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Abstract
The null distribution of the score test statistic is asymptotically chi-squared for large
samples. The error in this approximation is improved greatly by a cubic modification.
The coefficients of this cubic that are given in the literature depend on the parame-
terisation. This paper provides parameterisation-invariant versions of the coefficients,
expresses them in terms of appropriate tensors, and provides geometric interpretations.

Keywords Bartlett correction · Generalised Bartlett correction · Interest parameter ·
Invariant Taylor expansion · Large-sample asymptotics · Likelihood yoke · Tensor

1 Introduction

A common activity in statistics is that of testing the null hypothesis, H0, that the true
value of the parameter ω lies in a specified subspace of the parameter space �. The
two main general tests are the likelihood ratio test (LRT) and the score test. The LRT
rejects H0 for large values of w = 2

{
l(ω̂; x1, . . . , xn) − l(ω̃; x1, . . . , xn)

}
, where

l(·; x1, . . . , xn) denotes the log-likelihood based on observations x1, . . . , xn , and ω̂

and ω̃ are the maximum likelihood estimate and the restricted maximum likelihood
estimate under H0, respectively. The score test rejects H0 for large values of

S = Ũ�
h ĩ−1

h Ũh, (1)

whereUh is the score for the interest parameter, ih−1 is the interest part of the inverse
Fisher information,U�

h denotes the transpose ofUh , and each tilde indicates evaluation
at ω̃.
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Undermild regularity conditions and under independent sampling, the large-sample
asymptotic null distributions of w and S are χ2

p with error of order O(n−1), where p
is the dimension of the interest parameter. For w, there is a Bartlett adjusted version,
w∗, of w given by

w∗ = w(1 + R/p) (2)

for some constant R and so that the null distribution of w∗ is χ2
p with error of order

O(n−2) [3, 4]. The scalar R can be expressed in terms of some tensors [3, 6] that
arise from the geometry. For S there is no analogous linear Bartlett adjustment but
there is a cubic modification [9] of S such that its null distribution is χ2

p with error
of order O(n−3/2). The coefficients of the cubic are linear functions of coefficients in
the expansion [11] to order O(n−1) of the moment generating function of S. These
coefficients (and so the cubic modification) depend on the choice of parameterisation
of the nuisance parameters, i.e., on the way in which the parameter space is written
locally as a product of the spaces of interest and nuisance parameters. Even after
correction of a misprint noted by [9], the coefficients of the cubic given in [11] are
not invariant under re-parameterisation [10]. Further, there are no obvious geometric
interpretations of the coefficients. For the case of simple null hypotheses, there is [8]
a parameterisation-invariant version, S‡, of S such that the null distribution of S‡ is
χ2
p with error of order O(n−2). Whereas the cubic correction, S∗, of S introduced in

Sect. 3.3 below is a cubic function of S, S‡ = (Ũ ‡
h )� ĩ−1

h Ũ ‡
h , where Ũ ‡

h is a cubic
function of Ũh . Even in some simple models (such as that in [14, Sect. 3]), the cubic
giving Ũ ‡

h in terms of Ũh can be quite complicated. There are no obvious geometric
interpretations of the coefficients of this cubic.

The aim of this paper is to provide a parameterisation-invariant expansion to order
O(n−1) of S in which the coefficients have geometric interpretations. A cubic cor-
rection, S∗, of S is introduced, such that the null distribution of S∗ is χ2

p with error
of order O(n−2). Because two serious disadvantages of index notation are (i) it is
vulnerable to misprints, (ii) it can obscure concepts by concentrating on the details
of calculations, the approach here largely avoids explicit parameterisations and the
use of index notation. For readers who prefer index notation, Appendix A contains
expressions in that language for the coefficients of the cubic.

Section 2 recalls material on yokes, introduces fibred yokes, and shows how they
give rise to decomposition of tensors. In Sect. 3 the asymptotic moment generating
function of S is derived, the coefficients of the cubic giving S∗ are given, and these
coefficients are related to appropriate tensors.

2 Yokes and fibred yokes

An appropriate geometric setting for parametric models in which nuisance parameters
can be present is that of submersions from one smooth manifold to another. More
precisely, π : � → � is a smooth map from the full parameter space, �, to the space,
�, of parameters of interest, and at each point ω of � the tangent map π∗ maps the
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tangent space T�ω onto T�π(ω). The submersion condition implies that each fibre
π−1(ψ) is a submanifold of � and that around each ω small portions of � look like
� ×π−1(π(ω))with π being identified locally with the projection of� ×π−1(π(ω))

onto �. Nevertheless, in general � is not such a product and it is conceptually not
helpful to think of � in this way.

