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Abstract

A universal algebra A with underlying set A is said to be a matroid algebra if (A, 〈·〉),
where 〈·〉 denotes the operator subalgebra generated by, is a matroid. A matroid algebra
is said to be an independence algebra if every mapping α : X → A defined on a minimal
generating X of A can be extended to an endomorphism of A. These algebras are particularly
well-behaved generalizations of vector spaces, and hence they naturally appear in several
branches of mathematics, such as model theory, group theory, and semigroup theory.

It is well known that matroid algebras have a well-defined notion of dimension. Let A
be any independence algebra of finite dimension n, with at least two elements. Denote by
End(A) the monoid of endomorphisms of A. In the 1970s, G lazek proposed the problem of
extending the matrix theory for vector spaces to a class of universal algebras which included
independence algebras. In this paper, we answer that problem by developing a theory of
matrices for (almost all) finite-dimensional independence algebras.

In the process of solving this, we explain the relation between the classification of inde-
pendence algebras obtained by Urbanik in the 1960s, and the classification of finite indepen-
dence algebras up to endomorphism-equivalence obtained by Cameron and Szabó in 2000.
(This answers another question by experts on independence algebras.) We also extend the
classification of Cameron and Szabó to all independence algebras.

The paper closes with a number of questions for experts on matrix theory, groups, semi-
groups, universal algebra, set theory or model theory.

2010 Mathematics Subject Classification. 08A35, 20M20.

1 Introduction

Let A be a non-empty set. For any integer k ≥ 0, a k-ary operation on A is a function f : Ak → A,
where A0 = {∅} [12, p. 3]. The number k is called the arity of f . A 0-ary operation on A is
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called a nullary operation. As is customary, we will identify a nullary operation f(∅) = c with
c ∈ A. An operation on A is a function that is a k-ary operation on A for some k ≥ 0.

A universal algebra is a pair A = 〈A;F 〉, where A is a non-empty set (called the universe)
and F is a set of operations on A (called the fundamental operations) [28, p. 8].

A subalgebra of a universal algebra A = 〈A;F 〉 is any pair 〈B;G〉 such that B is a non-empty
subset of A that is closed under all operations in F , and G consists of all operations g on B for
which there exists f ∈ F such that g = f �Bk , where f is k-ary.

An endomorphism of A is a function α : A → A preserving all fundamental operations
of A, that is, for all k ≥ 1, if f is a k-ary fundamental operation and a1, . . . , ak ∈ A, then
α(f(a1, . . . , ak)) = f(α(a1), . . . , α(ak)); and if f(∅) = c is a nullary operation in F , then α(c) = c.
An automorphism of A is a bijective endomorphism. The set End(A) of all endomorphisms
of A is a monoid under composition of functions. This monoid has the group Aut(A) of all
automorphisms of A as its group of units.

For every k ≥ 1 and 1 ≤ i ≤ k, we will denote by pki the k-ary projection on the ith
coordinate, that is, pki (x1, . . . , xk) = xi. The clone of A is the smallest set of operations on
A that contains all fundamental operations of A, all projection operations, and is closed under
generalized composition of operations [12, p. 79]. We will denote the clone of A = 〈A;F 〉 by
Fcl. (We remark that there is an alternative definition which restricts the elements of a clone
to non-nullary operations. In that context, our notion of a clone would be called the extended
clone.)

We say that universal algebras A1 = 〈A;F1〉 and A2 = 〈A;F2〉 are clone equivalent if (F1)cl =
(F2)cl [28, p. 45]. It is straightforward to check that clone equivalent algebras A1 and A2 have
the same endomorphisms. In addition, A1 has a subalgebra with universe B if and only if A2

does, and their subalgebras on the same universe are clone-equivalent. Moreover, if A1 or A2 has
a basis, then both algebras have the same bases, and if A1 or A2 admits the notion of dimension,
then both algebras have the same dimension. (The definition of these notions is given below.)
In fact, as pointed out in [12, p. 82], in most contexts one can work interchangeably with two
algebras that are clone equivalent. Following Marczewki and others [32,34,41] who studied these
notions in the 1960s, we will consider clone equivalent algebras to be identical.

Let V be a finite-dimensional vector space over a field K, with dim(V ) = n ≥ 1. It is well
known that for each fixed ordered basis (e1, . . . , en) for V , there exists an isomorphism between
the monoid End(V ) of endomorphisms (linear operators) of V and the monoid Mn(K) of n× n
matrices over K with matrix multiplication. In 1979, G lazek introduced a class of universal
algebras much larger than the class of vector spaces, and suggested that the theory of matrices
for vector spaces be extended to a theory of matrices for that class [25, Problem 4.6].

Here we develop a theory of matrices for the class of finite-dimensional independence algebras.
These algebras, which include vector spaces and are included in the class considered in [25], are
especially well suited for this type of consideration.

Our theory of matrices is built on a secondary “set of coefficients”, corresponding to the
underlying field of a vector space. We make this set we constructed partial binary operations
+ and ·, i.e. these operations are not necessarily defined for all pairs of elements. Given an
independence algebra and a basis, we identify elements of A with vectors over the coefficients,
and endomorphisms of A with matrices over the coefficients. With this identification, the action of
endomorphisms and their composition correspond to natural analogues of matrix multiplication.

Let A = 〈A;F 〉 be a universal algebra. For a non-empty subset X of A, we denote by 〈X〉 the
smallest (with respect to inclusion) subset of A such that X ⊆ 〈X〉 and 〈X〉 is the universe of a
subalgebra of A. Let Con be the set of nullary operations in F . As in [28, p. 35], we extend the
notation 〈X〉 to the empty set: 〈∅〉 = 〈Con〉 if Con 6= ∅, and 〈∅〉 = ∅ if Con = ∅. If X ⊆ A, we
call 〈X〉 the closure of X. The mapping 〈·〉 : 2A → 2A;X 7→ 〈X〉 is called the closure operator.

Let X be a (possibly empty) subset of A. We say that X is a generating set for A if 〈X〉 = A;
and that X is independent if for all x ∈ X, x 6∈ 〈X \ {x}〉. An independent generating set for A
is called a basis for A.
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We say that A is a matroid algebra if it satisfies the exchange property : for all X ⊆ A and
x, y ∈ A,

x ∈ 〈X ∪ {y}〉 and x 6∈ 〈X〉 =⇒ y ∈ 〈X ∪ {x}〉 . (1.1)

By standard arguments in matroid theory, we know that every finitely generated matroid algebra
A has a basis, and all bases for A have the same cardinality. The dimension of a matroid algebra
is the cardinality of one (and hence all) of its bases (for details see [26]).

Definition 1.1. A universal algebra A is called an independence algebra if

1. A satisfies the exchange property (1.1), and

2. A satisfies the extension property, that is, for any basis X of A, if α : X → A, then there
is an endomorphism α of A such that α|X = α.

Examples of independence algebras are vector spaces, affine spaces (as defined below), sets,
and free G-sets.

The class of independence algebras was introduced by Gould in 1995 [26]. Her motivation
was to understand the properties shared by vector spaces and sets that result in similarities in
the structure of their monoids of endomorphisms. As pointed out by Gould, this notion goes
back to the 1960s, when the class of v∗-algebras was introduced by Narkiewicz [34]. (The “v” in
v∗-algebras stands for “vector” since v∗-algebras were primarily seen as generalizations of vector
spaces.) In fact, v∗-algebras can be defined as matroid algebras with the extension property [35],
just like independence algebras. Since Gould’s paper [26], v∗-algebras have been regarded as
precisely the same as independence algebras. This is not quite so, as we now explain.

Following Marczewski [31, 32], who introduced the notion of independence in universal alge-
bras, Narkiewicz [34,35] and Urbanik [39–41], who studied v∗-algebras, did not consider nullary
operations in their definition of a universal algebra. Consequently, they defined the closure op-
erator, which they denoted by [·], slightly differently. Let A = 〈A;F 〉 be a universal algebra
without nullary operations. If X ⊆ A is not empty, then [X] is the same as 〈X〉. Let Con∗ be the
set of the images of all unary constant operations contained in the clone Fcl. Then [∅] = 〈Con∗〉
if Con∗ 6= ∅, and [∅] = ∅ if Con∗ = ∅.

The effect of this difference in the definition of a universal algebra is that v∗-algebras and
independence algebras are not precisely the same:

1. an independence algebra A = 〈A;F 〉 is not a v∗-algebra if and only if F contains at least
one nullary operation;

2. a v∗-algebra A = 〈A;F 〉 is not an independence algebra if and only if |A| ≥ 2 and the clone
Fcl of A contains at least one unary constant operation.

However, v∗-algebras and independence algebras are essentially the same, in the following sense.
Define a mapping Ψ from the class of non-trivial (|A| ≥ 2) v∗-algebras to the class of non-trivial
independence algebras by: if A = 〈A;F 〉 is any non-trivial v∗-algebra, then Ψ(A) = 〈A;F ′〉,
where F ′ is obtained from F by adding all nullary operations gf (∅) = a whenever there exists a
constant unary operation f(x) = a in the clone Fcl. It is straightforward to check that Ψ(A) is
indeed an independence algebra and that Ψ is onto (up to clone equivalence).

We now list some basic properties of the operator Ψ; a proof of these assertions is in the
appendix. Let A = 〈A;F 〉, A1, and A2 be any non-trivial v∗-algebras, and let Ψ(A) = 〈A;F ′〉.

(a) except for the nullary operations in F ′cl, the clones Fcl and F ′cl are identical;

(b) if A1 and A2 are clone equivalent, then Ψ(A1) and Ψ(A2) are also clone equivalent;

(c) Ψ is a one-to-one correspondence (if clone equivalent algebras are regarded as identical);

(d) for every X ⊆ A:
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(i) [X] in A is equal to 〈X〉 in Ψ(A),

(ii) X is independent in A if and only if X is independent in Ψ(A),

(iii) X is a basis for A if and only if X is a basis for Ψ(A);

(e) dim(A) = dim(Ψ(A)) and End(A) = End(Ψ(A)).

