sheared samples yielded ages ranging between 93.7 Ma (sample 11) and 88.8 Ma (sample 13) Ma, illustrating an age difference between the sheared and unsheared samples. The present study shows This suggests that the Mesozoic ophiolite underwent HP-LT subduction-related metamorphism c. 95 Ma and that exhumation was a continuous process that lasted until c. 89 Ma (Figure 1+2d). This age range is in agreement with the Guillot et al. (2008)'s reported HP metamorphic age inferred from K-Ar whole rock and mineral (phengite, glaucophane) ages of 100 to 80 Ma

(MAYBE YOU SHOULD ADD SOME DETAIL HOW THIS TIME HAS BEEN ESTIMATED (I.E., IS THIS COMING FROM GEOCHRONOLOGICAL ANALYSES? IF SO, WHAT IS THE METHOD THAT WAS APPLIED? DONE) for the western Himalayan Tethyan ophiolites. Based on a zircon isotopic study, an older age of 115 Ma has been reported from the garnetiferous amphibolite of the adjoining Myanmar ophiolite (Liu et al. 2016). However, no petrological information was presented, making it hard to evaluate the significance of this age. It As a consequence, it is unclear whether the available ages (Liu et al. 2016 and our data) record a prolonged emplacement event, discrete metamorphic events or if the older amphibolite represents remnants of metamorphic sole of the ophiolite belt. Although the unsheared sample dataset is within uncertainty of the sheared sample dates, an overall age progression is evident from the studied sheared and unsheared samples. Based on the combined U–Pb age dataset and the calculated *P*–*T* regime, it can be

inferred that the Nagaland blueschist rocks were exhumed at a rate of ~ 1 cm/year (~ 45 km in

5 Ma), which is in the order of rates of plate tectonic processes on the Phanerozoic Earth.

714 However, exhumation along the slab interface would imply overall faster transport rates to

715 achieve this vertical rate. (I THINK THIS STATEMENT NEEDS SOME

716 APPROPRIATE SUPPORTING REFERENCE. IN ANY CASE, PLEASE NOTE

717 THAT THIS IS CONTRAST WITH WHAT YOU REPORTED IN THE ABSTRACT,

718 WHERE YOU SAID THAT THIS EXHUMATION IS 'A TYPICAL SLOW" (LINE

719 44). PLEASE CORRECT IN ORDER TO AVOID INCONSISTENCIES

CORRECTED).

U–Pb dating of low-uranium minerals such as calcite, prehnite, epidote, amphibole
(YOU DID NOT SAY YOU MADE U-PB ANALYSES OF SUCH KIND OF
MINERALS. SO IAM NOT SURE IT IS APPROPRIATE TO MENTION THESE

TOO, IT HAS BEEN MENTIONED) at small scale is a new and promising

Page 95 of 110

geochronological method. In the present study, we focussed on both carbonate and other cogenetic silicate phases such as prehnite, epidote, amphibole etc. (SO YOU ACTUALLY PERFORMED U-PB DATINGS ALSO ON OTHER PHASES? IF SO, WHY YOU **DIDN'T REPORT THIS IN THE U-PB GEOCHRONOLOGY SECTION? THIS IS GETTING REALLY CONFUSING, I WARMLY INVITE YOU TO ELUCIDATE** AND MAKE IT EXTEMELY CLEAR THROUGHOUT THE MANUSCRIPT. DONE) formed at the same time and the isotopic systems seem to be closed since the metamorphic event. The reported age uncertainty could be improved by using well characterised specific with less scatter age and matrix matched standards (e.g., carbonate minerals normalisation of Pb-Pb isotope is currently achieved using a synthetic glass other than a carbonate. Roberts et al. 2020) standards improved reference materials (both carbonate and silicate phases) (WHAT DO MEAN BY THIS? IN WHAT SENSE THESE REFERENCE MATERIALS SHOULD BE IMPROVED? I THINK SOME ELUCIDATION MIGHT **BE USEFUL**, **DONE**) Although the behaviour of uranium in carbonates that have undergone high P/low T is not clear because of the lack of studies in natural and synthetic systems, our study shows suggest that the U-Pb systematics of carbonate can withstand temperatures up to 500 °C without resetting. These data thus encourage the ongoing development of in-situ dating of carbonates and low uranium silicate minerals as a tool to understand the rates and ages of tectonic processes. Acknowledgements

⁵¹₅₂ 746 BM began this work during his visits to JGU Mainz on a BOYSCAST Fellowship and
⁵³₅₄ 747 continued during the INSA-DFG Exchange programme visit to Bonn. BM thanks the Council
⁵⁶₅₅ 748 of Scientific and Industrial Research, Government of India for financial support in the form
⁵⁸₅₉ 749 of a project. Sample processing equipment were procured under a Department of Science and

International Geology Review

Page 96 of 110

2	
3 4	750
5 6	751
7 8	752
9 10 11	753
12 13	754
14 15	755
16 17	756
18 19 20	757
20 21 22	758
23 24	759
25 26	760
27 28 29	761
29 30 31	762
32 33	763
34 35	
36 37	764
38 39	765
40 41 42	766
42 43 44	767
45 46	768
47 48	769
49 50	770
51 52 53	771
53 54 55	772
55 56 57	773
58 59	
59 60	

1

References

v. 104, p. 1235–1251.

