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Task-dependent extraction of information from
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We present an exploratory study on iridescence that revealed systematic differences in the perceptual clustering of
glossy and iridescent samples that was driven by instructions to focus on either the material or the color properties
of the samples. Participants’ similarity ratings of pairs of video stimuli, showing the samples from multiple views,
were analyzed using multidimensional scaling (MDS), and differences between the MDS solutions for the two tasks
were consistent with flexible weighting of information from different views of the samples. These findings point
to ecological implications for how viewers perceive and interact with the color-changing properties of iridescent
objects.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this

work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

https://doi.org/10.1364/JOSAA.479795

1. INTRODUCTION

Assigning a color to an object seems like a simple task that we
often perform to recognize and sort objects. The use of color-
terms as adjectives that help define specific instances of an object
is commonplace, such as the “red pen” or the “blue mug.” For
color arising from absorption pigments, modification of the
spectral content of incoming light is bound to the surface of
the material itself and is invariant to the angle from which the
surface is viewed. However, some color effects arise not from
pigments but from nanoscale structures that generate optical
interference that modifies the relative intensities of different
wavelengths of light. This structural color depends heavily
on the viewing angle and gives rise to the percept of irides-
cence. While a pigmented object is associated with a fixed color
property, an iridescent object is not. In this paper, we report
perceptual judgments of color samples coated with interference
paint that produces viewing-angle-dependent color effects.

The perceptual constancy literature has grappled with the
relationship between fixed properties of an object (such as its
pigmentation) and the varied properties of the proximal image
(such as chromaticity) associated with the object under specific
viewing conditions. Surface colors that are generated through
pigmentation are characterized by their surface reflectance
function (the proportion of light reflected as a function of wave-
length), and color constancy has been defined as the association
of a fixed color appearance associated with surface reflectance,
despite changes in the conditions of observing that modify the
spectral content of light reaching the eye (see [1] for review).

For matte objects, the light reflected can be modeled as the
wavelength-by-wavelength multiplication of the incident light
and the surface reflectance, known as the diffuse reflection.
Since the spectrum of the diffuse reflection depends on the illu-
minant spectrum, color constancy (of surface color appearance)
requires some “discounting” of this influence.

For dielectric glossy objects, the reflected light is modeled as
the sum of two components [2]—the diffuse component (as
above) and the specular component (which carries the unmodi-
fied spectrum of the illuminant). Since the diffuse and specular
components have different imaging geometries, regions of the
proximal image differ in the relative contributions of the two.
For example, specular highlights in the image are dominated by
the specular component, and their location and extent in the
proximal image depend on viewing geometry.

Perceiving constant object color from proximal images—
“discounting the illuminant” and understanding the effect
of glossiness on object color perception—has been well doc-
umented and investigated empirically [3–8]. The human
perception of iridescent objects has received less attention (but
see [9–15] for work in visual ecology and [16,17] for rendering
iridescence). While viewing geometry modifies the proximal
image for both glossy and iridescent objects, for iridescent
objects there is no fixed color property of the object; in these
cases, the visual characteristic that identifies the material is
the color-changing behavior. Iridescent samples prompt us
to consider signatures of material perception that depend on
dynamic sampling of objects as they are manipulated within
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the lighting environment and with respect to the viewing angle.
The focus of this study is to consider how participants extract
information about materials from a sequence of frames of a
video during which the surface normal of the sample rotates.
Although prompted by the study of iridescence perception
in the present paper, the dynamic signatures in the proximal
images also provide information to separate specular and diffuse
reflection [18], so they may represent a more widely applicable
mode of viewing.

