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Biosketch 28 

Our research team works on statistical analysis and ecological applications of citizen science data and 29 
other large ecological datasets. We create analytical approaches for eBird data that are designed to 30 
enable robust ecological inference on species’ distribution, status and trends. We combine hypothesis-31 
driven questions and newly developed methodological approaches that encompass the full annual cycle 32 
of birds at very large spatial extents. We use this macroecological perspective to address questions on 33 
the role of environmental cues and habitat change on avian distributions and seasonal migration, and 34 
the proximate and ultimate drivers of population changes. 35 
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Abstract 6 

Aim: Animal migration is often explained as the result of resource tracking in seasonally dynamic 7 
environments. Therefore, resource availability should influence the distributions of migratory animals as 8 
well as their seasonal abundance. We examined the relationship between primary productivity and the 9 
spatio-temporal distributions of migratory birds to assess the role of energy availability in avian migration. 10 

Location: North America. 11 

Time period: Full annual cycle, 2011–2016. 12 

Major taxa studied: Nocturnally migrating landbirds. 13 

Methods: We used observations of nocturnally migrating landbirds from the eBird community-science 14 
program to estimate weekly spatial distributions of total biomass, abundance, and species richness. We 15 
related these patterns to primary productivity and seasonal productivity surplus estimated using a 16 
remotely-sensed measure of vegetation greenness. 17 

Results: All three avian metrics showed positive spatial associations with primary productivity, and this 18 
was more pronounced with seasonal productivity surplus. Surprisingly, biomass showed weaker 19 
association than did abundance and richness, despite being a better indicator of energetic requirements. 20 
The strength of associations varied across seasons, being the weakest during migration.  During spring 21 
migration, avian biomass increased ahead of vegetation green-up in temperate regions, a pattern also 22 
previously described for herbivorous waterfowl. In the southeastern USA, spring green-up was instead 23 
associated with a net decrease in biomass, and winter biomass greatly exceeded that of summer, 24 
highlighting the region as a winter refuge for short-distance migrants. 25 

Main conclusions: While instantaneous energy availability is important in shaping the distribution of 26 
migratory birds, the stronger association of productivity with abundance and richness than with biomass 27 
suggests the role of additional drivers unrelated to energetic requirements that are nonetheless 28 
correlated with productivity. Given recent reports of widespread North American avifaunal declines, 29 
including many common species that winter in the southeastern USA, understanding how anthropogenic 30 
activities are impacting winter bird populations in the region should be a research priority. 31 

 32 
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 35 

1. Introduction 36 

Seasonal variation in resource availability is hypothesized to play a central role in driving avian migration 37 
(Dingle, 2014; Somveille et al., 2015). Migratory bird populations are thought to track seasonal bursts in 38 
primary productivity in the spring to support their migratory journey and subsequent breeding activities. 39 



Individual tracking studies have revealed phenological synchronization between spring migration and 40 
vegetation green-up (Kölzsch et al., 2015; Thorup et al., 2017; Lameris et al., 2018; Briedis et al., 2020), 41 
with spring arrivals timed to facilitate a nesting schedule where peak resource availability coincides with 42 
the critical chick growth phase (van der Graaf et al., 2006). Population-level studies have also revealed 43 
synchronization between vegetation greenness and bird occurrence during spring and autumn migration 44 
across a range of dietary guilds, with the strongest evidence found among herbivores and granivores (La 45 
Sorte & Graham, 2021). Additionally, vegetation phenology is also thought to play a prominent role in the 46 
looped annual migration paths of some migratory landbird species (La Sorte et al., 2014). Even outside 47 
the main migratory periods, resource availability has been identified as a potential driver of avian 48 
movement between  sites during the winter (Koleček et al., 2018; Knight et al., 2019). 49 

These species-level associations between occurrence and primary productivity are expected to 50 
lead to emergent patterns at the community level, such as a higher number of species and individuals 51 
occurring during the breeding season in regions with higher plant productivity. Indeed, many community-52 
level studies have found strong positive relationships between productivity and species richness, 53 
henceforth called the species-energy relationship (Evans et al., 2005). Yet, the presumed relationships 54 
between productivity, and the net avifaunal abundance and biomass remain relatively unexplored, 55 
despite their potential roles in elucidating the species-energy relationship. For example, the “more 56 
individuals hypothesis” (Wright, 1983; Srivastava & Lawton, 1998) postulates that energy availability limits 57 
the total number of individuals that can be supported in a community, which in turn influences species 58 
richness, since larger population sizes reduce the risk of stochastic extinctions. One key prediction of this 59 
hypothesis is that the abundance-energy relationship should be stronger than the species-energy 60 
relationship (Currie et al., 2004; Storch, 2012; Storch et al., 2018). Comparing the strength of these two 61 
relationships would therefore allow us to evaluate this prediction. Moreover, if energy were indeed the 62 
limiting resource shaping the distribution of individuals across space, then since individual energetic needs 63 
generally increase with body size (Daan et al., 1990; Nagy et al., 1999), total avian biomass should reflect 64 
energy requirements of a community better than total abundance (especially if body mass has been 65 
transformed to account for allometric relationships), and hence show an even stronger relationship with 66 
productivity. 67 