113 pp.

860.

638-644.

Technology, Government of India FIST program. This is FIERCE contribution XX. BM

acknowledges Yhunyulo Tep for the help during the field work. Lorenzo Fedele (Napoli) and

Acharyya S.K., 2015, Indo-Burman Ranges: a belt of accreted microcontinents, ophiolites

Allen, R., Najman, Y., Carter, A., Barfod, D., Bickle, M.J., Chapman, H.J., Garzanti, E.,

and Mesozoic-Paleogene flyschoid sediments: International Journal of Earth Sciences,

Vezzoli, G., Ando, S., and Parrish, R.R., 2008, Provenance of the Tertiary sedimentary

rocks of the Indo-Burman Ranges, Burma (Myanmar): Burman arc or Himalayan-

derived?: Journal of the Geological Society of London, v. 165, p. 1045–1057.

Anon., 1986, Geology of Nagaland ophiolite: Geological Survey of India Memoir, v. 119,

Ao, A., Bhowmik, S.K., 2014, Cold subduction of the Neotethys: the metamorphic record

from finely banded lawsonite and epidote blueschists and associated metabasalts of the

Nagaland Ophiolite Complex, India: Journal of Metamorphic Geology, v. 32, p. 829-

Baxter, A.T., Aitchison, J.C., Zyabrev, S.V., and Ali, J.R., 2011, Upper Jurassic radiolarians

from the Naga Ophiolite, Nagaland, northeast India: Gondwana Research, v. 20, p.

Bhowmik, S.K., and Ao, A., 2016, Subduction initiation in the Neo-Tethys: constraints from

India: Journal of Metamorphic Geology, v. 34, p. 17-44.

counterclockwise P-T paths in amphibolite rocks of the Nagaland Ophiolite Complex,

752 four anonymous journal reviewers are appreciated for their insightful comments.

3	
4	
5	
6 7	
8	
9 10	
10	
11	
12	
13	
14	
12 13 14 15 16 17	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 31 32 33 34	
31	
32	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
58 59	
60	

774	Brunnschweiler, R.O., 1966, On the geology of the Indoburman ranges — Arakan Coast and
775	Yoma, Chin Hills, Naga Hills: Journal of the Geological Society of Australia, v. 13, p.
776	137–194.
777	Burisch, M., Gerdes, A., Walter, B.F., Neumann, U., Fettel, M. and Markl, G., 2017,
778	Methane and the origin of five-element veins: Mineralogy, age, fluid inclusion
779	chemistry and ore forming processes in the Odenwald, SW Germany: Ore Geology
780	Reviews, v. 81, p. 42–61.
781	Carswell, D.A., 1990, Eclogite-Facies Rocks. Blackie, London.
782	Chatterjee, N., and Ghose, N.C., 2010, Metamorphic evolution of the Naga Hills eclogite and
783	blueschist, North India: implications for early subduction of the Indian plate under the
784	Burma microplate: Journal of Metamorphic Geology, v. 28, p. 209–225.
785	Cloos, M., 1985, Thermal evolution of convergent margins: Thermal modelling and
786	evaluation of isotopic Ar-ages for blueschists in the Franciscan Complex of California:
787	Tectonics, v. 4, p. 421–433.
788	Coggon, R., and Holland, T.J.B., 2002, Mixing properties of phengitic micas and revised
789	garnet-phengite thermobarometers: Journal of Metamorphic Geology, v. 20, p. 683-
790	696.
791	Coogan, L.A., Parrish, R.R. and Roberts, N.M., 2016, Early hydrothermal carbon uptake by
792	the upper oceanic crust: Insight from in situ U-Pb dating: Geology, v. 44(2), p. 147-
793	150.
794	Diener, J.F.A., and Powell, R., 2012, Revised activity-composition models for clinopyroxene
795	and amphibole: Journal of Metamorphic Geology, v. 30, p. 131-142.
796	Ernst, W.G., 1973, Blueschist metamorphism and P-T regimes in active subduction zones:
797	Tectonophysics, v. 17, p. 255–272.

