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Abstract

The Fermi edge singularity, and related Anderson’s orthogonality catastrophe,
has been a touchstone of many body quantum physics for over 50 years. There
are, however, a number of facets of this phenomenon that have, up until now,
been left largely unexplored in the scientific literature. In this thesis we investi-
gate two of these. Firstly we explore how the orthogonality catastrophe spatially
spreads through a system, with particular considerations for the implications for
quantum information processing implementations. We find that there is a prop-
agating signal carrying the information about the Fermi edge singularity, but
at long times the orthogonality catastrophe reasserts itself, posing a significant
obstacle to the transmission of quantum information. We also found an “echo”
formed by the interference of multiple Fermi edge singularities at different lo-
cations. Secondly we consider the effect of band structure on the Fermi edge
singularity. Here we make significant progress in analytically understanding the
effect of having a finite band bottom and of band curvature on the Fermi edge
singularity. In the course of this we clarify some subtle points about the rela-
tionship between energy and time in non-relativistic quantum mechanics, which
had been glossed over in the previous literature.
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Chapter 1

Introduction

One of the major questions of modern condensed matter physics is the behaviour
of many-body quantum systems far from thermodynamic equilibrium. Whilst
the statistical physics of equilibrium systems has a well established theoretical
framework, the non-equilibrium case is far less developed.

Non-equilibrium quantum systems arise in a wide range of contexts, from
relatively mundane settings such as a system with an imposed temperature
gradient or with a driving force applied, to the practically important cases of
quantum devices, laser physics or implementations of quantum computers, right
through to more exotic situations such as the very early universe.

In recent decades our understanding of many-body systems out of equilib-
rium has advanced on many fronts. Developments in statistical and quantum
thermodynamics have given us new tools to study the statistical properties of
these systems. There is growing interest in the possibility of new phases of mat-
ter such as many-body localised or time crystal phases that can exist without
the constraints of equilibrium. The theory of open quantum systems develop-
ing rapidly, pushing beyond the Markovian approximation that inevitably pulls
systems to thermalize and new techniques with cold atom gases are giving us
tools to probe these systems experimentally in detail.

One important class of non-equilibrium phenomena is the response of a sys-
tem to an abrupt change of the Hamiltonian, on time scales much shorter than
any internal time scale of the system, known as a quench. Quenches are both
of practical significance for device physics but also theoretical interest as the
separation of timescales can offer significant simplifications. Furthermore the
Kibble-Zurek [1, 2] mechanism suggests that quenches describe the universal
physics of systems driven across a phase boundary. Furthering our understand-
ing of quench physics, therefore, represents a significant challenge in modern
condensed matter physics.

Possibly the paradigmatic example of a non-equilibrium, non-perturbative
phenomenon in a many-body quantum system is the Fermi edge singularity (FES).
It is a rare example of an exactly solvable [3] non-equilibrium effect in a many-
body system and so has provided both a conceptual touchstone to understand
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more complex many-body physics as well as a test bed for new theoretical tools.
The FES describes the fact that the frequency spectrum to introduce a local

impurity into a metallic Fermi system generally approaches the threshold min-
imum energy for the process as a (normally non-integer) power law, leading to
a singularity at the threshold. It is closely related to Anderson’s orthogonality
catastrophe (OC) [4]; at long times the overlap between the final state of the
system and its initial state before the introduction of the impurity tends to zero,
again with a non-integer power law. This vanishing of the overlap leads to a
failure of conventional perturbation theory, hence the “catastrophe”. These phe-
nomena are the result of the creation of a large number of low energy excitation
by the quench, known as Fermi sea shake up [5–8].

There are however a number of aspects of the FES that have received little
to no attention in the scientific literature up to this point. In this thesis we
will aim to address two of these. Firstly, in chapter 4, we will examine how
the OC spreads out from the impurity in space. This is a natural, physical
question to ask about the introduction of a local impurity by a quench, but it
has only received very limited consideration in the literature [8–10]. There are
also practical motivations to consider this question. There have been proposals
for quantum computing implementations with gates implemented using metallic
leads to mediate an effective interaction between qubits [11]. It is important for
these implementations to understand the dynamics taking place in the leads.
We therefore examine the possibility of the OC occurring in a toy model of
such a lead and investigate what this means for the transmission of quantum
information.

Secondly we will consider how band structure influences the FES, in chap-
ter ??. Much of the literature on the FES assumes an infinite linear band, which
is a reasonable approximation for weak impurity potentials when the Fermi level
is far from the band edge. For strong impurity potentials and in systems where
the chemical potential is comparatively low, for example in cold atom gases,
this approximation breaks down and we must take account of the band curva-
ture and the fact that the band does not extend indefinitely. There has been
notable interest in this area in the past 10 years, motivated by the possibility
of studying the FES in cold atom experiments, but much of the work has been
numerical [6]. We will aim, by contrast, to develop an analytical treatment of
the FES in a non-trivial band structure and make significant progress in this
direction. By generalising a method known as the Riemann-Hilbert approach
to account for the more complex band structure we were able obtain an explicit
integral representation of the decaying OC overlap in a finite band with a vari-
able density of states, although the evaluation of this integral remains open.
This expression, however, already provides physical insight into the interplay of
the physics of the FES with a complex band structure.

During our investigation into the FES in a finite band we clarified some
subtleties about the role of time in non-relativistic quantum mechanics, which
had been glossed over in the previous literature, but which proved to be crucial
in the current case.

By pushing the study of the FES in new directions, we may further its use
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as springboard to study more complex phenomena and as a test bed for new
tools for the study of many-body physics. For example we have developed the
extensions to the Riemann-Hilbert approach discussed above and, in chapter 4,
we will consider the FES as mediating a time delayed interaction, which gives a
new perspective for considering the temporal structure of effective interactions
mediated by a Fermi sea, such as the RKKY interaction.

The thesis is structured as follows: In chapter 2 we review the existing
literature on the FES. In chapter 3we review the key theoretical tools that were
used in carrying out our research. In chapter 4 we will explore the spatial aspects
of the FES. In chapter ?? we will investigate the effect of band structure on the
FES. We will briefly summarise our findings in chapter ??. Throughout the
thesis we will work in units such that ~ = 1.
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Chapter 2

Background and Literature
Review

2.1 Setting up the catastrophe
In the past 60 years the Fermi edge singularity (FES) has been studied with a
wide range of approaches and has built up an extensive literature. As a rare
example of an exactly solvable quantum many body phenomenon it has provided
a key conceptual touchstone for understanding more complex systems as well
as providing a benchmark for theoretical and numerical techniques. Here we
will review some of the key ideas in the existing literature on the FES and
orthogonality catastrophe (OC).

Historically the FES and orthogonality catastrophe were first considered
in the context of X-ray absorption and emission in metals [4, 12, 13], but the
phenomenon was quickly seen to be more general and the FES has been observed
in wide range of systems including quantum dot tunnelling current [14–21] and,
more recently, in ultracold gases of fermionic atoms [6, 22, 23].

For the essential setup of the FES we will consider a metallic system, de-
scribed by fermionic creation operators c†k coupled to a localised impurity with
two states |+〉 and |−〉. The Hamiltonian for this system is given as

H =
∑
k

εkc
†
kck + E0|+〉〈+|+

∑
kk′

Vkk′ c†kck′ |+〉〈+| . (2.1)

The continuum states are coupled to the impurity state via the potential
Vkk′ . This potential is “turned on” only when the impurity is in the |+〉 state.

We consider what happens to the system when the state of the impurity
is rapidly changed. How this is done will depend on the physical setup, for
example in the original X-ray absorption scenario the absorption of a photon
excites a core electron leading a positive hole, creating the impurity potential.
This can be represented by a perturbation of the form

Hpert =We−ıωtψ†(0)d + h.c. (2.2)
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where d = |+〉〈−| and the ψ† represents the addition of the excited electron to
the Fermi sea. In other cases, such as in cold atom setups where the impurity
is introduced by tuning the system to a Feshbach resonance [6], this additional
particle may be absent.

The FES problem has two key simplifying features:

1. The Hamiltonian in eq. (2.1) has a block diagonal structure, with blocks
defined by the state of the impurity. This means that the impurity dy-
namics are trivial and the problem effectively reduces from a many-body
problem of a large number of fermions interacting with an impurity to a
single particle problem with an external potential.

2. It turns out that the long time dynamics after changing the impurity state
(that is the decay in the overlap with the initial state that characterises
the OC) are entirely controlled by the behaviour of the system close to
the Fermi surface. This means, in particular that the exact form of the
potential away from the Fermi level does not matter and it can be approx-
imated by a constant potential in momentum space, that is a Dirac delta
function in real space.

These two properties are at the heart of the FES physics and will be explored
more fully below.

In order to calculate observables of interest the quantities most often con-
sidered in the literature [3, 6, 24] are the Green’s function for the impurity
state, Gimp(t), and the time dependent correlation function for the perturbing
Hamiltonian, F(t).

Gimp(t) = 〈T d†(t)d(0)〉 (2.3)
F (t) = 〈T Hpert(t)Hpert(0)〉 (2.4)

where the operators are taken in the Heisenberg picture, time evolved under
the Hamiltonian in eq.(2.1), and T is the time ordering operator. With these
quantities many measurable quantities of interest can be calculated, such as
emission and absorption rates in X-ray spectra, quantum dot tunnelling currents
and transition rates in cold atom gases.

As an exactly solvable problem the FES has been used as a benchmark
for a wide range of theoretical techniques, including most of the traditional
workhorses of condensed matter physics. The earliest works on the FES typically
employed diagrammatic perturbation theory and the linked cluster theorem,
resumming the series to all orders to obtain the result [3, 12, 25, 26]. Taking
inspiration from these diagramatic approaches Nozières and De Dominicis were
able to exactly solve the problem by solving the associated Dyson equation,
obtaining the key results that, in the long time limit

Gimp ∼ θ(t)t−2
∑

l(2l+1)
δ2l
π2 , (2.5)

F (t) ∼ θ(t)
∑
l,m

|Wlm|2t−1+2
δl
π −2

∑
l′ (2l

′+1)
δ2
l′

π2 , (2.6)
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where δ is the scattering phase shift of the impurity potential at the Fermi level,
and Wlm are the matrix coupling constants in Hpert in the angular momentum
basis. From these we can find the frequency space Green’s function Gimp(ω)
and the transition rate, Γ(ω) by taking Fourier transforms of Gimp(t) and F (t)
respectively

Gimp(ω) ∼ (ω − E0)
−1+2

∑
l(2l+1)

δ2l
π2 , (2.7)

Γ(ω) ∼
∑
l,m

|Wlm|2(ω − E0)
−2

δl
π +2

∑
l′ (2l

′+1)
δ2
l′

π2 . (2.8)

Note that the asymptotic relations in eq. (2.5) and eq. (2.6) are taken in the long
time limit, relative to inverse of the smallest energy scale in the band structure,
whilst in eq. (2.7) and eq. (2.8) they are taken in the corresponding small ω−E0

limit.
Subsequently many other central methods on many-body physics have been

applied to the FES such as directly solving equations of motion for Gimp and
F [27, 28], conformal field theory methods [29] or renormalisation group ap-
proaches [30].

With a finite temperature initial state these long time limits are ultimately
cut off by an exponential decay on a time scale of 1

kBT
, as thermal fluctuations

scramble excitations.

2.2 Experimental setups
The FES has been studied in a wide variety of experimental contexts. The first
considerations of the problem dealt with the absorption and emission X-rays by
deep core orbitals. The predicted frequency spectra were observed in a range of
metals over the subsequent decades [13, 31–37].

The absorption problem, where an impurity is suddenly introduced, and the
emission problem, where an impurity is removed, are straightforwardly related
to each other. As the system is assumed to have been able to relax before
the start of the experiment the impurity potential can be assumed to have been
screened by the Fermi sea in the emission case. Removing the impurity then can
be thought of as introducing an impurity with a potential −V [3]. To transform
between the emission and absorption problems we, therefore, simply make the
substitution V → −V and shift the ground state energy by the screening energy,
∆E, given by Fumi’s theorem [38]

∆E = −
∑
l

∫ EF

0

dE
δl(E)

π
(2.9)

where EF is the scattering phase shift.
Later experiments considered optical frequency absorption and emission

edges in semiconductor systems and heterostructures, which allowed greater
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flexibility in types of system considered, allowing experiments on the FES in low
dimensional systems such as quantum wires to be studied [39–41]. In particular
it allowed the FES to be studied in the context of one dimensional Luttinger
liquids, discussed in section 2.4.2 [42, 43].

The realisation that FES physics could be observed in tunnelling onto quan-
tum dots allowed for experiments with greater control of the experimental de-
sign as parameters such as the excitation energy and the tunnelling coupling
could be tuned by engineering the structure of the dot. Here the key measured
quantity was the tunnelling current. An electron tunnelling into or out of the
dot changed the field around it due to the Coulomb interaction, creating the
impurity [14–21, 44, 45].

More recently the prospect of studying the FES in gases of ultracold atoms
has been the focus of growing attention. These systems allow an exquisite level
of control over the parameters in the Hamiltonian but also raise new challenges
not encountered in solid state implementations. These systems typically have a
much lower density and so the impurity potential may be significant compared
to the Fermi energy, or at least with an energy scale over which the band shows
significant non-linearity, this means more attention must be paid to the effect of
band structure than had been previously. Cold atom experiments also inevitably
lose particles over time through a variety of processes. This means they are
inherently non-equilibrium setups (although the approximation of equilibrium
may be adequate, depending on the length of the experiment). This raises
questions about the nature of the FES in systems initially out of equilibrium,
which have attracted an increasing level of attention from theorists. The smaller
energy scales in ultracold atoms also lead to longer timescales, opening the
possibility of directly observing the OC in the time domain [6, 22, 23].

2.3 Reduction to the single particle problem
The fact that the Hamiltonian in eq. (2.1) is block diagonal in the impurity
degree of freedom leads to an essential simplification of the problem. As the
block diagonal Hamiltonian cannot cause transitions in the impurity, the poten-
tial term can be treated as a fixed external field during evolution under H. The
potential only changes when a perturbation causes transitions in the impurity
state. This can be viewed as giving the potential seen by the fermions a time
dependence, turning it on or off.

Treating the impurity potential as a time dependent external potential in
this way reduces the problem to an effective single particle model, which is
responsible, to a significant extent, for the solvability of the FES problem [3].
Many-body effects only enter into the calculation through Fermi statistics.

When the system is reduced the system in this manner we arrive at a single
particle version of the Hamiltonian eq. (2.1)

h =
∑
k

εkc
†
kck +

∑
kk′

Vkk′(t)c†kck′ (2.10)
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= h0 + V (t) (2.11)

up to a time dependent c-number term which can, for the moment, be ignored.
The quantities of interest Gimp(t) and F (t) can similarly be written in terms

of the single particle representation. The impurity Green’s function, in partic-
ular, can be written as [3, 24]

Gimp(t) = θ(t)e−ıE0t
〈
eıh0te−ı(h0+V )t

〉
. (2.12)

That is Gimp is given by the overlap of the state of system time evolved in the
impurity present and the state of the system time evolved with the impurity
absent. This quantity is known as the Loschmidt amplitude and its square
modulus, |

〈
eıh0te−ı(h0+V )t

〉
|2, is known as the Loschmidt echo [46].

2.3.1 Quench physics
The single particle formulation of the problem makes the central role of quench
physics in the FES explicit. Applying standard perturbative methods to Hpert

allows us to consider transitions of the impurity as happening at discrete times,
which translates in the single particle picture to the impurity potential turning
on and off instantaneously, quenching the system. We then observe the non-
equilibrium response of the Fermi sea to the quench.

2.3.2 The form of the impurity
The requirements that the Hamiltonian be block diagonal in the state of the
impurity and that the potential be local pose severe limitations for the pos-
sibilities for physical realisations of the impurity. Indeed the only practical
possibilities are impurities with a small number of possible states, often only
the two considered here. For this reason the FES is often described as dealing
with a structureless impurity in the literature [3, 47].

If this requirement for a structureless impurity is relaxed, that is the Hamil-
tonian is no longer required to be fully block diagonal in the impurity degree
of freedom, then the full complexity of a typical many-body system rapidly re-
turns. One physically natural case is to replace the fixed impurity with a finite
mass impurity. Here it is found that the FES [48] and the orthogonality catas-
trophe [49] are cut off by the mass of the impurity. This can be attributed to
the effect of recoil energy. When particles in the Fermi sea scatter off a finite
mass impurity, they transfer some of their energy to the impurity, reducing the
energy available to create particle-hole excitations and suppressing the Fermi
sea shake up [22]. This reduced Fermi sea shake up around the mobile impurity
results in the formation of a quasiparticle known as a Fermi polaron.

Another natural way to break the block diagonal structure of the Hamil-
tonian is to allow interactions with the Fermi sea to change the state of the
impurity, for example a spinful impurity which can exchange angular momen-
tum with the surrounding metal. This is the Kondo model, which has its own
extensive literature, which we will not discuss in detail here [50–57].
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The connection between the Kondo model and FES was explored thoroughly
by Anderson Yuval and Hamann [52, 54, 58, 59]. They expressed the evolution
of the Kondo system as an infinite series of FES like events. This approach
amounts to explicitly evaluating the path integral by summing over all possible
sequences of flips of the Kondo spin. The propagation between these flips is
governed by the solvable FES propagator. Whilst this approach to the Kondo
problem is cumbersome compared to more modern methods, it provides impor-
tant conceptual insights and allows developments in FES physics to be carried
over immediately into the more complex many-body physics of the Kondo prob-
lem.

2.3.3 The return of many-body physics: Fermi statistics
and functional determinants

Whilst the FES problem can in many respects be reduced to single particle
physics, there is one important aspect of many-body physics that still plays an
important role and that is Fermi statistics.

Reconstructing the behaviour of many-fermion systems in terms of single
particle behaviour is often considered in terms of evaluating Slater determi-
nants and quite generally, since the determinant can be characterised up to a
constant by being linear and totally antisymmetric in the rows of the input
matrix, it is almost inevitable that a wide range of problems in the physics of
fermionic quantum systems can be cast in terms of evaluating some form of
determinant. There are, therefore, a wide range of techniques for modelling
many-fermion systems based around functional determinants, which have been
applied to studying the FES.

Direct Slater determinant methods have been applied to the FES. Indeed
Anderson’s original OC paper took this approach [4]. Slater determinant meth-
ods were further developed by Combescot and Nozières [47] to reproduce the
Nozières De Dominicis result and by Ohtaka and Tanabe to obtain the prefac-
tors to the characteristic FES power laws [60]. The Slater determinant based
approach is, however cumbersome to work with and difficult to extend.

A more flexible and direct approach to express observables in terms of func-
tional determinants in non-interacting fermion problems is offered via the Klich
formula [61] 〈

eAeB . . . eC
〉
= det

[
1− n+ neaeb . . . ec

]
(2.13)

where n is the fermion occupation number operator, A, B, C, etc. are single
particle operators (i.e. quadratic in the fermionic operators) in the many particle
Fock space and a, b, c, etc. are the corresponding operators on the single particle
space. Correspondingly the expectation and determinant are taken over the
Fock and single particle Hilbert spaces respectively.

The Klich formula makes the dependence on the fermion occupation in the
many-body state explicit without placing any constraint upon it. This makes
it a good starting point for methods that aim to study finite temperature or
non-equilibrium physics, a number of examples of which will be discussed below.
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Another key tool in these methods has been the Szegö theorem and the
Fisher-Hartwig conjecture [62], allowing the asymptotic behaviour of the deter-
minants of large Toeplitz matrices to be determined. If we focus on the slow,
long, but finite, time dynamics the key physics will happen at the Fermi surface,
far from the band edge. In this case the frequency space representation of the
problem can be safely be folded around and treated as being periodic, with a
large period given by the band width, as nothing happens at the band top and
bottom where the system is “glued together” to form a circle. (Formally this is
achieved through the use of exponential regulators to remove any contribution
from the band edges.) This puts the desired determinant into Toeplitz form and
so allows the above theorems to be used to extract the long time behaviour [63,
64].

Functional determinants can also be evaluated numerically. This allows the
examination of systems that are too complex for analytical treatment, for ex-
ample those with a non-trivial band structure, as well as offering a method to
investigate the short time dynamics before the universal FES physics has set
in [6, 22].

2.4 Low Energy Excitations and Fermi Surface
Physics

The physics of the FES is dominated by the behaviour close to the Fermi sur-
face [3]. This second key simplifying feature of the problem means that the
details of the band structure and the exact form of the impurity potential, pro-
vided it is sufficiently local, play little role. This insensitivity to the details of
the system results in the universal physics at long times and, correspondingly,
frequencies close to the excitation edge.

As the potential in eq. (2.1) is assumed to be local it couples modes with
widely separated momenta, and so when the impurity is introduced it creates
particle-hole excitations with a wide range of energies. The high energy excita-
tions rapidly dephase and so do not contribute to the coherent response of the
system except at very short times. As the system is metallic, however, there
exist modes with energies arbitrarily close to the Fermi surface. Particle-hole
excitations in these modes can have an arbitrarily low energy and so can take
an arbitrarily long time to dephase. This is the Fermi sea shake up mentioned
above.

This slow dephasing of the low energy modes gives rise to slow dynamics
at long times in the form of power laws. The Fourier transform of this power
law at long times leads to a corresponding power law in the frequency spectrum
close to threshold [3, 12, 65]. In particular as modes dephase the overlap of the
final state with the initial state of the system, that is the Loschmidt amplitude
of eq. (2.12) decays with a non-integer power law.

Since it is only the low energy modes arbitrarily close to the Fermi surface
that control the long time behaviour of the system, it is only the properties
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of the system at the Fermi surface that are important, resulting in universal
physics. In particular the details of the band structure of the material are largely
unimportant, with only the density of states at the Fermi level contributing to
the universal physics. Similarly, the structure of the impurity away from the
Fermi level has little impact. Since the impurity is local in real space and so
should be broad and slowly varying in momentum space, it should not have any
dramatic features at the Fermi energy and so the universal physics is given by
a constant potential in momentum space, with its value given by the strength
of the potential at the Fermi surface. This corresponds to a δ-potential in real
space.

2.4.1 The Loschmidt Echo
The term Loschmidt echo was first coined in the field of quantum chaos [46].
The idea was to compare two states evolving under slightly perturbed variants
of a classically chaotic Hamiltonian [66]. The decay of the overlap could be
related to the Lyapunov exponent of the classical system [46], which can been
seen as a quantum manifestation of the classical butterfly effect. The name is in
reference to Loschmidt’s paradox [67]: How can reversible microscopic dynamics
give rise to irreversible thermodynamics? The Loschmidt echo can been seen as
measuring a type of reversibility in the dynamics, forward time evolving with
one Hamiltonian and backward time evolving with a modified one.

As with many simple quantities, the Loschmidt echo arises in a wide variety
of contexts in physics. In quantum information it can be seen as the fidelity
between the initial and final states, in the special case that both these states
are pure [68]. It gives the probability that a measurement of the final state
energy with respect to the initial Hamiltonian will find it in the ground state.
In quantum thermodynamics the Loschmidt echo between the initial and final
Hamiltonians of a process gives the characteristic function of the work distri-
bution [69]. For example, if we consider our impurity quench in the FES as a
thermodynamic process, we find that the work distribution is proportional to
the energy space Green’s function Gimp(ω) in eq. (2.7).

For our purposes the most useful way to view the Loschmidt echo is as a
measure of the coherence in a many-body system [70]. Its slow algebraic decay at
long times in the FES is indicative that there are degrees of freedom, specifically
the low energy modes, that are dephasing arbitrarily slowly. This is in contrast
to its typical exponential decay in an ergodic system noted above.

2.4.2 Bosonization
The key role of these low energy excitations in the FES is possibly best illus-
trated by treatments based around bosonization techniques. Bosonization maps
a 1D fermionic model onto a bosonic one, with the bosonic excitations represent-
ing charge density waves in the Fermionic model. The mathematical details of
bosonization will be discussed in section 3.1. Remarkably for fermionic models
with a linear dispersion, which includes the low energy regime of a broad class of
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metallic systems, bosonization allows the Hamiltonian to be diagonalised even in
the presence of interactions, resulting in what is known as the Luttinger Liquid
model [24, 71, 72].

In the bosonized model the Fermi sea shake up can be seen directly and
the key role of the low energy modes can be explicitly tracked [65, 73]. The
FES has proved a particularly useful model to test and develop new methods in
Luttinger Liquid physics.

Whilst the Luttinger liquid model can easily accommodate fermion-fermion
interactions, a fixed impurity with the capacity to backscatter particles from
one Fermi point to the other turns out to be more complex, resulting in tran-
scendental functions of the boson fields [24]. Due to the 1D nature of the system
such and impurity, or ‘weak link’, can profoundly influence the physics, with an
arbitrarily weak backscatterer blocking transmission in the presence of repulsive
interactions [74, 75]. Using a range of innovative techniques it is found that if
such an impurity is suddenly introduced into a Luttinger liquid the backscat-
tering term contributes a factor of t−1/8 to the decay of Gimp(t) [76–78].

Extensions of bosonization techniques has allowed the FES to be studied
in new contexts. In recent decades there has been great strides in applying
bosonization techniques to non-equilibrium situations [63, 64]. The bosoniza-
tion procedure is, in principle, an exact mapping of Hilbert spaces, so, with
many aspects of the bosonization procedure, there are no approximations that
might depend on the equilibrium case. The construction of the Hilbert space,
formulating the Hamiltonian and finding expressions for the operators of inter-
est are unchanged by departing from equilibrium. The complication does enter
in at two points:

1. Non-linearities in the fermion dispersion relation manifest as interactions
in the bosonic representation. In equilibrium at low energies we can lin-
earise the dispersion around the Fermi level. Out of equilibrium this may
not be possible.

2. Ultimately, in order to calculate observables we must represent the non-
equilibrium state of the fermionic system in terms of the bosonic degrees
of freedom.

The second point has been addressed by Gutman, Gefen and Mirlin [63, 64] in
a path integral formulation. They find that the generating function for the
non-equilibrium Luttinger Liquid can be expressed in terms of a functional
determinant, of the same form as those discussed in section 2.3.3. This can
be evaluated by the methods discussed above and allows an arbitrary fermion
distribution to be inserted. They retain, however, the ability to incorporate
fermion interactions, one of the key advantages of the bosonization approach.

Applying this formalism to the FES, Gutman et al. , find that, for the
example non-equilibrium fermion distribution of a ‘double step’ distribution,

n(E) = aθ((1− a)eV − E) + (1− a)θ(−aeV − E) (2.14)
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the overlap is suppressed in the time domain by an exponential with a decay
length

τsplit =
eV

2π
ln
(
1− 4a(1− a) sin2 δ

)
. (2.15)

This can be interpreted as being due to the rapid dephasing of excitations at
the two, finitely separated, Fermi surfaces, exponentially fast in the separation
of the discontinuities. In the energy domain this results in a smearing out of
the FES.

There has also been progress in moving beyond the linear dispersion of the
Luttinger liquid. On this front the physics of the FES has proved an essential
inspiration. In a 1D metal with non-zero band curvature, in order to excite a
fermion from below the Fermi level to above it energy and momentum conser-
vation require the creation of a large number of particle hole pairs, in addition
to the originally excited fermion. This creates a Fermi sea shake up similar to
the FES and so results in power laws in the spectral function, reminiscent of
eq. (2.7). [79–81]

2.4.3 Singular integral equations
A different perspective on the key role played by the Fermi surface in the FES
can be seen by mapping the problem fully into the time domain. Given the
representation in terms of a time dependent potential discussed above it is nat-
ural to consider the problem this way. This leads us to consider the Fourier
transform of the particle distribution function, which for the zero temperature
Fermi function is a Cauchy kernel [82]. The sharp discontinuity in the energy
representation leads to singular behaviour in the time domain. This singular
behaviour profoundly influences the mathematical character of of the problem,
in particular allowing powerful techniques from the theory of singular integral
equations to be brought to bare [83].

The exact solutions Nozières and De Dominicis’ a key step in resumming
the diagramtic series is forming the Dyson equations for the Green’s functions,
which have the form of singular integral equations and can be solved [3].

