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Recent research has uncovered rapid compositional and structural reorganiz-
ation of ecological assemblages, with these changes particularly evident in
marine ecosystems. However, the extent to which these ongoing changes in
taxonomic diversity are a proxy for change in functional diversity is not well
understood. Here we focus on trends in rarity to ask how taxonomic rarity
and functional rarity covary over time. Our analysis, drawing on 30 years of
scientific trawl data, reveals that the direction of temporal shifts in taxonomic
rarity in two Scottish marine ecosystems is consistent with a null model of
change in assemblage size (i.e. change in numbers of species and/or individ-
uals). In both cases, however, functional rarity increases, as assemblages
become larger, rather than showing the expected decrease. These results under-
line the importance ofmeasuring both taxonomic and functional dimensions of
diversity when assessing and interpreting biodiversity change.
1. Introduction
Contemporary ecological communities are experiencing biodiversity change that
has little precedence in the historical record, with marine systems among those in
which this change is particularlymarked [1–3]. This biodiversity crisis underlines
the importance of measuring biodiversity in robust and ecologically meaningful
ways. But because biodiversity is a multifaceted concept [4,5], it also raises ques-
tions about the extent to which information on change in one dimension of
diversity, such as taxonomic diversity, sheds light on change in other dimensions,
such as functional diversity. Growing evidence that ecosystems are being restruc-
tured along multiple dimensions of biodiversity [6] underlines the need for
improved understanding of the linkages between these dimensions.

Ecological assemblages typically consist of a few common and many rare
species, a pattern that is described by a species abundance distribution (SAD).
Species that are considered to be taxonomically rare occupy the lowest ranks in
this distribution [7,8], with other categorizations of rarity drawing on species
occurrence data, and/or features such as habitat specificity (e.g. [9]). A recent
macroecological analysis [10] showed that increases in taxonomic rarity are wide-
spread. Such shifts have been attributed to immigration and warming [11–16],
and may occur alongside an increase in assemblage size due to greater number
of species and/or individuals. Taxonomically rare species could contribute unu-
sual trait combinations to a system [17,18] and play an important role in
supporting ecosystem functioning [19,20]. Temporal change in taxonomic rarity
thus has the potential to shed light on underpinning changes in functional
rarity. However, the biodiversity literature contains many examples of cases
where change in one attribute of diversity is uncorrelated or only weakly corre-
lated with another (e.g. [21,22]). Moreover, a taxonomically rare species can
have a dominant trait value and vice versa. Therefore, even though metrics of
functional rarity can be weighted by taxonomic abundance [23], it does not
necessarily follow that trends in taxonomic rarity, and trends in trait (functional)
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Figure 1. Map showing the latitudinal bands with the central latitude added in text. The west coast system is shaded in green with the east coast in blue (this
colour scheme is consistent throughout the paper).
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rarity will coincide. To predict whether change in taxonomic
rarity and change in functional rarity are correlated, we need
to understand how metric responses are shaped by shifts in
the underlying SAD.

If an assemblage gains more biomass, or larger numbers
of individuals, the number of species in the assemblage is
expected to rise, but in a nonlinear way. This is the principle
that underlies rarefaction analyses used to make fair compari-
sons between assemblages [4,24,25]. Owing to the constraints
imposed by the uneven distribution of species that character-
ize SADs [26] other assemblage properties will also change as
an assemblage grows (or shrinks). For example, larger assem-
blages are generally less (taxonomically) even than smaller
ones [27]. We therefore expect larger assemblages to exhibit
increases in taxonomic rarity. However, trait abundance
distributions (TADs) tend to be more even than SADs (e.g.
[28]). This higher evenness in TADs [29] suggests that
functional rarity may be less responsive to a change in assem-
blage size than taxonomic rarity. To explore these questions,
we construct a null model taking account of both observed
species and TADs and in which individuals are progressively
drawn at random from a gamma [30] assemblage to construct
local assemblages of different size. Departures from this null
will shed light on how rare trait combinations are conserved
or lost, as assemblages change in size.