Another consideration is that migratory birds compete not only with other migratory species for 68 
resources, but also with species that are year-round residents. It has been hypothesized that the 69 
distribution of breeding migratory birds are shaped not by absolute resource levels, but rather by the 70 
seasonal resource surplus that is not fully utilized by resident species (Hurlbert & Haskell, 2003). Since 71 
resident populations are themselves limited by the period of lowest resource availability, the seasonal 72 
productivity difference (the productivity level above the site minimum) is likely to be a better estimate of 73 
resource available to migrants than productivity alone. We would then expect an even stronger 74 
association between biomass and this seasonal productivity difference. 75 

Another motivation for considering net abundance and biomass is to understand how different 76 
geographical regions are being utilized by migratory birds across the annual cycle at the community level 77 
(Bauer & Hoye, 2014). Breeding and wintering ranges are typically described for individual species, but 78 
identifying analogous regions at the community level is complicated by interspecific differences in 79 
migration strategies and abundance patterns. By assessing macroecological patterns of abundance and 80 
biomass year-round, we expect areas used solely as breeding grounds to show a positive temporal 81 
correlation between productivity and abundance or biomass, whereas areas used as wintering grounds 82 
may host higher numbers of birds during winter when productivity is locally at a minimum (La Sorte & 83 
Graham, 2021). Hence, a systematic evaluation of the abundance-productivity and biomass-productivity 84 



relationships across the annual cycle would highlight the role of different regions in the ecology of avian 85 
communities. 86 

Despite the interest in understanding macroecological relationships between biomass and 87 
primary productivity, most empirical studies have focused on the relationship between spatial patterns 88 
of species richness and vegetation greenness or other measures of productivity (Currie, 1991; Blackburn 89 
& Gaston, 1996; Hurlbert & Haskell, 2003; Evans et al., 2006; Rahbek et al., 2007), and only during part of 90 
the annual cycle (usually the breeding season) over limited spatial extents. The scarcity of large-scale 91 
studies on abundance-productivity and biomass-productivity relationships for migratory birds is due in 92 
part to data constraints. For example, species richness is typically estimated using range maps, which tend 93 
to be readily available. Range maps, however, provide coarse estimates of extent of occurrence and lack 94 
information on patterns of abundance or biomass within the range (Hurlbert & White, 2005; Hurlbert & 95 
Jetz, 2007; Jetz et al., 2008; Gaston & Fuller, 2009). Satellite or telemetry tracking datasets provides 96 
information on patterns of occurrence within the range, but these data sources are necessarily 97 
constrained to a few individuals from a limited number of often large-bodied species, making it hard to 98 
examine population- and community-level patterns of abundance and biomass. Similarly, available 99 
abundance datasets have traditionally been relatively sparse with limited spatial and/or temporal 100 
coverage, since surveys of total abundance across many species and large spatial extents across the full 101 
annual cycle require enormous effort. Large-scale volunteer-based datasets such as eBird (Sullivan et al., 102 
2014) can satisfy these data requirement due to their extensive spatio-temporal coverage. 103 

In this study, we explore the relationships between primary productivity and the species richness, 104 
abundance, and biomass of nocturnally migrating landbird species across the annual cycle within North 105 
America. We estimated the three avian ecological metrics using observations from the eBird community-106 
science program (Sullivan et al. 2014), and primary productivity using a remotely-sensed measure of 107 
vegetation greenness, the Enhanced Vegetation Index (EVI; Huete et al., 1994). We assessed the 108 
relationships using spatial correlations between distribution patterns calculated weekly across the annual 109 
cycle, and temporal correlations between time series calculated at each location across the study area. 110 
Assuming energy availability as the main limitation structuring the distribution of the nocturnal migrants, 111 
we hypothesize that the spatial correlations with the seasonal EVI difference should become progressively 112 
weaker from biomass to abundance to species richness, while still being stronger than the counterparts 113 
based on EVI alone. Finally, we use the patterns of temporal correlations to identify regions used for 114 
wintering and breeding at the community level. 115 

 116 

2. Methods 117 

a. Estimating the total biomass, abundance, and species richness of nocturnally migrating 118 
landbirds 119 

i. Avian count data 120 

We acquired avian count data from the 2016 eBird Reference Dataset (Fink et al., 2017) for 176 121 
nocturnally migrating landbird species (Dokter et al., 2018; Rosenberg et al., 2019). We chose to focus on 122 
this group of species because of their generally homogenous detection rates. Reports of diurnal migrants 123 
during migration will include many records of over-flying flocks whose locations do not reflect resource 124 
use at the checklist location, whereas nocturnal migrants reported during the day are usually on the 125 
ground utilizing local resources.  Also, diurnal migrants often migrate in large flocks during the day 126 
(Beauchamp, 2011), and hence tend to have higher detectability per individual than nocturnal migrants 127 
that would make comparisons counts of detected nocturnal and diurnal migrants inappropriate. 128 