1	
2	
2	
1	
4 F	
3 4 5 6 7 8 9 10	
6	
7	
8	
9	
10	
11	
12	
13	
12 13 14 15 16 17 18	
15	
16	
17	
1/	
18	
19	
20	
21	
22	
23	
19 20 21 22 23 24 25 26 27 28	
25	
26	
27	
28	
20	
29	
29 30 31 32 33 34 35 36	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

798	Gansser, A., 1980, The significance of the Himalayan suture zone: Tectonophysics, v. 62, p.
799	37–52.
800	Gilley, L.D., Harrison, T.M., Leloup, P.H., Ryerson, F.J., Lovera, O.M. and Wang, J.H.,
801	2003, Direct dating of left-lateral deformation along the Red River shear zone, China
802	and Vietnam: Journal of Geophysical Research: Solid Earth, v. 108(B2), 2127.
803	Guillot, S., Mahéo, G., de Sigoyer, J., Hattori, K.H. and Pêcher, A., 2008, Tethyan and Indian
804	subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks:
805	Tectonophysics, v. 451, p. 225–241.
806	Hansman, R.J., Albert, R., Gerdes, A., and Ring, U., 2018, Absolute ages of multiple
807	generations of brittle structures by U-Pb dating of calcite: Geology, v. 6(3), p. 207–210.
808	Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C.
809	and Welch, M.D., 2012. Nomenclature of the amphibole supergroup. American
810	Mineralogist, v. 97, p. 2031–2048.
811	Hernández-Uribe, D., Palin, R.M., Cone, K.A. and Cao, W., 2020. Petrological implications
812	of seafloor hydrothermal alteration of subducted mid-ocean ridge basalt: Journal of
813	Petrology, v. 9, p. egaa086, doi: 10.1093/petrology/egaa086
814	Holland, T.J.B., 2009, AX: A program to calculate activities of mineral end-members from
815	chemical analyses. http://www.esc.cam.ac.uk/research/research-groups/holland/ax.
816	Accessed June 2015.
817	Holland, T.J.B., and Powell, R., 1998, An internally consistent thermodynamic dataset for
818	phases of petrological interest: Journal of Metamorphic Geology, v. 16, p. 309-344.
819	Holland, T.J.B., and Powell, R., 2003, Activity-composition relations for phases in
820	petrological calculations: an asymmetric multicomponent formulation: Contributions to
821	Mineralogy and Petrology, v. 145, p. 492–501.

Page 99 of 110

1 2		
2 3 4	822	Holland, T.J.B., Baker, J.M., and Powell, R., 1998, Mixing properties and activity-
5 6	823	composition relationships of chlorites in the system MgO–FeO–Al ₂ O ₃ –SiO ₂ –H ₂ O:
7 8 9	824	European Journal of Mineralogy, v. 10, p. 395-406.
9 10 11	825	Holt, W.E., Ni, J.F., Wallace, T.C., and Haines, A.J., 1991, The active tectonics of the
12 13	826	Eastern Himalayan syntaxis and surrounding regions: Journal of Geophysical Research,
14 15	827	v. 96, p. 14595–14632.
16 17 18	828	Johannes, W., and Puhan, D., 1971, The calcite-aragonite transition, reinvestigated.
19 20	829	Contributions to Mineralogy and Petrology, v. 31(1), p. 28-38.
21 22	830	Kretz, R., 1983, Symbols for rock-forming minerals: American Mineralogist, 68, 277–279.
23 24 25	831	Khogenkumar, S., Singh, A.K., Kumar, S., Lakhan, N., Chaubey, M., Imtisunep, S., Dutt, A.
25 26 27	832	and Oinam, G., 2021, Subduction versus non-subduction origin of the
28 29	833	Nagaland-Manipur Ophiolites along the Indo-Myanmar Orogenic Belt, northeast India:
30 31	834	Fact and fallacy. Geological Journal, v. 56(4), p. 1773-1794.
32 33 34	835	Li, Q., Parrish, R.R., Horstwood, M.S.A., and McArthur, J.M., 2014, U-Pb dating of cements
35 36	836	in Mesozoic ammonites: Chemical Geology, v.376, p. 76–83.
37 38	837	Liu, CZ., Chung, SL., Wu, FY., Zhang, C., Xu, Y., Wang, JG., Chen, Y. and Guo, S.,
39 40 41	838	2016, Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints
41 42 43	839	from Myanmar ophiolites: Geology, v. 44, p. 311–314.
44 45	840	Ludwig, K., 2007, Isoplot 3.62, Berkley Geochronology Centre Special Publication 4, p. 70.
46 47	841	Morimoto, N. et al. 1988, Nomenclature of pyroxenes: American Mineralogist, v. 73, p.
48 49 50	842	1123–1133.
51 52	843	Millonig, L.J., Gerdes, A., and Groat, L.A., 2012, U-Th-Pb geochronology of meta-
53 54	844	carbonatites and meta-alkaline rocks in the southern Canadian Cordillera: a
55 56 57	845	geodynamic perspective: Lithos, v. 152, p. 202–217.
58 59		
60		