Given (a)–(e), we will identify non-trivial v∗-algebras with non-trivial independence algebras,
via the mapping Ψ. That is, we will call any non-trivial v∗-algebra A an independence algebra,
which will mean that we replace A with Ψ(A). Explicitly, for each constant unary clone function
of A we add the corresponding nullary function as a fundamental operation.

The mapping Ψ is not a one-to-one correspondence when applied to the trivial v∗-algebras.
Indeed, we have up to clone equivalence only one such v∗-algebra: 〈{a}, {p11}〉. On the other
hand, we have two non-equivalent trivial independence algebras: 〈{a}, {p11}〉, and 〈{a}, {g}〉,
where g(∅) = a, whose clones differ by the presence of the nullary function g.

Independence algebras have a structure rich enough to allow classification theorems. A com-
plete classification of independence algebras (v∗-algebras) was obtained by Urbanik [39–41] in
the 1960s. Urbanik described six classes of independence algebras and proved that every in-
dependence algebra falls into one of these classes (up to clone equivalence). However, for our
matrix theory of independence algebras, we do not need the actual operations in the algebra; the
matrix theory depends only on the endomorphism monoid. So a weaker notion of equivalence is
appropriate.

Definition 1.2. Universal algebras A1 = 〈A1, F1〉 and A2 = 〈A2, F2〉 are called E-equivalent if
there exists a bijection θ : A1 → A2 such that the mapping α 7→ θ ◦ α ◦ θ−1 is an isomorphism
from End(A1) to End(A2).

(Here “E” stands for “endomorphism.”) We note that if A1 and A2 are E-equivalent independence
algebras, then θ maps the universe of any subalgebra of A1 to the universe of some subalgebra
of A2, and θ−1 maps the universe of any subalgebra of A2 to the universe of some subalgebra of
A1.

Our definition of E-equivalence is not strictly a weakening of clone equivalence, as it also
applies to algebras on different universes. We now define a corresponding extension of clone
equivalence.

Definition 1.3. Let A1 = 〈A1, F1〉 and A2 = 〈A2, F2〉 be universal algebras. We say that a
bijection τ : A1 → A2 is a clone isomorphism from A1 to A2 if {fτ : f ∈ (F1)cl} = (F2)cl, where
for every k-ary operation f ∈ (F1)cl, fτ is a k-ary operation on A2 defined by

fτ (τ(x1), . . . , τ(xk)) = τ(f(x1, . . . , xk))

for all x1, . . . , xk ∈ A1 (if k ≥ 1), and fτ (∅) = τ(f(∅)) (if k = 0). We say that algebras A1 and
A2 are clone isomorphic, written A1

∼= A2, if there is a clone isomorphism from A1 to A2.

Clearly clone equivalent algebras are clone isomorphic. We remark that the converse, in cases
where both concepts are well-defined, is not true. In addition, τ is a clone isomorphism if and
only if fτ ∈ (F2)cl, gτ−1 ∈ (F1)cl for all f ∈ F1, g ∈ F2.

In 2000, Cameron and Szabó [14] described four classes of independence algebras and proved
that every finite independence algebra is E-equivalent to an independence algebra from one of
these classes. We determine the relation between Urbanik’s six classes and Cameron and Szabó’s
four classes (Section 2). In particular, we find that every independence algebra from any of
Urbanik’s classes is E-equivalent to an algebra from one of Cameron and Szabó’s four classes.
Then, for each of the four classes, we will develop a theory of matrices for the finite-dimensional
independence algebras from that class.

To summarize, the contributions of this paper are as follows.
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1. We clarify the relation between the six classes introduced by Urbanik [39–41], which pro-
vide a complete classification of independence algebras, and the four classes introduced by
Cameron and Szabó [14], which provide a classification of finite independence algebras up
to E-equivalence, thus answering an old question by experts on independence algebras.

2. We extend Cameron and Szabó’s theorem and prove that not just every finite, but an
arbitrary independence algebra is E-equivalent to an algebra from one of the four classes
defined in [14].

3. For three of the four classes introduced by Cameron and Szabó (and partially for the fourth
class), we develop a theory of matrices for the finite-dimensional independence algebras from
that class, thus solving a problem proposed by G lazek [25].

As we have already discussed, under the name of v∗-algebras, independence algebras were
introduced and studied by Polish mathematicians in the 1960s. By the end of the 1970s, G lazek
wrote a survey paper on these and related algebras, including a bibliography of more than 800
items [25] (see also [9,10] and the references therein). A little over ten years later, independence
algebras naturally appeared in semigroup theory. (For a survey, see [5]; see also [1–3,8,14,16,17]
for some results on independence algebras and semigroups.)

Between the 1960s (when v∗-algebras were introduced in universal algebra) and the 1990s
(when they were rediscovered as independence algebras in semigroup theory), these algebras
played an important role in model theory. Givant in the U.S. [18–24] and Palyutin in Russia [36],
independently solved an important classification problem in model theory, and their solution
involved independence algebras. (For a detailed account of the importance of independence
algebras for model theory, see [4] and Point’s enlightening and beautiful AMS Math Review
(MR2863435) of this paper.)

By the time G lazek was writing his survey [25], independence algebras appeared again, now
in the context of group theory. This was begun by Deza in the 1970s, who defined what he called
a permutation geometry ; this was the analogue, in the meet-semilattice of partial permutations,
of a matroid or combinatorial geometry in the lattice of subsets of a set (thinking of a matroid
as defined by its lattice of flats). These considerations led to the paper [13], which makes Deza
yet another independent founder of independence algebras. Deza called a group that generates a
permutation geometry (by taking intersections of elements in the semilattice of partial permuta-
tions) a geometric group. Although this is not a very good name (there are many reasons why a
group is “geometric”), the name has continued to be used, and this led to Maund’s complete de-
termination of finite geometric groups in her thesis in 1987 [33]; this result was used by Cameron
and Szabó in their classification.

The paper is organized as follows. In § 2 we clarify the relation between the classifications of
Urbanik [39–41] and of Cameron and Szabó [14] (see (a)–(d) after Definition 2.1). As a conse-
quence, we obtain the extension of the latter classification from finite to arbitrary independence
algebras (Theorem 2.10). In § 3 we explain what we require of a matrix theory for a given class
of independence algebras. In the remaining sections, for each of the four classes of independence
algebras, we construct a theory of matrices for that class. We conclude the paper with some
open problems.

Throughout this paper, we will assume that every universal algebra considered is not trivial,
that is, its universe has at least two elements.

2 Classifications

In this section, we compare Urbanik’s classification of all independence algebras [39–41] and
Cameron and Szabó’s classification of finite independence algebras up to E-equivalence [14]. We
also show, using Urbanik’s classification, that Cameron and Szabó’s classification extends to all
independence algebras.
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Urbanik [39–41] defined six classes of independence algebras: group action, monoid, excep-
tional, quasi-field, linear, and affine algebras. He proved that every independence algebra belongs
to one of these classes (up to clone equivalence).

Cameron and Szabó [14] defined four classes of independence algebras: group action, sharply
2-transitive group, linear, and affine algebras. They proved that every finite independence algebra
is E-equivalent to an algebra from one of these classes. They further showed that the subalgebra
lattice of any independence algebra, not necessarily finite, is isomorphic to that of an algebra in
one of these classes.

To compare these classifications, we introduce the following definition.

Definition 2.1. Let C1 and C2 be classes of universal algebras. We say that C1 is equal to C2
up to clone isomorphism if every algebra in Ci is clone isomorphic to some algebra in Cj , i, j ∈
{1, 2}, i 6= j.

We say that C1 is included up to E-equivalence in C2 if every algebra in C1 is E-equivalent to
some algebra in C2.

We will show that for non-trivial universal algebras:

(a) up to clone isomorphism, the class of group action algebras of Urbanik is equal to the class
of group action algebras of Cameron and Szabó;

(b) up to E-equivalence, the classes of monoid and exceptional algebras of Urbanik are included
in the class of group action algebras;

(c) the class of sharply 2-transitive group algebras of Cameron and Szabó is included in the
class of quasi-field algebras of Urbanik, and the reverse inclusion holds up to E-equivalence.

(d) the classes of linear and affine algebras of Urbanik are equal (up to clone equivalence),
respectively, to the classes of linear and affine algebras of Cameron and Szabó.

Group action algebras (Urbanik)

Suppose that G is a group of permutations (acting on the left) of a set A, and that A0 is a subset
of A such that: (a) all fixed points of any non-identity g ∈ G are in A0, and (b) for every g ∈ G,
g(A0) ⊆ A0.

Urbanik [41] defined a group action algebra, denoted by Ag(A,A0, G), as a v∗-algebra with
the universe A and the k-ary operations f(x1, . . . , xk) = g(xj) (k ≥ 1, 1 ≤ j ≤ k, g ∈ G),
and f(x1, . . . , xk) = c (k ≥ 1,c ∈ A0). It is easy to see that these operations form the entire
clone of A(A,A0, G), and that the clone is generated by the set of unary operations of the forms
f(x) = g(x) and f(x) = c. Therefore under the correspondence Ψ described in § 1, and up to
clone equivalence, we may replace A(A,A0, G) with 〈A;F 〉, where F consists of the following
unary and nullary operations on A:

fg(x) = g(x) and fc(∅) = c, (2.1)

where g ∈ G, x ∈ A, and c ∈ A0.
Let A1 = A \ A0. Since g(A0) ⊆ A0 for every g ∈ G, we have g(A0) = A0 and g(A1) = A1

for every g ∈ G. Moreover, for all g, h ∈ G, if g(x) = h(x) for some x ∈ A1, then g−1h(x) = x
and so g = h (since all fixed points of the non-identity elements of G are in A0). Therefore G
acts semiregularly on A1, that is, it acts faithfully on each orbit. The orbits of the elements of
A1 form a partition of A1. Fix a transversal (cross-section) X of this partition. The next lemma
follows immediately from the semiregularity of the action of G on A1.