We restricted eBird data to “complete checklists”, where the observers reported counts of all bird 129 
species seen or heard, so that species with no observations could be interpreted as being undetected 130 
rather than being omitted by observer preference (Johnston et al., 2021). We selected checklists from the 131 
period 2006/11/22–2016/12/31 (see Supp. Section S1b for an explanation of the choice of start date), 132 
within the region bounded by 20–72 N latitude, and 52–170 W longitude. We outline additional 133 
restrictions in Supp. Section S1a. In the end, a total of 8.1 million checklists were available for analysis, 134 
almost all of which (98%) were diurnal observations. These checklists were used to estimate avian biomass 135 
and abundance across the study area and period, using methods described in the next three subsections. 136 

  137 

ii. Predictor and response variables for biomass and abundance interpolation models 138 

Since eBird checklists are unevenly distributed across space and time, we developed models to interpolate 139 
avian biomass and abundance estimated from the checklists to any location and date within the study 140 
area and period. Species distributions are often structured by the environment, so models that include 141 
environmental predictors typically perform better than purely spatiotemporal interpolation (Elith & 142 
Leathwick, 2009). Additionally, including predictors that describe variation in the observation process can 143 
be used to control for checklist-level variation in detectability, thereby improving model performance 144 
(Hochachka et al., 2012; Johnston et al., 2021). 145 

We considered four classes of predictors similar to those described by Fink et al. (2020a).  The 146 
first class is of five effort predictors describing variation in the observation process:  number of observers, 147 
observation duration, distance travelled during observation, observation protocol, and checklist 148 
calibration index (CCI; Kelling et al., 2015; Johnston et al., 2018). Observation protocol indicated whether 149 
the checklist corresponded to a stationary or travelling count (other protocols were removed), while CCI 150 
was a derived index designed to account for heterogeneity in the observation process among observers 151 
and checklists. The second class of predictors were three temporal predictors: start time of the checklist, 152 
day of year, and year of observation. The third class of predictors were topographical predictors estimated 153 
at each checklist location: elevation, eastness and northness, all at a 1 × 1 km spatial resolution. Eastness 154 
and northness combine both slope and aspect to describe the orientation of the surface in three 155 
dimensions (Amatulli et al., 2018). Lastly, the fourth class contained 76 descriptors of landcover and 156 
watercover, again estimated at each checklist location. These 76 predictors consisted of four landscape 157 
metrics used to describe the composition and configuration of each of the 19 cover classes within a 2.8 × 158 
2.8 km neighborhood around the location. The four landscape metrics were the proportion of each cover 159 
class, the largest continuous patch, patch density, and edge density within each neighborhood, and were 160 
calculated using FRAGSTATS (McGarigal et al., 2012; VanDerWal et al., 2014), based on data (Friedl et al., 161 
2010) from Moderate Resolution Imaging Spectroradiometer data (MODIS; Justice et al., 1998). Landcover 162 
classes were from the University of Maryland (UMD) classifications (Hansen et al., 2000). Water cover 163 
classes were derived from the MODIS data. We also included longitude and latitude as predictors to 164 
account for unexplained spatial variation, bringing the total number of predictors to 89.  165 

As response variables for the interpolation models, for each checklist, we estimated the total 166 
biomass detected by the observer(s) by summing the body mass across all individuals reported on the 167 
checklist, using sex-averaged body mass estimate for each species from Dunning (2007). Likewise, we 168 
estimated total detected abundance using the total number of individual birds reported. We also 169 
estimated a third response variable, which we call the total transformed biomass, where each body mass 170 
is raised to the power of 2/3 before summing, to account for the allometric relationship between 171 
metabolic rates and body size. We choose a scaling exponent of 2/3 for two reasons. First, empirical 172 
studies on birds often found values closer to 2/3 (Daan et al., 1990; Nagy et al., 1999) than the 3/4 in 173 



Kleiber's law (Kleiber, 1961). Second, by analyzing both transformed and untransformed biomass, we 174 
would have explored both limits (2/3 and 1) of the likely range of values from theoretical considerations 175 
(Glazier, 2005; Kooijman, 2010). Finally, we log-transformed these estimates of (transformed) biomass 176 
and abundance to improve their distributional properties for the models. 177 

 178 

iii. Fitting the avian abundance and biomass interpolation models 179 

We modelled the relationship between the predictors and the biomass (or abundance) response using 180 
Spatio-temporal Exploratory Models (STEM; Fink et al., 2010, 2020a). In this modeling framework, the 181 
geographic region and study period are divided into overlapping spatio-temporal blocks called stixels. A 182 
base model is separately fitted to the data within each stixel. The model estimate at any spatio-temporal 183 
point of interest is obtained by averaging across the predictions of all base models within whose stixels 184 
the point had fallen; we call the number of models used in the prediction the ensemble size. The 185 
advantage of using STEM over single model approaches is discussed in Fink et al. (2010, 2020a). 186 
Henceforth, we refer to the ensemble of base models as the biomass (or abundance) interpolation model. 187 