One notable singular integral equation based method is the known as the
Riemann-Hilbert approach (RHA). This approach allows the calculating of ob-
servables in time dependent impurity problems in many-fermion problems [5,
82]. This method uses the Klich formula eq. (2.13) to express the observable
of interest as a functional determinant. This can then be converted into the
problem of finding the inverse of the argument of the determinant via trace-
determinant formula

ln [detA] = tr [lnA] , (2.16)

and the fact that the logarithm of a bounded operator can be expressed in terms
of the integral of its inverse. The problem of finding the inverse of an operator
M can be viewed as an integral equation∫

dtM(t1, t)M
−1(t, t2) = δ(t1 − t2) . (2.17)
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The RHA solves this equation by mapping it onto an auxiliary Riemann-Hilbert
boundary value problem, exploiting the singular nature of M = 1 − n + nR,
where n is the particle number operator, in the time basis. This problem involves
finding a complex analytic function, Y (z), with a discontinuity on the real axis
given by Y+Y

−1
− = R. From this Y the inverse M−1 can be found. In the

Abelian case, that is R commutes with itself at all times, the general solution
for Y (z) is known [83].

We will give a more rigorous treatment of the RHA in section 3.2. In Chapter
?? we will extend the RHA to the case where the bandwidth is not infinite and
the density of states is not constant. Using this we will consider the effect of
band structure, and in particular the effect of a finite band width of the FES.

It is possible to extend the RHA to finite temperatures [84] by considering a
Riemann-Hilbert problem on a finite width strip of width 1

kBT
in the imaginary

time direction. The Klich formula makes introducing finite temperature fermion
distributions straightforward. Despite the fact that the fermion distribution is
continuous the underlying integral equations are still singular. This is because
in an infinite band we can always consider energies |E − EF | � kBT much
greater or much less than the Fermi energy, relative to T . At these energies
the particle distribution will look like a zero temperature Fermi function. Cor-
respondingly in the time representation, at short times the Fourier transform
of the Fermi function resembles a Cauchy kernel, that is it has a simple pole.
Non-equilibrium situations, considering a tunnelling junction with a different
chemical potential each side have also been considered [85].

It is also possible to formulate the FES in terms of singular integral equations
in the energy representation [28]. Here the singular behaviour is the result of
the quench physics. The discontinuity in the potential, as a function of time,
when the quench occurs results in singularities in its Fourier transformed energy
representation. This again allows the use of tools based on singular integral
equations.

It may be surprising that the same structures arise in both the time and
frequency domains, rather than Fourier transformed versions of each other. It
is important to bear in mind that in non-relativistic quantum mechanics energy
and time are treated on a fundamentally different footing. Energy is a true
observable. It is obtained as eigenvalues of the Hamiltonian and can be used
to label the corresponding basis of eigenstates, whereas time is a parameter in
the time dependent Shrödginger equation that labels the evolution of a state.
Eigenstates of the Hamiltonian evolve as |E〉 → e−ıEt|E〉, and so the evolution
of a general state has the form

|ψ(t)〉 =
∑
i

aie
−ıEit|Ei〉, (2.18)

which resembles a Fourier transform. The energy spectrum of a physical system
is necessarily bounded from below (although we may approximate it by an
unbounded spectrum, as we do in the case of a linear dispersion). This implies
that there can be no group of energy translation operators, which act for all
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energy states |E〉 as
U(∆E)|E〉 = |E +∆E〉 (2.19)

as applying this to the ground state with a negative value of ∆E, would result
in a state with an energy below the ground state, a contradiction. There can,
in turn, be no operator t̂ such that

U(∆E) = e−ı∆Et̂ (2.20)

that is, there is no time operator in quantum mechanics. This result is known
as Pauli’s Theorem [86].

Furthermore, the evolution in eq. (2.18) assumes that the Hamiltonian is
time independent. If the Hamiltonian is time dependent, however, this no longer
holds. In the case of quench, for example, there is, in general, no reason for
any particular relationship to exist between the pre and post quench energy
spectra, and so the only way to write relate the instantaneous energy and the
time evolution is to fully keep track when particular a Hamiltonian was applied
via time-ordering.

In problems where we have to deal with bounded spectra, time dependent
Hamiltonians or both, such as in the case of the FES, it is important to dis-
tinguish between physical time and the ‘time’ obtained by Fourier transforming
the energy spectrum of an instantaneous Hamiltonian, which we will refer to
as a formal time. Similarly we must distinguish between physical energy and
the formal energy obtained from Fourier transforming a physical time. This
distinction will be particularly significant in Chapter ??.

It is also possible to formulate a RHA based on a real time/formal energy
formulation [87]. This has been used to examine the non-equilibrium double step
particle distributions that were later examined with non-equilibrium bosoniza-
tion in [63, 64] which confirmed the results obtained via the RHA.

2.4.4 Dependence on particle number: deep and shallow
Fermi seas

The significance of the Fermi surface raises questions about the dependence of
the FES on particle number. Anderson’s original paper on the orthogonality
catastrophe [4] calculated the overlap in the long time, large particle number (N)
limit, finding that it decayed as a power law in particle number, with the long
time overlap only vanishing in the thermodynamic limit. This result was then
confirmed and refined in later work that built on the full solution by Nozières
and De Dominicis [26, 88].

More recently attempts have been made to understand the small N case,
where the impurity potential is comparable to Fermi energy. This has been
motivated by the desire to investigate the FES in the exquisitely controllable
setting of cold atom gases, where the Fermi level is often far lower than in tradi-
tional solid state contexts. Much of this work has relied on numerical methods.
Functional determinant methods have been used to calculate the FES decay in
both the time and frequency domains, finding that the power law behaviour is
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augmented by oscillations at the Fermi frequency [6]. These are attributed to
exciting particles from the band bottom [6, 22]. These phenomena have been
modelled analytically via a variational approach [89]. We will investigate this
case using an extension of the RHA in Section ??.

Bosonization techniques have been extended to take account of the band
curvature and investigate the effect of the band bottom on the FES, by using a
formal time basis. Within the linear dispersion of the Luttinger liquid moving
between energy and momentum bases amount to a trivial relabelling and so
position eigenstates can just as well be thought of as eigenstates of a time
operator t̂ = 1

vF
x̂. Moving beyond the linear regime, energy and momentum

states no longer coincide but, in 1D, states can typically be separated into
branches where the relationship is ordered and monotonic. It is still possible,
therefore, to map momentum states onto the energy states

cE =
√

2πg(E)ck(E) (2.21)

where ck are the standard fermionic annihilation operators. As the Hamiltonian
clearly has the form of a linear dispersion in terms of these new operators, we
can bosonize the system in the standard manner.

If the system has only a finite bandwidth, fictional spectator states can be
added to the Hilbert space of the system, extending the dispersion to ±∞.
Provided the Hamiltonian is block diagonal in the real and spectator modes,
they will remain separate and the contribution from the fictional states can
be removed later. As the mapping between energy and momentum states is
no longer a simple relabelling, the Fourier transformed fields as a function of
respectively formal time and position no longer coincide either. This means, in
particular, that a local impurity potential in real space will typically have a non-
trivial representation in terms of formal time. A Hamiltonian can be obtained
in the bosonic formal time representation which exactly accounts for the band
structure and can act as a starting point for a range of treatments of the FES
in a non-linear band structure, for example in a cold atom system, as will be
discussed further below, where the impurity potential may be comparable to
the Fermi energy [90].

We will employ the same broad approach of using a formal time represen-
tation of the system, with spectator states to extend the dispersion to infinity,
in Chapter ?? to consider the FES in a non-trivial band structure, but employ
the Riemann-Hilbert approach, discussed below, rather than bosonization.

2.5 Spatial spread of the FES
One area in which there has been comparatively little research is the real space
phenomenology of the FES.

Studies of the structure of ground state of quantum wires coupled to a dy-
namic impurity (with a separation of impurity levels much greater than the
coupling between them, so the system is far from the Kondo regime) show sig-
natures of the FES. The probability of finding the impurity in a given energy
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level in the global ground state show a power law dependence on the difference
of the energy level from the impurity ground state energy, depending on the
impurity scattering phase shift. This in turn leaves a signature in the spatial
correlation functions, specifically the current-current correlator and the fermion
Green’s function [91].

Further work has found more evidence of the FES in the dynamic correla-
tions above the ground state of these systems. The generating functional for
correlation in the charge density in the wire was directly related to the generat-
ing functional for correlation in the impurity state, leading to a corresponding
relationship between the respective Green’s functions and susceptibilities. In
particular

χν,ν′(x, y, t) ∝ G′′
Imp(t− y + x), (2.22)

Where χν,ν′(x, y, t) is the susceptibility of the system to a perturbation coupling
to charge. The impurity Green’s function displays the FES, so this carries over
onto the dynamic response of the system [8].

An alternative method to introduce spatial considerations into the FES prob-
lem is to consider a semi-infinite wire, with the impurity some distance from the
end. In this case it is found that the transition rate, Γ(ω), shows, in addition to
the standard power law edge singularity, oscillations corresponding to the fre-
quency of resonant charge density waves in the space between the impurity and
the end of the wire [9]. This demonstrates that the transition rate is sensitive to
the spatial structure of the environment through the Fermi sea shake up taking
place.

Studies using exact diagonalisation techniques have been performed on im-
purity quench systems. Zhang and Liu [10] found a wavefront spreading out
from the impurity separating two distinct regions. The outer region resembled
the undisturbed system before the quench, whilst the region inside the wave-
front showed oscillations in the particle density. These regions, with a sharp
propagating boundary can be seen at both the single and many particle level.

Campbell et al., also using exact diagonalisation methods, have claimed to
see precursors to the OC is systems of just two fermions in a harmonic trap with
an impurity. This study also shows oscillations in the spatial density distribution
after the quench [92]. It is not clear, however, how straightforward interpolating
from this to the full many-body case is.

There is still significant room to explore the manifestations of the FES in
position space. We take steps in the direction in Chapter 4, considering the cor-
relations between a pair of impurities coupled to a Luttinger liquid as different
spatial positions.
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Chapter 3

Methods in
Non-Equilibrium 1D
Quantum Systems

3.1 Bosonization
Bosonization is an extremely powerful method for understanding the behaviour
of Fermi systems in 1D. It is particularly noteworthy due to its ability to tackle
systems of interacting fermions without recourse to perturbation theory.

Physically bosonization maps the fermionic Fock space onto a space of den-
sity wave excitations of the Fermi-sea, described by bosonic statistics. These
density waves turn out to be the elementary excitations of the many-fermion
system, as apposed to the quasi-particle excitations in d ≥ 2.

We will give only a brief overview of the method here, which will skim over
some technical details, which are, for the most part unimportant. A more thor-
ough treatment can be found in [24, 71, 72, 93] among others. We will focus
on the case of spinless fermions, with only a few comments on the phenomenol-
ogy of the spinful case; For our purposes explicitly considering spin will largely
result in added mathematical complication without adding much conceptually.
Bosonization has historically suffered from a lack of consistent notation in the
community; we will aim to use notation consistent with [24] where possible.

We consider a 1D fermionic system with periodic boundary conditions. Let
the field operators be ψ(x) and let the size of the system be L. The momentum
space fermionic operators ck are defined in the usual way. Let |0〉 be the ground
state of the system, which for non-interacting fermions has 〈0|c†kck|0〉 = 1 for
|k| < kF and 〈0|c†kck|0〉 = 0 for |k| > kF . We define normal ordered product by
subtracting the operator product’s ground state expectation.

: AB := AB − 〈0|AB|0〉 (3.1)
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This ground state expectation may be divergent, in particular when considering
infinite bands, which will be needed below.

The Fermi surface of the system consists of 2 disconnected points at ±kF .
This property is unique to the 1D problem; in higher dimensions the Fermi
surface is consists of a (number of) extended manifold(s) in k-space. When
considering low energy phenomena, therefore, it is convenient to split the dis-
persion into disconnected branches around each Fermi-point. We refer to these
2 branches of the dispersion as the left moving and right moving branches for
k < 0 and k > 0 respectively. We write the creation operators for these branches
as cν,k and can define the left and right moving field operators by taking the
Fourier transform of the creation operators in each branch. (Note this means
that there is a non-local relationship between the left/right moving field opera-
tors and the full field operators.)

ψL/R(x) =
∑
k

e−ıkxcL/R,k , (3.2)

ψ(x) = ψL(x) + ψR(x) . (3.3)

It will generally be convenient to label right movers with ν = +1 and left movers
with ν = −1.

In order to bosonize the system we define the left/right-moving fermion
density operators by

ρν,k =
∑
q

c†ν,qcν,q+k . (3.4)

Some care must be taken when considering the k = 0 case. Naively applying ρν,k
to the ground state would give a divergent result in the case of an infinite band,
due to the infinite number of particles in the ground state, so it is important
only to consider the normal ordered product in this case.

: ρν,0 :=
∑
q

(
c†ν,qcν,q − 〈0|c†ν,qcν,q|0〉

)
. (3.5)

These operators are the Fourier components of the left/right moving fermion
density operator

: ρν(x) : =
∑
k

eıkx : ρν,k : (3.6)

=
∑
k,q

eıkx : c†ν,qcν,k+q : (3.7)

=
∑
p,q

eı(p−q)x : c†ν,qcν,p : (3.8)

=: ψ†
ν(x)ψν(x) : (3.9)

and so represent fluctuations in the fermion density.
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The commutators for the ρν,k can be calculated straightforwardly

[ρν,k, ρν′,k′ ] =
∑
q,q′

[c†ν,qcν,q+k, c
†
ν′,q′cν′,q′+k′ ]

† (3.10)

=δν,ν′

∑
q,q′

(
c†ν,q′c

†
ν,q{cν,q+k, cν,q′+k′} − c

†
ν,q′{c

†
ν,q, cν,q′+k′}cν,q+k

+ c†ν,q{cν,q+k, c
†
ν,q′}cν,q′+k′ − {c

†
ν,q, c

†
ν,q′}cν,q+kcν,q′+k′

)
(3.11)

=δν,ν′

∑
q

(
c†ν,qcν,q+k′+k − c

†
ν,q−k′cν,q+k

)
(3.12)

=δν,ν′

∑
q

(
: c†ν,qcν,q+k′+k : +〈0|c†ν,qcν,q+k′+k|0〉

− : c†ν,q−k′cν,q+k : −〈0|c†ν,q−k′cν,q+k|0〉
)

(3.13)

=δν,ν′δk,−k′
∑
q

(
〈0|c†ν,qcν,q|0〉 − 〈0|c

†
ν,q+kcν,q+k|0〉

)
(3.14)

=δν,ν′δk,−k
νkL

2π
(3.15)

The difference in eq. (3.14) is non-zero only if one term is above and the other
is below the Fermi surface. There are k values of q where this occurs for each
of the left/right moving branches, hence the factor of k in eq. (3.15). The
normal ordering of operators in eq. (3.13) is critical as it allows us to relabel
the indices in one of the terms, reordering the summation, and cancel the two
normal ordered operators. Reordering the sum without normal ordering the
operators leads to an incorrect result, due to invalid manipulations of divergent
terms. This result is highly suggestive and encourages us to define the operators

b†k =

√
2π

L|k|
∑
ν

Θ(νk)ρ†ν,k (3.16)

bk =

√
2π

L|k|
∑
ν

Θ(νk)ρν,k . (3.17)

These operators obey true bosonic commutation relations

[b†k, b
†
k′ ] = 0 (3.18)

[bk, b
†
k′ ] = δk,k′ (3.19)

and annihilate the ground state |0〉.
In order to find an expression for the fermionic operators in terms of the

bosonic ones we consider the commutator

[ρν,k, ψν′(x)] =
∑
q

∑
k′

e−ıxk
′
[c†ν,qcν,k+q, cν′,k′ ] (3.20)
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= −
∑
q

∑
k′

e−ıxk
′
δν,ν′δq,k′cν,k+q (3.21)

= −δν,ν′e−ıkxψν(x) . (3.22)

This shows that ψν(x) has a coherent state representation in terms of ρν,k (or
equivalently bk), that is

ψν(x) ∼ e
∑

k>0
2πν
Lk (e−ıkxρν,k−eıkxρ†ν,k) (3.23)

∼ eν
∑

k>0

√
2π
Lk (e−ıkxbνk−eıkxb†νk) . (3.24)

This cannot be the complete story, as ψν(x) reduces the fermion number by
1, while bk contains only pairs of fermionic creation and annihilation operators,
and so cannot change the fermion number. There must, therefore, be a prefactor
which changes the fermion number. We define the Klein factor Fν to commute
with all bosonic operators, reduce the fermion number by 1 and be unitary . It
turns out that the Klein factors rarely matter in practice; in most (but not all)
cases when a mismatch of fermion number would cause an expectation value to
vanish, other factors in the term also vanish. With this we can write

[Nν , F
†
ν′ ] = δν,ν′F †

ν , (3.25)

ψ = Fνe
ν
∑

k>0

√
2π
Lk (e−ıkxbνk−eıkxb†νk) , (3.26)

where Nν are the number operators for left/right moving fermions respectively.
If we consider a non-interacting Fermi-gas, with Hamiltonian

H0 =
∑
ν

∑
k

εν,kc
†
ν,kcν,k (3.27)

we find that the density operators have the following algebra

[ρν,k,H0] =
∑
r

∑
k′

εr,k′ [ρν,k, c
†
r,k′cr,k′ ] (3.28)

=
∑
r

∑
k′

∑
q

εr,k′ [c
†
ν,qcν,k+q, c

†
r,k′cr,k′ ] (3.29)

=
∑
k′

∑
q

εν,k′
(
δk+q,k′c

†
ν,qcν,k′ − δq,k′c

†
ν,k′cν,k+q

)
(3.30)

=
∑
q

εν,k+qc
†
ν,qcν,q+k − εν,qc†ν,qcν,k+q (3.31)

=
∑
q

(εν,k+q − εν,q)c†ν,qcν,q+k (3.32)

Now if we consider a narrow range around each Fermi-point we may treat the
dispersion as being approximately linear, εν,k ≈ vF ν(k − kf ). In this case
(εν,k+q − εν,q) = νvF k, independent of q. We can, therefore, write eq. (3.32) as

[ρν,k,H0] = vF νkρν,k (3.33)
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which implies that the density wave operators, or equivalently the bosonic op-
erators bk, act as ladder operators for H0, and that the Hamiltonian can be
written in the form

H0 = E0 +
2π

L

∑
ν

∑
k>0

vF ρ
†
ν,kρν,k (3.34)

= E0 +
∑
k

vF kb
†
kbk (3.35)

that is the density waves created by the bosonic operators are elementary ex-
citations of the linearised Fermi gas. Here E0 is the ground state energy. The
sum in eq. (3.35) is taken over all k, with k > 0 denoting right moving modes
and k < 0 denoting left moving odes.

We can define bosonic fields by taking the Fourier transforms of the bosonic
creation and annihilation operators. In practice it can be advantageous to con-
sider the Fourier transform of a particular combination of bosonic operators, to
obtain Hermitian fields that can be related to the physical density and current
in eq. (3.41) and eq. (3.42) below.

φ(x) = −πx
L

∑
ν

Nν − ı
√

π

2L

∑
p

√
|p|
p

e−xp−α|p|/2(b†p + b−p) (3.36)

θ(x) =
πx

L

∑
ν

νNν + ı

√
π

2L

∑
p

1√
|p|
e−xp−α|p|/2(b†p − b−p) . (3.37)

The comutation relations for these fields are given by

[φ(x), φ(x′)] = 0 (3.38)
[θ(x), θ(x′)] = 0 (3.39)

[φ(x), θ(x′)] = ı
π

2
sgn(x′ − x) (3.40)

Differentiating eq. (3.36) and eq. (3.37) we obtain

∇φ(x) = −π
∑
ν

ρν(x) (3.41)

∇θ(x) = π
∑
ν

νρν(x) (3.42)

that is the gradient of φ tells us the total charge density and the gradient of
θ tells us the total current, arising from low momentum sector k � kF . The
full density and current includes a large momentum contribution that mixes left
and right movers

ρ(x) =: ψ†(x)ψ(x) : (3.43)

=
∑
ν,ν′

: ψ†
ν(x)ψν′(x) : (3.44)
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=
∑
ν

(
ρν(x)+ : ψ†

ν(x)ψ−ν(x) :
)

(3.45)

= − 1

π
∇φ(x) + e−2ıkF x

2π
e−ı2φ(x) (3.46)

In terms of the bosonic fields, the fermionic operators can be written

ψν(x) = lim
α→0

Fν√
2πα

eıkF ix−
π
Lxe−ı(rφ(x)−θ(x)) (3.47)

Substituting eq. (3.41) and eq. (3.42) into the Fourier transform of eq. (3.34)
we can write the Hamiltonian as

H0 =

∫
dx

2π
vF
[
(∇φ(x))2 + (∇θ(x))2

]
(3.48)

The remarkable power of the bosonization approach becomes apparent when
interactions are added to the system. The generic fermion-fermion interaction
has the form

Hee =

∫
dxdx′ U(x− x′)ρ(x)ρ(x′) (3.49)

If we decompose this into left and right movers using eq. (3.45) we get three
distinct non-zero terms

Hee =
∑
ν

∫
dx dx′

[
1

2
g4(x− x′)ρν(x)ρν(x′) + g2(x− x′)ρν(x)ρ−ν(x′)

+ g1(x− x′)ψ†
ν(x)ψ−ν(x)ψ

†
−ν(x

′)ψν(x
′)

]
(3.50)

where we have allowed generalised our expression slightly by allowing the dif-
ferent terms to have different potentials. The naming of the coefficents gi has
become traditional and is known as the g-ology of 1d interacting Fermi sys-
tems [94]. Terms that do not conserve the number of left and right movers
separately vanish due to momentum conservation; Converting a left mover to
a right mover requires a large momentum transfer ∼ 2kF which cannot be
matched a momentum tranfer remaining within a small neighbourhood of the
Fermi point.

The g4 term describes the scattering of two particles close to the same Fermi
point, whilst the g2 term describes the scattering of two fermions on oposite sides
of the dispersion realtion. Both processes involve relatively small momentum
transfers. The g1 term, by contrast involves particles close to different Fermi
points scattering with a large momentum transfer ∼ 2kF , so that they exchange
which patch of the dispersion they are residing on. Since we are dealing with
spinless fermions here, however, particle indistinguishability means that this
term is the same as the the g2 term, up to a redefinition of the kinetic energy
term. For spinful particles, however, this term must be treated separately.

The g2 term can be written in terms of φ and θ as

g2ρν(x)ρ−ν(x) =
g2

(2π)2
[
(∇φ(x))2 − (∇θ(x))2

]
(3.51)
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In a similar way we can write the g4 term for right movers as

g4
2
ψ†
+(x)ψ+(x)ψ

†
+(x)ψ+(x) =

g4
2(2π)2

(∇φ(x) +∇θ(x))2 (3.52)

which, when combined with the equivilant term for left movers gives

g4
(2π)2

[
(∇φ(x))2 + (∇θ(x))2

]
(3.53)

We will now limit our attention to a contact interaction, to represent a heavily
screened interaction between particles, so that g2 and g4 are now constants.
Putting this together with eq. (3.48) we obtain

H =

∫
dx

2π
u

[
1

K
(∇φ(x))2 +K(∇θ(x))2

]
(3.54)

K =

[
2πvF + g4 − g2
2πvF + g4 + g2

]1/2
(3.55)

u = vF

[(
1 +

g4
2πvF

)2

−
(

g2
2πvF

)2
]1/2

(3.56)

It will be convenient in chapter 4 to employ another representation of the
bosonized fields. This is in terms of the pure left and right moving normal
modes of the Hamiltonians eq. (3.54). We define these fields as

ϕ̃ν(x) = φ(x)− νKθ(x) (3.57)

The commutators for these fields are given by

[ϕ̃ν(x), ϕ̃ν′(x′)] = −Kν′[φ(x), θ(x′)]−Kν[θ(x), φ(x′)] (3.58)

= ı
π

2
K (−ν′ sgn(x′ − x) + ν sgn(x− x′)) (3.59)

= ıπνKδν,ν′ sgn(x− x′) (3.60)

In terms of the normal mode fields the Hamiltonian in eq. (3.54) can be
written as

H = u

∫
dx

2π

1

K

(
∇ϕ̃−(x) +∇ϕ̃+(x)

2

)2

+K

(
∇ϕ̃−(x)−∇ϕ̃+(x)

2K

)2

(3.61)

=
u

2K

∑
ν

∫
dx

2π
(∇ϕ̃ν(x))2 . (3.62)

The Heisenberg equation for ϕ̃ν(x) is given by

˙̃ϕν(x) = ı[H, ϕ̃nu(x)] (3.63)
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= ı
u

2K

∫
dy

2π
2∇ϕ̃ν(y)[∇ϕ̃ν(y), ϕ̃ν(x)] (3.64)

= −νu
∫

dy δ(y − x)∇ϕ̃ν(y) (3.65)

= −νu∇ϕ̃ν(x) (3.66)
⇒ ϕ̃ν(x, t) = ϕ̃(x− νut) . (3.67)

That is ϕ̃ν(x) is respectively a purely left or right moving solution to the equa-
tions of motion.

The fermionic operators in terms of the normal mode operators are given by

ψν(x) = lim
α→0

Fν√
2πα

eıkF ix−
π
Lxe−

ı
2

∑
ν

(
r+ ν

K

)
ϕ̃ν(x) (3.68)

Notice that for K = 1, ψν depends only on ϕ̃ν and not on ϕ̃−ν , so that in the
absence of backscattering interactions a left(right) moving electron continues
to propagate to the left(right) as would be expected. The fact that a physical
fermion will in general contain a left and a right moving part, which will typically
separate and travel separately, is known as charge fractionalisation [95, 96].

We alo can rewrite eq. (3.41) and eq. (3.42) in terms of the normal modes
to obtain

∇ϕ̃ν = −π
∑
r

(1 + rνK) ρr(x) (3.69)

ρr(x) = −
1

4π

∑
ν

(
1 +

rν

K

)
∇ϕ̃ν(x) (3.70)

In order to calculate measurable quantities we must be able to calculate
expectation values of the bosonic field operators. We will focus on the zero
temperature behaviour of systems, although generalising our results to finite
temperature would be a simple matter of substituting the zero temperature
expectations for the standard finite temperature results. The zero temperature
expectation values can be obtained by a number of methods, either by starting
with a representation in terms of the bk and b†k operators and using the standard
bosonic operator results, or by using path integral methods, as is done in [24].
This yields

〈TK(ϕ̃ν(x, t)− ϕ̃ν′(x′, t′))2〉 = 2K ln

(
x− x′ − νu(t− t′) + ıν sgn(t− t′)α

ıν sgn(t− t′)α

)
(3.71)

Note that care must be taken to choose expectations such that the result in well
defined. Here TK denotes ordering along a Keldysh contour and the sgn(t− t′t)
should similarly be understood as +1 if t is ahead of t′ along the contour and
−1 if t′ is ahead of t. This determines the imaginary shifts, which encode crucial
physics of the system. The standard time ordered, anti-time ordered, greater
and lesser correlators can be cound by choosing times respectively both on the
forward branch, both on the backward branch or on different branches of the
contour.
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We will mostly be concerned with spinless fermions, as these will demonstrate
the physics we are interested in without adding unnecessary complication. We
will therefore only briefly describe the qualitative features of spinful Luttinger
liquids here, without going into the exact details.

To reintroduce the spin degrees of freedom we initially treat the spin up and
spin down fermions separately, bosonizing the spin up fermions ψ↑ to obtain a
pair of bosonic fields φ↑ and θ↑ and similarly bosonizing the spin down fermions
ψ↓ to obtain φ↓ and θ↓.

It turns out that the natural thing to do is define a pair of “charge” and
“spin” fields

φc(x) =
1√
2
(φ↑(x) + φ↓(x)) (3.72)

φs(x) =
1√
2
(φ↑(x)− φ↓(x)) (3.73)

and similarly for the θ and normal mode fields. The charge field carries electric
charge but no spin angular mometum and the spin filed carries spin but no
charge, hence the names. Remarkably when expressed in terms of these fields,
the Hamiltonian for an interacting system takes the form

H = Hc +Hs (3.74)

where Hc and Hs depend only on the charge or spin fields respectively. This
implies that the spin and charge degrees of freedom completely decouple and can
be considered independently. Excitations of the spin and charge fields, however,
propagate with different spin and charge velocities. That is if an electron is
injected into a spinful Luttinger liquid its spin and charge will separate and
travel independently through the system.