3 4	846	Mitchell, A.H.G., 1993, Cretaceous-Cenozoic tectonic events in the western Myanmar-
5 6 7	847	Assam region: Journal of the Geological Society of London, v. 150, p. 1089–1102.
, 8 9	848	Mitchell, A.H.G., Htay, M.T., Htun, K.M., Win, M.N., Oo, T., and Hlaing, T., 2007, Rock
10 11	849	relationships in the Mogok Metamorphic Belt, Tatkon to Mandalay, central Myanmar:
12 13	850	Journal of Asian Earth Sciences, v. 29, p. 891–910.
14 15 16	851	Mitchell, A.H.G., Chung, SL., Oo, T., Lin, TH., and Hung, C-H., 2012, Zircon U-Pb ages
17 18	852	in Myanmar: magmatic-metamorphic events and the closure of a Neo-Tethys Ocean?:
19 20	853	Journal of Asian Earth Sciences, v. 56, p. 1–23.
21 22 23	854	Miyashiro, A., 1961, Evolution of metamorphic belts. Journal of Petrology, v. 2, p. 277–311.
23 24 25	855	Palin, R.M., and White, R.W., 2016, Emergence of blueschists on Earth linked to secular
26 27	856	changes in oceanic crust composition: Nature Geoscience, v. 9, p. 60-64.
28 29 30	857	Palin, R.M., Weller, O.M., Waters, D.J., and Dyck, B., 2016, Quantifying geological
30 31 32	858	uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and
33 34	859	implications for tectonic interpretations: Geoscience Frontiers, v. 7, p. 591-607.
35 36	860	Penniston-Dorland, S. C., Kohn, M. J., and Manning, C. E., 2015, The global range of
37 38 39	861	subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are
40 41	862	hotter than models: Earth and Planetary Science Letters, v. 428, p. 243-254.
42 43	863	Powell, R., and Holland, T.J.B., 1988, An internally consistent thermodynamic dataset with
44 45 46	864	uncertainties and correlations: 3. Application to geobarometry, worked examples, and a
47 48	865	computer program: Journal of Metamorphic Geology, v. 6, p. 173-204.
49 50	866	Powell, R., and Holland, T.J.B., 1994, Optimal geothermometry and geobarometry:
51 52 53	867	American Mineralogist, v. 79, p. 120–133.
54 55	868	Rasbury, E.T., Cole, J.M., 2009, Directly dating geologic events: U-Pb dating of carbonates:
56 57 58 59 60	869	Reviews of Geophysics v. 47, RG3001.

1 2		
- 3 4 5 6 7 8 9	870	Ring, U., and A. Gerdes, 2016, Kinematics of the Alpenrhein-Bodensee graben system in the
	871	Central Alps: Oligocene/Miocene transtension due to formation of the Western Alps
	872	arc: Tectonics, v. 35, doi:10.1002/2015TC004085.
9 10 11	873	Robb, L.J., Armstrong, R.A., and Waters, D.J., 1999, The history of granulite-facies
12 13	874	metamorphism and crustal growth from single zircon U-Pb geochronology:
14 15	875	Namaqualand, South Africa: Journal of Petrology, v. 40, p. 1747-1770.
16 17 18	876	Roberts, N.M.W. and Walker, R.J., 2016. U-Pb geochronology of calcite-mineralized faults:
19 20	877	Absolute timing of rift-related fault events on the northeast Atlantic margin: Geology, v.
21 22	878	44, p. 531–534.
23 24	879	Roberts, N.M.W., Drost, K., Horstwood, M.S.A., Condon, D.J., Chew, D., Drake, H.,
25 26 27	880	Milodowski, A.E., McLean, N.M., Smye, A.J., Walker, R.W., Haslam, R., Hodson, K.,
28 29 30 31 32	881	Imber, J., Beaudoin, N., and Lee, J.K., 2020. Laser ablation inductively coupled plasma
	882	mass spectrometry (LA-ICP-MS) U-Pb carbonate geochronology: strategies, progress,
32 33 34	883	and limitations: Geochronology, v. 2, p. 33-61,
35 36	884	Roduit, N., 2010. JMicroVision: un logiciel d'analyse d'images pétrographiques innovant:
37 38	885	Étude sur différentes méthodes de quantification et de caractérisation des roches.
39 40 41	886	Éditions universitaires Européennes, 136 pp.
41 42 43	887	Rubatto, D., and Hermann, J., 2001, Exhumation as fast as subduction?: Geology, v. 29, p. 3–
44 45 46 47	888	6.
	889	Rubatto, D., Williams, I.S. and Buick, I.S., 2001, Zircon and monazite response to prograde
48 49 50	890	metamorphism in the Reynold Range, Central Australia: Contribution to Mineralogy
51 52	891	and Petrology, v. 140, p. 458-468.
53 54	892	Sarkar, A., Datta, A.K., Poddar, B.C., Bhattacharyya, B.K., Kollapuri, V.K., and Sanwal, R.,
55 56 57	893	1996, Geochronological studies of Mesozoic igneous rocks from eastern India: Journal
58 59	894	of Southeast Asian Earth Sciences, v. 13, p. 77-81.
60		