A. Our Study

The present study used material samples that differed in their
darkness (opacity of a super-imposed black layer) and saturation
(pigment-based), and their surface coating (containing only
transparent gloss layers or transparent gloss layers plus a layer of
interference paint). We used multidimensional scaling (MDS)
to understand similarity judgments between the samples,
judged in response to two different task instructions: (i) accord-
ing to their “average color” and (ii) depending on “how they’re
made.” Both instructions required participants to attribute the
properties of the proximal stimuli to properties of objects in
the world. In theory, two objects can be very similar in color
but made from different materials and vice versa. Therefore,
having two separate MDS questions allowed us to disentangle
the effects of color and material percepts on perceived similarity.
To allow full experimental control of the proximal stimuli that
participants accessed, samples were presented as videos of real
samples at a pre-determined set of orientations in the environ-
ment. Samples were flat patches of the material, and sample
orientation was characterized as the tilt of the sample. We tested
whether observers’ patterns of responses were consistent with
modeled hypothetical observers that used summary statistics of
the proximal images. In particular, we compared models that
differed in the way they sampled and combined information
from frames of the dynamic stimuli. Participants’ responses
were consistent with different weightings of the dynamic infor-
mation, depending on the task instructions. The first part of
the paper presents the MDS methods and results, laying the
foundation for the second part of the paper, which focuses on
modeling these empirical findings.

2. METHODS

A. Samples

Stimuli were derived from photographs of real glossy and
iridescent samples, constructed first by printing a blue base
layer of color and then adding surface coatings. We opted
to print the base layer, rather than applying paint manually,
to maximize uniformity in base color and texture between
samples. The parameters of the printed colors were defined
in Adobe Photoshop CC 2019. The photoshop specification
was multi-layered and comprised a uniform blue background,
noise to introduce spatial inhomogeneities and texture, and a
super-imposed black layer that had varying levels of opacity (see
Fig. 1(A) for specific settings). For both glossy and iridescent
samples, the base color was printed on HP Premium Photopaper
using an HP Envy 5540 Inkjet printer. The printed samples
then received the surface coatings summarized in Figs. 1(B) and
1(C). First, transparent nail varnish (off-the-shelf top-coat nail
varnish) was applied to both glossy and iridescent samples since
it produced a better surface for even application of the interfer-
ence paint. For the iridescent samples, a layer of DecoArt Media
Gold Acrylic Media paint (translucent from some angles and
gold from others) was used to create the iridescent effect (angle-
dependent color change from blue to gold). A second layer of
transparent nail varnish was added to both types of samples since
without this the iridescent samples looked visibly more matte.
Finally, the finished samples were trimmed to 1× 1 cm squares.
Since the process of manual application produced slightly vari-
able results, multiple copies of each sample were made, and the
most consistent ones were selected by eye for use in the study.

The glossy and iridescent samples differed along two physical
dimensions: (1) opacity of the black layer (0%; 40%; 60%; or
80%), with higher opacity resulting in a perceptually darker
sample, and (2) surface coating (with and without interference
paint), producing eight different samples in combination.

The presence of the color-changing effect is dependent on
the viewer being able to view the samples from different angles.
To convey the color-changing effect to participants, we pho-
tographed the samples from a fixed location at various tilts
with respect to the lighting environment and combined the
photographs into videos. The samples were illuminated using a
TaoTronics LED Desk Lamp (set to 5500 k in “Reading mode”
at maximum brightness) and photographed with a Canon 700D
Digital SLR Camera (1/60 exposure, 7.1 F, ISO 800) in CR2
format. To achieve consistent control of tilt for each sample,
the samples were glued to a magnetic dish that attached to a
tiltable platform. The tilt was monitored using a smartphone

Fig. 1. Schematic description of the making of the samples, showing the structuring of layers from bottom (layer 1) to top. (A) Photoshop layers for
printing: 1. Uniform blue background color (RGB= [54, 192, 255]). 2. Noise set to 96.61% amount, 8% size, 56% roughness, 0% color, and 100%
highlights. 3. Grains set to 2% light bokeh, 0% bokeh color, light range between 191 and 255. 4. Field blur set to 15 pixels. 5. Varying opacity of a
super-imposed black layer (0%, 40%, 60%, or 80%). Layers 2–4 in Photoshop were double layers. (B) and (C) show the order in which surface coat-
ings were applied for (B) glossy and (C) iridescent samples.
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app (Angles Pro) with a precision of±0.5◦ and photographed at
5◦ steps, from−20◦ to 20◦. A schematic diagram of the setup is
shown in Fig. 2(A).