Lemma 2.2. For each z ∈ A1, there exist a unique kz ∈ G and a unique xz ∈ X such that
z = kz(xz).
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Group action algebras (Cameron and Szabó)

Let G be a group, C a left G-space (so G acts on C by (g, c) 7→ gc), and X a set such that X,
G, C, and X ×G are pairwise disjoint, and A = (X ×G) ∪ C has at least two elements.

Cameron and Szabó [14] defined a group action algebra, denoted by A(G,C,X), as a universal
algebra 〈A;F 〉, where F consists of the following unary and nullary operations:

λg((x, h)) = (x, gh), λg(c) = gc, and νc(∅) = c, (2.2)

where g ∈ G, (x, h) ∈ X ×G, and c ∈ C.

Both classes consist of independence algebras. We will now prove that these two classes are
equal up to clone isomorphism.

Proposition 2.3. Up to clone isomorphism, the class of group action algebras of Urbanik is
equal to the class of group action algebras of Cameron and Szabó.

Proof. Let A(A,A0, G) be a group action algebra of Urbanik. As above, we may identify
A(A,A0, G) with 〈A,F1〉, where F1 = {fg : g ∈ G}∪{fc : c ∈ A0} (see (2.1)). Let A1 = A\A0 and
as above, fix a transversal X of the orbits of A1. Consider the group action algebra A(G,C,X)
of Cameron and Szabó, where C = A0 and G acts on C by gc = g(c), where g ∈ G and c ∈ C.
Then A(G,C,X) = 〈(X ×G) ∪ C;F2〉, where F2 = {λg : g ∈ G} ∪ {νc : c ∈ C} (see (2.2)).

We will prove that A(A,A0, G) and A(G,C,X) are clone isomorphic. For every z ∈ A1, there
are unique xz ∈ X and kz ∈ G such that z = kz(xz) by Lemma 2.2. Define τ : A→ (X ×G)∪C
by: τ(z) = (xz, kz) if z ∈ A1, and τ(c) = c if c ∈ A0. Then τ is a bijection since it has inverse
τ−1 defined by: τ−1((x, g)) = g(x) if (x, g) ∈ X × G, and τ−1(c) = c if c ∈ C. Then, for every
fc ∈ F1, where c ∈ A0, (fc)τ (∅) = τ(fc(∅)) = τ(c) = c = νc(∅). Thus (fc)τ = νc for every c ∈ A0.

Let fg ∈ F1, where g ∈ G. Then, for every c ∈ A0, (fg)τ (τ(c)) = τ(fg(c)) = τ(g(c)) = g(c) =
gc = λg(c) = λg(τ(c)). Let w ∈ A \ A0. Then (fg)τ (τ(w)) = τ(fg(w)) = τ(g(w)) = (xz, kz),
where z = g(w) and kz(xz) = z. On the other hand, λg(τ(w)) = λg((xw, kw)) = (xw, gkw),
where kw(xw) = w. Since z = g(w), the elements z and w lie in the same orbit, and so xz = xw.
Thus (gkw)(xz) = g(kw(xw)) = g(w) = z = kz(xz), and so gkw = kz, as G acts semi-regularly.
Hence (fg)τ (τ(w)) = τ(fg(w)) = (xz, kz) = (xw, gkw) = λg(τ(w)). Thus (fg)τ = λk for every
g ∈ G. Therefore, τ is a clone isomorphism, and so A(A,A0, G) ∼= A(G,C,X).

We have proved that every group action algebra of Urbanik is clone isomorphic to some group
action algebra of Cameron and Szabó. Conversely, let A(G,C,X) be a group action algebra of
Cameron and Szabó. In case that X = ∅, we may assume that G acts faithfully on C by replacing
it with the permutation group it induces on C. This change results in the same group action
algebra and ensures that G as constructed below will be a group of permutations. Let A0 = C,
A1 = X×G and A = (X×G)∪C. View G as a group of permutations of A: for g ∈ G and z ∈ A,
g(z) = (x, gh) if z = (x, h) ∈ X × G, and g(z) = gc if z = c ∈ C. Consider the group algebra
A(A,A0, G) of Urbanik, and note that X × {1}, where 1 is the identity of G, is a transversal of
the partition of A1 into orbits. Since we can identify X with X × {1} in A(G,C,X), it follows
from the first part of the proof that A(G,C,X) is clone isomorphic to A(A,A0, G). Hence, every
group action algebra of Cameron and Szabó is clone isomorphic to some group action algebra of
Urbanik, and so the two classes are equal up to clone isomorphism.

The next two classes in Urbanik’s classification—the monoid algebras and the exceptional
algebra—are included in the class of group action algebras up to E-equivalence.

Monoid algebras (Urbanik)

Suppose that A is a monoid such that every non-unit element of A is a left zero. Urbanik defined
a monoid algebra as a v∗-algebra A = 〈A;F 〉 such that for every f ∈ F , f is a k-ary operation
(k ≥ 1) that satisfies

f(a1a, . . . , aka) = f(a1, . . . , ak)a, (2.3)
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for all a, a1, . . . , ak ∈ A, and F contains all unary operations that satisfy (2.3). It is easy to see
that the unary operations that satisfy (2.3) are precisely the unary operations f on A defined by
f(x) = bx, where b is an arbitrary fixed element of A.

Proposition 2.4. Up to E-equivalence, the class of monoid algebras is included in the class of
group action algebras.

Proof. Let 〈A;F 〉 be a monoid algebra. Denote by A0 the set of left zeros (non-unit elements)
of the monoid A, and by G the group of units of A. We can view G as a group of permutations
of A by putting g(a) = ga for all g ∈ G and a ∈ A. Since A0 is evidently an ideal of A (that
is, a ∈ A, c ∈ A0 imply ac, ca ∈ A0), it follows that g(A0) ⊆ A0 for every g ∈ G. Consider the
group action algebra A(A,A0, G) (as defined by Urbanik).

We will show that End(〈A;F 〉) = End(A(A,A0, G)). Suppose α ∈ End(〈A;F 〉). Fix b ∈ A
and consider the fundamental operation f(x) = bx in 〈A;F 〉. Then since α preserves f ,

α(bx) = α(f(x)) = f(α(x)) = bα(x), (2.4)

for every x ∈ A. Let fg and fc, where g ∈ G and c ∈ A0, be fundamental operations in A(A,A0, G)
(see (2.1)). Then, by (2.4), α(fg(x)) = α(g(x)) = α(gx) = gα(x) = g(α(x)) = fg(α(x)) for every
x ∈ A. Since c is a left zero, α(c) = α(c1) = cα(1) = c. Thus, α ∈ End(A(A,A0, G)).

Conversely, suppose α ∈ End(A(A,A0, G)). Let x ∈ A. Then, for every g ∈ G, α(gx) =
α(fg(x)) = fg(α(x)) = g(α(x)) = gα(x). Further, for every c ∈ A0, α(cx) = α(c) = cα(x). Thus
α(bx) = bα(x) for every b ∈ A. Let f be a k-ary (k ≥ 1) fundamental operation in 〈A;F 〉. Then,
for all x1, . . . , xk ∈ A,

α(f(x1, . . . , xk)) = α(f(x11, . . . , xk1)) = α(f(x1, . . . , xk)1) = f(x1, . . . , xk)α(1)

= f(x1α(1), . . . , xkα(1)) = f(α(x11), . . . , α(xk1)) = f(α(x1), . . . , α(xk)) .

Thus, α ∈ End(〈A;F 〉). Hence End(〈A;F 〉) = End(A(A,A0, G)), and so every monoid algebra
is E-equivalent to some group action algebra.

Exceptional algebra (Urbanik)

Suppose that A is a set with four elements. Urbanik defined an exceptional algebra as a v∗-algebra
A = 〈A;F 〉 with F = {i, q}, where i is a unary operation on A and q is a ternary operation on
A that satisfy the following conditions:

i(i(x)) = x, i(x) 6= x, q(x1, x2, x3) = q(xσ(1), xσ(2), xσ(3)), q(x, y, i(x)) = y, q(x, y, x) = x, (2.5)

for all x, y, x1, x2, x3 ∈ A and all permutations σ of {1, 2, 3}. Note that i is an involution without
fixed points, and q is symmetrical. One can check that q is uniquely determined by the conditions
listed in (2.5), and that, up to isomorphism, there is only one exceptional algebra.

Proposition 2.5. Up to E-equivalence, the exceptional algebra is included in the class of group
action algebras.

Proof. Let 〈A;F 〉 be the exceptional algebra. Then, by the definition of i, G = {i, 1} is a group of
permutations of A. Consider the group action algebra A(A, ∅, G) (as defined by Urbanik). Since
A0 = ∅, the only fundamental operations in A(A, ∅, G) are f1(x) = x and fi(x) = i(x), where
x ∈ A. We need to show that End(〈A;F 〉) = End(A(A, ∅, G)). We clearly have End(〈A;F 〉) ⊆
End(A(A, ∅, G)) since {fi} ⊆ {i, q} and every function α : A→ A preserves f1.

For the reverse inclusion let α : A→ A preserve i. It suffices to show that it also preserves q,
that is, α(q(x, y, z)) = q(α(x), α(y), α(z)) for all x, y, x ∈ A. This is easy to see if x, y, z are not
pairwise distinct. Otherwise, we may assume that z = i(x), obtaining α(q(x, y, i(x)) = α(y) and
q(α(x), α(y), α(i(x))) = q(α(x), α(y), i(α(x))). This last expression equals α(y), whether or not
α(y) equals one of the other arguments.

Hence End(〈A;F 〉) = End(A(A, ∅, G)), and so the independence algebra is E-equivalent to
some group action algebra.
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Quasi-field algebras (Urbanik)

Let A be a set on which two binary operations are defined: a multiplication (a, b) 7→ ab and
a subtraction (a, b) 7→ a − b. We say that A is a quasi-field [27] if there is 0 ∈ A such that
a0 = 0a = 0 for every a ∈ A, A \ {0} is a group with respect to the multiplication, and for all
a, b, c ∈ A, the following properties are satisfied:

(i) a− 0 = a,

(ii) a(b− c) = ab− ac,

(iii) a− (a− c) = c,

(iv) a− (b− c) = (a− b)− (a− b)(b− a)−1c if a 6= b.