3.1.1 The Fermi-Edge Singularity in bosonization
The language of bosonization give a particularly insightful perspective on the
FES, first developed by Schotte & Schotte [65]. It shows the origin of the
Fermi-edge singularity to be in the large number of low energy density wave
excitations created by the introduction of the impurity. As these many low
energy excitations slowly dephase this gives rise to slow long time dynamics and
the power laws characteristic of the FES.

Introducing and removing a core hole is essentially a zero dimensional pro-
cess. A central scattering potential cannot alter the angular momentum of a
scattering particle, so angular momentum channels decouple. This results in
physics that is largely independent of the dimension. We will consider a radial
basis set and for simplicity consider only s-wave scattering (higher order angu-
lar momentum terms are straightforward to include). With this setup we can,
again, limit ourselves to only low energy phenomena and linearise the dispersion
around the Fermi level. The s-wave radial basis has one significant difference

31



from a true 1D system; The radial k vector takes values only of k > 0, so there
are, in effect “no left movers” in the problem.

We can now bosonize the system as before, with bk now defined for k > 0,
reflecting that the lack of left moving fermions.

The deep core potential has the form

V = V+(ρ(0) + ρ†(0))dd†, (3.75)

=
V+
L

∑
k>0

(ρk + ρ†k)dd
† (3.76)

where d† creates the deep core state.
Combining eq. (3.76) with eq. (3.35) and the core hole Hamiltonian HCore =

ECoredd
† we obtain the full Hamiltonian of the system.

H = E0 + ECoredd
† +

∑
k

vF kb
†
kbk +

V+√
2πL

∑
k

√
k(bk + b†k)dd

† (3.77)

As discussed in Chapter 2, one of the key observation to the solubility of
the Fermi-Edge problem is that it can be reduced to single particle physics, by
noting that the interaction between the hole and the Fermi sea cannot induce
a change in the state of the core hole, and so the interaction can essentially
be treated as an external potential, which may be switched on or off by an
external perturbation changing the state of the hole. Treating the core hole in
this manner gives us a pair of effective Hamiltonians for the Fermi gas, with
and without the core hole present.

h0 = E0 +
∑
k>0

vF kb
†
kb (3.78)

h1 = E0 +
∑
k>0

vF kb
†
kb+

V+√
2πL

∑
k>0

√
k(bk + b†k) . (3.79)

We can rewrite h1 as

h1 = E0+vF
∑
k>0

k

(
bk +

1√
2πL

V+

vF
√
k

)†(
bk +

1√
2πL

V+

vF
√
k

)
+const . (3.80)

We see that the effect of the impurity potential is to apply a shift to each of the
bosonic modes. Expressing the eigenfunctions of a shifted harmonic oscillator
in terms of the unshifted eigenfunctions requires an infinite number of function
to be used. This is why the FES generates an infinite number of excitations;
They are required to express the eigenfunctions of the original Hamiltonian in
terms of the eigenfunctions of the new Hamiltonian.

With this shifting in mind we define

W = e
δ
π

∑
k>0

√
2π
Lk (b†k−bk) (3.81)
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as the shift operator. Under the action of W , bk transforms as

W †bkW = bk +
δ

π

√
2π

Lk
. (3.82)

We can gain some intuition for the form of W by noting that if b and b† are the
creation and annihilation operators for a harmonic oscillator, the momentum
is given by p ∼ b − b† and so ea(b−b

†) is the translation operator for position
x ∼ b + b†. W then is simply the product of the translation operators for the
infinite family of bosonic modes indexed by k.

If we choose δ = V+

2vF
then we have that

h1 =W †h0W + const (3.83)

With this machinery in place we are in a position to calculate essentially any
quantity of interest. The traditional choices are the core hole Green’s function,
Gimp(t) and the matrix element for a perturbation, ψ†(0)d, exciting core holes
to the Fermi sea.

The calculation of Gimp(t) reduces to calculating the Loschmidt amplitude
for the Fermi gas, ignoring the impurity state.

Gimp(t) = 〈d†(t)d〉 (3.84)
= 〈eıHtd†e−ıHtd〉 (3.85)

When we move to the reduced system with the external impurity potential we
find that the first d turns of the impurity potential, while the d† turns it off
again. Therefore

Gimp(t) = 〈eıh0te−ıh1t〉 (3.86)
= 〈eıh0tW †e−ıh0tW 〉 (3.87)
= 〈W †(t)W (0)〉 (3.88)

The calculation of the perturbation matrix element proceeds along similar
lines.

F (t) = 〈d†ψ(t)ψ†(0)d(0)〉 (3.89)
= 〈eıHtd†ψe−ıHtψ†d〉 (3.90)
= 〈eıh0tψW †e−ıh0tWψ†〉 (3.91)
= 〈ψ(t)W †(t)W (0)ψ†(0)〉 (3.92)

Expressing ψ and W in terms of the bosonic creation/annihilation operators
and using the relation eAeB = eA+B+ 1

2 [A,B], valid when [A,B] ∈ C, we find
that

Gimp(t) = e−ı
(

δ
π

)2 ∑
k>0

2π
Lk e

−αk sin(vF kt)
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×
〈
e

δ
π

∑
k e

−αk/2
√

2π
Lk

[(
eıvF kt−1

)
b†k−

(
e−ıvF kt−1

)
bk

]〉
(3.93)

F (t) = e−ı
(
1+ δ

π

)2 ∑
k>0

2π
Lk e

−αk sin(vF kt)

×
〈
e
(
1+ δ

π

)∑
k e

−αk/2
√

2π
Lk

[(
eıvF kt−1

)
b†k−

(
e−ıvF kt−1

)
bk

]〉
(3.94)

Here we can see explicitly that the introduction of the impurity is creating an
infinite number of particle-hole pairs, weighted towards those with long wave-
lengths; that is towards low energy excitations. This is the Fermi-sea shake up
which is the physical root of the FES.

We can now employ the formula〈
e
∑

i abi+cb
†
i

〉
= e

1
2

〈(∑
i abi+cb

†
i

)2
〉
, (3.95)

to find that

Gimp(t) = e−ı
(

δ
π

)2 ∑
k>0

2π
Lk e

−αk sin(vF kt)

× exp

[
− δ

2

π2

∑
k>0

2π

L
e−αk

1− cos(vF tk)

k
〈b†kbk + bkb

†
k〉

]
(3.96)

= exp

[
δ2

π2

∑
k>0

2π

L
e−αk

eıvF tk − 1

k

]
(3.97)

∼
(
vF t

α

)− δ2

π2

(3.98)

F (t) = e−ı
(
1+ δ

π

)2 ∑
k>0

2π
Lk e

−αk sin(vF kt)

× exp

[
−
(
1 +

δ

π

)2∑
k>0

2π

L
e−αk

1− cos(vf tk)

k
〈b†kbk + bkb

†
k〉

]
(3.99)

= exp

[(
1 +

δ

π

)2∑
k>0

2π

L
e−αk

eıvF tk − 1

k

]
(3.100)

∼
(
vF t

α

)−
(
1+ δ

π

)2
(3.101)

In eq. (3.96) and eq. (3.99) we can see the generation of particle-hole excitations
at all energies and how, at long times the high energy contributions dephase,
leaving only the contribution from the divergent weighting of the low energy
modes, and that this leads to slow power law decays at long times, as these low
energy modes finally dephase from each other.

The value of δ = V+

2vF
is equal to the scattering phase shift in the Born-

approximation. Comparing the solution in eq. (3.98) and eq. (3.101) to the
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exact solution of Nozières and De Dominicis [3], we see that the only difference
is that the exact solution has the exact scattering phase shift instead of the
Born approximation. This is a result of the approximation of a linear dispersion
in the bosonization method.

3.2 The Riemann-Hilbert Approach
The Riemann-Hilbert (RH) approach is a non-perturbative method of calcu-
lating observables in scattering problems for non-interacting many-fermion sys-
tems [5, 82]. It maps the problem onto an auxiliary Riemann-Hilbert boundary
value problem, which, in the Abelian case, where the observable of interest
commutes with itself at all times, can be solved exactly.

We will consider a metallic system containing a time dependent scattering
potential. We will, for the moment, assume that the Fermi level is somewhere
in the middle of the band and that at all times the scattering potential is much
less than the bandwidth, so that we may assume the band extends to ±∞. We
will also assume for the moment that we can linearise the dispersion around the
Fermi energy, that is that the density of states is constant.

We consider an observable R(t) which can be written as in a form which is
no more than quadratic in fermion operators, i.e. it represents a single particle
observable in the many body system. As the system is non-interacting, the
expectation of the observable can be written as an anti-symmetrised sum over
the occupied single particle states, that is as a determinant

χ(t) = Detoccupied [R(t)] . (3.102)

The determinant over occupied states is cumbersome to work with, so it is
convenient to extend it to a determinant over all single particle states via the
Klich formula[61]. This gives us

χ(t) = Det [1− n+ nR(t)] , (3.103)

where the determinant is now taken over all single particle states and n is the
occupation of single-particle states. An intuition for this formula can be gain
by considering the case of zero temperature where

n(ε, ε′) = Θ(εF − ε)
δ(ε− ε′)
2πν(εF )

, (3.104)

i.e. it projects onto the states below the Fermi level, in which case it is clear
that the determinant factors into a contribution from the occupied states, which
is given by eq. (3.102) and a contribution from the unoccupied states which is
simply the determinant of the identity, that is 1.

The functional determinants are, in general, non-trivial to calculate. In order
to make progress with eq. (3.103) we will consider its logarithm and employ the
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Trace-Determinant formula1. This gives us

lnχ(t) = Tr ln [1− n+ nR(t)] (3.109)
= Tr [n lnR(t)] + Tr [ln (1− n+ nR(t))− n lnR(t)] (3.110)
= lnχ1(t) + lnχ2(t) (3.111)

where we have added and subtracted lnχ1(t) = Tr [n lnR(t)] from the right
hand side for eq. (3.109). The reason for doing this is to separate out the,
typically divergent, contributions from states deep within the Fermi-Sea from
the more physically interesting term χ2. In the cases we will be interested in R
is the scattering matrix, S, and so χ1 is the sum of the scattering phase shifts.
By Fumi’s Theorem [38] this gives the shift the ground state energy due to the
impurity potential. More generally this term is known as the generalised Fumi
contribution [85].

We have, in eq. (3.109), exchanged the problem of calculating a functional
determinant for the problem of calculating a functional logarithm. If we now
assume that R(t) is a bounded operator for all t, implying that 1 − n + nR is
also bounded, we may now employ the relation lnM(λ) =

∫
dλ M−1M ′, valid

for bounded operators. To do this we give R(t) = R(t, λ) some dependence on a
dummy parameter λ. We are largely free to choose the form of the dependence
for our own convenience; a common choice is

R(t, λ) = exp (λ lnR(t)) . (3.112)

We can now write

lnχ2(t) =

∫ 1

0

dλ Tr

[(
(1− n+ nR(t, λ))−1n− nR−1(n, λ)

) dR
dλ

]
. (3.113)

The remaining challenge is to calculate the inverse function (1−n+nR(t)).
It is for this that we introduce the auxiliary RH problem. Before we can do this

1To prove the Trace-Determinant formula

det eM = etrM (3.105)

consider a matrix diagonalisable M with a complete set of eigenvalues λ1, λ2 . . . . By definition
of the matrix exponential eM has eigenvalues eλ1 , eλ2 . . . . The determinant is given by the
product of the eigenvalues so we have

det eM =
∏
i

eλi . (3.106)

On the other hand the trace of a matrix is given by the sum of its eigenvalues so

etrM = e
∑

i λi . (3.107)

Comparing these two expressions we see that they are equal. Letting M = lnA and taking
logarithms of both sides we have

ln detA = tr lnA . (3.108)
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we will first move to a formal time basis, defined to be the Fourier transform of
the energy basis

|s〉 =
√
ν(εF )

∫ ∞

−∞
dε eıεs|ε〉 . (3.114)

Note that we have used the assumption of an infinite band. It is also important
to distinguish between the physical time, which appears as a parameter in R(t)
and the formal time used to label the basis states. This point will be discussed
in more detail in chapter ??, along with a more detailed account of the argument
given below about the form of R.

When transformed into the formal time basis, the Fermi function has the
form

n(s, s′) =
ı

2π

1

s− s′ + ı0+
(3.115)

that is, it is a Cauchy kernel, with its pole in the upper half plane. This opens
up a wide range of powerful analytic methods, which form the heart of the RH
approach.

The exact form of R(s, s′) will depend on the details of the observable being
considered, however it will typically be possible to relate it to the scattering
matrix of the impurity in some way. If the scattering potential is slowly varying
relative to the typical scattering time (characterised by the Wigner delay time
τscat = −ıS† ∂S

∂t [97]), then scattering particles will experience an essentially
static potential and further approximations are possible. Explicitly we will
assume, if the scattering matrix if viewed as a function of scattering energy, E,
and time, t, that [5]

S† ∂S

∂t
S† ∂S

∂E
� 1 . (3.116)

In this case we expect the scattering to be nearly elastic. With this in mind
we express the matrix elements of Rε,ε′ as a function of the relative and centre
of mass energies

ω = ε1 − ε2 , (3.117)

E =
ε1 + ε2

2
. (3.118)

The expectation that scattering will approximately conserve energy now cor-
responds to an expectation that R(ω,E) will be a sharply peaked functions of
ω.

With this in mind we consider the Wigner transform of R

R(τ, E) =
ν(εF )

2π

∫ ∞

−∞
dω e−ıτωR(ω,E) . (3.119)

We can express R(s′, s) in terms of R(τ, E)

R(s′, s) =
1

(2π)2

∫
dε1 dε2 e

−ıε1s′+ıε2sν(εF )

∫
dτ

eı(ε1−ε2)τ

ν(εF )
R(τ, E) (3.120)
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We will now make a key approximation. Due to Fermi-Dirac statistics, we
do not expect states far from the Fermi surface to contribute significantly to the
final result and so we can neglect the dependence of R(τ, E) and the density of
states in eq. (3.120) on E. We will treat the centre of mass energy as a constant
parameter fixed at εF . With this we find that

R(s′, s) =
1

(2π)2

∫
dω dE e−ıE(s′−s)−ıω (s′+s)

2

∫
dτ eıωτR(τ, εF ) (3.121)

= δ(s− s′)
∫

dτ δ(s− τ)R(τ, εF ) (3.122)

= δ(s− s′)R(s, εF ) (3.123)

that is, within the approximations of eq. (3.116) we have that R is diagonal in
the formal time basis.

We are now in a position to setup the auxiliary RH problem. A RH bound-
ary value problem consists of finding the piecewise analytic function, Y , which
satisfies given boundary conditions along the contour and at infinity. In our
case we will choose the contour to run along the formal time axis from the point
at which the scattering potential is introduced to the final time of the experi-
ment (at which point we may assume the scattering potential is removed). Note
that this implies we will require Y (s) to be analytic over the upper and lower
half planes, with the only nonanalyticity along the real axis. We will require
Y (s) to satisfy

Y−(s)Y
−1
+ (s) = R(s) (3.124)

where Y±(s) = Y (s ± ı0+) is the value of Y immediately above and below the
contour respectively. We will further require that

|s| → ∞ ⇒ Y (s)→ 1 . (3.125)

We now consider the expressions nY±n, where the product here denotes
matrix multiplication; for definiteness we will consider the expression with Y+
first. Explicitly writing out the matrix product reads

nY+n =

∫
ds n(s1, s)Y+(s)n(s, s2) . (3.126)

Now, as Y+ is analytic in the upper half plane (but not the lower half plane
as it has been shifted above the contour), we may close the integration contour
in the upper half plane and so pick up the residue for the pole of n(s1, s) at
s1 + ı0+, giving us

nY+n = Y+n . (3.127)
nY−n = nY− . (3.128)

where the second equation was found in an analogous way to the first, closing
the contour in the lower half plane, resulting in the change in the ordering of n
and Y on the right hand side.
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With the identities eq. (3.127) and eq. (3.128) it can be explicitly verified
that

(1− n+ nR)Y+[(1− n)Y −1
+ + nfY −1

− ] = 1 , (3.129)

that is (1− n+ nR)−1 = Y+[(1− n)Y −1
+ + nY −1

− ]. We can now write

lnχ2 =

∫ 1

0

dλ

∫
ds
(
Y+[(1− n)Y −1

+ + nY −1
− ]n− nR−1

) dR
dλ

(3.130)

=

∫ 1

0

dλ

∫
ds
(
1− Y+nY −1

+ n+ Y+nY
−1
− n− nR−1

) dR
dλ

(3.131)

=

∫ 1

0

dλ

∫
ds
(
1− Y+Y −1

+ n+ Y+nY
−1
− − nR−1

) dR
dλ

(3.132)

=

∫ 1

0

dλ

∫
ds
(
1− Y+Y −1

+ n+ Y+nY
−1
− − nY+Y −1

−
) dR
dλ

(3.133)

=

∫ 1

0

dλ

∫
ds [Y+, n]Y

−1
−

dR

dλ
. (3.134)

The diagonal matrix elements should be viewed as the limit as s → s′, so the
commutator becomes

[Y+, n](s, s) = lim
s′→s

ı

2π

Y+(s)− Y+(s′)
s− s′ + ı0+

(3.135)

=
ı

2π

dY+
ds

(3.136)

which gives us

lnχ2(t) =
ı

2π

∫
dλ ds tr

[
dY+
ds

Y −1
+ (s, t)R−1(s, t, λ)

dR

dλ

]
(3.137)

The only piece now missing needed to calculate χ2(t) is now to actually solve
the RH problem to obtain an explicit form for Y (s). For the Abelian case, that
is where [R(t), R(t′)] = 0 ∀t, t′ this can be found explicitly[83] as

Y (z) = exp

[
−ı
2π

∫
ds

lnR(s)

z − s

]
. (3.138)

3.2.1 The Fermi Edge Singularity from the Riemann-Hilbert
Approach

To illustrate the RH approach we will use it to calculate the Loschmidt am-
plitude for the FES. In this case our observable is given by the forward and
reversed time evolution operators, with and without the impurity

R(tf ) = eıHtf e−ı(H+V (tf ))tf . (3.139)
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It can be shown the long time limit this tends towards the Wigner trans-
form of the instantaneous scattering matrix, with a more in-depth derivation in
chapter ??.

R(ε1, ε2) =
1

2πν
(
ε1+ε2

2

) ∫ dτ eı
ε1−ε2

2 τS

(
ε1 + ε2

2
, τ

)
. (3.140)

The formal time domain representation of R for states close to the Fermi
level is, therefore, simply

R(s1, s2) = δ(s1 − s2)S(EF , s1) . (3.141)

Furthermore, for the FES, the time dependence of the impurity is simply to
turn on at t = 0 and off again at t = tf . This clearly satisfies the conditions in
eq. (3.116) for all times more that the typical quench time away from t = 0, tf .
S(Ef , s1) is explicitly given by

S(E, s) = 1 + (e2ıδ − 1) u (0, tf , s) . (3.142)

where

u(x, y, z) =

{
1 x ≤ z < y ,

0 otherwise .
(3.143)

From this we can explicitly calculate Y (s)

Y (z) = exp

[
−ı
2π

∫ tf

0

ds
2ıλδ

z − s

]
(3.144)

= exp

[
λ
δ

π
ln

(
z

z − tf

)]
(3.145)

=

(
z

z − tf

)λ δ
π

, (3.146)

Y+(s) =

(
s

s− tf + ı0+

)λ δ
π

, (3.147)

dY+
ds

Y −1
+ (s) = λ

δ

π

(
1

s
− 1

s− tf + ı0+

)
. (3.148)

Substituting this into eq. (3.137) we find that

lnχ2(tf ) =
ı

2π

∫ 1

0

dλ

∫ tf

0

ds λ
δ

π

(
1

s
− 1

s− tf + ı0+

)
2ıδλ (3.149)

= − δ
2

π2

1

2

∫ tf

0

ds

(
1

s
− 1

s− tf + ı0+

)
(3.150)

= − δ
2

π2
ln

(
ıvF tf
α

)
, (3.151)
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where α/vF is an ultraviolet cut off.
By Fumi’s theorem[38] the terms lnχ1 is found to be

lnχ1 = Trn lnS (3.152)

=

∫ εF

ε0

dε ıtf∆E . (3.153)

This gives us the final result

χ(t) = eıtf∆E
(
ıvF tf
α

)− δ2

π

, (3.154)

in agreement with our previous derivation via bosonization, in eq. (3.98) and
the Nozières-De Dominicis result [3].
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Chapter 4

The Spread of Catastrophe:
Spatio-Temporal
Propagation of the
Fermi-Edge Singularity

Whilst the FES has been studied for 50 years, until recently little attention has
been paid to how the orthogonality catastrophe spreads through the system [8,
91]. The introduction of a local impurity cannot instantaneously influence parts
of the system an arbitrary distance away, however the textbook treatments focus
entirely on quantities, such as the absorption rate, that are essentially local at
the site of the impurity or entirely global, such as the overlap integral, which
offer no finer spatial resolution.

We examined how the information about the introduction of the impurity
spread through the system. We were particularly interested in whether this
information spreads in an essentially classical or quantum form. If quantum
information about the impurity is being carried outward into the, largely inco-
herent, system could this be used for coherent quantum manipulation, such as
to implementation of a quantum gate?

Parts of this chapter have formed the basis of a paper, recently accepted for
publication [98]. Here we give a more thorough treatment of the calculations,
as well as a more in depth discussion of the surrounding ideas.

4.1 Model
In order to probe the effect of the impurity some distance away in space, we
considered a metallic system with two impurities at different locations. We could
then turn on one impurity and see what effect the orthogonality catastrophe in
the surrounding Fermi system had on the second.

42



One of the striking features of the FES is that it is largely independent of the
dimension of the metal. This is due to the fact that the impurity is point-like and
so physics focused on the impurity site is effectively zero dimensional, regardless
of the dimension of the parent medium. This feature cannot be reasonably
expected to remain when considering observables localised at different points
in space. Signals will generally spread out in a dimension dependent way. The
dimension of the system we choose to study will, therefore, likely quantitatively
impact our results.

We choose to focus on 1D systems, as this allows the easiest comparison with
the existing FES literature, as well as allowing us to use the powerful techniques
of bosonization, as used in, for example, [65]. Bosonization allows us to compute
a wide range of quantities exactly (and relatively simply compared to methods
such as the Riemann-Hilbert approach) but also provides us with a significant
amount of insight into the underlying physics.

Limiting our attention to 1D also means that we do not need to worry about
the signal spreading out over distance as would happen in higher dimensions.
This may result in stronger experimental signal, which may make any effects
easier to detect.

Explicitly we will consider a metallic quantum wire and will linearise the
dispersion around the Fermi level. We will consider spinless fermions, as we
believe that they capture the essential physics of the FES. It will discover below
that the results in the spinless case are already complex and cumbersome to
work with; we expect the spinful case to simply add to this complexity, without
adding much conceptually. We discuss what we expect to happen in the spinful
case more in section 4.12.3. This gives us a Hamiltonian of the form

H0 =
∑
ν

∫
dx′

[
−ıν vF ψ†

ν(x
′)∇ψν(x′)

]
. (4.1)

Where ψν(x) are the left/right moving fermion operators, with ν = 1 for right
movers and ν = −1 for left movers. As we are in a true 1D system, and antici-
pating our use of bosonization, we can include fermion-fermion interactions, as
it will add little extra complication.

Hee =

∫
dx′

[
g2ψ

†
+(x

′)ψ+(x
′)ψ†

−(x
′)ψ−(x

′)

+
g4
2

∑
ν

ψ†
ν(x

′)ψν(x
′)ψ†

ν(x
′)ψν(x

′)

]
. (4.2)

For the impurities we will consider a pair of localised fermionic states d†1
and d†2. We will assume that that d†1 is located at 0 and d†2 is located at x.
These states will each interact with the continuum via potentials V1 and V2,
centred around their respective impurity sites. We will further assume that
both potentials have a range much less than the Fermi wavelength and so can
be safely approximated by a δ-function potential. We will also assume that the
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potential V1 is turned on when the state d†1 is empty and the potential V2 is
turned on when the state d†2 is full. The reasons for this choice are discussed
below, but an alternative choice could easily be accommodated. We assume
that each state has an energy E1, E2 and that E1 is below the Fermi level while
E2 is above the Fermi level, that is E1 < 0 < E2 and that |Ei| � |Vi|. This
means that in the ground state the state d†1 is filled and d†2 is empty, so both
potentials are turned off.

Himp =
∑

i∈{1,2}

Eid
†
idi + V1d1d

†
1ρ(0) + V2d

†
2d2ρ(x) . (4.3)

The final element we require is a means to turn the impurity states on and
off. For this we introduce a term which is able to pump fermions from the wire
to localised states and back.

Hpump =
∑

i∈{1,2}

∫
dy√
α
Wi(t)λi(y)ψ

†(y)di + h.c. (4.4)

The coupling Wi gives an explicit time dependence for this pump term and by
choosing different functional forms we can examine a range of situations. For
example by choosing Wi = eıωt we can examine the response at fixed frequency.
On the other hand we can choose Wi to be a short pulse and examine the
dynamics of the system in the time domain, which we will focus on here.

The parameter α is a short distance cut off parameter, characterising the
smallest distance over which the fermions can be treated as a field of point
particles. Including this parameter explicitly allows us to choose Wi to have
units of energy and λi to be dimensionless. This cut off parameter will turn out
to play a crucial role in ensuring that the perturbative expansion is well defined
and that the resulting density matrix is positive.

The functions λi describe the spatial shape of the tunnelling potential into
the wire. We will assume that they have the form of a nascent δ-function,
i.e. that they are sharply peaked with λ1 centred around 0 and λ2 centred
around the position x. For the most part we will assume that we can take the
limit that the λis can be treated as a true δ-function, αδ(y) or αδ(y − x), and
so, for brevity, omit the integral over space and write the fermionic fields as
depending on fixed positions, but we will occasionally need to return to the full
integral form in order to show that certain apparently divergent expressions are
in fact finite.

We could consider a slight generalisation of this term, in which the functions
Wj(t) act differently on left and right moving electrons. In this case we would
replace the current term

Wiλiψ
†(y)di + h.c.→

∑
ν

Wi,νλiψ
†
ν(y)di + h.c. (4.5)

where Wi,ν now tell us how the pumping term acts on the left and right movers
separately. It turns out that with this modification the calculations given below
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carry through essentially unaltered. We will not do so, however, in the interests
of not cluttering the notation.

Whilst for a true quantum wire Wi,ν will be the same for left and right
movers, for other types of 1D system it could be engineered to be stronger for
one species than the other. In a quantum Hall edge state, for example, a fixed
magnetic field could be applied to bias the system to favour the production of
one species of fermion over the other.

4.2 Time evolution of the density matrix
We will aim to calculate the reduced density matrix for the two impurities,
tracing out the wire, as a function of time. From this we should be able to
calculate any observable of interest for the two localised states. We should,
therefore, be able to see how a change in the first state leads to a response in
the second. By considering how the density matrix changes with time and the
(assumed known) separation of the states we can infer how the influence of the
quench spreads through the system.

We focus on the localised states, tracing out the wire degrees of freedom, as
this suggests a concrete experimental realisation of how to achieve the desired
real space resolved measurement and because this allows us to discard a large
amount of largely irrelevant information, leading to a much simpler description.

The density matrix for the full system, including the wire, has a time evo-
lution which can be written as

ρfull(t) = U(t, 0)ρfull(0) , (4.6)
= U(t, 0)ρfull(0)U

†(t, 0) , (4.7)

U(t, 0) = T exp

[∫ t

0

dτ L(τ)
]
, (4.8)

U(t, 0) = T exp

[
−ı
∫ t

0

dτ H(τ)

]
. (4.9)

Here eq. (4.7) and eq. (4.9) are written in terms of the Hamiltonian and standard
time evolution operator, whilst eq. (4.6) and eq. (4.8) are written in terms of the
time evolution superoperator and the Liouvillian, L(t) = ı[H(t), · ]. T denotes
the standard time ordering operator.