The resulting nine photographs of the samples formed the
sequence of frames used to create videos of the samples tilting
from left to right at 25 fps, and back to left, as illustrated in
Fig. 3. The range of visual signals available to an observer is
usually difficult to fully characterize as it is dependent on the
geometry between the object, viewer, and light source. In our
study, the range of image statistics is constrained to the range
of pixels presented in the videos. For each tilt, the pixels corre-
sponding to the sample were extracted (see Fig. 2(C)), and the
intensities of the RGB channels of each pixel were transformed
to CIELAB assuming the sRGB (standard RGB, as defined by
Microsoft and HP) model. The summary CIELAB coordinate
for each sample for each tilt (see Fig. 4) was derived by averaging
spatially across the pixels corresponding to the sample. Toward
the “middle” tilts (4–7), there is greater separation between the
glossy and iridescent samples along the L∗ and b∗ axes than at
the “extreme” tilts (1, 2, 8, 9).

B. Participants

The study was run online and was approved by the Medical
Sciences Inter-Divisional Research Ethics Committee at
University of Oxford in agreement with the Declaration of
Helsinki (RE77333/RE001). In addition to 14 participants
recruited via word of mouth in the early stages of the study, 40
additional participants participated via Prolific.org. Consent
was obtained prior to the study from all participants, and they
were provided with detailed instructions with the aim of stand-
ardizing the stimulus conditions as closely as possible. This
included instructions to use macOS or Windows10 laptops
only, disconnect any external monitors and use the laptop
screen, connect the laptop to power, and complete the study in a
dark environment.

C. Display Characteristics and Exclusion Criteria

Participants were asked to adjust display settings for: (1) bright-
ness, (2) colorimetric control, and (3) gamma. For the
brightness and colorimetric settings, participants were provided
with instructions to disable automatic display adjustments on
macOS and Windows OS systems. For macOS users, they were
also asked to change their gamma settings to 2.2. Participants
were asked to indicate whether each step was completed.

To check for display distortions that fall outside acceptable
deviation from a standard display after the adjustments, all
participants also completed a perceptual brightness matching
task [19] in which the brightness of a uniform gray disk was
matched to a binary pattern of black and white pixels presented
in a surrounding annulus. In separate trials, the proportion of
black pixels was set to n/9, where n could take values from 1 to
8. A linear model was used fit to each participant’s brightness
matches (three repeats per gray-level), and those that fell below
an R2 of 0.8 (N = 19) were excluded from all other analyses
in this paper. Second, participants whose data did not produce
valid MDS solutions for both tasks (N = 1) were also excluded
from the analyses. The lack of MDS conversion could be caused
by large inconsistencies in their responses, which may be due
to inattention or misunderstanding of task instructions. In
total, 34 participants’ datasets were included in subsequent
analyses. As the task in this study was a supra-threshold relative
judgment of appearance (i.e., similarity rating), we expect dis-
tortions caused by non-optimal viewing conditions or display
characteristics would have only minor effects on the results.