Suppose that A is a quasi-field. Urbanik defined a quasi-field algebra as a v∗-algebra A = 〈A;F 〉
such that for every f ∈ F , f is a k-ary operation with k ≥ 1 such that for all a, b, a1, . . . , ak ∈ A,

f(a− ba1, . . . , a− bak) = a− bf(a1, . . . , ak), (2.6)

and F contains all binary operations that satisfy (2.6).

Sharply 2-transitive group algebras (Cameron and Szabó)

A permutation group G on a set A is sharply 2-transitive if, for all pairs (a1, a2) and (b1, b2) of
A × A with a1 6= a2 and b1 6= b2, there is a unique element of g ∈ G such that g(a1) = b1 and
g(a2) = b2.

Let G be such a permutation group on A. Suppose |A| ≥ 3. Cameron and Szabó defined a
sharply 2-transitive group algebra as an algebra A = 〈A;F 〉, where F is defined as follows. The
group G acts on the set consisting of triples (x, y, z) of A3 such that x, y, z are pairwise distinct.
Let {Oi : i ∈ I} be the set of orbits under this action. Then F = {µi : i ∈ I}, where, for each
i ∈ I, µi is a binary operation on A defined as follows. For all x, y ∈ A, with x 6= y,

µi(x, x) = x;

µi(x, y) = the unique z ∈ A such that (x, y, z) ∈ Oi.

If |A| = 2, then F is defined to be ∅.

Note that in the above definition, z is unique because by sharp-2-transitivity, only the identity
action maps (x, y) to itself.

Both classes are independence algebras of dimension 2 (see [41, p. 243] and [14, p. 325]).
We will first explain the underlying connection between quasi-fields and the sharply 2- tran-

sitive group algebras.
The former were defined by Grätzer as structures with two operations, called subtraction

and multiplication, satisfying six axioms; he showed that the linear substitutions x 7→ a − bx
over a quasi-field form a sharply 2-transitive permutation group, and conversely every sharply
2-transitive permutation group can be represented in this way. It is clear that a 2-sharply
transitive group algebra of Cameron and Szabó also determines, and is determined by, the sharply
2-transitive group. So from the point of view of classifying sharply 2-transitive groups the
approaches are equivalent, but the independence algebras are not necessarily clone-equivalent.

Proposition 2.6. The class of sharply 2-transitive group algebras is included in the class of
quasi-field algebras, up to clone equivalence.

Proof. Let G be a sharply 2-transitive permutation group on a set A, and let A = 〈A;F 〉 be
a sharply 2-transitive group algebra. By [27, Theorem 2], one can define a multiplication and
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subtraction on A such that A is a quasi-field with these operations, and G = {Ta,b : a, b ∈ A, b 6=
0}, where each Ta,b is a permutation of A defined by Ta,b(x) = a− bx for every x ∈ A.

Consider the quasi-field algebra A1 = 〈A,F1〉, where F1 consists of all binary operations that
satisfy (2.6). By [41, p. 243], F1 = {fw : w ∈ A}, where fw(x, y) = x− (x− y)w for all x, y ∈ A.
Note that f0(x, y) = x−(x−y)0 = x and f1(x, y) = x−(x−y)1 = x−(x−y) = y are projections
(which are in the clone of F1), so we may assume that F1 = {fw : w ∈ A, w 6= 0, 1}.

We claim that F = F1, which implies A = A1. If |A| = 2, then F = ∅ = F1. Suppose |A| ≥ 3.
Since each orbit Oi from the definition of a sharply 2-transitive group algebra contains a unique
element (0, 1, w), where w ∈ A\{0, 1}, we can index the orbits by the set I = A\{0, 1} in such a
way that for every w ∈ I, (0, 1, w) ∈ Ow. We now have F = {µw : w ∈ I} and F1 = {fw : w ∈ I}.
Let w ∈ I, that is, w ∈ A and w 6= 0, 1. To finish the proof, it suffices to show that µw = fw. For
every x ∈ A, µw(x, x) = x and fw(x, x) = x− (x− x)w = x− 0w = x− 0 = x. Let x, y ∈ A with
x 6= y. Suppose µw(x, y) = z. Then (x, y, z) ∈ Ow, and so (Ta,b(0), Ta,b(1), Ta,b(w)) = (x, y, z) for
some unique a, b ∈ A with b 6= 0. Thus a = x, a− b = y, and a− bw = z. Hence x− b = y, which
implies b = x−y [27, (1), p. 29]. Therefore, µw(x, y) = z = a−bw = x− (x−y)w = fw(x, y).

The reverse inclusion is true up to E-equivalence.

Proposition 2.7. Up to E-equivalence, the class of quasi-field algebras is included in the class
of sharply 2-transitive group algebras.

Proof. Let A = 〈A;F 〉 be a quasi-field algebra. By [27, Theorem 1], G = {Ta,b : a, b ∈ A, b 6= 0},
where each Ta,b is a permutation of A defined by Ta,b = a − bx, for every x ∈ A, is a sharply
2-transitive permutation group on A. Consider the quasi-field algebra A1 = 〈A;F1〉, where
F1 consists of all binary operations in F . By the proof of Proposition 2.6, A1 is the sharply
2-transitive group algebra defined by G.

We will show that End(A) = End(A1). Since F1 ⊆ F , we have End(A) ⊆ End(A1). Now, let
α ∈ End(A1). Since in any quasi-field algebra, any two distinct elements form a basis [41, p. 43],
{0, 1} is a basis for both A and A1. Define β : {0, 1} → A by β(0) = α(0) and β(1) = α(1). Then
β can be uniquely extended to an endomorphism β of A. Note that β is also an endomorphism
of A1. We now have two endomorphisms of A1, α and β, whose restrictions to the basis {0, 1}
for A1 are the same. It follows that α = β, and so α ∈ End(A).

Hence End(A) = End(A1), and so every quasi-field algebra is E-equivalent to some sharply
2-transitive group algebra.

Linear algebras (Urbanik)

Suppose A is a vector space over a division ring K, and A0 is a subspace of A. Urbanik defined
a linear algebra as a v∗-algebra with the universe A and the operations

f(x1, . . . , xk) =

k∑
i=1

λixi + a, (2.7)

where k ≥ 1, each λi ∈ K, and a ∈ A0. It is easy to see that these operations form the clone of
the set consisting of the binary operation f(x, y) = x+ y, unary operations fλ(x) = λx, for each
λ ∈ K, and unary constant operations fa(x) = a, for each a ∈ A0.

Applying the correspondence Ψ described in Section 1 to the linear algebra with A, A0, and
the operations (2.7) we obtain (up to clone equivalence) the algebra 〈A;F 〉, where F consists of
the following binary, unary, and nullary operations on A:

f(x, y) = x+ y, fλ(x) = λx, and fa(∅) = a , (2.8)

where x, y ∈ A, λ ∈ K, and a ∈ A0.
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Linear algebras (Cameron and Szabó)

Let V be a vector space over a division ring K, and W a subspace of V . Cameron and Szabó
defined a linear algebra, denoted by V [W ], as an algebra with the universe V whose operations
are addition (binary), scalar multiplication (one unary operation for each element of K), and
nullary operations whose values are the elements of W .

Both classes consist of independence algebras. It is clear by (2.8) that both definitions are
identical. Thus we have the following proposition.

Proposition 2.8. The class of linear algebras of Urbanik is equal to the class of linear algebras
of Cameron and Szabó, up to clone equivalence.

Affine algebras (Urbanik)

Suppose A is a vector space over a division ring K, and A0 is a subspace of A. Urbanik defined
an affine algebra A as a v∗-algebra with the universe A and the operations

f(x1, . . . , xk) =

k∑
i=1

λixi + a, (2.9)

where k ≥ 1, each λi ∈ K,
∑k
i=1 λi = 1, and a ∈ A0.

Note that all unary functions in the clone of A have the form f(x) = x+ a. As we excluded
the trivial algebra with |A| = 1, it follows that Φ(A) does not contain any nullary operations.

Affine algebras (Cameron and Szabó)

Let V be a vector space over a division ring K, and W be a subspace of V . Cameron and
Szabó defined an affine algebra, denoted Aff(V )[+W ], as an algebra with the universe V and the
following fundamental operations: the unary operations τw(x) = x + w, for each w ∈ W ; the
binary operations µc(x, y) = x + c(y − x) = (1 − c)x + cy, for each c ∈ K \ {0, 1} (defined only
when |K| ≥ 3); and the ternary operation α(x, y, z) = x+ y + z (defined only when |K| = 2).

We can extend the definition of the binary operations µc(x, y) = (1 − c)x + cy by dropping
the requirement c 6= 0, 1. We then have µ0(x, y) = x and µ1(x, y) = y, which are projections, so
they do not change the algebra because the projections are in the clone by definition of clone.
With this extension, the operations µc(x, y) = (1 − c)x + cy, where c ∈ K, are the same as the
operations µc1,c2(x, y) = c1x1 + c2x2, where c1, c2 ∈ K with c1 + c2 = 1. Moreover, we may add
µ0 to µ2 when |K| = 2 without changing the clone. Therefore, Aff(V )[+W ] can be defined as
the algebra with the universe V and the fundamental operations

τw(x) = x+ w, µc1,c2(x1, x2) = c1x1 + c2x2, and α(x1, x2, x3) = x1 + x2 + x3, (2.10)

where w ∈W , c1, c2 ∈ K with c1 + c2 = 1, and α is defined only when |K| = 2.
Both classes consist of independence algebras.

Proposition 2.9. The class of affine algebras of Urbanik is equal (up to clone equivalence) to
the class of affine algebras of Cameron and Szabó.

Proof. An algebra of each class is defined by a vector space A over a division ring K, and
a subspace A0. Let A1 = 〈A;F1) be an affine algebra of Urbanik, where F1 consists of the
operations defined in (2.9), and A2 = 〈A;F2〉 = Aff(A)[+A0] be an affine algebra of Cameron
and Szabó, where F2 consists of the operations defined in (2.10). We will prove that these algebras
have the same clone.