3 4	895	Salih, N., Mansurbeg, H., Kolo, K., Gerdes, A., and Préat, A., 2019, In situ U-Pb dating of
5 6 7	896	hydrothermal diagenesis in tectonically controlled fracturing in the Upper Cretaceous
7 8 9	897	Bekhme Formation, Kurdistan Region-Iraq: International Geology Review, v. 62, p.
10 11	898	2261–2279.
12 13	899	Schmidt, M.W., and Poli, S., 1998, Experimentally based water budgets for dehydrating slabs
14 15 16	900	and consequences for arc magma generation: Earth and Planetary Science Letters, v.
16 17 18	901	163, p. 361–379.
19 20	902	Searle, M.P., Noble, S.R., Cottle, J.M., Waters, D.J., Mitchell, A.H.G., Hlaing, T., and
21 22	903	Horstwood, M.S.A., 2007, Tectonic evolution of the Mogok metamorphic belt, Burma
23 24 25	904	(Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks:
26 27	905	Tectonics, v. 26, p. TC3014.
28 29	906	Sengupta, S., Ray, K.K., Acharyya, S.K., and de Smeth, J.B., 1990, Nature of ophiolite
30 31 32	907	occurrence along eastern margin of Indian plate and their tectonic significance:
33 34	908	Geology, v. 18, p. 439–442.
35 36	909	Shi, G.H., Cui, W.Y., Cao, S.M., Jiang, N., Jian, P., Liu, D.Y., Miao, L.C., and Chu, B.B.,
37 38 20	910	2008, Ion microprobe zircon U-Pb age and geochemistry of the Myanmar jadeitite:
39 40 41	911	Journal of the Geological Society of London, v. 165, p. 221–234.
42 43	912	Shi, G., Lei, W., He, H., Nok Ng, Y., Liu, Y., Liu Y., Yuan, Y., Kang, Z., and Xie, G., 2014,
44 45	913	Superimposed tectono-metamorphic episodes of Jurassic and Eocene age in the jadeite
46 47 48	914	uplift, Myanmar, as revealed by ⁴⁰ Ar/ ³⁹ Ar dating. Gondwana Research, v. 26, p. 464–
49 50	915	474.
51 52	916	Singh, A.K., Chung, S.L., Bikramaditya, R.K. and Lee, H.Y., 2017, New U–Pb zircon ages of
53 54 55	917	plagiogranites from the Nagaland-Manipur Ophiolites, Indo-Myanmar Orogenic Belt,
56 57 58 59 60	918	NE India: Journal of Geological Society of London, v. 174, p. 170–179.

Page 103 of 110

2		
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	919	St-Onge, M.R., Rayner, N., Palin, R.M., Searle, M.P., Waters, D.J., 2013, Integrated
	920	pressure-temperature-time constraints for the Tso Morari dome (NW India):
	921	Implications for the burial and exhumation path of UHP units in the western Himalaya:
	922	Journal of Metamorphic Geology, v. 31, p. 469–504.
	923	Stacey, J.S., and Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by
	924	a two-stage model: Earth and Planetary Science Letters, v. 26, p. 207-221.
	925	Syracuse, E.M., van Keken, P.E., and Abers, G.A., 2010, The global range of subduction
	926	zone thermal models. Physics of the Earth and Planetary Interiors, v. 183, p. 73–90.
21 22	927	Terry, M.P., Robinson, P. and Ravna, K., 2000, Kyanite eclogite thermobarometry and
23 24 25 26 27 28 29 30 31 32	928	evidence for thrusting of UHP over HP metamorphic rocks, Nordøyane, Western
	929	Gneiss Region, Norway: American Mineralogist, v. 85, p. 1637–1650.
	930	Wang, X. and Griffin, W.L., 2004, Unusual Hf contents in metamorphic zircon from coesite-
	931	bearing eclogites of the Dabie Mountains, east-central China: implications for the
33 34	932	dating of ultrahigh-pressure metamorphism: Journal of Metamorphic Geology, v. 22, p.
35 36	933	629–637.
37 38 39 40 41	934	Wang, Y., and Foley, S.F., 2020, The role of blueschist stored in shallow lithosphere in the
	935	generation of post-collisional orogenic magmas: Journal of Geophysical Research, v.
42 43	936	125, doi.org/10.1029/2020JB019910.
44 45 46 47 48 49 50	937	White, R.W., Powell, R., and Holland, T.J.B., 2007, Progress relating to calculation of partial
	938	melting equilibria for metapelites: Journal of Metamorphic Geology, v. 25, p. 511-527.
	939	White, R.W., Powell, R., Holland, T.J.B., and Worley, B.A., 2000, The effect of TiO ₂ and
51 52	940	Fe ₂ O ₃ on metapelitic assemblages at greenschist and amphibolite facies conditions:
53 54	941	mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-
55 56 57 58	942	Fe ₂ O ₃ : Journal of Metamorphic Geology, v. 18, p. 497–511.
59 60		