2.1 Yokes

The coordinate-free definition of a yoke is as follows. For a vector field X on amanifold
�, define the vector fields X̄ and X̄ ′ on � × � by X̄ = (X , 0) and X̄ ′ = (0, X), i.e.,

T p1(X̄) = X , T p2(X̄) = 0,

T p1(X̄
′) = 0, T p2(X̄

′) = X ,

where pk : � × � → � is the projection onto the kth factor for k = 1, 2. Then,
for vector fields X and Y on � and a smooth function g : � × � → R, we define
g(X |Y ) : � → R by

g(X |Y )(ω) = X̄ Ȳ ′g(ω, ω).

A yoke on � may now be characterised as a smooth function g : � × � → R such
that

(i) X̄ g(ω, ω) = 0 for all ω in �,
(ii) the (0,2)-tensor (X ,Y ) �→ g(X |Y ) is non-singular.

An alternative way of expressing (i) and (ii) is that on the diagonal �� =
{(ω, ω) : ω ∈ �},
(i) d1g = 0,
(ii) d1d2g is non-singular,

where d1 and d2 denote exterior differentiation along the first and second factor,
respectively, in � × �.

The two main yokes of interest in statistics are the likelihood yokes. Consider
a parametric statistical model with parameter space �, sample space X and log-
likelihood function l : �×X → R. The expected likelihood yoke on� is the function
g on � × � given by

g(ω, ω′) = Eω′ [l(ω; x) − l(ω′; x)]. (3)

Suppose that an auxiliary statistic a is given, such that the statistic (ω̂, a) is mini-
mal sufficient for ω, where ω̂ denotes the maximum likelihood estimator. Then the
corresponding observed likelihood yoke on � is the function g on � × � given by

g(ω, ω′) = l(ω;ω′, a) − l(ω′;ω′, a). (4)
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Properties and applications of expected and observed likelihood yokes can be found
in [1, 3].

A key property of yokes is that they give rise naturally to preferred coordinate charts
(called extended normal coordinates) taking values in appropriate cotangent spaces.
Given any point ω of �, the function 	ω from � to the cotangent space T ∗�ω to � at
ω is defined by

	ω(ω′) = d1g(ω, ω′). (5)

In terms of local coordinates ω1, . . . , ωd on �,

	ω(ω′) = ∂g(ω, ω′)
∂ωu

dωu,

where the Einstein summation convention is used. It follows from property (i) of a
yoke that 	ω(ω) = 0 and from property (ii) that the restriction 	ω|U of 	ω to some
neighbourhood U of ω in � is a coordinate chart on U taking values in T ∗�ω. Note
that the space T ∗�ω depends on ω. It has been customary [3, Sect. 5.6], [6, Sect. 4],
[16] to use the metric given by the yoke to ‘raise’ the 	ω, in order to obtain extended
normal coordinates with values in the tangent space T�ω rather than in its dual, the
cotangent space T ∗�ω. The 	ω defined in (5) are used here because they can be
regarded as more basic. In the language of strings, the coordinate expressions for the

‘raised’ versions of the derivatives of 	ω form the costring
−1
g/ [6].

For any smooth function f on �, the composition f ◦ 	−1
ω is a function

on an open neighbourhood of 0 in the vector space T ∗�ω, and so its deriva-
tives are symmetric tensors on T ∗�ω. Combining these tensors with 	ω gives
an invariant Taylor expansion (a parameterisation-invariant analogue of a Tay-
lor expansion) of f . Expressions in index notation for (‘lowered’ versions of)
these invariant Taylor expansions are given in [5, Sect. 3.3], [3, Sect. 5.6],
[16, Sect. 4]. Similarly, for any smooth function h on � × �, the composition
h ◦ (	−1

ω × 	−1
ω ) is a function on an open neighbourhood of 0 in the vector space

T ∗�ω × T ∗�ω, and so its derivatives are symmetric tensors on T ∗�ω ⊗ T ∗�ω. In
the language of strings, these tensors are said to be obtained by intertwining [1]. In
particular, Taylor expansion of g in the corresponding product coordinate charts on a
neighbourhood of (ω, ω) in �×� yields a family of tensors Tr1,...,rp;s1,...,sq on ω [6].

Remark 1 Extended normal coordinates, 	ω, can be defined also in the more general
setting of pre-contrast functions, meaning functions h : � × � → T ∗� such that

(o) h(ω, ω′) ∈ T ∗�ω,
(i) h(ω, ω) = 0,
(ii) d2h is non-degenerate on the diagonal,��, whered2 denotes the exterior derivative

along {ω} × �.