We will work in an interaction picture, treating Hpump as a perturbation.
Note that we are still treating the interaction in Hint exactly, thanks to the
exact solvability of the FES problem (not to mention the fermion-fermion in-
teractions). The key observation about this decomposition is that there is no
term in the “free” part of the Hamiltonian which can change the occupation of
the localised states. These can only be changed by the perturbing pump term.
This will allow us to treat the interaction between the localised states and the
Fermi sea as a fixed external potential. The turning on-and-off of this potential
by Hpump can then be seen as a time dependence in this external potential; This
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is the same trick used in the Nozières-de Dominicis solution [3]. We will write

Ufixed(t
′, t) = e−ı(H0+Hee+Hinp)(t

′−t) , (4.10)

for the canonical mapping between the Schrödinger and interaction pictures.
It is convenient to write the interaction Liouvillian as a sum of terms related

to state 1 and state 2.

Lpump(t) = L1(t) + L2(t) (4.11)

= −ı
√
α[W1(t)ψν(0, t)

†d1(t) +W ∗
1 (t)d

†
1(t)ψν(0, t), · ]

− ı
√
α[W2(t)ψν(x, t)

†d1(t) +W ∗
2 (t)d

†
2(t)ψν(x, t), · ] . (4.12)

We will consider a system initially in its ground state, so that all interactions
between the localised state and the continuum are turned off (or alternatively
have been fully screened and this has already been accounted for in the defini-
tions of the fermionic fields). This state can be written, by construction, as a
product state

ρfull = |1〉〈1| ⊗ |0〉〈0| ⊗ ρT=0 . (4.13)
That is impurity state 1 is in the occupied state |1〉, state 2 is empty |0〉 and the
wire is an undisturbed Fermi sea at zero temperature. The extension to finite
temperature will be discussed in section 4.12.1.

We can now expand eq. (4.8) perturbatively.

U(t, 0) = 1 + T

∫ t

0

dτ1 (L1(τ1) + L2(τ1))

+
1

2
T

∫∫ t

0

dτ1 dτ2 (L1(τ1) + L2(τ1))(L1(τ2) + L2(τ2)) + . . . (4.14)

If we assume that W1(t) and W2(t) have disjoint support and that there
exists a time tmid such that the support for W2 consists of times strictly greater
than tmid and any time in the support of W1 is strictly less than tmid then we
can write

U(0, t) = U(t, tmid)U(tmid, 0) (4.15)

= T exp

[∫ t

tmid

dτ L2(τ)

]
exp

[∫ tmid

0

dτ L1(τ)

]
. (4.16)

This implies that all L2 terms be to the left of all L1 terms in eq. (4.14). From
here on we will assume that L1(τ) is non-zero only on the interval [0, t1] and
L2(τ) is non-zero only on the interval [t2, t], with t > t2 > t1 > 0. (Consider-
ing the density matrix for times earlier than t2 simply gives the results of the
standard FES with a single site and no new physics.)

We can now apply this operator to the initial density matrix ρfull and evalu-
ate term by term. The choice of initial state simplifies the resulting expression
considerably, as only terms with creation operators acting on an empty state
(or vice versa) do not vanish.
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We are ultimately interested in ρ, the reduced density matrix for the localised
states, not of the wire. To obtain this we trace out the wire degrees of freedom,
writing trwire [. . . ] for the partial trace over the wire degrees of freedom. This
allows us to obtain explicit expressions for the desired matrix elements and
further simplifies the problem, as terms which are off diagonal in the wire particle
number basis vanish.

In order to enumerate which terms survive, it is useful to employ a graph-
ical notation. The particular notation needed here is referred to “double-sided
Feynman diagrams” [99, 100].

We essentially need to enumerate the different ways to apply the perturbing
operators to either the left or right of the density matrix. With that in mind we
will draw a pair of lines representing the time evolution of the left and right sides
of the density matrix. The upper line will represent the “forward” time evolution
applied to the left of the density matrix and the lower line will represent the
“backwards” time evolution applied to the right, as shown in Fig. 4.1(a). We
can think of the initial state as being at the left hand side of the diagram, with
the final state at the right hand end and real time increasing from left to right.

This can be compared to a tensor network diagram, shown in Fig. 4.1(b),
where the initial density matrix has 2 “legs”. Applying a time evolution operator
to each leg results again in a matrix-type tensor, representing the final state.
If we trace over the final state, we connect these 2 legs. If we then send the
initial state back to t = −∞ we recover the standard Keldysh contour, shown
in Fig. 4.1(c).

Figure 4.1

(a) Empty double-sided
Feynman diagram

ρ(0) ρ(t)

(b) Tensor network dia-
gram

ρ(0)

U(0, t)

U†(0, t)

(c) Keldysh contour.
Note in this case we trace
over the final states

t← −∞

We can represent a perturbing operator by adding an arrow to one of the
lines. As illustrated in Fig. 4.2, we will use an arrow pointing “out”, away
from the line, to represent exciting an electron out of a localised state, into the
continuum, and an arrow pointing “in” to represent an operator that takes an
electron out of the continuum and puts it into a localised state. We will write
the arrows for electrons added at impurity 1 on the left hand end of the line and
the arrows for electrons added at impurity 2 on the right hand end, with time
advancing from left to right. Since we have restricted our attention to cases
where the perturbation at impurity 1 is switched off before the perturbation
at impurity 2 is switched on, there is no ambiguity in omitting the explicit
information about where the electron is being added or removed, provided the
two cases are clearly separated in time. Note that we do not connect these
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arrows into loops, as we are merely keeping track of operators applied to the left
(respectively right) of the density matrix. As all electrons are indistinguishable
we cannot associate the electron added to the continuum at the first impurity
site with the electron removed at second impurity site.

Figure 4.2: An example of a double sided Feynman diagram, representing the ex-
pectation trwire

[
d2(τ1)ψ

†(x, τ1)ψ(x, τ2)d
†
2(τ2)ψ

†(0, τ3)d1(τ3)ρfulld
†
1(τ4)ψ(0, τ4)

]
with τ1 ∈ [t2, t], τ2 ∈ [t2, τ1] and τ3, τ4 ∈ [0, t1]. The upward pointing arrow
on the left end of the upper line corresponds to the excitation of an electron
from state 1 on the forward time evolution ψ†(0, τ3)d1(τ3) and the downward
pointing arrow on the left end of the lower line corresponds the same process
on the backward time evolution, d†1(τ4)ψ(0, τ4). The pair of arrows on the right
hand end of the upper line correspond to exciting and then deexciting an elec-
tron into state 2 on the forward time evolution d2(τ1)ψ†(x, τ1)ψ(x, τ2)d

†
2(τ2). It

can be seen that time advances from left to right across the diagram.

↑ ↑ ↓↑

↓ ↓

The simplifications due to the choice of initial state translate into restrictions
on the allowed diagrams. The fact that we can only put an electron into a
localised state if it is empty and vice versa implies that the arrows referring to
a given localised state must alternate in and out. For our particular choice of
initial state the arrows for state 1 must start pointing out and the arrows for
state 2 must start pointing in. In addition, we have the requirement that when
we take the trace over the continuum states, the number of electrons in the wire
must be the same on both branches. This works out as a requirement that the
total number of arrows pointing up must equal the total number pointing down.

With this calculus we can calculate the allowed terms in the perturbative
expansion with reasonable efficacy.

If we examine the allowed diagrams there are 5 ‘fundamental’ diagrams,
shown in Fig. 4.3, which describe different allowed processes. All other diagrams
can be obtained from the fundamental diagrams by adding pairs of arrows, that
is we may remove and replace pairs of electrons, at each pulse on each branch.

The first diagram, Fig. 4.3(a), describes the vacuum contribution with no
excitation of the localised states. The next two diagrams, Fig. 4.3(b) and 4.3(c),
excite an electron (respectively hole) on each of the forward and backward
branches. This electron(hole) is added to the wire. These two diagrams describe
the excitations of one of the localised states, whilst dissipating the electron into
the wire. The fourth diagram, Fig. 4.3(d), (and its time reversed counterpart)
can be interpreted as transferring an electron from the first state to the second,
thereby exciting both states. (It is worth noting, however, that due to the in-
distinguishably of electrons it can also be interpreted as, for example, adding
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Figure 4.3: The five fundamental diagrams describing the possible processes
when a pair of pulses are applied to the system.

(a)

↑

↓

(b)

↑ ↑

↓ ↓

(c)

↑ ↓

↓ ↑
(d)

↑ ↑ ↓

↓

(e)

↑ ↑ ↓

↓ ↓ ↑

an electron to the wire in the first pulse and a hole in the second pulse, which
then later annihilate each other.) The final diagram, Fig. 4.3(e) describes this
process happening on both branches of the contour. All other diagrams repre-
sent renormalizations of these processes by exciting and deexciting the localised
states repeatedly in the different pulses.

Writing out the terms of this expansion up to quadratic order (for brevity),
corresponding to the first 4 diagrams in Fig. 4.3 plus diagrams adding a single
absorption-emission pair to the first diagram, gives us the expression below.

ρ(t) =ρ(0)− α
∫ t1

0

dτ2

∫ τ2

0

dτ1 |W1|2
[

trwire

[
d†1(τ2)ψ(0, τ2)ψ

†(0, τ1)d1(τ1)ρfull(0)
]

+ trwire

[
ρfull(0)ψ(0, τ1)d

†
1(τ1)d1(τ2)ψ

†(0, τ2)
]

− trwire

[
ψ†(0, τ1)d1(τ1)ρfull(0)d

†
1(τ2)ψ(0, τ2)

]
− trwire

[
ψ†(0, τ2)d1(τ2)ρfull(0)d

†
1(τ1)ψ(0, τ1)

] ]

− α
∫ t

t2

dτ2

∫ τ2

t2

dτ1 |W2|2
[

trwire

[
ψ†(x, τ2)d2(τ2)d

†
2(τ1)ψ(x, τ1)ρfull(0)

]
+ trwire

[
ρfull(0)d2(τ1)ψ

†(x, τ1)ψ(x, τ2)d
†
2(τ2)

]
− trwire

[
d†2(τ2)ψ(x, τ2)ρfull(0)d2(τ1)ψ(x, τ1)

]
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− trwire

[
d†2(τ1)ψ(x, τ1)ρfull(0)ψ

†(x, τ2)d2(τ2)
] ]

− α
∫ t

t2

dτ2

∫ t1

0

dτ1

[
W1W2 trwire

[
d†2(τ2)ψ(x, τ2)ψ

†(0, τ1)d1(τ1)ρfull(0)
]

+W ∗
1W

∗
2 trwire

[
ρfull(0)ψ(0, τ1)d

†
1(τ1)d2(τ2)ψ

†(x, τ2)
] ]

+O(W 4
jν)

(4.17)

One of the key steps in the solution of the original Fermi edge problem by
Nozières and De Dominicis [3] was the reduction to a single particle problem,
by treating the interaction between the impurity and the Fermi sea as a time
dependent potential acting on the metal, which turns on and off depending on
the state of the impurity. This is possible due to the fact that nothing in the
Hamiltonian, containing the energy of the fermions in the wire and the direct
interaction between the wire and the localised states, can change the state of
the local impurity.

We have constructed the Hamiltonian H0 +Hee +Hint such that this is also
true in our system; the state of the localised states can only change due to the
action of the perturbing Hpump. We can, therefore, apply the same approach
here. In our chosen initial state the interaction term is switched off. The state of
the localised states only change when one of the dj operators (or their Hermitian
conjugates) is applied. We, therefore, can simply trace through the (forward and
backward) time evolution, keeping track of the occupation of the localised states
each time it changes and changing the Hamiltonian the fermions in the wire are
subject to accordingly.

Each of the diagrams in Fig. 4.3 contributes to a single element of the final
reduced density matrix, determined by the occupation numbers of the localised
states at the end of each branch of the time evolution. Those diagrams with the
same process happening on both branches correspond to diagonal elements of the
density matrix, whilst those with different processes on each branch correspond
off diagonal elements. Fig. 4.3(a) is a renormalization of the identity and so
leave the density matrix in its original state. Figs. 4.3(b) and 4.3(c) correspond
to diagonal elements with one of the localised states excited, that is both are
unoccupied (if the first state was excited) or both are unoccupied (if the second
state was excited). Fig. 4.3(d) has a different number of excitations on the upper
and lower branches and so represents an off diagonal element of the density
matrix, connecting the initial state (the empty lower branch) with the doubly
excited state (represented by the pair of arrows on the upper branch). Fig. 4.3(e)
has a similar double excitation on both the upper and lower branches, and so
corresponds to the diagonal density matrix element with doubly excited states.

If we order our basis so that the localised states have occupation numbers
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[(0, 0), (1, 0), (0, 1), (1, 1)] the resulting density matrix has the form

ρ(t) =


D1 0 0 0
0 A F 0
0 F ∗ B 0
0 0 0 D2

 . (4.18)

The A term represents the probability of the system remaining in its original
state, whist B represents the probability of both states being excited with a
net transfer of a fermion from the first localised state to the second. The terms
D1 and D2 describe the probability of decoherence into the bath. Off diagonal
terms F , on the other hand, represent a build up of coherence between the states
of the 2 localised states.

It is convenient, when considering the calculation of the various correlation
functions, to switch back to a Schrödinger picture, where it is easier to keep
track explicitly of which Hamiltonian is to be used for a given segment of the
time evolution. We will denote the Hamiltonian for the wire only, with the
interaction with the localised states incorporated as an external potential as

hij = H0 +Hee + δ1,iE1 + δ1,jE2 + V1δ0,iψ
†(0)ψ(0) + V2δ1,jψ

†(x)ψ(x) ,
(4.19)

with which we define the family of evolution operators

Uij(t
′, t) = e−ıhij(t

′−t) . (4.20)

Here i, j ∈ {0, 1} denote the occupation of the first and second localised states
respectively. If i = 0 the first localised state is unoccupied and the E1 term
vanishes, whilst the interaction with the wire is switch on. Conversely if i = 1
the E1 energy offset is turned on, while the V1 interaction term is not. The
situation is similar of the second localised state and the j index, however in this
case both the fixed E2 term and the interaction potential are turned off when
the site is unoccupied (j = 0) and turned on when it is occupied (j = 1).

We can now write an explicit expansion for each of the matrix elements.
Note that in separating out the different matrix elements we have implicitly
reduced the Hilbert space we are considering to only the wire. The expectations,
therefore, represent a full trace, rather than a partial trace, and so we can use
the cyclic property of the trace. This allows us to do two things.

Firstly we can bring expectation values with operators on the left, right or
both sides of the density matrix into a common form, for definiteness with the
density operator on the far right of the expression and all other operators to the
left of it. In doing this we find that several expectation values that appeared
different, and may indeed contribute to different matrix elements, evaluate to the
same value. This is not, in fact, coincidental but a requirement for maintaining
a unit trace; when summing terms from different matrix elements all terms other
than the 1 from the initial state must cancel.

Secondly it allows us to cancel matching forward and backward time evolu-
tions at the ends of each branch, simplifying the expressions obtained. Viewed
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another way, by taking a full trace we have done exactly what is described in
Fig. 4.1(c). By tracing over the system we have closed the contour and ob-
tained a standard Keldysh contour, which we can distort in the usual manner.
To fourth order we find that the matrix elements are

B =

∫ t1

0

dτ4

∫ t

t2

dτ3

∫ t

t2

dτ2

∫ t1

0

dτ1

[
W ∗

1 (τ4)W2(τ3)W
∗
2 (τ2)W1(τ1)〈

U1,0(0, τ4)ψ(0)U0,0(τ4, τ3)ψ
†(x)U0,1(τ3, τ2)ψ(x)U0,0(τ2, τ1)ψ

†(0)U1,0(τ1, 0)
〉]

+O(W 6) , (4.21)

F = −
∫ t

t2

dτ2

∫ t1

0

dτ1

[
W2(τ2)W1(τ1)

〈
U1,0(0, t)U0,1(t, τ2)ψ(x)U0,0(τ2, τ1)ψ

†(0)U1,0(τ1, 0)
〉]

+

∫ t1

0

dτ4

∫ τ4

0

dτ3

∫ t

t2

dτ2

∫ t1

0

dτ1

[
W1(τ4)W

∗
1 (τ3)W2(τ2)W1(τ1)〈

U1,0(0, τ4)ψ(0)U0,0(τ4, τ3)ψ
†(0)U1,0(τ3, t)U0,1(t, τ2)

× ψ(x)U0,0(τ2, τ1)ψ
†(0)U1,0(τ1, 0)

〉]
+

∫ t1

0

dτ4

∫ τ4

0

dτ3

∫ t

t2

dτ2

∫ t1

0

dτ1

[
W ∗

2 (τ4)W2(τ3)W2(τ2)W1(τ1)〈
U1,0(0, τ4)ψ

†(x)U1,1(τ4, τ3)ψ(x)U1,0(τ3, t)U0,1(t, τ2)

× ψ(x)U0,0(τ2, τ1)ψ
†(0)U1,0(τ1, 0)

〉]
+O(W 6) (4.22)

D1 =

∫ t1

0

dτ2

∫ t1

0

dτ1

[
W1(τ2)W

∗
1 (τ1)〈

U1,0(0, τ2)ψ(0)U0,0(τ2, τ1)ψ
†(0)U1,0(τ1, 0)

〉 ]
−
∫ t1

0

dτ4

∫ t1

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1

[
W ∗

1 (τ4)W1(τ3)W
∗
1 (τ2)W1(τ1)〈

U1,0(0, τ4)ψ(0)U0,0(τ4, τ3)ψ
†(0)U1,0(τ3, τ2)ψ(0)U0,0(τ2, τ1)ψ

†(0)U1,0(τ1, 0)
〉 ]

−
∫ t1

0

dτ4

∫ τ4

0

dτ3

∫ τ3

0

dτ2

∫ t1

0

dτ1

[
W ∗

1 (τ4)W1(τ3)W
∗
1 (τ2)W1(τ1)〈

U1,0(0, τ4)ψ(0)U0,0(τ4, τ3)ψ
†(0)U1,0(τ3, τ2)ψ(0)U0,0(τ2, τ1)ψ

†(0)U1,0(τ1, 0)
〉 ]

−
∫ t1

0

dτ4

∫ t

t2

dτ3

∫ τ3

t2

dτ2

∫ t1

0

dτ1

[
W ∗

1 (τ4)W2(τ3)W
∗
2 (τ2)W1(τ1)
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〈
U1,0(0, τ4)ψ(0)U0,0(τ4, τ3)ψ

†(x)U0,1(τ3, τ2)ψ(x)U0,0(τ2, τ1)ψ
†(0)U1,0(τ1, 0)

〉 ]
−
∫ t1

0

dτ4

∫ t

t2

dτ3

∫ τ3

t2

dτ2

∫ t1

0

dτ1

[
W ∗

1 (τ4)W2(τ2)W
∗
2 (τ3)W1(τ1)

〈
U1,0(0, τ4)ψ(0)U0,0(τ4, τ2)ψ

†(0)U0,1(τ2, τ3)ψ(0)U0,0(τ3, τ1)ψ
†(0)U1,0(τ1, 0)

〉 ]
+O(W 6) (4.23)

D2 =

∫ t

t2

dτ2

∫ t

t2

dτ1

[
W2(τ2)W

∗
2 (τ1)〈

U1,0(0, τ2)ψ
†(x)U1,1(τ2, τ1)ψ(x)U1,0(τ1, 0)

〉 ]
−
∫ t

t2

dτ4

∫ t

t2

dτ3

∫ t1

0

dτ2

∫ τ2

0

dτ1

[
W2(τ4)W

∗
2 (τ3)W1(τ2)W

∗
1 (τ1)〈

U1,0(0, τ4)ψ
†(x)U1,1(τ4, τ3)ψ(x)U1,0ψ(0)U0,0(τ2, τ1)ψ

†(0)U1,0(τ1, 0)
〉 ]

−
∫ t1

0

dτ4

∫ τ4

0

dτ3

∫ t

t2

dτ2

∫ t

t2

dτ1

[
W1(τ4)W

∗
1 (τ3)W2(τ2)W

∗
2 (τ1)〈

U1,0(0, τ4)ψ(0)U1,1(τ4, τ3)ψ
†(0)U1,0ψ

†(x)U0,0(τ2, τ1)ψ(x)U1,0(τ1, 0)
〉 ]

−
∫ t

t2

dτ4

∫ t

t2

dτ3

∫ τ3

t2

dτ2

∫ τ2

t2

dτ1

[
W2(τ4)W

∗
2 (τ3)W2(τ2)W

∗
2 (τ1)〈

U1,0(0, τ4)ψ
†(x)U1,1(τ4, τ3)ψ(x)U1,0(τ3, τ2)ψ

†(x)U1,1(τ2, τ1)ψ
†(x)U1,0(τ1, 0)

〉 ]
−
∫ t

t2

dτ4

∫ τ4

t2

dτ3

∫ τ2

t2

dτ2

∫ t

t2

dτ1

[
W2(τ4)W

∗
2 (τ3)W2(τ2)W

∗
2 (τ1)〈

U1,0(0, τ2)ψ
†(x)U1,1(τ2, τ3)ψ(x)U1,0(τ3, τ4)ψ

†(x)U1,1(τ4, τ1)ψ
†(x)U1,0(τ1, 0)

〉 ]
+O(W 6) (4.24)

A = 1−
∫ t1

0

dτ2

∫ τ2

0

dτ1

[
W1(τ2)W

∗
1 (τ1)〈

U1,0(0, τ2)ψ(0)U0,0(τ2, τ1)ψ
†(0)U1,0(τ1, 0)

〉]
−
∫ t1

0

dτ2

∫ τ2

0

dτ1

[
W1(τ1)W

∗
1 (τ2)〈

U1,0(0, τ1)ψ(0)U0,0(τ1, τ2)ψ
†(0)U1,0(τ2, 0)

〉]
−
∫ t

t2

dτ2

∫ τ2

t2

dτ1

[
W1(τ2)W

∗
1 (τ1)
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〈
U1,0(0, τ2)ψ

†(x)U1,1(τ2, τ1)ψ(x)U1,0(τ1, 0)
〉]

−
∫ t

t2

dτ2

∫ τ2

t2

dτ1

[
W1(τ1)W

∗
1 (τ2)〈

U1,0(0, τ1)ψ
†(x)U1,1(τ1, τ2)ψ(x)U1,0(τ2, 0)

〉]
+

∫ t1

0

dτ4

∫ τ4

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1

[
W ∗

1 (τ4)W1(τ3)W
∗
1 (τ2)W1(τ1)〈

U1,0(0, τ4)ψ(0)U0,0(τ4, τ3)ψ
†(0)U1,0(τ3, τ2)ψ(0)U0,0(τ2, τ1)ψ

†(0)U1,0(τ1, 0)
〉]

+

∫ t1

0

dτ4

∫ τ4

0

dτ3

∫ t1

0

dτ2

∫ τ2

0

dτ1

[
W ∗

1 (τ3)W1(τ4)W
∗
1 (τ2)W1(τ1)〈

U1,0(0, τ3)ψ(0)U0,0(τ3, τ4)ψ
†(0)U1,0(τ4, τ2)ψ(0)U0,0(τ2, τ1)ψ

†(0)U1,0(τ1, 0)
〉]

+

∫ t1

0

dτ4

∫ τ4

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1

[
W ∗

1 (τ1)W1(τ2)W
∗
1 (τ3)W1(τ4)〈

U1,0(0, τ1)ψ(0)U0,0(τ1, τ2)ψ
†(0)U1,0(τ2, τ3)ψ(0)U0,0(τ3, τ4)ψ

†(0)U1,0(τ4, 0)
〉]

+

∫ t

t2

dτ4

∫ τ4

t2

dτ3

∫ τ3

t2

dτ2

∫ τ2

t2

dτ1

[
W2(τ4)W

∗
2 (τ3)W2(τ2)W

∗
2 (τ1)〈

U1,0(0, τ4)ψ
†(x)U1,1(τ4, τ3)ψ(x)U1,0(τ3, τ2)ψ

†(x)U1,1(τ2, τ1)ψ(x)U1,0(τ1, 0)
〉]

+

∫ t

t2

dτ4

∫ τ4

t2

dτ3

∫ t

t2

dτ2

∫ τ2

t2

dτ1

[
W2(τ3)W

∗
2 (τ4)W2(τ2)W

∗
2 (τ1)〈

U1,0(0, τ3)ψ
†(x)U1,1(τ3, τ4)ψ(x)U1,0(τ4, τ2)ψ

†(x)U1,1(τ2, τ1)ψ(x)U1,0(τ1, 0)
〉]

+

∫ t

t2

dτ4

∫ τ4

t2

dτ3

∫ τ3

t2

dτ2

∫ τ2

t2

dτ1

[
W2(τ1)W

∗
2 (τ2)W2(τ3)W

∗
2 (τ4)〈

U1,0(0, τ1)ψ
†(x)U1,1(τ1, τ2)ψ(x)U1,0(τ2, τ3)ψ

†(x)U1,1(τ3, τ4)ψ(x)U1,0(τ4, 0)
〉]

+

∫ t

t2

dτ4

∫ τ4

t2

dτ3

∫ t1

0

dτ2

∫ τ2

0

dτ1

[
W2(τ4)W

∗
2 (τ3)W

∗
1 (τ2)W1(τ1)

〈
U1,0(0, τ4)ψ

†(x)U1,1(τ4, τ3)ψ(x)U1,0(τ3, τ2)ψ(0)U0,0(τ2, τ1)ψ
†(0)U1,0(τ1, 0)

〉]
+

∫ t

t2

dτ4

∫ τ4

t2

dτ3

∫ t1

0

dτ2

∫ τ2

0

dτ1

[
W2(τ3)W

∗
2 (τ4)W

∗
1 (τ2)W1(τ1)

〈
U1,0(0, τ3)ψ

†(x)U1,1(τ3, τ4)ψ(x)U1,0(τ4, τ2)ψ(0)U0,0(τ2, τ1)ψ
†(0)U1,0(τ1, 0)

〉]
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+

∫ t1

0

dτ4

∫ τ4

0

dτ3

∫ t

t2

dτ2

∫ τ2

t2

dτ1

[
W ∗

1 (τ3)W1(τ4)W2(τ2)W
∗
2 (τ1)〈

U1,0(0, τ3)ψ(0)U0,0(τ3, τ4)ψ
†(0)U1,0(τ4, τ2)ψ

†(x)U1,1(τ2, τ1)ψ(x)U1,0(τ1, 0)
〉]

+

∫ t1

0

dτ4

∫ τ4

0

dτ3

∫ t

t2

dτ2

∫ τ2

t2

dτ1

[
W ∗

1 (τ3)W
∗
2 (τ4)W2(τ1)W1(τ2)

〈
U1,0(0, τ3)ψ(0)U0,0(τ3, τ4)ψ

†(0)U1,0(τ4, τ1)ψ
†(x)U1,1(τ1, τ2)ψ(x)U1,0(τ2, 0)

〉]
+O(W 6) (4.25)

It can be explicitly verified that these expressions do satisfy the trace condition
A+B+D1+D2 = 1 on an order by order basis. For example at 4th order A has
ten contributing diagrams, and corresponding terms, of which three match two
of the 4th order terms written down for D1, whilst the remaining six match the
four terms written down for D2. The remaining diagrams for D1 cancel with
the single term for B. The diagrams do not cancel on a one to one basis as some
diagrams allow for more flexibility in the time ordering than others. For example
the 2nd order contribution to D1 has a single diagram, with no constraint on the
time ordering of the operators as they are on different branches of the contour.
This cancels with a pair of diagrams in A, one for the time ordered and one for
the anti-time ordered case.

The leading order term in F can be seen to have the form of the overlap
between the state in which a fermion has been transferred from state 1 to state
2 and a state where no process has taken place, that is the Loschmidt amplitude
of the process. This is analogous to the result in the standard Fermi edge that
the Green’s function for the impurity state is given by the Loschmidt amplitude
for the evolution of the metal with and without the impurity present.