3 4	943	Williams, I.S., and Claesson, S., 1987, Isotopic evidence for Precambrian provenance and
5 6 7	944	Caledonian metamorphism of high grade paragneisses from the Seve Nappes,
7 8 9	945	Scandanavian Caledonides. II, Ion microprobe zircon U-Th-Pb: Contribution to
10 11	946	Mineralogy and Petrology, v. 97, p. 205–217.
12 13 14 15 16 17 18 19 20	947	Yui, T.F., Fukoyama, M., Iizuka, Y., Wu, C.M., Wu, T.W., Liou, J.G. and Grove, M., 2013,
	948	Is Myanmar jadeitite of Jurassic age?: A result from incompletely recrystallised
	949	inherited zircon. Lithos, v. 160–161, p. 268–282.
	950	Zhang, Zh., Mao, Zh., Liu, X., Zhang, Y., and Brodholt, J., 2018, Stability and Reactions of
21 22 23	951	CaCO ₃ Polymorphs in the Earth's Deep Mantle: Journal of Geophysical Research,
24 25	952	Solid Earth, v. 123(8), p. 6491–6500.
26 27	953	
28 29 30	954	Figure captions
31 32	955	Figure 1. (A) Regional geological map of Indo-Myanmar Range and part of Myanmar (after
33 34	956	Acharyya 2015). (B) Geological map of the Indo-Myanmar ophiolite belt (after Geological
35 36 27	957	Survey of India M.N.C. DRG No. 42/87) (C) Geological map of the Nagaland ophiolite belt
37 38 39	958	showing sample locations (after Anon. 1986, Ao and Bhowmick, 2016). (D) Field
40 41	959	photographs (1) Unfoliated/Unsheared sample occur as boulders. Person for reference. (2)
42 43	960	Unsheared sample showing the slicken sided face, chisel is for reference. (3) Blueschist
44 45 46	961	samples present as blocky boulders. (4) Sheared sample showing foliation on a freshly broken
47 48	962	face. Pen shows the foliation trend.
49 50	963	
51 52 53 54 55 56 57 58 59 60	964	Figure 2. Thin-section photomicrographs showing representative mineral assemblages and
	965	microstructures for undeformed samples N5 (a–b) and 14 (c–d). All thin section images are
	966	shown under plane-polarized light. Scale bar is 1 mm. (a-b) Glaucophane- and epidote-rich
	967	matrix in sample N5, with minor garnet porphyroblasts associated with quartz and muscovite.

Page 105 of 110

International Geology Review

(c) Small millimetre-scale garnet in sample 14 mostly occurs in guartz-rich domains that are relatively epidote- and barroisite-poor. (d) Barroisite grains enclose epidote crystals. Mineral use in 2(a) Gln – Glaucophane, Grt – Garnet, Ep – Epidote, Ms – Muscovite. 2(b) Gln – Glaucophane, Grt – Garnet, Ep – Epidote, Ms – Muscovite, Qtz – quartz, 2(c) Brs – Barroisite, Carb – Carbonate, Grt – Garnet, Ep – Epidote. 2(d) Brs – Barroisite, Ep – Epidote, Ms – Muscovite, Qtz – quartz, Ttn – Titanite. Figure 3. Thin-section photomicrographs showing representative mineral assemblages and microstructures in sheared samples 7c (a–b) and 11 (c–f). All thin section images are shown under plane-polarized light (unless stated otherwise) and oriented perpendicular to the dominant metamorphic foliation. Scale bar is 1 mm. (a) The metamorphic foliation in sample 7c is defined by aligned crystals of epidote, sodic-calcic amphibole, and calcic amphibole, (b) and is crosscut by quartz- and carbonate-filled veins that also cause localized deflections at their intersections. Sample 11 contains olive-green aegirine-augite (c) and garnet (d) porphyroblasts that are wrapped by a glaucophane-magnesioriebeckite foliation defined by alternating glaucophane- and quartz-rich bands. Sheared veins filled with carbonate (e) and quartz (f) exhibit ductile deformation microstructures and dynamic recrystallization. Mineral abbreviation use in Figure 3(a) Brs – Wnc: Barroisite – Winchite, Ep – Epidote, Prg – Ed: Pargsite - Edinite, Ttn: Titanite, Figure 3(b) Qtz - Quartz, Carb - Carbonate, Brs -Barroisite, Wnc – Winchite, Ep – Epidote, Ms – Muscovite, Kfs – K-feldspar, Ab – Albite, 3(c) Agt – Aegirine augite, Gln: Glaucophane, Fgl – Ferroglacuphane, Grt – Garnet, Qtz –

- 989 Quartz, Ms Muscovite, Figure 3(d) Alb Albite, Carb Carbonate, Gln Glaucophane,
- 990 Fgl Ferroglaucophane, Quartz Quartz, Figure 3(e) Carb Carbonate, Ms Muscovite,
- 991 Qtz Quartz, Figure 3(f) Carb Carbonate, Qtz Quartz.