We have (F2)cl ⊆ (F1)cl since F2 ⊆ F1. For k ≥ 1 and λ1, . . . , λk ∈ K with λ1 + · · ·+ λk = 1,

let fλ1,...,λk
be a k-ary operation on A defined by fλ1,...,λk

(x1, . . . , xk) =
∑k
i=1 λixi. This is an
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operation from (2.9), where a = 0. We will prove, by induction on k, that each such fλ1,...,λk

belongs to (F2)cl.
Let k = 1. Then λ1 = 1, and so fλ1(x) = x = τ0(x) for every x ∈ A. Thus fλ1 = τ0 ∈ F2 ⊆

(F2)cl. If k = 2, then fλ1,λ2 = µλ1,λ2 ∈ F2 ⊆ (F2)cl. (See (2.10).)
Let k ≥ 2 and suppose that fc1,...,cm ∈ (F2)cl for all m, 1 ≤ m ≤ k, and all c1, . . . , cm ∈ A

such that c1 + · · · + cm = 1. Let λ1, . . . , λk+1 ∈ A with λ1 + · · · + λk+1 = 1. We want to prove
that fλ1,...,λk+1

∈ (F2)cl. We consider three cases.

Case 1. λk+1 6= 1.

For each i, 1 ≤ i ≤ k, let ci = (1− λk+1)−1λi. Then

c1 + · · ·+ ck = (1− λk+1)−1(λ1 + · · ·+ λk) = (1− λk+1)−1(1− λk+1) = 1.

By the inductive hypothesis, fc1,...,ck ∈ (F2)cl. Thus the (k+ 1)-ary operation g on A defined by

g(x1, . . . , xk+1) = fc1,...,ck(pk+1
1 (x1, . . . , xk+1), . . . , pk+1

k (x1, . . . , xk+1))

is in (F2)cl. We have g(x1, . . . , xk+1) = fc1,...,ck(x1, . . . , xk) = c1x1 + · · · + ckxk. Further, let
d1 = 1− λk+1 and d2 = λk+1, so d1 + d2 = 1. Then the (k + 1)-ary operation s on A defined by

s(x1, . . . , xk+1) = µd1,d2(g(x1, . . . , xk+1), pk+1
k+1(x1, . . . , xk+1))

is in (F2)cl. We then have

s(x1, . . . , xk+1) = µd1,d2(c1x1 + · · ·+ ckxk, xk+1) = d1c1x1 + · · ·+ d1ckxk + d2xk+1

= (1− λk+1)(1− λk+1)−1λ1x1 + · · ·+ (1− λk+1)(1− λk+1)−1λkxk + λk+1xk+1

= λ1x1 + · · ·+ λkxk + λk+1xk+1

= fλ1,...,λk+1
(x1, . . . , xk+1),

so fλ1,...,λk+1
∈ (F2)cl.

Case 2. λi 6= 1 for some i, 1 ≤ i < k + 1.

By Case 1, the operation fλ1,...,λi−1,λk+1,λi+1,...,λk,λi is in (F2)cl. Thus since pk+1
j (x1, . . . , xk+1) =

xj , where 1 ≤ j ≤ k + 1, the (k + 1)-ary operation h on A defined by

h(x1, . . . , xk+1) = fλ1,...,λi−1,λk+1,λi+1,...,λk,λi
(x1, . . . , xi−1, xk+1, xi+1, . . . , xk, xi)

is in (F2)cl. Its is clear that h = fλ1,...,λk+1
, so fλ1,...,λk+1

∈ (F2)cl.

Case 3. λ1 = . . . = λk+1 = 1.

We claim that if K has characteristic 2, then f1,1,1 ∈ (F2)cl. Suppose that K has character-
istic 2. If |K| = 2, then f1,1,1 = α ∈ (F2)cl (see (2.10)). Suppose |K| ≥ 3. The there exist e ∈ K
such that e 6= 0, 1. Fix such an e and define c = e(1 − e)−1 and d = c−1 (possible since c 6= 0).
By Case 1, fd,1−d,0 and f0,e,1−e are in (F2)cl. Thus the ternary operation t on A defined by

t(x1, x2, x3) = µc,1−c(fd,1−d,0(x1, x2, x3), f0,e,1−e(x1, x2, x3))

is in (F2)cl. We have

t(x1, x2, x3) = µc,1−c(dx1 + (1− d)x2, ex2 + (1− e)x3)

= cdx1 + c(1− d)x2 + (1− c)ex2 + (1− c)(1− e)x3
= cc−1x1 + cx2 − cc−1x2 + ex2 − cex2 + x3 − ex3 − cx3 + cex3

= x1 + c(1− e)x2 − x2 + ex2 + x3 − ex3 − c(1− e)x3
= x1 + 2ex2 − x2 + x3 − 2ex3 = x1 + x2 + x3,
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where the last two equalities are true since c(1−e) = e, 2 = −2 = 0, and −1 = 1. Thus t = f1,1,1,
and so f1,1,1 ∈ (F2)cl. The claim has been proved.

We now have f−1,1,1 ∈ (F2)cl for every K: by Case 2 if −1 6= 1, and by the claim if −1 = 1.
Since λ1 = . . . = λk+1 = 1 and λ1 + . . . + λk + λk+1 = 1, we have λ1 + . . . + λk = 0, and so
λ1 + . . . + λk−1 = −1. Let ci = −λi, where 1 ≤ i ≤ k − 1. Then c1 + · · · + ck−1 = 1 and
fc1,...,ck−1

∈ (F2)cl by the inductive hypothesis. Thus

fλ1,...,λk+1
(x1, . . . , xk+1) = f−1,1,1(fc1,...,ck−1

(x1, . . . , xk−1), xk, xk+1),

and so fλ1,...,λk+1
∈ (F2)cl. This concludes the inductive proof.

Let f(x1, . . . , xk) =
∑k
i=1 λixi+a, where k ≥ 1, λ1, . . . , λk ∈ K, λ1+· · ·+λk = 1, and a ∈ A0,

be an arbitrary operation in F1 (see (2.9)). Then f(x1, . . . , xk) = τa(fλ1,...,λk
(x1, . . . , xk)), and

so f ∈ (F2)cl since τa ∈ F2 and fλ1,...,λk
∈ (F2)cl. We have proved that (F1)cl ⊆ (F2)cl.

Thus A1 and A2 have the same clone. Therefore, the class of affine algebras of Urbanik is
equal (up to clone equivalence) to the class of affine algebras of Cameron and Szabó.

We have proved statements (a)–(d) after Definition 2.1, which completely clarify the relation
between the six classes of independence algebras considered by Urbanik and the four classes of
independence algebras considered by Cameron and Szabó. Note that we did not assume that the
classes of Cameron and Szabó consist of finite algebras.

Now let A be any independence algebra of non-zero dimension. Then A belongs to one of
the six classes of Urbanik [39–41]. Thus, by (a)–(d), A is E-equivalent to an algebra from one of
the four classes of Cameron and Szabó. Urbanik does not classify the independence algebras of
dimension 0. However, these are clearly E-equivalent to group action algebras with A = A0.

Therefore we have an extension of Cameron and Szabó’s classification [14, Theorem 1.3] from
finite to arbitrary independence algebras.

Theorem 2.10. Any independence algebra A = 〈A;F 〉, with |A| ≥ 2, is E-equivalent to a group
action algebra, a 2-transitive group algebra, a linear algebra, or an affine algebra.

3 Matrix systems for independence algebras

Our goal is to define matrices that represent endomorphisms of a given independence algebra. In
this section, we will describe what we want to accomplish by introducing the notion of a matrix
system for an independence algebra.

Let A be a general independence algebra of a given type and let n = dim(A). We fix an
ordered basis S = (e1, . . . , en) of A. Our objectives are as follows, where n′ is one of n, n + 1,
depending on the type of A (we remark that with trivial modifications, it is possible to choose
n′ = n+ 1 throughout).

(A) Select a set F associated with A. LetMn′×n′(F ) andMn′×1(F ) be the sets of n′×n′ and
n′×1 matrices with entries from F , respectively. Select a subsetM∗n′×n′(F ) ofMn′×n′(F )

and a subset M∗n′×1(F ) of Mn′×1(F ). For example, if A = Al = (A, {0},K) is a linear
independence algebra, then our set F will be the division ring K, M∗n′×n′(F ) will be
Mn×n(K), and M∗n′×1(F ) will be Mn×1(K).

(B) Define an operation (M,P ) 7→ M · P on M∗n′×n′(F ) and a mapping (M, v) 7→ M · v
from M∗n′×n′(F ) ×M∗n′×1(F ) → M∗n′×1(F ) such that for all M,P,Q ∈ M∗n′×n′(F ) and
v ∈M∗n′×1(F ),

M · (P ·Q) = (M · P ) ·Q and M · (N · v) = (M ·N) · v .

We will refer to both the operation and mapping as matrix multiplication and write MP
for M · P and Mv for M · v.
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(C) Define a bijection x 7→ [x]S from A to M∗n′×1(F ) such that for all M ∈ M∗n′×n′(F ) and
j ∈ {1, . . . , n},

M [ej ]S = M∗j ,

where M∗j denotes the jth column of M . If n′ = n + 1, then all matrices in Mn′×n′(F )
have the same n′-th column.

For x ∈ A, we will call [x]S the coordinate vector of x with respect to S, and write [x] for
[x]S if there is no confusion about the basis S.

(D) Define a bijection φ 7→Mφ from End(A) to M∗n′×n′(F ) such that for every x ∈ A,

[φ(x)]S = Mφ[x]S .

We will say that the matrix Mφ represents φ.

Definition 3.1. Let A be an independence algebra of dimension n, and let S = (e1, . . . , en) be a
basis for A. A pair (F, n′), where F is a set, for which (A)–(D) above are satisfied will be called
a matrix system for A (with respect to the basis S).

