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Abstract

The discovery of super-Earth and mini-Neptune exoplanets means that
atmospheric signals from low-mass, temperate exoplanets are being increas-
ingly studied. The signal acquired as the planet transits its host star, known
as the transit depth, is smaller for these planets and, as such, more diffi-
cult to analyze. The launch of the space telescopes James Webb (JWST)
& Ariel will give rise to an explosion in the quality and quantity of spec-
troscopic data available for an unprecedented number of exoplanets in our
galaxy. Accurately extracting the information content, thereby permitting
atmospheric science, of such data-sets will require robust models and tech-
niques. We present here the analysis of simulated transmission spectra for
water-rich atmospheres, giving evidence for non-negligible differences in sim-
ulated transit depths when self-broadening of H2O is correctly accounted for,
compared with the currently typically accepted standard of using H2 and
He-broadened cross-sections. Our case-study analysis is carried out on two
super-Earths, focusing on water-based atmospheres, ranging from H2-rich to
H2O-rich. The transit depth is considerably affected, increasing values by up
to 60 ppm, which is shown to be detectable with JWST and Ariel. The dif-
ferences are most pronounced for the lighter (i.e. µ ∼ 4) atmospheres. Our
work illustrates that it is imperative that the field of exoplanet spectroscopy
moves toward adapted cross-sections, increasingly optimized for high-µ at-
mospheres for studies of super-Earths and mini-Neptunes.
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1. Introduction

The field of exoplanet atmospheric spectroscopy relies heavily upon ac-
curately derived cross-sections, generated for particular pressure and tem-
perature ranges as well as for specific molecules. As the number of known
exoplanets continues to increase rapidly, we are witnessing an influx of small,
more temperate worlds (≤ 10 M⊕,≤ 5000 K). The range of super-Earths and
mini-Neptunes discovered has opened up the field of possibilities for observ-
able atmospheres on these planets. Prime examples include the TRAPPIST-1
system, [1], 55 Cnc e [2, 3], GJ 1132 b [4, 5], GJ 1214 b [6], K2-18 b [7] and
LHS 1140 b [8].

Small planets of increasing interest in the field are those that lie within the
radius valley ([9], [10], [11]), i.e. between 1.5 − 2.0R⊕, whereby the dearth
of planets in this region is theorized to be consistent with the intersection
between super-Earths and sub-Neptunes or water-worlds. Planets smaller
than 1.8R⊕ could have thinner, possibly H2-depleted atmospheres (e.g. [12,
13, 14]), whilst planets with radii larger than this threshold could possess
volatile-rich atmospheres, H2/He or H2O-rich in particular (e.g. [15, 16]).
However, observational constraints, in the form of atmospheric transmission
spectra, are needed to confirm these hypotheses and therefore the nature of
these transitional planets. Furthermore, this population of small planets de-
viates from our understanding of planet atmospheres which has been mostly
built upon our knowledge of hot-Jupiters and the solar system. For example,
cross-sections that are utilized in the exoplanet field (based on the line lists
provided by ExoMol [17]), HITRAN [18], MoLLIST [19] and HITEMP [20])
are typically generated for atmospheres which are either dominated by H2

and He, or air for Earth-like planets, in the case of HITRAN (see recent
works, such as [21, 22, 23, 24]). Whilst this is appropriate for gas giant plan-
ets or Earth-like planets, such cross-sections do not include effects such as the
self-broadening of heavy molecules like H2O. When considering atmospheres
heavier than H2/He, such as is expected to be prevalent on super-Earths and
water worlds [16, 25, 26, 27, 28], this provides a non-negligible difference in
the simulated (wavelength-dependent) atmospheric signal obtained during
transit, knows as the transit depth.
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H2 and He are light molecular species which only interact weakly with
other molecules at long range and are therefore very inefficient line broad-
eners. Water, conversely, is both heavier and possesses a significant dipole
which leads to enhanced long-range interactions. Broadening by water vapour
is known to be significant in the Earth’s atmosphere even though it is gen-
erally only a trace species. As transit spectroscopy probes regions of an
exoplanet atmosphere as it approach optical thickness, the increased line
broadening by water can be expected to lead to significantly enhanced over-
all absorption compared to the case where only H2 and He are considered.