Figure 4. Garnet cCompositional line profile for a garnet porphyroblast of from the unsheared sample N5, running from rim to rim across a representative-sized euhedral grain (~0.75 mm diameter). (a) Cation mole fractions of divalent cations. (b) X-ray compositional map of divalent cations showing relative concentrations from core to rim. Colours do not represent equivalent cation concentrations between images.

Figure 5. Compositions of amphiboles from all studied samples, categorized classified according to the classification scheme of Hawthorne et al. (2012). Discrimination between calcic (group 2), calcic-sodic (group 3), and sodic (group 4) amphiboles is based upon the Na content of the M4 crystallographic site, with the ranges <0.5, 0.5-1.5, and >1.5, respectively for a 23-oxygen recalculation. Representative compositions are given in Supplementary Table 2.

Figure 6. Results of mineral equilibria modelling for unsheared sample N5. (a) Pressure-temperature (P-T) pseudosection constructed for the bulk composition given in Supplementary Table 3. Dotted overlay represents the global range of P-T conditions modelled to occur at the surface of subducting ocean crust in present-day subduction zones (Syracuse et al. 2010). Gray star and associated dashed ellipses represent the results of avPT calculations (Supplementary Table 4) and are shown at 1 and 2 S.D. Bold line marks the extent of H₂O-bearing assemblage fields. Numbered fields are as follows: 1 – Grt Ms Cld Tlc Omp, 2 – Grt Ms Cld Tlc Omp Gln, 3 – Grt Ms Cld Tlc Omp Gln Lws, 4 – Grt Ms Cld Tlc Omp Ky Lws, 5 – Grt Ms Act Cld Tlc Ky Lws, 6 – Grt Ms Bt Cld Act Gln, 7 – Grt Chl Bt Cld Act Gln, 8 – Grt Bt Act Gln Mag, 9 – Grt Bt Chl Hbl Gln, 10 – Bt Omp Hbl Pl H₂O, 11 – Bt Omp Hbl Pl Ab H₂O, 12 – Grt Ms Omp Hbl H₂O, 13 – Grt Ms Gln H₂O, 14 – Grt Chl Ms Omp Gln, 15 – Grt Chl Ms Brs Gln, 16 – Grt Chl Ms Omp Gln Lws, 17 – Grt Ms Cld Omp

Gln Lws. Some small, minor fields are unlabelled for clarity. (b) Interpreted peak assemblage field showing isolines of molar modal proportions of selected phases. Red star indicates the best match between observed and calculated mineral abundances. Dashed line labelled $XNaM_4Act = 0.25$ marks the division between actinolite (<0.25) at low-T and barroisite (>0.25) at high-T. (c) Bar chart showing degree of correlation between observed volume proportions (%) of minerals and calculated proportions at 1.9 GPa and 485 °C (red star in part b). (d) Graphical representation of the calculated (Calc. vol.%) and observed (Obs. Vol%) volume proportions for sample N5 at 1.9 GPa and 485 °C. Figure 7. Results of mineral equilibria modelling for unsheared sample 14. (a) Pressure-temperature (P-T) pseudosection constructed for the bulk composition given in Supplementary Table 3. Dotted overlay represents the global range of P–T conditions modelled to occur at the surface of subducting ocean crust in present-day subduction zones (Syracuse et al. 2010). Gray star and associated dashed ellipses represent the results of avPT calculations (Table 4) and are shown at 1 and 2 S.D. Bold line marks the extent of H₂O-bearing assemblage fields. Numbered fields are as follows: 1 - Grt Ms Pg Omp Act Gln, 2 -Grt Ms Bt Omp Act Gln, 3 – Grt Bt Omp Act Gln Ab, 4 – Grt Bt Omp Act Gln Ilm Mag Ab (-Rt), 5 – Grt Bt Omp Act Gln Mag Ab (-Rt), 6 – Grt Bt Omp Brs Gln Mag, 7 – Bt Omp Brs Gln Hbl Mag, 8 – Grt Bt Omp Brs Hbl, 9 – Bt Di Brs Hbl H₂O, 10 – Bt Di Hbl Ttn H₂O (– Rt), 11 – Bt Di Hbl, 12 – Grt Ms Bt Omp Act H₂O, 13 – Grt Ms Tlc Omp Act H₂O, 14 – Grt Ms Tlc Omp H₂O, 15 – Grt Ms Tlc Omp Brs Lws, 16 – Grt Chl Ms Omp Brs, 17 – GrtChl Ms Omp Brs H₂O. Some small, minor fields are unlabelled for clarity. (b) Red star indicates the best match between observed and calculated mineral abundances. Interpreted peak assemblage field showing isolines of molar modal proportions of selected phases. Dashed line labelled XNaM₄Act = 0.25 marks the division between actinolite (<0.25) at low-T and