D. Multidimensional Scaling Tasks

To understand the perceptual differences and relationships
between samples, we asked participants to rate their similarity,
so that the similarity ratings could be analyzed using MDS. The
28 unique pairs of eight samples were randomized and repeated
5 times, resulting in 140 trials per task. The trials consisted of

Fig. 2. (A) Simplified schematic of the photographic setup viewed from top-down and the side (approximate dimensions); “S” represents physical
sample. (B) A screenshot of an example trial. (C) Regions of interest for modeling were manually chosen to contain only pixels that correspond to the
image of the sample (shown in example trial in panel B).
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Fig. 3. Photographs that formed the frames of the videos of samples tilting from left to right. Each opacity level of the black layer (1= 0%,

2= 40%, 3= 60%, 4= 80%) of the printed squares was used to make a pair of glossy (top rows) and an iridescent samples (bottom rows).
Zoomed-in images at tilt 5 are shown for glossy (left) and iridescent (right) samples for comparison.
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Fig. 4. Average L∗a∗b∗ of glossy (circles) and iridescent (triangles) samples at each tilt. Marker colors represent physical opacity level (from lightest
to darkest).

pairs of video stimuli (see screenshot in Fig. 2(B)) presented on
each side of the fixation cross. Each video occupied 50% of win-
dow height (at full screen) and had a width of 75% of stimulus
height, which ensures the video aspect ratio (0.75:1) independ-
ent of screen or video size. Although this means that the stimulus
size will be relative to screen height, we expect this variation to
be relatively minimal as participants were constrained to using
laptops only and completed the study in full screen mode.

Participants were asked to rate the similarity between each
pair of samples on a scale of 1 (very different) to 7 (very similar),
on the basis of “How similar are the two objects in terms of how
they’re made” for Task 1 (Material Task), and “[. . .] in terms of
their average color” for Task 2 (color Task). For the color Task,
they were given an additional example of “average color” of a

black and white checkerboard (darker average gray) and a gray
and white checkerboard (lighter average gray). The order in
which participants completed each task was counterbalanced,
with 16 completing the material task first and 18 the color task
first.

E. MDS Analysis

The data analysis procedure was identical for both tasks.
The median similarity ratings across the five repeats for each
pair were converted to dissimilarities and analyzed with the
MATLAB 2022b built-in mdscale function, which maps the
Euclidean distance between the samples in a p-dimensional
space to the dissimilarity values.
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3. RESULTS

A. MDS Solutions

The MDS solutions contain the dimensions needed to explain
how the samples vary perceptually, for each task, for each partici-
pant. The number of dimensions required can be determined by
considering a scree plot of stress values for increasing numbers
of dimensions. For all participants and all tasks, inclusion of
the second dimension gave a marked reduction in stress; for
17/34 and 15/34 participants, on the color and material tasks,
respectively, a third dimension was needed; and for only 4/34
and 5/34 on the two tasks did a fourth dimension produce fur-
ther reduction. For ease of comparison across participants, and
in-line with the dimensionality of color perception (though not
necessarily material perception) and for ease of modeling, we
chose to work with the three dimensional solution in each case.

We show examples of how perceptual judgments of the sam-
ples map on three dimensions in Fig. 5. The distance between
a pair of samples in a space defined by the MDS dimensions
represents the perceptual dissimilarity between them. Observer
54 seems to be employing the same strategy to make perceptual
judgments in both tasks, with dimension 1 (D1) potentially
corresponding to the differences in the samples produced by
the opacity parameter in their construction since they seem
to be sorted from level from 1 to 4. The sample mappings are
noticeably different for Observers 21 and 32 as the glossy and
iridescent samples cluster into two separate groups for both
participants. Even though the results for their material tasks
are similar, the mappings on their color tasks are different.
These results illustrate that the location of the samples on each
dimension is unique to each participant, suggesting that the
dimensions may correspond to different percepts.