(In the language of vector bundles, h is a section of the pull-back of the cotangent
bundle of � by the projection π1 : � × � → � onto the first factor, such that h = 0
on the diagonal and its derivative is non-degenerate there.) The original definition
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[12] of pre-contrast functions required the restriction of −d2h to the diagonal to be a
semi-Riemannian metric on �.

The general mathematical concept that underlies the results in this paper is that of
a fibred yoke, i.e., a submersion π : � → �, together with a yoke on�. In the current
context, π maps parameters to interest parameters, and the yoke is a likelihood yoke
(3) or (4).

2.2 Decomposition of tangent spaces

In the tangent space T�ω to � at ω the vertical subspace Vω is defined as Vω =
{X ∈ T�ω : π∗(X) = 0}. Given aRiemannianmetricφ on�, the horizontal subspace
Hω is the orthogonal complement of Vω in T�ω. Thus φ decomposes T�ω as the
orthogonal direct sum

T�ω = Vω ⊕ Hω. (6)

The decomposition (6) varies smoothly with ω, in the sense that ω �→ (Vω, Hω) is
a smooth map from � to Vq(T�) × Vp(T�), where Vr (T�) denotes the manifold
{(ω, Eω) : Eω is an r -dimensional subspace of T�ω}, and p and q are the dimen-
sions of the interest and nuisance parameters, respectively. The smoothness of the
decomposition (6) implies that Yh,Yv,Yhv , and Yvv defined in Subsection 3.1 depend
smoothly on ω, and so, under mild regularity conditions, the tensors defined in (9)
below exist. The tangent mapping π∗ identifies Hω with T�π(ω).

The inner product πωφ on T�π(ω) is defined by

πωφ(X ,Y ) = φ(X̃ , Ỹ ) X ,Y ∈ T�π(ω),

where X̃ and Ỹ are the horizontal lifts to T�ω of X and Y , i.e., they are the unique
elements of Hω such that π∗(X̃) = X and π∗(Ỹ ) = Y . The dual of the decomposition
(6) of the tangent space T�ω to � at ω is the decomposition

T ∗�ω = V ∗
ω ⊕ H∗

ω (7)

of the cotangent space T ∗�ω to � at ω. Taking the r -fold tensor product of the
decomposition (7) of T ∗�ω leads to the decomposition

⊗r T ∗�ω = ⊕r
s=0

(
(⊗sV ∗

ω) ⊗ (⊗r−s H∗
ω

))
(8)

of the space of r -fold tensors on T ∗�ω.
The projection of the score onto H∗

ω using the decomposition (7) is the horizontal
score, Uh , used in (1). It is the score for the interest parameter, ψ , and is also known
as the orthogonal score [13, 17].
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3 Higher-order behaviour of S

3.1 Tensors from log-likelihood derivatives

Denote by Z1, Z2, Z3 the 1st, 2nd and 3rd derivatives of the log-likelihood, centred and
scaled by n−1/2 to have orderOp(1). Expressing Z1, Z2, Z3 in the functions	ω around
ω given by (5) with the expected likelihood yoke (3) yields random tensors Y1,Y2,Y3.
Decomposing Y1,Y2,Y3 by (8) gives Yh in H∗

ω , Yv in V ∗
ω , Yhv in H∗

ω ⊗ V ∗
ω , Yvv in

⊗2V ∗
ω and Yhvv in H∗

ω ⊗ (⊗2V ∗
ω). The tensors τh,h,h in⊗3H∗

ω , τh,h,v in (⊗2H∗
ω)⊗V ∗

ω ,
τh,v,v in H∗

ω ⊗ (⊗2V ∗
ω), τhv,hv in ⊗2(H∗

ω ⊗V ∗
ω), τh,h,vv in (⊗2H∗

ω)⊗ (⊗2V ∗
ω), τh,v,hv

in ⊗2(H∗
ω ⊗ V ∗

ω) and τh,h,h,h in ⊗4H∗
ω are defined by

τh,h,h = E[⊗3Yh], τh,h,v = E[(⊗2Yh) ⊗ Yv], τh,v,v = E[Yh ⊗ (⊗2Yv)],
τhv,hv = E[Yhv ⊗ Yhv], τh,h,vv = E[Yh ⊗ Yh ⊗ Yvv], τh,v,hv = E[Yh ⊗ Yv ⊗ Yhv],

τh,h,h,h = E[⊗4Yh]. (9)

Remark 2 The tensors (9) can be obtained from the expected yoke (3). There are
analogous tensors [3, Sect. 5.5] arising from the observed likelihood yoke ( 4). Under
ordinary repeated sampling, corresponding tensors differ by O(n−1/2).