Previous works have investigated the effects of various choices when com-
puting cross-sections for modelling exoplanet atmospheres, such as [29, 30,
31, 32]. These investigations included the choice of broadening parameters,
although these typically focus on H2/He atmospheres and associated broad-
ening parameters. Recently there has been some work more focused on cross-
sections for heavier atmospheres, such as [28, 33].

In this work we investigate the effects of including H2O self-broadening, in
addition to H2/He-broadening, in the calculation of our water cross-sections
which we use to model exoplanet atmospheres. We find that the transit
depth is considerably affected; the largest difference being found for one of
our case-study planets GJ 1214 b, a 6.26 M⊕, 2.85 R⊕ super-Earth.

2. Methodology

2.1. Transmission spectroscopy

If the orbital plane of a planet around its host star is aligned approxi-
mately parallel to our line of sight with the system (analogous to 90◦ incli-
nation), the planet will transit in front of its star. Assuming that there is no
atmosphere and that the planet is totally opaque to its incoming starlight,
this transiting motion will cause a drop in the amount of stellar flux we re-
ceive from the host star. This change in detected light is known as the transit
depth, ∆F , which is equal to the ratio between the surface area of the planet
(as we view it, in 2D) and the surface area of the star. Since we assume both
objects to be totally symmetrical, this reduces to:

∆F =
Fout − Fin

Fout
=

(
Rp

R∗

)2

(1)

which gives a measure of the relative change in flux as the planet blocks its
starlight. This provides us with an observable quantity with which we can
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quantify the size of the planet, if we know the stellar properties, which can
be derived from models.

Now, if the planet possesses an atmosphere, an envelope of gas which
surrounds the planet which is maintained by the planet’s gravitational force,
the molecules present will absorb, scatter and reflect incoming starlight, in
addition to thermally emitting photons. Owing to the varied and distinct
spectral characteristics of different molecules, how opaque a certain atmo-
sphere is to incoming stellar flux will vary significantly with wavelength.
This information is described by the quantity τ(λ), given in Eq. 2, known
as the optical depth. Overall, regarding transmission spectroscopy, we can
treat the atmosphere as a purely absorbing and single-scattering medium as a
good (first-order) approximation for radiative transfer through the planetary
atmosphere.

Given an arbitrary path through the atmosphere for which radiation
transmits with wavelength-dependent initial intensity Iλ, the transmitted ra-
diance will be attenuated by absorption and scattering processes. We can de-
note this reduction in intensity as a function of path ds as dIλ/ds = −Iλσλρ,
where σλ is the total mass extinction cross section (the sum of the absorption
and scattering cross sections) and ρ is the density of the medium. Integrat-
ing up and using the fact that the optical depth as a function of atmospheric
height is determined by summing the opacity contributions of all molecular
species present, we recover the Beer-Bougert-Lambert Law :

Iλ(z) = Iλ(0)e−τλ(z) with τλ(z) =
∑
m

∫ z∞

z

σm,λ(z
′)χm(z′)ρ(z′)dz′, (2)

where χm and ρ are the column density of a given molecular species and the
number density of the atmosphere, respectively.

We may now rewrite Eq. (1) as:

∆F =
Fout − Fin

Fout
=

(
Rp + hλ
R∗

)2

≈
R2
p + 2Rphλ

R2
∗

O(hλ) (3)

where we may describe the atmospheric height function as:

2Rphz = 2

∫ zmax

0

(Rp + z)(1− e−τλ(z))dz, (4)

where zmax denotes the height of the atmosphere.
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Using this formalism, the transit depth of an atmosphere-bearing planet
for any given wavelength may be calculated, using derived cross-sections
(temperature, pressure and wavelength dependent) for a given molecular
species. If we populate a model atmosphere with a given temperature profile,
pressure profile, chemical species abundances and a specified cloud distribu-
tion we may generate a transmission spectrum (∆F vs. λ) for the atmo-
sphere, thereby forward-modelling it. To date, there is extensive literature
pertaining to the collection of transmission data, alongside analysis of the
generated transmission spectra, for a wide variety of exoplanets; from hot-
Jupiters [34, 35, 36] to habitable-zone super-Earths [1, 7, 8].