An intuitive analysis is to test whether the difference within
the four samples of a surface coating—due to the differences
in the opacity parameter, for example—is smaller than the
difference between surface coatings. The mean coordinates of
the four samples of each surface coating type (represented by
pink triangles and circles for iridescent and glossy samples in

Fig. 5) represent the centers of where the two groups of sam-
ples cluster. We can see visually in Fig. 5 that in some cases
the two local means are well separated, and in others cases the
local means have near identical coordinates. In the latter case,
the local means are also close to the global mean (the center
of all samples, shown as the pink crosses), suggesting that the
participant was not discriminating between surface coatings
and was making similarity judgments based on other charac-
teristics. The closer in Euclidean distance the samples are to
their respective local mean, the more similar they are within
material type. Here we are interested in the average distance to
the local means compared to the average distance to the global
mean and how this differs between the two tasks. A paired-
sample t-test shows that the difference between local and global
Euclidean distance was significantly higher for the material task
(M = 2.14, S D= 1.76) compared to the color task (M = 0.83,
S D= 1.23), t(1, 33)= 3.97, p < 0.001. To further under-
stand these differences in participants’ responses between tasks,
we conducted additional modeling using image statistics of the
stimuli they were shown.

4. SPECIFIC TEMPORALLY SELECTIVE AND
NON-SELECTIVE MODELS

A key feature of our samples is the angle dependency of the
statistics of the proximal image. However, it is likely that not
every frame of the video contributes equally to a perceptual
judgment. In this section, we present a series of models that
compares the perceptual MDS solutions to predicted similar-
ities between samples based on summary image statistics derived
from videos. Comparisons between perceptual MDS results and
the models were made using Procrustes transformation to find
the best mapping of MDS values onto modeled image statistics.
The image statistics here refer to averaged CIELAB values, simi-
lar to those presented in Fig. 4, which were derived by averaging
the channel intensities, such that each tilt contributed equally
to the average. Here, we parameterize the weighting of each
tilt to allow an imbalance in contribution. In other words, the
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Fig. 5. Example MDS results: three-dimensional solutions are shown for three observers (54, 21, and 32) in the material task (top row) and the
color task (bottom row). The axes represent dimensions (D), with the first dimension accounting for most of the variability in participants’ similar-
ity ratings between pairs of samples. Pink circles and triangles represent local means, which are the centers of the four samples for each surface coating,
and the pink letters represent the local glossy (letter G), iridescent (letter I), and global means (letter x, located in the middle of all samples).
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information from some tilts (such as the yellowness from tilt
5) may be minimized or maximized in its contribution to the
summary statistic.

The coordinates of each stimulus in CIELAB space are
meaningful indications of where a stimulus locates on the
perceptual dimensions of lightness, red–greenness, and blue–
yellowness. They can be considered as the MDS solutions for
a hypothetical observer whose similarity ratings were deter-
mined entirely by the Euclidean distance between samples in
this three-dimensional space. MDS analysis of the perceptual
data—performed separately for each participant and task—also
produces a triplet of Cartesian coordinates. Each coordinate
shows where a stimulus locates on an undefined dimension,
and the further apart a pair of stimuli are on a given dimension,
the lower the subjective similarity ratings were for that pair. To
measure model fit, we used Procrustes transformation to find
the transformation matrix that would minimize the distance
between the MDS coordinates and the CIELAB coordinates
from the weight-adjusted image statistics. Through this process,
we can quantify how well each participant’s MDS data align
with the structure of similarities predicted for a hypothetical
observer who uses only the calculated image statistics. The
methods to vary tilt-weight can be split into (1) experimenter-
selected and (2) data-driven approaches. Both approaches reveal
systematic differences in the weightings of the tilts that gener-
ated the least residual error. We discuss each approach and the
findings in detail below.

A. Experimenter-Selected Modeling

The simplest comparison of information across frames is to
ask how well each single frame accounts for the MDS data.
Mean model errors from single frames distribute differently
for the two tasks [Fig. 6(A)]. Next, we created two hypothetical
observers based on image statistics of the video stimuli. The two
hypothetical observers differ in which tilts were excluded when
deriving the average CIELAB values. The non-selective hypotheti-
cal observer considers all tilts equally (L∗a∗b∗ averaged across
all tilts) and the selective hypothetical observer excludes all tilts
apart from 1 and 9. The mean model error of each model across
participants for both tasks is shown in Figs. 6(B) and 6(C) (mod-
els 1 and 2). A two-way ANOVA shows a significant interaction