Multidimensional coherent spectroscopy experiments may be able to directly
examine the response of the system described by eq. (4.21) to (4.25) [101–104].
These experiments use a series of carefully timed pulses to excite the system
and then measure an emitted spectrum that depends not only on the frequency
of the pumping pulses but also on the Fourier transforms of the differences
between the times that the system was excited. For example the first term of
eq. (4.22) would give a contribution to the second order response depending on
the Fourier transforms of τ2− τ1 and t− τ2. The frequency of the driving pulses
enters through W1 and W2, which would take the form

Wi(t) = e−ıωpulse,itfi(t) , (4.26)

where ωpulse,i is the frequency of the pulse beam and fi(t) is the pulse shape.
This dependence on (the Fourier conjugate of) multiple time parameters allows
the influence of higher order response functions to be differentiated from the
first order contribution, and so may allow effects that depend on time internal
to the system, such as the time of flight for a signal between the localised states,
to be measured directly.
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4.3 Structure of the density matrix and eigen-
values

In order to study the entanglement structure of the system it will be helpful to
calculate the eigenvalues and eigenvectors of this matrix. D1 and D2 are obvi-
ously eigenvalues. The remaining two eigenvalues and corresponding eigenstates
can be found straightforwardly.

p± =
1

2
(A+B ±√χ) . (4.27)

v± =
1

N


0
2F

A−B ∓√χ
0

 , (4.28)

N 2 = 2 (χ∓ (A−B)
√
χ) , (4.29)

χ = (A−B)2 + 4|F |2 . (4.30)

The requirements that the density matrix have unit trace and be positive semi-
definite impose constraints on the matrix elements. These can be deduced from
the eigenvalues

A = 1−D1 −D2 −B , (4.31)
D1, D2 ≥ 0 , (4.32)
A+B ≥ 0 , (4.33)
AB ≥ |F |2 . (4.34)

Eq. (4.31) is the requirement for unit trace, whilst the remaining inequalities
give the necessary and sufficient conditions for positivity of the density matrix.
Eq. (4.33) is required for at least one of p± to be positive and, given eq. (4.33),
the requirement for them both to be positive is A + B ≥ √χ, which reduces
to eq. (4.34). Eq.(4.34) tells us that if we wish to observe any physics beyond
simple dissipation, i.e. F is to be non-zero, we must also have that B > 0. The
only fundamental diagram to contribute to B (and so the lowest order diagram
to contribute to B at all), is, however, 4th order in the Wj terms. We must,
therefore, take the expansion in eq. (4.17) to at least 4th order to have any hope
of achieving physically meaningful, non-trivial results.

4.4 Narrow Pulses
We will now specialise to the limit where each pulse narrows down to a δ-function.
We will see below that the various correlation functions have the form of a prod-
uct of power laws. The integrals of these power laws in eq. (4.21) to eq. (4.25)
generally cannot be performed analytically but their asymptotic form is another
(slightly modified) power law. By choosing the functions Wi(t) to be a delta
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pulse, however, we can perform the time integrals explicitly. We can view this
as a process of taking a limit in which the range of the integration shrinks to
zero, whilst increasing the weight in the remaining range so that the result does
not vanish. Since both the initial integral and the final result have power law
asymptotics, we might hope that many qualitative feature of the resulting long
time physics should be unchanged. By considering a delta pulse we capture the
quench physics central to the FES, whilst dramatically simplifying the problem.

We will, without loss of generality, assume that the first pulse occurs at time
0 and the second occurs at time t > 0. We will then calculate the density matrix
for the system at the final time tf > t.

In this limit we can resum the perturbation series eq. (4.14) to all orders and
solve the evolution exactly.

We will begin by expanding out the expression for the interaction picture
evolution operator. In the interests of conciseness we will make a slight abuse
of notation and write(
αW2δ(t1 − t)ψ†(x2, t1)d2 + h.c.

) (
αW2δ(t2 − t)ψ†(x2, t2)d2 + h.c.

)
. . .

· · · ×
(
αW2δ(tn − t)ψ†(x2, tn)d2 + h.c.

)
=
(
αW2δ(ti − t)ψ†(x2, ti)d2 + h.c.

)n
.

(4.35)

Taking advantage of the group property of the evolution operator we then have
that

U(tf , 0) = U(tf , t/2)U(t/2, 0) (4.36)

=
∞∑

n,m=0

[
(−ı)n+m

n!m!
T

∫ tf

t/2

dt1 . . . dtn
(
αW2δ(ti − t)ψ†(x2, ti)d2 + h.c.

)n
× T

∫ t/2

0

dt1 . . . dtm
(
αW1δ(ti)ψ

†(x1, ti)d1 + h.c.
)m ] (4.37)

= T

∞∑
n,m=1

(−ı)n+m

n!m!

(
αW2ψ

†(x2, t)d2 + h.c.
)n (

αW1ψ
†(x1, 0)d1 + h.c.

)m
.

(4.38)

We will consider the cubic and higher terms in this expansion. Our aim to
to find a reduction formula to collapse the higher order terms in the series. If
we expand out the spatial distribution of where the electron is injected into the
wire, as in eq. (4.4), we find that(

αWjψ
†(xj , t)dj + h.c.

)3

=

∫
dx1 dx2 dx3

[
α−3/2λj(x1)λj(x2)λj(x3)

×
(
W 2
jW

∗
j ψ

†(x1, t)ψ(x2, t)ψ
†(x3, t)djd

†
jdj + h.c

)]
(4.39)
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=

∫
dx1 dx2 dx3 α

−3/2λj(x1)λj(x2)λj(x3)

×
(
W 2
jW

∗
j

(
δ(x1 − x2)− ψ(x2, t)ψ†(x1, t)

)
ψ†(x3, t)djd

†
jdj + h.c

)
(4.40)

=

(
|Wj |2

∫
dx2
α

λ2j (x2)

)∫
dx3 α

−1/2λj(x1)
(
Wjψ

†(x3, t)dj + h.c
)

(4.41)

= w2
j

(
αWjψ

†(xj , t)dj + h.c.
)
, (4.42)

where wj is defined by

w2
j =

(
|Wj |2

∫
dx2
α

λ2j (x2)

)
. (4.43)

We have, therefore, expressed the third order term in terms of the first order
term and the constants wj . Note that it is necessary to consider at least third
order terms; at lower orders the term resulting from anticommuting the fermion
operators past each other in eq. (4.40) does not vanish.

With this we can collect even and odd ordered terms together and resum
the series in eq. (4.38) to obtain

U(t, 0) =
(
1− ıαγ2W2ψ

†(x2, t)d2 − α2β2|W2|2d†2ψ(x2, t)ψ†(x2, t)d2 + h.c.
)

×
(
1− ıαγ1W1ψ

†(x1, 0)d1 − α2|W1|2β1d†1ψ(x1, 0)ψ†(x1, 0)d1 + h.c.
)
,

(4.44)

where

γj =
sinwj
wj

, (4.45)

βj =
1− coswj

w2
j

. (4.46)

These coefficients γj and βj obey a non-trivial relationship, which is essential
for ensuring trace preservation of the density matrix.

γ2i + w2
i β

2
i =

(
sinwi
wi

)2

+ w2
i

(
1− coswi

w2
i

)2

(4.47)

=
1

w2
i

(
sin2 wi + cos2 wi − 2 coswi + 1

)
(4.48)

=
2

w2
i

(1− coswi) . (4.49)

= 2βi . (4.50)

We can now apply this U to the full density matrix and move back to the
Schrödinger picture by multiplying by Ufixed (or U†

fixed as appropriate), giving
us

ρfull(tf )
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= Ufixed(tf , 0)

×
(
1− ıαγ2W2ψ

†(x2, t)d2 − α2β2|W2|2d†2ψ(x2, t)ψ†(x2, t)d2 + h.c.
)

×
(
1− ıαγ1W1ψ

†(x1, 0)d1 − α2|W1|2β1d†1ψ(x1, 0)ψ†(x1, 0)d1 + h.c.
)

× ρ(0)
(
1 + ıαγ1W1ψ

†(x1, 0)d1 − α2|W1|2β1d†1ψ(x1, 0)ψ†(x1, 0)d1 + h.c.
)

×
(
1 + ıαγ2W2ψ

†(x2, t)d2 − α2β2|W2|2d†2ψ(x2, t)ψ†(x2, t)d2 + h.c.
)

× U†
fixed(tf , 0) . (4.51)

Finally we can trace out the wire degrees of freedom and move to a formalism
treating the interaction between the localised states and the fermions in the wire
as a time dependent external potential, as we did in the case of a finite width
pulse. This allows us to obtain an exact expression for the reduced density
matrix.

B = α4γ21γ
2
2 |W1|2|W2|2C3 , (4.52)

F = α2γ2γ1W2W1F1 − α4γ2γ1β1W2W1|W1|2F2

− α4γ2γ1β2W2W1|W2|2F3 + α6γ2γ1β2β1W2W1|W2|2|W1|2F4 , (4.53)

D1 = α2γ21 |W1|2C(1)
1 + α4γ21

(
w2

2β
2
2 − 2β2

)
|W2|2|W1|2C3 , (4.54)

D2 = α2γ22 |W2|2C(2)
1 − 2α4γ22β1|W1|2|W2|2Re [C2] + α6γ22β

2
1 |W1|4|W2|2C4 ,

(4.55)

A = 1 + α2(w2
1β

2
1 − 2β1)|W1|2C(1)

1 + α2(w2
2β

2
2 − 2β2)|W2|2C(2)

1

+ 2α4β1(2β2 − w2β
2
2)|W1|2|W2|2Re [C2]

+ α6β2
1(w

2
2β

2
2 − 2β2)|W1|4|W2|2C4 , (4.56)

in terms of the correlation functions

C
(1)
1 =

〈
ψ(0)ψ†(0)

〉
, (4.57)

C
(2)
1 =

〈
U1,0(0, t)ψ

†(x)ψ(x)U1,0(t, 0)
〉
, (4.58)

C2 =
〈
U1,0(0, t)ψ

†(x)ψ(x)U1,0(t, 0)ψ(0)ψ
†(0)

〉
, (4.59)

C3 =
〈
ψ(0)U0,0(0, t)ψ

†(x)ψ(x)U0,0(t, 0)ψ
†(0)

〉
, (4.60)

C4 =
〈
ψ(0)ψ†(0)U1,0(0, t)ψ

†(x)ψ(x)U1,0(t, 0)ψ
†(0)ψ(0)

〉
, (4.61)

F1 =
〈
U1,0(0, tf )U0,1(tf , t)ψ(x)U0,0(t, 0)ψ

†(0)
〉
, (4.62)

F2 =
〈
ψ(0)ψ†(0)U1,0(0, tf )U0,1(tf , t)ψ(x)U0,0(t, 0)ψ

†(0)
〉
, (4.63)

F3 =
〈
U1,0(0, t)ψ

†(x)ψ(x)U1,0(t, tf )U0,1(tf , t)ψ(x)U0,0(t, 0)ψ
†(0)

〉
, (4.64)

F4 =
〈
ψ(0)ψ†(0)U1,0(0, t)ψ

†(x)ψ(x)U1,0(t, tf )U0,1(tf , t)ψ(x)U0,0(t, 0)ψ
†(0)

〉
.

(4.65)
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We have, therefore, an explicit expression for the reduced density matrix in
terms of a reasonable small set of correlators. It can been checked explicitly
that the trace preservation equation is satisfied due to eq. (4.50). All we must
do now is evaluate the various correlation functions.

4.5 Bosonization
To compute the various correlation functions appearing in our calculation of
the density matrix we will employ a bosonization approach, as outlined in sec-
tion 3.1. When expressed in terms of the bosonized operators we can write
(omitting the Klein factors)

ψr(x, t) =
∑
r=±1

1√
2πα

erıkF xe−
ı
2

∑
ν=±1

(
r+ ν

K

)
ϕ̃ν(x−νut) . (4.66)

When written in terms of the bosonized operators H0 and Hee take the standard
Luttinger liquid form of eq. (3.62)

H0 +Hee =
u

2K

∑
ν

∫
dy

2π
(∇ϕ̃ν(y))2 , (4.67)

whilst the interaction Hamiltonian takes the form

Hint =
V1f
2π

d1d
†
1

∑
ν

∇ϕ̃ν(0) +
V2f
2π

d†2d2
∑
ν

∇ϕ̃ν(x) , (4.68)

where we have for the moment neglected the possibility of backscattering off the
localised states. The backscattering terms have the form

Vib
πα

cos (ϕ̃+(0) + ϕ̃−(0)) , (4.69)

which is a transcendental function of the bosonic fields and prevents us from
analytically solving the system. This is in general relevant, in the renormalisa-
tion group sense, and in the standard FES leads to contribution of − 1

8 to the
OC power law decay, independent of the potential strength. This contribution,
however, is seen in the long time limit and it takes time for the many-body
correlations that lead to this renormalised contribution to develop. The time
scale for the development of these correlations is given by [77]

ti,back = V −1
ib [Vibαu]

K
1−K , (4.70)

where Vib if the backscattering contribution of the potential Vi, that is the part
of the potential which scatters states with a momentum difference ∼ 2kF . The
time scales ti,back depend on the strength of the backscattering impurity, but
also strongly depend on the interactions in the Luttinger liquid. In particular
ti,back diverges as K → 1 from below, that is the non-interacting limit of a Lut-
tinger liquid with attractive interactions. We can, therefore, tune the system
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so the backscattering interactions can be safely neglected on the time scales
of interest by requiring that the interactions in the Luttinger liquid be suffi-
ciently weak and attractive. Alternatively, we can consider a system where the
backscattering term identically vanishes. This can be achieved by considering
chiral quantum Hall or helical edge states, where backscattering is prevented by
spin conservation. We will discuss the impact of backscattering off the impurity
in Section 4.12.2.

When we move to the external potential picture of the interaction potential
this becomes

Hint =
V1f (t)

2π

∑
ν

∇ϕ̃ν(0) +
V2f (t)

2π

∑
ν

∇ϕ̃ν(x) . (4.71)

We can, as in chapter 3.1.1 and reference [65], map the combined Hamilto-
nian back to the Luttinger liquid Hamiltonian by a unitary ‘shift’ operator.

Rj = eı
1
K

δj
π

∑
ν=±1 νϕ̃ν(xj) , (4.72)

R†
jϕ̃ν(x)Rj = ϕ̃ν(x)−

δj
2
sgn(x− xj) , (4.73)

R†
j (∇ϕ̃ν(x))Rj = ϕ̃ν(x)− δjδ(x− xj) , (4.74)

R†
1h0,iR1 = h1,i − E1 +

uδ21
2αK

, (4.75)

R†
2hi,1R2 = hi,0 + E2 +

uδ22
2αK

, (4.76)

where x1 = 0, x2 = x, δi = KVif

u is the scattering phase shift from the impurity
in the Born approximation and hij were defined in eq. (4.19). The last two term
on the right hand side of each of eq. (4.75) and eq. (4.76) are constant shifts in
the Hamiltonian, and so only contributes a phase. We define

∆E1 = −E1 +
uδ21
2αK

, (4.77)

∆E2 = E2 +
uδ22
2αK

, (4.78)

giving the constant energy shift due to having each of the localised states excited.
With this we can calculate the expectation values in eq. (4.57) to (4.65). We

can write the correlation functions we are interested in as a product of fermionic
operators and shift operators time evolving under the Hamiltonian without the
impurity potential present.

For example we can write

F1 =
〈
U1,0(0, tf )U0,1(tf , t)ψ(x)U0,0(t, 0)ψ

†(0)
〉

(4.79)
= e−ı∆E1tf e−ı∆E2(tf−t)

×
〈
U1,0(0, tf )R

†
1R

†
2U1,0(tf , t)R2R1ψ(x)R

†
1U1,0(t, 0)R1ψ

†(0)
〉

(4.80)
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= e−ı∆E1tf e−ı∆E2(tf−t)
〈
R†

1(tf )R
†
2(tf )R2(t)R1(t)ψ(x, t)R

†
1(t)R1(0)ψ

†(0, 0)
〉

(4.81)

where Rj(t) = U1,0(0, t)RjU1,0(t, 0) so that the time evolution in the last line
is entirely due to the Hamiltonian h1,0, that is the standard Luttinger liquid
Hamiltonian. When the correlator is expressed in this form we can see the
reason for our choice to express the bosonized fields in terms of the normal
mode operators ϕ̃ν . Since the time evolution of these operators under h1,0 is
simply given by

U1,0(0, t)ϕ̃ν(x)U1,0(t, 0) = ϕ̃ν(x− νut) , (4.82)

that is the left moving mode simply travels to the left and vice versa, we can
directly see the various signals propagating through the system when expressed
in these terms.

Since both Rj(t) and ψ(x, t) have the form of an exponential in the bosonized
formalism, these expectations can be evaluated using the general machinery of
Bosonization discussed in section 3.1. By repeated application of the formulae

eP eQ = e
1
2 [P,Q]eP+Q , (4.83)〈

eP
〉
= e

1
2 〈P

2〉 , (4.84)

valid when P and Q are linear combinations of bosonic operators, we can find
an explicit expression for this correlator. More generally we can consider a
product of n exponentials

n∏
i=1

eı
∑

ν Ai,ν ϕ̃ν(xi) (4.85)

where the xi are all distinct and
n∑
i=1

Ai,ν = 0 (4.86)

for ν = ±1. It can be shown [24] that the expectation in eq. (4.85) vanishes if
this constraint is not satisfied. Its role is to ensure that all divergent terms in
the bosonic expectation values cancel as they should. We can now write〈

n∏
i=1

eı
∑

ν Ai,ν ϕ̃ν(xi)

〉

=

〈
e−

1
2

∑
ν A1νA2,ν [ϕ̃ν(x1)ϕ̃ν(x2)]eı

∑
ν A1ν ϕ̃ν(x1)+A2ν ϕ̃ν(x2)

n∏
i=3

eı
∑

ν Ai,ν ϕ̃ν(xi)

〉
(4.87)

= exp

−1

2

∑
ν

∑
i<j

Ai,νAj,ν [ϕ̃ν(xi), ϕ̃ν(xj)]
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×

〈
exp

ı∑
ν,i

Ai,νϕ̃ν(xi)

〉 (4.88)

= exp

−1

2

∑
ν

∑
i<j

Ai,νAj,ν [ϕ̃ν(xi), ϕ̃ν(xj)]


× exp

−1

2

∑
ν

〈(∑
i

Ai,νϕ̃ν(xi)

)2〉 , (4.89)

where we have used the fact that the expectation 〈ϕ̃+(x)ϕ̃−(y)〉 vanishes. We
now consider the exponent term(∑

i

Ai,νϕ̃ν(xi)

)2

=
∑
i

A2
i,νϕ̃

2
ν(xi) +

∑
i 6=j

Ai,νAj,νϕ̃ν(xi)ϕ̃ν(xj) (4.90)

=
∑
i

A2
i,νϕ̃

2
ν(xi) +

∑
i 6=j

Ai,νAj,ν

[
ϕ̃ν(xi)ϕ̃ν(xj)

+
1

2
ϕ̃2
ν(xi)−

1

2
ϕ̃2
ν(xi) +

1

2
ϕ̃2
ν(xj)−

1

2
ϕ̃2
ν(xj)

]
(4.91)

=
∑
i

A2
i,νϕ̃

2
ν(xi) +

1

2

∑
i6=j

Ai,νAj,ν
(
ϕ̃2
ν(xi) + ϕ̃2

ν(xj)
)

− 1

2

∑
i6=j

Ai,νAj,ν
[
ϕ̃2
ν(xi)− 2ϕ̃ν(xi)ϕ̃ν(xj) + ϕ̃2

ν(xj)
]

(4.92)

=
∑
i

A2
i,νϕ̃

2
ν(xi) +

∑
i 6=j

Ai,νAj,νϕ̃
2
ν(xi)

−
∑
i<j

Ai,νAj,ν
[
ϕ̃2
ν(xi)− 2ϕ̃ν(xi)ϕ̃ν(xj) + ϕ̃2

ν(xj)
]

+
∑
i>j

Ai,νAj,ν [ϕ̃ν(xi), ϕ̃ν(xj)] (4.93)

=
∑
i

Ai,ν

∑
j

Aj,ν

 ϕ̃2
ν(xi)

−
∑
i<j

Ai,νAj,ν (ϕ̃ν(xi)− ϕ̃ν(xj))2

−
∑
i<j

Ai,νAj,ν [ϕ̃ν(xi), ϕ̃ν(xj)] . (4.94)

The first term in eq. (4.94) vanishes by eq. (4.86). The final term cancels with
the commutator in eq. (4.89). This leaves only the middle term, which has a well
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defined expectation value given by eq. (3.71). Plugging this back into eq. (4.89)
we find that〈

n∏
i=1

eı
∑

ν Ai,ν ϕ̃ν(xi)

〉
= exp

1
2

∑
ν=±1

∑
1≤i<j≤n

Ai,νAj,ν

〈
(ϕ̃ν(xi)− ϕ̃ν(xj))2

〉 .

(4.95)
With this result we can systematically evaluate many of the correlation func-
tions we have encountered. A key advantage of using eq. (4.95) over direct
application of the formulae eqs. (4.83) and (4.84) is that evaluation of eq. (4.95)
can be straightforwardly automated by computational algebra engines, allowing
the large number of distinct correlation functions we have encountered to be
efficiently evaluated. All of our results obtained in this way have been validated
by comparing with independently written numerical codes.

In principle these techniques can be used to evaluate all of the correlation
functions that appear eqs. (4.21) to (4.25). We will not perform a thorough
analysis of these, however, and will instead focus on the correlation functions in
section 4.4, as the result is more physically transparent.

When calculating the correlation functions listed at the end of section 4.4,
care must be taken when considering operators at equal times and positions.
For example, if we consider C(2)

1 , naively plugging in eq. (4.66) we find that〈
U1,0(0, t)ψ

†(x)ψ(x)U1,0(t, 0)
〉 ?
=

1

2πα
(4.96)

when clearly the correct result is the fermion density C(2)
1 = N

L + 1
π

∑
ν〈∇ϕ̃ν(x−

νut)〉. (In this case the second term vanishes, but it is important in more
complex correlators and far less obvious than the first term.)

In these cases, formally, a point splitting procedure must be applied to obtain
the correct result. In practice the simplest method of evaluating these types of
correlators is to rewrite the correlation function by bringing together pairs of
fermionic operators, evaluated at the same position and time, to form fermion
density operators, the form of which is a standard result. As the density operator
can be expressed in terms of the gradient of the bosonic operators (eq. (3.70)),
we can sidestep explicit point splitting in practice. (This problem can be ignored
in the case of a finite width pulse as the set of points where this problem occurs
has measure zero and can be taken care of by treating the principal value of the
integrals.) We will go through this procedure in detail in the next section.

Instead of appealing to a point splitting procedure, we could have expanded
the pump terms in terms of the functions λi(x). This would have separated
the coincident points in the correlation function, allowing us to evaluate them
directly. In this approach taking the limit that we take the width of the pulse to
zero is essentially equivalent to point splitting, but is somewhat less transpar-
ent; as the width of the pulses is reduced, spatial coordinates will be brought
together as in point splitting, however it is less immediately obvious that the
resulting divergence corresponds to the ground state density, or that further
density fluctuations should be included.
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As the point splitting procedure converts pairs of fermionic operators, which
are exponential in the bosonic fields, into fermion density operators, which are
linear in the (gradients of) bosonic operators, it can result in correlation func-
tions which contain a mixture of terms which are linear and terms which are
exponential in the bosonic fields. We will therefore have to deal with terms of
this form. For example the correlator F3 leads to correlation functions of the
form〈

∇ϕ̃ν(x, t)R†
2(tf )R

†
1(tf )R1(t)R2(t)

e
− ı

2

∑
ν′

(
r+ ν′

K

)
ϕ̃ν′ (x−ν′ut)

R†
1(t)R1(0)e

ı
2

∑
ν′

(
r+ ν′

K

)
ϕ̃ν′ (0)

〉
(4.97)

which has a term linear in i∇ϕ̃ν in addition to the exponential terms. To
evaluate correlation functions of this form we can explicitly (boson) normal
order the operators. This reduces the correlator to a part which vanishes due
to normal ordering and a number of commutators [72]. Since the commutators
of bosonic operators are c-numbers, we can then easily separate the linear and
exponential terms into parts that can be evaluated independently. For example,
consider the operator

PeıQ (4.98)
where P and Q are linear combinations of bosonic operators. (The correlation
function in expression eq. (4.97) can be brought to this form.) Writing P+ and
P− for the creation and annihilation parts of P respectively, and similarly for
Q, we can write

PeıQ = (P+ + P−)e
ıQ+eıQ−e

1
2 [Q+,Q−] (4.99)

= eıQ+
(
P+ + P− +

[
P−, e

ıQ+
])
eıQ−e

1
2 [Q+,Q−] . (4.100)

Since [P−, Q+] ∈ C we can use the relation1

[P−, f(Q+)] = [P−, Q+]f
′(Q+) , (4.104)

where f is an analytic function of Q−. Applying this to the exponential above
we find

PeıQ = eıQ+ (P+ + P− + ı[P−, Q+]) e
ıQ−e

1
2 [Q+,Q−] . (4.105)

1 We can prove this relation by Taylor expanding f

[P−, f(Q+)] =
∑
n

f (n)(0)

n!
[P−, Qn

+] (4.101)

=
∑
n

f (n)(0)

n!
n[P−, Q+]Qn−1

+ (4.102)

= [P−, Q+]f ′(Q+) , (4.103)

where on the second line we have used that [P−, Q+] ∈ C to commute it past the Q+s obtained
by expanding the commutator.
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This expression is boson normal ordered, so its expectation can be found triv-
ially. Noting that

[P−, Q+] = 〈PQ〉 , (4.106)

e
1
2 [Q+,Q−] =

〈
eıQ
〉

(4.107)

= e−
1
2 〈Q

2〉 , (4.108)

we can rewrite eq. (4.105) as

eıQ+ (P+ + P− + ı〈PQ〉) eıQ−
〈
eQ
〉
, (4.109)

in which the exponential and linear correlation functions have been separated, as
desired. Similar methods can be applied to more complex correlation functions
and we will do so explicitly in the next section.

4.6 Correlation Functions
In this section we will explicitly evaluate the correlation functions introduced
in the last two sections.

The leading order terms in in D1 and D2 have the forms〈
ψ(x, t)ψ†(x, t)

〉
, (4.110)〈

ψ†(x, t)ψ(x, t)
〉
, (4.111)

respectively these are simply the hole and particle densities in the wire. We
therefore have

C
(1)
1 = Λ− N

L
, (4.112)

C
(2)
1 =

N

L
, (4.113)

where Λ ∼ 1
α is the bandwidth.

The C2 correlator is the standard correlation function between the fermion
and hole densities. Using the canonical anticommutation relations we have that

C2 = ΛC
(2)
1 −

〈
ψ†(x, t)ψ(x, t)ψ†(0, 0)ψ(0, 0)

〉
(4.114)

= Λ
N

L
−

∑
r1,r2,r3,r4=±1

eıkF (r1−r2)x
〈
ψ†
r1(x, t)ψr2(x, t)ψ

†
r3(0, 0)ψr4(0, 0)

〉
(4.115)

=

(
Λ− N

L

)
N

L
− 1

2π

∑
ν

〈∇ϕ̃ν(x− νut)∇ϕ̃ν(0)〉

− 1

(2πα)2

∑
r=±1

e2rıkF x
〈
e−ı

∑
ν=±1 rϕ̃ν(x−νut)eı

∑
ν=±1 rϕ̃ν(0)

〉
(4.116)
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=

(
Λ− N

L

)
N

L
− K

2π

x2 + (ıη + ut)2

(x2 − (ıη + ut)2)2

+
1

2π
α2K−2 cos(2kFx)(η + ı(ut− x))−K(η + ı(ut+ x))−K , (4.117)

where η is the usual short time cut off that is required to ensure the convergence
of the real time correlation functions in field theory, distinguishing the different
Green’s functions. In principle this is distinct from the cut off, α, that arises
in the bosonization procedure. In practice both cut offs are typically set by the
bandwidth and can often be taken to be equal.

Evaluating the function C3 is more subtle. First we must separate the dif-
ferent possible combinations of left and right moving components.