2.2. Broadening parameters

The Voigt profile is commonly used to represent line broadening in ex-
oplanet atmospheres, which is a convolution of the temperature-dependent
Gaussian line profile and the pressure-dependent (and therefore dependent
on broadening species) Lorentzian profile. The equation for the Lorentzian
line width (HWHM) for a given pressure P and temperature T , is given by:

γL = γ

(
T0
T

)n
P

P0

. (5)

Here, T0 and P0 are the reference temperature and pressure, whilst γ and
n are the reference HWHM and temperature exponent, respectively. The
latter two terms are known as pressure-broadening parameters and are de-
pendent primarily on the molecular species being broadened and the species
inducing it. Therefore these are the parameters which, upon variation, en-
able us to study the self-broadening effects of water considered in this study;
considering atmospheres comprising varying levels of H2O with respect to
H2 and He. We note that the power law for temperature dependence which
we assume in this work may not work well over large temperature ranges,
including those temperatures of the atmospheres we are modeling. This has
been demonstrated by works such as [37], who developed the more advanced
Gamache–Vispoel double power law (DPL) model. Others, such as Wcis lo
et al. [38] highlight non-Voigt effects to line broadening. We will consider
updating our cross-sections using these more robust line-shape models in the
future. We also expect to have more robust values for the self-broadening
parameters of H2O and other molecular species, as a result of ongoing work
from projects such as ExoMol [39] and HITRAN [40] and others [41, 42],
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which we would like to incorporate into our cross-sections in the future. For
the present study we use the Voigt profile of Eq. 5. The self-broadened
H2O cross-sections used in this study were computed using ExoCross [43], as
were the H2/He-broadened cross-sections for H2O. The latter are similar to
those from the ExoMolOP database [21] but with J-dependent broadening
parameters (where J is the rotational angular momentum quantum number)
from the ExoMol website1 used for H2 and He broadening [44, 45]. All H2O
cross-sections presented here use the ExoMol POKAZATEL line list [46].
We computed the line wings out to 500 Voigt widths in all cases, out to a
maximum of 25 cm−1. The values of γ and n for the self-broadening of H2O
used in the present study are detailed below.

2.2.1. Self-broadened half-width, γH2O

There are many literature sources with broadening parameters for self-
broadening of H2O. For example, Gamache and Hartmann [47] compiled and
compared various parameters related to H2O line shape, including values for
the half-width γ for self-H2O broadening. There are over 47,000 lines in their
database, with values of γH2O ranging from 0.108 - 0.805 cm−1 atm−1. The
2020 release of the HITRAN database [48], who follow a “diet” procedure
[49], provide an update of this 2004 broadening measurement database of
[47]. A simple average of all values of the main isotopologue of H2O (with no
weighting) from HITRAN2020 for γH2O yields a value of 0.35 cm−1 atm−1.
There are many other works with available broadening values: for example,
[50] and [51] both present a number of values for γH2O for a few thousand
lines each. They report average values of γH2O = 0.4 and between 0.1 and
0.5 cm−1 atm−1, respectively.

As noted above, for the present study we extract the broadening parame-
ters from the HITRAN2020 [48] database as a function of rotational angular
momentum quantum number J , computing an average value of γ for each
value of J . The data extends up to a maximum of J=26 and varies between
0.1 cm−1 atm−1 for high J to 0.5 cm−1 atm−1 for low J .

2.2.2. Temperature exponent nH2O for self-broadened half-width

HITRAN2020 [48] currently only include γself and not nself values for H2O,
due to the large effort required to validate and populate such parameters

1https://www.exomol.com/data/data-types/broadening_coefficients/H2O/
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into their database. For now we use averaged J-dependent values for γself
from HITRAN2020 [48] and an apparently typical value of nself=0.7 for H2O.
The focus of some ongoing and future work is to update the ExoMol [39]
and ExoMolOP [21] databases to include broadening parameters in a more
comprehensive way. This is not a simple undertaking: the H2O line list used
in this work, for example, ExoMol POKAZATEL [46], contains 6 billion
transitions between 800,000 energy levels, with even larger line lists required
to describe larger species, see Table 13 of [21].