between task and model [F (1, 132)= 13.45, p < 0.001],
significant main effect of task [F (1, 132)= 12.6, p < 0.001],
and no main effect of the model [F (1, 132)= 0.7, p = 0.406].
LSD post-hoc comparisons show that there were significant
differences in model residual error for both tasks. For the mate-
rial task, the non-selective model (M = 0.38, S D= 0.14) was a
better fit than the selective model (M = 0.55, S D= 0.30). The
opposite was true for the average color task, such that the selec-
tive model (M = 0.39, S D= 0.14) was a better fit compared to
the non-selective model (M = 0.29, S D= 0.22).

B. Data-Driven Modeling: Principal Component
Analysis

1. Introduction toPCASteps

The experimenter-selected modeling suggests that participants
flexibly use information from different views of the samples
according to the judgment they are making. However, these
models pre-determine the weightings (0 or 1) given to infor-
mation from each tilt, and through this type of analysis it is
not possible to exhaustively test all possible combinations of
information from different views. We verify the findings from
above through data-driven modeling.

We used principal component analysis (PCA) to reduce the
dimensionality of the dataset, preserving only the principal
components (PCs) of variation across tilts that explain the high-
est proportion of variance between samples (defined by their
L∗a∗b∗ coordinates). For each PCA analysis, we classified the
nine tilts as the variables and the eight stimuli as observations.
PCA allows us to meaningfully reduce the variables (currently a
nine-dimensional space) into minimal number of PCs required
to account for most of the variance across observations (sam-
ples). PCA reduction was done separately for each L∗a∗b∗

coordinate, and for each coordinate we retain each PC that
explains at least approximately 10% of the variation.

2. Interpretation of L∗a∗b∗ Principal Components

For L∗ and b∗, we retain the first and second components,
explaining 85.0% and 13.0% of the variance for L∗ and 89.5%
and 9.6% for b∗, respectively. The coefficients of the retained
PCs across the nine tilts are shown in the top of Fig. 7. The
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Fig. 6. Mean model errors following Procrustes transformations of individual MDS solutions. (A) Single-tilt model: fits based on L∗a∗b∗ values of
each individual tilt for material (asterisks) and color (circles) tasks, where error bars represent standard errors. (B) and (C) Fits to four models: 1. Non-
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ple component space. The y axis of a∗ (middle column) is arbitrary as only one component is retained, and data points for glossy and iridescent sam-
ples are displaced on this axis for clarity.

coefficients of the PCs indicate the required weighting of each
tilt to best capture the differences between samples.

Figure 7 also shows the way the eight samples plot in the
principle component space for each color coordinate (L∗a∗b∗).
According to the number of retained components, the space is
two-dimensional for L∗ and b∗ and one-dimensional for a∗.
For L∗, PC1 with some small contribution from PC2 captures
the variation in sample statistics that is produced by the opac-
ity manipulation, with relatively uniform contribution from
all tilts. PC2 almost perfectly separates samples according to
surface coating, with some overlap between the darkest glossy
samples and the lightest iridescent samples. PC2 heavily down-
weights the contribution from the extreme tilts and up-weights
the middle tilts at which the two surface coatings produce the
most difference in L∗.

For b∗, PC1 separates the samples by material coating, draw-
ing most heavily on the middle tilts where iridescent samples
appear yellower (more golden) than the glossy samples. PC2
partially separates the samples according to the opacity manipu-
lation, especially for the darkest samples compared to the lighter
ones, and this information is drawn from the extreme tilts where
neither the gold interference color nor the specular reflection is
present.

3. MappingMDSCoordinates toPC-WeightedCoordinates

One instructive analysis would be to test whether the PC1-
weighted chromatic statistics are good predictors of participants’
MDS solutions. This is similar to taking the “non-selective”
average (our simplest summary of the chromatic data), but here
the average is weighted to maximize the difference between
samples in the way their CIELAB coordinates vary with tilt. We
report this as model 3 in Fig. 6.