For our implementation, we used stixels with minimal spatial dimensions 750  750 km and fixed 188 
temporal dimension of 21 days based on day number only (i.e. data from all years were present, and inter-189 
annual differences were accounted for during model fitting; see Supp. Section S1b). We used a random 190 
forest base model (Breiman, 2001), implemented using the ranger package (Wright & Ziegler, 2017) in R 191 
(R Core Team, 2018). We further limited the study area to regions with sufficient data to meet the model 192 
requirements (Supp. Section S1c). Additional model details can be found in Supp. Sections S1d–g, 193 
including the use of adaptive spatial sizing of stixels to increase the study area into regions of low data 194 
density (Fink et al., 2013), spatio-temporal subsampling to address the issue of uneven checklist 195 
distributions (Robinson et al., 2018; Fink et al., 2020a; Johnston et al., 2021), and data balancing to 196 
account for the interannual increase in eBird checklist volume (Fink et al., 2020a).  197 

We evaluated how model performance varied across the annual cycle using a holdout test set, by 198 
calculating the percentage variance explained for all test data within a 7-day moving window (in steps of 199 
3 days). This test set was split from the training set used for model-fitting at the outset, in a train:test ratio 200 
of 80:20, using a procedure that minimized any potential autocorrelations between the two sets (Supp. 201 
Section S1h). We also adopted a spatial subsampling procedure of the test data to avoid having checklists 202 
from highly-sampled locations dominate the calculations (Supp. Section S1i). The percentage of variance 203 
explained within each window varied between 35–53% (mean = 44%) for the biomass model, and 39–67% 204 
(mean 53%) for the abundance model, with relatively small differences among years (interannual std. dev. 205 
within each window between 1–4% var. explained; Supp. Figure S1). 206 

 207 

iv. Generating weekly avian biomass and abundance maps 208 

We used the fitted biomass interpolation model to generate weekly distribution maps of total detected 209 
biomass, separately for each year from 2011 to 2016. To do so, the fitted model was used to predict the 210 
detected biomass at each location across a 8.4  8.4 km mapping grid covering the study region, day 211 
(spaced 7 days apart) and year, based on topographical and land cover values at the grid location, and 212 
assuming a standard sampling effort: a single observer with a high CCI of 4, performing a travelling count 213 
starting at 07:00 local time, for a duration of 1 hr and distance of 1 km. The mapping grid is the same as 214 
the ones used in eBird Status and Trends data products (eBird S&T; Fink et al., 2020b). The values of the 215 
effort variables were chosen to reduce the underestimation caused by nondetection and hence bring the 216 
predicted values closer to the unknown true values: for instance, observers with high CCI tended to detect 217 



species at a higher rate (Johnston et al., 2018). While even longer durations or distances might also 218 
increase detection, they tended to be less common among checklists, so predictions at these values may 219 
be less accurate.  Similar weekly maps were generated for total detected abundance. Since the estimates 220 
were based on standardized sampling efforts, they are expected to correlate well with the true biomass 221 
and abundance values despite variation in effort. 222 

 223 

v. Generating weekly species richness maps 224 

We generated weekly maps of species richness by using species-level estimates of (non)occurrence from 225 
the 2018 eBird S&T to determine the number of nocturnally migrating species present at each mapping 226 
grid location. In the eBird S&T estimates, the sampling protocols have been optimized separately for each 227 
species to maximize detection, so we expect these estimates to reflect the true occurrence patterns better 228 
than if a single sampling protocol had been applied across all species. This approach also avoids issues 229 
involving equalization (Roswell et al., 2021) that a STEM model for species richness (analogous to the ones 230 
for biomass and abundance) would have to address. On the other hand, this also meant that eBird S&T 231 
abundance estimates are not comparable between species, which was why we did not use them earlier 232 
on for total biomass or abundance. In addition, we wanted multiple years of biomass and abundance 233 
estimates to account for year-to-year variations in the subsequent analyses, whereas eBird S&T estimates 234 
were only available for selected years and also not designed for multi-year analyses. (Year-to-year 235 
variations in richness outside the migratory period were less likely since that would require local 236 
extinctions, so the inability to perform multi-year analyses was less of a concern.) 237 

 238 

b. Primary productivity 239 

We estimated primary productivity using the Enhanced Vegetation Index (EVI; Huete et al., 1994) derived 240 
from MODIS data. EVI measures canopy greenness, a composite property of canopy structure, leaf area 241 
and canopy chlorophyll content while minimizing soil and atmosphere influences (Myneni et al., 1995). 242 
EVI is less prone to saturation than the Normalized Difference Vegetation Index (NDVI) in high biomass 243 
regions (e.g. Huete et al., 2006), and EVI has been found to correlate well with gross primary production 244 
directly measured from eddy covariance towers (Rahman et al., 2005). We used EVI estimates generated 245 
by La Sorte & Graham (2021) using 16-day 1-km Level-3 MODIS products MOD13A2 V.006 and 246 
MYD13A294 V.006, which combined gave estimates every 8 days. The data were aggregated to a spatial 247 
resolution of 10  10 km, and then interpolated to obtain daily estimates using generalized additive 248 
models based on cyclic penalized cubic regression splines (Wood, 2017). From the resulting surface of 249 
estimates, weekly EVI values at each mapping grid location were obtained by bilinear interpolation, using 250 
the raster package in R (Hijmans, 2021). 251 