Although it is beyond the scope of the current study to perform a com-
prehensive assessment of available temperature exponents for self-broadening
of H2O, there are a number of studies in the literature which have focused
on analysing water vapor spectra at various temperatures in order to de-
termine the temperature dependence n of the self-broadened half-width γ.
Here, we summarize the results from a selection of works, but note that this
is not a comprehensive sample. Grossmann and Browell [52] analyzed spec-
tra of water vapor in the 720 nm region, finding an average value of n=0.75.
Studies such as [53, 54, 55] all analyzed particular rotational lines in the
low-wavenumber region of the spectra, between around 250 - 390 K. They
find values of nself of 0.62, 0.89 and 0.85, respectively. Both [54, 55] look at
various broadeners, including self. They find that both γ and n are generally
larger for the cases where H2O is the broadener, in comparison to N2, O2

or Ar as broadeners (n is 0.52, 0.64, 0.49 for those cases, respectively for
example in [54]). Alder-Golden et al. [56] analyzed low-J lines of H2O close
to 12,200 cm−1 in the 330 - 540 K temperature range. They find an average
value of γself at 296 K of 0.456 cm−1 atm−1 (compared to 0.095 cm−1 atm−1

for air-broadening). The temperature coefficient n for self-broadening of
H2O was found to be 0.9 on average across the spectral region measured.
Podobedov et al. [57] analyzed several lines of H2O in the region around 12 -
52 cm −1 for temperatures between 263 - 340 K and over a pressure range
from 0.0003 - 0.014 bar. The J- and T -dependent values of γ were found
to vary between 0.67 - 1.07 cm−1 atm−1. They found J-dependent values of
nself between 0.56 and 0.81.

Table 2 gives some average values extracted from the HITRAN 2020 [48]
database for various molecules and broadeners. The H2- and He-broadened
average values used in the ExoMolOP database [21] (a database tailored for
modelling “hot Jupiter”-type exoplanet atmospheres) are also included for
reference. It can be seen that in general that the largest γ and n values
occur when H2O is the broadener, which for γH2O is an order or magni-
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Figure 1: Cross-sections computed using the self-broadening parameters for H2O, for the
abundances of water vapor given in the legend. We compare the self-broadened cross-
sections (orange, pink) with the H2/He-only broadened cross-sections (blue). Left: atmo-
spheric pressure of 1 bar and right: atmospheric pressure of 10−1 bar. In an atmosphere
with 10% H2O, we assume the remaining 90% atmosphere is comprized of H2/He in solar
abundances and that the broadening is therefore 90% dominated by H2/He and the re-
maining 10% from H2O self-broadening. In this case we create a combined cross-section
which includes 90% of the self-broadened and 10% of the H2/He-broadened cross-section
for a given pressure and temperature.

tude larger than H2- and He-broadening. The contrast between H2- or He-
broadening and H2O-broadening, however, does not appear to be so large for
other species as for water vapor. A similar observation was noted by Gharib-
Nezhad and Line [28], who highlight that self-broadening for H2O is typically
up to 7 times larger than H2/He broadening based on their compilation of
literature values.

In Figure 1 we present our derived H2O-broadened cross-sections at T =
600 K for various pressures, in comparison to the standard H2/He-broadened
ones; in both cases it is clear that H2O self-broadening widens the profiles of
each absorption peak.

2.3. Simulating transmission spectra

Eq. (5) exhibits a linear relationship for γL with atmospheric pressure, P.
Hence, we anticipate the strongest broadening effect to contribute deeper in
the atmospheres we wish to model. Consequently, the abundance of water
vapor in the atmosphere should affect our results, since although a decrease in
molecule number density ought to minimize the overall opacity contribution
induced by self-broadening, lighter atmospheres with low-mean-molecular
weight allow us to probe deeper pressures; this is illustrated in Figure 2, where
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Figure 2: The contribution function, dτ
dP , is defined as the wavelength-averaged variation

in the optical depth, τ with pressure, P . On the LHS, τ is plotted in µ−P space; for which
the contribution dτ

dP is normalized and displayed in the central panel; whilst on the RHS
this contribution is plotted for varying water vapor abundance; illustrating that deeper
pressures can be probed in lighter atmospheres.

the contribution function, dτ
dP

, is defined as the wavelength-averaged variation
in the optical depth, τ with pressure, P . This informs our implementation
of atmospheric models endowed with a variety of water vapor abundances,
in order to examine for which abundances the self-broadening effects of H2O
are both most prominent and most observable with future space missions.