To test the hypothesis that observers base their similarity
judgments on image statistics collected flexibly across tilts dif-
ferently for each task, we further used optimization techniques
to scale the relative contributions of PC1 and PC2 to best fit the
data. We first extracted the L∗a∗b values weighted by only the
PC1s of L∗, a∗, and b∗, and we used Procrustes transformation
to fit each participant’s MDS solution to these PC1-weighted
values. We then optimized the relative contribution of PC2 in a
weighted sum (PC1+ weighted PC2) to minimize the residual
error following Procrustes transformation. In the first Procrustes
transformation, we included reflection, but once the MDS
solution had been correctly oriented to PC1, the transformation
in the optimization was limited not to include further reflection
and the weights constrained to be between 0.001 and 10.

A higher optimal weighting of PC2 suggests that relatively
more PC2 contribution was required in addition to PC1 to
generate a better fit. Optimal weightings, particularly for the
L∗ values, tended to cluster as either requiring a contribution
of from PC2 or not. We, therefore, tested the proportion of
participants’ who require a non-zero weighting (i.e., scaling over
0.01) in each task for L∗ and b∗.

A Chi-square test of independence confirms that there were
significant differences between the two tasks in the propor-
tion of participants requiring PC2 for L∗, such that for the
material task 20 out of 34 of participants required PC2 contri-
bution and for the color task this was only eight participants,
[X 2(1, 34)= 8.74, p = 0.003]. The opposite was found for
b∗, such that for the material task 14 participants required PC2
contribution compared to only three participants for the color
task [X 2(1, 34)= 9.49, p = 0.002].
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5. DISCUSSION

The focus of this study is the dynamic sampling of visual signals
from objects as they are manipulated within the lighting envi-
ronment and with respect to viewing angle. A strong conjecture
is that perception of a material is informed by the way it behaves
when manipulated, rather than from single static images (see
parallel considerations of dynamic information by [20] who
consider perception of liquids and their viscosity from image
motion). Visual signals from an object may be used to derive
information about the identity of an object or about its nature,
and different information may be available under different
viewing conditions. These considerations led us to investigate
the effect of task instructions on similarity judgments between
samples that varied in the way they were constructed. Two sets
of physical samples were made, each starting from the same
base layer of printed mixtures of blue and black (whose con-
tribution was manipulated with an opacity parameter). These
base layers were coated with either two layers of varnish (the
“glossy” samples) or two layers of varnish with an interleaved
layer of interference paint (the “iridescent” samples). Similarity
judgments, elicited in response to two separate questions,
were analyzed with MDS to reveal the perceptual dimensions
that separated the samples. The organization of the stimulus
samples in perceptual space depended on the question. Task
instructions have previously been shown to have strong effects
on color matching, depending on whether participants are asked
about their color or material percepts [21]. An analysis of the
Euclidean distances between the average location of samples
grouped by surface coating confirms that, across participants,
there is a reliable systematic difference between the color task
and the material task.

In this study, samples were photographed from a fixed view-
point as they were positioned at specific tilts with respect to the
lighting environment. Photographs were combined into videos
presented to participants via an online experiment. While not
permitting the participants to manipulate the samples them-
selves, this mode of presentation did provide precise control over
the image statistics available to participants from the images of
the samples. In the second part of the paper, we used extensive
modeling to understand how MDS solutions from subjective
similarity ratings might map onto models derived from objec-
tive image statistics. These models functioned as “hypothetical
observers” that weighted information from the tilts differently.