 252 

c. Associations between primary productivity and biomass, abundance, and species richness. 253 

We examined the association of primary productivity with (transformed) biomass, abundance, and 254 
species richness using two approaches. First, for each week’s estimates we calculated the correlation 255 
coefficient between EVI and each of the three ecological metrics by treating the values at each grid 256 
location as paired data points (hereafter “spatial correlation coefficients”). Changing correlations among 257 
weeks would reveal seasonal changes in the spatial associations. Second, at each mapping grid location, 258 
we calculated the temporal cross-correlation coefficient between EVI and each separate ecological metric, 259 
using the time series of the two variables from that location. We did this to reveal any regional differences 260 
in the local temporal associations. We used the Kendall rank correlation coefficient in both analyses 261 



(Kendall, 1938), based on the fast algorithm implemented in the pcaPP package in R (Filzmoser et al., 262 
2018). These correlation coefficients were intended as descriptive indices describing the degree of 263 
similarity between two fitted distributions, and not as statistics for inference; therefore, their values 264 
should not be compared against those from studies designed for inference (e.g. Currie et al., 2004). We 265 
chose Kendall correlation over other measures of distributional (dis)similarity such as earth mover's 266 
distance, because we wanted a rank-based measure to allow for monotonic but nonlinear relationship 267 
between EVI and the ecological metrics. We found no qualitative differences when we used Spearman 268 
correlation coefficients instead. 269 

As seasonal resource surplus may play a more important role in shaping the distribution of 270 
breeding migratory birds than the absolute resource level, we repeated the above analysis of spatial 271 
correlations, but this time using seasonal EVI difference in place of EVI. The seasonal EVI difference is 272 
defined as the difference between EVI and its site seasonal minimum (see Supp. Section S2). During the 273 
winter period, most locations had EVI values close to the site minima (Supp. Figure S2), leading to low EVI 274 
difference throughout most of the study area. As a result, spatial correlations with seasonal EVI difference 275 
during this period could be misleading (see Supp. Section S2), so we only calculated the correlations for 276 
each week in a half-year period spanning May to September. We did not repeat the analysis of temporal 277 
associations, since the offset by the site minima would have no effect on the results. 278 

To better understand regional differences in the local temporal associations between EVI and 279 
ecological metric (second approach), we looked at the summary times series of each variable from two 280 
regions: the Northeast, which showed highly positive temporal correlation, and the Southeast, which 281 
showed highly negative correlation. Each region was defined using a combination of Bird Conservation 282 
Regions (BCR; Sauer et al., 2003), with the Northeast comprising BCRs 12 and 14, and the Southeast 283 
comprising BCRs 25–27, 31 and 37. For each region and week, we summarized each variable using the 284 
median and inter-quantile range across all locations within that region. 285 

Finally, the analysis of temporal associations highlighted regions in the study area where the 286 
correlation coefficients were positive, and regions where they were negative. To determine whether these 287 
regional patterns were associated with climatic factors, we fitted a random forest model with the 288 
temporal correlation coefficients at each mapping grid location as the response, and 19 bioclimatic 289 
variables (WorldClim version 2.1; Fick & Hijmans, 2017) as predictors. Permutation importance was then 290 
evaluated for each bioclimatic variable. However, since many of these bioclimatic predictors were highly 291 
correlated, permutation-based importance metrics may be misleading (Hooker & Mentch, 2019), so we 292 
also used a forward stepwise selection approach where during each step, the variable that resulted in the 293 
largest decrease in out-of-bag mean squared error was added to the existing list of variables. The 294 
sequence in which the variables were added hence indicated their importance, in terms of how much 295 
additional predictive information each variable provided beyond that of variables earlier in the sequence; 296 
the goal was to facilitate a parsimonious bioclimatic description of the temporal association patterns. 297 

 298 

3. Results 299 

a. Weekly distributions of total avian biomass, abundance, and species richness, and their 300 
spatial correlations with primary productivity 301 

The weekly distribution maps for biomass, abundance and species richness captured seasonal 302 
migration, with a northward shift of nocturnally migrating landbirds species during spring migration and 303 
a southward shift during autumn migration (Figures 1a, b and c). EVI distributions followed a similar 304 
pattern of northwards vegetation green-up in the spring and southwards vegetation senescence in 305 



autumn (Figure 1d). Nonetheless, there were noticeable differences in the spatial patterns among these 306 
quantities, especially outside winter. During summer, both avian (transformed) biomass and abundance 307 
were mostly concentrated along a mid-latitude band between 35° – 45° N latitude of central and eastern 308 
North America (July 6 in Figure 1a, b and Supp. Figure 3a), whereas species richness was mostly 309 
concentrated in the Northeast (Figure 1c). In contrast, EVI displayed a mostly longitudinal pattern, without 310 
any pronounced latitudinal concentration in the east (Figure 1d). However, after subtracting by the 311 
minimum site EVI, the seasonal EVI difference showed closer agreement with the biomass and abundance 312 
latitudinal patterns (Supp. Figure S3b). During spring migration, biomass, abundance and richness were 313 
all distributed more northerly than both EVI and the seasonal EVI difference (May 25 in Figure 1 and Supp. 314 
Figure S3). 315 