In order to simulate forward models of transmission spectra for GJ 1132 b
and GJ 1214 b, this analysis was performed using the publicly available re-
trieval suite TauREx 3.0 [58, 59, 60]. For the stellar parameters and the
planet mass, we used the values from [61] and [62] as given in Table 1 a).
In our runs we assumed that the planets possess a range of different water-
based atmospheres, with fill gas abundance ratio given by VH2O = x, with
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Table 1: a) stellar and planetary parameters for two small planets, for input into TauREx
3.0, derived from [61], [62], b) list of the forward-modeled parameters, their values and
the scaling used.

a) stellar & planetary parameters
parameter GJ 1132 b GJ 1214 b
T∗ [K] 3270 3026
R∗ [R�] 0.207 0.220
M∗ [M�] 0.181 0.176
Mp [M⊕] 1.66 6.26
Rp [R⊕] 1.13 2.85

Porbital [days] 1.63 1.58

b) forward model parameters
parameter GJ 1132 b GJ 1214 b type
Pclouds None None opaque
T [K] 500 600 iso.

log10 VH2O ∈ [-2, 2] [-2, 2] fill
VHe 1e− 7 1e− 7 trace

the chosen values of x given in Table 1 b) and the remainder of the molecular
abundance made up of H2 and He, as specified. Additionally, we included
the collision induced absorption (CIA) from H2-H2 [63, 64] and H2-He [65],
as well as Rayleigh scattering for all molecules. Finally, our simulated at-
mospheres are cloud-free, isothermal and have molecular abundance profiles
which are constant with altitude. The assumptions of isothermal and iso-
chemical atmospheres hold for interpreting current data ([8, 66]). While
these approximations might be too simplistic to interpret accurately JWST
and Ariel data ([67, 68]), they will not change the conclusions of our pa-
per. For each of the two planets, two types of spectra were generated: one
using the standard H2/He-broadened cross-sections only and another with
the H2O self-broadened cross-sections included for the various percentages of
H2O modeled in the atmosphere, as described in Section 2.2 and illustrated
in Figure 1.
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3. Results

3.1. Forward-modelling of transmission spectra

We generate transmission spectra at a native resolution of 15,000 for both
planets, before binning down to a nominal resolution and signal-to-noise ra-
tio of 200 and 10, respectively, with TauREx 3.0 (enabling eventual compar-
ison with Ariel and JWST errorbars). We utilize both the H2/He- and the
H2O-broadened cross-sections described in Section 2.1, yielding the spectra
given in Figure 3, with planetary and stellar parameters described in detail
in Table 1. In comparison with spectra produced using H2/He-broadened
cross-sections, it is evident that by using cross-sections calculated for the
water-dominated atmospheres the spectral features are amplified due to the
additional absorption achieved by including self-broadening of H2O. In or-
der to quantify these wavelength-dependent differences, these sets of spectra
which are over-plotted the top panels of Figure 3 have been subtracted to
obtain the results presented in the lower panels, from which we determine
maximum absolute differences in transit depth for the lightest secondary-type
atmospheres (10% H2O); of 60 and 20 ppm for GJ 1214 b and GJ 1132 b, re-
spectively.

3.2. Ariel & JWST error-bars

During its primary mission, Ariel will survey the atmospheres of 1000
exoplanets [69, 70] and many of these targets could be in the Super-Earth
and Sub-Neptune regime [71]. Meanwhile, during the Guaranteed Time Ob-
servations (GTO) and first cycle of the General Observing (GO), around 70
planets will be observed with JWST [72]. Nearly half of these JWST tar-
gets have a radius of ≤ 2.5R⊕ and, therefore, may not have a H2-dominated
atmosphere. During its lifetime, JWST is expected to observe a couple of
hundred exoplanets [e.g. 73].