For example, let Al = (A,A0,K) be a linear independence algebra with A0 = {0} and K a field.
We could take F = K and n′ = n, and define matrix multiplication from (3) as the standard

multiplication of matrices; for every x ∈ A, define [x]S =

λ1...
λn

, where x = λ1e1 + · · · + λnen;

for every φ ∈ End(Al), define Mφ as the n× n matrix whose jth column is [φ(ej)]S .
By the standard theory of matrices in vector spaces, (K,n) is a matrix system for Al. Our

actual matrix system for linear independence algebras will in general use n′ = n + 1, where the
additional coordinate represents the contribution of constants in the case of non-trivial A0.

Lemma 3.2. Let (F, n′) be a matrix system for an independence algebra A. Let φ ∈ End(A).
Suppose that M ∈M∗n′×n′(F ) is such that [φ(x)] = M [x] for every x ∈ A. Then M = Mφ.

Proof. For every j ∈ {1, . . . , n}, [φ(ej)] = M [ej ] and [φ(ej)] = Mφ[ej ]. Thus, by (C), M and Mφ

have the same corresponding columns, and so they are equal.

Theorem 3.3. Let (F, n) be a matrix system for an independence algebra A. Then:

(1) for all φ, ψ ∈ End(A), Mφ◦ψ = MφMψ;

(2) M∗n′×n′(F ) with matrix multiplication is a monoid that is isomorphic to End(A).

Proof. Let φ, ψ ∈ End(A). For every x ∈ A,

[(φ ◦ ψ)(x)] = [φ(ψ(x))] = Mφ[ψ(x)] = Mφ(Mψ[x]) = (MφMψ)[x],

where the last equality holds by the associativity condition in (B). Thus Mφ◦ψ = MφMψ by
Lemma 3.2. We have proved (1).

By (B),M∗n′×n′(F ) with matrix multiplication is a semigroup. By (D) and (1), the mapping
φ → Mφ from End(A) to M∗n′×n′(F ) is a semigroup isomorphism. Since End(A) is a monoid,
(2) follows.

In the following sections, we will attempt to matrix systems for each type of independence
algebra. We will succeed in three of the four cases, and we will pinpoint what goes wrong in the
fourth.
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4 Matrices for group action algebras

Recall that the three Urbanik classes of group action, monoid and exceptional independence
algebras are all E-equivalent to the group action algebras in either definition. In developing our
matrix theory, we will use the language of the definition of an Urbanik group action independence
algebra, keeping in mind that it is easy to convert all other relevant descriptions.

Thus let Ag = A(A,A0, G) be a finite-dimensional group action independence algebra and let
n = dim(Ag). Then n is the number of orbits in A1 = A \ A0. Any transversal of the orbits is a
basis for Ag [41, p. 244]; fix such an ordered basis X = (e1, . . . , en). Without loss of generality,
let G be disjoint from A. We now define a matrix system for Ag.

Let n′ = n + 1, and 0 be an element not in G ∪ A0. Set G0 = G ∪ A0 ∪ {0}. Define a
multiplication · and a partial addition + on G0 by: for all m ∈ G0, g, h ∈ G, and x ∈ A0,

g · h = hg, m · x = x, m · 0 = 0, x · g = g(x), and 0 · g = 0,

g + 0 = 0 + g = g, 0 + 0 = 0, and x+ x = x,

where hg is the product in G (to motivate the change in the order of the arguments, recall that
in standard linear algebra over non-commutative division rings, the matrices have to be taken
over the opposite ring; this is a corresponding change to the opposite group). We note that for
all g, h ∈ G and x, y ∈ A0 with x 6= y, g + h, g + x, x+ g, 0 + x, x+ 0, and x+ y are undefined.

Lemma 4.1. Let 1 be the identity in the group G. Then (G0, ·, 1) is a monoid.

Proof. First 1 is the identity in G0 since it is clearly the identity in (G, ·), 1 · 0 = 0 · 1 = 0, and
for every x ∈ A0, 1 · x = x and x · 1 = 1(x) = x. Let m, p, q ∈ G0. We want to prove that
m · (p · q) = (m · p) · q. If q = 0 or q = x (where x ∈ A0), then the equality is true since 0 and
each x are right zeros.

Suppose that q = g ∈ G. If p = 0, then m · (0 · g) = m · 0 = 0 and (m · 0) · g = 0 · g = 0. If
p = x (where x ∈ A0), then m · (x · g) = m · g(x) = g(x) and (m · x) · g = x · g = g(x).

Suppose that p = h ∈ G. If m = 0, then 0·(h·g) = 0·(gh) = 0 and (0·h)·g = 0·g = 0. If m = x
(where x ∈ A0), then x · (h · g) = x · (gh) = (gh)(x) and (x · h) · g = h(x) · g = g(h(x)) = (gh)(x).

Finally, suppose that m = t ∈ G. Then t · (h · g) = t · (gh) = (gh)t and (t · h) · g = (ht) · g =
g(ht) = (gh)t. This completes the proof.

We set F = G0, and M∗n′×1(G0) to be the subset of all matrices v in Mn′×1(G0) such that
v has exactly one non-zero entry l, and either

(i) l ∈ G and lies in a row different from n′, or

(ii) l ∈ A0 and lies in row n′.

We set M∗n′×n′(G0) to be the subset of all matrices M in Mn′×n′(G0) such that the first n
columns of M are inM∗n′×1(G0), and the last column has entry 1 in row n′ and 0 elsewhere. We
define matrix multiplication as follows: for all M = (mij), P = (pij) inM∗n′×n′(G0) and v = (vi)
in M∗n′×1(G0), M · P = Q = (qij) and M · v = w = (wi), where

qij = mi1 · p1j +mi2 · p2j + · · ·+min′ · pn′j and wi = mi1 · v1 +mi2 · v2 + · · ·+min′ · vn′ .

Note that we use the standard definition of matrix multiplication applied to the (partial) opera-
tions of G0.

Let i, j ∈ {1, . . . , n′}. With notation as in the definition, suppose that the column P∗j has
non-zero entry y ∈ A0 in row n′. Then

qij = mi1 · p1j +mi2 · p2j + · · ·+min · pnj +min′ · pn′j

= mi1 · 0 +mi2 · 0 + · · ·+min · 0 +mi,n′ · y = mi,n′ · y,
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which equals y for i = n′ and 0, otherwise. Suppose that the column P∗j has one entry from G,
say pkj = g, and all other entries 0. Then

qij = mi1 · p1j +mi2 · p2j + · · ·+min · pnj = 0 + · · ·+ 0 +mik · g + 0 + · · ·+ 0 = mik · g.

Now if the column M∗k has non-zero entry x ∈ A0 in row n′, then qn′j = mn′k · g = x · g = g(x),
while qi,j = 0, for i 6= n′. Otherwise, the column M∗k has one entry from G, say mlk = h ∈ G,
where l 6= n′ and all other entries 0. Then the column Q∗j has one entry from G, namely
qlj = mlj · g = h · g = gh, and all other entries 0. Finally, it can easily be checked that the
column Q∗n′ has non-zero entry 1 in row n′. It follows that matrix multiplication is well-defined
on M∗n′×n′(G0).

By a similar argument, M ·v is well-defined and lies inM∗n′×1(G0). Since our matrix multipli-
cation is the usual multiplication of matrices, the associativity as stated in (B) can be reduced to
the algebraic properties of 〈G0,+, ·〉. However, associativity will follow automatically below once
we establish that our the matrix multiplication corresponds to composition (and application) of
endomorphisms.

It will be convenient to introduce the following notation. Let v ∈M∗n′×1(G0), i ∈ {1, . . . , n′}
be such that the entry in row i of v is equal to m ∈ G∪A0 and all other entries of v are 0. Then we
will write v = (m, i). Let M ∈ M∗n′×n′(G0) and let j ∈ {1, . . . , n′}. Let ij ∈ {1, . . . , n′} be such
that the entry (ij , j) of M is equal to mj ∈ G∪A0. Then we will write M∗j = (mj , ij). Finally, we
will write M = (mj , ij)1≤j≤n′ , or simply M = (mj , ij), if M∗j = (mj , ij), where mj ∈ G0\{0}. It
is straightforward to check that for allM = (mj , ij)1≤j≤n′ and P = (pj , kj)1≤j≤n′ inM∗n′×n′(G0),
and all v = (t, k) ∈M∗n′×1(G0),

Mv = (mj , ij)(t, k) = (mk · t, ik), (4.1)

MP = (mj , ij)(pj , kj) = (mkj · pj , ikj )1≤j≤n′ . (4.2)

Let x ∈ A. Suppose that x /∈ A0. Then, by Lemma 2.2, there are unique g ∈ G and ei ∈ S
such that x = g(ei). We define [x]S to be (g, i). If x ∈ A0, then we define [x]S to be (x, n′).

Lemma 4.2. The mapping x → [x] is a bijection from A to M∗n′×1(G0). Moreover, for all
M ∈M∗n′×n′(G0) and j ∈ {1, . . . , n}, M [ej ] = M∗j.

Proof. Let x, y ∈ A with [x] = [y]. By the definition of [x], either x, y ∈ A0 or x, y /∈ A0. Suppose
that x, y ∈ A0. Then [x] = (x, n′) and [y] = (y, n′). Since [x] = [y], we have x = y. Suppose that
x, y /∈ A0. Then [x] = (g, i) and [y] = (h, j), where g, h ∈ G, x = g(ei), and y = h(ej). Since
[x] = [y], we have g = h and i = j, and so x = y. We have shown that the mapping x → [x] is
injective. Let v ∈M∗n′×1(G0). If v = (x, n′), where x ∈ A0, then v = [x]; and if v = (g, i), where
g ∈ G, then v = [g(ei)]. Hence, the mapping x 7→ [x] is a bijection.

Let M = (mk, ik) ∈ M∗n′×n′(G0) and let ej ∈ S. Then ej = 1(ej), where 1 is the identity of
G, and so [ej ] = (1, j). Then, by (4.1), M [ej ] = (mk, ik)(1, j) = (mj · 1, ij) = (mj , ij), and so
M [ej ] is the jth column of M .

For φ ∈ End(Ag), we define Mφ ∈ Mn′×n′(A) by Mφ = (mj , ij), where (mj , ij) = [φ(ej)] for
j ∈ {1, . . . , n}, and by M∗n′ = (1, n′).