Weekly evaluations of the spatial correlation coefficient between (transformed) biomass and EVI 316 
across the study area revealed seasonal variation in the strength of spatial association across the annual 317 
cycle (Figure 1e and Supp. Figure S3c). The correlation was strongest between March and April (early 318 
spring migration), and weakest between September and October (the middle of autumn migration). 319 
Between mid-March and late May, biomass increased well ahead of EVI in the Northern Great Plains, 320 
whereas in the Southeast, biomass decreased even when EVI remained relatively high (Figures 1a, d). 321 
These changes increased the mismatch between biomass and EVI, hence causing the decrease in 322 
correlation seen over that period (Supp. Figure S4). The subsequent increase in correlation until early July 323 
could be attributed to EVI “catching up” with the biomass levels in the north and hence reducing the 324 
mismatch. 325 

Similar patterns of seasonal variations were also observed in the associations between EVI and 326 
total abundance and species richness, although with quantitative differences in the strength of 327 
associations (Figure 1e and Supp. Figure S3c). EVI was more strongly correlated with richness than biomass 328 
or abundance throughout most of the annual cycle. Correlation with abundance was stronger than 329 
biomass during summer, whereas the reverse was true during fall migration. 330 

The spatial correlations showed qualitatively similar dynamics when EVI was replaced by the 331 
seasonal EVI difference, with a peak mid-summer and sharp decreases in correlation during the migratory 332 
periods (Figure 1f and Supp. Figure S3d). The correlations were also generally higher than the EVI 333 
counterparts during the breeding season. Among the three metrics, seasonal EVI difference showed 334 
marginally higher correlation with abundance than with richness or (transformed) biomass. 335 

 336 

b. Temporal association between avian biomass and primary productivity 337 

Figure 2a shows the full-year temporal association between EVI and biomass, with the color at each 338 
location representing the value of the Kendall coefficient calculated at the location. The sign of the 339 
association was generally determined by the climatic zone, with positive association in the temperate 340 
zone to the north, and negative association in the subtropical zone to the south. We observed the same 341 
qualitative patterns using Pearson and Spearman correlation coefficients (Supp. Figures S6a, b). Patterns 342 
of temporal association were also similar for abundance (Supp. Fig S7). 343 

In the Northeast, both biomass and EVI were highest in spring and summer, and lowest in winter 344 
(Figure 2b), hence the positive association in this region. Note however, that the changes in biomass and 345 
EVI were not synchronous. In particular, we found that biomass increased most rapidly in April and peaked 346 
in mid-May, nearly a month ahead of EVI. Similarly, observed biomass decreased earlier in autumn than 347 
EVI. In the Southeast, the pattern was reversed, and spring green-up was associated with a drop in 348 
biomass (Figure 2c). Biomass started to decrease in March, reaching its lowest levels in summer and early 349 



autumn, before increasing again around October and peaking in winter. The opposite temporal trends 350 
between EVI and biomass hence explained the negative temporal association in the Southeast. 351 

Forward stepwise selection (Supp. Figure S8a) revealed that the two bioclimatic variables that 352 
best predicted the spatial patterns of temporal associations between EVI and biomass were BIO11 (mean 353 
temperature of coldest quarter), followed by BIO18 (precipitation of warmest quarter), explaining 92% of 354 
the variations in the Kendall coefficients. There were strong positive seasonal associations between 355 
biomass and productivity where winters are cold (BIO11 was low), and strong negative associations in 356 
regions with mild winters and wet summers (both BIO11 and BIO18 were high), see Figure 3. Additional 357 
results from both forward stepwise selection and permutation importance can be found in Supp. Section 358 
S3 and Supp. Figures S8–S10. 359 

 360 

4. Discussion 361 

Our analyses have revealed broad-scale positive associations of primary productivity with the biomass, 362 
abundance, and species richness of nocturnally migrating landbirds across space and time.  Under a 363 
scenario of resource tracking by migrants, in which energy availability is the main factor  and proximate 364 
cue determining the spatial distribution of migratory landbirds, one would expect primary productivity to 365 
be more closely associated with biomass than abundance, because abundance does not reflect the higher 366 
energetic needs of larger birds (Daan et al., 1990; Nagy et al., 1999). The relationship between productivity 367 
and richness (Currie et al., 2004; Storch, 2012; Storch et al., 2018) is expected to be even more indirect 368 
and therefore weaker, as it depends on complex and diverse mechanisms that can weaken the 369 
relationship. For example,  the “more-individuals hypothesis” (Wright, 1983; Srivastava & Lawton, 1998) 370 
suggests that high energy availability allows more individuals to be supported, which in turn reduces the 371 
risk of stochastic extinction and hence leads to higher species richness. A key prediction from this 372 
hypothesis is that the relationship with productivity should be stronger for abundance than diversity, since 373 
the second relationship is more distal. 374 