3.2 Moment generating function of S

One way [3, Sect. 5.3] of deriving the constant R in the expression (2) for w∗ is based
on expanding w to order O(n−1) as a quartic in the score. There is an analogous
expansion of S as

S = S0 + n−1/2S1 + n−1S2 + O(n−3/2),

where S0, S1, S2 are Op(n−1), S0 is a homogeneous quadratic in Y1, S1 is a homoge-
neous cubic in Y1,Y2, and S2 is a homogeneous quartic in Y1,Y2,Y3. Calculation of
some low-order moments of products of S0, S1 and S2 leads to the following theorem.

Theorem 1 Suppose that (a) the sample space is continuous, (b) the log-likelihood
function is finite and its derivatives of order 4 or less are continuous in some neigh-
bourhood of ω, (c) the Fisher information at ω is non-singular. Then the moment
generating function MS(t) of S has the form

MS(t) = (1 − 2t)−
p
2

{
1 + 1

24n

(
A1d + A2d

2 + A3d
3 + O(d4)

)}
+ O(n−3/2),(10)

where d = 2t/(1 − 2t) and
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A1 = 12 trh trv (τhv,hv) + 3 〈trv (τh,v,v), trh (τh,h,h)〉h
+ 6 ‖τh,v,v‖2 + 6 trh trv(τh,h,vv) + 36 trh trv(τh,v,hv) + 6 ‖trv τh,v,v‖2, (11)

A2 = 3 trh trh (τh,h,h,h) − 6‖τh,h,v‖2 − 3‖trh (τh,h,v)‖2v
− 6 〈trv (τh,v,v), trh (τh,h,v)〉h , (12)

A3 = 3 ‖tr (τh,h,h)‖2 + 2 ‖τh,h,h‖2, (13)

where trh and trv indicate traces taken over pairs of factors in H∗
ω and V ∗

ω , respect-
ively, while inner products and norms on the tensor spaces ⊗H∗

ω , etc. are those given
by tensor products of inverse Fisher information.

If the null hypothesis, H0, is simple then

A1 = 0, (14)

A2 = 3 tr tr (τ4) , (15)

A3 = 3 ‖tr (τ3)‖2 + 2 ‖τ3‖2, (16)

where τ3 = τh,h,h , τ4 = τh,h,h,h , and the expressions given in [11, (3)] agree with
(14)–(16) Further, in this case of a simple H0, the constant R in the definition (2) of
the Bartlett adjusted version w∗ of w can be expressed as

R = 1

12

{
12 tr tr (τ2,2) + A2 + A3

}

with A2 and A3 as in (15)–(16) and τ2,2 in ⊗4T ∗�ω defined with components T/i j;kl
in [6, (5.22)]. There is also an expression [3, 6] for R in terms of analogous tensors
(mentioned in Remark 2) arising from the observed likelihood yoke (4).

3.3 Cubic modification of S

Put

c = A1 − A2 + A3

12p
, b = A2 − 2A3

12p(p + 2)
, a = A3

12p(p + 2)(p + 4)
,

where p is the dimension of �, and define the cubic modification S∗ of S by

S∗ =
{
1 − 1

n
(c + bS + aS2)

}
S.

Then [9] the null distribution of S∗ is χ2
p with error of order O(n−3/2). A slight

extension of the symmetry argument in [4] for the Bartlett-corrected likelihood ratio
test shows that the error is of order O(n−2).
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Appendix A Coefficients A1–A3 in terms of cumulants of
log-likelihood derivatives

The coefficients A1–A3 can be expressed in terms of the cumulants of log-likelihood
derivatives (for a single observation). In terms of local coordinates ω1, . . . , ωp+q on
�, these cumulants have components

κi j = E

[
∂2l

∂ωi∂ω j
(ω; x)

]
,

κi jk = E

[
∂3l

∂ωi∂ω j∂ωk
(ω; x)

]
,

κi, j = E

[
∂l

∂ωi
(ω; x) ∂l

∂ω j
(ω; x)

]
,

κi, j,k = E

[
∂l

∂ωi
(ω; x) ∂l

∂ω j
(ω; x) ∂l

∂ωk
(ω; x)

]
,

etc.
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Suppose that ω1, . . . , ωp+q are chosen such that ω1, . . . , ωp are interest parame-
ters, whereas ωp+1, . . . , ωp+q are nuisance parameters. Let