C3 =
〈
ψ(0)U0,0(0, t)ψ

†(x)ψ(x)U0,0(t, 0)ψ
†(0)

〉
(4.118)

=
∑
r=±1

(
C

(1)r
3 + C

(2)r
3 + C

(3)r
3

)
(4.119)

C
(1)r
3 =

〈
ψr(0)U0,0(0, t)ψ

†
r(x)ψr(x)U0,0(t, 0)ψ

†
r(0)

〉
(4.120)

C
(2)r
3 =

〈
ψr(0)U0,0(0, t)ψ

†
−r(x)ψ−r(x)U0,0(t, 0)ψ

†
r(0)

〉
(4.121)

C
(3)r
3 =

〈
ψr(0)U0,0(0, t)ψ

†
−r(x)ψr(x)U0,0(t, 0)ψ

†
−r(0)

〉
. (4.122)

All other combinations vanish, as they do not satisfy eq. (4.86), i.e. the coeffi-
cients for the bosonic fields in the exponents do not sum to zero. The last term
above, C(3)r

3 , does not contain any fermionic operators with the same position,
time and chirality and so can be evaluated directly via eq. (4.95) yielding

C
(3)r
3 =

1

4π2
α2K−2e−2ıkF rx (η − ıx)

2δ1r
π (η + ıx)

− 2δ1r
π

×
∏
ν=±1

(η − ı(x− νut))−
K−r

2 −r δ1
π (η + ı(x− νut))−

K+r
2 +r

δ1
π .

(4.123)

It is worth noting that time reversing this expression is equivalent to making
the substitution r → −r, so the sum of this expression over r is a real quantity.

To evaluate the other two terms we cannot immediately apply eq. (4.95) due
to the presence of fermionic operators at the same space-time point and point
splitting considerations. To overcome these issues we must first collect fermionic
operators together into density operators. To do this we must first commute
one of the fermionic operators at time 0 past the pair of operators at time t to
bring it to the other operator at time 0. In effect we must move it from one
branch of the Keldysh contour to the other. To do this we first consider the
operator

U0,0(0,t)ψ
†
r(x)ψr(x)U0,0(t, 0)
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= R†
1U1,0(0, t)R1

(
N

2L
− 1

4π

∑
ν=±1

r
(
r +

ν

K

)
∇ϕ̃ν(x)

)
R†

1U1,0(t, 0)R1

(4.124)

=
N

2L
− r

4π

∑
ν=±1

(
r +

ν

K

)(
∇ϕ̃ν(x− νut) + ıν

δ1
πK

[∇ϕ̃ν(x), ϕ̃ν(0)]

− ıν δ1
πK

[∇ϕ̃ν(x− νut), ϕ̃ν(−νut)]
)

(4.125)

where in the last line we have employed eq. (4.74) and eq. (4.82) in succession.
Notice that we have written the commutators in the shifts in an unevaluated
form. We could evaluate these as in eq. (4.74) to arrive at δ-functions, however
if this is done naively we will end up with naked δ-functions in our final density
matrix. Formally the δ-functions should be treated by expanding the δ-functions
in the pump terms and doing the proper integral over the λ(x). This would
amount to replacing the δ functions with λs, however since the λ(x) are assumed
to have a width on the order of the cut off distance, it is reasonable to assume
that other cut off dependent processes may come into play. We will therefore
express the commutator in the following way

[∇ϕ̃ν(x− νut), ϕ̃µ(y − νuτ)] = 〈[∇ϕ̃ν(x− νut), ϕ̃ν(y − νuτ)]〉 (4.126)
= 〈∇ϕ̃ν(x− νut)ϕ̃ν(y − νuτ)〉 − 〈ϕ̃ν(y − νuτ)∇ϕ̃ν(x− νut)〉 (4.127)

= Kδνµ

(
1

x− νut− y + νuτ + ıνη
− 1

x− νut− y + νuτ − ıνη

)
(4.128)

=
2ıKνδνµη

(x− νut− y + νuτ)2 + η2
(4.129)

= 2πıKνδνµξν(x− y, t− τ) . (4.130)

We recognise the function ξν(x, t) =
1
π

η
(x−νut)2+η2 as a nascent Dirac δ, which

will give back the expected δ-function in the limit that η → 0, which formally
it must do. If, however, we introduce a cut off, represented by keeping η and α
at some finite value, we will instead get a sharply peaked function with a width
on the order of the cut off. In effect this procedure has told us which nascent
δ-function is the correct way to represent the cut off physics.

We must now commute one of the outer fermionic operators past the cen-
tral density operator so that it can be combined with the matching fermionic
operator on the other side to form a second density operator.

We will also need that[
− 1

4π

∑
µ=±1

(
1 +

rµ

K

)
∇ϕ̃µ(x− µut), e

ı
2

∑
ν=±1

(
r′+ ν

K

)
ϕ̃ν(0)

]
= − ı

8π

∑
µ,ν=±1

(
1 +

rµ

K

)(
r′ +

ν

K

)
∇ [ϕ̃µ(x− µut), ϕ̃ν(0)] e

ı
2

∑
ν=±1

(
r′+ ν

K

)
ϕ̃ν(0)

(4.131)
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=
1

4π

∑
ν=±1

(
1 +

rν

K

)
(Kνr′ + 1)

η

(x− νut)2 + η2
e

ı
2

∑
ν′=±1

(
r′+ ν′

K

)
ϕ̃ν′ (0)

(4.132)

=
1

4

∑
ν=±1

(
1 +

rν

K

)
(Kνr′ + 1) ξν(x, t)e

ı
2

∑
ν′=±1

(
r′+ ν′

K

)
ϕ̃ν′ (0) (4.133)

η→0−−−→ 1

4
e

ı
2

∑
ν′=±1

(
r′+ ν′

K

)
ϕ̃ν′ (0)

∑
ν=±1

(
1 + rr′ + ν

( r
K

+Kr′
))

δ(x− νut) ,

(4.134)

with which we obtain

ψr(0)ψ
†
r′(x, t)ψr′(x, t) = ψ†

r′(x, t)ψr′(x, t)ψr(0)

+
∑
ν=±1

1 + rr′ + ν
(
r
K −Kr

′)
4

ξν(x, t)ψr(0) .

(4.135)

Finally then, we find that

C3 =
∑
r=±1

[ 〈
ψr(0)U0,0(0, t)ψ

†
r(x)ψr(x)U0,0(t, 0)ψ

†
r(0)

〉
+
〈
ψr(0)U0,0(0, t)ψ

†
−r(x)ψ−r(x)U0,0(t, 0)ψ

†
r(0)

〉
+
〈
ψr(0)U0,0(0, t)ψ

†
−r(x)ψr(x)U0,0(t, 0)ψ

†
−r(0)

〉]
(4.136)

=

(
Λ− N

L

)
N

L
+
K

2π

x2 + (ıη + ut)2

(x2 − (ıη + ut)2)2

+
1

2π2
α2K−2Re

[
e−2ıkF rx (η − ıx)

2δ1r
π (η + ıx)

− 2δ1r
π

×
∏
ν=±1

(η − ı(x− νut))−
K−r

2 −r δ1
π (η + ı(x− νut))−

K+r
2 +r

δ1
π

]

+
1

2

∑
r=±1

[(
Λ

2
− Nr

L

) ∑
ν=±1

((
δ1
π

+ (1−Kr)
)
ξν(x, t)−

δ1
π
ξν(x, 0)

)]
.

(4.137)

The correlation function C4 has the form of a product of fermion and hole
densities, so we can perform the point splitting procedure immediately.

C4 = 〈ψ(0, 0)ψ†(0, 0)ψ†(x, t)ψ(x, t)ψ(0, 0)ψ†(0, 0)〉 (4.138)

=
∑

r1,r2,r3=±1

〈(
1

2
Λ− Nr1

L
+

1

4π

∑
ν=±1

(
1 +

r1ν

K

)
∇ϕ̃ν(0)
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+ ψr1(0, 0)ψ
†
−r1(0, 0)

)

×

(
Nr2
L
− 1

4π

∑
ν=±1

(
1 +

r2ν

K

)
∇ϕ̃ν(x− νut) + ψ†

r2(x, t)ψ−r2(x, t)

)

×

(
1

2
Λ− Nr3

L
+

1

4π

∑
ν=±1

(
1 +

r3ν

K

)
∇ϕ̃ν(0) + ψr3(0, 0)ψ

†
−r3(0, 0)

)〉
(4.139)

=
N

L

(
Λ− N

L

)2

− 1

2π2

(
Λ− N

L

) ∑
ν=±1

Re [〈∇ϕ̃ν(x− νut)∇ϕ̃ν(0)〉]

+
1

4π2

N

L

∑
ν=±1

〈∇ϕ̃ν(0)∇ϕ̃ν(0)〉

+ 2
∑
r=±1

Re

[〈(
Λ− N

L
+

1

2π

∑
ν=±1

∇ϕ̃ν(0)

)

× ψ†
r(x, t)ψ−r(x, t)ψr(0, 0)ψ

†
−r(0, 0)

〉]

+
∑
r=±1

〈
ψr(0, 0)ψ

†
−r(0, 0)

(
N

L
− 1

2π

∑
ν=±1

∇ϕ̃ν(x− νut)

)
(4.140)

× ψ−r(0, 0)ψ
†
r(0, 0)

〉
. (4.141)

The first two terms in eq. (4.141) are straightforward to deal with.
The third term is formally divergent like O

(
1
η2

)
, however this does not

present a serious problem. The correlation function C4 does not appear until
6th order in αW in the matrix elements, so this divergence can be interpreted
as saying that the diagrams that contributed to C4 can be resummed to give a
contribution which is 4th order in α and η. Alternatively we can observe that
the variance in the density of left/right movers is given by

σ2
ρr = − 1

4π

∑
ν=±1

(
1 +

rν

K

)
〈∇ϕ̃ν(0)∇ϕ̃ν(0)〉 . (4.142)

Since we cannot resolve distances smaller that the cut off distance, the density
of left (respectively right) movers has an upper bound on the order of Nr

α . This
implies that σ2

ρr has an upper bound N2
r

α2 . This is not, therefore necessarily an
unphysical value for this correlator.

The fourth term in eq. (4.141) contains a mixture of operators that are linear
and exponential in the bosonic operators. Therefore, whilst the Λ− N

L term can
be evaluated using eq. (4.95), we must resort to eq. (4.218) to evaluate the term
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with the linear bosonic contribution.∑
r=±1

〈(
Λ− N

L
+

1

2π

∑
ν=±1

∇ϕ̃ν(0)

)
ψ†
r(x, t)ψ−r(x, t)ψr(0, 0)ψ

†
−r(0, 0)

〉

=
∑
r=±1

1

4π2
α2K−2e−2ıkF rx

(
Λ− N

L
+
Kr

2π

[ ∑
ν=±1

1

x− νut− νıη

])
×
∏
ν=±1

(η − νı(x− νtu))−K (4.143)

=
1

2π2
α2K−2

([
Λ− N

L

]
cos(2kFx)− ı sin(2kFx)

K

π

x

x2 − (ut− ıη)2

)
×
(
x2 − (ut− ıη)2

)−K
. (4.144)

The final term in eq. (4.141) requires us to perform some further point
splitting in order to obtain an expression we can evaluate〈
ψr(0, 0)ψ

†
−r(0, 0)

(
N

L
− 1

2π

∑
ν=±1

∇ϕ̃ν(x− νut)

)
ψ−r(0, 0)ψ

†
r(0, 0)

〉

=

〈(
N

L
− 1

2π

∑
ν=±1

∇ϕ̃ν(x− νut)−
K

2

∑
ν=±1

rνξν(x, t)

)

× ψr(0, 0)ψ†
−r(0, 0)ψ−r(0, 0)ψ

†
r(0, 0)

〉
(4.145)

=

〈(
N

L
− 1

2π

∑
ν=±1

∇ϕ̃ν(x− νut)−
K

2

∑
ν=±1

rνξν(x, t)

)

× ψr(0, 0)

(
N−r

L
− 1

4π

∑
ν=±1

(
1− rν

K

)
∇ϕ̃ν(0)

)
ψ†
r(0, 0)

〉
(4.146)

=

〈(
N

L
− 1

2π

∑
ν=±1

∇ϕ̃ν(x− νut)−
K

2

∑
ν=±1

rνξν(x, t)

)

×

(
1

2
Λ− Nr

L
+

1

4π

∑
ν=±1

(
1 +

νr

K

)
∇ϕ̃ν(0)

)

×

(
N−r

L
− 1

4π

∑
ν=±1

(
1− rν

K

)
∇ϕ̃ν(0)−

1

4

∑
ν=±1

(
r +

ν

K

)
νξν(0, 0)

)〉
(4.147)

=

(
1

2
Λ− Nr

L

)(
N−r

L
− 1

2

1

ηK

)(
N

L
− K

2

∑
ν=±1

rνξν(x, t)

)

+
1

8π2

∑
ν=±1

[((
N−r

L
− 1

2

1

Kη

)(
1 +

rν

K

)2
−
(
1

2
Λ− Nr

L

)(
1− 1

K2

))
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× 〈∇ϕ̃ν(x− νut)∇ϕ̃ν(0)〉

]

−

(
N

L
− K

2

∑
ν′=±1

rν′ξν′(x, t)

)(
1− 1

K2

) ∑
ν=±1

〈∇ϕ̃ν(0)∇ϕ̃ν(0)〉 .

(4.148)

Putting this together we find that

C4 =
N

L

(
Λ− N

L

)2

+
N

L

2

η2

[(
K − 1

K

)
− K

4π2

]
− K

π2

(
Λ− N

L

) ∑
ν=±1

1

(x− νut)2 + η2

+
1

π2
α
(
K− 1

K

)(
K+1− 1

K

)
Re

[([
Λ− N

L

]
cos(2kFx)

− ı sin(2kFx)
K

π

x

x2 − (ut− ıη)2

)(
x2 − (ut− ıη)2

)−K ]

+
∑
r=±1

(
1

2
Λ− Nr

L

)(
N−r

L
− 1

2

1

ηK

)(
N

L
− K

2

∑
ν=±1

rνξν(x, t)

)

+
1

8π2

∑
ν=±1

(
N
L −

1
Kη

) (
K + 1

K

)
−
(
Λ− N

L

) (
K − 1

K

)
+ 2ν JL

(x− νut+ νıη)2
,

(4.149)

where J = Nr −N−r is the ground state current.
The F1 correlator was briefly discussed in section 4.5. It will be convenient

to split it into two terms, corresponding to respectively left and right moving
fermions being transferred.

F1 =
∑
r=±1

F r1 (4.150)

F r1 =
〈
U1,0(0, tf )U0,1(tf , t)ψr(x)U0,0(t, 0)ψ

†
r(0)

〉
. (4.151)

The terms with different chiralities on the ferimonic operators vanish as the
number of fermions of each chirality must match at each end of the Keldysh
contour. Using eq. (4.95) we can evaluate this correlation function and find
that

F r1 =
〈
U1,0(0, tf )U0,1(tf , t)ψr(x)U0,0(t, 0)ψ

†
r(0)

〉
(4.152)

= e−ı∆E1tf e−ı∆E2(tf−t)
〈
R†

2(tf )R
†
1(tf )R1(t)R2(t)ψr(x, t)R

†
1(t)R1(0)ψ

†
r(0, 0)

〉
(4.153)

=
1

2π
α

2δ21
π2K

+
δ1
πK +

2δ22
π2K

+
δ2
πK +K2−1

2K −1e−ı∆E1tf e−ı∆E2(tf−t)eikF rx
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× (η + ıutf )
−2

δ21
π2K

+
δ1
πK (η + ıu(tf − t))−2

δ22
π2K

− δ2
πK

×
∏
ν=±1

[
(η − ıνx)

δ1δ2
π2K

−νr δ1
π (η − ı (νx− utf ))−

δ1δ2
π2K

+
δ2
π

(Kνr+1)
2K

× (η − ı (νx− ut))
δ1δ2
π2K

− δ1
π

(Kr+ν)
2K +

δ2
π

(Kr+ν)
2K − (K+νr)2

4K

× (η − ı (νx− u(tf − t)))−
δ1δ2
π2K

+
δ1
π

(Kνr−1)
2K

]
. (4.154)

This expression contains all of the essential phenomonology of the spatial
spread of the orthogonality catastrophe and will be a central point of our later
discussion, so we will put off a thorough examination of this term for now.

The F2 to F4 correlators require some more work. Firstly we must get them
into a form that removes point splitting issues. Then, it will turn out we must
separate linear and exponential terms in the expectation value.

Let us first consider the correlation function F3. Neglecting phase shifts due
to an overall shift in the energy for the moment, this consists of terms of the
form 〈

ψ†
r1(x, t)ψr2(x, t)R1ψr3(x, t)R2ψ

†
r4(0, 0)

〉
, (4.155)

where R1 = R†
2(tf )R

†
1(tf )R1(t)R2(t) and R2 = R†

1(t)R1(0). In order to match
the left and right moving fermion numbers along the contour, we must have
r1 + r4 = r2 + r3. This results in 3 distinct cases; r1 = r2 = r3 = r4, r1 = r2 =
−r3 = −r4 and r1 = −r2 = −r3 = r4.

In what follows we will use the fact that

R1ψr(x, t) = eıArψr(x, t)R1 (4.156)
R2ψ

†
r(0, 0) = eıBrψ†

r(0, 0)R2 (4.157)
R1ψ

†
r(0, 0) = eıCrψ†

r(0, 0)R1 , (4.158)

where Ar,Br, Cr ∈ R. We can explicitly find the form of these terms using the
identity

eP eQ = e[P,Q]eQeP , (4.159)
valid when [P,Q] ∈ C. We define

Γr(x1 − x2,t1 − t2)

= −ı

[
1

πK

∑
ν=±1

νϕ̃ν(x1 − νut),
1

2

∑
µ=±1

(
r +

µ

K

)
ϕ̃µ(x2 − µut2)

]
(4.160)

= − ı

2πK

∑
µ,ν=±1

ν
(
r +

µ

K

)
[ϕ̃ν(x1 − νut1), ϕ̃µ(x2 − µut2)]

(4.161)

=
1

2

∑
ν=±1

(
r +

ν

K

)
sgn (x1 − x2 − νu(t1 − t2)) . (4.162)
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Here we have used the fact that

[ϕ̃ν(x), ϕ̃µ(y)] = ıπKνδν,µ sgn(x− y) . (4.163)

We can now write

R2ψr(x, t) = R†
2(tf )R

†
1(tf )R1(t)R2(t)ψr(x, t) (4.164)

= e−ıδ2Γr(0,0)R†
2(tf )R

†
1(tf )R1(t)ψr(x, t)R2(t) (4.165)

= e−ıδ2Γr(0,tf−t)−ıδ1Γr(−x,tf−t)+ıΓr(−x,0)−ıδ2Γr(0,0)ψr(x, t)R2 .
(4.166)

Comparing this with eq. (4.156) and performing a similar calculation for Cr and
Br we find that

Ar =
δ2
K
− δ1r sgn(x) +

δ1
2

∑
ν=±1

(
r − ν

K

)
sgn(x− u(tf − t)) (4.167)

Br = −
δ1
K

(4.168)

Cr =
δ2
2

∑
ν=±1

(
r +

ν

K

)
(sgn(x− νutf )− sgn(x− νut)) . (4.169)

We will need in particular the r odd parts of these expressions, which offer some
significant simplifications.

∆Ar = Ar −A−r (4.170)

= −rδ2

[
2 sgn(x)−

∑
ν=±1

sgn(x− νu(tf − t))

]
, (4.171)

∆Br = Br − B−r (4.172)
= 0 , (4.173)

∆Cr = Cr − C−r (4.174)

= rδ2
∑
ν=±1

(sgn(x− νutf )− sgn(x− νut)) . (4.175)

Returning to the various terms in F3, for the case that r1 = r2 = −r3 =
−r4 = −r we have that〈
ψ†
−r(x, t)ψ−r(x, t)R1ψr(x, t)R2ψ

†
r(0, 0)

〉
=

〈(
N−r −

1

4π

∑
ν

(
1− rν

K

)
∇ϕ̃ν(x− νut)

)
R1ψr(x, t)R2ψ

†
r(0, 0)

〉
.

(4.176)

That is there is no real point splitting ambiguity in this case and it can be
evaluated by simply replacing ψ†

−r(x, t)ψ−r(x, t) with the coresponding hole
density.
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Similarly for the case that r1 = r2 = r3 = r4 = r we have that〈
ψ†
r(x, t)ψr(x, t)R1ψr(x, t)R2ψ

†
r(0, 0)

〉
=

〈(
Nr −

1

4π

∑
ν

(
1 +

rν

K

)
∇ϕ̃ν(x− νut)

)
R1ψr(x, t)R2ψ

†
r(0, 0)

〉
.

(4.177)

Finally for the case that r1 = −r2 = r3 = −r4 = r we have that〈
ψ†
r(x, t)ψ−r(x, t)R1ψr(x, t)R2ψ

†
−r(0, 0)

〉
= eıAr

〈
ψ†
r(x, t)ψ−r(x, t)ψr(x, t)R1R2ψ

†
−r(0, 0)

〉
(4.178)

= −eı(Ar−A−r)
〈
ψ†
r(x, t)ψr(x, t)R1ψ−r(x, t)R2ψ

†
−r(0, 0)

〉
(4.179)

= −eı∆Ar

〈(
Nr −

1

4π

∑
ν

(
1 +

rν

K

)
∇ϕ̃ν(x− νut)

)

×R1ψ−r(x, t)R2ψ
†
−r(0, 0)

〉
. (4.180)

If we define the function

fr1,r2 = e−ı∆E1tf e−ı∆E2(tf−t)

〈(
Nr1 −

1

4π

∑
ν

(
1 +

r1ν

K

)
∇ϕ̃ν(x− νut)

)

×R1ψr2(x, t)R2ψ
†
r2(0, 0)

〉
(4.181)

reinstating the constant energy shifts, then we can write

F3 =
∑
r=±1

(
fr,r + fr,−r − eı∆Arfr,−r

)
. (4.182)

We can do analogous calculations for F2, which has the form〈
ψr1(0, 0)ψ

†
r2(0, 0)R1ψr3(x, t)R2ψ

†
r4(0, 0)

〉
. (4.183)

We note that the bosonized operators ψr and ψ†
r′ obey the relation

ψr1(x, t)ψ
†
r2(0, 0) = eıDr1,r2ψ†

r2(0, 0)ψr1(x, t) , (4.184)

with

Dr1,r2 =
π

4

∑
ν=±1

(
r1 + r2 + ν

(
1

K
+Kr1r2

))
sgn(x− νut) (4.185)

=

{
πr1δr1,r2 sgn(x) |x| > |ut|
−π

1
K +Kr1r2

2 sgn(ut) |x| < |ut|
, (4.186)
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∆Dr1,r2 = Dr1,r2 −Dr1,−r2 (4.187)

=
π

2

∑
ν=±1

(r2 + νKr1r2) sgn(x− νut) (4.188)

=

{
πr1r2 sgn(x) |x| > |ut|
−πKr1r2 sgn(ut) |x| < |ut|

. (4.189)

Note that for equal times we recover the standard anticommutation relation.
As was the case for F3 there are three possible distinct forms of term in F2

and they can be computed in an analogous manner. With the definition

f̃r1,r2 = e−ı∆E1tf e−ı∆E2(tf−t)

〈(
1

2
Λ−Nr1 +

1

4π

∑
ν

(
1 +

r1ν

K

)
∇ϕ̃ν(0)

)

×R1ψr2(x, t)R2ψ
†
r2(0, 0)

〉
(4.190)

(4.191)

we have〈
ψ−r(0, 0)ψ

†
−r(0, 0)R1ψr(x, t)R2ψ

†
r(0, 0)

〉
= eı∆E1tf eı∆E2(tf−t)f̃−r,r , (4.192)〈

ψr(0, 0)ψ
†
r(0, 0)R1ψr(x, t)R2ψ

†
r(0, 0)

〉
= eı∆E1tf eı∆E2(tf−t)f̃r,r , (4.193)〈

ψr(0, 0)ψ
†
−r(0, 0)R1ψ−r(x, t)R2ψ

†
r(0, 0)

〉
= −eı∆E1tf eı∆E2(tf−t)

× eı(∆Br+∆Cr+∆D−r,r)f̃r,−r .
(4.194)

The F4 term can be treated in a similar manner, however there are far more
possible combinations of chirality indices (ten up to the symmetry of reversing
all chiralities, as opposed to three).

The terms in F4 have the form

F r1,r2,r3,r4,r5,r64 = e−ı∆E1tf e−ı∆E2(tf−t)

×
〈
ψr1(0, 0)ψ

†
r2(0, 0)ψ

†
r3(x, t)ψr4(x, t)R1ψr5(x, t)R2ψ

†
r6(0, 0)

〉
.

(4.195)

Similarly to the cases above we will express F4 in terms of

gr1,r2,r3 = e−ı∆E1tf e−ı∆E2(tf−t)

〈(
1

2
Λ−Nr1 +

1

4π

∑
ν

(
1 +

r1ν

K

)
∇ϕ̃ν(0)

)

×

(
Nr2 −

1

4π

∑
ν

(
1 +

r2ν

K

)
∇ϕ̃ν(x− νut)

)
R1ψr3(x, t)R2ψ

†
r3(0, 0)

〉
.

(4.196)
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The various terms in F4 can then be found via the same means as above,
coupled with using eq. (4.133) to move the fermion operators past density op-
erators, to give

F r,r,r,r,r,r4 = gr,r,r , (4.197)
F r,r,−r,−r,r,r4 = gr,−r,r , (4.198)
F r,r,r,r,−r,−r4 = gr,r,−r , (4.199)

F r,r,−r,−r,−r,−r4 = gr,−r,−r , (4.200)
F r,r,r,−r,r,−r4 = −eı∆Argr,r,−r , (4.201)
F r,r,−r,r,−r,r4 = −eı∆A−rgr,−r,r , (4.202)
F r,−r,r,r,−r,r4 = −eı(∆Br+∆Cr+∆D−r,r)

×

(
gr,r,−r +

1

4

∑
ν=±1

(
2 +

(
K +

1

K

)
νr

)
ξν(x, t)f̃r,−r

)
,

(4.203)
F r,−r,−r,−r,−r,r4 = −eı(∆Br+∆Cr+∆D−r,r)

×

(
gr,−r,−r +

1

4

∑
ν=±1

(
2 +

(
K +

1

K

)
νr

)
ξν(x, t)f̃r,−r

)
,

(4.204)
F r,−r,−r,r,−r,r4 = eı(∆Ar+∆Br+∆Cr+∆Dr,r)

×

(
gr,r,−r +

1

4

∑
ν=±1

(
K − 1

K

)
νrξν(x, t)f̃r,−r

)
.

(4.205)

In addition to the above there is one term which does not require the use of
a point spliting procedure, that is the r1 = −r2 = r3 = −r4 = −r5 = −r6 = r
term. This term can be evaluated directly using eq. (4.95) to give

F r,−r,r,−r,−r,−r4 =
F−r
1

4π2
α
(
K− 1

K

)2
η3K− 1

K e−2ikF rx

×
∏
ν=±1

[
(η + ı(x− νut))−

3K−νr
2 +νr

δ2
π (η − ı(x− νut))−

K−νr
2 −νr δ1

π

× (η + νı(x− utf ))−νr
δ2
π (η + νı(x− νu(tf − t))−νr

δ1
π

]
.

(4.206)

All that remains is to evaluate the functions fr1,r2 , f̃r1,r2 and gr1,r2,r3 . These
correlation functions contain a mixture of terms linear in the bosonic operators
and terms exponential in them. As mentioned in section 4.5 these types of
correlation functions can be evaluated by explicit normal ordering.
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The expectations fr1,r2 and fr1,r2 have the form〈
A
∏
i

eCi

〉
. (4.207)

whilst the expectation gr1,r2,r3 has the form〈
AB

∏
i

eCi

〉
, (4.208)

where A, B and Ci are linear combinations of bosonic operators and their deriva-
tives. The exponential terms can be combined into a single exponential term
eC = eγ

∏
i e
Ci , where γ ∈ C, so it is sufficient to consider the case where there

is only a single Ci.
Splitting each of these terms into creation and annihilation parts A = A+ +

A−, B = B+ +B− and eC = eC+eC−e−
1
2 [Q+,Q−], we can write〈

AeC
〉
=
〈
(A+ +A−) e

C+eC−e−
1
2 [C+,C−]

〉
(4.209)

=
〈
eC+ (A+ +A− + 〈AC〉) eC−

〉 〈
eC
〉

(4.210)
= 〈AC〉

〈
eC
〉
, (4.211)

and similarly〈
ABeC

〉
=
〈
(A+ +A−) (B+ +B−) e

C+eC−e−
1
2 [C+,C−]

〉
(4.212)

=
〈
eC+ (A+ +A− + 〈AC〉) (B+ +B− + 〈BC〉) eC−

〉
〈eC〉 (4.213)

=
〈
eC+

(
(A+ + 〈AC〉)(B− + 〈BC〉) +A−(B− + 〈BC〉)

+ (A+ + 〈AC〉)B+ +B+A− + 〈AB〉
)
eC−

〉
〈eC〉 (4.214)

= (〈AC〉〈BC〉+ 〈AB〉) 〈eC〉 . (4.215)

Note that if eC = eγ
∏
i e
Ci then〈

A
∏
i

eCi

〉
= e−γ

〈
AeC

〉
(4.216)

= e−γ〈AC〉
〈
eC
〉

(4.217)

= 〈AC〉

〈∏
i

eCi

〉
. (4.218)

Since C =
∑
i Ci and

〈∏
i e
Ci
〉

can be calculated directly using eq. (4.95) we
can evaluate terms of this form without having to explicitly evaluate γ. We also
note that in all the cases we consider

〈∏
i e
Ci
〉
= F r1 .