To investigate the detectability of broadening-induced differences with
future instruments, we generated error bars for the simulated spectra. We
then compared the size of these uncertainties to the absolute differences be-
tween the H2- and H2O-broadened spectra. For Ariel, we generated error
bars using ArielRad [74] while, for JWST, we used a modified version of the
radiometric tool described in Edwards and Stotesbury [75] which utilizes the
JWST instrument parameters from Pandeia [76].

For JWST we modeled observations with NIRISS GR700XD (0.8 - 2.8
µm) and NIRSpec G395M (2.9 - 5.3 µm), whilst for Ariel, which provides
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Figure 3: Individual over-plots of the (resolution 200) spectra produced with both H2 and
H2O-broadened cross-sections for each planet, for varying water abundance, with absolute
differences beneath. Top: GJ 1132 b (500 K), bottom: GJ 1214 b (600 K).

simultaneous coverage from 0.5 - 7.8 µm, we simulated error bars at tier 2
resolution. Presented in Figure 4, for GJ 1132 b and GJ 1214 b, we observe
that both instruments will be sensitive enough to reveal such differences when
integrating multiple transits, specifically 45 and 40 in the case of Ariel (tier 2)
and 10 and 5 in the case of JWST for GJ 1132 b and GJ 1214 b, respectively.
We note that both these planets will be studied by JWST in the first cycle
of observations.
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Figure 4: Comparison of simulated error bars for observation of a) GJ 1132 b and b)
GJ 1214 b with future-missions Ariel and JWST with the absolute wavelength-dependent
differences in transit depth on the simulated transmission spectra, using H2- vs. H2O-
broadened cross-sections. In both cases these broadening-induced differences should be
directly observable in the near-future.
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4. Discussion

In all spectra, an increase in µ, corresponding to increased volume mixing
ratio of water, corresponds to reduced scale height, since H = kT

µg
, (where µ

is the mean molecular weight of the atmosphere, g is the planet gravity and
k is the Boltzmann constant). For the individual atmospheres we observe a
saturation of features as the atmospheric mean-molecular-weight gets larger.
In tandem, an increase in mean-molecular weight of the atmosphere results in
a decrease in the atmospheric pressure at which we can probe, as illustrated
in Figure 2. Thus, the largest observed differences in transit depth vs. wave-
length are found in the lightest secondary-type atmospheres, namely those
with 10% water vapor, for all employed temperatures. As for the two plan-
ets considered, the largest transit depth increases are observed in GJ 1214 b,
with an equilibrium temperature of 600 K, as opposed to HAT-P-11 b, which
possesses an equilibrium temperature of 900 K.

Although the Lorentzian line profile for H2O self-broadening is approxi-
mately inversely proportional to the atmospheric temperature, low-temperature
planets have smaller global transit depths, due to the reduction in scale height
the temperature induces. Hence, there is a trade-off between the strength of
the broadening effect and detectability of such effects. Our work finds that
the atmospheric temperatures for such differences to become detectable with
future missions, as discussed, is thus ∼ 600 K.