K =
(
K1,1 K1,2
K2,1 K2,2

)

be the (p + q) × (p + q) matrix of the κi, j , partitioned into blocks corresponding to
the interest and nuisance parameters, respectively. Put

A =
(
0 0
0 K−1

2,2

)
,

M = K−1 − A. (A1)

Then expressions (11–13) can be written in index notation as

A1 = 12 (κi j,kl − κm,nκm,i jκn,kl)m
ikm jl

+ 3 κi, j,kκl,m,nm
ila jkamn + 6 κi, j,kκl,m,nm

ila jmakn

+ 6 (κi, j,kl − κm,nκm,i, jκn,kl)m
i jakl

+ 36 (κi, j,kl − κm,nκm,i, jκn,kl)m
ika jl

+ 6 κi, j,kκl,m,na
ilm jkamn

A2 = 3 κi, j,k,lm
i jmkl − 6 κi, j,kκl,m,na

ilm jmmkn

− 3 κi, j,kκl,m,na
ilm jkmmn − 6 κi, j,kκl,m,nm

ila jkmmn

A3 = 3 κi, j,kκl,m,nm
ilm jkmmn + 2 κi, j,kκl,m,nm

ilm jmmkn,

where indices run over 1, . . . , p+q, the κ i, j are the elements of K−1, and the Einstein
summation convention is used.

Appendix B Proof of Theorem 1

The proof of Theorem 1 proceeds along the lines of the derivation of the expression
for the Bartlett correction factor given in [15, Sect. 7.4] and [3, Sect. 5.3]. Only an
outline of the proof is given here; full details can be found in [10].

Step 1: S in terms of polynomials in Yv,Yh,Yhv,Yvv and Yhvv

Ordinary Taylor series expansion (in any coordinate system on the full parameter
space �) of Z1 and i

−1
h about ω gives (in index notation)

Z̃i = Zi + κi j δ̃
j + n−1/2

(
Zi j δ̃

j + 1

2
κi jk δ̃

j δ̃k
)

+ n−1
(
1

2
Zi jk δ̃

j δ̃k + 1

6
κi jkl δ̃

j δ̃k δ̃l
)

+ O(n−3/2) (B1)
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and

κ̃ i, j = κ i, j − n−1/2κ i,r
[(

∂

∂ωa
κr ,s

)
δ̃a + n−1/2 1

2

(
∂2

∂ωa∂ωb
κr ,s

)
δ̃a δ̃b

]
κs, j

+ n−1κ i,r
(

∂

∂ωa
κr ,s

)
δ̃aκs,t

(
∂

∂ωb
κt,u

)
δ̃bκu, j + O(n−3/2), (B2)

where δ̃i = n1/2(ω̃ − ω)i . Since Z̃i = 0 if ωi is a nuisance parameter, (B1) can be
solved to give Zi (up to O(n−3/2)) as a cubic in the δ̃ j . Substituting (B1) and (B2)
in (1) then gives S (up to O(n−3/2)) as a cubic in the Z j . For general coordinate
systems the coefficients of this cubic are very complicated expressions in the first four
cumulants of the score but if the coordinate charts 	ω are used then the coefficients
take a much simpler form and

S = S0 + n−1/2S1 + n−1S2 + O(n−3/2),

where S0, S1, S2 are polynomials (of degrees 2, 3 and4, respectively) inYv,Yh,Yhv,Yvv

and Yhvv .
Step 2: The moment generating function of S.
The randomness in S comes from Y , where Y = (Y1,Y2,Y3). An approximation

to order O(n−1) to the probability density function of Y is obtained by Edgeworth
expansion in terms of tensorial Hermite polynomials [2, Sect. 5.7] of orders 3 and 4.
The regularity conditions in Theorem 1 ensure that this Edgeworth expansion is valid
(see [7, Sect. 5]). Then the moment generating function MS of S satisfies

MS(t) = |2πV |−1/2

|2πW |−1/2

∫
|2πW |−1/2 exp

{
−1

2
y�W−1y

}
P(y)dy + O(n−3/2),

(B3)

where V is the variance matrix of Y , W = (I − 2tVU )−1V with

U =
⎛

⎝
M 0 0
0 0 0
0 0 0

⎞

⎠ ,

M being given by (A1), and P is a function of S0, S1, S2 and tensorial Hermite poly-
nomials in Y1,Y2,Y3. Equation (B3) can be written in terms of moments of S0, S1, S2
and the tensorial Hermite polynomials. Calculation of these moments, together with
some manipulation, then yields (10) and (11)–(13).
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