With this we can explicitly obtain expression for the functions fr1,r2 , f̃r1,r2
and gr1,r2,r3 . We find that

fr1,r2 =
F r21

8πK

[
8πK

N

L
− δ2
π

4K

ıη
− r2

2K(r1 + r2)

ıη
+
δ2
π

4K

u(tf − t) + ıη
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+
∑
ν=±1

(
− ν δ1

π

2 (K − νr1)
x− νu(tf − t)− νıη

− ν δ1
π

2 (K + νr1)

x− νut+ νıη

+ r2
(K − r1ν) (K − r2ν)

x− νut+ νıη

)]
, (4.219)

f̃r1,r2 =
F r21

8πK

[
8πK

(
1

2
Λ−Nr1

)
+
δ1
π

4K

ıη
− r2

K(r1 + r2)

ıη
− δ1
π

4K

utf + ıη

+
∑
ν=±1

(
−

2ν δ2π (K + νr1) + νr2(K + νr1)(K + νr2)

x− νut− ıη

+ ν
δ2
π

2 (K + νr1)

x− νutf − ıη

)]
, (4.220)

gr1,r2,r3 =
F r31

64π2K

[
−
∑
ν=±1

4K (K + νr1) (K + νr2)

(x− νut− νıη)2

−

(
8πK

(
1

2
Λ− Nr1

L

)
+
δ1
π

4K

ıη + tfu
+
δ1
π

4K

ıη
+ r3

K(r1 + r3)

ıη

+
∑
ν1=±1

(
ν1
δ2
π

2 (K + ν1r1)

x− ν1utf − ν1ıη
− ν1

δ2
π

2 (K + ν1r1)

x− ν1ut− ν1ıη

− ν1r3
(K + ν1r1) (K + ν1r3)

x− ν1ut− ν1ıη

))

×

(
8πK

Nr2
L

+
δ2
π

4K

u(tf − t) + ıη
− δ2
π

4K

ıη
− r3

K(r2 + r3)

ıη

+
∑
ν2=±1

(
− ν2

δ1
π

2 (K − ν2r2)
x− ν2u(tf − t)− ν2ıη

− ν2
δ1
π

2 (K + ν2r2)

x− ν2ut+ ν2ıη

+ r3
(K + r2) (K + r3)

x− ν2ut+ ν2ıη

))]
. (4.221)

With this we have fully evaluated all of the correlation functions needed
and so have an exact expression for the reduced density matrix of the localised
states.

4.7 Matrix elements
The density matrix in eq. (4.18), together with the expressions for the various
terms calculated in the previous section, describe the physics of the system.

The various matrix elements are given by

A = 1 + α2(w2
1β

2
1 − 2β1)|W1|2

(
Λ− N

L

)
+ α2(w2

2β
2
2 − 2β2)|W2|2

N

L
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+ 2α4β1(2β2 − w2β
2
2)|W1|2|W2|2Re

[(
Λ− N

L

)
N

L
− K

2π

x2 + (ıη + ut)2

(x2 − (ıη + ut)2)2

+
1

2π
α2K−2 cos(2kFx)(η + ı(ut− x))−K(η + ı(ut+ x))−K

]

+ α6β2
1(w

2
2β

2
2 − 2β2)|W1|4|W2|2

[
N

L

(
Λ− N

L

)2

+
N

L

2

η2

[(
K − 1

K

)
− K

4π2

]
− K

π2

(
Λ− N

L

) ∑
ν=±1

1

(x− νut)2 + η2

+
1

π2
α
(
K− 1

K

)(
K+1− 1

K

)
Re

[([
Λ− N

L

]
cos(2kFx)− ı sin(2kFx)

K

π

x

x2 − (ut− ıη)2

)
(
x2 − (ut− ıη)2

)−K ]
+
∑
r=±1

(
1

2
Λ− Nr

L

)(
N−r

L
− 1

2

1

ηK

)(
N

L
− K

2

∑
ν=±1

rνξν(x, t)

)

+
1

8π2

∑
ν=±1

(
N
L −

1
Kη

) (
K + 1

K

)
−
(
Λ− N

L

) (
K − 1

K

)
+ 2ν JL

(x− νut+ νıη)2

]
, (4.222)

B = α4γ21γ
2
2 |W1|2|W2|2

[(
Λ− N

L

)
N

L
+
K

2π

x2 + (ıη + ut)2

(x2 − (ıη + ut)2)2

+
1

2π2
α2K−2Re

[
e−2ıkF rx (η − ıx)

2δ1r
π (η + ıx)

− 2δ1r
π

×
∏
ν=±1

(η − ı(x− νut))−
K−r

2 −r δ1
π (η + ı(x− νut))−

K+r
2 +r

δ1
π

]

+
1

2

∑
r=±1

[(
Λ

2
− Nr

L

) ∑
ν=±1

((
δ1
π

+ (1−Kr)
)
ξν(x, t)−

δ1
π
ξν(x, 0)

)]]
,

(4.223)

D1 = α2γ21 |W1|2
(
Λ− N

L

)
+ α4γ21

(
w2

2β
2
2 − 2β2

)
|W2|2|W1|2

[
(
Λ− N

L

)
N

L
+
K

2π

x2 + (ıη + ut)2

(x2 − (ıη + ut)2)2

+
1

2π2
αK−2Re

[
e−2ıkF rx (η − ıx)

2δ1r
π (η + ıx)

− 2δ1r
π

×
∏
ν=±1

(η − ı(x− νut))−
K−r

2 −r δ1
π (η + ı(x− νut))−

K+r
2 +r

δ1
π

]
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+
1

2

∑
r=±1

[(
Λ

2
− Nr

L

) ∑
ν=±1

((
δ1
π

+ (1−Kr)
)
ξν(x, t)−

δ1
π
ξν(x, 0)

)]]
,

(4.224)

D2 = α2γ22 |W2|2
N

L

− 2α4γ22β1|W1|2|W2|2Re

[(
Λ− N

L

)
N

L
− K

2π

x2 + (ıη + ut)2

(x2 − (ıη + ut)2)2

+
1

2π
α2K−2 cos(2kFx)(η + ı(ut− x))−K(η + ı(ut+ x))−K

]

+ α6γ22β
2
1 |W1|4|W2|2

[
N

L

(
Λ− N

L

)2

+
N

L

2

η2

[(
K − 1

K

)
− K

4π2

]
− K

π2

(
Λ− N

L

) ∑
ν=±1

1

(x− νut)2 + η2

+
1

π2
α
(
K− 1

K

)(
K− 1

K +1
)

× Re

[([
Λ− N

L

]
cos(2kFx)− ı sin(2kFx)

K

π

x

x2 − (ut− ıη)2

)
×
(
x2 − (ut− ıη)2

)−K ]
+
∑
r=±1

(
1

2
Λ− Nr

L

)(
N−r

L
− 1

2

1

ηK

)(
N

L
− K

2

∑
ν=±1

rνξν(x, t)

)

+
1

8π2

∑
ν=±1

(
N
L −

1
Kη

) (
K + 1

K

)
−
(
Λ− N

L

) (
K − 1

K

)
+ 2ν JL

(x− νut+ νıη)2

]
, (4.225)

F = α2γ2γ1W2W1

∑
r

{
F r1 − α2β1|W1|2

(
f̃rr −

(
1− e−ı(∆Cr+Dr,r)

)
f̃−r,r

)

− α2β2|W2|2
(
frr +

(
1− e−ı∆Ar

)
f−r,r

)
+ α4β2β1|W2|2|W1|2

×

(
gr,r,r +

[
1− e−ı∆Ar

]
gr,−r,r +

[
1− e−ı(∆Cr+∆Dr,r)

]
g−r,r,r

+
[
1− e−ı∆Ar − e−ı(∆Cr+∆D−r,r) + e−ı(∆Ar+∆Cr+∆Dr,r)

]
g−r,−r,r

+ F−r,r,−r,r,r,r
4 +

1

2
e−ı∆Cr f̃−r,r

∑
ν=±1

[(
νr

2
e−ı(∆Ar+∆Dr,r)

[
K − 1

K

])
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− e−ı∆D−r,r

(
2 + νr

[
K +

1

K

])
ξν(x, t)

])}
(4.226)

= α2γ2γ1W2W1

∑
r

F r1F
r
renorm , (4.227)

with

F rrenorm = 1 +
1

8πK
α2β1|W1|2

(

8πK

(
1

2
Λ− Nr

L

)
− 4K

ıη

(
1− δ1

π

)
− δ1
π

4K

utf + ıη

+
∑
ν=±1

(
ν
δ2
π

2 (K + νr)

x− νutf − ıη
−

2ν δ2π (K + νr) + νr(K + νr)2

x− νut− ıη

)

+
(
1− e−ı(∆Cr+∆Dr,r)

)[
8πK

(
1

2
Λ− N−r

L

)
+
δ1
π

4K

ıη
− δ1
π

4K

utf + ıη

+
∑
ν=±1

(
ν
δ2
π

2 (K − νr)
x− νutf − ıη

−
2ν δ2π (K − νr) + νr(K2 − 1)

x− νut− ıη

)])

− 1

8πK
α2β2|W2|2

(
8πK

Nr
L
−
(
1 +

δ2
π

)
4K

ıη
+
δ2
π

4K

u(tf − t) + ıη

+
∑
ν=±1

(
−ν δ1

π

2 (K − νr)
x− νu(tf − t)− νıη

− ν δ1
π

2 (K + νr)

x− νut+ νıη
+ r

(K − rν)2

x− νut+ νıη

)

+
(
1− e−ı∆Ar

) [
8πK

N−r

L
− δ2
π

4K

ıη
+
δ2
π

4K

u(tf − t) + ıη

+
∑
ν=±1

(
r

(
K2 − 1

)
x− νut+ νıη

− ν δ1
π

2 (K + νr)

x− νu(tf − t)− νıη
− ν δ1

π

2 (K − νr)
x− νut+ νıη

)])

+
1

64π2K
α4β2β1|W2|2|W1|2

([ ∑
ν=±1

4K (K + νr)
2

(x− νut− νıη)2

−

(
δ1
π

4K

ıη + tfu
+

2K

ıη

(
1− 2

δ1
π

)
+
∑
ν1=±1

(
− ν1

δ2
π

2 (K + ν1r)

x− ν1utf − ν1ıη

+ ν1
δ2
π

2 (K + ν1r)

x− ν1ut− ν1ıη
+ ν1r

(K + ν1r)
2

x− ν1ut− ν1ıη

))

×

(
δ2
π

4K

u(tf − t) + ıη
− 2K

ıη

(
1 + 2

δ2
π

)
+
∑
ν2=±1

(
r

(K + r)
2

x− ν2ut+ ν2ıη

− ν2
δ1
π

2 (K − ν2r)
x− ν2u(tf − t)− ν2ıη

− ν2
δ1
π

2 (K + ν2r)

x− ν2ut+ ν2ıη

))]
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+
(
1− e−ı∆Ar

) [ ∑
ν=±1

4K
(
K2 − 1

)
(x− νut− νıη)2

−

(
δ1
π

4K

ıη + tfu
+

2K

ıη

(
1− δ1

π

)
+
∑
ν1=±1

(
− ν1

δ2
π

2 (K + ν1r)

x− ν1utf − ν1ıη

+ ν1
δ2
π

2 (K + ν1r)

x− ν1ut− ν1ıη
+ ν1r

(K + ν1r)
2

x− ν1ut− ν1ıη

))

×

(
δ2
π

4K

u(tf − t) + ıη
− δ2
π

4K

ıη
+
∑
ν2=±1

(
− ν2

δ1
π

2 (K + ν2r)

x− ν2u(tf − t)− ν2ıη

− ν2
δ1
π

2 (K − ν2r)
x− ν2ut+ ν2ıη

+ r

(
K2 − 1

)
x− ν2ut+ ν2ıη

))]

+
(
1− e−ı(∆Cr+∆Dr,r)

)[ ∑
ν=±1

4K
(
K2 − 1

)
(x− νut− νıη)2

−

(
δ1
π

4K

ıη + tfu
− δ1
π

4K

ıη
+
∑
ν1=±1

(
− ν1

δ2
π

2 (K − ν1r)
x− ν1utf − ν1ıη

+ ν1
δ2
π

2 (K − ν1r)
x− ν1ut− ν1ıη

+ ν1r

(
K2 − 1

)
x− ν1ut− ν1ıη

))

×

(
δ2
π

4K

u(tf − t) + ıη
− 2K

ıη

(
1− 2

δ2
π

)

+
∑
ν2=±1

(
− ν2

δ1
π

2 (K − ν2r)
x− ν2u(tf − t)− ν2ıη

− ν2
δ1
π

2 (K + ν2r)

x− ν2ut+ ν2ıη

+ r
(K + r)

2

x− ν2ut+ ν2ıη

))]
+
(
1− e−ı∆Ar − e−ı(∆Cr+∆D−r,r) + e−ı(∆Ar+∆Cr+∆Dr,r)

)
×

[ ∑
ν=±1

4K (K − νr)2

(x− νut− νıη)2
−

(
δ1
π

4K

ıη + tfu
− δ1
π

4K

ıη

+
∑
ν1=±1

(
− ν1

δ2
π

2 (K − ν1r)
x− ν1utf − ν1ıη

+ ν1
δ2
π

2 (K − ν1r)
x− ν1ut− ν1ıη

+ ν1r

(
K2 − 1

)
x− ν1ut− ν1ıη

))

×

(
δ2
π

4K

u(tf − t) + ıη
− δ2
π

4K

ıη
+
∑
ν2=±1

(
− ν2

δ1
π

2 (K + ν2r)

x− ν2u(tf − t)− ν2ıη
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− ν2
δ1
π

2 (K − ν2r)
x− ν2ut+ ν2ıη

+ r

(
K2 − 1

)
x− ν2ut+ ν2ıη

))]

+
1

4π2
α
(
K− 1

K

)2
η3K− 1

K e2ikF rx

×
∏
ν=±1

[
(η + ı(x− νut))−

3K+νr
2 −νr δ2

π (η − ı(x− νut))−
K+νr

2 +νr
δ1
π

× (η + νı(x− utf ))νr
δ2
π (η + νı(x− νu(tf − t))νr

δ1
π

]
+ 4πe−ı∆Cr

[
8πK

(
1

2
Λ−N−r

)
+
δ1
π

4K

ıη
− δ1
π

4K

utf + ıη

+
∑
ν=±1

(
+ ν

δ2
π

2 (K − νr)
x− νutf − ıη

−
2ν δ2π (K − νr) + νr(K2 − 1)

x− νut− ıη

)]

×
∑
ν′=±1

[(
ν′r

2
e−ı(∆Ar+∆Dr,r)

(
K − 1

K

))

− e−ı∆D−r,r

(
2 + ν′r

(
K +

1

K

)))
ξν′(x, t)

]
, (4.228)

and

F r1 =
1

2π
α

2δ21
π2K

+
δ1
πK +

2δ22
π2K

+
δ2
πK +K2−1

2K −1e−ı∆E1tf e−ı∆E2(tf−t)eikF rx

× (η + ıutf )
−2

δ21
π2K

+
δ1
πK (η + ıu(tf − t))−2

δ22
π2K

− δ2
πK

×
∏
ν=±1

[
(η − ıνx)

δ1δ2
π2K

−νr δ1
π (η − ı (νx− utf ))−

δ1δ2
π2K

+
δ2
π

(Kνr+1)
2K

× (η − ı (νx− ut))
δ1δ2
π2K

− δ1
π

(Kr+ν)
2K +

δ2
π

(Kr+ν)
2K − (K+νr)2

4K

× (η − ı (νx− u(tf − t)))−
δ1δ2
π2K

+
δ1
π

(Kνr−1)
2K

]
. (4.152 revisited)

We have reprinted the expression for F r1 in eq. (4.152) for convenience, both
because it appears in the previous expression for F in eq. (4.227) and because it
will be referred to extensively below. With this exact expression for the reduced
density matrix we have completely characterised the response of the localised
states to the sequence of pulses.

All the matrix elements consist of complicated combinations of power laws in
either distance, one of the times or “light-cone” coordinate combinations x±ut,
for some time t. The first two of these represent the expected decay of any
correlations with distance and time. The light-cone coordinate terms suggest
signals about the various quenches propagating through the system.
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We notice that A and D2 are completely independent of the scattering phase
shifts δ1 and δ2, whilst B and D1 show only a weak dependence. This suggests
that these terms are wholly or largely unaffected by the FES physics and are
instead dominated by the physics of the Luttinger liquid ground state. In the
case of the Dis this is not very surprising. These terms represent one of the
localised states being excited and the fermion/hole generated being lost into
the wire. The asymmetry between the two terms is due to the renormalisation
of the D1 term by processes in which the second localised state is repeatedly
excited and deexcited. As these processed take place in the presence of the
impurity potential and FES from the excitation of the first localised state, they
introduce a weak dependence on the FES physics. In the case of D2 there are
no later events to be influenced by the FES from exciting the second state, and
so there is no dependence on FES physics.

The A term is independent of FES physics for similar reasons to the D2 term.
All the processes that contribute to it involve localised states being excited and
immediately deexcited, so there is no time for the orthogonality catastrophe to
occur.

Given the requirement for trace conservation and the fact that none of the
other diagonal elements as strongly dependent on the FES, it is not possible for
B to show a strong dependence either. It does have a weak dependence on δ1,
mirroring the weak dependence of D1.

The off diagonal coherence F shows a much stronger dependence on both δ1
and δ2, suggesting that the FES physics plays a more prominent role here. We
can see in eq. (4.227) that F consists of two terms, corresponding to the release
at the first localised state and the absorption at the second localised state of a
left or right moving fermion respectively. Each of these terms has the form of
the leading order term F r1 , renormalised by a complicated combination of power
laws, F rrenorm, physically caused by repeatedly exciting and deexciting the lo-
calised states during the two pulses. Each of the power laws in F rrenorm is peaked
at positions where there are already peaks in F r1 , so these renormalisations are
simply quantitative corrections to the shape of the peak; the term F r1 exhibits
examples of all of the qualitative feature and all of the essential physics. We
will therefore focus our analysis on this term for simplicity.

Firstly we will examine the operator form of F r1 in eq. (4.152). We see that
it has the form of a Loschmidt echo; it can be read as introducing a fermion into
the wire at the origin, time evolving forward to time t in the presence of the
impurity potential from the first state, removing a fermion at position x, time
evolving forward to time tf now with both impurity potentials turned on and
then comparing with the evolution of the initial state if no particles were added
and no impurity potentials were present. This image is reinforced if we consider
the diagram in Fig. 4.3(d) that gives rise to it. This is strongly reminiscent
of the calculation of the absorption matrix element in the standard FES and,
indeed, if we set tf = t and x = 0 (or alternatively we consider the limit that
ut� x) we find that

F r1 ∼ t
−2

δ1
πK

(
δ1
π −1

)
− 1

2

(
K+ 1

K

)
, (4.229)
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which is exactly the Nozières-De Dominicis result, up to corrections due to the
interactions in the Luttinger liquid and orthogonality catastrophe in the channel
the fermion was not emitted into [3, 65, 105].

Next we note that there are terms of the form

(η − νı(x− νut))−P , (4.230)

which result in a peak at x = ±ut. This peak (slighty modified by contributions
from F rrenorm) is illustrated in Fig. 4.4. This strongly suggests the presence of
a signal propagating at a speed of u the renormalised Fermi velocity, with an
increase in density matrix coherences if the time between the pulses matches
time of flight of the signal. The dependence of the power law exponent P on
the impurity scattering phase shifts, clearly shown in Fig. 4.4, is indicative of
the important roll being played by FES physics.

Similarly there are terms of the form

(η − νı(x− νutf ))−Q , (4.231)

giving a peak if the time between the first pulse and the final measurement
matches the signal time of flight. We note that all of the power law exponents
in F r1 depend on ν and r only through the combination νr, so that it is only
whether the direction of propagation of the term matches or goes against the
chirality of the added fermion that matters. Terms propagating “the wrong way”
are permitted due to the presence of backscattering interactions in the Luttinger
liquid. In this case the right moving fermion includes a contribution from the
left moving normal mode, which can semi-classically be interpreted in terms of a
fermion being backscattered, propagating against its original chirality and then
being backscattered again. In the absence of bulk backscattering interactions
K = 1 and many terms drop out of F r1 , so that terms where νr = −1 make only
a “pure orthogonality catastrophe” contribution of the form δ1δ2

π2 or δ2i
π2 , with no

contribution from the propagating fermion.
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Figure 4.4: The full off diagonal matrix element, F , including all higher order
corrections, as a function of the time between the pulses, in units of the time
of flight x

u , with tf = t, for a range of values of the scattering phase shift δ1.
Data is plotted using the values K = 1.0, W1 = W2 = 1.3, α = η = 0.01x and
kF = 2πN

L = 10/x. The signal propagating at u can be clearly seen, as can the
effect of the FES physics, encapsulated in the signal’s dependence on δ1.

(a)

(b)

(c)
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4.8 Entanglement and the Spread of Informa-
tion

It is natural to consider how information about the transitions of the localised
states travels through the system. One natural quantity to consider is the degree
of entanglement between the localised states. This can be straightforwardly
calculated from the density matrix eq. (4.18). Unfortunately it turns out that
in our model the mutual entanglement [106] vanishes for all times.

The vanishing entanglement is due to too much information about the lo-
calised states being lost to the wire, expressed by the entries D1 and D2 in the
density matrix, washing out any measurable entanglement between the localised
states. Since the same processes are responsible for the dissipation into the bath
as the transfer of information between the localised states D1 and D2 end up
being a comparable size to F , which contains the quantum correlations between
the localised states. In other similar, but more complex, models, however, these
processes need not have comparable strength and so this problem should not
necessarily arise. For example if the state of the impurity represented a spin,
rather than charge, degree of freedom we would expect the impurity state to be
more resistant to decoherence and would have a more complex interaction be-
tween the impurity and the wire. In this case we would still expect FES physics
very similar to in our simpler model here, but it may be possible to retain a
measurable level of entanglement between the impurities.

In order to study the spread of quantum information in a way which will
hopefully generalise to more complex models, we will again, therefore, focus on
the off diagonal term F , which must bound any reasonable measure of quantum
correlations between the two localised states, as any such measure should vanish
for a classical ensemble. We will, furthermore, focus this analysis on the term
F r1 for the reasons discussed above.

As discussed above F r1 has peaks at times corresponding to the time of flight
between the localised states. We also find, however, that there is a difficulty in
using this as a means to transmit quantum information. If we take the limit
that tf � t, xu , we find that

F r1 ∼ t
− (δ1+δ2)2

π2

f . (4.232)
This result is quite remarkable. It means at long times the off diagonal terms
will always decay to zero, washing out any transmitted quantum information.
This can only be prevented if the scattering phase shifts are finely tuned to
δ1 = −δ2.

The same long time decay is observed if we consider the full F , rather than
just F r1 , as can be seen in Fig. 4.5. At times u(tf−t)

x > 10, for both δ1 = ±0.8,
the graph |F | decreases linearly on the log-log scale, indicating a power law
decay. In the case of δ1 = 0.2 = −δ2, however |F | does not decay but remains
at a constant value.

We notice that the decay exponent in eq. (4.232) has the form of the orthog-
onality catastrophe decay exponent for a scatterer with phase shift δ1+δ2 (with
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no propagating fermion). This suggests that what we are seeing at long times is
a manifestation of the orthogonality catastrophe taking place in the bath due to
the pair of scatterers. As the localised states have become entangled with the
state of the wire, and the wire tends to a state orthogonal to its initial state,
the quantum coherence of the localised states is lost.

This is an important result for quantum information applications based on
many-fermion systems, for example quantum dot based quantum computing.
The decay of the off diagonal element seems to be due to universal OC physics
and we do not expect to be unique to our specific model. The loss of coherence
to the OC in the bath, therefore, represents an obstacle to the practical use
of many-fermion systems to transmit quantum information arising from funda-
mental many-body physics. To avoid these problems the system must either
be engineered so that the phase shifts exactly cancel, which may be non-trivial
if possible at all (especially if there are several combinations of states being
“on” and “off” which must be considered), or the switching of the impurity
states must be slow enough to avoid quenching the wire, and so avoid the OC.
This, naturally limits the speed at which the information processing system can
operate.
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Figure 4.5: The full off diagonal matrix element, F , including all higher order
corrections, as a function of the time between the second pulse and the mea-
surement, in units of the time of flight x

u , for a several of values of the scattering
phase shift δ1. Data is plotted using the values t = x

u , δ2 = −0.2, K = 1.0,
W1 =W2 = 1.3, α = η = 0.01x and kF = 2πN

L = 10/x. At long times, for both
δ1 = 0.8 > −δ2 and δ1 = −0.8 < −δ2, |F | can be clearly seen to decay with
power laws. In the case of δ1 = 0.2 = −δ2, however, |F | does not decay but
tends to a constant. All three curves display an “echo peak” at u(tf−t)

x = 1.

4.9 Echos of Catastrophe
All three terms in Fig. 4.5 display a feature at u(tf−t)

x = 1. This arises from
a somewhat surprising term appearing in F r1 . The last term in eq. (4.154) has
the form

(η − ı(νx− u(tf − t)))−S . (4.233)

What is surprising about this term is that it becomes singular at a time tf −
t =

∣∣x
u

∣∣. That is at the point when a signal propagating out from the second
localised state at the time of the second pulse reaches the position of the first
localised state. This seems like a reasonable place to see a feature, except that,
as there is no pulse at this time, the occupation numbers of the localised states
cannot change. This implies that this peak is a pure interference effect and not
associated with any transition in the occupation number basis.

It is fairly straightforward to trace the origin of this term in the calculation
of eq. (4.154); it arises from the combination of the shift term from the first pulse
time evolved to tf , R†

1(tf ) and the terms describing the removal of the fermion
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and the shift in the Hamiltonian at the second pulse ψr(x, t) and R2(t). The
two FES at times 0 and t both create a large number of charge density wave
excitations (with a wide range of energies) which gradually dephase, leading
to the orthogonality catastrophe. What we have found here is that at tf −
t =

∣∣x
u

∣∣ these many excitations are able to come back into phase and interfere
constructively, to give a singular peak.

Physically the term can be seen to arise from interaction between the first
impurity and the signal from the second pulse. The charge density at the site
of the first impurity is coupled to the impurity potential. As the signal passes
the impurity the charge density is altered, resulting in a shift in energy. This
shift in energy results in a phase shift and leads to the echo peak.

This echo peak appears to be a novel and surprising feature of the spatial
spread of the FES, however as it is not associated with any change in the occupa-
tion number of the localised states, it may be difficult to detect experimentally
in setups similar to the one described here. Based on the discussion above, how-
ever, we would expect it to be a fairly generic feature of systems with multiple
FES events happening at different spatial locations, so it may be possible to
devise a setup where it could be detected directly.

4.10 Causality?
It is interesting to note that, whilst the results above require that tf > t > 0,
there is no requirement that t, tf > x

u . In other words there is no sharp signal
front for the propagating information about the FES event after the first pulse.
This can be seen, in large part, as a consequence of the highly correlated nature
of the ground state of a many-fermion system, before any external intervention
was applied.