barroisite (>0.25) at high-T. (c) Bar chart showing degree of correlation between observed volume proportions (%) of minerals and calculated proportions at 2.0 GPa and 525 °C (red star in part b). (d) Graphical representation of the calculated (Calc. vol.%) and observed (Obs. Vol%) volume proportions for sample 14 at 2.0 GPa and 525 °C. Figure 8. Results of phase equilibria modelling for sheared sample 7c. (a) Pressure-temperature (P-T) pseudosection constructed for the bulk composition given in Supplementary Table 3. Dotted overlay represents the global range of P–T conditions modelled to occur at the surface of subducting ocean crust in present-day subduction zones (Syracuse et al. 2010). Gray star and associated dashed ellipses represent the results of avPT calculations (Table 4) and are shown at 1 and 2 S.D. Bold line marks the extent of H₂O-bearing assemblage fields. Numbered fields are as follows: 1 - Omp Act Gln Mag Rt Hem (-Ttn), 2 – Omp Act Gln Mag Rt, 3 – Omp Act Gln Mag, 4 – Omp Act Gln Mag Ab, 5 – Act Gln Mag Ab, 6 – Omp Act Hbl Gln Mag Rt (–Ttn), 7 – Omp Act Hbl Gln Ab, 8 – Act Hbl Gln Mag Ab, 9 – Chl Act Hbl Mag Ab, 10 – Chl Act Hbl Ab H₂O, 11 – BrsHbl Ab, 12 – Omp Act Hbl Ab, 13 – Di Act Hbl Ab H₂O, 14 – Di Hbl Ab H₂O, 15 – Di Act Hbl Pl, 16 – Di Hbl Pl Mag Hem (–Ttn, Ep), 17 – Omp Act Hbl Gln Rt Hem (–Ttn), 18 – Omp Brs Hbl Gln Rt Hem (-Ttn), 19 – Omp Brs Hbl Gln Rt (-Ttn), 20 – Omp Act Hbl Gln Rt (-Ttn), 21 – Omp Brs Hbl Gln, 22 – Omp Act Hbl Gln, 23 – Omp Brs Gln Rt Hem (–Ttn), 24 – Omp Act Hem (-Ttn), 25 – Omp Act (-Ttn). Some small, minor fields are unlabelled for clarity. (b) Red star indicates the best match between observed and calculated mineral abundances. Interpreted peak assemblage field showing isolines of molar modal proportions of selected phases. Dashed line labelled XNaM₄Act = 0.25 marks the division between actinolite (<0.25) at low-T and barroisite (>0.25) at high-T. (c) Bar chart showing degree of correlation between observed volume proportions (%) of minerals and calculated proportions at 0.6 GPa

2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1068	and 465 °C (red star in part b). (d) Graphical representation of the calculated (Calc. vol.%)
		and observed (Obs. Vol%) volume proportions at 0.6 GPa and 465 °C.
	1069	and observed (Obs. Vol%) volume proportions at 0.0 GPa and 405 C.
	1070	
	1071	Figure 9. Isochrons for all dated samples. A: Unsheared sample 14. B: Sheared sample 11. C:
	1072	Sheared sample 3b. D: Sheared sample 13. All ellipses are shown at the 2σ confidence
	1073	interval and $n =$ number of analyses.
	1074	
	1075	Figure 10. Representative back scattered electron images of analysed samples 14 (a), 11 (b),
	1076	3b (c) and 13 (d). U-Pb analysed spots are showing in ellipse (white: silicate phases and
	1077	yellow: carbonates).
	1078	
	1079	Figure 101. Pressure-temperature-time $(P T t)$ diagram summarizing the history proposed
	1080	model for the tectonometamorphic evolution of blueschist-facies rocks from the Nagaland
	1081	ophiolite complex. Red boxes represent calculated conditions of metamorphism and thick
	1082	grey arrow represents the interpreted $P-T-t$ evolution. Paths for Nagaland blueschists
	1083	reported by Chatterjee and Ghose (2010) and Ao and Bhowmik (2014) are shown (CG10 and
	1084	AB14, respectively) for comparison. Aragonite-calcite stability curve is from Johannes and
	1085	Puhan (1971).
	1086	
	1087	Figure 142. Schematic tectonic model for formation and exhumation of the Nagaland
	1088	ophiolite belt and its metamorphic suite. Final tectonic configuration of tectonostratigraphic
	1089	slices is modified after Khogenkumar et al. (2020). (a) Westward-dipping subduction away
	1090	from Myanmar during the Jurassic, with future Nagaland ophiolite belt oceanic crust on the
	1091	overlying plate. (b) Reversal in the subduction dip direction prior to the Early Cretaceous,
	1092	leading to burial of future Nagaland ophiolitic crust and mantle. (c) Peak metamorphism of
60	1093	the studied samples was achieved during the Middle Cretaceous, with (d) slab breakaway

break-off and buoyancy-driven exhumation and associated shearing of these units during the

Middle to Late Cretaceous. (e) the final configuration of the Indo-Myanmar plates and suture

zone between following collisional orogenesis (modified after Khogenkumar et al. 2021).

Yellow star indicates locations of the studied samples during metamorphism and

deformation.

<text>