Here we focus on two Scottish marine fish assemblages
(figure 1), each sampled by scientific trawling over a period
of three decades. Although matched by latitude, these assem-
blages belong to different marine ecosystems: the seas to the
west of Scotland are part of the Celtic-Biscay Shelf ecosystem
[31] while those to the east of Scotland are placed in the
North Sea ecosystem [32]. These systems share many, but not
all, fish species, but have different dominant species, and
differ in how species dominance changes over time [33].
They thus provide an interesting test case in which to ask
whether shifts in taxonomic rarity are a proxy for change in
functional rarity as well as whether these biodiversity changes
are consistent across different geographical regions.
2. Methods
(a) Study location
The data used in this work were sourced from the International
Council for the Exploration of the Sea (ICES) and are taken from
two standardized scientific trawl surveys incorporating the ICES
areas VIa (west coast system), IVa and IVb (North Sea) [31,32]
(east coast system). Each species record contains a precise geo-
graphical location and numerical species abundance represented
by CPUE (catch per unit effort), which in this instance refers to
the number of individuals of a given species caught per hour
using a tow duration of half an hour. Here we use ICES rectangles
to form the boundaries of assemblages. These ICES rectangles are
freely available for download on the ICES website [34] and rep-
resent 300 latitude by 1° longitude in a grid cell. In this work, we
chose latitudinal bands which were created by merging the
ICES rectangles longitudinally. This produced 11 ‘bands’ on
the east and 9 on west coast (see map in figure 1; for further
information see electronic supplementary materials).
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The west coast system (which is part of the overall Celtic Seas
ecoregion) is mostly relatively shallow, particularly in the Irish Sea
areawhere depth is typically less than 100 m, and comprises a var-
iety of habitats [35], including rocky outcrops and sandbanks. The
system is largely sheltered from the winds and currents of the
North Atlantic and water circulation patterns are influenced by
freshwater discharge from rivers such as the Severn and the Shan-
non as well as the many sea lochs found on the west coast of
Scotland [36]. The North Sea system is semi-enclosed and includes
the Norwegian Deeps in the north-eastern portion where depths
can be up to 700 m.Much of the remainder of the ecosystem is rela-
tively shallow with large estuarine areas. The habitats here are
largely dominated by sand, mud and some harder grounds
around the Orkney and Shetland islands.
Proc.R.Soc.B
290:20222273
(b) Data handling and analysis
Each latitudinal band produced a 30-year time series. We
employed sample-based rarefaction to reduce bias due to sampling
effort [8,24] (for further details on the process, see electronic sup-
plementary materials). To do this, we resampled the data based
on the minimum number of samples where a sample consisted
of all trawl information for a single year within a single latitudinal
band. We also filtered records to ensure that no crustaceans or
other non-finfish were included in our final dataset. This process
left us with 116 species in the west coast pool and 121 species in
the east coast pool.

We first computed numerical abundance (N) and species
richness (S) at each time stepwithin each latitudinal band to under-
stand how assemblage size is changing. To quantify temporal
change in the metrics, we fitted an ordinary least squares (OLS)
linear regression model [37]. We also computed the median absol-
ute deviation (MAD), using the mad function from the stats
package in base R [38], to examine the variation in trends within
each system.

Next, we assembled information on the fish diversity of each of
these latitudinal bands at each time step. To calculate taxonomic
rarity, we used the ‘funrar’ package in R [39]. The taxonomic
rarity of a species within an assemblage is measured by using
the inverse of relative abundance. Very rare species have a value
close to 1 while common/abundant species will approach 0 (for
equation, see electronic supplementary materials). This score is
assigned to each species, and therefore, to produce an assemblage
level measure, we used the mean score for the species present in a
given year. We also calculated Simpson’s evenness (taxonomic
evenness) [8] and species richness (S) in each case.

To compute functional rarity,we selected 11 traits, both continu-
ous and categorical, reflecting the ecological roles of the species.
Traits were sourced using the most recent release of FishBase [40]
(for further details on trait choice, see electronic supplementary
material, table S1 and trait choice). To understand better the
shape of these trait distributions we examined the kurtosis and
skewness of the continuous traits (see electronic supplementary
material, table S3). This was done using the moments [41] package
in R. We then generated the multidimensional functional space,
based on Gower distance, occupied by each assemblage using the
R function (quality_funct_space()) developed by Maire et al. [42].
Functional rarity as used here is weighted by abundance and corre-
sponds to the mean pairwise distance between species within the
assemblage (see electronic supplementary material, figure S1 for a
pictorial representation). For any species, distance is measured
between it and all others in the assemblage, with its functional
rarity computed as the mean of these distances (see electronic
supplementary materials for equation). As with taxonomic rarity,
functional rarity ranges between 0 and 1,with rarer species tending
towards 1 and more common species tending towards 0 (for
equation see electronic supplementary materials). Additionally, as
with taxonomic rarity, this is a species-levelmetric andwe therefore
used the mean rarity values of those species present at each time
step within an assemblage [23,43].

Given the potential importance of the distribution of trait
values in shaping the response of functional rarity to shifts in
assemblage size [28,29], we also calculated the functional evenness
of the trait distribution, and the skewness and kurtosis (calculated
using the moments package in R [41]) of the species-level func-
tional rarity values within each latitudinal band at each time
step. Finally, to understand whether functionally rare species
recruited to these assemblages are also taxonomically rare, we
re-computed the functional rarity metric with no abundance
weighting (figure 4g,h).