Consider the expression for F r1 given in eq. (4.154). In the limit that x �
ut, utf , that is far outside the light cone of the propagating signal we find that

F r1 ∼
∑
r=±1

∏
ν=±1

(η − νx)−
(K+νr)2

4K (4.234)

which has the form of the standard Luttinger liquid correlation function. In
other words, far outside the light cone of the signal the chances of adding and
removing an electron from the wire are exactly what they would have been in a
Luttinger liquid with no FES effect, which is exactly what would be expected.

The decay of the time dependence of F1 with distance is, however, algebraic
rather than exponential. Despite the signal travelling out at a speed of u, it
should be possible to detect it some distance ahead of the peak at x = ut. The
calculation of the reduced density matrix is unambiguous and the effect does
seem to be physical.

This occurs do to the extended nature of the electronic wavefunctions in
the ground state of the system leading to long ranged spatial correlations and
the fact that the Hamiltonian is fundamentally non-relativistic and allows, in
principle, arbitrarily fast transmission of information.
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4.11 Time non-local interactions
We can view the process of one localised site emitting a fermion into the wire and
a second site absorbing it as a form of interaction between them. This mediation
of an interaction between local impurities by the continuum is reminiscent of
the RKKY interaction, however there are a number of crucial differences. Most
obviously there is the addition and absorption of a full electron in the system,
rather than simply exchanging density fluctuations, however this is a choice
specific to our particular model, made to keep the form of the correlators as
simple as possible, and should not have a bearing on the underlying OC physics.
More importantly, since we are interested in the dynamics of the system, there
is a time delay between the emission and absorption of the fermion.

The standard treatment of RKKY is concerned with determining properties
of the spectrum, and in particular the ground state, of the Hamiltonian and so
quietly averages over any real time dynamics, considering only the ω = 0 limit.
Indeed any attempt to describe a quantum process with an effective Hamil-
tonian must reduce the dynamics to something time local, and so this type of
averaging is necessary if we want to have a description in the form of an effective
Schrödinger equation. In order to formalise this picture of an electron mediated
interaction between the sites, whilst maintaining the full information about the
dynamics, we will therefore consider an effective action for the system. By con-
sidering the full path of the system an effective action is able to incorporate the
time delay due to the fermion flight time, manifesting itself as a time non-local
interaction, coupling the state of the impurities at different times.

We will neglect electron-electron interactions for this section, as dealing with
both interactions and adding and removing fermions explicitly within the path
integral formalism is non-trivial and we know from the bosonized treatment
that while interactions in the wire renormalise various coefficients, they do not
qualitatively change the results.

To represent the fermionic path integral we introduce 4 Grassmann number
variables, d1(t), d̄1(t), d2(t) and d̄2(t), to represent the localised states and a
pair of Grassmann fields ψ(y, t) and ψ̄(y, t) to represent the fermions in the
continuum. With this in mind the action for this system is given by

S[ψ̄, d̄1, d̄2, ψ, d1, d2] = Se[ψ̄, ψ] +
∑
i=±1

Si[d̄i, di]

+ Simp[ψ̄, d̄1, d̄2, ψ, d1, d2] + Spump[ψ̄, d̄1, d̄2, ψ, d1, d2] ,
(4.235)

where

Se[ψ̄, ψ] =

∫
K
dt

∫
dy dy′ ψ̄(y′, t) [ıδ(y − y′)∂t −H0]ψ(y, t) ,

(4.236)

Si[d̄i, di] =

∫
K
dt d̄i(t)(ı∂t − Ei)di(t) , (4.237)
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Simp[ψ̄, d̄1, d̄2, ψ, d1, d2] = −
∫
K
dt

∫
dy
[
V1δ(y)(1− d̄1(t)d1(t))ψ̄(y, t)ψ(y, t)

+ V2δ(y − x)d̄2(t)d2(t)ψ̄(y, t)ψ(y, t)
]
, (4.238)

Spump[ψ̄, d̄1, d̄2, ψ, d1, d2] = −
∫
K
dt
√
α

[
W1(t)ψ̄(0, t)d1(t) + W̄1(t)d̄1(t)ψ(0, t)

+W2(t)ψ̄(x, t)d2(t) + W̄2(t)d̄2(t)ψ(x, t)

]
,

(4.239)

Here
∫
K dt denotes integration over the Keldysh contour and all t values should

be understood to take values on this contour (i.e. they may be on the forward
or backward branch of the contour). Since the FES cannot be described by
finite order perturbations on an equilibrium theory, we must use non-equilibrium
methods and the Keldysh formalism. The action in eq. (4.235) is consistent
with the Hamiltonian in section 4.1 and the Keldysh path integral formulation
is equivalent to the calculation above. This formalism, however, provides a
conceptually clearer way to approach the notion of a time non-local interaction.

To focus on the dynamics of the localised states we will integrate out the wire
degrees of freedom, to obtain an effective action. This is analogous to tracing
out the wire degrees of freedom above to obtain the reduced density matrix.

eıSeff [d̄1,d̄2,d1,d2] = eı
∑

t=±1 Si[d̄i,di]

∫
D[ψ̄, ψ] exp [ı (Se + Simp + Spump)]

(4.240)

= eı
∑

t=±1 Si[d̄i,di]

∫
D[ψ̄, ψ] exp

[
ı

∫
K
dtdt′

∫
dy dy′

(
ψ̄(y, t)G−1(y, t, y′, t′)ψ(y′, t′)−

√
αδ(y − y′)δ(t− t′)

[
W1(t

′)δ(y′)ψ̄(y, t)d1(t
′) + W̄1(t)δ(y)d̄1(t)ψ(y

′, t′)

+W2(t
′)δ(y′)ψ̄(y, t)d2(t

′) + W̄2(t)δ(y)d̄2(t)ψ(y
′, t′)

])]
,

(4.241)

where

G−1[d̄1, d̄2, d1, d2](y, t, y
′, t′) = δ(t− t′)

[
ıδ(y − y′)∂t −H0

− V1δ(y)δ(y′)(1− d̄1(t)d1(t′))
− V2δ(y − x)δ(y − y′)d̄2(t)d2(t′)

]
. (4.242)

We can formally evaluate this by the normal rules for a Gaussian fermionic path
integral. (Note that the decision to neglect interactions was crucial here.) This
results in

eı(Seff−
∑

i=±1 Si) =
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Det(ıG−1) exp

[
− α

∫
dtdt′ dy dy′

(
W̄1(t)δ(y)d̄1(t) + W̄2(t)δ(y − x)d̄2(t)

)
×G[d̄1, d̄2, d1, d2](y, t, y′, t′)

(
W1(t

′)δ(y′)d1(t
′) +W2(t

′)δ(y′ − x)d2(t′)
)]

.

(4.243)

If we write

G−1 = G−1
0 − V , (4.244)

G−1
0 = δ(t− t′) [ıδ(y − y′)∂t −H0] , (4.245)
V = δ(t− t′)

(
V1δ(y)δ(y

′)(1− d̄1(t)d1(t′)− V2δ(y − x)δ(y − y′)d̄2(t)d2(t′)
)
,

(4.246)

we can factor the determinant in eq. (4.243) to give

Det
(
ıG−1

)
= Det

(
ıG−1

0

)
Det (1 + ıG0V ) . (4.247)

The term Det
(
ıG−1

0

)
is a constant, independent of any of the dis so it can be

absorbed into the normalisation of the path integral. Using the determinant-
trace identity we can write

Det (1 + ıG0V ) = exp [Tr ln (1 + ıG0V )] . (4.248)

This is analogous to the closed loop term in the Nozières-De Dominicis paper [3],
that is it is the renormalisation of the vacuum by the interaction. This can
be seen by direct diagrammatic expansion of the term or by noting that it is
independent of the pump terms, which add fermions to the wire and so give an
“open-line” contribution.

The term(
W̄1(t)δ(y)d̄1(t) + W̄2(t)δ(y − x)d̄2(t)

)
G[d̄1, d̄2, d1, d2](y, t, y

′, t′)

×
(
W1(t

′)δ(y′)d1(t
′) +W2(t

′)δ(y′ − x)d2(t′)
)

(4.249)

in eq. (4.243) can be interpreted as an interaction between the two localised
states. As it involves two different time indices, however, it is, as we mentioned
above, a time non-local interaction. This gives a very different perspective on
the system to the one given in the preceding sections.

We can connect these two perspectives by considering the Feynman-Vernon
influence functional. If we write the localised state degrees of freedom together
as ~d and the wire degrees of freedom as simply ψ then the Feynman-Vernon
influence functional, F , can be defined by

〈~df |ρ(t)|~d′f 〉 =
∫

d~di d~d
′
i

∫
dψf dψi dψ

′
i

∫ (~df ,ψf )

(~di,ψi)

D[~d, ψ]e−ıS[~d,ψ]

∫ (~d′f ,ψf )

(~d′i,ψ
′
i)

D[~d′, ψ′]eıS[
~d′,ψ′]〈~di, ψi|ρ(0)⊗ ρT |~di, ψ′

i〉 (4.250)
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=

∫
d~di d~d

′
i 〈~di|ρ(0)|~d′i〉

∫ ~df

~di

D[~d]
∫ ~df

~d′i

D[~d′]eı
∑

i(Si[~d
′]−Si[~d])F [~d, ~d′] ,

(4.251)

with

F [~d, ~d′] =
∫

dψf dψi dψ
′
i 〈ψi|ρT |ψ′

i〉

×
∫ ψf

ψi

D[ψ]
∫ ψf

ψ′
i

D[ψ′]eı(Se[ψ
′]+Simp[ψ

′,~d′]+Spump[ψ
′,~d′]−Se[ψ]−Simp[ψ,~d]−Spump[ψ,~d])

(4.252)

= Tr
[
U†[~d]U [~d′]ρT

]
, (4.253)

where
∫ β
α
D[f ] denotes the path integral over f with boundary conditions given

by α and β respectively and U [~d] denotes the evolution operator for the wire,
given that the localised states follow a fixed path ~d(t). The Feynman-Vernon
influence functional encapsulates the full information about the wire and its
interaction with the localised states and so if we can calculate it we can, in
principle, use it to calculate the evolution of the density matrix.

It can be seen that the double path integral (together with the integral over
ψf ) in eq. (4.252) is identical to the path integral along the Keldysh contour
given in eq. (4.240), with the path integral over ψ′ corresponding to the forward
branch of the contour, the path integral over ψ corresponding to the backward
branch of the contour and ψf giving the integral over the final state at the
very end of the contour. This connection is even more apparent in eq. (4.253),
which strongly resembles the form of the Keldysh partition function. The fact
that there is only a single integral over the fianl states, thereby closing the
contour, is due to our tracing out the state of the wire to obtain the reduced
density matrix forcing the final state of the wire at the end of the forward and
backward time evolutions to be equal. By contrast, we do not trace out the
state of the impurities and so eq. (4.250) contains two distinct final states for
the impurites and the corresponding evolution contours would not be closed.

The perturbative expansion of the time evolution operator can be seen as
an explicit summing over the possible paths of the system, with all possible
sequences of interactions occurring. (This approach of explicit resummation
was famously used by Anderson, Yuval and Hamann [52, 54, 58, 59] to analyse
the Kondo problem, treating each possible path as a series of Fermi edge like
events and resumming the result.)

The formalism developed in this section is, however, cumbersome for prac-
tical calculations. This is due to the non-linearity of the interaction term. The
interaction coefficient G[d̄1, d̄2, d1, d2] is itself a complex functional of d1 and
d2. This means that directly evaluating the functional integral for Seff is not
practical (if indeed it is possible). Therefore, whilst the path integral provides
an elegant tool to understand earlier results conceptually, for practical calcula-
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tions the methods employed above in determining the density matrix, ρ(t), are
preferable.

4.12 Further speculation
4.12.1 Finite Temperature
We will briefly discuss the effect of the wire initially being in a finite temperature
state as there is little new ground conceptually in doing so, but it is of obvious
importance for experimental realisations. To introduce a finite temperature
wire we replace the initial zero temperature density matrix for the wire degrees
of freedom, which we had suggestively named ρT=0, with a finite temperature
density matrix

ρT =
e−(H0+Hee)/T

Tr
[
e−(H0+Hee)/T

] . (4.254)

The change in the continuum density matrix carries through the calculation in
a straightforward manner. The partial traces over the wire degrees of freedom
are now performed with the new density matrix and the zero temperature wire
expectations are now replaced with finite temperature expectations. The evalu-
ation of these types of expectation has been studied extensively, for example in
[24, 93]. Explicitly reproducing the results above for the finite temperature case
would be a routine, but not terribly enlightening calculation. To understand
the essential physics we can employ a rule of thumb, attributed to Yuval and
Anderson [54], and subsequently shown to be rigorous [84], that to obtain the
finite temperature expectation values in a Luttinger Liquid we can simply take
the characteristic power law correlators and replace them with powers of sinh
functions

(
ıη +

x

u
− t
)−α

→

[
sinh

(
πkBT (

x
u − t+ ıη)

)
πkBT

]−α
. (4.255)

With this rule we can see the effect of temperature on the correlation functions.
For

∣∣x
u − t

∣∣ � 1
kBT

we recover the zero temperature result. For
∣∣x
u − t

∣∣ � 1
kBT

the temperature provides an exponential cut off on the correlation function.
We therefore have a qualitative picture of the spatial spread of the FES

at finite temperature. The phenomenology follows the same basic outline as
the zero temperature case described above, but temperature acts as a cut off,
limiting the range of the range of the travelling signal and the time after the
pulses that it can be detected.

If we assume a Fermi velocity u ∼ vF ∼ 105ms−1 and a separation between
the impurities x ∼ 1µm this gives Tmax = ~u

kBx
∼ 0.75K, which is experimentally

obtainable.
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4.12.2 Backscattering impurities
We will now return to consider the effect of backscattering interactions. As
mentioned above in section 4.5 the inclusion of backscattering from the impurity
results in transcendental terms in the Hamiltonian which cannot be treated an-
alytically. A full evaluation of the resulting correlation functions would require
either sophisticated non-perturbative approaches or the use of renormalisation
group methods.

We will not explore the renormalisation group approach to this problem here
for two reasons. Firstly, standard RG methods typically focus on the static or
constant frequency cases and are not well suited to the study of transient be-
haviour as we are here. Secondly, as discussed in section 4.5 and in [77], whilst
the backscattering term may be a relevant perturbation, the many-body correla-
tions that result in renormalisation take time to build up and so are unlikely to
contribute strongly on the short time scales ∼ x

vF
we are considering. We will,

therefore, instead employ a perturbative approach, which should be able to, at
the very least, give a qualitative indication of the new physics introduced by
the backscattering impurity and should be accurate at sufficiently short times.

We will focus on the F1 term, because, as discussed above, this give a rep-
resentative example of the majority of the interesting physics. For the sake of
simplicity we will also limit our attention to the case that tf = t, as this both re-
moves the effect of the FES due to the second localised state and simplifies time
ordering considerations. We will observe, however, that the A and D2 terms
will remain independent of FES physics even after backscattering is included.

As stated in eq. (4.69), the backscattering potential is given by

hback(τ) =
∑

i∈{1,2}

Vib(τ)

2πα

∑
σ=±1

e−ıσ(ϕ̃+(0,τ)+ϕ̃−(0,τ)) , (4.256)

where we have included a time evolution under the Hamiltonian h1,0 in antici-
pation of the perturbative expansion.

We can now write F1 in the interaction picture of this new perturbation

F1 = e−ı∆E1t

〈
Tψ(x, t)R†

1(t) exp

[
−ı
∫ t

0

dτ hback(τ)

]
R1(0)ψ

†(0, 0)

〉
.

(4.257)

Expanding the exponential perturbatively we obtain

F1 = e−ı∆E1t
∞∑
n=0

[
1

n!

(
n∏

1=1

−ıV1b
2πα

∫ t

0

dτi
∑
σ1=±1

)
〈
Tψ(x, t)R†

1(t)

[
n∏
i=1

e−ıσi(ϕ̃+(0,τ1)+ϕ̃−(0,τi))

]
R1(0)ψ

†(0, 0)

〉]
(4.258)

= e−ı∆E1t
∞∑
n=0

[
1

n!

(
n∏

1=1

−ıV1b
2πα

∫ t

0

dτi
∑
σ1=±1

) ∑
r,r′=±1
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〈
Tψr(x, t)R

†
1(t)

[
n∏
i=1

e−ıσi(ϕ̃+(0,τ1)+ϕ̃−(0,τi))

]
R1(0)ψ

†
r′(0, 0)

〉]
.

(4.259)

We now consider the constraint in eq. (4.86), which states that the overall
expectation of a product of exponentials of bosonised fields vanishes unless the
sum the coefficients of the fields in the exponentials is zero. When this condition
is applied to eq. (4.259) we find, if the expectation value is to be non-zero we
must have

r − r′ + 2

n∑
i=1

σi = 0 . (4.260)

If n is even, then, as σ1 = ±1, we have that
∑n
i=1 σi is also even, giving us

2

n∑
i=1

σi ≡ 0 mod 4 . (4.261)

This implies that, if eq. (4.260) is to be satisfied,

r − r′ ≡ 0 mod 4 , (4.262)
⇒ r = r′ , (4.263)

as r, r′ = ±1. Conversely if n is odd,
∑n
i=1 σi is odd, implying that

2

n∑
i=1

σi ≡ 2 mod 4 . (4.264)

Imposing eq. (4.260) then gives us

r − r′ ≡ −2 mod 4 , (4.265)
⇒ r = −r′ . (4.266)

This can be interpreted as saying that if we put in a right mover, and there are
an even number of backscattering events we will take out a right mover and if
there are an odd number of backscattering events we will take out a left mover.

We can evaluate each term in eq. (4.259) using eq. (4.95). After doing so
we can factor out the terms that do not depend on σi. For the even order
terms this must give the zeroth order term F r1 , for the odd terms it will give a
slightly modified expression, due to the change in chirality of one of the fermion
operators.

F1 =
∑
r=±1

[
F r1

∞∑
n=0

Dr
2n + F̃ r1

∞∑
n=0

Dr
2n+1

]
, (4.267)

where

F̃ r1 =
1

2π
α
− 1

K
δ1
π

(
3−2

δ1
π

)
−K2−1

2K e∆E1teırkF x (η + ıut)
1
K

δ1
π

(
1−2

δ1
π

)
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∏
ν=±1

(η − νıx)−
δ1
π

(1+νrK)
2K (η − νı(x− νut))

K2−1
4K +

δ1
π

(1+rνK)
2K , (4.268)

Dr
n =

1

n!

(
−ıV1b
2

)n ∫ t

0

dτ1 . . . dτn
∑

σ1...σn=±1

δ

(
r (1− (−1)n) + 2

n∑
i=1

σi

)

×
n∏
i=1

[(
η − ı(x− u(t− τi))

α

)σi
rK+1

2
(
η + ı(x+ u(t− τi))

α

)σi
rK−1

2

×
(
η + uτi
α

)(−1)n+1rσiK i∏
j=1

(
η + u|τi − τj |

α

)2Kσiσj
]
, (4.269)

where, in the interests of readability, we have slightly abused notation in writ-
ing the δ-function, which should be 1 rather than infinite when its argument
vanishes and Dr

0 is understood to be 1. Interestingly F r1 and F̃ r1 are entirely
independent of V1b and the Dr

n are independent of V1f , that is the contributions
from the forward and backward scattering completely factorise. This signifi-
cantly simplifies the calculations by allowing us to treat the two contributions
separately.

We see that F̃ r1 has the same general form as F r1 (given that we are consider-
ing the case that tf = t), with only a slight change to the power law exponents.
In particular it shows the same propagating signal.

Evaluating the Dr
ns in a closed form is, in general, impossible and the con-

vergence properties of the series in eq. (4.267) have not been determined. We
can see, however, that they are explicitly functions of x±ut and so they should
show the same travelling signal as the other terms.

The first order term, however, can be explicitly evaluated to give

Dr
1 =

2
1+K

2

1 +K
α−2KV1b

rx (2η + ı(ut+ rx))
K

(ut− rx− ıη)(rx+ ıη)

[
α

K−1
2 (ut− rx− ıη)(η + ırx)

K−1
2 (x2 + η2)

1+K
2

× F1

(
1 +K

2
,−K,−1 +K

2
,
3 +K

2
,

rx− ıη
ut+ rx− 2ıη

,
rx− ıη
2rx

)
+ (rx+ ıη)(rx− ut+ ıα)

1−K
2 (rx)

K−1
2 (η + ı(ut− rx))

1+K
2 (η + ı(ut+ rx))

1+K
2

× F1

(
1 +K

2
,−K,−1 +K

2
,
3 +K

2
,
ut+ rx− ıη
ut+ rx− 2ıη

,
ut+ rx− ıη

2rx

)]
,

(4.270)

where F1 is Appell’s hypergeometric function. If we plot the first order term
as a function of t for fixed x we find that it diverges for both large t and
large |x|. The divergence of Dr

1 with x is clearly shown in Fig. 4.6 for a range
of values of K. This suggests that the perturbative approach outlined here
is valid only for a small range of these parameters and we probably cannot
rely on the quantitative results it produces except for extremely small values
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of V1b. It should be possible to extend this region, at least up to a point,
by considering higher order terms in eq. (4.267), but these would have to be
computed numerically. These higher order terms should become larger at later
times, so extending the time over which we are interested should require the
inclusion of progressively more terms in eq. (4.267). Moving beyond this region
would take us into the strong coupling regime indicated by the relevance (for
repulsive interactions) of the backscattering term under renormalisation group
flow. Standard renormalisation approaches, however, are poorly suited to the
current problem, as discussed above.

Whilst the quantitative range of validity of of these results, we can examine
the perturbative result for qualitative suggestions of what the full result may
contain. For K = 0.7, Fig. 4.6(a) shows there is a kink the real part of Dr

1

propagating in the opposite direction to the main signal in F1 (i.e. if r = 1
the singularity in Dr

1 is propagating to the left). This is what we might have
expected from a backscattered signal. For K ≥ 1, however, there are some
unexpected features. Both Figs. 4.6(b) and 4.6(c) show a minimum in |D1

1| at
around x = u

3 t. Further numerical investigations suggest that this minimum
propagates in the usual r direction (to the left for r = 1) with a constant speed
of u3 , independent of K. It appears to be due to an approximate cancellation of
the two bracketed terms in eq. (4.270). The physical origin of this feature, if it
is physical at all, are not clear.

If we combine Dr
1 with F̃ r1 to get the full first order response, as shown

in Fig. 4.7, then the features in Fig. 4.6 are superimposed with those which
can be read off eq. (4.268). In particular we have a pronounced singularity
propagating in the backscattered direction (left for r = 1). We can, however
still see the features of D1

1, most notably the divergence at large x and the
minimum propagating at u

3 in the case that K ≥ 1.
Our perturbative analysis gives us some suggestion of what may happen

when backscattering is included fully, including the suggestion of novel physics
by a feature propagating at a one third the speed of the excitations in the
Luttinger Liquid. A more sophisticated approach is, however, required to give
a real picture of how backscattering will change the spatio-temporal FES, and
whether the features seen here have a physical basis.

4.12.3 Spinful Fermions
Luttinger liquids exhibit spin-charge separation: The spin and charge degrees of
freedom are able to propagate independently of each other. The excitations of
these separate degrees of freedom are charge and spin density waves respectively.
Both sectors independently obey decoupled Luttinger liquid Hamiltonians, with
different charge and spin velocities uρ and uσ.

With this in mind we can fairly easily see the qualitative effect of adding
spin to the model above, as the result will essentially be two decoupled copies
of the original model with different propagation velocities. We would expect,
therefore, for each of the propagating x± ut terms in our expressions above to
split into two terms travelling with spin and charge velocities respectively.
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Figure 4.6: The real and imaginary parts of the FES independent part of the
first order backscattering response D1

1

V1b
as a function of x for a range of different

fermion-fermion interactions.

(a) Repulsive fermion-fermion interactions, K = 0.7

(b) Free Fermions, K = 1

(c) Attractive fermion-fermion interactions, K = 1.3
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Figure 4.7: The magnitude of the first order backscattering response
∣∣∣ F̃ 1

1D
1
1

V1b

∣∣∣ as
a function of x for a range of different fermion-fermion interactions. All values
are calculated with ut = 1, δ1 = 0.4π and α = η = 0.01 in arbitrary units. The
singular features propagating at ±u can be clearly seen, as can the minimum
propagating at u

3 for attractive interactions.

This will result in multiple peaks in, for example F r1 , but each peak will
have its height suppressed by the other terms which are not on resonance. This
suppression of the peak represents the fact that the fractionalised spin and
charge of the injected fermion have become separated in the wire, but we must
remove a full fermion with both components.

We have chosen not to pursue explicitly calculating results in the spinful
case. Although conceptually the calculation should be straightforward, the re-
sult would be even more cumbersome to work with and analyse than the already
complex expressions obtained above. It seems more informative to work with
the simpler model that we believe captures the essential physics. Experimental
realisations of this model may require the spinful case to be calculated explicitly,
in which case it should be a routine, if lengthy calculation.

4.12.4 Higher dimensional systems
One of the most striking features of the standard FES is that it is largely inde-
pendent of dimension of the system. This feature cannot be reasonably expected
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when considering the spatial FES, however some features of the calculation done
here may carry over into the two or higher dimensional case.

If we consider only low energy scattering of the impurity, so that only the
s-wave channel is available, we would expect recover quasi-1D behaviour. The
spherical symmetry of the system means that we are left with only the radial
coordinate. This suggests that the broad qualitative features of our calculation
may still hold in this case. There should be some sort of propagating signal
that decays with distance and with time. What’s more in this low energy quasi-
1D regime we would expect these decays to follow power laws similar to those
we have calculated here. We would expect, however, that there would be an
additional decay with the separation of the impurities ∼ 1

x due to the spreading
out of the signal.

Performing a detailed calculation in higher dimensions, however, may be
non-trivial. Our results in one dimension gave rise to some lengthy expressions
and it is reasonable to expect things to be at least as complicated in higher
dimensions. A certain amount of care would have to be taken to ensure the
methods used were not simply capable of computing the desired result, but
were able to do so with reasonable efficiency and whilst making the underlying
physics reasonably transparent.

To give an example of the type of concerns that may arise, consider the case
of 2 point like impurities, in a 3D bath. We would expect turning on each of
these impurities to result in a signal propagating out from the respective im-
purities in a spherical shell. The system as a whole, however, has a cylindrical
symmetry. The representation of the spherically propagating signal in a cylin-
drical coordinate system will be somewhat complex, as would representing the
dynamics driven by one impurity in a spherical coordinate system centred on the
other. Reconciling these mismatched symmetries and finding a representation
in which balances the needs of efficiently performing the required calculations
whilst also allowing the physics of the result to be understood would require
careful consideration.

4.13 Summary
We have investigated how the OC spreads out in space and time, with particu-
lar interest in the implications for quantum information processing technology.
We considered a model of two impurities, the state of which can be changed
by applying a pulse at fixed times, and were able to solve this model exactly,
calculating the reduced density matrix for the impurity states. The most impor-
tant result was calculating F , the off diagonal elements of this density matrix,
which provide an upper bound on the transfer of quantum information between
the localised states. The full form of F proved to be extremely complicated,
however the FES physics turned out to be captured by the leading order term
F r1 .

Examining F r1 we found that the term had the form of a generalised Loschmidt
echo. It displayed power law decays with both the distance between the impu-
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rities and the time between pulses. It also shows a peak propagating out from
where the impurity was first introduced, indicating a signal carrying information
about the OC travelling through the system. In addition, there is an ‘echo peak’
travelling back from the second impurity to the first, which can be detected in
the coherence, despite being unable to alter the state of the impurities.

With regard to quantum information applications, we found that at long
times the OC reasserted itself, with F r1 decaying to zero, unless the system was
finely tuned to δ1 = −δ2. This may represent a significant consideration for
the design of quantum information processing systems based on many-fermion
systems.

As an alternative perspective, we considered whether the OC could be viewed
as a time delayed interaction between the localised states. To flesh out this idea
we considered a path integral formulation and showed that the effective action
for the localised states could indeed be viewed as having an interaction mediated
by the OC in the wire. This approach provides interesting conceptual insights,
but is less well suited to practical calculations than the operator formalism used
to obtain the reduced density matrix.
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Chapter 5

Shallow Bands and the
Strong Potential Limit

This section is embargoed until February 2025
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Chapter 6

Conclusions

This section is embargoed until February 2025
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