The modeling approach was to derive a summary of the sam-
ple “color” by extracting from the images composite L∗, a∗,
and b∗ coordinates that could be used to locate the sample in a
perceptual (color) space and to look for similarities between rep-
resentations of the samples in this space and the structure of the
MDS solutions. The single-tilt models assumed, for example,
that the summary extracted from the videos was simply the aver-
age L∗, a∗, and b∗ coordinates of pixels corresponding to the
sample in one single tilt, ignoring all other tilts. In contrast, the
non-selective model equally weighted L∗, a∗, and b∗ coordi-
nates from all tilts, while the selective model used only the most
extreme tilts (1 and 9). In such models, the researcher chooses
the rule for combining information from frames of the video,
and particularly for the selective model the choice is informed

by knowledge of the stimulus properties and task. We, therefore,
additionally sought a data-driven analysis to verify the results.

One option would be to optimize the weights on statistics
from each frame of the video to produce composite L∗, a∗,
and b∗ coordinates that best fit the MDS solution for each
participant. However, the information contained in succes-
sive frames is highly correlated, and such an optimization is
highly under-constrained. We, therefore, used PCA to reduce
the dimensionality of the stimulus set. Importantly, the PCA
was performed across tilts (and not, for example, to reduce
the dimensionality of the color-space description), and sep-
arate PCA solutions were found for each of the three color
dimensions, L∗, a∗, and b∗. The extracted PCs, therefore,
characterize the way in which the eight material samples are
distributed in a nine-dimensional space where each dimension
represents the relevant color coordinate (L∗, a∗, or b∗) for one
of the nine tilts. The coefficients for each successive PC indicate
the relative weightings of information from each tilt required to
best capture the residual variation between samples. Beyond this
study, such analyses may provide useful characterizations of the
signatures of particular material types as they are manipulated in
a lighting environment.

Most of the variation between samples in this study was in
the L∗ and b∗ coordinates. For each of these coordinates, the
first PC explained a high proportion of the variance between
samples in the way they changed with tilt, but in both cases there
was additional variance (∼10%) explained by the second PC.
Models that optimized the relative weighting of PC1 and PC2
in deriving composite L∗, a∗, and b∗ coordinates produced
reliably better fits to the MDS solutions than a model that used
only PC1. Importantly, the numbers of participants whose best
fitting models included PC2 was significantly different for the
color task and the material task, for both L∗ and b∗ coordinates.
This result provides direct evidence that participants utilize
information from a sequence of views of an object differently
depending on the type of judgment they are making about the
object.

For L∗ the color task results were, for most participants, well
explained by PC1. Interestingly, this PC has a small suppression
of tilt “5”, which is the tilt most affected by specular reflection.
For the material task, an additional contribution from PC2 was
required for significantly more participants. PC2 down-weights
the extreme tilts and up-weights the middle tilts (“5” and “6”),
capturing the increased lightness associated with the iridescent
samples at these angles. For b∗, PC2 contributed strongly to the
model fits for the majority of participants for both tasks, but
for significantly more participants for the color task. For this
coordinate, PC2 down-weights the middle tilts and up-weights
the extreme tilts, suggesting that when judging “average color”
participants suppress the golden hue that appears at selective tilts
from the interference paint. Our average color task purposefully
gave no instruction as to how to treat iridescent color percepts.
In this study, it appears that most participants focused on the
color of the base layer of the material samples in their average
color similarity judgments. Further empirical studies would be
required to investigate this in detail, but it draws attention to
what participants understand by terms such as “surface” and
“surface color,” and whether iridescent percepts are categorically
different from absorption pigment-based color percepts (such
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that, for example, they contribute minimally to the “average
color” of the sample).

6. CONCLUSION

We conclude that our findings align with flexible weighting of
information from videos of tilting material samples, depending
on task instructions. This opens exciting avenues for future work
on iridescence—particularly on how information is extracted
from the proximal image with real objects that participants
can manipulate themselves. The colors produced by irides-
cence, and the colors accessible to the observer, depend on the
geometry of the object, observer, and light source. Therefore,
dynamic weighting of information might also drive how we
physically handle and perceive iridescent objects.
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