Contrary to these expectations, instead of associations with productivity becoming progressively 375 
weaker from biomass to abundance to species richness, we found the opposite pattern (Figure 1e), with 376 
species richness more strongly correlated with productivity compared to (transformed) biomass or 377 
abundance. These findings are replicated in studies of other taxa where richness is often more strongly 378 
correlated with productivity compared to abundance (Currie et al., 2004; Storch et al., 2018). In contrast, 379 
the seasonal surplus in productivity did show a marginally stronger correlation with abundance than 380 
richness, although the correlation with biomass remained lowest. Since each metric showed higher 381 
correlation with the productivity surplus than with absolute productivity during the breeding season, 382 
productivity surplus is likely a better measure of energy available to migratory birds than productivity 383 
alone, by better accounting for competition and resource use by resident species and other non-avian 384 
taxa (Hurlbert & Haskell, 2003; Somveille et al., 2018). Nonetheless, the fact that biomass still showed a 385 
lower correlation than abundance (despite being a more accurate indicator of energetic requirements) 386 
merits explanation.  Besides energy availability, the spatial distribution of breeding birds may also be 387 
influenced by other limitations such as the availability and structural diversity of nesting habitats, which 388 
are often correlated with productivity (Dobson et al., 2015) and can hence enhance the productivity-389 
abundance association. Moreover, abundance and biomass patterns are likely to be driven more by 390 
common species, which may have idiosyncratic requirements unrelated to energy availability, such as nest 391 
sites. Finally, many nocturnally migrating bird species do not directly consume primary production; while 392 
higher primary productivity likely leads to higher resource availability across trophic levels, the association 393 
need not always be perfect (Piersma, 2020). Hence, one possible refinement of our analysis would be to 394 



decompose avian biomass by dietary guilds and to study the spatial associations with productivity at the 395 
guild level (La Sorte & Graham, 2021). 396 

We also found strong seasonal variation in the spatial association between productivity and the 397 
three ecological metrics (Figure 1e). Across the annual cycle, biomass was most strongly correlated with 398 
EVI during late winter: even though EVI was generally low across the continent, it remains relatively high 399 
in the Southeast, which is also the region where migrants were concentrated in winter, suggesting 400 
immediate and strong constraints by resource availability during this time of the year. The correlation 401 
decreased during spring migration as migrants overtook the wave of spring green-up, and then increased 402 
during subsequent green-up in summer, a pattern visible in both in the correlations with EVI and surplus 403 
EVI. This phenological lag in vegetation greenness relative to biomass can also be seen in Figure 2b, with 404 
biomass building up ahead of EVI in the Northeast during spring. Such a pattern of overtaking the “green 405 
wave” has been documented with migratory geese (Kölzsch et al., 2015). Early arrival on breeding grounds 406 
prior to green-up is usually explained by selection for timing of breeding that aligns the resource 407 
requirements of nestlings with peak resource availability (Kölzsch et al., 2015; Fokkema et al., 2020). Our 408 
findings suggest that this explanation also generalizes to nocturnally migratory landbirds (Both et al., 409 
2010). Both the higher overall absolute productivity level and the ability of migratory birds to accumulate 410 
and carry large body reserves to fuel migration and initial breeding activities (Sandberg, 2008) would allow 411 
the migrants to (temporarily) deviate from the instantaneous relative energy landscape. The relationships 412 
between productivity and the three ecological metrics fell again during fall migration: much of the biomass 413 
stayed along the mid-latitude band while EVI was falling in the north due to leaf senescence, hence shifting 414 
the EVI distribution southward. This lower association also suggests that the migrants may be less 415 
constrained by instantaneous energy availability during this phase of the annual cycle (Briedis et al., 2020; 416 
Horton et al., 2020). 417 

Seasonal shifts in the biomass distributions (Figure 1a) also led to unexpected patterns in the local 418 
temporal associations with EVI across the annual cycle (Figure 2a). Large populations of nocturnally 419 
migrating landbirds were found to aggregate in the subtropical regions of Southeast during winter. 420 
However, in these regions, spring greening was instead accompanied by a net decrease in total biomass 421 
(Figure 2c), due to the northward mass exodus of overwintering populations that the influx of Neotropical 422 
migrants could not compensate for. Increased productivity of the environment is therefore associated 423 
with a decrease rather than an increase in migrant biomass; hence the negative temporal association in 424 
these regions. The southeastern subtropical region thus plays the role of a winter refuge for many species 425 
of nocturnally migrating landbirds in North America, as also seen from the fewfold increase in abundance 426 
and biomass during winter (Figures 2c, S7c). Our analysis of bioclimatic variables showed that regions with 427 
negative local temporal associations were primarily characterized by mild winters and wet summers 428 
(Figure 3b). While this could be related to a higher winter productivity and hence food availability 429 
compared to the more northerly regions (Figure 1d), the mild winter conditions likely also play a role by 430 
reducing thermoregulatory costs (Cartar & Morrison, 1997). 431 