(c) Null model
Separate null models (see electronic supplementary material,
figure S3) were constructed for the two coastal assemblages.
First, a subset of species (58 for the west coast and 55 for the
east—these are the typical maximum numbers observed in a lati-
tudinal band) was selected at random from the overall species
pool of a given coastal system. A data frame of trait values for
these species was created. Next, we re-assigned trait values to
each species in this null gamma assemblage by independently
randomizing the vector of each trait in the data frame. This shuf-
fling broke any inherent correlation between traits and produced
a null gamma assemblage in which each of the species had a ran-
domly allocated set of trait values. Species retained their relative
numerical abundance, as expressed in the original dataset. Fol-
lowing this, n = 100 individuals were sampled, at random, from
the null gamma assemblage. The same assemblage properties
as before, namely total number of species (S), mean functional
rarity, skewness and kurtosis of functional rarity, functional
evenness, mean taxonomic rarity and Simpson’s evenness, were
computed after each draw. Next, the value of n was increased
in progressive steps (this step was a proportion of the total n in
the chosen assemblage and ranged between 50 and 2000), with
assemblage properties again computed at each step, until maxi-
mum n in the subset is reached. The trait array was then re-
shuffled before the whole model was re-run. This was repeated
1000 times, with the mean and standard error (95%) of each
assemblage property computed on each run. In all cases, we con-
structed a S(N) rarefaction plot as a check that the null model
was behaving as expected (see electronic supplementary
material, figure S4). The whole procedure was then repeated
five times, starting with a new draw of either 55 or 58 species
from the regional assemblage.

The final output of themodel produced a data frame ofmetrics
at each value of N. We used this to visualize the relationship
between metrics in the null. The model performed consistently
using a range of initial sample pools (see electronic supplementary
material, figure S5), thus providing evidence of the robustness of
our results.
3. Results
Our analyses revealed that both coastal systems increased in
assemblage size (S and N) over the duration of the time series
(figure 2). In addition, we observed greater variability in
trends in the east coast than the west for all metrics apart
from evenness. Results of the MAD were as follows. West
coast: S = 0.185 andN= 1863. East coast: S = 0.206 andN= 3375.

Our null model showed, as expected, that as the number
of individuals in an assemblage increases, so too does the
number of species, but in line with expectation on a saturat-
ing curve (see electronic supplementary material, figure S4).
As assemblage size increases, taxonomic rarity is expected
to increase, and evenness to decline, and this is what we
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found (figure 3a–d). On the east coast levels of taxonomic
rarity and evenness were aligned with the null while west
coast assemblages had greater taxonomic rarity and less
evenness than expected.

In addition, the null model predicted that functional rarity
should decline as assemblages grow in size, and as taxonomic
rarity increases (figure 3e–h). However, in neither the west
coast system nor the east coast system (figure 3) did the
observed data show these trends. In both systems, functional
rarity showed a weak increase in response to both richness
and taxonomic rarity and occurred at lower levels than pre-
dicted (figure 3e–h). The same patterns were evident when
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the null model was re-run with different gamma assemblages
indicating that the results are robust against variation in
initial composition (see electronic supplementary material,
figure S5).

In both west and east systems, values for the skewness of
the observed distributions of functional rarity (figure 4a,b),
plotted in relation to S, were nested within the null, with
average trends close to zero in both cases. There was also
overlap between observed and null levels of functional even-
ness (figure 4e,f ) and in the kurtosis of functional rarity
(figure 4c,d). However, in this latter case the distributions of
observed functional rarity were moderately leptokurtic
(median overall kurtosis: west null = 2.08, observed = 3.5;
east null = 2.12, observed = 3.45; see electronic supplementary
material, figure S6). Finally, when functional rarity was re-
computed ignoring both the species abundance and TADs,
the trends in both observed and null were closely matched
(figure 4g,h).
4. Discussion
Assemblages on both coasts are increasing in richness and in
numerical abundance. These shifts in assemblage size should
lead to increases in taxonomic rarity and decreases in (taxo-
nomic) evenness, and this is what we found. This indicates
that the directionality of changes in these taxonomic proper-
ties of these species’ abundance distributions is consistent
with our expectation based on a random draw from the
gamma assemblage, albeit with some differences in the mag-
nitude of the response between coasts. All other things being
equal, as the null shows, we also expected this observed
increase in assemblage size to lead to a decrease in functional
rarity [29]. However, we found the opposite with both sys-
tems exhibiting a weak positive increase in functional rarity,
as they gained more species. Moreover, and in further dis-
agreement with the null, observed functional rarity was
broadly maintained as taxonomic rarity increased.