Thus, consideration and utilization of self-broadening effects induced by
not just H2O, but all large-µ molecules should have a stronger impact on the
medium-cool atmospheres of temperate planets, as well as those with low-
mean-molecular-weight secondary atmospheres, namely those closer to the
threshold abundance of around 10% non-H2 or -He which we define to the
boundary between primary and secondary type atmospheres; precisely those
planets which sit in the transition region between super-Earths and sub-
Neptunes, whose atmospheres remain illusive and out-of-reach with current
telescopes, due to known limits on both the signal-to-noise and resolution ([8].
The next generation of telescopes will widen and deepen our spectral view,
both in terms of signal-to-noise and resolution, but also in wavelength cov-
erage; hence these problems should be easily tackled with Ariel and JWST.
It is therefore especially imperative for the accuracy of cross-section data to
compete with the level of precision obtainable with these future facilities.
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Standard H2/He-broadened cross-sections which are in widespread use by
the exoplanet community are simply non-optimal for the study of secondary-
type, heavy atmospheres dominated by non-H2/He species due to the fact
that these opacities are calculated with respect to a nominal atmosphere
which is dominated by H2 and He. At present, due to the computationally-
intensive nature of numerically evaluating absorption strengths for molecular
transitions and interactions for a given atmospheric species, specifying a grid
of temperature and pressure values is necessary to obtain computable opac-
ities for input into forward models and atmospheric retrieval algorithms. It
is well known that extrapolating opacities above the temperature or pressure
grid on which they were computed can be problematic (e.g. [77], [78]), largely
due to the dominance of transitions that originate in energy levels above the
ground-state in higher temperature regimes. In this work we demonstrate
that including self-broadening effects into the calculation of the absorption
cross-section of water markedly affects the simulated transit depth of small-
planet exoplanet atmospheres. Moreover, we are the first in the exoplanet
field to illustrate that these generated differences are detectable with the
near-future space missions JWST & Ariel, by explicitly simulating spectra
with error bars for these instruments. We prove that self-broadening is neces-
sary to account for in these calculations. As a community, our long-term goal
should be to develop cross-section functions, explicitly derived for pressure-
temperature grids and as a function of molecular abundances, with all intra-
and inter-molecular effects, like self-broadening, included.

5. Conclusion

In summary, it is evident that accounting for previously thought-to-be
negligible absorption contributions, such as the self-broadening exhibited by
H2O in our opacity functions, will alter simulated transit depths by as much
as 60 ppm. These differences sit above the noise level for a reasonable num-
ber of transit observations with the near-future space telescopes JWST and
Ariel for the two small planets considered: GJ 1132 b and GJ 1214 b. Our
quantification of the transit depth differences found by producing and utilis-
ing cross-sections which include the absorption contribution induced by H2O
self-broadening motivate further progress in not only refining such broad-
ening parameters, but also developing opacities for a variety of molecular
species expected to be found in the atmospheres of small planets, which may
also be dominated by more than one heavy molecule. This is not an easy
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undertaking, due to the vast amount of work done and ongoing in the field of
line shapes (including half widths γH2O and temperature dependence nH2O;
see, for example, [47, 40, 48, 50] and references therein). It is paramount that
the field of exoplanet spectroscopy moves towards the use of more adaptive
cross-sections, built as functions not only of temperature and pressure but
also of molecular abundance, as we have illustrated specifically for the case
of H2O.
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Table 2: Average values of γ and n for various species where parameters are available from
HITRAN-2020 [48]. The custom data search from HITRANonline as described in [79] was
used in order to extract the relevant parameters. Where ExoMolOP [21] is labelled as the
source (where only H2 and He-broadening was considered), the citations used to find the
averaged values are listed in the footnote to this table.

Species Broadener γ n Source

CO2 H2O 0.14 0.79 HITRAN
Self 0.09 0.64 HITRAN
Air 0.07 0.71 HITRAN
H2 0.11 0.58 HITRAN
He 0.06 0.3 HITRAN
H2 0.09 0.59 ExoMolOP
He 0.04 0.44 ExoMolOP

CO H2O 0.09 0.68 HITRAN
Self 0.06 - HITRAN
Air 0.05 0.7 HITRAN
CO2 0.06 0.66 HITRAN
H2 0.07 0.58 HITRAN
He 0.05 0.54 HITRAN
H2 0.07 0.65 ExoMolOP
He 0.05 0.6 ExoMolOP

CH4 H2O 0.07 0.85 HITRAN
Self 0.07 - HITRAN
Air 0.05 0.67 HITRAN
H2 0.06 0.6 ExoMolOP
He 0.03 0.3 ExoMolOP

H2O Self 0.35 - HITRAN
Air 0.07 0.62 HITRAN
H2 0.06 0.2 ExoMolOP
He 0.01 0.13 ExoMolOP

CH4: [80, 81, 82, 83, 84, 85, 86, 87, 88]
CO: [89, 90, 91, 92, 93, 94]
H2O: [95, 96, 44, 97, 98, 99, 100, 101, 102]
CO2 assumed parameters of C2H2: [103]
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