We acknowledge a number of limitations with our approach. First, since the biomass and 432 
abundance interpolation models were fitted using observation data, the model estimates could have been 433 
affected by the detectability of the birds. In particular, the lower biomass estimates in Figures 2b and c 434 
during August and early September (compared to June and July) were likely affected by a decrease in 435 
detectability commonly observed during breeding and moult. Nonetheless, this should not affect the 436 
spatial correlations, which only depended on the relative values between different locations in the same 437 
week. Second, richness was obtained using a different approach (eBird S&T estimates) from the biomass 438 
and abundance estimates (STEM), which may affect the comparison between the strength of their spatial 439 
associations with productivity. Third, STEM included land cover predictors which may themselves affect 440 



EVI, so there is a risk of circularity when analyzing correlations with EVI. However, this risk was minimized 441 
by the use of flexible base models together with many predictors that affect EVI in different ways, so the 442 
models were not constrained to learn EVI-related signals. Fourth, due to the tradeoff between coverage 443 
and accuracy, our study area did not include Central America nor the high latitudes where some of the 444 
nocturnal migratory species spend their wintering/breeding seasons. Finally, it is worth repeating that the 445 
correlation coefficients were meant as measures of similarity between two fitted distributions, so they 446 
should not be compared to values from studies designed for statistical inference. 447 

Our findings highlight the role of the Southeast as winter refuge for short-distance migrants, 448 
which make up a large proportion of migratory landbird biomass in North America. Parts of coastal 449 
California and the Central Valley likely play a similar role for the western US. While many of the species 450 
wintering within the contiguous US are regarded as common, recent work on North American avifauna 451 
population trends (Rosenberg et al., 2019) have shown that they are nonetheless experiencing steep 452 
declines. Many studies have focused on the importance of protecting wintering habitats for the 453 
conservation of Neotropical migratory species (e.g. Sherry & Holmes, 1996; Faaborg et al., 2010), but 454 
relatively little is known about the impact of wintering refuge availability and quality on the long-term 455 
population trends of the short-distance migrants. We hope that our results can spur more work in this 456 
direction. 457 
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Figure 1 | Spatial associations between primary productivity and the biomass, abundance, and species 685 
richness of nocturnally migrating landbirds. (a) Spatial distributions of total detected biomass estimated 686 
at five dates in 2016 representing different points of the annual cycle: winter (Dec 30), early spring 687 
migration (Mar 16), late spring migration (May 25), summer (July 06), and autumn migration (Oct 05). (b) 688 
Spatial distributions of total detected abundance at the same 2016 dates. (c) Species richness at the 689 
closest equivalent 2018 dates. (d) Primary productivity estimated using the MODIS Enhanced Vegetation 690 
Index (EVI) at the same 2016 dates. To avoid visual artifacts when comparing between maps, we used 691 
linear color scales (truncated at the 98 percentile) for all four quantities. (e) Spatial cross-correlation 692 
coefficients between EVI and biomass, abundance, and species richness across the study area, calculated 693 
weekly across the annual cycle. Vertical dashed lines correspond to the five dates. To reduce clutter, we 694 
only show the fitted lines and 95% confidence bands (as shaded regions) from generalized additive models 695 
(GAM); see Supp. Figure S5 for the actual correlation coefficients. (f) Similar to (e), except the spatial 696 
correlation is with the seasonal EVI difference, defined as EVI minus the site minima. To facilitate 697 
comparison between (e) and (f) while avoiding plot clutter, the lines in (e) have been reproduced as lighter 698 
dashed lines in (f), and vice versa. Additional maps and correlation coefficient curves can be found in Supp. 699 
Figure S3. 700 
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 723 
Figure 2 | Temporal association between primary productivity and avian biomass. (a) The Kendall 724 
correlation coefficient between the MODIS Enhanced Vegetation Index (EVI) and biomass across weeks at 725 
individual grid locations. Weekly median EVI and biomass across the (b) Northeast (blue hatched region) 726 
and (c) Southeast (red hatched region). The regions were defined using combinations of Bird Conservation 727 
Regions (see Methods for details). The colored bands in (b) and (c) indicate the interquartile ranges. See 728 
Supp. Figure S7 for the abundance counterpart. 729 
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 745 
Figure 3 | Explaining the spatial patterns of temporal associations using bioclimatic variables. This figure 746 
shows the dependence of the local EVI-biomass correlations on the two bioclimatic variables with the 747 
highest importance (chosen using forward stepwise selection), estimated using a two-variable random 748 
forest. The two variables are mean temperature of coldest quarter (BIO11) and precipitation of warmest 749 
quarter (BIO18). We restricted the plot region to the convex hull of the data distribution to avoid over-750 
extrapolation. 751 
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