Lemma 4.3. The mapping φ 7→ Mφ is a bijection from End(A) to M∗n′×n′(G0). Moreover, for
all φ ∈ End(A) and x ∈ A, [φ(x)] = Mφ[x].

Proof. Let φ, ψ ∈ End(Ag) with Mφ = Mψ. The for every j ∈ {1, . . . , n}, [φ(ej)] = (Mφ)∗j =
(Mψ)∗j = [ψ(ej)], and so φ(ej) = ψ(ej) by Lemma 4.2. Hence φ = ψ since S = {e1, . . . , en} is
a basis for Ag. Let M = (mj , ij) ∈ M∗n′×n′(G0). Define φ ∈ End(Ag) by φ(ej) = (mj , ij) for
every j ∈ {1, . . . , n}. Then M = Mφ by the definition of Mφ. We have proved that the mapping
φ→Mφ is a bijection.
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Let φ ∈ End(Ag) and x ∈ A. Recall that Mφ = (mj , ij), where (mj , ij) = [φ(ej)] for every
j ∈ {1, . . . , n}. We want to prove that [φ(x)] = Mφ[x]. Suppose that x ∈ A0. Then there is
a constant unary operation f with image x in Ag. Then φ preserves f , and so for any a ∈ A,
φ(x) = φ(f(a)) = f(φ(a)) = x. Since x ∈ A0, we then have [φ(x)] = [x] = (x, n′). Thus, by
(4.1),

Mφ[x] = (mj , ij)(x, n
′) = (mn′ · x, in′) = (x, n′) = [φ(x)],

where we note that in′ = n′.
Suppose that x /∈ A0. Then [x] = (g, k), where g ∈ G and k ∈ {1, . . . , n} are unique elements

such that x = g(ek). Since the action of g is a unary operation of Ag, we have φ(x) = φ(g(ek)) =
g(φ(ek)).

Suppose that φ(ek) = y ∈ A0. Then g(y) is also in A0 (since g(A0) ⊆ A0), and so [y] = (y, n′)
and [φ(x)] = [g(y)] = (g(y), n′). Since (mk, ik) = (Mφ)∗k = [φ(ek)] = [y] = (y, n′), we have, by
(4.1),

Mφ[x] = (mj , ij)(g, k) = (mk · g, ik) = (y · g, ik) = (g(y), ik) = (g(y), n′) = [φ(x)].

Suppose that φ(ek) = y /∈ A0. Then (mk, ik) = (Mφ)∗k = [φ(ek)] = (h, s), where h ∈ G and
s ∈ {1, . . . , n} are unique elements such that φ(ek) = h(es). Thus φ(x) = g(φ(ek)) = g(h(es)) =
(gh)(es), and so [φ(x)] = (gh, s). By (4.1) again,

Mφ[x] = (mj , ij)(g, k) = (mk · g, ik) = (h · g, s) = (gh, s) = [φ(x)].

This concludes the proof.

We have proved that (G0, n), as defined in this section, is a matrix system for Ag.
It is clear the connection of this matrix system and generalised permutation matrices.

5 Matrices for linear algebras

Let Al = (A,A0,K) be a linear independence algebra of dimension n (see (2.7) and (2.8)). We
write 0 and 0A for the zeros of K and A, respectively. Any ordered basis S = (e1, . . . , en)
for Al is obtained by choosing a linear basis S′ for the quotient vector space A/A0, selecting
a representative of each block of S′, and ordering the selected representatives. We fix such an
ordered basis S. It is easy to see that for every x ∈ A, there are unique λ1, . . . , λn ∈ K and
a ∈ A0 such that

x = λ1e1 + · · ·+ λnen + a. (5.1)

By (2.7) and (2.8) the monoid End(Al) consists of the linear transformations ϕ of the vector
space A such that ϕ(a) = a for every a ∈ A0.

To define a matrix system for Al, we let F = K∪A0, n′ = n+1,M∗n′×n′(F ) to be the set of all
M ∈ Mn′×n′(F ) such that M∗j = (λ1j . . . λnj aj)

T (if 1 ≤ j ≤ n), and M∗n′ = (0 . . . 0 1)T , and
M∗n′×1(F ) to be the set of all v = (λ1 . . . λn a) ∈Mn′×1(F ), where λij , λi ∈ K and aj , a ∈ A0.

Let M,P ∈Mn′×n′(F ) and v ∈Mn′×1(F ). We let the multiplication · in M ·P and M · v to
be the usual matrix multiplication from linear algebra, where the multiplication ∗ and addition ⊕
of the entries of the matrices are defined by: λ1 ∗λ2 = λ2λ1, λ∗a = a∗λ = λa, λ1⊕λ2 = λ1 +λ2,
a1 ⊕ a2 = a1 + a2, and λ⊕ 0A = 0A ⊕ λ = λ, where λ1, λ2, λ ∈ K, a1, a2, a ∈ A0. We note that
in M · P and M · v, a1 ∗ a2, λ ⊕ a, and a ⊕ λ never arise, where λ ∈ K and a1, a2, a ∈ A0 with
a 6= 0A.

For x ∈ A and ϕ ∈ End(Al), we let [x]S = (λ1 . . . λn a)T , where λi and a are as in (5.1), and
define Mϕ ∈M∗n′×n′(F ) by (Mϕ)∗j = [ϕ(ej)]S , for each j ∈ {1, . . . n}, and (Mϕ)∗n′ = (0 . . . 0 1)T .

By routine calculations, we check that for all ϕ,ψ ∈ End(Al) and x ∈ A,

[ϕ(x)]S = Mϕ · [x]S and [(ϕ ◦ ψ)(x)]S = (Mϕ ·Mψ) · [x]S .

It then follows that (K ∪A0, n
′) satisfies (A)–(D), so it is a matrix system for Al.
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6 Matrices for affine algebras

Let Aa = (A,A0,K) be an affine independence algebra of dimension n (see (2.9)). (The dimension
of the corresponding linear independence algebra Al = (A,A0,K) is n − 1 [41, page 236].) Any
ordered basis S = (e1, . . . , en) for Am is obtained by choosing an n-element affine independent set
S′ for the quotient space A/A0, selecting a representative of each block of S′, and ordering the
selected representatives. We fix such an ordered basis S. It is easy to see that for every x ∈ A,
there are unique λ1, . . . , λn ∈ K, with λ1 + · · ·+ λn = 1, and a ∈ A0 such that

x = λ1e1 + · · ·+ λnen + a. (6.1)

By (2.9), the monoid End(Aa) consists of the affine transformations ϕ of the affine space A
such that ϕ(x+ a) = φ(x) + a for all x ∈ A and a ∈ A0.

To define a matrix system for Am, we let F = K ∪ A0, n′ = n+ 1, M∗n′×n′(F ) to be the set
of all M ∈Mn′×n′(F ) such that M∗j = (λ1j . . . λnj aj)

T , with λ1j + · · ·+ λnj = 1 (if 1 ≤ j ≤ n)
and M∗n′ = (0 . . . 0 1)T , and M∗n′×1(F ) to be the set of all v = (λ1 . . . λn a) ∈ Mn′×1(F ), with
λ1 + · · ·+ λn = 1, where λij , λi ∈ K and aj , a ∈ A0.

Let M,P ∈Mn′×n′(F ) and v ∈Mn′×1(F ). We define the multiplication · in M ·P and M ·v
exactly as in Section 5.

For x ∈ A and ϕ ∈ End(Am), we let [x]S = (λ1 . . . λn a)T , where λi and a are as in (6.1) (so
λ1 + · · · + λn = 1), and define Mϕ ∈ M∗n′×n′(F ) by (Mϕ)∗j = [ϕ(ej)]S , for each j ∈ {1, . . . n},
and (Mϕ)∗n′ = (0 . . . 0 1)T . By routine calculations, exactly the same as in Section 5, we check
that for all ϕ,ψ ∈ End(Am) and x ∈ A,

[ϕ(x)]S = Mϕ · [x]S and [(ϕ ◦ ψ)(x)]S = (Mϕ ·Mψ) · [x]S .

It then follows that (K ∪A0, n
′) satisfies (A)–(D), so it is a matrix system for Am.

7 Matrices for sharply 2-transitive group algebras

We have failed to develop a matrix theory for independence algebras of this type. However, we
can go part of the way; it seemed worth recording the arguments since it throws light on this
somewhat unusual case.

In the literature, there are different but closely related generalizations of the equivalence
between sharply 2-transitive groups with regular normal subgroups and nearfields. These include
Tits’ pseudofields [38], Wilke’s strong pseudofields [42], Grätzer’s quasifields [27] and Karzel’s
neardomains (“Fastbereich”) [29, vol. 1, p. 21]. (Note that Grätzer did not name his algebras;
the term “quasifield”, which does not denote the same class of algebras as the notion of quasifield
in projective geometry, is due to Urbanik [41]. Belousov called them Grätzer algebras [11].) In
all cases, up to left/right conventions for operations and group actions, there is a structure of the
form (X,�, ·, 0, 1) where � and · are binary operations and 0, 1 ∈ X. The element 0 is a right
identity element for � and a left zero for ·, (X\{0}, ·, 1) is a group and · distributes over � on
the left. The corresponding sharply 2-transitive group action on X consists of “affine” mappings
of the form x 7→ b� (a · x).

Where the structures differ is in their axioms for the operation �. In pseudofields, strong
pseudofields and neardomains, � generalizes the addition operation in nearfields. In (Grätzer)
quasifields, � generalizes the subtraction operation.

The definitions of near domains and strong pseudofields coincide (up to left/right conventions).
Regarding Grätzer’s quasifields and (Tits’) pseudofields, one can be retrieved from the other using
x+ y := (y − (0− x)) (to go from Grätzer to Tits) and x− y := ((−y) + x) for the converse.