A species’ functional rarity value is dependent not only on
its own trait combination and abundance but also on the trait
combinations and abundance of all other fish in the assemblage
[23,39,44]. The shape of this TAD, for example, its degree of
skewness and kurtosis, will determine not just the level of func-
tional rarity, but also shed light on the processes involved in
community assembly [28,29]. Our analysis, which took account
of the TAD as well as the SAD, detected no disagreement
between the observed and null for trends in relation to
increases in assemblage size for either functional evenness or
the skewness of the functional rarity distribution. On the
other hand, distributions of observed functional rarity tended
towards leptokurtosis which could help explain why our
observed values of functional rarity are lower than the null
expectation (figure 3e,f). This interpretation is supported by
the analysis of functional rarity in which both SAD and TAD
were ignored (figure 4g,h). Here we uncovered a decline in
functional rarity in larger assemblages, as predicted by our
initial null. We therefore conclude that the functionally
rare species that are entering these local assemblages are less
abundant than is predicted from a random draw from the
gamma assemblage.

A striking feature of our results is that the observed
relationships between functional rarity and richness, and
between functional rarity and taxonomic rarity were gener-
ally weak with relatively little trend in the metric in
response to shifts in assemblage properties. Functional even-
ness also changed little with assemblage size, particularly in
the east coast system (figure 4f ). Taken together these find-
ings suggest that the functional properties of these marine
fish assemblages are conserved as assemblage size changes.
Working with within-trait variation, Gross et al. [28] reported
more even abundance distributions of trait values within
dryland plant assemblages than would be expected by
chance. Such patterns help maximize local multifunctionality
[19,28,29]. In our case, we did not find any marked discre-
pancy between null and observed functional evenness, but
we computed functional evenness across eleven traits rather
than within a single trait. It would be interesting examine
the TAD at the individual as well as the species level,
but we were unable to do this due the unavailability of
intraspecific trait information.

Our analysis also uncovered interesting differences
between the two systems. For example, we observed higher
levels of taxonomic rarity relative to the null expectation
(figure 3a,b), as well as reduced evenness, for given levels of
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richness, in the west coast system (figure 3c) as opposed to the
east coast system (figure 3d). Since increased taxonomic rarity
can be associated with habitat complexity [45–47], this result
could reflect the increased structural heterogeneity of the
west coast, as well as contrasts in warming trends, and/or
recovery from historical fishing pressures [33,48]. Historically,
the east coast system (North Sea region) has been more heavily
exploited than thewest coast system (Celtic Sea area), but, since
the beginning of this time series in 1985, fishing pressure has
been largely similar in both areas (see electronic supple-
mentary material, figure S7). The differences in taxonomic
diversity could also be linked to the increased variability in
trends on the west coast (figure 2). Nonetheless, the observed
relationship between functional rarity and richness, and the
level of functional rarity, were similar in the two coastal sys-
tems suggesting that environmental filtering and niche
differentiation could be important in shaping the distribution
of traits in both cases [29].

To date, investigations of temporal change in marine eco-
systems have focused on single populations [49,50]. However,
it is becoming clear that multi-species, assemblage-based ana-
lyses [51,52], which include information on functional and
taxonomic diversity, and potentially also phylogenetic diver-
sity, will be important in tracking biodiversity change in these
systems, predicting their resilience in the face of anthropo-
genic pressures [53], and in shaping conservation decisions
and designing fisheries policy [54–56]. As our investigation
has shown, different dimensions of biodiversity change
are not necessarily correlated. Understanding how this
complexity arises, and what its consequences are for the
maintenance of ecosystem function, is a substantial future
challenge. Null models, as employed here, represent a power-
ful means of elucidating the processes that underpin
assemblage restructuring [56]. For example, it would be
interesting to use a null model approach to examine the inter-
actions between environmental filtering and shifts in
assemblage size, particularly when the latter is a response
to an increase in carrying capacity linked to climate change.
Unravelling the mechanistic links between trends in
functional and taxonomic diversity will also be important,
in, for instance, discovering the extent to which functional
rarity is linked to whether a species is a winner or loser
during biodiversity change [33,57].

In conclusion, analyses of the two coastal systems
revealed that trends in taxonomic rarity are an inadequate
proxy for trends in functional rarity, and that the ongoing
increases in assemblage size can have complex, and con-
text-dependent, consequences for assemblage biodiversity.
A clearer understanding of the potential drivers of change
in functional rarity can assist with more targeted conserva-
tion plans and fisheries management, and it is already clear
that shifts in community rarity have implications for ecosys-
tem resilience [17,20,58,59]. Our study highlights the
importance of taking an integrative and multidimensional
approach to protect, maintain and sustain the functional
integrity of marine fish assemblages [60–62].
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