For our present purposes we note the following. “Quasifield independence algebras” are
described in terms of Grätzer quasifields, but an examination of the definition shows that what
is really required is that the operations in F commute with the sharply 2-transitive group action.
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Thus it does not matter if we follow Urbanik and use Grätzer quasifields or if we use one of
the other structures instead. In fact, it seems to be more convenient to use neardomains. As
already noted in the introduction to [29], neardomains have an advantage over Tits pseudofields
and Grätzer quasifields in that the correspondence between neardomains and sharply 2-transitive
groups is one-to-one. (When precisely formulated, the correspondence is actually a categorical
equivalence [15].)

A neardomain (K,+, ·, 0, 1) is a set K with two binary operations +, · and elements 0, 1 ∈ K
such that the following properties hold.

1. (K,+) is a loop with identity element 0 (that is, (K,+) is a binary structure with identity
0 in which the equations a+ x = b and x+ a = b have unique solutions for all (a, b) ∈ K2);

2. for all a, b ∈ K, a + b = 0 =⇒ b + a = 0, that is, in (K,+) all left-inverses are also
right-inverses;

3. (K∗, ·) is a group with identity element 1;

4. a(b+ c) = ab+ ac for all a, b, c ∈ K;

5. 0 · a = 0 for all a ∈ K;

6. for every a, b ∈ K, there exists δa,b ∈ K∗ such that for all c ∈ K,

a+ (b+ c) = (a+ b) + δa,bc .

Here, as usual, K∗ = K\{0}
A neardomain is a nearfield if and only if + is associative, that is, precisely when δa,b = 1 for

all a, b. For a general neardomain, the additive loop (X,+) is known variously as a K-loop (“K”
for “Karzel”) or a Bruck loop [30].

Each b ∈ K∗ and a ∈ K defines an affine transformation Ta,b : K → K by Ta,bx = a + bx.
The composite of two such transformations is another one:

(Ta,b ◦ Tc,d)x = a+ b(c+ dx) = a+ (bc+ bdx) = (a+ bc) + δa,bcbdx = Ta+bc,δa,bcbdx

for all a, c, x ∈ K, b, d ∈ K∗. Evidently T0,1 is the identity mapping. Further, each Ta,b is a
permutation of K with inverse T−b−1a,b−1 (because the additive loop of a neardomain satisfies
the identity −x+(x+y) = y). Finally, if Ta,b = Ta′,b′ , then applying both sides to 0 gives a = a′,
while applying both sides to 1 and cancelling a on the left gives b = b′.

The affine group of K is Aff(K) = {Ta,b | a ∈ K, b ∈ K∗}. The above considerations show
that this group is isomorphic to K ×K∗ with the following multiplication:

(a, b)(c, d) = (a+ bc, δa,bcbd)

for all a, c ∈ K, b, d ∈ K∗. This type of construction is known as a quasidirect product, gener-
alizing the semidirect product of groups [30]. Note that we do not have to check directly the
associativity of the multiplication; this follows from the fact that the multiplication represents
the composition of affine transformations.

The group Aff(K) is sharply 2-transitive, and conversely, every sharply 2-transitive group is
isomorphic to the affine group of a (uniquely determined) neardomain. A long standing open
problem was whether a proper neardomain exists, that is, a neardomain which is not a nearfield.
This is equivalent to the question of whether there exists a sharply 2-transitive group without
a regular normal subgroup. This has recently been answered in the affirmative [37]. However,
in the finite case, it is elementary to show that every neardomain is a nearfield (that is, every
finite sharply 2-transitive group has a regular normal subgroup), and the finite nearfields were
classified by Zassenhaus [43].
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Returning to independence algebras, we see that we may replace the notion of quasifield
independence algebra with that of a neardomain independence algebra in which we require that
f(a+ bx) = a+ bf(x) for all f ∈ F , a, x ∈ K, b ∈ K∗.

In the special case that the neardomain is a division ring, we can obtain a matrix system
equivalent to that of an affine independence algebra.

Let {e1, e2} be a basis (recall that algebras from sharply-2-transitive groups have dimension
2). We set n′ = 2, D = Kop (the opposite ring of K), and identify each element a ∈ A uniquely

with a column vector

[
c1
c2

]
∈ K2, such that

a = c1e1 + c2e2 and c1 + c2 = 1.

For each endomorphism on A, we define a (2× 2)-matrix by Condition (C). With matrix multi-
plication defined as usual, it is straightforward to check that we indeed obtain a matrix system.

In the general case of a neardomain, it is easy to give a realization that does not relate to
specific bases. However, it appears to be necessary to have the associative and both distributive
laws in order to obtain a matrix theory that is satisfactory in the sense of adhering to our
Conditions (A) to (D).

8 Summary

The following table sums up the properties of our matrix theory for the various types of inde-
pendence algebras.

Independence Algebras dim vector size (n+ 1)-st entry 1st - nth entry conditions

Ag = A(A,A0, G) (group action) n n+ 1 A0 ∪ {0} G ∪ {0} exactly one non-zero entry

V [W ] over K (linear) n n+ 1 W K –

Aff(V )[+W ] over K (affine) n n+ 1 W K K-entries add to 1

Sharply 2-trans. group alg. A
(neardomain is a div. ring)

2 2 n/a A entries add to 1

9 Problems

In this section we present some problems regarding the “linear algebra” of our matrix theory.

Problem 9.1. Can a matrix theory for neardomain or nearfield independence algebras be recov-
ered, perhaps by weakening the requirements of the definition?

Problem 9.2. Extend the matrix theory developed here to infinite-dimensional independence
algebras. Note that the existence of bases for all vector spaces is equivalent to the Axiom of
Choice, so some set-theoretic assumption is certainly required.

Problem 9.3. Extend to the matrix theory developed here the classic results for the usual matrices
(such as the rational or Jordan Canonical Forms, etc.).

Problem 9.4. The standard similarity relation on matrices is just one among many possible
notions of conjugation for semigroups (see [6,7]). Let ∼ be a notion of conjugation in semigroups.
Describe the ∼-classes for the new types of matrices introduced here.

Problem 9.5. Generalize to the new semigroups of matrices introduced in this paper the results
on semigroups of matrices with entries in a field (Green’s relations, automorphisms, congruences,
etc.).
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Appendix

In this appendix, we prove several technical properties of the operator Ψ.

Lemma 9.6. Let A = 〈A;F 〉, A1, and A2 be any non-trivial v∗-algebras, and let Ψ(A) = 〈A;F ′〉.
Then:

1. except for the nullary operations in F ′cl, the clones Fcl and F ′cl are identical;

2. if A1 and A2 are clone equivalent, then Ψ(A1) and Ψ(A2) are also clone equivalent;

3. Ψ is a one-to-one correspondence (if clone equivalent algebras are regarded as identical);

4. for every X ⊆ A:

(i) [X] in A is equal to 〈X〉 in Ψ(A),

(ii) X is independent in A if and only if X is independent in Ψ(A),

(iii) X is a basis for A if and only if X is a basis for Ψ(A);

5. dim(A) = dim(Ψ(A)) and End(A) = End(Ψ(A)).

Proof. 1. Clearly Fcl ⊆ F ′cl, as the F ⊆ F ′. Conversely, let h ∈ F ′cl be a non-nullary operation.
Then h can be written as a composition of projections and elements of F ′. If some nullary
operation gf appears in this composition, then we may replace it with the constant function
f(x) for some argument x already appearing in the composition (x is available, as h is not
nullary). It is clear that this changes result in the same function h. The second composition
shows that h ∈ Fcl.

2. This follows immediately, because the nullary operations added by the operator Ψ only
depend on the clone of its argument.

3. We construct an inverse operator Ψ̄ as follows: For any non-trivial independence algebra
A = 〈A;F 〉, replace every nullary operations g ∈ F such that g(∅) = a with a constant
unary operation fg, given by fg(x) = a. Because fg(x) = π1(g, x), the operations fg are in
Fcl. Hence Ψ̄(A) is obtained from an algebra that is clone-equivalent to A by removing all
nullary operations, and hence is a v∗-algebra.

We claim that Ψ(Ψ̄(A)) is clone equivalent to A. Suppose first that A has no nullary
operations, then Ψ̄(A) = A. As A is non-trivial, Fcl cannot contain any constant nullary
clone operations, for otherwise it could not be both a v∗-algebra and an independence
algebra. It follows that Ψ(Ψ̄(A)) = A.

Assume otherwise that A contains at least one nullary operation g0. Clearly, Ψ(Ψ̄(A)) is
obtained from A by adding a basic nullary operation gf for every constant unary function
f in Fcl (assuming gf 6∈ F already). However, because gf = f(g0) the gf are in Fcl. Hence
Ψ(Ψ̄(A)) is clone equivalent to A.

Conversely, let A = 〈A;F 〉 be a non-trivial v∗-algebra. Then it is easy to see that Ψ̄(Ψ(A))
is obtained from A by adding all constant unary oprations from Fcl as basic operations. It
follows that Ψ̄(Ψ(A)) is clone-equivalent to A, as required.

4. Clearly, the last two assertions follow from the first. To show (i), first assume that X 6= ∅.
Then [X] and 〈X〉 are defined identical, but with regard to two different algebras. As
F ′ is obtained from F by the addition of nullary operation fg, we have that [X] ⊆ 〈X〉.
Conversely, if gf ∈ F ′ is a nullary operation, then gf (∅) ∈ [X], because f(x) = gf (∅) for
all x ∈ X 6= ∅. It follows that [X] = 〈X〉.
If X = ∅, then [X] = [Con∗], where Con∗ is the set of all images of constant unary functions
in Fcl, while 〈X〉 = 〈Con〉, where Con is the set of imagies of nullary functions (all of this
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holds provided that Con and Con∗ are non-empty). However, by the construction of Ψ, we
have that Con∗ = Con, and so [X] = 〈X〉 by the case X 6= ∅.
Finally, if Con∗ = ∅, then Con = ∅, and so [X] = ∅ = 〈X〉.

5. The first assetion follows directly from 4.(iii).

For the second, it suffices to show that any φ ∈ End(A) preserves every nullary operation
gf ∈ F ′. For x ∈ A arbitrary, we have

φ(gf (∅) = φ(f(x)) = f(φ(x)) = gf (∅),

as required.
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